WO2021208030A1 - 光学成像系统、镜头及电子设备 - Google Patents

光学成像系统、镜头及电子设备 Download PDF

Info

Publication number
WO2021208030A1
WO2021208030A1 PCT/CN2020/085163 CN2020085163W WO2021208030A1 WO 2021208030 A1 WO2021208030 A1 WO 2021208030A1 CN 2020085163 W CN2020085163 W CN 2020085163W WO 2021208030 A1 WO2021208030 A1 WO 2021208030A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
object side
focal length
Prior art date
Application number
PCT/CN2020/085163
Other languages
English (en)
French (fr)
Inventor
党绪文
刘彬彬
李明
邹海荣
Original Assignee
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西晶超光学有限公司 filed Critical 江西晶超光学有限公司
Priority to PCT/CN2020/085163 priority Critical patent/WO2021208030A1/zh
Priority to US17/459,059 priority patent/US20210405328A1/en
Publication of WO2021208030A1 publication Critical patent/WO2021208030A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the invention relates to the field of optical imaging, in particular to an optical imaging system, lens and electronic equipment.
  • the present invention provides an optical imaging system, a lens, and an electronic device.
  • the optical imaging system can effectively reduce the incidence angle of the chief ray of the optical imaging system on the imaging surface, thereby helping to reduce the optical imaging system's Sensitivity.
  • An optical imaging system which includes in turn from the object side to the image side along the optical axis:
  • the first lens has a positive refractive power, and the object side of the first lens has a convex surface near the axis;
  • a third lens having refractive power the object side of the third lens is a convex surface near the axis, and the image side of the third lens is a concave surface near the axis;
  • a fourth lens having a positive refractive power, a concave surface near the axis of the object side of the fourth lens, and a convex surface near the axis of the image side of the fourth lens;
  • a fifth lens having refractive power; the object side and the image side of the fifth lens are aspherical; and at least one of the object side and the image side of the fifth lens is provided with at least one inflection point;
  • optical imaging system satisfies the conditional formula:
  • SAG51 is the distance between the intersection of the object side surface of the fifth lens and the optical axis to the projection of the edge of the optical effective area of the fifth lens on the optical axis
  • SAG52 is the distance between the image side surface of the fifth lens and the optical axis The distance between the intersection of the axes and the projection of the edge of the optical effective area on the image side of the fifth lens on the optical axis
  • CT5 is the central thickness of the fifth lens on the optical axis.
  • the fifth lens satisfies the characteristics of 0.5 ⁇ (
  • the above characteristics prevent the fifth lens from being too thin or too thick, and help to reduce the angle of incidence of the chief ray of the optical imaging system on the imaging surface, thereby reducing the sensitivity of the optical imaging system.
  • the optical imaging system satisfies the following conditional formula: 1.0mm-1 ⁇ (n1+n2)/f ⁇ 1.3mm-1;
  • n1 is the refractive index of the first lens
  • n2 is the refractive index of the second lens
  • f is the effective focal length of the optical imaging system
  • the reference wavelength of light is 587.6 nm.
  • the optical imaging system satisfies the following conditional formula: 0.8 ⁇ f12/f ⁇ 1.7;
  • f12 is the effective focal length of the first lens and the second lens after cementing
  • f is the effective focal length of the optical imaging system.
  • the first lens and the second lens are cemented lenses.
  • the optical imaging system satisfies the following conditional formula: 1.4 ⁇ EPD/SD31 ⁇ 2.0;
  • EPD is the entrance pupil diameter of the optical imaging system
  • SD31 is the maximum effective radius of the object side of the third lens. Satisfying the above formula means that the third lens and the first lens have similar optical apertures, thereby keeping the optical imaging system small in size, which is beneficial to the arrangement of the lenses and the compression of the size of the optical imaging system; at the same time, it satisfies the above formula It can also reduce the deflection angle of the light angle and reduce the sensitivity of the optical imaging system.
  • the optical imaging system satisfies the following conditional formula: (
  • f2 is the effective focal length of the second lens
  • f3 is the effective focal length of the third lens
  • R31 is the radius of curvature of the object side surface of the third lens at the optical axis.
  • the third lens is reasonably matched with the cemented lens to adjust the refractive power, which helps to reduce the comprehensive spherical aberration, chromatic aberration and distortion of the first three lens groups to an appropriate level and reduce The design difficulty of the fourth lens and the fifth lens.
  • the radius of curvature of the third lens is properly distributed, it can prevent the lens surface from being too complicated, which is helpful for the molding and manufacturing of the lens.
  • the optical imaging system satisfies the following conditional formula: f/
  • f is the effective focal length of the optical imaging system
  • f3 is the effective focal length of the third lens.
  • Reasonable distribution of the refractive power of the third lens is conducive to gradually diffusing the light, avoiding the deflection angle of the fourth lens and the fifth lens causing the light deflection to be too large; at the same time, when the above formula is satisfied, the aberration generated by the third lens can be drastically reduced , Thereby improving the imaging quality and reducing the assembly sensitivity of the optical imaging system.
  • the optical imaging system satisfies the following conditional formula: 6 ⁇ (f1+
  • f1 is the effective focal length of the first lens
  • f2 is the effective focal length of the second lens
  • f3 is the effective focal length of the third lens
  • f is the effective focal length of the optical imaging system.
  • the optical imaging system satisfies the following conditional formula:
  • R41 is the radius of curvature of the object side surface of the fourth lens at the optical axis
  • R51 is the radius of curvature of the object side surface of the fifth lens at the optical axis.
  • the positive refractive power of the fourth lens will increase the spherical aberration of the optical imaging system.
  • the refractive power perpendicular to the optical axis can be reasonably distributed. Controlling the overall aberration of the optical lens is beneficial to reduce the size of the dispersion spot.
  • the optical imaging system satisfies the following conditional formula: 1.2 ⁇
  • R41 is the radius of curvature of the object side surface of the fourth lens at the optical axis
  • f4 is the effective focal length of the fourth lens.
  • the optical imaging system satisfies the following conditional formula: 3.0 ⁇ TTL ⁇ 4.0;
  • the image side of the optical imaging system has an imaging surface
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical imaging system. Controlling the size of the TTL means controlling the total optical length of the optical imaging system. When the TTL is low, the total optical length of the optical imaging system is reduced, and the volume is correspondingly reduced, making the optical imaging system more light, thin and miniaturized.
  • the optical imaging system satisfies the following conditional formula: n1>1.535;
  • n1 is the refractive index of the first lens
  • the reference wavelength of light is 587.6 nm.
  • the first lens introduces light into the optical imaging system, and the refractive index of the first lens affects the deflection angle of the light passing through the first lens, and the deflection angle further affects the guiding of the light by other lenses.
  • the high refractive index material can reduce the deflection angle of the first lens, which is beneficial to guide the light by the rear lens, thereby affecting the image quality of the entire optical imaging system.
  • the optical imaging system satisfies the following conditional formula: 70° ⁇ FOV ⁇ 85°;
  • FOV is the maximum angle of view of the optical imaging system. Controlling the maximum field of view of the optical imaging system within a reasonable range can enable the optical imaging system to have a better aberration balance ability and control the distortion of the optical imaging system.
  • a lens includes a photosensitive element and the optical imaging system, and the photosensitive element is arranged on the image side of the optical imaging system.
  • the lens of the present application can reduce the angle of incidence of the chief ray of the optical imaging system on the imaging surface, thereby helping to reduce the sensitivity of the optical imaging system.
  • the above characteristics prevent the fifth lens from being too thin or too thick, and help to reduce the angle of incidence of the chief ray of the optical imaging system on the imaging surface, thereby reducing the sensitivity of the optical imaging system.
  • An electronic device includes a body and the lens, and the lens is mounted on the body.
  • the electronic device of the present application can reduce the angle of incidence of the chief ray of the optical imaging system on the imaging surface, thereby helping to reduce the sensitivity of the optical imaging system.
  • the above characteristics prevent the fifth lens from being too thin or too thick, and help to reduce the angle of incidence of the chief ray of the optical imaging system on the imaging surface, thereby reducing the sensitivity of the optical imaging system.
  • the present invention achieves the reduction of the angle of incidence of the chief ray of the optical imaging system on the imaging surface through the fifth lens satisfying the characteristics of 0.5 ⁇ (
  • the above characteristics prevent the fifth lens from being too thin or too thick, and help reduce the angle of incidence of the chief ray of the optical imaging system on the imaging surface, thereby reducing the sensitivity of the optical imaging system.
  • FIG. 1 is a schematic structural diagram of an optical imaging system according to Embodiment 1 of the present invention.
  • 2A to 2C respectively show the spherical aberration curve, astigmatism curve and distortion curve of the optical imaging system of Embodiment 1;
  • FIG. 3 is a schematic structural diagram of an optical imaging system according to Embodiment 2 of the present invention.
  • 4A to 4C respectively show the spherical aberration curve, astigmatism curve and distortion curve of the optical imaging system of Embodiment 2;
  • FIG. 5 is a schematic structural diagram of an optical imaging system according to Embodiment 3 of the present invention.
  • 6A to 6C respectively show the spherical aberration curve, astigmatism curve and distortion curve of the optical imaging system of Embodiment 3;
  • FIG. 7 is a schematic structural diagram of an optical imaging system according to Embodiment 4 of the present invention.
  • 8A to 8C respectively show the spherical aberration curve, astigmatism curve and distortion curve of the optical imaging system of Embodiment 4;
  • FIG. 9 is a schematic structural diagram of an optical imaging system according to Embodiment 5 of the present invention.
  • 10A to 10C respectively show the spherical aberration curve, astigmatism curve and distortion curve of the optical imaging system of Embodiment 5;
  • FIG. 11 is a schematic structural diagram of an optical imaging system according to Embodiment 6 of the present invention.
  • 12A to 12C respectively show the spherical aberration curve, astigmatism curve and distortion curve of the optical imaging system of Embodiment 6;
  • FIG. 13 is a schematic structural diagram of an optical imaging system according to Embodiment 7 of the present invention.
  • 14A to 14C respectively show the spherical aberration curve, astigmatism curve and distortion curve of the optical imaging system of Example 7.
  • Exemplary embodiments of the present application provide an optical imaging system, which is beneficial to reducing the angle of incidence of the chief ray of the optical imaging system on the imaging surface, thereby helping to reduce the sensitivity of the optical imaging system.
  • optical imaging system is introduced as follows:
  • the optical imaging system has an object side and an image side, and the image side has an imaging surface.
  • the optical imaging system includes in turn from the object side to the image side along the optical axis:
  • the first lens has a positive refractive power, and the object side of the first lens has a convex surface near the axis;
  • the third lens has refractive power, the near axis of the object side is convex, and the near axis of the image side is concave;
  • a fourth lens having a positive refractive power, a concave surface near the axis of the object side of the fourth lens, and a convex surface near the axis of the image side of the fourth lens;
  • a fifth lens having refractive power; the object side and the image side of the fifth lens are aspherical; and at least one of the object side and the image side of the fifth lens is provided with at least one inflection point;
  • optical imaging system satisfies the conditional formula:
  • SAG51 is the distance between the intersection of the object side surface of the fifth lens and the optical axis to the projection of the edge of the optical effective area of the fifth lens on the optical axis
  • SAG52 is the distance between the image side surface of the fifth lens and the optical axis The distance between the intersection of the axes and the projection of the edge of the optical effective area on the image side of the fifth lens on the optical axis
  • CT5 is the central thickness of the fifth lens on the optical axis.
  • the fifth lens satisfies the characteristics of 0.5 ⁇ (
  • the above characteristics prevent the fifth lens from being too thin or too thick, and help to reduce the angle of incidence of the chief ray of the optical imaging system on the imaging surface, thereby reducing the sensitivity of the optical imaging system.
  • +SAG52)/CT5 can be 0.6, 3.4, 0.55, 3.45, 0.7, 3.3, etc., and can also be other values satisfying 0.5 ⁇ (
  • At least one of the object side surface and the image side surface of the fifth lens is provided with at least one inflection point.
  • the fifth lens is provided with multiple inflection points, it is beneficial to correct the distortion generated by the optical imaging system.
  • the curvature of field makes the refractive power configuration of the imaging surface close to the optical imaging system more uniform.
  • the first lens includes an object side surface close to the object side and an image side surface close to the image side
  • the second lens includes an object side surface close to the object side and an image side surface close to the image side
  • the third lens includes an object side surface close to the object side.
  • the fourth lens includes the object side surface close to the object side and the image side surface close to the image side.
  • the first lens and the second lens are cemented to form a cemented lens; the third lens, the fourth lens, and the fifth lens may be independent of each other and have an air gap with their adjacent lenses.
  • the cemented lens is beneficial to eliminate the chromatic aberration of each lens in the cemented lens group, and can also leave some chromatic aberration to balance the chromatic aberration of the optical imaging system, thereby enhancing the ability of the optical imaging system to balance chromatic aberration and improving imaging resolution.
  • the bonding of the lenses omits the air gap between the two lenses, which makes the overall structure of the optical imaging system compact and simple, which is beneficial to shorten the total optical length of the optical imaging system and meet the requirements of miniaturization.
  • the cementing of the lens will reduce the tolerance sensitivity issues such as tilt/eccentricity of each lens during the assembly process.
  • the assembly process has better coaxiality than the separate lens, so it is beneficial to improve the yield of the assembly process. .
  • the first lens may have positive refractive power, and the object side of the first lens may be convex; the second lens may have refractive power; the third lens may have refractive power, and the object side of the third lens may be convex, The image side of the third lens is concave; the fourth lens may have positive refractive power, the object side of the fourth lens is concave at the near optical axis, the image side of the fourth lens is convex at the optical axis, and the near axis Refers to the area near the optical axis; in an exemplary embodiment, the optical imaging system may satisfy the following conditional formula: 1.0mm -1 ⁇ (n1+n2)/f ⁇ 1.3mm -1 ; where n1 is the first lens The refractive index, n2 is the refractive index of the second lens, f is the effective focal length of the optical imaging system, and the reference wavelength of the light is 587.6 nm.
  • the optical imaging system may satisfy the following conditional formula: 0.8 ⁇ f12/f ⁇ 1.7; where f12 is the effective focal length of the first lens and the second lens after cementing, and f is the effective focal length of the optical imaging system.
  • the first lens and the second lens are cemented lenses.
  • the optical imaging system may satisfy the following conditional formula: 1.4 ⁇ EPD/SD31 ⁇ 2.0; where EPD is the entrance pupil diameter of the optical imaging system, and SD31 is the maximum effective radius of the object side of the third lens.
  • the effective radius may be the maximum effective radius of the object side surface of the third lens. Satisfying the above formula means that the third lens and the first lens have similar optical apertures, thereby keeping the optical imaging system small in size, which is beneficial to the arrangement of the lenses and the compression of the size of the optical imaging system; at the same time, it satisfies the above formula It can also reduce the deflection angle of the light angle and reduce the sensitivity of the optical imaging system.
  • the optical imaging system may satisfy the following conditional formula: (
  • the cemented lens reduces chromatic aberration
  • the third lens is reasonably matched with the cemented lens to adjust the refractive power, which helps to reduce the comprehensive spherical aberration, chromatic aberration and distortion of the first three lens groups to an appropriate level and reduce The design difficulty of the fourth lens and the fifth lens.
  • the radius of curvature of the third lens is properly distributed, it can prevent the lens surface from being too complicated, which is helpful for the molding and manufacturing of the lens.
  • the optical imaging system may satisfy the following conditional formula: f/
  • Reasonable distribution of the refractive power of the third lens is conducive to gradually diffusing the light, avoiding the deflection angle of the fourth lens and the fifth lens causing the light deflection to be too large; at the same time, when the above formula is satisfied, the aberration generated by the third lens can be drastically reduced , Thereby improving the imaging quality and reducing the assembly sensitivity of the optical imaging system.
  • the optical imaging system may satisfy the following conditional formula: 6 ⁇ (f1+
  • Reasonable configuration of the size and refractive power of the first lens, second lens, and third lens can avoid large spherical aberration of the front lens group and improve the overall resolution of the optical imaging system; at the same time, when the above formula is satisfied, the first lens can be compressed.
  • the size of the first lens, the second lens, and the third lens helps to realize a miniaturized optical imaging system.
  • the optical imaging system may satisfy the following conditional formula:
  • the positive refractive power of the fourth lens will increase the spherical aberration of the optical imaging system.
  • the refractive power perpendicular to the optical axis can be reasonably distributed. Controlling the overall aberration of the optical lens is beneficial to reduce the size of the dispersion spot.
  • the optical imaging system may satisfy the following conditional formula: 1.2 ⁇
  • R41 is the radius of curvature at the paraxial position of the object side of the fourth lens
  • f4 is the effective focal length of the fourth lens.
  • the optical imaging system may satisfy the following conditional formula: 3.0 ⁇ TTL ⁇ 4.0;
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical imaging system, that is, the total optical length. Controlling the size of the TTL means controlling the total optical length of the optical imaging system. When the TTL is low, the total optical length of the optical imaging system is reduced, and the volume is correspondingly reduced, making the optical imaging system more light, thin and miniaturized.
  • the optical imaging system may satisfy the following conditional formula: n1>1.535; where n1 is the refractive index of the first lens, and the reference wavelength of light is 587.6 nm.
  • the first lens introduces light into the optical imaging system, and the refractive index of the first lens affects the deflection angle of the light passing through the first lens, and the deflection angle further affects the guiding of the light by other lenses.
  • the high refractive index material can reduce the deflection angle of the first lens, which is beneficial to guide the light by the rear lens, thereby affecting the image quality of the entire optical imaging system.
  • the optical imaging system may satisfy the following conditional formula: 70° ⁇ FOV ⁇ 85°; where FOV is the maximum field of view of the optical imaging system, optionally, the field of view is 1.0 field of view The angle of view is the maximum angle of view. Controlling the maximum field of view of the optical imaging system within a reasonable range can enable the optical imaging system to have a better aberration balance ability and control the distortion of the optical imaging system.
  • At least one of the mirror surfaces of each lens is an aspherical mirror surface; that is, the object side of each of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens
  • At least one of the side surface and the image side surface is an aspheric mirror surface.
  • the characteristic of an aspheric lens is that the curvature changes continuously from the center of the lens to the periphery of the lens. Unlike spherical lenses with constant curvature from the center of the lens to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatism.
  • the aberrations that occur during imaging can be eliminated as much as possible, thereby improving the imaging quality.
  • the object side surface and the image side surface of each of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens are aspheric mirror surfaces.
  • the materials of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens are all plastic.
  • Plastic lenses are easy to manufacture, have high molding efficiency, and low cost, which is conducive to large-scale mass production. Combining the advantages of easy manufacturing of plastic lenses, good chromatic aberration and good coaxiality of cemented lenses, can greatly improve the yield of the assembly process.
  • the optical imaging system may further include at least one diaphragm to improve the imaging quality of the optical imaging system.
  • the diaphragm may be arranged between the object side and the first lens.
  • the present invention also provides a lens, including a photosensitive element and the aforementioned optical imaging system, the photosensitive element is arranged on the image side of the optical imaging system; the photosensitive element can be a photosensitive coupling element (Charge Coupled Device, referred to as CCD) or complementary metal oxide Semiconductor components (Complementary Metal Oxide Semiconductor, CMOS for short).
  • CCD Charge Coupled Device
  • CMOS complementary metal oxide Semiconductor
  • the lens can achieve the best imaging effect through the design of the optical imaging system.
  • the lens may also include a lens barrel, a supporting device, or a combination thereof.
  • the present invention also provides an electronic device including a main body and the aforementioned lens.
  • the lens is mounted on the main body of the electronic device.
  • the electronic device has a lens with excellent imaging effects.
  • Electronic devices can be portable devices such as smart phones, digital cameras, tablet computers, and wearable devices.
  • Fig. 1 shows a schematic structural diagram of an optical imaging system according to Embodiment 1 of the present application.
  • the optical imaging system includes a stop ST0, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6 and the imaging surface S13.
  • the first lens E1 has a positive refractive power.
  • the object side S1 of the first lens is convex, and the image side S2 is concave; at the circumference, the object side S1 of the first lens is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power.
  • the object side surface S3 of the second lens is convex and the image side surface S4 is concave; at the circumference, the object side surface S3 of the second lens is convex, and the image side surface S4 is convex.
  • the third lens E3 has negative refractive power.
  • the object side surface S5 of the third lens is convex and the image side surface S6 is concave; at the circumference, the object side S5 of the third lens is convex, and the image side S6 is concave.
  • the fourth lens E4 has positive refractive power.
  • the object side S7 of the fourth lens is concave, and the image side S8 is convex; at the circumference, the object side S7 of the fourth lens is convex, and the image side S8 is concave.
  • the fifth lens E5 has negative refractive power.
  • the object side S9 of the fifth lens is convex, and the image side S10 is concave; at the circumference, the object side S9 of the fifth lens is concave, and the image side S10 is convex.
  • the filter E6 has an object side surface S11 and an image side surface S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the image side surface S2 of the first lens E1 is cemented with the object side surface S3 of the second lens E2 to form a cemented lens; any one of the third lens E3, the fourth lens E4, and the fifth lens E5 is similar to it.
  • the adjacent lenses are independent of each other and have an air gap.
  • Table 1 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number, and effective focal length of each lens of the optical imaging system of Example 1.
  • the units of the radius of curvature, thickness and effective focal length are all millimeters ( mm).
  • the effective focal length of the optical imaging system in Example 1 is EFL
  • the aperture value of the optical imaging system is F no
  • the field of view of the optical imaging system is FOV
  • each aspheric lens can be defined by but not limited to the following aspheric formula:
  • x is the distance vector height of the aspheric surface at a height h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 shows the conic coefficient k and higher-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror surface S1-S10 in Embodiment 1.
  • the optical imaging system in Embodiment 1 satisfies the following relationship:
  • n1 is the refractive index of the first lens E1
  • n2 is the refractive index of the second lens E2
  • f is the total effective focal length of the optical imaging system
  • f12/f 1.41
  • f12 is the effective focal length of the first lens and the second lens after cementing
  • f is the effective focal length of the optical imaging system.
  • f12 3.45mm
  • f 2.45mm.
  • EPD/SD31 1.51, where EPD is the entrance pupil diameter of the optical imaging system, and SD31 is the maximum effective radius of the object side S5 of the third lens E3;
  • 0.19, where f is the total effective focal length of the optical imaging system, and f3 is the effective focal length of the third lens E3;
  • f1 is the effective focal length of the first lens E1
  • f2 is the effective focal length of the second lens E2
  • f3 is the effective focal length of the third lens E3
  • f is the effective focal length of the third lens E3.
  • 3.62
  • R41 is the radius of curvature of the object side surface S7 of the fourth lens E4 at the paraxial position
  • R51 is the radius of curvature of the object side surface S9 of the fifth lens E5 at the paraxial axis.
  • TTL 3.60mm, where TTL is the distance from the object side S1 of the first lens E1 to the imaging surface S13 of the optical imaging system;
  • n1 1.651, where n1 is the refractive index of the first lens E1, and the reference wavelength of light is 587.6 nm.
  • FOV 84.98°, where FOV is the maximum angle of view of the optical imaging system.
  • FIG. 2A shows the spherical aberration curve of the optical imaging system of Example 1, which indicates the deviation of the focal point of light rays of different wavelengths after passing through the lens.
  • FIG. 2B shows the astigmatism curve of the optical imaging system of Example 1, which shows the meridional field curvature and the sagittal field curvature.
  • FIG. 2C shows the distortion curve of the optical imaging system of Embodiment 1, which represents the magnitude of distortion corresponding to different image heights. According to FIGS. 2A to 2C, it can be seen that the optical imaging system given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an optical imaging system according to Embodiment 2 of the present application.
  • the optical imaging system includes a stop ST0, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6 and the imaging surface S13.
  • the first lens E1 has a positive refractive power.
  • the object side S1 of the first lens is convex, and the image side S2 is convex; at the circumference, the object side S1 of the first lens is convex, and the image side S2 is convex.
  • the second lens E2 has negative refractive power.
  • the object side S3 of the second lens is concave, and the image side S4 is concave; at the circumference, the object side S3 of the second lens is convex, and the image side S4 is concave.
  • the third lens E3 has a negative refractive power.
  • the object side S5 of the third lens is convex and the image side S6 is concave; at the circumference, the object side S5 of the third lens is concave, and the image side S6 is concave.
  • the fourth lens E4 has positive refractive power.
  • the object side S7 of the fourth lens is concave, and the image side S8 is convex; at the circumference, the object side S7 of the fourth lens is concave, and the image side S8 is convex.
  • the fifth lens E5 has negative refractive power.
  • the object side S9 of the fifth lens is concave, and the image side S10 is concave; at the circumference, the object side S9 of the fifth lens is convex, and the image side S10 is convex.
  • the filter E6 has an object side surface S11 and an image side surface S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the image side surface S2 of the first lens E1 is cemented with the object side surface S3 of the second lens E2 to form a cemented lens; any one of the third lens E3, the fourth lens E4, and the fifth lens E5 is similar to it.
  • the adjacent lenses are independent of each other and have an air gap.
  • Table 3 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number, and effective focal length of each lens of the optical imaging system of Example 2.
  • the units of the radius of curvature, thickness and effective focal length are all millimeters ( mm).
  • the effective focal length of the optical imaging system in Embodiment 2 is EFL
  • the aperture value of the optical imaging system is F no
  • the field of view of the optical imaging system is FOV
  • Table 3 shows that the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical surfaces.
  • Table 4 shows the conic coefficient k and higher-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror surface S1-S10 in Embodiment 2.
  • optical imaging system in Embodiment 2 satisfies the following relationship:
  • n1 is the refractive index of the first lens E1
  • n2 is the refractive index of the second lens E2
  • f is the total effective focal length of the optical imaging system
  • f12/f 1.10
  • f12 is the effective focal length of the first lens and the second lens after cementing
  • f is the effective focal length of the optical imaging system.
  • f12 3.32mm
  • f 3.01mm.
  • EPD/SD31 1.82, where EPD is the entrance pupil diameter of the optical imaging system, and SD31 is the maximum effective radius of the object side S5 of the third lens E3;
  • 0.18, where f is the total effective focal length of the optical imaging system, and f3 is the effective focal length of the third lens E3;
  • f1 is the effective focal length of the first lens E1
  • f2 is the effective focal length of the second lens E2
  • f3 is the effective focal length of the third lens E3
  • f is the effective focal length of the third lens E3.
  • 1.14, where R41 is the radius of curvature of the object side surface S7 of the fourth lens E4 at the paraxial position, and R51 is the radius of curvature of the object side surface S9 of the fifth lens E5 at the paraxial axis.
  • TTL 3.96mm, where TTL is the distance from the object side S1 of the first lens E1 to the imaging surface S13 of the optical imaging system;
  • n1 1.545, where n1 is the refractive index of the first lens E1, and the reference wavelength of light is 587.6 nm.
  • FOV 72.63°, where FOV is the maximum field of view of the optical imaging system.
  • FIG. 4A shows the spherical aberration curve of the optical imaging system of Embodiment 2, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • FIG. 4B shows the astigmatism curve of the optical imaging system of Example 2, which shows the meridional field curvature and the sagittal field curvature.
  • FIG. 4C shows the distortion curve of the optical imaging system of Embodiment 2, which represents the distortion magnitude values corresponding to different image heights. According to FIGS. 4A to 4C, it can be seen that the optical imaging system provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an optical imaging system according to Embodiment 3 of the present application.
  • the optical imaging system once from the object side to the image side includes: a stop ST0, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6 and the imaging surface S13.
  • the first lens E1 has a positive refractive power.
  • the object side S1 of the first lens is convex, and the image side S2 is convex; at the circumference, the object side S1 of the first lens is convex, and the image side S2 is convex.
  • the second lens E2 has positive refractive power.
  • the object side surface S3 of the second lens is concave, and the image side surface S4 is convex; at the circumference, the object side S3 of the second lens is concave, and the image side S4 is convex.
  • the third lens E3 has a negative refractive power.
  • the object side S5 of the third lens is convex and the image side S6 is concave; at the circumference, the object side S5 of the third lens is concave, and the image side S6 is concave.
  • the fourth lens E4 has positive refractive power.
  • the object side S7 of the fourth lens is concave, and the image side S8 is convex; at the circumference, the object side S7 of the fourth lens is concave, and the image side S8 is convex.
  • the fifth lens E5 has negative refractive power.
  • the object side S9 of the fifth lens is convex, and the image side S10 is concave; at the circumference, the object side S9 of the fifth lens is convex, and the image side S10 is convex.
  • the filter E6 has an object side surface S11 and an image side surface S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the image side surface S2 of the first lens E1 is cemented with the object side surface S3 of the second lens E2 to form a cemented lens; any one of the third lens E3, the fourth lens E4, and the fifth lens E5 is similar to it.
  • the adjacent lenses are independent of each other and have an air gap.
  • Table 5 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number, and effective focal length of each lens of the optical imaging system of Example 3.
  • the units of the radius of curvature, thickness and effective focal length are all millimeters ( mm).
  • the effective focal length of the optical imaging system in Example 3 is EFL
  • the aperture value of the optical imaging system is F no
  • the field of view of the optical imaging system is FOV
  • Table 5 shows that the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical surfaces.
  • Table 6 shows the conic coefficient k and higher-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror surface S1-S10 in Embodiment 3.
  • optical imaging system in Embodiment 3 satisfies the following relationship:
  • SAG51 is the distance from the intersection point of the object side S9 of the fifth lens E5 with the optical axis to the edge of the optical effective area of the fifth lens E5 on the optical axis
  • SAG52 is the projection distance from the intersection of the image side surface S10 of the fifth lens E5 and the optical axis to the edge of the optical effective area of the image side surface S10 of the fifth lens E5 on the optical axis
  • CT5 is the central thickness of the fifth lens E5 on the optical axis.
  • n1 is the refractive index of the first lens E1
  • n2 is the refractive index of the second lens E2
  • f is the total effective focal length of the optical imaging system
  • f12/f 0.89
  • f12 is the effective focal length of the first lens and the second lens after cementing
  • f is the effective focal length of the optical imaging system.
  • f12 2.45mm
  • f 2.74mm.
  • EPD/SD31 1.67, where EPD is the entrance pupil diameter of the optical imaging system, and SD31 is the maximum effective radius of the object side S5 of the third lens E3;
  • 0.67, where f is the total effective focal length of the optical imaging system, and f3 is the effective focal length of the third lens E3;
  • 0.48, where R41 is the radius of curvature of the object side surface S7 of the fourth lens E4 at the paraxial position, and R51 is the radius of curvature of the object side surface S9 of the fifth lens E5 at the paraxial position.
  • TTL 3.86mm, where TTL is the distance from the object side S1 of the first lens E1 to the imaging surface S13 of the optical imaging system;
  • n1 1.545, where n1 is the refractive index of the first lens E1, and the reference wavelength of light is 587.6 nm.
  • FOV 80.3°, where FOV is the maximum angle of view of the optical imaging system.
  • FIG. 6A shows the spherical aberration curve of the optical imaging system of Embodiment 3, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • 6B shows the astigmatism curve of the optical imaging system of Example 3, which shows the meridional field curvature and the sagittal field curvature.
  • FIG. 6C shows the distortion curve of the optical imaging system of Embodiment 3, which represents the distortion magnitude values corresponding to different image heights. It can be seen from FIGS. 6A to 6C that the optical imaging system provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 shows a schematic structural diagram of an optical imaging system according to Embodiment 3 of the present application.
  • the optical imaging system includes a stop ST0, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6 and the imaging surface S13.
  • the first lens E1 has a positive refractive power.
  • the object side S1 of the first lens is convex, and the image side S2 is concave; at the circumference, the object side S1 of the first lens is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power.
  • the object side surface S3 of the second lens is convex and the image side surface S4 is concave; at the circumference, the object side surface S3 of the second lens is convex, and the image side surface S4 is convex.
  • the third lens E3 has a positive refractive power.
  • the object side S5 of the third lens is convex, and the image side S6 is concave; at the circumference, the object side S5 of the third lens is convex, and the image side S6 is concave.
  • the fourth lens E4 has positive refractive power.
  • the object side surface S7 of the fourth lens is concave, and the image side surface S8 is convex; at the circumference, the object side S7 of the fourth lens is concave, and the image side S8 is convex.
  • the fifth lens E5 has negative refractive power.
  • the object side S9 of the fifth lens is concave, and the image side S10 is concave; at the circumference, the object side S9 of the fifth lens is concave, and the image side S10 is convex.
  • the filter E6 has an object side surface S11 and an image side surface S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the image side surface S2 of the first lens E1 is cemented with the object side surface S3 of the second lens E2 to form a cemented lens; any one of the third lens E3, the fourth lens E4, and the fifth lens E5 is similar to it.
  • the adjacent lenses are independent of each other and have an air gap.
  • Table 7 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number, and effective focal length of each lens of the optical imaging system of Example 4, where the units of the radius of curvature, thickness and effective focal length are all millimeters ( mm).
  • the effective focal length of the optical imaging system in Example 4 is EFL
  • the aperture value of the optical imaging system is F no
  • the field of view of the optical imaging system is FOV
  • Table 7 shows that the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical surfaces.
  • Table 8 shows the conic coefficient k and higher-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror S1-S10 in Embodiment 4.
  • optical imaging system in Embodiment 4 satisfies the following relationship:
  • n1 is the refractive index of the first lens E1
  • n2 is the refractive index of the second lens E2
  • f is the total effective focal length of the optical imaging system
  • f12/f 1.23
  • f12 is the effective focal length of the first lens and the second lens after cementing
  • f is the effective focal length of the optical imaging system.
  • f12 3.54mm
  • f 2.87mm.
  • EPD/SD31 1.94, where EPD is the entrance pupil diameter of the optical imaging system, and SD31 is the maximum effective radius of the object side S5 of the third lens E3;
  • 0.03
  • f1 is the effective focal length of the first lens E1
  • f2 is the effective focal length of the second lens E2
  • f3 is the effective focal length of the third lens E3
  • f is the effective focal length of the third lens E3.
  • 0.25
  • R41 is the radius of curvature of the object side surface S7 of the fourth lens E4 at the paraxial position
  • R51 is the radius of curvature of the object side surface S9 of the fifth lens E5 at the paraxial axis.
  • TTL 3.60mm, where TTL is the distance from the object side S1 of the first lens E1 to the imaging surface S13 of the optical imaging system;
  • n1 1.535, where n1 is the refractive index of the first lens E1, and the reference wavelength of light is 587.6 nm.
  • FOV 76.91°, where FOV is the maximum field of view of the optical imaging system.
  • FIG. 8A shows the spherical aberration curve of the optical imaging system of Embodiment 4, which represents the deviation of the focus point of light of different wavelengths after passing through the lens.
  • FIG. 8B shows the astigmatism curve of the optical imaging system of Example 4, which shows the meridional field curvature and the sagittal field curvature.
  • FIG. 8C shows the distortion curve of the optical imaging system of Embodiment 4, which represents the magnitude of distortion corresponding to different image heights. It can be seen from FIGS. 8A to 8C that the optical imaging system provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 shows a schematic structural diagram of an optical imaging system according to Embodiment 5 of the present application.
  • the optical imaging system includes a stop ST0, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6 and the imaging surface S13.
  • the first lens E1 has a positive refractive power.
  • the object side S1 of the first lens is convex, and the image side S2 is concave; at the circumference, the object side S1 of the first lens is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power.
  • the object side surface S3 of the second lens is convex and the image side surface S4 is concave; at the circumference, the object side surface S3 of the second lens is convex, and the image side surface S4 is convex.
  • the third lens E3 has a positive refractive power.
  • the object side S5 of the third lens is convex, and the image side S6 is concave; at the circumference, the object side S5 of the third lens is concave, and the image side S6 is concave.
  • the fourth lens E4 has positive refractive power.
  • the object side S7 of the fourth lens is concave, and the image side S8 is convex; at the circumference, the object side S7 of the fourth lens is concave, and the image side S8 is convex.
  • the fifth lens E5 has negative refractive power.
  • the object side surface S9 of the fifth lens is concave, and the image side surface S10 is convex; at the circumference, the object side S9 of the fifth lens is concave, and the image side S10 is convex.
  • the filter E6 has an object side surface S11 and an image side surface S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the image side surface S2 of the first lens E1 is cemented with the object side surface S3 of the second lens E2 to form a cemented lens; any one of the third lens E3, the fourth lens E4, and the fifth lens E5 is similar to it.
  • the adjacent lenses are independent of each other and have an air gap.
  • Table 9 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number and effective focal length of each lens of the optical imaging system of Example 5, where the units of the radius of curvature, thickness and effective focal length are all millimeters ( mm).
  • the effective focal length of the optical imaging system in Embodiment 5 is EFL
  • the aperture value of the optical imaging system is F no
  • the field of view of the optical imaging system is FOV
  • Table 9 shows the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 that are aspherical surfaces.
  • Table 10 shows the conic coefficient k and higher-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror surface S1-S10 in Embodiment 5.
  • the optical imaging system in Embodiment 5 satisfies the following relationship:
  • n1 is the refractive index of the first lens E1
  • n2 is the refractive index of the second lens E2
  • f is the total effective focal length of the optical imaging system
  • f12/f 1.65
  • f12 is the effective focal length of the first lens and the second lens after cementing
  • f is the effective focal length of the optical imaging system.
  • f12 4.33mm
  • f 2.63mm.
  • EPD/SD31 1.86, where EPD is the entrance pupil diameter of the optical imaging system, and SD31 is the maximum effective radius of the object side S5 of the third lens E3;
  • 0.12, where f is the total effective focal length of the optical imaging system, and f3 is the effective focal length of the third lens E3;
  • f1 is the effective focal length of the first lens E1
  • f2 is the effective focal length of the second lens E2
  • f3 is the effective focal length of the third lens E3
  • f is the effective focal length of the third lens E3.
  • 4.07, where R41 is the curvature radius of the object side surface S7 of the fourth lens E4 at the paraxial axis, and R51 is the curvature radius of the object side surface S9 of the fifth lens E5 at the paraxial axis.
  • TTL 3.64mm, where TTL is the distance from the object side S1 of the first lens E1 to the imaging surface S13 of the optical imaging system;
  • n1 1.545, where n1 is the refractive index of the first lens E1, and the reference wavelength of light is 587.6 nm.
  • FOV 80.4°, where FOV is the maximum field of view of the optical imaging system.
  • FIG. 10A shows the spherical aberration curve of the optical imaging system of Embodiment 5, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • FIG. 10B shows the astigmatism curve of the optical imaging system of Example 5, which shows the meridional field curvature and the sagittal field curvature.
  • FIG. 10C shows a distortion curve of the optical imaging system of Embodiment 5, which represents the magnitude of distortion corresponding to different image heights. According to FIGS. 10A to 10C, it can be seen that the optical imaging system given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of an optical imaging system according to Embodiment 5 of the present application.
  • the optical imaging system once from the object side to the image side includes: a stop ST0, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6 and the imaging surface S13.
  • the first lens E1 has a positive refractive power.
  • the object side S1 of the first lens is convex, and the image side S2 is convex; at the circumference, the object side S1 of the first lens is convex, and the image side S2 is concave.
  • the second lens E2 has positive refractive power.
  • the object side surface S3 of the second lens is concave and the image side surface S4 is convex; at the circumference, the object side S3 of the second lens is convex, and the image side S4 is convex.
  • the third lens E3 has negative refractive power.
  • the object side S5 of the third lens is convex, and the image side S6 is concave; at the circumference, the object side S5 of the third lens is concave, and the image side S6 is convex.
  • the fourth lens E4 has positive refractive power.
  • the object side surface S7 of the fourth lens is concave, and the image side surface S8 is convex; at the circumference, the object side S7 of the fourth lens is concave, and the image side S8 is concave.
  • the fifth lens E5 has negative refractive power.
  • the object side S9 of the fifth lens is convex, and the image side S10 is concave; at the circumference, the object side S9 of the fifth lens is convex, and the image side S10 is convex.
  • the filter E6 has an object side surface S11 and an image side surface S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the image side surface S2 of the first lens E1 is cemented with the object side surface S3 of the second lens E2 to form a cemented lens; any one of the third lens E3, the fourth lens E4, and the fifth lens E5 is similar to it.
  • the adjacent lenses are independent of each other and have an air gap.
  • Table 11 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number, and effective focal length of each lens of the optical imaging system of Example 6, where the units of the radius of curvature, thickness and effective focal length are all millimeters ( mm).
  • the effective focal length of the optical imaging system in Example 6 is EFL
  • the aperture value of the optical imaging system is F no
  • the field of view of the optical imaging system is FOV
  • Table 11 shows the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 that are aspherical surfaces.
  • Table 12 shows the conic coefficient k and higher-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror surface S1-S10 in Embodiment 6.
  • optical imaging system in Embodiment 6 satisfies the following relationship:
  • SAG51 is the distance from the intersection point of the object side S9 of the fifth lens E5 with the optical axis to the edge of the optical effective area of the fifth lens E5 on the optical axis
  • SAG52 is the projection distance from the intersection of the image side surface S10 of the fifth lens E5 and the optical axis to the edge of the optical effective area of the image side surface S10 of the fifth lens E5 on the optical axis
  • CT5 is the central thickness of the fifth lens E5 on the optical axis.
  • n1 is the refractive index of the first lens E1
  • n2 is the refractive index of the second lens E2
  • f is the total effective focal length of the optical imaging system
  • f12/f 1.23
  • f12 is the effective focal length of the first lens and the second lens after cementing
  • f is the effective focal length of the optical imaging system.
  • f12 3.13mm
  • f 2.55mm.
  • EPD/SD31 1.54, where EPD is the entrance pupil diameter of the optical imaging system, and SD31 is the maximum effective radius of the object side S5 of the third lens E3;
  • 0.26, where f is the total effective focal length of the optical imaging system, and f3 is the effective focal length of the third lens E3;
  • f1 is the effective focal length of the first lens E1
  • f2 is the effective focal length of the second lens E2
  • f3 is the effective focal length of the third lens E3
  • f is the effective focal length of the third lens E3.
  • 2.73
  • R41 is the radius of curvature of the object side surface S7 of the fourth lens E4 at the paraxial position
  • R51 is the radius of curvature of the object side surface S9 of the fifth lens E5 at the paraxial axis.
  • TTL 3.77mm, where TTL is the distance from the object side S1 of the first lens E1 to the imaging surface S13 of the optical imaging system;
  • n1 1.671, where n1 is the refractive index of the first lens E1, and the reference wavelength of light is 587.6 nm.
  • FOV 82.00°, where FOV is the maximum field of view of the optical imaging system.
  • FIG. 12A shows the spherical aberration curve of the optical imaging system of Embodiment 6, which represents the deviation of the focusing point of light of different wavelengths after passing through the lens.
  • Fig. 12B shows the astigmatism curve of the optical imaging system of Example 6, which shows meridional field curvature and sagittal field curvature.
  • FIG. 12C shows the distortion curve of the optical imaging system of Embodiment 6, which represents the distortion magnitude values corresponding to different image heights. According to FIGS. 12A to 10C, it can be seen that the optical imaging system given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 shows a schematic structural diagram of an optical imaging system according to Embodiment 5 of the present application.
  • the optical imaging system includes a stop ST0, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6 and the imaging surface S13.
  • the first lens E1 has a positive refractive power.
  • the object side S1 of the first lens is convex, and the image side S2 is concave; at the circumference, the object side S1 of the first lens is convex, and the image side S2 is concave.
  • the second lens E2 has positive refractive power.
  • the object side surface S3 of the second lens is convex, and the image side surface S4 is convex; at the circumference, the object side surface S3 of the second lens is convex, and the image side surface S4 is convex.
  • the third lens E3 has negative refractive power.
  • the object side surface S5 of the third lens is convex and the image side surface S6 is concave; at the circumference, the object side S5 of the third lens is convex, and the image side S6 is concave.
  • the fourth lens E4 has positive refractive power.
  • the object side S7 of the fourth lens is concave, and the image side S8 is convex; at the circumference, the object side S7 of the fourth lens is concave, and the image side S8 is convex.
  • the fifth lens E5 has negative refractive power.
  • the object side S9 of the fifth lens is concave, and the image side S10 is concave; at the circumference, the object side S9 of the fifth lens is concave, and the image side S10 is convex.
  • the filter E6 has an object side surface S11 and an image side surface S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the image side surface S2 of the first lens E1 is cemented with the object side surface S3 of the second lens E2 to form a cemented lens; any one of the third lens E3, the fourth lens E4, and the fifth lens E5 is similar to it.
  • the adjacent lenses are independent of each other and have an air gap.
  • Table 13 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number and effective focal length of each lens of the optical imaging system of Example 7, where the units of the radius of curvature, thickness and effective focal length are all millimeters ( mm).
  • the effective focal length of the optical imaging system in Example 7 is EFL
  • the aperture value of the optical imaging system is F no
  • the field of view of the optical imaging system is FOV
  • Table 13 shows the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 that are aspherical surfaces.
  • Table 14 shows the conic coefficient k and higher-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror surface S1-S10 in Embodiment 7.
  • optical imaging system in Embodiment 7 satisfies the following relationship:
  • n1 is the refractive index of the first lens E1
  • n2 is the refractive index of the second lens E2
  • f is the total effective focal length of the optical imaging system
  • f12/f 1.06
  • f12 is the effective focal length of the first lens and the second lens after cementing
  • f is the effective focal length of the optical imaging system.
  • f12 2.84mm
  • f 2.67mm.
  • EPD/SD31 1.43, where EPD is the entrance pupil diameter of the optical imaging system, and SD31 is the maximum effective radius of the object side S5 of the third lens E3;
  • 0.15, where f is the total effective focal length of the optical imaging system, and f3 is the effective focal length of the third lens E3;
  • 0.50, where R41 is the radius of curvature of the object side surface S7 of the fourth lens E4 at the paraxial axis, and R51 is the radius of curvature of the object side surface S9 of the fifth lens E5 at the paraxial axis.
  • TTL 3.10mm, where TTL is the distance from the object side S1 of the first lens E1 to the imaging surface S13 of the optical imaging system;
  • n1 1.671, where n1 is the refractive index of the first lens E1, and the reference wavelength of light is 587.6 nm.
  • FOV 79.00°, where FOV is the maximum angle of view of the optical imaging system.
  • FIG. 14A shows the spherical aberration curve of the optical imaging system of Embodiment 7, which indicates the deviation of the focus point of light of different wavelengths after passing through the lens.
  • FIG. 14B shows the astigmatism curve of the optical imaging system of Example 7, which shows the meridional field curvature and the sagittal field curvature.
  • FIG. 14C shows the distortion curve of the optical imaging system of Embodiment 7, which represents the distortion magnitude values corresponding to different image heights. According to Figures 14A to 14C, it can be seen that the optical imaging system given in Example 7 can achieve good imaging quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明公开了一种光学成像系统、镜头和电子设备。光学成像系统,沿光轴由物侧到像侧依次包括:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜;光学成像系统满足条件式:0.5<(|SAG51|+SAG52)/CT5<3.5;其中,SAG51为第五透镜的物侧面与光轴的交点至第五透镜的物侧面光学有效区边缘在光轴上投影的距离,SAG52为第五透镜的像侧面与光轴的交点至第五透镜的像侧面光学有效区边缘在光轴上投影的距离,CT5为第五透镜在光轴上的中心厚度。本发明能有效地减小光学成像系统的主光线入射到成像面的入射角,进而有利于降低光学成像系统的敏感性。本发明还公开了具有上述光学成像系统的镜头及具有镜头的电子设备。

Description

光学成像系统、镜头及电子设备 技术领域
本发明涉及光学成像领域,特别涉及一种光学成像系统、镜头和电子设备。
背景技术
随着科学技术的发展和智能电子设备的普及,具有取像功能的设备得到了人们的广泛青睐。当下的智能电子设备愈来愈趋于轻型化与超薄化,这就要求智能电子设备中的镜头应具有较小的重量和较低的成本的特点。
镜头中常用多个透镜来实现光学成像,然而现有的透镜的组合的主光线入射到像面的入射角较大,致使光学成像系统的敏感较高。
发明内容
有鉴于此,本发明提供了一种光学成像系统、镜头及电子设备,该光学成像系统能有效地减小光学成像系统的主光线入射到成像面的入射角,进而有利于降低光学成像系统的敏感性。
一种光学成像系统,沿光轴由物侧到像侧依次包括:
第一透镜,具有正屈折力,所述第一透镜物侧面近轴处为凸面;
第二透镜,具有屈折力;所述第一透镜与所述第二透镜胶合形成胶合透镜;
第三透镜,具有屈折力,所述第三透镜物侧面近轴处为凸面,所述第三透镜像面侧近轴处为凹面;
第四透镜,具有正屈折力,所述第四透镜物侧面近轴处为凹面,所述第四透镜像侧面近轴处为凸面;
第五透镜,具有屈折力;所述第五透镜物侧面与像侧面均为非球面;且所述第五透镜物侧面与像侧面中至少一个面设置有至少一个反曲点;
所述光学成像系统满足条件式:
0.5<(|SAG51|+SAG52)/CT5<3.5;
其中,SAG51为所述第五透镜的物侧面与光轴的交点至所述第五透镜的物侧面光学有效区边缘在光轴上投影的距离,SAG52为所述第五透镜的像侧 面与光轴的交点至所述第五透镜的像侧面光学有效区边缘在光轴上投影的距离,CT5为所述第五透镜在光轴上的中心厚度。从而,通过第五透镜满足0.5<(|SAG51|+SAG52)/CT5<3.5的特性,实现减小光学成像系统的主光线入射到成像面的入射角,进而有利于降低光学成像系统的敏感性。同时,上述特性能避免第五透镜过薄或者过厚,并且有利于减小光学成像系统中的主光线入射到成像面的入射角,进而有利于降低光学成像系统的敏感性。
在一种实施方式中,所述光学成像系统满足以下条件式:1.0mm-1<(n1+n2)/f≤1.3mm-1;
其中,n1为所述第一透镜的折射率,n2为所述第二透镜的折射率,f为所述光学成像系统的有效焦距,光线的参考波长为587.6nm。第一透镜与第二透镜的屈折力分配合适,可以最大限度地减小色差与球差,提高光学成像系统的成像品质。
在一种实施方式中,所述光学成像系统满足以下条件式:0.8<f12/f<1.7;
其中,f12为所述第一透镜和所述第二透镜胶合后的有效焦距,f为所述光学成像系统的有效焦距。第一透镜与第二透镜为胶合透镜,当满足上式时,可以合理的分配光学成像系统的光焦度,减少初级球差、初级色差的引入,有效地提升了光学成像系统的解像力。
在一种实施方式中,所述光学成像系统满足以下条件式:1.4<EPD/SD31<2.0;
其中,EPD为所述光学成像系统的入瞳直径,SD31为所述第三透镜的物侧面的最大有效半径。满足上式,说明第三透镜与第一透镜有着近似的光学口径,由此使得光学成像系统的保持有较小的体积,利于透镜的排布和光学成像系统尺寸的压缩;同时,满足上式还能减小光线角度偏转角,降低光学成像系统的敏感度。
在一种实施方式中,所述光学成像系统满足以下条件式:(|f2|+|f3|)/R31<57.0;
其中,f2为所述第二透镜的有效焦距,f3为所述第三透镜的有效焦距,R31为所述第三透镜的物侧面于所述光轴处的曲率半径。在胶合透镜减小色差的情况下,第三透镜合理的配合胶合透镜做出屈折力的调整,有助于将前三个 透镜组的综合球差、色差和畸变降到合适的程度,减小第四透镜与第五透镜的设计难度。同时,第三透镜的曲率半径分配适当时,能避免透镜面型过于复杂,有助于透镜的成型与制造。
在一种实施方式中,所述光学成像系统满足以下条件式:f/|f3|<0.70;
其中,f为所述光学成像系统的有效焦距,f3为所述第三透镜的有效焦距。合理分配第三透镜的屈折力,有利于逐渐扩散光线,避免第四透镜、第五透镜引起光线偏转的偏转角过大;同时,满足上式时,第三透镜产生的像差可以急剧减小,进而提升成像质量,降低光学成像系统的组装敏感度。
在一种实施方式中,所述光学成像系统满足以下条件式:6<(f1+|f2|+|f3|)/f<46.0;
其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距,f3为所述第三透镜的有效焦距,f为所述光学成像系统的有效焦距。合理配置第一透镜、第二透镜以及第三透镜的尺寸与屈折力,可以避免前透镜组产生较大的球差,能提升光学成像系统整体的解像力;同时,满足上式时,能压缩第一透镜、第二透镜以及第三透镜的尺寸,有助于实现小型化的光学成像系统。
在一种实施方式中,所述光学成像系统满足以下条件式:|R41/R51|<4.0;
其中,R41为所述第四透镜的物侧面于所述光轴处的曲率半径,R51为所述第五透镜的物侧面于所述光轴处的曲率半径。第四透镜的正屈折力会增加光学成像系统的球差,通过第五透镜上物侧面和/或像侧面多个反曲点的设置,能合理地分配垂直于光轴方向的屈折力,合理地控制光学镜头的整体像差,有利于降低弥散斑的尺寸。
在一种实施方式中,所述光学成像系统满足以下条件式:1.2≤|R41|/f4<2.9;
其中,R41为所述第四透镜的物侧面于所述光轴处的曲率半径,f4所述第四透镜的有效焦距。合理设置第四透镜的光焦度与曲率半径,可以降低第四透镜的面型复杂度,一定程度地抑制了子午方向的场曲、畸变的增加;第四透镜的面型复杂度降低还有利于降低透镜的成型难度,提升光学成像系统的整体的像质。
在一种实施方式中,所述光学成像系统满足以下条件式:3.0<TTL<4.0;
其中,所述光学成像系统的像侧具有成像面,TTL为所述第一透镜的物侧面至所述光学成像系统的成像面的距离。控制TTL的大小即控制光学成像系统的光学总长,当TTL较低时,光学成像系统的光学总长降低,体积也相应减小,使得光学成像系统更加趋于轻薄化和小型化。
在一种实施方式中,所述光学成像系统满足以下条件式:n1>1.535;
其中,n1为所述第一透镜的折射率,光线的参考波长为587.6nm。第一透镜将光线引入光学成像系统,第一透镜的折射率影响了光线通过第一透镜的偏折角度,该偏折角度进一步影响了其他透镜对光线的引导情况。高折射率的材料能降低第一透镜的偏折角度,利于后面透镜对光线的引导,从而影响整个光学成像系统的像质。
在一种实施方式中,所述光学成像系统满足以下条件式:70°≤FOV≤85°;
其中,FOV为所述光学成像系统的最大视场角。将光学成像系统的最大视场角控制在合理范围,可以使光学成像系统具备较好的像差平衡能力,并且能控制光学成像系统的畸变。
一种镜头,包括感光元件和所述的光学成像系统,所述感光元件设置于所述光学成像系统的像侧。本申请的镜头可以实现减小光学成像系统的主光线入射到成像面的入射角,进而有利于降低光学成像系统的敏感性。同时,上述特性能避免第五透镜过薄或者过厚,并且有利于减小光学成像系统中的主光线入射到成像面的入射角,进而有利于降低光学成像系统的敏感性。
一种电子设备,包括本体和所述的镜头,所述镜头安装于所述本体上。本申请的电子设备可以实现减小光学成像系统的主光线入射到成像面的入射角,进而有利于降低光学成像系统的敏感性。同时,上述特性能避免第五透镜过薄或者过厚,并且有利于减小光学成像系统中的主光线入射到成像面的入射角,进而有利于降低光学成像系统的敏感性。
综上所述,本发明通过第五透镜满足0.5<(|SAG51|+SAG52)/CT5<3.5的特性,实现减小光学成像系统的主光线入射到成像面的入射角,进而有利于降低光学成像系统的敏感性。同时,上述特性能避免第五透镜过薄或者过厚,并且有利于减小光学成像系统中的主光线入射到成像面的入射角,进而有利于 降低光学成像系统的敏感性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例1的一种光学成像系统的结构示意图;
图2A至图2C分别出示了实施例1的光学成像系统的球差曲线、像散曲线以及畸变曲线;
图3是本发明实施例2的一种光学成像系统的结构示意图;
图4A至图4C分别出示了实施例2的光学成像系统的球差曲线、像散曲线以及畸变曲线;
图5是本发明实施例3的一种光学成像系统的结构示意图;
图6A至图6C分别出示了实施例3的光学成像系统的球差曲线、像散曲线以及畸变曲线;
图7是本发明实施例4的一种光学成像系统的结构示意图;
图8A至图8C分别出示了实施例4的光学成像系统的球差曲线、像散曲线以及畸变曲线;
图9是本发明实施例5的一种光学成像系统的结构示意图;
图10A至图10C分别出示了实施例5的光学成像系统的球差曲线、像散曲线以及畸变曲线;
图11是本发明实施例6的一种光学成像系统的结构示意图;
图12A至图12C分别出示了实施例6的光学成像系统的球差曲线、像散曲线以及畸变曲线;
图13是本发明实施例7的一种光学成像系统的结构示意图;
图14A至图14C分别出示了实施例7的光学成像系统的球差曲线、像散曲线以及畸变曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本申请示例性实施方式提供了一种光学成像系统,有利于减小光学成像系统的主光线入射到成像面的入射角,进而有利于降低光学成像系统的敏感性。
如下介绍光学成像系统:
一种光学成像系统,光学成像系统具有物侧与像侧,像侧处具有成像面。光学成像系统沿着光轴由物侧到像侧依次包括:
第一透镜,具有正屈折力,所述第一透镜物侧面近轴处为凸面;
第二透镜,具有屈折力;所述第一透镜与所述第二透镜胶合形成胶合透镜;
第三透镜,具有屈折力,其物侧面近轴处为凸面,像侧面近轴处为凹面;
第四透镜,具有正屈折力,所述第四透镜物侧面近轴处为凹面,所述第四透镜像侧面近轴处为凸面;
第五透镜,具有屈折力;所述第五透镜物侧面与像侧面均为非球面;且所述第五透镜物侧面与像侧面中至少一个面设置有至少一个反曲点;
所述光学成像系统满足条件式:
0.5<(|SAG51|+SAG52)/CT5<3.5;
其中,SAG51为所述第五透镜的物侧面与光轴的交点至所述第五透镜的物侧面光学有效区边缘在光轴上投影的距离,SAG52为所述第五透镜的像侧面与光轴的交点至所述第五透镜的像侧面光学有效区边缘在光轴上投影的距离,CT5为所述第五透镜在光轴上的中心厚度。
通过第五透镜满足0.5<(|SAG51|+SAG52)/CT5<3.5的特性,实现减小光学成像系统的主光线入射到成像面的入射角,进而有利于降低光学成像系统的敏感性。同时,上述特性能避免第五透镜过薄或者过厚,并且有利于减小光学成像系统中的主光线入射到成像面的入射角,进而有利于降低光学成像系统的敏感性。
在示例性实施方式中,(|SAG51|+SAG52)/CT5可以为0.6、3.4、0.55、3.45、0.7、3.3等数值,还可以为其他满足0.5<(|SAG51|+SAG52)/CT5<3.5 条件式的数值。
在示例性实施方式中,第五透镜物侧面与像侧面中至少一个表面设有至少一个反曲点,当第五透镜设置有多个反曲点时,有利于修正光学成像系统产生的畸变、场曲,使靠近光学成像系统的成像面的屈折力配置较为均匀。
本申请中,第一透镜包括靠近于物侧的物侧面和靠近像侧的像侧面,第二透镜包括靠近于物侧的物侧面和所述像侧的像侧面,第三透镜包括靠近于物侧的物侧面和靠近像侧的像侧面,第四透镜包括靠近于物侧的物侧面和靠近像侧的像侧面。在该光学成像系统中,第一透镜与第二透镜胶合形成胶合透镜;第三透镜、第四透镜和第五透镜可与其相邻的透镜之间相互独立且具有空气间隔。通过引入胶合透镜,胶合透镜有利于消除胶合透镜组内各透镜自身的色差,还可残留部分色差以平衡光学成像系统的色差,由此可以增强光学成像系统平衡色差的能力,提高成像分辨率。且透镜的胶合省略了两透镜之间的空气间隔,使得光学成像系统整体结构紧凑简单,有利于缩短光学成像系统的光学总长度,满足小型化的要求。另外,透镜的胶合会降低各个透镜在组合过程中产生的倾斜/偏芯等公差敏感度的问题,组装过程同轴性相较于分离式的透镜更好,因此有利于提高组装过程的良率。
在示例性实施方式中,第一透镜可以具有正屈折力,第一透镜的物侧面为凸面;第二透镜可以具有屈折力;第三透镜可以具有屈折力,第三透镜的物侧面为凸面,第三透镜的像侧面为凹面;第四透镜可以具有正屈折力,第四透镜的物侧面于近光轴处为凹面,第四透镜的像侧面于所述光轴处为凸面,近轴处指在光轴附近的区域;在示例性实施方式中,光学成像系统可以满足以下条件式:1.0mm -1<(n1+n2)/f≤1.3mm -1;其中,n1为第一透镜的折射率,n2为第二透镜的折射率,f为所述光学成像系统的有效焦距,光线的参考波长为587.6nm。第一透镜与第二透镜的屈折力分配合适,可以最大限度地减小色差与球差,提高光学成像系统的成像品质。
在示例性实施方式中,光学成像系统可以满足以下条件式:0.8<f12/f<1.7;其中,f12为第一透镜和第二透镜胶合后的有效焦距,f为光学成像系统的有效焦距。第一透镜与第二透镜为胶合透镜,当满足上式时,可以合理的分配光学成像系统的光焦度,减少初级球差、初级色差的引入,有效地提升了光学成像系统的解像力。
在示例性实施方式中,光学成像系统可以满足以下条件式:1.4<EPD/SD31<2.0;其中,EPD为光学成像系统的入瞳直径,SD31为第三透镜的物侧面的最大有效半径,该有效半径可以为第三透镜的物侧面的最大有效半径。满足上式,说明第三透镜与第一透镜有着近似的光学口径,由此使得光学成像系统的保持有较小的体积,利于透镜的排布和光学成像系统尺寸的压缩;同时,满足上式还能减小光线角度偏转角,降低光学成像系统的敏感度。
在示例性实施方式中,光学成像系统可以满足以下条件式:(|f2|+|f3|)/R31<57.0;其中,f2为第二透镜的有效焦距,f3为第三透镜的有效焦距,R31为第三透镜的物侧面近轴处的曲率半径。在胶合透镜减小色差的情况下,第三透镜合理的配合胶合透镜做出屈折力的调整,有助于将前三个透镜组的综合球差、色差和畸变降到合适的程度,减小第四透镜与第五透镜的设计难度。同时,第三透镜的曲率半径分配适当时,能避免透镜面型过于复杂,有助于透镜的成型与制造。
在示例性实施方式中,光学成像系统可以满足以下条件式:f/|f3|<0.70;其中,f为光学成像系统的有效焦距,f3为第三透镜的有效焦距。合理分配第三透镜的屈折力,有利于逐渐扩散光线,避免第四透镜、第五透镜引起光线偏转的偏转角过大;同时,满足上式时,第三透镜产生的像差可以急剧减小,进而提升成像质量,降低光学成像系统的组装敏感度。
在示例性实施方式中,光学成像系统可以满足以下条件式:6<(f1+|f2|+|f3|)/f<46.0;其中,f1为第一透镜的有效焦距,f2为第二透镜的有效焦距,f3为第三透镜的有效焦距,f为光学成像系统的有效焦距。合理配置第一透镜、第二透镜以及第三透镜的尺寸与屈折力,可以避免前透镜组产生较大的球差,能提升光学成像系统整体的解像力;同时,满足上式时,能压缩第一透镜、第二透镜以及第三透镜的尺寸,有助于实现小型化的光学成像系统。
在示例性实施方式中,光学成像系统可以满足以下条件式:|R41/R51|<4.0;其中,R41为第四透镜的物侧面近轴处的曲率半径,R51为第五透镜的物侧面近轴处的曲率半径。第四透镜的正屈折力会增加光学成像系统的球差,通过第五透镜上物侧面和/或像侧面多个反曲点的设置,能合理地分配垂直于光轴方向的屈折力,合理地控制光学镜头的整体像差,有利于降低弥散斑的尺寸。
在示例性实施方式中,光学成像系统可以满足以下条件式:1.2≤ |R41|/f4<2.9;
其中,R41为第四透镜的物侧面近轴处的曲率半径,f4第四透镜的有效焦距。合理设置第四透镜的光焦度与曲率半径,可以降低第四透镜的面型复杂度,一定程度地抑制了子午方向的场曲、畸变的增加;第四透镜的面型复杂度降低还有利于降低透镜的成型难度,提升光学成像系统的整体的像质。
在示例性实施方式中,光学成像系统可以满足以下条件式:3.0<TTL<4.0;
其中,TTL为第一透镜的物侧面至光学成像系统的成像面的距离,即光学总长。控制TTL的大小即控制光学成像系统的光学总长,当TTL较低时,光学成像系统的光学总长降低,体积也相应减小,使得光学成像系统更加趋于轻薄化和小型化。
在示例性实施方式中,光学成像系统可以满足以下条件式:n1>1.535;其中,n1为第一透镜的折射率,光线的参考波长为587.6nm。第一透镜将光线引入光学成像系统,第一透镜的折射率影响了光线通过第一透镜的偏折角度,该偏折角度进一步影响了其他透镜对光线的引导情况。高折射率的材料能降低第一透镜的偏折角度,利于后面透镜对光线的引导,从而影响整个光学成像系统的像质。
在示例性实施方式中,光学成像系统可以满足以下条件式:70°≤FOV≤85°;其中,FOV为光学成像系统的最大视场角,可选地,该视场角为1.0视场的视场角,即最大视场角。将光学成像系统的最大视场角控制在合理范围,可以使光学成像系统具备较好的像差平衡能力,并且能控制光学成像系统的畸变。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面;即,第一透镜、第二透镜、第三透镜、第四透镜及第五透镜中的每个透镜的物侧面与像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像时候出现的像差,从而改善成像质量。优选的,第一透镜、第二透镜、第三透镜、第四透镜及第五透镜中的每个透镜的物侧面与像侧面均为非球面镜面。
在本申请的实施方式中,第一透镜、第二透镜、第三透镜、第四透镜及第 五透镜的材质均为塑料。塑料透镜易于制造,成型效率高,成本低,有利于大规模的量产,结合塑料透镜易于制造、胶合透镜除色差和同轴性好的优势,能大大提升组装过程的良率。
在示例性实施方式中,光学成像系统还可以包括至少一个光阑,以提升光学成像系统的成像质量。优选的,光阑可以设置在物侧与第一透镜之间。
本发明还提供了一种镜头,包括感光元件及前述的光学成像系统,感光元件设置于光学成像系统的像侧;感光元件可以是感光耦合元件(Charge Coupled Device,简称CCD)或互补性氧化金属半导体元件(Complementary Metal Oxide Semiconductor,简称CMOS)。该镜头能通过光学成像系统的设计达到最佳的成像效果。进一步地,镜头还可以包括镜筒、支撑装置或其组合。
本发明还提供了一种电子设备,包括本体和前述的镜头,镜头安装于电子设备的本体上,该电子设备具有优良的成像效果的镜头。电子设备可以是智能手机、数码相机、平板电脑和可穿戴式设备等可携带装置。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2C描述根据本申请实施例1的光学成像系统。图1出示了根据本申请实施例1的光学成像系统的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像系统沿物侧至像侧一次包括:光阑ST0、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正屈折力,近轴处,第一透镜的物侧面S1为凸面,像侧面S2为凹面;于圆周处,第一透镜的物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负屈折力,近轴处,第二透镜的物侧面S3为凸面,像侧面S4为凹面;于圆周处,第二透镜的物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负屈折力,近轴处,第三透镜的物侧面S5为凸面,像侧面S6为凹面;于圆周处,第三透镜的物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正屈折力,近轴处,第四透镜的物侧面S7为凹面,像侧面S8为凸面;于圆周处,第四透镜的物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负屈折力,近轴处,第五透镜的物侧面S9为凸面,像侧面S10为凹面; 于圆周处,第五透镜的物侧面S9为凹面,像侧面S10为凸面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在本实施例中,第一透镜E1的像侧面S2与第二透镜E2的物侧面S3胶合,形成胶合透镜;第三透镜E3、第四透镜E4和第五透镜E5中的任一透镜与其相邻的透镜之间相互独立且具有空气间隔。
表1出示了实施例1的光学成像系统的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数及有效焦距,其中,曲率半径、厚度和有效焦距的单位均为毫米(mm)。
表1
Figure PCTCN2020085163-appb-000001
实施例1中的光学成像系统的有效焦距为EFL,光学成像系统的光圈值为F no,光学成像系统的视场角为FOV,光学成像系统的光学总长为TTL,其数值为:f=2.44mm,F NO=2.09,FOV=84.98(度),TTL=3.60mm。
由表1可知,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2020085163-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S10的圆锥系数k与高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2
Figure PCTCN2020085163-appb-000003
Figure PCTCN2020085163-appb-000004
实施例1中的光学成像系统满足以下关系:
(|SAG51|+SAG52)/CT5=1.19;其中,SAG51为第五透镜E5的物侧面S9与光轴的交点至第五透镜E5的物侧面S9光学有效区边缘在光轴上投影的距离,SAG52为第五透镜E5的像侧面S10与光轴的交点至第五透镜E5的像侧面S10光学有效区边缘在光轴上投影的距离,CT5为第五透镜E5在光轴上的中心厚度。
(n1+n2)/f=1.30mm -1,其中,n1为第一透镜E1的折射率,n2为第二透镜E2的折射率,f为光学成像系统的总有效焦距;
f12/f=1.41,f12为所述第一透镜和所述第二透镜胶合后的有效焦距,f为所述光学成像系统的有效焦距。可选地,f12=3.45mm,f=2.45mm。
EPD/SD31=1.51,其中,EPD为光学成像系统的入瞳直径,SD31为第三透镜E3的物侧面S5的最大有效半径;
(|f2|+|f3|)/R31=11.18,其中,f2为第二透镜E2的有效焦距,f3为第三透镜E3的有效焦距,R31为第三透镜E3的物侧面S5近轴处的曲率半径;
f/|f3|=0.19,其中,f为光学成像系统的总有效焦距,f3为所述第三透镜E3的有效焦距;
(f1+|f2|+|f3|)/f=14.69,其中,f1为第一透镜E1的有效焦距,f2为第二透镜E2的有效焦距,f3为第三透镜E3的有效焦距,f为所述光学成像系统的总有效焦距;
|R41/R51|=3.62,其中,R41为第四透镜E4的物侧面S7近轴处的曲率半径,R51为第五透镜E5的物侧面S9近轴处的曲率半径。
|R41|/f4=2.85,其中,R41为第四透镜E4的物侧面S7近轴处的曲率半径,f4第四透镜E4的有效焦距;
TTL=3.60mm,其中,TTL为第一透镜E1的物侧面S1至光学成像系统的成像面S13的距离;
n1=1.651,其中,n1为所述第一透镜E1的折射率,光线的参考波长为587.6nm。
FOV=84.98°,其中,FOV为所述光学成像系统的最大视场角。
图2A出示了实施例1的光学成像系统的球差曲线,其表示不同波长的光 线经由镜头后的会聚焦点偏离。图2B出示了实施例1的光学成像系统的像散曲线,其表示了子午像面弯曲和弧矢像面弯曲。图2C出示了实施例1的光学成像系统的畸变曲线,其表示不同像高所对应的畸变大小值。根据图2A至图2C可知,实施例1所给出的光学成像系统能够实现良好的成像品质。
实施例2
以下参照图3至图4C描述根据本申请实施例2的光学成像系统。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3出示了根据本申请实施例2的光学成像系统的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像系统沿物侧至像侧一次包括:光阑ST0、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正屈折力,近轴处,第一透镜的物侧面S1为凸面,像侧面S2为凸面;于圆周处,第一透镜的物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有负屈折力,近轴处,第二透镜的物侧面S3为凹面,像侧面S4为凹面;于圆周处,第二透镜的物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负屈折力,近轴处,第三透镜的物侧面S5为凸面,像侧面S6为凹面;于圆周处,第三透镜的物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正屈折力,近轴处,第四透镜的物侧面S7为凹面,像侧面S8为凸面;于圆周处,第四透镜的物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负屈折力,近轴处,第五透镜的物侧面S9为凹面,像侧面S10为凹面;于圆周处,第五透镜的物侧面S9为凸面,像侧面S10为凸面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在本实施例中,第一透镜E1的像侧面S2与第二透镜E2的物侧面S3胶合,形成胶合透镜;第三透镜E3、第四透镜E4和第五透镜E5中的任一透镜与其相邻的透镜之间相互独立且具有空气间隔。
表3出示了实施例2的光学成像系统的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数及有效焦距,其中,曲率半径、厚度和有效焦距的单位均为毫米(mm)。
表3
Figure PCTCN2020085163-appb-000005
实施例2中的光学成像系统的有效焦距为EFL,光学成像系统的光圈值为F no,光学成像系统的视场角为FOV,光学成像系统的光学总长为TTL,其数值为:f=3.01mm,F NO=2.15,FOV=72.63(度),TTL=3.96mm。
由表3可知,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。下表4给出了可用于实施例2中各非球面镜面S1-S10的圆锥系数k与高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表4
Figure PCTCN2020085163-appb-000006
Figure PCTCN2020085163-appb-000007
实施例2中的光学成像系统满足以下关系:
(|SAG51|+SAG52)/CT5=0.83;其中,SAG51为第五透镜E5的物侧面S9与光轴的交点至第五透镜E5的物侧面S9光学有效区边缘在光轴上投影的距离,SAG52为第五透镜E5的像侧面S10与光轴的交点至第五透镜E5的像侧面S10光学有效区边缘在光轴上投影的距离,CT5为第五透镜E5在光轴上的中心厚度。
(n1+n2)/f=1.06mm -1,其中,n1为第一透镜E1的折射率,n2为第二透镜E2的折射率,f为光学成像系统的总有效焦距;
f12/f=1.10,f12为所述第一透镜和所述第二透镜胶合后的有效焦距,f为所述光学成像系统的有效焦距。可选地,f12=3.32mm,f=3.01mm。
EPD/SD31=1.82,其中,EPD为光学成像系统的入瞳直径,SD31为第三透镜E3的物侧面S5的最大有效半径;
(|f2|+|f3|)/R31=13.27,其中,f2为第二透镜E2的有效焦距,f3为第三透镜E3的有效焦距,R31为第三透镜E3的物侧面S5近轴处的曲率半径;
f/|f3|=0.18,其中,f为光学成像系统的总有效焦距,f3为所述第三透镜E3的有效焦距;
(f1+|f2|+|f3|)/f=12.88,其中,f1为第一透镜E1的有效焦距,f2为第二透镜E2的有效焦距,f3为第三透镜E3的有效焦距,f为所述光学成像系统的总有效焦距;
|R41/R51|=1.14,其中,R41为第四透镜E4的物侧面S7近轴处的曲率半径,R51为第五透镜E5的物侧面S9近轴处的曲率半径。
|R41|/f4=2.19,其中,R41为第四透镜E4的物侧面S7近轴处的曲率半径, f4第四透镜E4的有效焦距;
TTL=3.96mm,其中,TTL为第一透镜E1的物侧面S1至光学成像系统的成像面S13的距离;
n1=1.545,其中,n1为所述第一透镜E1的折射率,光线的参考波长为587.6nm。
FOV=72.63°,其中,FOV为所述光学成像系统的最大视场角。
图4A出示了实施例2的光学成像系统的球差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B出示了实施例2的光学成像系统的像散曲线,其表示了子午像面弯曲和弧矢像面弯曲。图4C出示了实施例2的光学成像系统的畸变曲线,其表示不同像高所对应的畸变大小值。根据图4A至图4C可知,实施例2所给出的光学成像系统能够实现良好的成像品质。
实施例3
以下参照图5至图6C描述根据本申请实施例3的光学成像系统。图5出示了根据本申请实施例3的光学成像系统的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像系统沿物侧至像侧一次包括:光阑ST0、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正屈折力,近轴处,第一透镜的物侧面S1为凸面,像侧面S2为凸面;于圆周处,第一透镜的物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有正屈折力,近轴处,第二透镜的物侧面S3为凹面,像侧面S4为凸面;于圆周处,第二透镜的物侧面S3为凹面,像侧面S4为凸面。第三透镜E3具有负屈折力,近轴处,第三透镜的物侧面S5为凸面,像侧面S6为凹面;于圆周处,第三透镜的物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正屈折力,近轴处,第四透镜的物侧面S7为凹面,像侧面S8为凸面;于圆周处,第四透镜的物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负屈折力,近轴处,第五透镜的物侧面S9为凸面,像侧面S10为凹面;于圆周处,第五透镜的物侧面S9为凸面,像侧面S10为凸面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在本实施例中,第一透镜E1的像侧面S2与第二透镜E2的物侧面S3胶 合,形成胶合透镜;第三透镜E3、第四透镜E4和第五透镜E5中的任一透镜与其相邻的透镜之间相互独立且具有空气间隔。
表5出示了实施例3的光学成像系统的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数及有效焦距,其中,曲率半径、厚度和有效焦距的单位均为毫米(mm)。
表5
Figure PCTCN2020085163-appb-000008
实施例3中的光学成像系统的有效焦距为EFL,光学成像系统的光圈值为F no,光学成像系统的视场角为FOV,光学成像系统的光学总长为TTL,其数值为:f=2.78mm,F NO=2.00,FOV=78.3(度),TTL=3.86mm。
由表5可知,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。下表6给出了可用于实施例3中各非球面镜面S1-S10的圆锥系数k与高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表6
Figure PCTCN2020085163-appb-000009
Figure PCTCN2020085163-appb-000010
实施例3中的光学成像系统满足以下关系:
(|SAG51|+SAG52)/CT5=0.52;其中,SAG51为第五透镜E5的物侧面S9与光轴的交点至第五透镜E5的物侧面S9光学有效区边缘在光轴上投影的距离,SAG52为第五透镜E5的像侧面S10与光轴的交点至第五透镜E5的像侧面S10光学有效区边缘在光轴上投影的距离,CT5为第五透镜E5在光轴上的中心厚度。
(n1+n2)/f=1.15mm -1,其中,n1为第一透镜E1的折射率,n2为第二透镜E2的折射率,f为光学成像系统的总有效焦距;
f12/f=0.89,f12为所述第一透镜和所述第二透镜胶合后的有效焦距,f为所述光学成像系统的有效焦距。可选地,f12=2.45mm,f=2.74mm。
EPD/SD31=1.67,其中,EPD为光学成像系统的入瞳直径,SD31为第三透镜E3的物侧面S5的最大有效半径;
(|f2|+|f3|)/R31=0.25,其中,f2为第二透镜E2的有效焦距,f3为第三透镜E3的有效焦距,R31为第三透镜E3的物侧面S5近轴处的曲率半径;
f/|f3|=0.67,其中,f为光学成像系统的总有效焦距,f3为所述第三透镜E3的有效焦距;
(f1+|f2|+|f3|)/f=6.35,其中,f1为第一透镜E1的有效焦距,f2为第二透镜E2的有效焦距,f3为第三透镜E3的有效焦距,f为所述光学成像系统的总有效焦距;
|R41/R51|=0.48,其中,R41为第四透镜E4的物侧面S7近轴处的曲率半径,R51为第五透镜E5的物侧面S9近轴处的曲率半径。
|R41|/f4=1.31,其中,R41为第四透镜E4的物侧面S7近轴处的曲率半径,f4第四透镜E4的有效焦距;
TTL=3.86mm,其中,TTL为第一透镜E1的物侧面S1至光学成像系统的成像面S13的距离;
n1=1.545,其中,n1为所述第一透镜E1的折射率,光线的参考波长为587.6nm。
FOV=78.3°,其中,FOV为所述光学成像系统的最大视场角。
图6A出示了实施例3的光学成像系统的球差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B出示了实施例3的光学成像系统的像散曲线,其表示了子午像面弯曲和弧矢像面弯曲。图6C出示了实施例3的光学成像系统的畸变曲线,其表示不同像高所对应的畸变大小值。根据图6A至图6C可知,实施例3所给出的光学成像系统能够实现良好的成像品质。
实施例4
以下参照图7至图8C描述根据本申请实施例4的光学成像系统。图7出示了根据本申请实施例3的光学成像系统的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像系统沿物侧至像侧一次包括:光阑ST0、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正屈折力,近轴处,第一透镜的物侧面S1为凸面,像侧面S2为凹面;于圆周处,第一透镜的物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负屈折力,近轴处,第二透镜的物侧面S3为凸面,像侧面S4为凹面;于圆周处,第二透镜的物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有正屈折力,近轴处,第三透镜的物侧面S5为凸面,像侧面S6为凹面;于圆周处,第三透镜的物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正屈折力,近轴处,第四透镜的物侧面S7为凹面,像侧面S8为凸 面;于圆周处,第四透镜的物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负屈折力,近轴处,第五透镜的物侧面S9为凹面,像侧面S10为凹面;于圆周处,第五透镜的物侧面S9为凹面,像侧面S10为凸面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在本实施例中,第一透镜E1的像侧面S2与第二透镜E2的物侧面S3胶合,形成胶合透镜;第三透镜E3、第四透镜E4和第五透镜E5中的任一透镜与其相邻的透镜之间相互独立且具有空气间隔。
表7出示了实施例4的光学成像系统的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数及有效焦距,其中,曲率半径、厚度和有效焦距的单位均为毫米(mm)。
表7
Figure PCTCN2020085163-appb-000011
实施例4中的光学成像系统的有效焦距为EFL,光学成像系统的光圈值为F no,光学成像系统的视场角为FOV,光学成像系统的光学总长为TTL,其数值为:f=2.76mm,F NO=1.78,FOV=76.91(度),TTL=3.60mm。
由表7可知,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和 像侧面均为非球面。下表8给出了可用于实施例4中各非球面镜面S1-S10的圆锥系数k与高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表8
Figure PCTCN2020085163-appb-000012
实施例4中的光学成像系统满足以下关系:
(|SAG51|+SAG52)/CT5=1.76;其中,SAG51为第五透镜E5的物侧面S9与光轴的交点至第五透镜E5的物侧面S9光学有效区边缘在光轴上投影的距离,SAG52为第五透镜E5的像侧面S10与光轴的交点至第五透镜E5的像侧面S10光学有效区边缘在光轴上投影的距离,CT5为第五透镜E5在光轴上的中心厚度。
(n1+n2)/f=1.12mm -1,其中,n1为第一透镜E1的折射率,n2为第二透镜E2的折射率,f为光学成像系统的总有效焦距;
f12/f=1.23,f12为所述第一透镜和所述第二透镜胶合后的有效焦距,f为所述光学成像系统的有效焦距。可选地,f12=3.54mm,f=2.87mm。
EPD/SD31=1.94,其中,EPD为光学成像系统的入瞳直径,SD31为第三 透镜E3的物侧面S5的最大有效半径;
(|f2|+|f3|)/R31=56.13,其中,f2为第二透镜E2的有效焦距,f3为第三透镜E3的有效焦距,R31为第三透镜E3的物侧面S5近轴处的曲率半径;
f/|f3|=0.03,其中,f为光学成像系统的总有效焦距,f3为所述第三透镜E3的有效焦距;
(f1+|f2|+|f3|)/f=45.55,其中,f1为第一透镜E1的有效焦距,f2为第二透镜E2的有效焦距,f3为第三透镜E3的有效焦距,f为所述光学成像系统的总有效焦距;
|R41/R51|=0.25,其中,R41为第四透镜E4的物侧面S7近轴处的曲率半径,R51为第五透镜E5的物侧面S9近轴处的曲率半径。
|R41|/f4=2.05,其中,R41为第四透镜E4的物侧面S7近轴处的曲率半径,f4第四透镜E4的有效焦距;
TTL=3.60mm,其中,TTL为第一透镜E1的物侧面S1至光学成像系统的成像面S13的距离;
n1=1.535,其中,n1为所述第一透镜E1的折射率,光线的参考波长为587.6nm。
FOV=76.91°,其中,FOV为所述光学成像系统的最大视场角。
图8A出示了实施例4的光学成像系统的球差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B出示了实施例4的光学成像系统的像散曲线,其表示了子午像面弯曲和弧矢像面弯曲。图8C出示了实施例4的光学成像系统的畸变曲线,其表示不同像高所对应的畸变大小值。根据图8A至图8C可知,实施例4所给出的光学成像系统能够实现良好的成像品质。
实施例5
以下参照图9至图10C描述根据本申请实施例5的光学成像系统。图9出示了根据本申请实施例5的光学成像系统的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像系统沿物侧至像侧一次包括:光阑ST0、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正屈折力,近轴处,第一透镜的物侧面S1为凸面,像侧面S2为凹面;于圆周处,第一透镜的物侧面S1为凸面,像侧面S2为凹面。 第二透镜E2具有负屈折力,近轴处,第二透镜的物侧面S3为凸面,像侧面S4为凹面;于圆周处,第二透镜的物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有正屈折力,近轴处,第三透镜的物侧面S5为凸面,像侧面S6为凹面;于圆周处,第三透镜的物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正屈折力,近轴处,第四透镜的物侧面S7为凹面,像侧面S8为凸面;于圆周处,第四透镜的物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负屈折力,近轴处,第五透镜的物侧面S9为凹面,像侧面S10为凸面;于圆周处,第五透镜的物侧面S9为凹面,像侧面S10为凸面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在本实施例中,第一透镜E1的像侧面S2与第二透镜E2的物侧面S3胶合,形成胶合透镜;第三透镜E3、第四透镜E4和第五透镜E5中的任一透镜与其相邻的透镜之间相互独立且具有空气间隔。
表9出示了实施例5的光学成像系统的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数及有效焦距,其中,曲率半径、厚度和有效焦距的单位均为毫米(mm)。
表9
Figure PCTCN2020085163-appb-000013
Figure PCTCN2020085163-appb-000014
实施例5中的光学成像系统的有效焦距为EFL,光学成像系统的光圈值为F no,光学成像系统的视场角为FOV,光学成像系统的光学总长为TTL,其数值为:f=2.64mm,F NO=1.64,FOV=80.40(度),TTL=3.64mm。
由表9可知,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。下表10给出了可用于实施例5中各非球面镜面S1-S10的圆锥系数k与高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表10
Figure PCTCN2020085163-appb-000015
实施例5中的光学成像系统满足以下关系:
(|SAG51|+SAG52)/CT5=0.98;其中,SAG51为第五透镜E5的物侧面S9与光轴的交点至第五透镜E5的物侧面S9光学有效区边缘在光轴上投影的距离,SAG52为第五透镜E5的像侧面S10与光轴的交点至第五透镜E5的像侧面S10光学有效区边缘在光轴上投影的距离,CT5为第五透镜E5在光轴上 的中心厚度。
(n1+n2)/f=1.17mm -1,其中,n1为第一透镜E1的折射率,n2为第二透镜E2的折射率,f为光学成像系统的总有效焦距;
f12/f=1.65,f12为所述第一透镜和所述第二透镜胶合后的有效焦距,f为所述光学成像系统的有效焦距。可选地,f12=4.33mm,f=2.63mm。
EPD/SD31=1.86,其中,EPD为光学成像系统的入瞳直径,SD31为第三透镜E3的物侧面S5的最大有效半径;
(|f2|+|f3|)/R31=16.44,其中,f2为第二透镜E2的有效焦距,f3为第三透镜E3的有效焦距,R31为第三透镜E3的物侧面S5近轴处的曲率半径;
f/|f3|=0.12,其中,f为光学成像系统的总有效焦距,f3为所述第三透镜E3的有效焦距;
(f1+|f2|+|f3|)/f=10.83,其中,f1为第一透镜E1的有效焦距,f2为第二透镜E2的有效焦距,f3为第三透镜E3的有效焦距,f为所述光学成像系统的总有效焦距;
|R41/R51|=4.07,其中,R41为第四透镜E4的物侧面S7近轴处的曲率半径,R51为第五透镜E5的物侧面S9近轴处的曲率半径。
|R41|/f4=1.95,其中,R41为第四透镜E4的物侧面S7近轴处的曲率半径,f4第四透镜E4的有效焦距;
TTL=3.64mm,其中,TTL为第一透镜E1的物侧面S1至光学成像系统的成像面S13的距离;
n1=1.545,其中,n1为所述第一透镜E1的折射率,光线的参考波长为587.6nm。
FOV=80.4°,其中,FOV为所述光学成像系统的最大视场角。
图10A出示了实施例5的光学成像系统的球差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B出示了实施例5的光学成像系统的像散曲线,其表示了子午像面弯曲和弧矢像面弯曲。图10C出示了实施例5的光学成像系统的畸变曲线,其表示不同像高所对应的畸变大小值。根据图10A至图10C可知,实施例5给出的光学成像系统能够实现良好的成像品质。
实施例6
以下参照图11至图12C描述根据本申请实施例6的光学成像系统。图11 出示了根据本申请实施例5的光学成像系统的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像系统沿物侧至像侧一次包括:光阑ST0、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正屈折力,近轴处,第一透镜的物侧面S1为凸面,像侧面S2为凸面;于圆周处,第一透镜的物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正屈折力,近轴处,第二透镜的物侧面S3为凹面,像侧面S4为凸面;于圆周处,第二透镜的物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负屈折力,近轴处,第三透镜的物侧面S5为凸面,像侧面S6为凹面;于圆周处,第三透镜的物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正屈折力,近轴处,第四透镜的物侧面S7为凹面,像侧面S8为凸面;于圆周处,第四透镜的物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有负屈折力,近轴处,第五透镜的物侧面S9为凸面,像侧面S10为凹面;于圆周处,第五透镜的物侧面S9为凸面,像侧面S10为凸面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在本实施例中,第一透镜E1的像侧面S2与第二透镜E2的物侧面S3胶合,形成胶合透镜;第三透镜E3、第四透镜E4和第五透镜E5中的任一透镜与其相邻的透镜之间相互独立且具有空气间隔。
表11出示了实施例6的光学成像系统的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数及有效焦距,其中,曲率半径、厚度和有效焦距的单位均为毫米(mm)。
表11
Figure PCTCN2020085163-appb-000016
Figure PCTCN2020085163-appb-000017
实施例6中的光学成像系统的有效焦距为EFL,光学成像系统的光圈值为F no,光学成像系统的视场角为FOV,光学成像系统的光学总长为TTL,其数值为:f=2.55mm,F NO=2.2,FOV=82.00(度),TTL=3.77mm。
由表11可知,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。下表12给出了可用于实施例6中各非球面镜面S1-S10的圆锥系数k与高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表12
Figure PCTCN2020085163-appb-000018
实施例6中的光学成像系统满足以下关系:
(|SAG51|+SAG52)/CT5=1.10;其中,SAG51为第五透镜E5的物侧面S9与光轴的交点至第五透镜E5的物侧面S9光学有效区边缘在光轴上投影的距离,SAG52为第五透镜E5的像侧面S10与光轴的交点至第五透镜E5的像侧面S10光学有效区边缘在光轴上投影的距离,CT5为第五透镜E5在光轴上的中心厚度。
(n1+n2)/f=1.26mm -1,其中,n1为第一透镜E1的折射率,n2为第二透镜E2的折射率,f为光学成像系统的总有效焦距;
f12/f=1.23,f12为所述第一透镜和所述第二透镜胶合后的有效焦距,f为所述光学成像系统的有效焦距。可选地,f12=3.13mm,f=2.55mm。
EPD/SD31=1.54,其中,EPD为光学成像系统的入瞳直径,SD31为第三透镜E3的物侧面S5的最大有效半径;
(|f2|+|f3|)/R31=0.12,其中,f2为第二透镜E2的有效焦距,f3为第三透镜E3的有效焦距,R31为第三透镜E3的物侧面S5近轴处的曲率半径;
f/|f3|=0.26,其中,f为光学成像系统的总有效焦距,f3为所述第三透镜E3的有效焦距;
(f1+|f2|+|f3|)/f=11.06,其中,f1为第一透镜E1的有效焦距,f2为第二透镜E2的有效焦距,f3为第三透镜E3的有效焦距,f为所述光学成像系统的总有效焦距;
|R41/R51|=2.73,其中,R41为第四透镜E4的物侧面S7近轴处的曲率半径,R51为第五透镜E5的物侧面S9近轴处的曲率半径。
|R41|/f4=1.202,其中,R41为第四透镜E4的物侧面S7近轴处的曲率半径,f4第四透镜E4的有效焦距;
TTL=3.77mm,其中,TTL为第一透镜E1的物侧面S1至光学成像系统的成像面S13的距离;
n1=1.671,其中,n1为所述第一透镜E1的折射率,光线的参考波长为587.6nm。
FOV=82.00°,其中,FOV为所述光学成像系统的最大视场角。
图12A出示了实施例6的光学成像系统的球差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B出示了实施例6的光学成像系统的 像散曲线,其表示了子午像面弯曲和弧矢像面弯曲。图12C出示了实施例6的光学成像系统的畸变曲线,其表示不同像高所对应的畸变大小值。根据图12A至图10C可知,实施例6给出的光学成像系统能够实现良好的成像品质。
实施例7
以下参照图13至图14C描述根据本申请实施例7的光学成像系统。图13出示了根据本申请实施例5的光学成像系统的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像系统沿物侧至像侧一次包括:光阑ST0、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正屈折力,近轴处,第一透镜的物侧面S1为凸面,像侧面S2为凹面;于圆周处,第一透镜的物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正屈折力,近轴处,第二透镜的物侧面S3为凸面,像侧面S4为凸面;于圆周处,第二透镜的物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负屈折力,近轴处,第三透镜的物侧面S5为凸面,像侧面S6为凹面;于圆周处,第三透镜的物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正屈折力,近轴处,第四透镜的物侧面S7为凹面,像侧面S8为凸面;于圆周处,第四透镜的物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负屈折力,近轴处,第五透镜的物侧面S9为凹面,像侧面S10为凹面;于圆周处,第五透镜的物侧面S9为凹面,像侧面S10为凸面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在本实施例中,第一透镜E1的像侧面S2与第二透镜E2的物侧面S3胶合,形成胶合透镜;第三透镜E3、第四透镜E4和第五透镜E5中的任一透镜与其相邻的透镜之间相互独立且具有空气间隔。
表13出示了实施例7的光学成像系统的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数及有效焦距,其中,曲率半径、厚度和有效焦距的单位均为毫米(mm)。
表13
Figure PCTCN2020085163-appb-000019
Figure PCTCN2020085163-appb-000020
实施例7中的光学成像系统的有效焦距为EFL,光学成像系统的光圈值为F no,光学成像系统的视场角为FOV,光学成像系统的光学总长为TTL,其数值为:f=2.67mm,F NO=2.15,FOV=79.00(度),TTL=3.10mm。
由表13可知,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。下表14给出了可用于实施例7中各非球面镜面S1-S10的圆锥系数k与高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表14
Figure PCTCN2020085163-appb-000021
Figure PCTCN2020085163-appb-000022
实施例7中的光学成像系统满足以下关系:
(|SAG51|+SAG52)/CT5=3.26;其中,SAG51为第五透镜E5的物侧面S9与光轴的交点至第五透镜E5的物侧面S9光学有效区边缘在光轴上投影的距离,SAG52为第五透镜E5的像侧面S10与光轴的交点至第五透镜E5的像侧面S10光学有效区边缘在光轴上投影的距离,CT5为第五透镜E5在光轴上的中心厚度。
(n1+n2)/f=1.20mm -1,其中,n1为第一透镜E1的折射率,n2为第二透镜E2的折射率,f为光学成像系统的总有效焦距;
f12/f=1.06,f12为所述第一透镜和所述第二透镜胶合后的有效焦距,f为所述光学成像系统的有效焦距。可选地,f12=2.84mm,f=2.67mm。
EPD/SD31=1.43,其中,EPD为光学成像系统的入瞳直径,SD31为第三透镜E3的物侧面S5的最大有效半径;
(|f2|+|f3|)/R31=4.15,其中,f2为第二透镜E2的有效焦距,f3为第三透镜E3的有效焦距,R31为第三透镜E3的物侧面S5近轴处的曲率半径;
f/|f3|=0.15,其中,f为光学成像系统的总有效焦距,f3为所述第三透镜E3的有效焦距;
(f1+|f2|+|f3|)/f=15.97,其中,f1为第一透镜E1的有效焦距,f2为第二透镜E2的有效焦距,f3为第三透镜E3的有效焦距,f为所述光学成像系统的总有效焦距;
|R41/R51|=0.50,其中,R41为第四透镜E4的物侧面S7近轴处的曲率半径,R51为第五透镜E5的物侧面S9近轴处的曲率半径。
|R41|/f4=1.36,其中,R41为第四透镜E4的物侧面S7近轴处的曲率半径,f4第四透镜E4的有效焦距;
TTL=3.10mm,其中,TTL为第一透镜E1的物侧面S1至光学成像系统的 成像面S13的距离;
n1=1.671,其中,n1为所述第一透镜E1的折射率,光线的参考波长为587.6nm。
FOV=79.00°,其中,FOV为所述光学成像系统的最大视场角。
图14A出示了实施例7的光学成像系统的球差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B出示了实施例7的光学成像系统的像散曲线,其表示了子午像面弯曲和弧矢像面弯曲。图14C出示了实施例7的光学成像系统的畸变曲线,其表示不同像高所对应的畸变大小值。根据图14A至图14C可知,实施例7给出的光学成像系统能够实现良好的成像品质
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易的想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种光学成像系统,其特征在于,沿光轴由物侧到像侧依次包括:
    第一透镜,具有正屈折力,所述第一透镜物侧面近轴处为凸面;
    第二透镜,具有屈折力;所述第一透镜与所述第二透镜胶合形成胶合透镜;
    第三透镜,具有屈折力,所述第三透镜物侧面近轴处为凸面,所述第三透镜像侧面近轴处为凹面;
    第四透镜,具有正屈折力,所述第四透镜物侧面近轴处为凹面,所述第四透镜像侧面近轴处为凸面;
    第五透镜,具有屈折力;所述第五透镜物侧面与像侧面均为非球面;且所述第五透镜物侧面与像侧面中至少一个面设置有至少一个反曲点;
    所述光学成像系统满足条件式:
    0.5<(|SAG51|+SAG52)/CT5<3.5;
    其中,SAG51为所述第五透镜的物侧面与光轴的交点至所述第五透镜的物侧面光学有效区边缘在光轴上投影的距离,SAG52为所述第五透镜的像侧面与光轴的交点至所述第五透镜的像侧面光学有效区边缘在光轴上投影的距离,CT5为所述第五透镜在光轴上的中心厚度。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:1.0mm-1<(n1+n2)/f≤1.3mm-1;
    其中,n1为所述第一透镜的折射率,n2为所述第二透镜的折射率,f为所述光学成像系统的有效焦距;光线的参考波长为587.6nm。
  3. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:0.8<f12/f<1.7;
    其中,f12为所述第一透镜和所述第二透镜胶合后的有效焦距,f为所述光学成像系统的有效焦距。
  4. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:1.4<EPD/SD31<2.0;
    其中,EPD为所述光学成像系统的入瞳直径,SD31为所述第三透镜物侧面的最大有效半径。
  5. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:(|f2|+|f3|)/R31<57.0;
    其中,f2为所述第二透镜的有效焦距,f3为所述第三透镜的有效焦距,R31为所述第三透镜的物侧面近轴处的曲率半径。
  6. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:f/|f3|<0.70;
    其中,f为所述光学成像系统的有效焦距,f3为所述第三透镜的有效焦距。
  7. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:6<(f1+|f2|+|f3|)/f<46.0;
    其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距,f3为所述第三透镜的有效焦距,f为所述光学成像系统的有效焦距。
  8. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:|R41/R51|<4.0;
    其中,R41为所述第四透镜的物侧面近轴处的曲率半径,R51为所述第五透镜的物侧面近轴处的曲率半径。
  9. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:1.2≤|R41|/f4<2.9;
    其中,R41为所述第四透镜的物侧面近轴处的曲率半径,f4所述第四透镜的有效焦距。
  10. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:3.0<TTL<4.0;
    其中,所述光学成像系统的像侧具有成像面,TTL为所述第一透镜的物侧面至所述光学成像系统的成像面的距离。
  11. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:n1>1.535;
    其中,n1为所述第一透镜的折射率,光线的参考波长为587.6nm。
  12. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:70°≤FOV≤85°;
    其中,FOV为所述光学成像系统的最大视场角。
  13. 一种镜头,其特征在于,包括感光元件和权利要求1-12任一项所述的光学成像系统,所述感光元件设置于所述光学成像系统的像侧。
  14. 一种电子设备,其特征在于,包括本体和权利要求13所述的镜头,所述镜头安装于所述本体上。
PCT/CN2020/085163 2020-04-16 2020-04-16 光学成像系统、镜头及电子设备 WO2021208030A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/085163 WO2021208030A1 (zh) 2020-04-16 2020-04-16 光学成像系统、镜头及电子设备
US17/459,059 US20210405328A1 (en) 2020-04-16 2021-08-27 Optical imaging system, lens, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085163 WO2021208030A1 (zh) 2020-04-16 2020-04-16 光学成像系统、镜头及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/459,059 Continuation US20210405328A1 (en) 2020-04-16 2021-08-27 Optical imaging system, lens, and electronic device

Publications (1)

Publication Number Publication Date
WO2021208030A1 true WO2021208030A1 (zh) 2021-10-21

Family

ID=78083757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085163 WO2021208030A1 (zh) 2020-04-16 2020-04-16 光学成像系统、镜头及电子设备

Country Status (2)

Country Link
US (1) US20210405328A1 (zh)
WO (1) WO2021208030A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115236836A (zh) * 2022-08-01 2022-10-25 贵州旭业光电有限公司 一种广角光学成像系统及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078643A (ja) * 2010-10-04 2012-04-19 Olympus Corp 撮像光学系及びそれを有する撮像装置
JP2013156389A (ja) * 2012-01-27 2013-08-15 Konica Minolta Inc 撮像レンズ、撮像装置、及び携帯端末
CN105974563A (zh) * 2016-03-25 2016-09-28 玉晶光电(厦门)有限公司 光学成像镜头及应用此镜头之电子装置
CN109683286A (zh) * 2019-02-13 2019-04-26 浙江舜宇光学有限公司 光学成像镜头
CN209327664U (zh) * 2018-12-26 2019-08-30 浙江舜宇光学有限公司 光学成像系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078643A (ja) * 2010-10-04 2012-04-19 Olympus Corp 撮像光学系及びそれを有する撮像装置
JP2013156389A (ja) * 2012-01-27 2013-08-15 Konica Minolta Inc 撮像レンズ、撮像装置、及び携帯端末
CN105974563A (zh) * 2016-03-25 2016-09-28 玉晶光电(厦门)有限公司 光学成像镜头及应用此镜头之电子装置
CN209327664U (zh) * 2018-12-26 2019-08-30 浙江舜宇光学有限公司 光学成像系统
CN109683286A (zh) * 2019-02-13 2019-04-26 浙江舜宇光学有限公司 光学成像镜头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115236836A (zh) * 2022-08-01 2022-10-25 贵州旭业光电有限公司 一种广角光学成像系统及电子设备

Also Published As

Publication number Publication date
US20210405328A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
WO2021073275A1 (zh) 光学成像镜头
WO2021082727A1 (zh) 光学成像镜头
WO2020001066A1 (zh) 摄像镜头
WO2020019794A1 (zh) 光学成像镜头
WO2020082814A1 (zh) 成像镜头
WO2020168717A1 (zh) 光学成像镜头
TWI424189B (zh) 成像光學鏡頭
WO2020119171A1 (zh) 光学成像镜头
WO2020134026A1 (zh) 光学成像系统
WO2020107936A1 (zh) 光学成像系统
WO2020186759A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2020164247A1 (zh) 光学成像系统
WO2018192126A1 (zh) 摄像镜头
WO2020253324A1 (zh) 光学成像镜头
WO2020024631A1 (zh) 光学成像系统
TW201314254A (zh) 攝影鏡頭組
WO2020134130A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2020029613A1 (zh) 光学成像镜头
WO2021036554A1 (zh) 光学成像镜头
WO2020134140A1 (zh) 光学成像系统
WO2020134128A1 (zh) 成像镜头
WO2021042954A1 (zh) 摄像镜头组
WO2019233159A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931309

Country of ref document: EP

Kind code of ref document: A1