WO2021208204A1 - 信号处理电路、非接触连接器、信号处理方法及存储介质 - Google Patents

信号处理电路、非接触连接器、信号处理方法及存储介质 Download PDF

Info

Publication number
WO2021208204A1
WO2021208204A1 PCT/CN2020/092886 CN2020092886W WO2021208204A1 WO 2021208204 A1 WO2021208204 A1 WO 2021208204A1 CN 2020092886 W CN2020092886 W CN 2020092886W WO 2021208204 A1 WO2021208204 A1 WO 2021208204A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sent
coil
plug
socket
Prior art date
Application number
PCT/CN2020/092886
Other languages
English (en)
French (fr)
Inventor
谢棋军
杨永友
底青云
刘庆波
洪林峰
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Priority to US17/257,485 priority Critical patent/US11843204B2/en
Publication of WO2021208204A1 publication Critical patent/WO2021208204A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • H01R24/40Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/4068Electrical coupling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4204Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus
    • G06F13/4208Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus being a system bus, e.g. VME bus, Futurebus, Multibus
    • G06F13/4213Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus being a system bus, e.g. VME bus, Futurebus, Multibus with asynchronous protocol
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • H01R13/6691Structural association with built-in electrical component with built-in electronic circuit with built-in signalling means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details

Definitions

  • the invention belongs to the technical field of connectors, and in particular relates to a signal processing circuit, a non-contact connector, a signal processing method and a storage medium.
  • the connector needs to be waterproof and dustproof during the plugging and unplugging operations, and physically plugged in.
  • the stress during the pulling process will reduce the service life of the connector.
  • optical signals, microwave signals or acoustic signals are used for communication, in some media such as sea water, electromagnetic waves and radio frequency attenuation are severe, communication distance is limited, and acoustic wave communication speed is limited, and it is greatly affected by underwater acoustic channels. , Such as common multipath effects, Doppler effects, etc.
  • the existing connectors using wireless transmission technology can usually only be configured with one protocol, that is, the same protocol as the port of the connected device, otherwise data cannot be transmitted.
  • the present invention provides a signal processing circuit, a contactless connector, a signal processing method, and a storage medium.
  • the signal processing circuit of the present application can transmit signals wirelessly over a long distance while making the contactless connector adapt to Different transmission protocols for device ports.
  • an embodiment of the present invention provides a signal processing circuit applied to a non-contact connector.
  • the non-contact connector includes a plug and a socket.
  • the plug includes a main coil and the socket includes a secondary coil.
  • the plug and the socket pass through the main coil respectively.
  • the electromagnetic coupling between the coil and the auxiliary coil realizes the communication connection.
  • the signal processing circuit includes: a cable, a port processing unit and a signal processing unit; the cable has one end connected to the device and the other end connected to the port processing unit for receiving the device
  • the signal sent and/or the signal is sent to the device;
  • the port processing unit one end of which is connected to the cable and the other end to the signal processing unit, is used to obtain the data communication transmission mode of the port of the device connected to the connector, according to the data communication transmission mode , Configure the cable interface;
  • the signal processing unit connect the main coil or the auxiliary coil, and send it to the main coil and/or the auxiliary coil if the signal sent by the device is received; and/or, if the main coil is received And/or the signal sent by the auxiliary coil, send it to the device according to the data communication transmission mode.
  • the port processing unit includes a signal processing module, which is used to: calculate the device-side signal compensation factor based on the received signal and the initial signal sent by the device; and receive the signal sent by the main coil and/or the auxiliary coil The signal is converted according to the data communication transmission mode; the converted signal is compensated according to the signal compensation factor on the device side, and the processed signal is sent to the device.
  • a signal processing module which is used to: calculate the device-side signal compensation factor based on the received signal and the initial signal sent by the device; and receive the signal sent by the main coil and/or the auxiliary coil The signal is converted according to the data communication transmission mode; the converted signal is compensated according to the signal compensation factor on the device side, and the processed signal is sent to the device.
  • the signal processing unit includes a carrier wave compensation module; one end of the carrier wave compensation module is connected to the port processing unit, and the other end is connected to the main coil and/or auxiliary coil; the carrier wave compensation module is used to collect signals sent by the main coil And the first preset signal, the main coil side signal compensation factor is calculated, and the signal sent by the device is compensated according to the main coil side signal compensation factor, and the processed signal is sent to the main coil, and/or the carrier compensation module It is also used to calculate the auxiliary coil side signal compensation factor according to the collected signal sent by the auxiliary coil and the second preset signal, and perform compensation processing on the signal sent by the device according to the auxiliary coil side signal compensation factor, and send the processed signal To the auxiliary coil.
  • the plug and/or socket further include a command processing unit, the command processing unit is connected to the signal processing unit; the command processing unit is used to determine whether there is a storage space in the socket that can store signals, and if not, control the plug Stop sending a signal to the socket; and/or the command processing unit is used to determine whether there is a storage space in the plug that can store the signal; if not, control the socket to stop sending a signal to the plug.
  • a command processing unit is connected to the signal processing unit; the command processing unit is used to determine whether there is a storage space in the socket that can store signals, and if not, control the plug Stop sending a signal to the socket; and/or the command processing unit is used to determine whether there is a storage space in the plug that can store the signal; if not, control the socket to stop sending a signal to the plug.
  • the command processing unit is also used to: determine whether there is a signal in the plug to be sent to the socket, if not, send the first prompt message indicating that there is no signal to be sent; and/or determine whether there is a signal in the socket Send to the plug, if not, send the second prompt message indicating that there is no signal to be sent.
  • an embodiment of the present invention provides a non-contact connector including a plug and a socket.
  • the plug includes: a first magnetic core; a first threaded housing arranged to wrap around the first magnetic core On the outer periphery, the inner wall of the first threaded housing and the outer periphery of the first magnetic core form a toothed warehouse; the first coil is arranged in the toothed warehouse of the first threaded housing; the first coil and the first magnetic core form a main coil; the socket includes : The second magnetic core; the second threaded shell is arranged on the inner periphery of the second magnetic core.
  • the inner wall of the second threaded shell and the inner periphery of the second magnetic core form a toothed chamber, and the plug and socket pass through the first threaded shell
  • the body and the second threaded shell realize threaded connection
  • the second coil is arranged in the tooth-shaped compartment of the second threaded shell, and the second coil and the second magnetic core form a secondary coil.
  • the primary coil and the secondary coil Electromagnetic coupling is used to realize the communication connection between the plug and the socket;
  • the non-contact connector further includes the signal processing circuit of the first aspect or any implementation manner of the first aspect.
  • an embodiment of the present invention provides a signal processing method applied to the contactless connector described in the second aspect, the method comprising: acquiring a data communication transmission mode of a port of a device connected to the contactless connector ; According to the data communication transmission mode, configure the interface of the non-contact connector; if the signal sent by the device is received, send it to the main coil and/or the auxiliary coil; and/or, if the main coil and/or the auxiliary coil are received The signal sent by the coil is sent to the device according to the data communication transmission mode.
  • the method further includes: calculating the device-side signal compensation factor based on the received signal and the initial signal sent by the device; and receiving the signal sent by the primary coil and/or the secondary coil, and transmitting it according to data communication
  • the mode sent to the device includes: receiving the signal sent by the main coil and/or the auxiliary coil, and converting it according to the data communication transmission mode; performing compensation processing on the converted signal according to the signal compensation factor on the device side, and converting the processed signal Send to the device.
  • the method further includes calculating the main coil side signal compensation factor based on the collected signal sent by the main coil and the first preset signal; and receiving the signal sent by the device and sending it to the main coil, specifically Including: performing compensation processing on the signal sent by the device according to the signal compensation factor on the main coil side; sending the processed signal to the main coil.
  • the method further includes: calculating the signal compensation factor on the side of the secondary coil according to the collected signal sent by the secondary coil and the second preset signal; and receiving the signal sent by the device and sending it to the secondary coil, Specifically, it includes: performing compensation processing on the signal sent by the device according to the signal compensation factor on the secondary coil side; and sending the processed signal to the secondary coil.
  • the method further includes: judging whether there is a storage space capable of storing signals in the socket of the non-contact connector; if not, controlling the plug to stop sending signals to the socket; and/or judging the non-contact connector Whether there is storage space in the plug that can store signals; if not, control the socket to stop sending signals to the plug.
  • the method further includes: determining whether a signal is sent to the socket in the plug of the non-contact connector; if not, sending first prompt information indicating that there is no signal to be sent; and/or, determining the non-contact Whether there is a signal sent to the plug in the socket of the connector; if not, the second prompt message indicating that there is no signal to be sent is sent.
  • an embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored, wherein the program is executed by a processor to implement the third aspect or any one of the third aspect Signal processing method.
  • the signal processing circuit of the present application enables the plug and/or socket to configure the protocol adapted to it according to the data communication transmission mode of the device port, so as to receive the signal sent by the device, and to receive the signal from the main coil and/or sub
  • the signal received by the coil is sent to the device according to the data communication transmission mode that matches the port of the device.
  • the signal transmission between the socket and plug of the non-contact connector of the present application is realized by the electromagnetic coupling between the secondary coil and the main coil, and the signal transmission between the socket and the plug does not need to rely on The physical contact avoids the influence of the plug-in action between the socket and the plug on the signal transmission.
  • the signal processing circuit of the present application also realizes the non-contact transmission of signals between the plug and the socket, and can be applied to different ports of the device. Data communication transmission mode. Moreover, since the length of the cable can be adjusted according to actual application scenarios, the signal processing circuit of this embodiment enables the non-contact connector to realize long-distance wireless signal transmission.
  • the non-contact connector of the present application can configure the data transmission mode of the plug as the data communication transmission mode of the port of the device connected to the plug, and configure the data transmission mode of the socket as the port of the device connected to the socket Data communication transmission mode; on the other hand, the first coil and the second coil are respectively arranged in the first threaded housing and the second threaded housing, so as to achieve the connection between the plug and the socket at the same time, make the main coil and the auxiliary coil Close cooperation and good electromagnetic coupling effect; Moreover, the signal compensation factor on the device side and the signal compensation factor on the coil side can reduce communication errors caused by load changes and transmission distance changes during signal transmission, and reduce the electromagnetic coupling process The electromagnetic coupling interference caused by temperature, electrolyte resistivity or the offset of the coil improves the accuracy of signal transmission.
  • the signal processing method of the present application enables the plug and socket of the non-contact connector to configure the protocol adapted to it according to the data communication transmission mode of the port of the device connected to it, so as to receive the signal sent by the device and to The signal received from the main coil is sent to the device according to the data communication transmission mode matching the port of the connected device, and the signal received from the secondary coil is sent to the device according to the data communication transmission mode matching the port of the connected device , Improve the applicability of non-contact connectors.
  • Figure 1 shows a schematic circuit diagram of the signal processing circuit of the present application
  • Figure 2 shows a schematic diagram of the plug of the non-contact connector of the present application
  • Figure 3 shows a schematic diagram of the socket of the non-contact connector of the present application
  • FIG. 4 shows a schematic diagram of the connection part of the plug and the socket of the non-contact connector of the present application
  • FIG. 5 shows a schematic circuit diagram of the signal processing circuit of the non-contact connector of the present application
  • Figure 6 shows a signal transmission flow chart of the non-contact connector of the present application
  • Figure 7 shows a flow chart of the signal processing method of the present application
  • FIG. 8 shows another flowchart of the signal processing method of the present application
  • FIG. 9 is a schematic structural diagram of a controller suitable for implementing an embodiment of the present invention.
  • 2A, 2B-signal processing circuit 21A, 21B-cable; 22A, 22B-port processing unit, 221A, 221B-input and output processing module, 222A, 222B-signal processing module; 23A, 23B-signal processing unit, 231A, 231B-carrier compensation module, 232A, 232B-data modulation and demodulation module, 233A, 233B-data write buffer, 234A, 234B-data read buffer; 24-main coil; 25-secondary coil; 26A, 26B-command processing Unit, 261A, 261B-command modem module, 262A, 262B-command read buffer, 263A, 263B-command write buffer; 27A, 27B-controller;
  • 3-plug 32-first electronic compartment, 33-first threaded housing, 34-first magnetic core, 35-first protective layer;
  • the embodiment of the present invention provides a signal processing circuit, which is applied to a non-contact connector.
  • the non-contact connector includes a plug and a socket, the plug includes a main coil, and the socket includes a secondary coil.
  • the plug and the socket realize the communication connection through the electromagnetic coupling between the main coil and the auxiliary coil respectively.
  • the signal processing circuit of this embodiment includes a cable, a port processing unit, and a signal processing unit.
  • the signal processing circuit of this embodiment can be applied to a plug and/or socket of a non-contact connector. That is, the signal processing circuit can be provided in the plug, and the signal processing circuit can also be provided in the socket.
  • the signal processing circuit in the plug is denoted as signal processing circuit 2A
  • the signal processing circuit in the socket is denoted as signal processing circuit 2B.
  • the signal processing unit 2A includes a cable 21A, a port processing unit 22A, and a signal processing unit 23A.
  • One end of the cable 21A can be connected to the device 1A through the port of the device 1A, and the other end can be connected to the port processing unit 22A.
  • the cable 21A is used to receive signals sent by the device 1A and/or send signals to the device 1A.
  • One end of the port processing unit 22A is connected to the cable 21A, and the other end is connected to the signal processing unit 23A.
  • the port processing unit 22A is used to obtain the data communication transmission mode of the port of the device 1A connected to the plug, and according to the data communication transmission mode, pair the line
  • the cable 21A performs interface configuration.
  • the cable 21A usually includes four wires.
  • the device 1A After the plug is connected to the port of the device 1A, the device 1A sends information to the plug, and the signal processing circuit 2A can learn the data communication transmission mode of the port of the device 1A.
  • the data communication transmission mode of the port can have transmission protocols such as URAT, IIC, SPI, CAN, etc.
  • the port processing unit 22A can configure the four wires of the cable 21A according to the data communication transmission mode of the port.
  • the data communication transmission mode is URAT
  • three of the four wires are configured as TX, RX, GND, and one wire is idle
  • the data communication transmission mode is IIC
  • two of the wires are configured as SCL, SDA
  • the remaining two wires are idle
  • the data communication transmission mode is SPI
  • the four wires are respectively configured as CS, SCK, MISO, MOSI
  • the data communication transmission mode is CAN
  • the three wires are respectively configured as CAN_H, CAN_L, GND, the remaining wire is idle.
  • the data communication transmission mode of the port is described by taking the URAT transmission protocol of TTL level as an example. That is, in this embodiment, three wires of the cable 21A are respectively configured as TX, RX, and GND, and the remaining wire is idle.
  • the signal processing unit 2A is connected between the port processing unit 22A and the main coil 24.
  • the signal processing unit 23A is used to receive the signal sent by the device 1A and send it to the main coil 24. And/or, if the signal sent by the main coil 24 is received, it is transmitted to the port processing unit 22A, and sent to the device 1A via the port processing unit 22A in accordance with the data communication transmission mode.
  • the signal sent by the main coil 24 is the signal received by the main coil 24 and sent by the secondary coil 25 of the socket.
  • the signal processing circuit 2B on the socket includes a cable 21B, a port processing unit 22B, and a signal processing unit 23B. As shown in FIG. 1, one end of the cable 21B can be connected to the device 1B, and the other end is connected to the port processing unit 22B. One end of the port processing unit 22B is connected to the cable 21B, the other end is connected to the signal processing unit 23B, and the signal processing unit 23B is connected to the secondary coil 25.
  • the specific functions and signal processing methods of the cable 21B, the port processing unit 22B, and the signal processing unit 23B are similar to the above-mentioned signal processing circuit 2A, and will not be repeated here.
  • the signal processing circuit 2B on the socket can also configure the cable 21B according to the data communication transmission mode of the port of the device 1B, so that the socket can receive the signal sent by the device 1B.
  • the plug and socket can be configured to adapt the protocol according to the data communication transmission mode of the port of the device 1A and the device 1B respectively, so as to receive the signals sent by the device 1A and the device 1B respectively ,
  • the signal received from the main coil 24 can be sent to the device 1A according to the data communication transmission mode matching the port of the device 1A
  • the signal received from the secondary coil 25 can be sent to the device 1A according to the data communication transmission mode matching the port of the device 1B Send to device 1B.
  • the signal transmission between the socket and the plug is realized by the electromagnetic coupling between the secondary coil 24 and the main coil 25.
  • the socket and the plug do not need to rely on physical contact for signal transmission, which avoids The effect of plugging and unplugging between socket and plug on signal transmission.
  • the signal processing circuit of this embodiment also realizes the non-contact transmission of signals between the plug and the socket, and at the same time, it can be applied to the data communication transmission mode of different ports of the device.
  • the signal processing circuit of this embodiment enables the non-contact connector to realize long-distance wireless signal transmission.
  • the port processing unit includes an input/output processing module and a signal processing module.
  • One end of the input/output processing module is connected to the cable, and the other end is connected to the signal processing module for receiving Calculate the signal compensation factor on the device side for the signal and the initial signal sent by the device.
  • One end of the signal processing module is connected to the input and output processing module, and the other end is connected to the signal processing unit. It is used to receive the signal sent by the main coil and/or the auxiliary coil, convert it according to the data communication transmission mode, and convert the converted signal. The signal is sent to the input and output processing module, so that the input and output processing module performs compensation processing on the converted signal according to the device-side signal compensation factor, and sends the processed signal to the device.
  • the signal processing module 222A can obtain the real-time received signal and the initial signal sent by the device 1A that matches the real-time received signal, and then calculate the device-side signal based on the above two signals Compensation factor Ag', the device-side signal compensation factor Ag' here may be a proportional relationship or a factor obtained by other calculation forms, and this embodiment is not limited to this.
  • the signal when the signal to be sent by the main coil 24 to the device 1A is received, the signal can be converted into a data communication transmission mode that matches the port of the device 1A, and then converted The latter signal is sent to the input and output processing module 221A.
  • the input and output processing module 221A performs compensation processing on the converted signal according to the device-side signal compensation factor Ag′ obtained above, and sends the compensated signal to the device 1A, thereby ensuring the accuracy of the signal received by the device 1A.
  • the input/output processing module 221A may also perform filtering and shaping on the signal received from the device A to improve signal reliability.
  • the port processing unit B may also include a signal processing module 222B, and the device side signal compensation factor in the port processing unit 22B may be denoted as Bg′, and its specific function is similar to that of the above port processing unit 22A , I won’t repeat it here.
  • the device-side signal compensation factor Ag' in the signal processing circuit 2A and the device-side signal compensation factor Bg' in the signal processing circuit 2B are factors calculated in real time. Since the signal transmission and reception are performed dynamically, the compensation factor is calculated in real time. , The signal is compensated when the signal is transmitted in the next moment, which can dynamically compensate for signal distortion and improve the accuracy of signal transmission.
  • the signal processing unit includes a carrier compensation module.
  • the signal processing unit 23A in the plug includes a carrier compensation module 231A
  • the signal processing unit 23B in the socket includes a carrier compensation module 231B.
  • the carrier compensation module 231A is used to calculate the main coil side signal compensation factor based on the collected signal sent by the main coil 24 and the first preset signal, and perform compensation processing on the signal sent by the device A according to the main coil side signal compensation factor, and The processed signal is sent to the main coil.
  • the carrier compensation module 231A may generally include, but is not limited to, a gain compensation circuit, a power compensation circuit, a frequency compensation circuit, and the like.
  • the non-contact connector when the non-contact connector is in actual application, when the signal is transmitted between the plug and the socket through the main coil 24 and the auxiliary coil 25 electromagnetically, it is affected by external environmental parameters (such as temperature), electrolyte resistivity or coil offset. The influence of, will cause interference to electromagnetic coupling, causing distortion of the signal received by the main coil 24.
  • the carrier compensation module 231A can collect the signal sent by the main coil 24 and the first preset signal in real time.
  • the signal sent by the main coil 24 refers to the signal sent by the main coil 24 to the carrier compensation module 231A, and can also be understood as the signal sent by the main coil 24 to the carrier compensation module 231A after receiving the signal sent by the auxiliary coil 25.
  • the first preset signal may be, for example, a signal received by the secondary coil 25 and received by the primary coil 24 obtained by testing in a non-interference environment.
  • the carrier compensation module 231A may combine the collected signal sent by the main coil 24 to the carrier compensation module 231A and the first preset signal to calculate the main coil side signal compensation factor Ag.
  • the carrier compensation module 231A is a gain/power compensation circuit
  • the first preset signal (level/power value) can be divided by the signal (level value/power) sent by the main coil 24 to the carrier compensation module 231A.
  • the value of is recorded as the main coil side signal compensation factor Ag.
  • the carrier compensation module 231A is a frequency compensation circuit
  • the difference obtained by subtracting the signal (carrier frequency) sent by the main coil 24 to the carrier compensation module 231A from the first preset signal (carrier frequency) may be recorded as the main Coil side signal compensation factor Ag.
  • the device 1A wants to transmit data to the device 1B, the device 1A needs to send the signal to the main coil 24-secondary coil 25-device 1B first, in order to ensure that the amplitude of the signal received by the secondary coil 25 and the carrier frequency reach the correct demodulation
  • the threshold of the digital signal that is, in order to compensate for the distortion of the signal caused by interference factors in the process of sending from the main coil 24 to the auxiliary coil 25, the carrier compensation module 231A can first perform the signal compensation factor on the main coil side on the signal sent by the device 1A. Ag compensation, and then send the compensated signal to the main coil 24, and then from the main coil 24 to the auxiliary coil 25, so as to improve the accuracy of the signal received by the auxiliary coil 25, and then ensure the accuracy of the signal received by the device 1B Spend.
  • the carrier compensation module 231B is used according to the collected secondary coil 25.
  • the signal sent by 25 and the second preset signal are calculated to obtain the auxiliary coil side signal compensation factor Bg, and the signal sent by the device 1B is compensated according to the auxiliary coil side signal compensation factor Bg, and the processed signal is sent to the auxiliary coil 25 .
  • the principle of the second preset signal is the same as the above-mentioned first preset signal, and the principle and signal processing process of the carrier compensation module 231B are similar to the carrier compensation module 231A, and will not be repeated here.
  • the signal compensation factor Ag on the main coil side in the signal processing circuit 2A and the signal compensation factor Bg on the secondary coil side in the signal processing circuit 2B are factors calculated in real time. Since the signal transmission and reception are performed dynamically, therefore, The compensation factor is calculated in real time, and the signal is compensated for gain when the signal is transmitted at the next moment, which can dynamically compensate the signal distortion and improve the accuracy of signal transmission.
  • the carrier compensation module, 231A and carrier compensation module 231B can respectively perform carrier compensation on the signal sent by the primary coil 24 and the signal sent by the secondary coil 25, avoiding the influence of interference factors on signal transmission and improving the transmission signal Accuracy.
  • the plug and/or socket further include a command processing unit, the command processing unit is connected to the signal processing unit, and the command processing unit is used to determine whether there is a storage space in the socket that can store signals If not, control the plug to stop sending signals to the socket; and/or, the command processing unit is used to determine whether there is a storage space in the plug that can store signals; if not, control the socket to stop sending signals to the plug.
  • a command processing unit is connected to the signal processing unit, and the command processing unit is used to determine whether there is a storage space in the socket that can store signals If not, control the plug to stop sending signals to the socket; and/or, the command processing unit is used to determine whether there is a storage space in the plug that can store signals; if not, control the socket to stop sending signals to the plug.
  • the plug may have a command processing unit 26A
  • the socket may have a command processing unit 26B.
  • the command processing unit 26B in the socket can judge whether there is storage space in the socket that can store the signal, and send the judgment result to the command processing unit 26A.
  • the command processing unit 26A knows that if the socket is full according to the judgment result, that is, there is no storage space in the socket.
  • the storage space for storing the signal will control the plug to stop sending the signal to the socket.
  • the command processing unit 26A in the plug can determine whether there is storage space in the plug that can store the signal, and send the judgment result to the command processing unit 26B.
  • the command processing unit 26B learns that if the plug is full according to the judgment result, that is, If there is no storage space for storing signals in the plug, the control socket stops sending signals to the plug. In this way, the signal storage in the plug and socket of the non-contact connector can be judged in time to suspend sending the signal when the storage of the other party is full, avoiding the signal cannot be received after it is sent, and avoiding the situation of invalid sending data.
  • the command processing unit 26A in the plug can also determine whether there is a signal in the plug to be sent to the socket, and if not, it sends the first prompt message indicating that there is no signal to be sent. That is, because when the device 1A sends a signal to the device 1B, the signal can be stored in the storage unit in the plug first, so the command processing unit 26A in the plug can determine whether there is still a signal sent to the plug according to whether the storage unit in the plug is empty.
  • the command processing unit 26A can generate the first prompt message indicating that there is no signal to be sent and send the first prompt message to the device 1A and/or the device 1B, so that It learns that the signal transmission has been completed.
  • the command processing unit 26B in the socket may also determine whether there is a signal sent to the plug in the socket, and if not, send the second prompt message indicating that there is no signal to be sent. That is, because when the device 1B sends a signal to the device 1A, it can first store the signal in the storage unit in the socket, so the command processing unit 26B in the socket can determine whether there is any signal sent to the socket according to whether the storage unit in the socket is empty. Plug, if the storage unit is empty, indicating that there is no signal to be sent further, the command processing unit 26B can generate a second prompt message indicating that there is no signal to be sent and send the second prompt message to the device 1B and/or the device 1A, so that It learns that the signal transmission has been completed.
  • the command processing unit 26A and the command processing unit 26B can respectively monitor the signal transmission and reception of the device 1A and the device 1B.
  • a prompt message is generated to facilitate the device 1A and the device 1B to obtain and transmit
  • the signal transmission has been completed information to avoid invalid waiting for the processor of the device 1A and the device 1B.
  • the non-contact connector includes a plug 3 and a socket 4.
  • the plug 3 includes a first magnetic core 34 and a first threaded shell. 33 and the first coil (not shown in the figure).
  • the first screw housing 33 is arranged to wrap the outer circumference of the first magnetic core 34.
  • the inner wall of the first threaded housing 33 and the outer periphery of the first magnetic core 34 form a toothed chamber.
  • the first coil is arranged in the toothed compartment of the first threaded housing 33.
  • the first coil and the first magnetic core 34 form the main coil 24.
  • the socket 4 includes a second magnetic core 45, and the cross section of the second magnetic core 45 is annular.
  • the second threaded housing 46 is disposed on the inner circumference of the second magnetic core 45, and the inner wall of the second threaded housing 46 and the inner circumference of the second magnetic core 45 form a toothed chamber.
  • the second coil (not shown in the figure) is provided in the toothed compartment of the second threaded housing 46.
  • the second coil and the second magnetic core 45 form a secondary coil 25.
  • the plug 3 includes a cable 21A, a first electronic warehouse 32, a first threaded housing 33, a first magnetic core 34 and a first protective layer 35.
  • the cable 21A has four leads in total, and the cable 21A is connected to the first electronic warehouse 32.
  • the interface modes that can be configured for the cable 21A include but are not limited to: URAT (RS485), IIC, SPI, CAN.
  • a circuit board is installed in the first electronic warehouse 32.
  • the cable 21A and the first electronic compartment 32 have the performance of insulation, waterproof and corrosion resistance.
  • the first threaded shell 33 is a thin-layer shell wrapped with insulating and wear-resistant material.
  • the inner wall of the first threaded shell 33 and the outer periphery of the first magnetic core 34 form a toothed chamber for the Litz wire to penetrate.
  • the first magnetic core 34 may be ferrite, and its cross-section is generally circular.
  • the litz wire passes through the toothed compartment of the first threaded housing 33 of the plug and is wound along the first magnetic core 34 into a coil, that is, the first coil.
  • the first protective layer 35 is a plastic hard shell close to the first magnetic core 34 and plays a role of protecting and fixing the first magnetic core 34.
  • the first coil and the first magnetic core 34 form a main coil 24, and the main coil 24 may be a ferrite coil.
  • the socket 4 includes a cable 21B, a second electronic warehouse 42, a housing 43, a second protective layer 44, a second magnetic core 45 and a second threaded housing 46.
  • the cable 21B has four leads in total, and the cable 21B is connected to the second electronic warehouse 42.
  • the interface modes that can be configured for the cable 21B include but are not limited to: URAT (RS485), IIC, SPI, CAN.
  • a circuit board is installed in the second electronic warehouse 42.
  • the cable 21B and the second electronic compartment 42 have the performance of insulation, waterproof and corrosion resistance.
  • the second threaded shell 46 is a thin-layer shell wrapped with insulating and wear-resistant material.
  • the inner wall of the second threaded shell 46 and the inner periphery of the second magnetic core 45 form a toothed chamber for the Litz wire to penetrate.
  • the second magnetic core 45 may be ferrite, and its cross-section is generally circular.
  • the Litz wire passes through the toothed compartment of the second threaded housing 46 of the socket 4 and is wound along the second magnetic core 45 into a coil, that is, the second coil.
  • the second protective layer 44 is a plastic hard shell close to the second magnetic core 45 and plays a role of protecting and fixing the second magnetic core 45.
  • the second coil and the second magnetic core 45 form a secondary coil 25.
  • the above-mentioned second threaded housing 46 can be understood as an internal thread, and the first threaded housing 33 can be understood as an external thread. In this way, when the plug 3 is screwed into the socket 4, as shown in FIG. The body 33 and the second threaded housing 46 are threadedly connected.
  • the first coil is provided in the toothed compartment of the first threaded housing 33
  • the second coil is provided in the toothed compartment of the second threaded housing 46, so that the plug 3 and the socket 4 pass through the first threaded housing 33 and While the second threaded housing 46 is connected, the distance between the main coil 24 and the auxiliary coil 25 is closer, thereby greatly improving the electromagnetic coupling capability between the main and auxiliary coils and the anti-interference ability during signal transmission.
  • the non-contact connector of this embodiment further includes the signal processing circuit in the first embodiment.
  • the signal processing circuit of this embodiment may specifically include:
  • the signal processing circuit 2A in the plug 3 it specifically includes a cable 21A, an input/output processing module 221A, a signal processing module 222A, a controller 27A, a data write buffer 233A, a data read buffer 234A, and a data modem module 232A , Carrier compensation module 231A, command write buffer 263A, command read buffer 262A, command modem module 261A.
  • the carrier compensation module 231A is connected to the main coil 24. Refer to Figure 5 for the connection relationship of each module.
  • the controller 27A can control the port processing unit 22A, the signal processing unit 23A, and the command processing unit 26A.
  • the port processing unit 22A includes a signal processing module 222A and an input/output processing module 221A, where the signal processing module 222A is, for example, an FPGA.
  • the signal processing unit 23A may include a carrier compensation module 231A, a data modulation and demodulation module 232A, a data write buffer 233A, and a data read buffer 234A.
  • the command processing unit 26A may include a command modem module 261A, a command read buffer 262A, and a command write buffer 263A.
  • the specific circuit modules and the connection relationship and the functions of each module included in the signal processing circuit 2B can be referred to the signal processing circuit 2A, which will not be repeated here.
  • Step 601 Configure a data communication transmission mode.
  • the controller 27A may configure the cable 21A in a data communication transmission mode that matches the port of the device 1A.
  • the specific configuration method is similar to that in Embodiment 1, and will not be repeated here.
  • the controller 27B may configure the cable 21B in a data communication transmission mode that matches the port of the device 1B.
  • the specific configuration method is similar to the one in the embodiment, and will not be repeated here.
  • Step 602 Determine whether there is a valid signal on the cable 21A.
  • step 603 if there is no valid signal, the prompt information is fed back to the device 1A through the signal processing module 222A.
  • the signal processing module 222A may be an FPGA.
  • step 604 if there is a valid signal, the device side signal compensation factor Ag' is calculated.
  • the input/output processing module 221A calculates the device-side signal compensation factor Ag′ based on the signal received from the cable 21A and the initial signal sent by the device 1A, and sends the Ag′ to the controller 27A for storage.
  • Step 605 if there is a valid signal, store the signal in the data write buffer 233A.
  • the FPGA stores the signal in the data write buffer 233A.
  • Step 606 Determine whether the data reading buffer 234B is full according to the command in the command reading buffer 262A.
  • the data read buffer 234B in the signal processing circuit 2B is used to store the signal received by the secondary coil 25, and the data write buffer 233B in the signal processing circuit 2B is used to store the signal sent to the socket 4 by the storage device 1B.
  • the controller 27B generates a command according to the signal empty or full state stored in the data read buffer 234B and the data write buffer 233B. After that, the controller 27B stores the command in the command write buffer 263B, and then commands the modem module 261B to read the command from the command write buffer 263B, and modulates the command into a signal on the fb3-fb4 frequency band.
  • the carrier compensation module 231B applies the signal to the secondary coil side signal compensation factor Bg, and then sends the signal to the primary coil 24.
  • the carrier compensation module 231A can receive the signal on the fb3-fb4 frequency band (representing a command) from the main coil 24, filter it and send it to the command modem module 261A, and command the modem module 261A on the fb3-fb4 frequency band.
  • the digital signal is demodulated to obtain a digital signal, and then the digital signal is sent to the command read buffer 262A for storage.
  • the controller 27A wants to send a signal to the main coil 24, it can read the command from the command read buffer 262A to obtain the current signal-full state of the data read buffer 234B in the signal processing circuit 2B.
  • step 607 if it is full, the controller 27A controls the plug 3 to suspend sending signals.
  • step 608 if it is not satisfied, it is determined whether there is a signal in the data write buffer 233A.
  • the controller 27A may determine whether there is a signal in the data written into the buffer 233A according to the storage condition of the data written into the buffer 233A.
  • step 609 if there is no signal, the first prompt message can be generated.
  • the controller 27A may generate the first prompt information and send it to the device 1A.
  • Step 610 if there is a signal, read the signal from the data write buffer 233A, modulate it into a fa1-fa2 frequency band signal and send it to the main coil 24.
  • the data modulation and demodulation module 232A can read the signal from the data write buffer 233A, perform carrier modulation on the signal, and modulate the signal into a signal in the fa1-fa2 frequency band, and then, Then, the carrier compensation module 231A performs the gain amplification of Ag times and sends it to the main coil 24.
  • Step 611 According to the command to read the command in the buffer 262B, it is judged whether there is a signal to write the data into the buffer 233A.
  • the data read buffer 234A in the signal processing circuit 2A is used to store the signal received by the main coil 24, and the data write buffer 233A in the signal processing circuit 2A is used to store the signal sent to the plug 3 by the storage device 1A.
  • the controller 27A will generate a command according to the full state of the signal stored in the data read buffer 234A and the data write buffer 233A. After that, the controller 27A stores the command in the command write buffer 263A, and then commands the modem module 261A to read the command from the command write buffer 263A, and modulates the command into a signal on the fa3-fa4 frequency band.
  • the carrier compensation module 231A applies the signal to the main coil side signal compensation factor Ag, and then sends the signal to the auxiliary coil 25 via the main coil 24.
  • the carrier compensation module 231B can receive the signal on the fa3-fa4 frequency band (indicating a command) from the auxiliary coil 25, filter it and send it to the command modem module 232B, and command the modem module 232B on the fa3-fa4 frequency band.
  • the signal is demodulated to obtain a digital signal, and then the digital signal is sent to the command read buffer 262B for storage.
  • the controller 27B can first read the command in the buffer 262B according to the command to determine whether the data write buffer 233A in the signal processing circuit 2A is empty, that is, whether there is a signal .
  • step 612 if there is no signal for data writing into the buffer 233A, the first prompt message may be generated.
  • the first prompt message may be generated for the controller 27B.
  • the first prompt information can be sent to the device 1B.
  • step 613 if there is a signal in the data write buffer 233A, the carrier compensation module 231B receives the signal in the fa1-fa2 frequency band from the secondary coil 25.
  • step 614 the data modem module 232B demodulates the signal and stores it in the data read buffer 234B.
  • the data modulation and demodulation module 232B demodulates the signals in the fa1-fa2 frequency band into digital signals and stores them in the data reading buffer 234B.
  • step 615 the controller 27B reads the digital signal from the data read buffer 234B, converts the digital signal into a format matching the data communication transmission mode configured in the signal processing module 222B, and sends it to the input and output processing module 221B.
  • step 616 the input and output processing module 221B transmits the signal to the cable 21B after gaining a device-side signal compensation factor Bg′ times, and then to the device 1B.
  • the device-side signal compensation factor Bg′ can be calculated in a manner similar to the device-side signal compensation factor Ag′ in the first embodiment, except that the data on which Bg′ is calculated is the signal received in real time by the input and output processing module 221B And the initial signal sent by the device 1B.
  • the signal sent by the primary coil 24 to the secondary coil 25 is modulated into the fa1-fa2 frequency band, and the signal sent from the primary coil 24 to the secondary coil 25
  • the command is modulated into the fa3-fa4 frequency band
  • the signal sent by the auxiliary coil 25 to the main coil 24 is modulated into the fb1-fb2 frequency band
  • the command sent by the auxiliary coil 25 to the main coil 24 is modulated into the fb3-fb4 frequency band.
  • the foregoing process is the signal transmission process of the device 1A sending a signal to the device 1B in this embodiment.
  • the signal transmission flow of the signal sent by the device 1B to the device 1A is similar to the above process, and will not be repeated here.
  • the data transmission mode of the plug 3 can be configured as the data communication transmission mode of the port of the device 1A connected to the plug 3, and the data transmission mode of the socket 4 can be configured as the data transmission mode connected to the socket 4.
  • the data communication transmission mode of the port of the device 1B on the other hand, the first coil and the second coil are respectively arranged in the first threaded housing 33 and the second threaded housing 46, so that the plug 3 and the socket 4 are connected at the same time , So that the main coil and the auxiliary coil are closely matched, and the electromagnetic coupling effect is good; in addition, the signal compensation factor on the device side and the coil side signal compensation factor can reduce the communication caused by load changes and transmission distance changes during signal transmission. Error code, and reduce electromagnetic coupling interference caused by temperature, electrolyte resistivity or coil offset during electromagnetic coupling, and improve the accuracy of signal transmission.
  • the embodiment of the present invention provides a signal processing method, which can be applied to the signal processing circuit in the first embodiment, of course, can also be applied to the non-contact connector in the second embodiment, and can also be applied to other
  • the circuit or device that implements the method is not limited in this embodiment.
  • the signal processing method includes:
  • Step 701 Obtain the data communication transmission mode of the port of the device connected to the non-contact connector.
  • Step 702 Perform interface configuration on the contactless connector according to the data communication transmission mode.
  • Step 703 If the signal sent by the device is received, send it to the main coil and/or the auxiliary coil; and/or, if the signal sent by the main coil and/or the auxiliary coil is received, send it to the main coil and/or the auxiliary coil according to the data communication transmission mode. equipment.
  • the plug and socket of the non-contact connector can be configured to adapt to the protocol according to the data communication transmission mode of the port of the device connected to it, so as to receive the signal sent by the device and to The signal received from the main coil is sent to the device according to the data communication transmission mode matching the port of the connected device, and the signal received from the secondary coil is sent to the device according to the data communication transmission mode matching the port of the connected device , Improve the applicability of non-contact connectors.
  • the signal processing method further includes calculating the device-side signal compensation factor based on the received signal and the initial signal sent by the device.
  • the specific calculation method can be performed in a manner similar to that in the first embodiment, and will not be repeated here.
  • receiving the signal sent by the main coil and/or the auxiliary coil and sending it to the device according to the data communication transmission mode includes: receiving the signal sent by the main coil and/or the auxiliary coil, and sending it to the device. Perform signal conversion according to the data communication transmission mode; perform compensation processing on the converted signal according to the device-side signal compensation factor, and send the processed signal to the device.
  • the specific implementation manner can be performed in a manner similar to that in Embodiment 1, and will not be repeated here.
  • the signal processing method further includes calculating the main coil side signal compensation factor based on the collected signal sent by the main coil and the first preset signal.
  • the specific calculation method can be performed in a manner similar to that in Embodiment 1, and will not be repeated here.
  • receiving the signal sent by the device and sending it to the main coil specifically includes performing compensation processing on the signal sent by the device according to the signal compensation factor on the main coil side; and sending the processed signal to the main coil.
  • the specific calculation method can be performed in a manner similar to that in the first embodiment, and will not be repeated here.
  • the signal processing method further includes calculating the auxiliary coil side signal compensation factor according to the collected signal sent by the auxiliary coil and the second preset signal.
  • the specific calculation method can be performed in a manner similar to that in the first embodiment, and will not be repeated here.
  • receiving the signal sent by the device and sending it to the auxiliary coil specifically includes performing compensation processing on the signal sent by the device according to the signal compensation factor on the auxiliary coil side; and sending the processed signal to the auxiliary coil.
  • the specific implementation manner can be performed in a manner similar to that in Embodiment 1, and will not be repeated here.
  • the signal processing method further includes:
  • Step 704 Determine whether there is a storage space capable of storing signals in the socket of the non-contact connector.
  • Step 705 if not, control the plug to stop sending a signal to the socket.
  • Step 706 Determine whether there is a storage space capable of storing signals in the plug of the non-contact connector.
  • Step 707 If not, control the socket to stop sending a signal to the plug.
  • FIG. 9 shows a schematic structural diagram of a controller suitable for implementing the embodiments of the present application.
  • the controller here may be, for example, the controller 27A in the foregoing embodiment, or the controller 27B in the foregoing embodiment.
  • the controller shown in FIG. 9 is only an example, and should not bring any limitation to the function and scope of use of the embodiments of the present application.
  • the controller may include a processing device (such as a central processing unit, a graphics processor, etc.) 901, which may be loaded into a random access memory according to a program stored in a read-only memory (ROM) 902 or from a storage device 908 (RAM)
  • the program in 903 executes various appropriate actions and processing.
  • RAM 903 various programs and signals required for the operation of the controller are also stored.
  • the processing device 901, the ROM 902, and the RAM 903 are connected to each other through a bus 904.
  • An input/output (I/O) interface 905 is also connected to the bus 904.
  • the following devices can be connected to the I/O interface 905: including input devices 906 such as touch screens, touch panels, keyboards, mice, cameras, microphones, accelerometers, gyroscopes, etc.; including, for example, liquid crystal displays (LCD, Liquid Crystal Display) , Output devices 907 such as speakers, vibrators, etc.; storage devices 908 including, for example, magnetic tapes, hard disks, etc.; and communication devices 909.
  • the communication device 909 may allow the controller to perform wireless or wired communication with other devices to exchange signals.
  • FIG. 9 shows a controller with various devices, it should be understood that it is not required to implement or have all of the illustrated devices. It may be implemented alternatively or provided with more or fewer devices. Each block shown in FIG. 9 may represent one device, or may represent multiple devices as needed.
  • the process described above with reference to the flowchart can be implemented as a computer software program.
  • the embodiments of the present application include a computer program product, which includes a computer program carried on a computer-readable medium, and the computer program includes program code for executing the method shown in the flowchart.
  • the computer program may be downloaded and installed from the network through the communication device 909, or installed from the storage device 908, or installed from the ROM 902.
  • the processing device 901 the above-mentioned functions defined in the method of the embodiment of the present application are executed.
  • the computer-readable medium described in the embodiments of the present application may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the two.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above. More specific examples of computer-readable storage media may include, but are not limited to: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable removable Programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • the computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in a baseband or as a part of a carrier wave, and a computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable signal medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to: wire, optical cable, RF (Radio Frequency), etc., or any suitable combination of the foregoing.
  • the above-mentioned computer-readable medium may be included in the above-mentioned controller; or it may exist alone without being installed in the server.
  • the above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by the controller, the controller: obtains the data communication transmission mode of the port of the device connected with the non-contact connector; Data communication transmission mode, configure the interface of the non-contact connector; if the signal sent by the device is received, send it to the main coil and/or the auxiliary coil; and/or, if the signal sent by the main coil and/or the auxiliary coil is received Signal and send it to the device in accordance with the data communication transmission mode.
  • the computer program code used to perform the operations of the embodiments of the present application can be written in one or more programming languages or a combination thereof.
  • the programming languages include object-oriented programming languages such as Java, Smalltalk, C++, Also includes conventional procedural programming languages-such as "C" language or similar programming languages.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to pass Internet connection).
  • LAN local area network
  • WAN wide area network

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本发明公开了一种信号处理电路、非接触连接器、信号处理方法及存储介质。该信号处理电路的线缆一端能够连接设备,另一端连接端口处理单元,用于接收设备发送的信号和/或向设备发送信号;端口处理单元一端连接线缆,另一端连接信号处理单元,用于获取与连接器连接的设备的端口的数据通信传输模式,根据数据通信传输模式,对线缆进行接口配置;信号处理单元,连接主线圈或副线圈,用于若接收到设备发送的信号,将其发送至主线圈和/或副线圈;和/或若接收到主线圈和/或副线圈发送的信号,将其按照数据通信传输模式发送至设备。通过本申请,可以实现在远距离无线传输信号的同时,使得非接触连接器适应设备端口的不同传输协议。

Description

信号处理电路、非接触连接器、信号处理方法及存储介质 技术领域
本发明属于连接器技术领域,具体涉及一种信号处理电路、非接触连接器、信号处理方法及存储介质。
背景技术
随着通信技术发展,有线通信技术已经广泛应用于各类电子产品和仪器设备中。在一些特殊环境下,对设备之间通信所使用的连接器的密闭性和使用寿命都有很高的要求。
例如在海洋、湖泊等水环境或者沙漠、野外等沙尘环境中使用有线连接器,对连接器的密封性要求很高,同时连接器插拔动作过程中也需要防水和防尘,且物理插拔过程中的应力会降低连接器的使用寿命。若采用光信号、微波信号或声波信号来进行通信,则在一些介质中例如海水中,电磁波以及无线射频衰减严重,通信距离受限,而声波通信速度有限,同时受水声信道的影响较大,例如常见的多径效应、多普勒效应等。并且,现有的采用无线传输技术的连接器,连接器通常只能配置为一种协议,即与连接的设备的端口相同的协议,否则无法传输数据。
发明内容
针对上述的不足,本发明提供了一种信号处理电路、非接触连接器、信号处理方法及存储介质,本申请的信号处理电路能够实现在远距离无线传输信号的同时,使得非接触连接器适应设备端口的不同传输协议。
本发明是通过以下技术方案实现的:
根据第一方面,本发明实施例提供了一种信号处理电路,应用于非接触连 接器,该非接触连接器包括插头和插座,插头包括主线圈,插座包括副线圈,插头和插座分别通过主线圈和副线圈之间的电磁耦合实现通信连接,该信号处理电路包括:线缆、端口处理单元和信号处理单元;线缆,其一端能够连接设备,另一端连接端口处理单元,用于接收设备发送的信号和/或向设备发送信号;端口处理单元,其一端连接线缆,另一端连接信号处理单元,用于获取与连接器连接的设备的端口的数据通信传输模式,根据数据通信传输模式,对线缆进行接口配置;信号处理单元,连接主线圈或副线圈,用于若接收到设备发送的信号,将其发送至主线圈和/或副线圈;和/或,若接收到主线圈和/或副线圈发送的信号,将其按照数据通信传输模式发送至设备。
在优选的实现方式中,端口处理单元包括信号处理模块,信号处理模块用于:根据接收到的信号和设备发送的初始信号,计算设备侧信号补偿因子;以及接收主线圈和/或副线圈发送的信号,将其按照数据通信传输模式进行信号转换;根据设备侧信号补偿因子对转换后的信号进行补偿处理,将处理后的信号发送至设备。
在优选的实现方式中,信号处理单元包括载波补偿模块;载波补偿模块一端与端口处理单元连接,另一端与主线圈和/或副线圈连接;载波补偿模块用于根据采集的主线圈发送的信号和第一预设信号,计算得到主线圈侧信号补偿因子,并根据主线圈侧信号补偿因子对设备发送的信号进行补偿处理,将处理后的信号发送至主线圈,和/或,载波补偿模块还用于根据采集的副线圈发送的信号和第二预设信号,计算得到副线圈侧信号补偿因子,并根据副线圈侧信号补偿因子对设备发送的信号进行补偿处理,将处理后的信号发送至副线圈。
在优选的实现方式中,插头和/或插座还包括命令处理单元,命令处理单元与信号处理单元连接;命令处理单元用于判断插座中是否有能够存储信号的存储空间,若无,则控制插头停止向插座发送信号;和/或,命令处理单元用于判断插头中是否有能够存储信号的存储空间;若无,则控制插座停止向插头发送信号。
在优选的实现方式中,命令处理单元还用于:判断插头中是否有信号发送至插座,若无,则发送表征无待发送信号的第一提示信息;和/或,判断插座中是否有信号发送至插头,若无,则发送表征无待发送信号的第二提示信息。
根据第二方面,本发明实施例提供了一种非接触连接器,该非接触连接器包括插头和插座,插头包括:第一磁芯;第一螺纹壳体,布置成包裹第一磁芯的外周,第一螺纹壳体的内壁与第一磁芯外周形成齿形仓;第一线圈,设于第一螺纹壳体的齿形仓,第一线圈和第一磁芯形成主线圈;插座包括:第二磁芯;第二螺纹壳体,设于第二磁芯的内周,第二螺纹壳体的内壁与第二磁芯的内周形成齿形仓,插头和插座通过第一螺纹壳体与第二螺纹壳体实现螺纹连接;第二线圈,设于第二螺纹壳体的齿形仓,第二线圈和第二磁芯形成副线圈,当插头连接插座时,主线圈和副线圈电磁耦合以实现插头与插座之间的通信连接;非接触连接器还包括第一方面或第一方面任一实现方式的信号处理电路。
根据第三方面,本发明实施例提供了一种信号处理方法,应用于第二方面所述的非接触连接器,该方法包括:获取与非接触连接器连接的设备的端口的数据通信传输模式;根据该数据通信传输模式,对非接触连接器进行接口配置;若接收到设备发送的信号,将其发送至主线圈和/或副线圈;和/或,若接收到主线圈和/或副线圈发送的信号,将其按照数据通信传输模式发送至设备。
在优选的实现方式中,该方法还包括:根据接收到的信号和设备发送的初始信号,计算设备侧信号补偿因子;以及接收主线圈和/或副线圈发送的信号,将其按照数据通信传输模式发送至设备,包括:接收主线圈和/或副线圈发送的信号,将其按照数据通信传输模式进行信号转换;根据设备侧信号补偿因子对转换后的信号进行补偿处理,将处理后的信号发送至设备。
在优选的实现方式中,该方法还包括根据采集的主线圈发送的信号和第一预设信号,计算得到主线圈侧信号补偿因子;以及接收设备发送的信号,将其发送至主线圈,具体包括:根据主线圈侧信号补偿因子对设备发送的信号进行补偿处理;将处理后的信号发送至主线圈。
在优选的实现方式中,该方法还包括:根据采集的副线圈发送的信号和第二预设信号,计算得到副线圈侧信号补偿因子;以及接收设备发送的信号,将其发送至副线圈,具体包括:根据副线圈侧信号补偿因子对设备发送的信号进行补偿处理;将处理后的信号发送至所述副线圈。
在优选的实现方式中,该方法还包括:判断非接触连接器的插座中是否有能够存储信号的存储空间;若无,则控制插头停止向插座发送信号;和/或,判断非接触连接器的插头中是否有能够存储信号的存储空间;若无,则控制插座停止向插头发送信号。
在优选的实现方式中,该方法还包括:判断非接触连接器的插头中是否有信号发送至插座;若无,则发送表征无待发送信号的第一提示信息;和/或,判断非接触连接器的插座中是否有信号发送至插头;若无,则发送表征无待发送信号的第二提示信息。
根据第四方面,本发明实施例提供了一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如第三方面或第三方面任一项所述的信号处理方法。
通过本申请技术方案,能够带来如下有益效果:
1.本申请的信号处理电路,使得插头和/或插座能够根据设备的端口的数据通信传输模式配置与其适配的协议,以便于接收设备发送的信号,又能够将从主线圈和/或副线圈接收的信号,按照与设备的端口匹配的数据通信传输模式发送至设备。对于特定环境下,例如水下、沙下,本申请的非接触连接器插座和插头之间的信号传输则通过副线圈和主线圈之间的电磁耦合来实现,插座与插头传输信号不需要依靠物理接触,避免了插座与插头之间的插拔动作对信号传输造成的影响,同时,本申请的信号处理电路也实现了在插头与插座非接触传输信号的同时,能够适用设备的不同端口的数据通信传输模式。并且,由于线缆的长度可以根据实际应用场景进行调整,因此,本实施例的信号处理电路,使得非接触连接器能够实现远距离无线传输信号。
2.本申请的非接触连接器,一方面可以将插头的数据传输模式配置为与插头连接的设备的端口的数据通信传输模式,将插座的数据传输模式配置为与插座连接的设备的端口的数据通信传输模式;另一方面,将第一线圈和第二线圈分别设置于第一螺纹壳体和第二螺纹壳体中,在达到插头与插座连接的同时,使得主线圈和副线圈之间配合紧密,电磁耦合效果好;再者,通过设备侧信号补偿因子和线圈侧信号补偿因子,可以减小信号传输过程中由于负载变化以及传输距离变化引起的通信误码,以及降低电磁耦合过程中由于温度、电解质电阻率或者线圈的偏移带来的电磁耦合干扰,提高信号传输的准确度。
3.本申请的信号处理方法,使得非接触连接器的插头和插座能够分别根据与其连接的设备的端口的数据通信传输模式配置与其适配的协议,以便于接收设备发送的信号,又能够将从主线圈接收的信号,按照与其连接的设备的端口匹配的数据通信传输模式发送至该设备,将从副线圈接收的信号,按照与其连接的设备的端口匹配的数据通信传输模式发送至该设备,提高非接触连接器的适用性。
附图说明
图1表示本申请的信号处理电路的一个电路示意图;
图2表示本申请的非接触连接器的插头的一个示意图;
图3表示本申请的非接触连接器的插座的一个示意图;
图4表示本申请的非接触连接器的插头和插座的连接部分示意图;
图5表示本申请的非接触连接器的信号处理电路的电路示意图;
图6表示本申请的非接触连接器的一个信号传输流程图;
图7表示本申请的信号处理方法的一个流程图;
图8表示本申请的信号处理方法的另一个流程图;
图9适于用来实现本发明实施例的控制器的结构示意图;
附图标记:
1A、1B-设备;
2A、2B-信号处理电路;21A、21B-线缆;22A、22B-端口处理单元,221A、221B-输入输出处理模块,222A、222B-信号处理模块;23A、23B-信号处理单元,231A、231B-载波补偿模块,232A、232B-数据调制解调模块,233A、233B-数据写入缓存,234A、234B-数据读取缓存;24-主线圈;25-副线圈;26A、26B-命令处理单元,261A、261B-命令调制解调模块,262A、262B-命令读取缓存,263A、263B-命令写入缓存;27A、27B-控制器;
3-插头,32-第一电子仓,33-第一螺纹壳体,34-第一磁芯,35-第一保护层;
4-插座,42-第二电子仓,43-第二螺纹壳体,44-第二保护层,45-第二磁芯,46-第二螺纹壳体。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本发明实施例提供了一种信号处理电路,该信号处理电路应用于非接触连接器。该非接触连接器包括插头和插座,该插头包括主线圈,插座包括副线圈。插头和插座分别通过主线圈和副线圈之间的电磁耦合实现通信连接。
本实施例的信号处理电路包括线缆、端口处理单元和信号处理单元。
需要说明的是,本实施例的信号处理电路可以应用于非接触连接器的插头和/或插座。即插头中可以设置有该信号处理电路,插座中也可以设置有该信号处理电路。为了便于说明,将插头中的信号处理电路记为信号处理电路2A, 将插座中的信号处理电路记为信号处理电路2B。
具体地,在本实施例中,如图1所示,在插头一侧,信号处理单路2A包括线缆21A、端口处理单元22A和信号处理单元23A。
线缆21A的一端能够通过设备1A的端口连接设备1A,另一端连接端口处理单元22A。该线缆21A用于接收设备1A发送的信号,和/或向设备1A发送信号。端口处理单元22A的一端连接线缆21A,另一端连接信号处理单元23A,端口处理单元22A用于获取与插头连接的设备1A的端口的数据通信传输模式,并根据该数据通信传输模式,对线缆21A进行接口配置。
具体地,线缆21A中通常包括四根导线,当插头连接设备1A的端口之后,设备1A会发送信息至插头,信号处理电路2A即可获知该设备1A的端口的数据通信传输模式。这里,端口的数据通信传输模式可以有URAT、IIC、SPI、CAN等传输协议。端口处理单元22A可以根据端口的数据通信传输模式,将电缆21A的四根导线进行配置。例如,当数据通信传输模式为URAT时,四根导线中的三根分别配置为TX、RX、GND,还有一根导线闲置;当数据通信传输模式为IIC时,其中两根导线分别配置为SCL、SDA,剩余两根导线闲置;当数据通信传输模式为SPI时,四根导线分别配置为CS、SCK、MISO、MOSI;当数据通信传输模式为CAN时,其中三根导线分别配置为CAN_H、CAN_L、GND,剩余一根导线闲置。
在本实施例中,端口的数据通信传输模式以TTL电平的URAT传输协议为例来进行说明。即在本实施例中,将线缆21A的其中三根导线分别配置为TX、RX、GND,剩余一根导线闲置。
信号处理单元2A连接在端口处理单元22A和主线圈24之间。信号处理单元23A用于接收设备1A发送的信号,将其发送至主线圈24。和/或,若接收到主线圈24发送的信号,则将其传输至端口处理单元22A,经由端口处理单元22A按照数据通信传输模式发送至设备1A。这里,主线圈24发送的信号是主线圈24接收的由插座的副线圈25所发送的信号。
插座上的信号处理电路2B包括线缆21B、端口处理单元22B和信号处理单元23B。如图1所示,线缆21B的一端能够连接设备1B,另一端连接端口处理单元22B。端口处理单元22B的一端连接线缆21B,另一端连接信号处理单元23B,信号处理单元23B连接副线圈25。这里,线缆21B、端口处理单元22B和信号处理单元23B的具体作用和信号处理方法和上述信号处理电路2A相似,在此不再赘述。
即插座上的信号处理电路2B也可以根据设备1B的端口的数据通信传输模式对线缆21B进行配置,从而使得插座可以接收设备1B发送的信号。
通过上述信号处理电路2A和信号处理电路2B,使得插头和插座能够分别根据设备1A和设备1B的端口的数据通信传输模式配置与其适配的协议,以便于分别接收设备1A和设备1B发送的信号,又能够将从主线圈24接收的信号,按照与设备1A的端口匹配的数据通信传输模式发送至设备1A,将从副线圈25接收的信号,按照与设备1B的端口匹配的数据通信传输模式发送至设备1B。
对于特定环境下,例如水下、沙下,插座和插头之间的信号传输则通过副线圈24和主线圈25之间的电磁耦合来实现,插座与插头传输信号不需要依靠物理接触,避免了插座与插头之间的插拔动作对信号传输造成的影响。同时,本实施例的信号处理电路也实现了在插头与插座非接触传输信号的同时,能够适用设备的不同端口的数据通信传输模式。并且,由于线缆的长度可以根据实际应用场景进行调整,因此,本实施例的信号处理电路,使得非接触连接器能够实现远距离无线传输信号。
在本实施例的一些较佳的实现方式中,端口处理单元包括输入输出处理模块和信号处理模块,该输入输出处理模块一端与线缆连接,另一端与信号处理模块连接,用于根据接收到的信号和设备发送的初始信号,计算设备侧信号补偿因子。
信号处理模块的一端与输入输出处理模块连接,另一端与信号处理单元连 接,用于接收主线圈和/或副线圈发送的信号,将其按照数据通信传输模式进行信号转换,并将转换后的信号发送至输入输出处理模块,以使输入输出处理模块根据设备侧信号补偿因子对转换后的信号进行补偿处理,将处理后的信号发送至设备。
具体地,结合图5,例如在插头一侧,信号在由设备1A经由线缆21A发送至端口处理单元22A的过程中,可能存在由于负载变化、传输距离长短变化等引起的信号畸变,为了保证传输信号的准确性,在本实现方式中,信号处理模块222A可以获取实时接收的信号、以及与该实时接收的信号匹配的设备1A发送的初始信号,之后,根据上述两个信号计算设备侧信号补偿因子Ag′,这里的设备侧信号补偿因子Ag′可以是比例关系,也可以是其他计算形式得到的因子,本实施例不以此为限制。
在得到设备侧信号补偿因子Ag′之后,在接收到主线圈24要发送至设备1A的信号时,可以将该信号先转换为与设备1A的端口匹配的数据通信传输模式,之后,再将转换后的信号发送至输入输出处理模块221A。
输入输出处理模块221A按照上述得到的设备侧信号补偿因子Ag′对转换后的信号进行补偿处理,并将补偿处理后的信号发送至设备1A,从而保证设备1A接收到的信号的准确性。
这里,输入输出处理模块221A还可以对从设备A接收的信号进行滤波整形,提高信号可靠性。
需要说明的是,在插座一侧,端口处理单元B也可以包括信号处理模块222B,端口处理单元22B中的设备侧信号补偿因子可以记为Bg′,其具体功能同上述端口处理单元22A中类似,在此不再赘述。
另外,信号处理电路2A中的设备侧信号补偿因子Ag′和信号处理电路2B中的设备侧信号补偿因子Bg′为实时计算得到的因子,由于信号收发是动态进行的,因此,实时计算补偿因子,在下一刻传输信号时将信号进行补偿,可以动态补偿信号畸变,提高信号传输准确度。
在本实施例的一些较佳的实现方式中,信号处理单元包括载波补偿模块。这里,插头中的信号处理单元23A包括载波补偿模块231A,插座中的信号处理单元23B包括载波补偿模块231B。
载波补偿模块231A用于根据采集的主线圈24发送的信号和第一预设信号,计算得到主线圈侧信号补偿因子,并根据主线圈侧信号补偿因子对设备A发送的信号进行补偿处理,将处理后的信号发送至主线圈。
载波补偿模块231A通常可以包括但不限于增益补偿电路、功率补偿电路、频率补偿电路等。
具体地,由于非接触连接器在实际应用时,在插头与插座之间通过主线圈24和副线圈25电磁耦合传输信号时,由于受外界环境参数(例如温度)、电解质电阻率或者线圈偏移的影响,会对电磁耦合带来干扰,使得主线圈24接收的信号产生畸变。
本实现方式中,载波补偿模块231A可以实时采集主线圈24发送的信号和第一预设信号。这里,主线圈24发送的信号是指主线圈24发送至载波补偿模块231A的信号,也可以理解为主线圈24接收副线圈25发送的信号再发送至载波补偿模块231A的信号。第一预设信号例如可以为在无干扰环境下测试得到的主线圈24所接收到的由副线圈25发送过来的信号。
之后,载波补偿模块231A可以结合采集的主线圈24发送至载波补偿模块231A的信号和第一预设信号计算得到主线圈侧信号补偿因子Ag。例如当载波补偿模块231A为增益/功率补偿电路时,可以将第一预设信号(电平/功率值)除以主线圈24发送至载波补偿模块231A的信号(电平值/功率)所得到的值记为主线圈侧信号补偿因子Ag。又例如,当载波补偿模块231A为频率补偿电路时,可以将第一预设信号(载波频率)减去主线圈24发送至载波补偿模块231A的信号(载波频率)所得到的差值记为主线圈侧信号补偿因子Ag。
若设备1A要传输数据至设备1B,则设备1A需要先将信号发送至主线圈24-副线圈25-设备1B,为了保证副线圈25接收到的信号的幅值以及载波频率 达到正确解调出数字信号的阈值,即为了补偿信号在由主线圈24发送至副线圈25过程中由干扰因素等造成的畸变,载波补偿模块231A可以先对设备1A发送的信号进行该主线圈侧信号补偿因子为Ag的补偿,然后,将补偿处理后的信号发送至主线圈24,再由主线圈24发送至副线圈25,从而提高副线圈25接收的信号的准确度,继而保证设备1B接收的信号的准确度。
由于设备1B也可以发送数据至设备1A,同理,为了保证信号传输的准确度,提高非接触连接器传输信号的可靠性,在本实现方式中,载波补偿模块231B用于根据采集的副线圈25发送的信号和第二预设信号,计算得到副线圈侧信号补偿因子Bg,并根据副线圈侧信号补偿因子Bg对设备1B发送的信号进行补偿处理,将处理后的信号发送至副线圈25。
这里,第二预设信号的原理同上述第一预设信号,以及,载波补偿模块231B的原理和信号处理过程同载波补偿模块231A类似,此处不再赘述。
这里需要说明的是,信号处理电路2A中的主线圈侧信号补偿因子Ag和信号处理电路2B中的副线圈侧信号补偿因子Bg为实时计算得到的因子,由于信号收发是动态进行的,因此,实时计算补偿因子,在下一刻传输信号时将信号进行补偿增益,可以动态补偿信号畸变,提高信号传输准确度。
通过本实现方式,载波补偿模,231A和载波补偿模块231B可以分别对主线圈24发送的信号和副线圈25发送的信号进行载波补偿,避免了干扰因素对信号传输造成的影响,提高传输信号的准确度。
在本实施例的一些可选的实现方式中,插头和/或插座还包括命令处理单元,该命令处理单元与信号处理单元连接,命令处理单元用于判断插座中是否有能够存储信号的存储空间,若无,则控制插头停止向插座发送信号;和/或,命令处理单元用于判断插头中是否有能够存储信号的存储空间;若无,则控制插座停止向插头发送信号。
具体地,如图1所示,插头中可以具有命令处理单元26A,插座中可以具有命令处理单元26B。插座中的命令处理单元26B可以判断插座中是否有能够 存储信号的存储空间,并将判断结果发送至命令处理单元26A,命令处理单元26A根据该判断结果获知插座中若已满,即插座中没有存储信号的存储空间,则控制插头停止向插座发送信号。同理,插头中的命令处理单元26A可以判断插头中是否有能够存储信号的存储空间,并将判断结果发送至命令处理单元26B,命令处理单元26B根据该判断结果获知插头中若已满,即插头中没有存储信号的存储空间,则控制插座停止向插头发送信号。这样可以及时地对非接触连接器的插头和插座中的信号存储进行判断,以在对方存储已满时先暂停发送信号,避免出现信号发出后无法被接收,同时避免无效发送数据的情况出现。
较佳地,插头中的命令处理单元26A还可以判断插头中是否有信号发送至插座,若无,则发送表征无待发送信号的第一提示信息。即,由于设备1A发送信号至设备1B时,可以先将信号存储至插头中的存储单元,因此插头中的命令处理单元26A可以根据插头中的存储单元是否为空来判断是否还有信号发送至插座,若存储单元为空,说明没有需要继续发送的信号,则命令处理单元26A可以生成表征无待发送信号的第一提示信息并发送该第一提示信息至设备1A和/或设备1B,使其获知该次信号传输已完成。
插座中的命令处理单元26B也可以判断插座中是否有信号发送至插头,若无,则发送表征无待发送信号的第二提示信息。即,由于设备1B发送信号至设备1A时,可以先将信号存储至插座中的存储单元,因此插座中的命令处理单元26B可以根据插座中的存储单元是否为空来判断是否还有信号发送至插头,若存储单元为空,说明没有需要继续发送的信号,则命令处理单元26B可以生成表征无待发送信号的第二提示信息并发送该第二提示信息至设备1B和/或设备1A,使其获知该次信号传输已完成。
通过本实现方式,命令处理单元26A和命令处理单元26B可以分别对设备1A和设备1B的信号收发进行监控,当没有信号需要发送时,则生成提示信息,从而便于使得设备1A和设备1B获取传输信号传输已完成信息,避免设备1A和设备1B的处理器无效等待。
实施例二
本发明实施例提供了一种非接触连接器,如图2和图3所示,该非接触连接器包括插头3和插座4,该插3头包括第一磁芯34、第一螺纹壳体33和第一线圈(图中未示出)。
该第一螺纹壳体33布置成包裹第一磁芯34的外周。第一螺纹壳体33的内壁与第一磁芯34的外周形成齿形仓。而第一线圈设置于第一螺纹壳体33的齿形仓中。第一线圈和第一磁芯34形成主线圈24。
插座4包括第二磁芯45,第二磁芯45的截面为圆环状。第二螺纹壳体46设于第二磁芯45的内周,第二螺纹壳体46的内壁与第二磁芯45的内周形成齿形仓。第二线圈(图中未示出)设于第二螺纹壳体46的齿形仓中。第二线圈和第二磁芯45形成副线圈25。
较佳地,如图2所示,插头3包括线缆21A、第一电子仓32、第一螺纹壳体33、第一磁芯34和第一保护层35。
线缆21A共有四根引线,线缆21A接入第一电子仓32。结合实施例一可知,线缆21A可以配置的接口模式包括但不限于:URAT(RS485)、IIC、SPI、CAN。第一电子仓32中安装有电路板。线缆21A和第一电子仓32具有绝缘、防水防腐蚀的性能。第一螺纹壳体33为由包裹着绝缘耐磨材料的薄层外壳,该第一螺纹壳体33的内壁与第一磁芯34的外周形成齿形仓,以供利兹线穿入。第一磁芯34可以为铁氧体,其横截面通常为圆环形。利兹线穿过插头的第一螺纹壳体33的齿形仓沿着第一磁芯34绕制成为一个线圈,即第一线圈。第一保护层35为紧贴第一磁芯34的塑料硬壳,起到保护和固定第一磁芯34的作用。第一线圈和第一磁芯34形成主线圈24,主线圈24可以为铁氧体线圈。
如图3所示,插座包4括线缆21B、第二电子仓42、外壳43、第二保护层44、第二磁芯45和第二螺纹壳体46。
线缆21B共有四根引线,线缆21B接入第二电子仓42。结合实施例一可 知,线缆21B可以配置的接口模式包括但不限于:URAT(RS485)、IIC、SPI、CAN。第二电子仓42中安装有电路板。线缆21B和第二电子仓42具有绝缘、防水防腐蚀的性能。第二螺纹壳体46为由包裹着绝缘耐磨材料的薄层外壳,该第二螺纹壳体46的内壁与第二磁芯45的内周形成齿形仓,以供利兹线穿入。第二磁芯45可以为铁氧体,其横截面通常为圆环形。利兹线穿过插座4的第二螺纹壳体46的齿形仓沿着第二磁芯45绕制成为一个线圈,即第二线圈。第二保护层44为紧贴第二磁芯45的塑料硬壳,起到保护和固定第二磁芯45的作用。第二线圈和第二磁芯45形成副线圈25。
上述第二螺纹壳体46可以理解为内螺纹,第一螺纹壳体33可以理解为外螺纹,这样,当插头3旋入插座4中时,如图4所示,便可以通过第一螺纹壳体33与第二螺纹壳体46实现螺纹连接。并且,由于第一线圈设于第一螺纹壳体33的齿形仓,第二线圈设于第二螺纹壳体46的齿形仓,从而在插头3与插座4通过第一螺纹壳体33和第二螺纹壳体46连接的同时,主线圈24和副线圈25之间的距离更加紧密,进而极大地提高主副线圈之间的电磁耦合能力和传输信号时的抗干扰能力。
可选地,本实施例的非接触连接器还包括实施例一中的信号处理电路。如图5所示,本实施例的信号处理电路具体可以包括:
对于插头3中的信号处理电路2A,其具体包括线缆21A、输入输出处理模块221A、信号处理模块222A、控制器27A、数据写入缓存233A、数据读取缓存234A、数据调制解调模块232A、载波补偿模块231A、命令写入缓存263A、命令读取缓存262A、命令调制解调模块261A。载波补偿模块231A与主线圈24连接。各个模块的连接关系参考图5所示。
这里,控制器27A可以对端口处理单元22A、信号处理单元23A、命令处理单元26A进行控制。具体地,端口处理单元22A包括信号处理模块222A和输入输出处理模块221A,这里的信号处理模块222A例如为FPGA。信号处理单元23A可以包括载波补偿模块231A、还包括数据调制解调模块232A、 数据写入缓存233A、数据读取缓存234A。命令处理单元26A可以包括命令调制解调模块261A、命令读取缓存262A、命令写入缓存263A。
对于插座4中的信号处理电路2B,其包括的具体电路模块和连接关系以及各个模块的功能可以参考信号处理电路2A,此处不再赘述。
为了便于理解,在本实施例中,以下直接参考图5中的模块进行说明。
当从设备1A传输信号至设备1B时,结合电路图图5,该信号处理流程如图6所示:
步骤601,配置数据通信传输模式。
当非接触连接器的插头3连接设备1A时,控制器27A可以将线缆21A配置为与设备1A的端口匹配的数据通信传输模式。具体的配置方式与实施例一中的方式类似,此处不再赘述。
当非接触连接器的插座4连接设备1B时,控制器27B可以将线缆21B配置为与设备1B的端口匹配的数据通信传输模式。具体的配置方式与实施例一种的方式类似,此处不再赘述。
步骤602,判断线缆21A上是否有有效信号。
步骤603,若无有效信号,则通过信号处理模块222A反馈提示信息至设备1A。
具体地,信号处理模块222A可以为FPGA。
步骤604,若有有效信号,则计算得到设备侧信号补偿因子Ag′。
具体地,输入输出处理模块221A根据从线缆21A接收的信号和设备1A发送的初始信号计算得到设备侧信号补偿因子Ag′,并将该Ag′发送至控制器27A进行存储。
步骤605,若有有效信号,将该信号存入数据写入缓存233A。
具体为FPGA将该信号存入数据写入缓存233A。
步骤606,根据命令读取缓存262A中的命令,判断数据读取缓存234B是否已满。
具体地,信号处理电路2B中的数据读取缓存234B用于存储副线圈25接收的信号,信号处理电路2B中的数据写入缓存233B用于存储设备1B发送给插座4的信号。控制器27B会根据数据读取缓存234B和数据写入缓存233B中存储的信号空满状态生成命令。之后,控制器27B将该命令存入命令写入缓存263B,接着,命令调制解调模块261B从命令写入缓存263B中读取该命令,并将该命令调制为fb3-fb4频段上的信号发送至载波补偿模块231B,载波补偿模块231B将该信号进行副线圈侧信号补偿因子Bg的增益后,发送至主线圈24。
载波补偿模块231A可以从主线圈24中接收该fb3-fb4频段上的信号(表示命令),将其滤波后发送至命令调制解调模块261A,命令调制解调模块261A对该fb3-fb4频段上的信号进行解调,得到数字信号,之后,将该数字信号发送至命令读取缓存262A进行存储。控制器27A在要向主线圈24发送信号时,可以从命令读取缓存262A中读取命令,得到当前信号处理电路2B中的数据读取缓存234B的信号空满状态。
步骤607,若满,则控制器27A控制插头3暂停发送信号。
步骤608,若不满,则判断数据写入缓存233A中是否有信号。
具体地,控制器27A可以根据数据写入缓存233A中的存储情况,判断数据写入缓存233A中是否有信号。
步骤609,若无信号,则可以生成第一提示信息。
具体地,控制器27A可以生成第一提示信息,发送至设备1A。
步骤610,若有信号,则从数据写入缓存233A中读取信号,将其调制为fa1-fa2频段信号发送至主线圈24。
具体地,若数据写入缓存233A有信号,则数据调制解调模块232A可以从数据写入缓存233A中读取信号,将该信号进行载波调制,调制为fa1-fa2频段上的信号,之后,再经载波补偿模块231A进行Ag倍的增益放大后发送至主线圈24。
步骤611,根据命令读取缓存262B中的命令,判断数据写入缓存233A是否有信号。
具体地,信号处理电路2A中的数据读取缓存234A用于存储主线圈24接收的信号,信号处理电路2A中的数据写入缓存233A用于存储设备1A发送给插头3的信号。控制器27A会根据数据读取缓存234A和数据写入缓存233A中存储的信号空满状态生成命令。之后,控制器27A将该命令存入命令写入缓存263A,接着,命令调制解调模块261A从命令写入缓存263A中读取该命令,并将该命令调制为fa3-fa4频段上的信号发送至载波补偿模块231A,载波补偿模块231A将该信号进行主线圈侧信号补偿因子Ag的增益后,经主线圈24发送至副线圈25。
载波补偿模块231B可以从副线圈25中接收该fa3-fa4频段上的信号(表示命令),将其滤波后发送至命令调制解调模块232B,命令调制解调模块232B对该fa3-fa4频段上的信号进行解调,得到数字信号,之后,将该数字信号发送至命令读取缓存262B进行存储。
信号处理电路2B在接收信号处理电路2A发送的信号时,控制器27B可以先根据命令读取缓存262B中的命令来判断信号处理电路2A中的数据写入缓存233A是否为空,即是否有信号。
步骤612,若数据写入缓存233A无信号,则可以生成第一提示信息。
具体可以为控制器27B生成第一提示信息。该第一提示信息可以发送给设备1B。
步骤613,若数据写入缓存233A有信号,则载波补偿模块231B从副线圈25接收fa1-fa2频段上的信号。
步骤614,数据调制解调模块232B将信号解调后存入数据读取缓存234B。
具体地,数据调制解调模块232B将fa1-fa2频段上的信号解调为数字信号存入数据读取缓存234B。
步骤615,控制器27B从数据读取缓存234B中读取数字信号,将数字信 号转换为与信号处理模块222B中配置的数据通信传输模式匹配的格式,发送至输入输出处理模块221B。
步骤616,输入输出处理模块221B将信号进行设备侧信号补偿因子Bg′倍的增益后传输至线缆21B,再发送至设备1B。
具体地,设备侧信号补偿因子Bg′的计算方式可以采用实施例一中与设备侧信号补偿因子Ag′类似的方式计算,只是计算Bg′所依据的数据为输入输出处理模块221B实时接收的信号以及设备1B发送的初始信号。
需要说明是的,为了保证主副线圈之间信号和命令正常收发,在本实施例中,主线圈24向副线圈25发送的信号调制为fa1-fa2频段,主线圈24向副线圈25发送的命令调制为fa3-fa4频段,副线圈25向主线圈24发送的信号调制为fb1-fb2频段,副线圈25向主线圈24发送的命令调制为fb3-fb4频段。
上述过程为本实施例中设备1A发送信号至设备1B的信号传输流程。设备1B发送信号至设备1A的信号传输流程同上述过程类似,此处不再赘述。
本实施例的非接触连接器,一方面可以将插头3的数据传输模式配置为与插头3连接的设备1A的端口的数据通信传输模式,将插座4的数据传输模式配置为与插座4连接的设备1B的端口的数据通信传输模式;另一方面,将第一线圈和第二线圈分别设置于第一螺纹壳体33和第二螺纹壳体46中,在达到插头3与插座4连接的同时,使得主线圈和副线圈之间配合紧密,电磁耦合效果好;再者,通过设备侧信号补偿因子和线圈侧信号补偿因子,可以减小信号传输过程中由于负载变化以及传输距离变化引起的通信误码,以及降低电磁耦合过程中由于温度、电解质电阻率或者线圈的偏移带来的电磁耦合干扰,提高信号传输的准确度。
实施例三
本发明实施例提供了一种信号处理方法,该信号处理方法可以应用于实施例一中的信号处理电路,当然,也可以应用于实施例二中的非接触连接器,还 可以应用于其他能够实施该方法的电路或设备,本实施例不以此为限制。
如图7所示,该信号处理方法包括:
步骤701,获取与非接触连接器连接的设备的端口的数据通信传输模式。
具体的实现方式可以采用与实施一中类似的方式执行,此处不再赘述。
步骤702,根据数据通信传输模式,对非接触连接器进行接口配置。
具体的实现方式可以采用与实施一中类似的方式执行,此处不再赘述。
步骤703,若接收到设备发送的信号,将其发送至主线圈和/或副线圈;和/或,若接收到主线圈和/或副线圈发送的信号,将其按照数据通信传输模式发送至设备。
具体的实现方式可以采用与实施一中类似的方式执行,此处不再赘述。
通过本实施例的信号处理方法,使得非接触连接器的插头和插座能够分别根据与其连接的设备的端口的数据通信传输模式配置与其适配的协议,以便于接收设备发送的信号,又能够将从主线圈接收的信号,按照与其连接的设备的端口匹配的数据通信传输模式发送至该设备,将从副线圈接收的信号,按照与其连接的设备的端口匹配的数据通信传输模式发送至该设备,提高非接触连接器的适用性。
在本实施例的一些可选的实现方式中,该信号处理方法还包括根据接收到的信号和设备发送的初始信号,计算设备侧信号补偿因子。具体的计算方式可以采用与实施例一中类似的方式执行,此处不再赘述。
上述步骤703中,接收所述主线圈和/或副线圈发送的信号,将其按照所述数据通信传输模式发送至设备,包括:接收所述主线圈和/或副线圈发送的信号,将其按照数据通信传输模式进行信号转换;根据设备侧信号补偿因子对转换后的信号进行补偿处理,将处理后的信号发送至所述设备。具体实现方式可以采用与实施例一中类似的方式执行,此处不再赘述。
在本实施例的一些可选的实现方式中,该信号处理方法还包括根据采集的主线圈发送的信号和第一预设信号,计算得到主线圈侧信号补偿因子。具体的 计算方式可以采用与实施例一中类似的方式执行,此处不再赘述。
上述步骤703中,接收设备发送的信号,将其发送至主线圈,具体包括根据主线圈侧信号补偿因子对设备发送的信号进行补偿处理;将处理后的信号发送至主线圈。具体的计算方式可以采用与实施例一中类似的方式执行,此处不再赘述。
在本实施例的一些可选的实现方式中,该信号处理方法还包括根据采集的副线圈发送的信号和第二预设信号,计算得到副线圈侧信号补偿因子。具体的计算方式可以采用与实施例一中类似的方式执行,此处不再赘述。
上述步骤703中,接收设备发送的信号,将其发送至副线圈,具体包括根据副线圈侧信号补偿因子对设备发送的信号进行补偿处理;将处理后的信号发送至副线圈。具体的实现方式可以采用与实施例一中类似的方式执行,此处不再赘述。
在本实施例的一些可选的实现方式中,如图8所示,信号处理方法还包括:
步骤704,判断非接触连接器的插座中是否有能够存储信号的存储空间。
步骤705,若无,则控制插头停止向插座发送信号。
步骤706,判断非接触连接器的插头中是否有能够存储信号的存储空间。
步骤707,若无,则控制插座停止向插头发送信号。
上述步骤704-707均可以分别采用与实施例一中类似的方式执行,此处不再赘述。
下面参考图9,其示出了适于用来实现本申请的实施例的控制器的结构示意图。这里的控制器例如可以为上述实施例中的控制器27A,也可以为上述实施例中的控制器27B。图9示出的控制器仅仅是一个示例,不应对本申请的实施例的功能和使用范围带来任何限制。
如图9所示,控制器可以包括处理装置(例如中央处理器、图形处理器等)901,其可以根据存储在只读存储器(ROM)902中的程序或者从存储装置908加载到随机访问存储器(RAM)903中的程序而执行各种适当的 动作和处理。在RAM 903中,还存储有控制器操作所需的各种程序和信号。处理装置901、ROM 902以及RAM 903通过总线904彼此相连。输入/输出(I/O)接口905也连接至总线904。
通常,以下装置可以连接至I/O接口905:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置906;包括例如液晶显示器(LCD,Liquid Crystal Display)、扬声器、振动器等的输出装置907;包括例如磁带、硬盘等的存储装置908;以及通信装置909。通信装置909可以允许控制器与其他设备进行无线或有线通信以交换信号。虽然图9示出了具有各种装置的控制器,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。图9中示出的每个方框可以代表一个装置,也可以根据需要代表多个装置。
特别地,根据本申请的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本申请的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置909从网络上被下载和安装,或者从存储装置908被安装,或者从ROM 902被安装。在该计算机程序被处理装置901执行时,执行本申请的实施例的方法中限定的上述功能。
需要说明的是,本申请的实施例所述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
在本申请的实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本申请的实施例中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(Radio Frequency,射频)等等,或者上述的任意合适的组合。
上述计算机可读介质可以是上述控制器中所包含的;也可以是单独存在,而未装配入该服务器中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该控制器执行时,使得该控制器:获取与非接触连接器连接的设备的端口的数据通信传输模式;根据数据通信传输模式,对非接触连接器进行接口配置;若接收到设备发送的信号,将其发送至主线圈和/或副线圈;和/或,若接收到主线圈和/或副线圈发送的信号,将其按照数据通信传输模式发送至设备。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请的实施例的操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可 以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请的实施例中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请的实施例中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (13)

  1. 一种信号处理电路,应用于非接触连接器,所述非接触连接器包括插头和插座,所述插头包括主线圈,所述插座包括副线圈,所述插头和所述插座分别通过主线圈和副线圈之间的电磁耦合实现通信连接,所述信号处理电路设于所述插头和/或插座,其特征在于,所述信号处理电路包括:线缆、端口处理单元和信号处理单元;
    所述线缆,其一端能够连接设备,另一端连接所述端口处理单元,用于接收所述设备发送的信号和/或向所述设备发送信号;
    所述端口处理单元,其一端连接所述线缆,另一端连接所述信号处理单元,用于获取与所述连接器连接的设备的端口的数据通信传输模式,根据所述数据通信传输模式,对所述线缆进行接口配置;
    所述信号处理单元,连接所述主线圈或所述副线圈,用于若接收到所述设备发送的信号,将其发送至所述主线圈和/或副线圈;和/或,若接收到所述主线圈和/或副线圈发送的信号,将其按照所述数据通信传输模式发送至所述设备。
  2. 根据权利要求1所述的信号处理电路,其特征在于,所述端口处理单元包括输入输出处理模块和信号处理模块;
    所述输入输出处理模块,一端与所述线缆连接,另一端与所述信号处理模块连接,用于根据接收到的信号和所述设备发送的初始信号,计算设备侧信号补偿因子;
    所述信号处理模块,一端与所述输入输出处理模块连接,另一端与所述信号处理单元连接,用于接收所述主线圈和/或副线圈发送的信号,将其按照所述数据通信传输模式进行信号转换,并将转换后的信号发送至所述输入输出处理模块,以使所述输入输出处理模块根据所述设备侧信号补偿因子对转换后的信 号进行补偿处理,将处理后的信号发送至所述设备。
  3. 根据权利要求1所述的信号处理电路,其特征在于,所述信号处理单元包括载波补偿模块,所述载波补偿模块一端与所述端口处理单元连接,另一端与所述主线圈和/或所述副线圈连接;
    所述载波补偿模块用于根据采集的主线圈发送的信号和第一预设信号,计算得到主线圈侧信号补偿因子,并根据所述主线圈侧信号补偿因子对所述设备发送的信号进行补偿处理,将处理后的信号发送至所述主线圈;和/或,
    所述载波补偿模块还用于根据采集的副线圈发送的信号和第二预设信号,计算得到副线圈侧信号补偿因子,并根据所述副线圈侧信号补偿因子对所述设备发送的信号进行补偿处理,将处理后的信号发送至所述副线圈。
  4. 根据权利要求1-3中任一项所述的信号处理电路,其特征在于,所述插头和/或所述插座还包括命令处理单元,所述命令处理单元与所述信号处理单元连接;
    所述命令处理单元用于判断所述插座中是否有能够存储信号的存储空间,若无,则控制所述插头停止向所述插座发送信号;和/或,
    所述命令处理单元用于判断所述插头中是否有能够存储信号的存储空间;若无,则控制所述插座停止向所述插头发送信号。
  5. 根据权利要求4所述的信号处理电路,其特征在于,所述命令处理单元还用于:
    判断所述插头中是否有信号发送至所述插座,若无,则发送表征无待发送信号的第一提示信息;和/或,
    判断所述插座中是否有信号发送至所述插头,若无,则发送表征无待发送信号的第二提示信息。
  6. 一种非接触连接器,所述非接触连接器包括插头和插座,其特征在于,
    所述插头包括:
    第一磁芯;
    第一螺纹壳体,布置成包裹所述第一磁芯的外周,所述第一螺纹壳体的内壁与所述第一磁芯外周形成齿形仓;
    第一线圈,设于所述第一螺纹壳体的齿形仓,所述第一线圈和所述第一磁芯形成主线圈;
    所述插座包括:
    第二磁芯;
    第二螺纹壳体,设于所述第二磁芯的内周,所述第二螺纹壳体的内壁与所述第二磁芯的内周形成齿形仓,所述插头和所述插座通过所述第一螺纹壳体与所述第二螺纹壳体实现螺纹连接;
    第二线圈,设于所述第二螺纹壳体的齿形仓,所述第二线圈和所述第二磁芯形成副线圈,当所述插头连接所述插座时,所述主线圈和所述副线圈电磁耦合以实现所述插头与所述插座之间的通信连接;
    所述非接触连接器还包括:权利要求1-5中任一项所述的信号处理电路。
  7. 一种信号处理方法,应用于权利要求6所述的非接触连接器,其特征在于,所述方法包括:
    获取与所述非接触连接器连接的设备的端口的数据通信传输模式;
    根据所述数据通信传输模式,对所述非接触连接器进行接口配置;
    若接收到所述设备发送的信号,将其发送至所述主线圈和/或副线圈;和/或,若接收到所述主线圈和/或副线圈发送的信号,将其按照所述数据通信传输模式发送至所述设备。
  8. 根据权利要求7所述的信号处理方法,其特征在于,所述方法还包括:
    根据接收到的信号和所述设备发送的初始信号,计算设备侧信号补偿因子;以及
    接收所述主线圈和/或副线圈发送的信号,将其按照所述数据通信传输模式发送至所述设备,包括:
    接收所述主线圈和/或副线圈发送的信号,将其按照所述数据通信传输模式进行信号转换;
    根据所述设备侧信号补偿因子对转换后的信号进行补偿处理,将处理后的信号发送至所述设备。
  9. 根据权利要求7所述的信号处理方法,其特征在于,所述方法还包括:
    根据采集的主线圈发送的信号和第一预设信号,计算得到主线圈侧信号补偿因子;以及
    所述接收所述设备发送的信号,将其发送至所述主线圈,具体包括:
    根据所述主线圈侧信号补偿因子对所述设备发送的信号进行补偿处理;
    将处理后的信号发送至所述主线圈。
  10. 根据权利要求7所述的信号处理方法,其特征在于,所述方法还包括:
    根据采集的副线圈发送的信号和第二预设信号,计算得到副线圈侧信号补偿因子;以及
    所述接收所述设备发送的信号,将其发送至副线圈,具体包括:
    根据所述副线圈侧信号补偿因子对所述设备发送的信号进行补偿处理;
    将处理后的信号发送至所述副线圈。
  11. 根据权利要求7所述的信号处理方法,其特征在于,所述方法还包括:
    判断所述非接触连接器的插座中是否有能够存储信号的存储空间;
    若无,则控制所述插头停止向所述插座发送信号;和/或,
    判断所述非接触连接器的插头中是否有能够存储信号的存储空间;
    若无,则控制所述插座停止向所述插头发送信号。
  12. 根据权利要求7-11中任一项所述的信号处理方法,其特征在于,所述方法还包括:
    判断所述非接触连接器的插头中是否有信号发送至所述插座;
    若无,则发送表征无待发送信号的第一提示信息;和/或,
    判断所述非接触连接器的插座中是否有信号发送至所述插头;
    若无,则发送表征无待发送信号的第二提示信息。
  13. 一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如权利要求7-12中任一项所述的信号处理方法。
PCT/CN2020/092886 2020-04-17 2020-05-28 信号处理电路、非接触连接器、信号处理方法及存储介质 WO2021208204A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/257,485 US11843204B2 (en) 2020-04-17 2020-05-28 Signal processing circuit, contactless connector, signal processing method and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010306316.9 2020-04-17
CN202010306316.9A CN111478127B (zh) 2020-04-17 2020-04-17 信号处理电路、非接触连接器、信号处理方法及存储介质

Publications (1)

Publication Number Publication Date
WO2021208204A1 true WO2021208204A1 (zh) 2021-10-21

Family

ID=71754349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092886 WO2021208204A1 (zh) 2020-04-17 2020-05-28 信号处理电路、非接触连接器、信号处理方法及存储介质

Country Status (3)

Country Link
US (1) US11843204B2 (zh)
CN (1) CN111478127B (zh)
WO (1) WO2021208204A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115842272B (zh) * 2023-02-24 2023-05-02 珩星电子(连云港)股份有限公司 一种抗电磁干扰的微型化连接器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714730A (ja) * 1993-06-15 1995-01-17 Japan Aviation Electron Ind Ltd 非接触型コネクタ
CN102197448A (zh) * 2008-10-28 2011-09-21 皇家飞利浦电子股份有限公司 螺纹的再使用
CN107924377A (zh) * 2015-08-14 2018-04-17 凯萨股份有限公司 极高频系统及操作其以建立usb数据传输协议的方法
CN110311267A (zh) * 2019-05-17 2019-10-08 同济大学 一种海底非接触式输能通信混合湿插拔连接器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10313639A1 (de) * 2003-03-26 2004-10-07 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Elektrochemischer Gassensor
CN101227032A (zh) * 2007-11-28 2008-07-23 华为技术有限公司 用于连接单板与电缆的电缆连接器和单板
JP5624745B2 (ja) * 2009-10-23 2014-11-12 オリンパス株式会社 内視鏡システム
EP2581993B1 (en) * 2011-10-13 2014-06-11 TE Connectivity Nederland B.V. Contactless plug connector and contactless plug connector system
US9041510B2 (en) * 2012-12-05 2015-05-26 Knox Associates, Inc. Capacitive data transfer in an electronic lock and key assembly
EP2782262B1 (en) * 2013-03-19 2015-05-06 Tyco Electronics Nederland B.V. Contactless coupler for capacitively coupled signal transmission
US9707807B2 (en) * 2014-06-27 2017-07-18 Goodrich Corporation Pinless inductive connector assembly
CN105655838B (zh) * 2015-12-28 2018-12-14 联想(北京)有限公司 一种hdmi连接器的电源能量控制方法及系统
CN107069989A (zh) * 2017-03-23 2017-08-18 中国科学院地质与地球物理研究所 一种非接触电能及双向信号传输方法和系统
CN109884403B (zh) * 2019-03-29 2020-07-07 北京航空航天大学 一种用于超导单元传输交流损耗测量的无感补偿技术方案
CN110086506B (zh) * 2019-05-13 2024-03-12 中国地震局地震预测研究所 一种水密连接器
CN111479175B (zh) 2020-04-17 2020-12-22 中国科学院地质与地球物理研究所 一种非接触连接器、信号处理方法及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714730A (ja) * 1993-06-15 1995-01-17 Japan Aviation Electron Ind Ltd 非接触型コネクタ
CN102197448A (zh) * 2008-10-28 2011-09-21 皇家飞利浦电子股份有限公司 螺纹的再使用
CN107924377A (zh) * 2015-08-14 2018-04-17 凯萨股份有限公司 极高频系统及操作其以建立usb数据传输协议的方法
CN110311267A (zh) * 2019-05-17 2019-10-08 同济大学 一种海底非接触式输能通信混合湿插拔连接器

Also Published As

Publication number Publication date
US20230025017A1 (en) 2023-01-26
CN111478127B (zh) 2020-12-29
US11843204B2 (en) 2023-12-12
CN111478127A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021208204A1 (zh) 信号处理电路、非接触连接器、信号处理方法及存储介质
WO2021208205A1 (zh) 一种非接触连接器、信号处理方法及存储介质
CN208336738U (zh) 一种手机数据线
CN206712184U (zh) 一种新型抗干扰usb数据连接线
CN204465545U (zh) 一种基于单片机控制的通讯系统
KR20140006668A (ko) 보청장치 및 이를 이용한 청력측정 및 보정방법
CN208062447U (zh) 一种新型Type C端外型成90度结构的USB A/M TO TypeC/M CABLE
JPH0756217Y2 (ja) 情報カード
CN209200298U (zh) 耳机转接头
CN209056303U (zh) 一种弹性伸缩的数据线
CN210958377U (zh) 具有水声通信的供水设备及供水系统
CN220107979U (zh) 一种通信塔内设信号传输设备
CN209640366U (zh) 一种双输出磁电式转速传感器
CN210775469U (zh) 一种电磁波发射机及管道无缆检测器
WO2021255832A1 (ja) 充電装置および受電装置、ならびに方法
CN209447153U (zh) 一种多级计算机运行报警系统
CN209668558U (zh) 集成式电梯通讯装置
CN207369043U (zh) Paging系统音频耦合传输模块
CN208385074U (zh) 一种具有信号接地线且没有屏蔽结构的平衡式传输线缆
CN206807444U (zh) 一种电子信息无线通信装置
CN105992095A (zh) 一种用于乐器音腔的弱音消音设备
JPH0282821A (ja) 電力線搬送通信装置
JPS60237745A (ja) 処理装置・外部装置間通信制御信号接続方式
JP3132874U (ja) 巻取り機能付き電気コネクタ
CN204559145U (zh) 一种用于无线传感器的无线充电通讯仪器箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931597

Country of ref document: EP

Kind code of ref document: A1