WO2021206012A1 - 半導体レーザ装置及び半導体レーザ装置の製造方法 - Google Patents

半導体レーザ装置及び半導体レーザ装置の製造方法 Download PDF

Info

Publication number
WO2021206012A1
WO2021206012A1 PCT/JP2021/014301 JP2021014301W WO2021206012A1 WO 2021206012 A1 WO2021206012 A1 WO 2021206012A1 JP 2021014301 W JP2021014301 W JP 2021014301W WO 2021206012 A1 WO2021206012 A1 WO 2021206012A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier layer
semiconductor laser
type
laser device
Prior art date
Application number
PCT/JP2021/014301
Other languages
English (en)
French (fr)
Inventor
高山 徹
東吾 中谷
洋希 永井
隆司 油本
毅 横山
高須賀 祥一
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Priority to CN202180025008.1A priority Critical patent/CN115362609A/zh
Priority to JP2022514042A priority patent/JPWO2021206012A1/ja
Publication of WO2021206012A1 publication Critical patent/WO2021206012A1/ja
Priority to US17/954,587 priority patent/US20230021325A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3086Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer
    • H01S5/309Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer doping of barrier layers that confine charge carriers in the laser structure, e.g. the barriers in a quantum well structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/162Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions made by diffusion or disordening of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/2086Methods of obtaining the confinement using special etching techniques lateral etch control, e.g. mask induced
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2202Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure by making a groove in the upper laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3054Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3201Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3407Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers

Definitions

  • the present disclosure relates to a semiconductor laser device and a method for manufacturing a semiconductor laser device.
  • the semiconductor laser element is a light source of an image display device such as a display or a projector, a light source of an in-vehicle head lamp, a light source of industrial lighting or consumer lighting, or an industrial device such as a laser welding device, a thin film annealing device, or a laser processing device. It is attracting attention as a light source for various purposes such as a light source.
  • a semiconductor laser element used as a light source of a projector, a laser processing device, or a laser welding device is required to have a high output characteristic in which the light output greatly exceeds 1 watt.
  • a semiconductor laser device having a wavelength of 915 nm used as a light source of a laser welding apparatus is required to have a high output characteristic of 25 W or more.
  • the semiconductor laser device is, for example, a substrate, an N-type clad layer arranged above the substrate, an active layer arranged above the N-type clad layer and having a well layer and a barrier layer, and an active layer above the active layer. It is provided with a P-type clad layer (for example, Patent Document 1).
  • an active layer having a quantum well structure in which the well layer is InGaAs and the barrier layer is AlGaAs is widely used.
  • the present disclosure solves such a problem, and in a semiconductor laser apparatus having an end face window structure, even if the well layer is thickened, COD is suppressed while suppressing deterioration of temperature characteristics and deterioration of long-term reliability. It is an object of the present invention to provide a semiconductor laser apparatus capable of suppressing the hindrance of the effect of improving the level and a method for manufacturing the same.
  • one aspect of the semiconductor laser device is a semiconductor laser device that emits laser light, and includes a substrate, an N-type clad layer arranged above the substrate, and the above. It includes an active layer arranged above the N-type clad layer and a P-type clad layer arranged above the active layer, and the active layer is a well layer and a P arranged above the well layer. It has a side first barrier layer and a P-side second barrier layer arranged above the P-side first barrier layer, and the Al composition ratio of the P-side second barrier layer is the P-side first barrier.
  • the bandgap energy of the second barrier layer on the P side is higher than the bandgap energy of the first barrier layer on the P side, which is higher than the Al composition ratio of the layer. It has an end face window structure in which the bandgap energy of the well layer in the vicinity is larger than the bandgap energy of the well layer in the central portion in the longitudinal direction of the resonator.
  • the effect of improving the COD level is hindered while suppressing deterioration of temperature characteristics and deterioration of long-term reliability. Can be suppressed.
  • FIG. 1 is a top view of the semiconductor laser device according to the embodiment.
  • FIG. 2A is a cross-sectional view of the semiconductor laser apparatus according to the embodiment taken along the line IIA-IIA of FIG.
  • FIG. 2B is a cross-sectional view of the semiconductor laser apparatus according to the embodiment taken along the line IIB-IIB of FIG.
  • FIG. 2C is a cross-sectional view of the semiconductor laser apparatus according to the embodiment in the IIC-IIC line of FIG.
  • FIG. 3A is a diagram for explaining a semiconductor layer laminating step in the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 3B is a diagram for explaining a current injection region forming step in the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 3A is a diagram for explaining a semiconductor layer laminating step in the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 3B is a diagram for explaining a current injection region forming step in the method for manufacturing
  • FIG. 3C is a diagram for explaining an embedding step in the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 3D is a diagram for explaining a window region forming step in the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 3E is a diagram for explaining a groove forming step in the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 3F is a diagram for explaining an insulating film forming step in the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 3G is a diagram for explaining a P-side electrode forming step in the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 3H is a diagram for explaining an N-side electrode forming step in the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 4 is a diagram showing specific examples of the composition, film thickness, and impurity concentration of each semiconductor layer in the three examples of Example 1, Example 2, and Example 3 for the semiconductor laser apparatus according to the embodiment. ..
  • FIG. 5A is a diagram showing an impurity concentration profile and a band structure of the semiconductor laminate in the semiconductor laser apparatus of Example 1.
  • FIG. 5B is a diagram showing an impurity concentration profile and a band structure of the semiconductor laminate in the semiconductor laser device of the second embodiment.
  • FIG. 5C is a diagram showing an impurity concentration profile and a band structure of the semiconductor laminate in the semiconductor laser apparatus of Example 3.
  • FIG. 5D is a diagram showing an impurity concentration profile and a band structure of the semiconductor laminate in the semiconductor laser apparatus of Example 4.
  • FIG. 5A is a diagram showing an impurity concentration profile and a band structure of the semiconductor laminate in the semiconductor laser apparatus of Example 1.
  • FIG. 5B is a diagram showing an impurity concentration profile and a band structure of the semiconductor laminate in the semiconductor laser device
  • FIG. 5E is a diagram showing an impurity concentration profile and a band structure of the semiconductor laminate in the semiconductor laser apparatus of Example 5.
  • FIG. 6 is a diagram for explaining the operation and effect of the semiconductor laser device according to the embodiment.
  • FIG. 7A is a diagram showing the dependence of the light confinement rate on the Al composition gradient region length in the semiconductor laser device according to the embodiment.
  • FIG. 7B is a diagram showing the dependence of the waveguide loss on the Al composition gradient region length in the semiconductor laser device according to the embodiment.
  • FIG. 8A is a diagram showing the dependence of the light confinement rate on the concentration of P-type impurities in the semiconductor laser device according to the embodiment.
  • FIG. 8B is a diagram showing the dependence of the waveguide loss on the P-type impurity concentration in the semiconductor laser device according to the embodiment.
  • FIG. 9 is a diagram showing the relationship of waveguide loss with respect to the light confinement rate with respect to the film thickness of the N-side first barrier layer and the P-side first barrier layer in the semiconductor laser apparatus according to the embodiment.
  • FIG. 10 is a diagram showing the relationship of waveguide loss with respect to the light confinement rate with respect to the film thickness of the N-side second barrier layer and the P-side second barrier layer in the semiconductor laser apparatus according to the embodiment.
  • FIG. 11A is a diagram showing the dependence of the P-type impurity concentration of the potential barrier on the P-type guide layer of the semiconductor laser device according to the embodiment.
  • FIG. 11B is a diagram showing the dependence of the electron current density of the P-type impurity concentration on the P-type guide layer of the semiconductor laser device according to the embodiment.
  • FIG. 12A is a diagram showing the dependence of the P-type impurity concentration of the potential barrier on the P-type semiconductor layer of the semiconductor laser device according to the embodiment.
  • FIG. 12B is a diagram showing the dependence of the electron current density of the P-type impurity concentration on the P-type semiconductor layer of the semiconductor laser device according to the embodiment.
  • FIG. 13A is a diagram showing the dependence of the P-type impurity concentration of the potential barrier on the P-type semiconductor layer of the semiconductor laser device of Example 1.
  • FIG. 13B is a diagram showing the dependence of the electron current density of the P-type impurity concentration on the P-type semiconductor layer of the semiconductor laser device of the first embodiment.
  • FIG. 14A is a diagram showing the dependence of the Al composition of the potential barrier on the P-type guide layer of the semiconductor laser apparatus of Example 3.
  • FIG. 14B is a diagram showing the dependence of the Al composition of the electron current density on the P-type guide layer of the semiconductor laser apparatus of Example 3.
  • FIG. 15A is a diagram showing the dependence of the hole current density on the N-type impurity concentration at a position 100 nm from the interface on the N side of the well layer in the semiconductor laser device according to the embodiment.
  • FIG. 15B is a diagram showing the dependence of the hole current density on the N-type impurity concentration at the position of the N-type clad layer substrate side interface in the semiconductor laser device according to the embodiment.
  • FIG. 16A is a diagram showing a first example of the N-type impurity concentration distribution in the N-type semiconductor layer in the semiconductor laser device according to the embodiment.
  • FIG. 16B is a diagram showing a second example of the N-type impurity concentration distribution in the N-type semiconductor layer in the semiconductor laser device according to the embodiment.
  • FIG. 16C is a diagram showing a third example of the N-type impurity concentration distribution in the N-type semiconductor layer in the semiconductor laser device according to the embodiment.
  • FIG. 16D is a diagram showing a fourth example of the N-type impurity concentration distribution in the N-type semiconductor layer in the semiconductor laser device according to the embodiment.
  • FIG. 16A is a diagram showing a first example of the N-type impurity concentration distribution in the N-type semiconductor layer in the semiconductor laser device according to the embodiment.
  • FIG. 16B is a diagram showing a second example of the N-type impurity concentration distribution in the N-type semiconductor layer in the semiconductor laser device according to the embodiment.
  • FIG. 17 is a diagram showing the dependence of the Al composition of the well layer of the heavy hole and light hole quantum level energy when the Al composition of the P-side first barrier layer and the N-side second barrier layer is 0.06.
  • FIG. 18 is a diagram showing the dependence of the Al composition of the well layer of the heavy hole and light hole quantum level energy when the Al composition of the P-side first barrier layer and the N-side second barrier layer is 0.12.
  • FIG. 19 is a diagram showing the dependence of the Al composition of the well layer of the heavy hole and light hole quantum level energy when the Al composition of the P-side first barrier layer and the N-side second barrier layer is 0.18.
  • FIG. 20 is a top view of the semiconductor laser device according to the modified example.
  • FIG. 20 is a top view of the semiconductor laser device according to the modified example.
  • FIG. 21A is a cross-sectional view of the semiconductor laser apparatus according to the embodiment on the XXIA-XXIA line of FIG.
  • FIG. 21B is a cross-sectional view of the semiconductor laser apparatus according to the embodiment in the XXIB-XXIB line of FIG.
  • FIG. 21C is a cross-sectional view of the semiconductor laser apparatus according to the embodiment in the XXIC-XXIC line of FIG.
  • FIG. 22 is a diagram showing a state when the semiconductor laser device according to the modified example is mounted on the submount at the junction down.
  • FIG. 23 is a cross-sectional view of the semiconductor laser device according to another modification.
  • the light confinement coefficient to the well layer is increased by increasing the thickness of the well layer to reduce the oscillation threshold value, or the Al composition of the barrier layer made of AlGaAs is adjusted.
  • the conduction band band offset ( ⁇ Ec) the potential barrier is raised to suppress the occurrence of electron overflow, and by lengthening the resonator length and lengthening the resonator length, the operating carrier density is reduced. It is possible that it will happen.
  • the end face window structure can be formed by disordering the atomic arrangement of the barrier layer and the well layer in the end face portion by vacancy diffusion, impurity diffusion, ion implantation, or the like.
  • the well layer is made thicker in an attempt to increase the light confinement coefficient in the well layer, it becomes difficult to disorder the atomic arrangements of the barrier layer and the well layer, and it becomes difficult to form a window region.
  • the annealing temperature when forming the window region is raised, atomic exchange also occurs between the well layer and the barrier layer in the active layer in the gain portion where the window region is not intended to be formed.
  • the band gap energy (Eg) in the gain portion increases, the leakage current in the gain portion increases, the temperature characteristics deteriorate, and the vacancies introduced during crystal growth or dangling on the surface of the growth layer
  • the pores on the surface of the growth layer due to the bond are easily diffused, the oscillation wavelength controllability is lowered, and the long-term reliability is lowered.
  • the transition wavelength of the quantum well layer in the gain portion becomes shorter.
  • the area tends to be long.
  • the light absorption in the transition region hinders the effect of improving the COD level in the window region.
  • the present disclosure has been made to solve such a problem, and in a semiconductor laser apparatus having an end face window structure, even if the well layer is thickened, deterioration of temperature characteristics and deterioration of long-term reliability are suppressed.
  • the length of the long resonator is increased in order to reduce the thermal resistance, it is easily affected by the band structure change due to the mounting distortion when mounting the semiconductor laser element, so that there is also a problem that the polarization ratio is likely to decrease.
  • each figure is a schematic diagram and is not necessarily exactly illustrated. Therefore, the scales and the like do not always match in each figure.
  • substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
  • the terms “upper” and “lower” do not indicate the upward direction (vertically upward) and the downward direction (vertically downward) in absolute spatial recognition, and also refer to the stacking order in the stacking configuration. It is used as a term defined by the relative positional relationship. Also, the terms “upper” and “lower” are used not only when the two components are spaced apart from each other and another component exists between the two components, but also when the two components It also applies when they are placed in contact with each other.
  • FIG. 1 is a top view of the semiconductor laser device 1 according to the embodiment.
  • 2A is a cross-sectional view of the semiconductor laser device 1 on the line IIA-IIA of FIG. 1
  • FIG. 2B is a cross-sectional view of the semiconductor laser device 1 on the line IIB-IIB of FIG. 1
  • FIG. 2C is a cross-sectional view of the semiconductor laser device 1. It is sectional drawing of the semiconductor laser apparatus 1 in the IIC-IIC line of FIG. Note that FIG. 2A shows a cross section of the gain portion of the semiconductor laser device 1, and FIG. 2B shows a cross section of the semiconductor laser device 1 on the front end surface 1a side.
  • the semiconductor laser device 1 is a semiconductor laser element that emits laser light, and includes a substrate and a semiconductor laminate (semiconductor laminate structure) composed of a plurality of semiconductor layers arranged above the substrate. Specifically, as shown in FIGS. 1 to 2C, the semiconductor laser device 1 includes an N-type clad layer 20 arranged above the substrate 10 and an N-type clad layer as semiconductor layers constituting the semiconductor laminate. It includes an active layer 40 arranged above the active layer 20 and a P-type clad layer 60 arranged above the active layer 40.
  • the semiconductor laser device 1 further includes an N-type guide layer 30 arranged between the N-type clad layer 20 and the active layer 40, and the active layer 40 and the P-type clad layer 60 as semiconductor layers constituting the semiconductor laminate.
  • a P-type guide layer 50 arranged between the two, a P-type contact layer 70 arranged above the P-type clad layer 60, and a current block layer 80 are provided.
  • the semiconductor laser device 1 includes a P-side electrode 91 and an N-side electrode 92 connected to the semiconductor laminate, and an insulating film 100 that covers at least a part of the semiconductor laminate.
  • the semiconductor laser device 1 is a semiconductor laser element that emits laser light having a wavelength of 900 nm to 980 nm.
  • the semiconductor laminate in the semiconductor laser device 1 is a group III-V made of an AlGaInAs-based material. It is composed of compound semiconductors.
  • the semiconductor laser apparatus 1 emits a laser beam having a wavelength of 915 nm.
  • the semiconductor laser device 1 has an end face window structure in which a window region 120 is formed in a semiconductor laminate.
  • the substrate 10 is a flat substrate whose main surface is uniformly flat.
  • the substrate 10 is a semiconductor substrate such as a GaAs substrate or an insulating substrate such as a sapphire substrate.
  • the substrate 10 is an n-type GaAs substrate.
  • a buffer layer may be formed between the substrate 10 and the N-type clad layer 20.
  • the buffer layer is, for example, an n-type GaAs layer, and is laminated on the substrate 10.
  • the N-type clad layer 20 is formed above the substrate 10. When the buffer layer is formed on the substrate 10, the N-type clad layer 20 is formed on the buffer layer.
  • the N-type clad layer 20 is an N-type semiconductor layer intentionally doped with impurities, for example, an n-type AlGaAs layer.
  • the impurity doped into the N-type clad layer 20 is, for example, silicon (Si).
  • the N-type guide layer 30 is arranged between the N-type clad layer 20 and the N-side second barrier layer 42b of the active layer 40. Specifically, the N-type guide layer 30 is formed on the N-type clad layer 20.
  • the N-type guide layer 30 is an N-type semiconductor layer intentionally doped with impurities, for example, an n-type AlGaAs layer.
  • the impurity doped into the N-type guide layer 30 is, for example, silicon (Si).
  • the active layer 40 is a semiconductor layer including a light emitting layer, and is located between the N-type clad layer 20 and the P-type clad layer 60. Specifically, the active layer 40 is located between the N-type guide layer 30 and the P-type guide layer 50. In the present embodiment, the active layer 40 is formed on the N-type guide layer 30.
  • the active layer 40 includes a well layer 41, an N-side first barrier layer 42a arranged below the well layer 41, and an N-side second barrier layer 42b arranged below the N-side first barrier layer 42a. It has a P-side first barrier layer 43a arranged above the well layer 41 and a P-side second barrier layer 43b arranged above the P-side first barrier layer 43a.
  • the well layer 41 is located between the N-side first barrier layer 42a and the P-side first barrier layer 43a, and is in contact with the N-side first barrier layer 42a and the P-side first barrier layer 43a. Specifically, the well layer 41 is formed on the N-side first barrier layer 42a.
  • the well layer 41 is, for example, a single quantum well structure including a single quantum well layer.
  • the well layer 41 is, for example, an undoped GaInAs layer.
  • the well layer 41 is not limited to a single quantum well structure, and may be a multiple quantum well structure including a plurality of quantum well layers. In the present embodiment, the thickness of the well layer 41 is thick, for example, 6 nm or more.
  • the N-side first barrier layer 42a and the N-side second barrier layer 42b are located between the N-type clad layer 20 and the well layer 41, and are in this order from the well layer 41 toward the N-type clad layer 20. It is arranged in. Specifically, the N-side first barrier layer 42a and the N-side second barrier layer 42b are located between the N-type guide layer 30 and the well layer 41.
  • the N-side first barrier layer 42a is formed on the N-side second barrier layer 42b.
  • the N-side first barrier layer 42a is an N-type semiconductor layer intentionally doped with impurities, for example, an n-type AlGaAs layer.
  • the impurity doped into the N-side first barrier layer 42a is, for example, silicon (Si).
  • the N-side first barrier layer 42a may have an undoped region in which impurities are not doped, in addition to the doped region in which impurities are doped.
  • the N-side first barrier layer 42a may have an undoped region in a region near the well layer 41 and a doped region in a region far from the well layer 41.
  • the film thickness of the undoped region of the N-side first barrier layer 42a is preferably 5 nm or more. Doping the N-side first barrier layer 42a near the well layer 41 with impurities reduces the series resistance of the semiconductor laser device, but free carrier loss occurs and the waveguide loss increases. If the film thickness of the undoped region becomes too thick, the series resistance of the semiconductor laser device increases.
  • the film thickness of the undoped region is increased. May be 5 nm or more and 40 nm or less.
  • the doping concentration of impurities in the N-type guide layer 30 gradually increases in the direction away from the well layer 41, the increase in waveguide loss is suppressed even if the film thickness of this undoped region is set to 20 nm or less at the maximum. can do.
  • the N-side second barrier layer 42b located below the N-side first barrier layer 42a is formed on the N-type guide layer 30.
  • the N-side second barrier layer 42b is an N-type semiconductor layer intentionally doped with impurities, for example, an n-type AlGaAs layer.
  • the impurity doped into the N-side second barrier layer 42b is, for example, silicon (Si).
  • the P-side first barrier layer 43a and the P-side second barrier layer 43b are located between the well layer 41 and the P-type clad layer 60, and are in this order from the well layer 41 toward the P-type clad layer 60. It is arranged in. Specifically, the P-side first barrier layer 43a and the P-side second barrier layer 43b are located between the well layer 41 and the P-type guide layer 50.
  • the P-side first barrier layer 43a is formed on the well layer 41.
  • the P-side first barrier layer 43a is a P-type semiconductor layer intentionally doped with impurities, for example, a P-type AlGaAs layer.
  • the impurity doped into the P-side first barrier layer 43a is, for example, carbon (C).
  • the P-side first barrier layer 43a may have an undoped region in which impurities are not doped, in addition to the doped region in which impurities are doped.
  • the P-side first barrier layer 43a may have an undoped region in a region near the well layer 41 and a doped region in a region far from the well layer 41.
  • the film thickness of the undoped region of the P-side first barrier layer 43a is preferably 5 nm or more. Doping impurities into the P-side first barrier layer 43a near the well layer 41 reduces the series resistance of the semiconductor laser device, but causes free carrier loss and increases waveguide loss. If the film thickness of the undoped region becomes too thick, the series resistance of the semiconductor laser device increases.
  • the film thickness of the undoped region is increased. May be 5 nm or more and 40 nm or less.
  • the doping concentration of impurities in the P-type guide layer changes so as to gradually increase in the direction away from the well layer 41, the increase in waveguide loss is suppressed even if the film thickness of this undoped region is set to 20 nm or less at the maximum. be able to.
  • the P-side second barrier layer 43b is formed on the P-side first barrier layer 43a.
  • the P-side second barrier layer 43b is a P-type semiconductor layer intentionally doped with impurities, for example, a P-type AlGaAs layer.
  • the impurity doped into the P-side second barrier layer 43b is, for example, carbon (C).
  • the P-type guide layer 50 is arranged between the P-side second barrier layer 43b of the active layer 40 and the P-type clad layer 60. Specifically, the P-type guide layer 50 is formed on the P-side second barrier layer 43b.
  • the P-type guide layer 50 is a P-type semiconductor layer intentionally doped with impurities, for example, a P-type AlGaAs layer.
  • the impurity doped into the P-type guide layer 50 is, for example, carbon (C).
  • the P-type clad layer 60 is formed on the P-type guide layer 50.
  • the P-type clad layer 60 is a P-type semiconductor layer intentionally doped with impurities, for example, a P-type AlGaAs layer.
  • C is doped as an impurity.
  • the impurity doped into the P-type clad layer 60 is, for example, carbon (C).
  • the P-type contact layer 70 is formed on the P-type clad layer 60.
  • the P-type contact layer 70 is formed between the P-type clad layer 60 and the P-side electrode 91.
  • the P-type contact layer 70 is a P-type semiconductor layer intentionally doped with impurities, for example, a P-type GaAs layer.
  • the P-type contact layer 70 is a laminated film in which the first contact layer 71 and the second contact layer 72 are laminated in order from the P-type clad layer 60 side.
  • the first contact layer 71 is a P-type GaAs layer having a film thickness of 0.2 ⁇ m.
  • the second contact layer 72 is a P-type GaAs layer having a film thickness of 1 ⁇ m, and is formed on the first contact layer 71 and the current block layer 80 so as to fill the opening 80a of the current block layer 80.
  • the current block layer 80 is provided inside the P-type contact layer 70. Specifically, the current block layer 80 is formed on the first contact layer 71 of the P-type contact layer 70.
  • the current block layer 80 is composed of a P-type semiconductor layer intentionally doped with impurities.
  • the current block layer 80 is an n-type GaAs layer doped with silicon (Si) as an impurity.
  • the current block layer 80 has an opening 80a for defining a current injection region.
  • the opening 80a of the current block layer 80 extends linearly along the length direction of the resonator of the semiconductor laser device 1.
  • the opening 80a of the current block layer 80 exists in the gain portion of the semiconductor laser device 1, but does not exist in the end face portion of the semiconductor laser device 1. Therefore, as shown in FIG. 2A, in the gain portion of the semiconductor laser device 1, the current block layer 80 does not cover the central portion of the first contact layer 71.
  • FIG. 2B since the opening 80a of the current block layer 80 is not formed at the end face portion of the semiconductor laser device 1, the current block layer 80 covers the entire first contact layer 71. ..
  • the active layer 40 is generated by heat generation in the first contact layer 71 which is a current injection region by confining the current by the current block layer 80.
  • An effective index of refraction step is formed in the horizontal direction of. As a result, light can be confined in the horizontal direction.
  • the P-side electrode 91 is arranged on the P-type clad layer 60 side and is connected to the P-type contact layer 70. Specifically, the P-side electrode 91 is formed on the P-type contact layer 70.
  • the P-side electrode 91 contains, for example, one metal of Pt, Ti, Cr, Ni, Mo and at least Au.
  • the P-side electrode 91 is composed of a plurality of layers. Specifically, the P-side electrode 91 is composed of three layers, a first P electrode layer 91a, a plating layer 91b, and a second P electrode layer 91c. The first P electrode layer 91a, the plating layer 91b, and the second P electrode layer 91c are laminated on the P-type contact layer 70 in this order. Further, the first P electrode layer 91a and the second P electrode layer 91c are further composed of a plurality of films, and each has a three-layer structure of Ti / Pt / Au, for example. The plating layer 91b is an Au plating film.
  • the gain portion of the semiconductor laser apparatus 1 has three layers of the first P electrode layer 91a, the plating layer 91b, and the second P electrode layer 91c.
  • the semiconductor The plating layer 91b does not exist on the end face portion of the laser device 1, but two layers, a first P electrode layer 91a and a second P electrode layer 91c, exist.
  • the N-side electrode 92 is arranged on the N-type clad layer 20 side.
  • the N-side electrode 92 is formed on the lower surface of the substrate 10 (that is, the main surface on the back side of the substrate 10).
  • the N-side electrode 92 includes, for example, an AuGe film, a Ni film, an Au film, a Ti film, a Pt film, and an Au film that are laminated in order from the substrate 10 side.
  • the insulating film 100 is a dielectric film that covers at least the side surface of the active layer 40. In the present embodiment, the insulating film 100 covers a pair of side surfaces of the semiconductor laminate. Specifically, the insulating film 100 is a side surface of the N-type clad layer 20, the N-type guide layer 30, the active layer 40, the P-type guide layer 50, the P-type clad layer 60, the P-type contact layer 70, and the current block layer 80. Covering.
  • the insulating film 100 is composed of, for example, an insulating film such as SiN or SiO 2 , and functions as a current blocking film.
  • the pair of side surfaces of the semiconductor laminate are inclined inclined surfaces, and the insulating film 100 covers at least the inclined surfaces.
  • the inclined surface of the semiconductor laminate is formed at least on the side surface of the active layer 40. Since the side surface of the active layer 40 is inclined, it is possible to reduce the stray light from the central portion in the width direction of the active layer 40 toward the side surface to return to the central portion again. Therefore, the competition between the laser light oscillated in the active layer 40 and the stray light can be suppressed, so that the laser driving operation is stabilized.
  • the insulating film 100 has an opening 100a.
  • the opening 100a of the insulating film 100 extends linearly along the length direction of the resonator of the semiconductor laser device 1.
  • the opening 100a of the insulating film 100 exists in the gain portion of the semiconductor laser device 1, but does not exist in the end face portion of the semiconductor laser device 1. Therefore, as shown in FIG. 2A, in the gain portion of the semiconductor laser device 1, the insulating film 100 covers only the end portion of the P-type contact layer 70.
  • FIG. 2B since the opening 100a of the insulating film 100 is not formed in the end face portion of the semiconductor laser device 1, the insulating film 100 covers the entire P-type contact layer 70.
  • the semiconductor laser device 1 has a front end surface 1a (light emission end surface) which is an end surface on the front side where laser light is emitted and an end surface on the rear side opposite to the front end surface 1a. It has a rear end surface 1b.
  • the semiconductor laminate of the semiconductor laser device 1 includes an optical waveguide in which the front end surface 1a and the rear end surface 1b are used as a resonator reflection mirror. Therefore, the front end surface 1a and the rear end surface 1b serve as the resonator end surface, and the resonator length of the semiconductor laser device 1 is the distance between the front end surface 1a and the rear end surface 1b.
  • the resonator length of the semiconductor laser device 1 is as long as 2 mm or more, and may be further 4 mm or more. The resonator length of the semiconductor laser device 1 may be less than 2 mm.
  • the width of the current injection region into the optical waveguide is defined by the opening 80a of the current block layer 80.
  • the opening 80a of the current block layer 80 is formed inside the front end surface 1a and the rear end surface 1b. That is, the end portion of the current injection region in the longitudinal direction of the resonator is located inside the front end surface 1a and the rear end surface 1b.
  • the first end face coating film 111 is formed on the front end surface 1a of the semiconductor laminate, and the second end face coating film 112 is formed on the rear end surface 1b of the semiconductor laminate.
  • the first end face coating film 111 and the second end face coating film 112 are reflective films composed of a dielectric multilayer film.
  • the first end face coating film 111 is a multilayer film of Al 2 O 3 and Ta 2 O 5
  • the second end face coating film 112 is a multilayer film of Al 2 O 3 and SiO 2 and Ta 2 O 5.
  • the reflectance of the first end face coating film 111 is 2%
  • the reflectance of the second end face coating film 112 is 95%.
  • the reflectance of the first end face coating film 111 and the second end face coating film 112 is not limited to this.
  • the reflectance of the first end face coating film 111 may be 0.2% or less. As a result, it is possible to suppress problems such as kink generation due to competition between the laser oscillation mode in the semiconductor laser apparatus 1 and the laser oscillation mode in the external resonator.
  • the semiconductor laminate in the semiconductor laser device 1 has end face window structures at both ends in the length direction of the resonator.
  • the window region 120 is formed in a region having a predetermined length from the front end surface 1a.
  • the window region 120 is formed on the end surface portion on the front end surface 1a side of the semiconductor laminate.
  • a similar window region may be formed on the end surface portion on the rear end surface 1b side of the semiconductor laminate.
  • the window region on the rear end surface 1b side does not necessarily have to be formed.
  • the peak energy of photoluminescence in the region where the window region 120 is not formed in the active layer 40 is defined as Eg1
  • the peak energy Eg2 of photoluminescence in the region where the window region 120 is formed in the active layer 40 is defined as Eg1 and Eg2.
  • the bandgap energy of the well layer 41 in the vicinity of the front end surface 1a and the vicinity of the rear end surface 1b is larger than the bandgap energy of the well layer 41 in the central portion in the longitudinal direction of the resonator.
  • the window forming method for forming the window region 120 generally includes an impurity diffusion method and a vacancy diffusion method, but in the present embodiment, the window is formed by the vacancy diffusion method. This is because it is important to reduce the amount of light absorption by reducing the loss in an ultra-high output semiconductor laser device having an output of more than 10 W per emitter. That is, when the window region is formed by the impurity diffusion method, the light absorption becomes large due to the impurities and it becomes difficult to reduce the light absorption loss. This is because the light absorption loss due to the introduction of impurities can be eliminated by forming the window region.
  • the window region 120 is formed on the front end surface 1a side as the end face window structure. Further, a similar window region is formed on the rear end surface 1b side.
  • a window region can be formed by subjecting a rapid high temperature treatment.
  • Ga is exposed to extremely high heat of 800 ° C. to 950 ° C. near the crystal growth temperature.
  • the quantum well structure of the active layer 40 can be disordered and windowed (transparent) by mutual diffusion between the vacancies and Group III elements.
  • the band gap of the active layer 40 can be increased, and the region in which the quantum well structure is disordered can function as a window region.
  • the disordering of the quantum well structure can be suppressed by forming a protective film that suppresses the formation of Ga vacancies during high temperature treatment.
  • the semiconductor laser device 1 since the semiconductor laser device 1 has the end face window structure, the resonator end face of the semiconductor laser device 1 can be made transparent and the light absorption in the vicinity of the front end face 1a can be reduced. As a result, it is possible to suppress the generation of COD on the front end surface 1a.
  • FIGS. 3A to 3H are diagrams for explaining each step in the manufacturing method of the semiconductor laser device 1 according to the embodiment.
  • the upper figure shows the cross section of the portion corresponding to the current injection region which is the region where the current is injected
  • the lower figure shows the current non-injection region which is the region where the current is not injected.
  • the cross section of the part corresponding to is shown.
  • the substrate 10 is prepared, and a plurality of semiconductor layers are laminated on the substrate 10.
  • the steps of laminating a plurality of semiconductor layers include at least a step of arranging the N-type clad layer 20 above the substrate 10, a step of arranging the active layer 40 above the N-type clad layer 20, and a step of arranging the active layer 40.
  • a step of arranging the P-type clad layer 60 on the upper side is included.
  • the N-type clad layer 20, the N-type guide layer 30, and the N-type guide layer 30 are subjected to a crystal growth technique by a metalorganic chemical vapor deposition (MOCVD) method.
  • MOCVD metalorganic chemical vapor deposition
  • the active layer 40, the P-type guide layer 50, the P-type clad layer 60, the first contact layer 71 of the P-type contact layer 70, and the current block layer 80 are sequentially crystal-grown to be laminated.
  • the active layer 40 includes an N-side second barrier layer 42b, an N-side first barrier layer 42a, a well layer 41, a P-side first barrier layer 43a, and a P-side second on the N-type guide layer 30.
  • the barrier layer 43b is laminated by sequentially growing crystals.
  • an opening 80a for defining a current injection region is formed in the current block layer 80.
  • a mask made of SiO 2 or the like is formed on the first contact layer 71 in a predetermined pattern by a photolithography technique, and then the current block layer 80 is exposed by a wet etching technique to expose the first contact layer 71.
  • the opening 80a is formed in the current block layer 80 in the portion corresponding to the current injection region.
  • the opening 80a is not formed in the current block layer 80.
  • a sulfuric acid-based etching solution is preferably used as the etching solution for etching the current block layer 80.
  • the P-type contact layer 70 is subjected to a crystal growth technique by the MOCVD method.
  • the second contact layer 72 is crystal-grown. Specifically, the opening 80a of the current block layer 80 in the current injection region is embedded on the current block layer 80 and on the first contact layer 71 exposed from the opening 80a of the current block layer 80.
  • the second contact layer 72 is crystal-grown.
  • the window region 120 is formed in the portion corresponding to the end face portion in the resonator length direction in the semiconductor laminate of the plurality of semiconductor layers. Specifically, the window region 120 is formed in a portion corresponding to the end surface portion on the front end surface 1a side of the semiconductor laminate. In the present embodiment, the window region 120 is formed in the P-type contact layer 70, the P-type clad layer 60, the P-type guide layer 50, the active layer 40, the N-type guide layer 30, the N-type clad layer 20, and a part of the substrate 10. It is formed in a portion corresponding to the vicinity of the front end surface 1a. The window region 120 is formed by the vacancy diffusion method, but the present invention is not limited to this.
  • a groove 130 having an inclined surface on the side surface of the semiconductor laminate is formed.
  • a mask made of SiO 2 or the like is formed on the P-type contact layer 70 in a predetermined pattern by using photolithography technology, and then the P-type contact layer 70 to N-type clad is formed by wet etching technology. By etching halfway through the layer 20, it is possible to form an inclined groove 130 on the side surface of the semiconductor laminate.
  • the groove 130 is a separation groove when the semiconductor laser device 1 is fragmented, and extends in the longitudinal direction of the resonator in the top view.
  • a sulfuric acid-based etching solution for example, a sulfuric acid-based etching solution can be used.
  • the etching solution is not limited to the sulfuric acid-based etching solution, and an organic acid-based etching solution or an ammonia-based etching solution may be used.
  • the groove 130 is formed by isotropic wet etching. Thereby, an inclined surface can be formed on the side surface of the plurality of semiconductor layers, and a constricted structure (that is, an overhang structure) can be formed in the plurality of semiconductor layers.
  • the inclination angle of the side surface of the groove 130 changes depending on the composition ratio of the Al composition of the AlGaAs material of each layer constituting the plurality of semiconductor layers. In this case, the etching rate can be increased by increasing the Al composition of the AlGaAs material. Therefore, in order to form the inclined side surfaces as shown in FIG.
  • the composition ratio of the Al composition of the P-type clad layer 60 is maximized, so that the plurality of semiconductor layers are in the horizontal direction.
  • the etching rate (horizontal direction) can be maximized.
  • the narrowest portion (the narrowest portion in the horizontal direction) of the plurality of semiconductor layers can be formed in the vicinity of the P-type clad layer 60.
  • a SiN film as an insulating film 100 is deposited on the entire surface of the substrate 10, and then a photo
  • the opening 100a is formed by removing the insulating film 100 in the portion corresponding to the current injection region by using a lithography technique and an etching technique.
  • the insulating film 100 in the portion corresponding to the current non-injection region is not removed, and the opening 100a is not formed in the portion corresponding to the current non-injection region.
  • etching of the insulating film 100 wet etching using a hydrofluoric acid-based etching solution or dry etching by reactive ion etching (RIE) can be used.
  • RIE reactive ion etching
  • the insulating film 100 is a SiN film, but the insulating film 100 is not limited to this, and may be a SiO 2 film or the like.
  • the P-side electrode 91 is formed on the semiconductor laminate.
  • the first P electrode layer 91a, the plating layer 91b, and the second P electrode layer 91c are formed on the P-type contact layer 70 as the P side electrode 91 in this order.
  • a first P electrode layer 91a made of a laminated film of a Ti film, a Pt film and an Au film is formed as a base electrode by an electron beam vapor deposition method, and then a plating layer 91b made of an Au plating film is formed by an electrolytic plating method. To form. Then, using the photolithography technique and the lift-off technique, the plating layer 91b of the portion corresponding to the current non-injection region is selectively etched and removed. In this case, an iodine solution can be used as the etching solution for etching the plating layer 91b made of the Au plating film.
  • a second P electrode layer 91c composed of a laminated film of a Ti film, a Pt film, and an Au film is formed on the plating layer 91b by an electron beam vapor deposition method.
  • the first P electrode layer 91a and the second P electrode layer 91c are formed over almost the entire length in the resonator length direction, but the Au plating layer 91b is not formed in the current non-injection region.
  • the N-side electrode 92 is formed on the lower surface of the substrate 10. Specifically, the N-side electrode 92 is formed by forming an AuGe film, a Ni film, an Au film, a Ti film, a Pt film, and an Au film in this order from the substrate 10 side.
  • the substrate 10 on which the semiconductor laminate is formed is separated into a bar shape by dicing with a blade, cleavage, or the like, and then the groove 130 is further cut as a cutting portion to separate the chips.
  • the individual piece-shaped semiconductor laser device 1 can be manufactured.
  • FIG. 4 is a diagram showing specific examples of the composition, film thickness, and impurity concentration of each semiconductor layer in the three examples of Example 1, Example 2, and Example 3 for the semiconductor laser device 1 according to the above embodiment. Is.
  • Each semiconductor layer of the semiconductor laminate in the semiconductor laser apparatus 1 according to the present embodiment is composed of a group III-V compound semiconductor made of an AlGaInAs-based material, and Al and In compositions are set to X and Y, respectively. It is represented by the composition formula of X Ga 1-XY In Y As (0 ⁇ X ⁇ 1, 0 ⁇ Y ⁇ 1).
  • the Al composition and In composition of the N-type clad layer 20 are set to X NC and Y NC
  • the Al composition and In composition of the N-type guide layer 30 are set to X NG and Y NG
  • the N-side second in the active layer 40 are set to X NC and Y NC
  • the Al composition and in composition of the barrier layer 42b and X NB2 and Y NB2 the Al composition and in composition of the N-side first barrier layer 42a in the active layer 40 and X NB1 and Y NB1, the well layer 41 in the active layer 40
  • the Al composition and In composition are X W and Y W
  • the Al composition and In composition of the P-side first barrier layer 43a in the active layer 40 are X PB1 and Y PB1
  • the P-side second barrier layer 43b in the active layer 40 are X W and Y W
  • the Al composition and In composition of the P-side first barrier layer 43a in the active layer 40 are X PB1 and Y PB1
  • the P-side second barrier layer 43b in the active layer 40 are X PB1 and Y PB1
  • FIG. 4 shows the conditions for obtaining the laser beam in the wavelength band of 915 nm.
  • the Al composition ratio of the N-side second barrier layer 42b is higher than the Al composition ratio of the N-side first barrier layer 42a.
  • the Al composition ratio of the P-side second barrier layer 43b is higher than the Al composition ratio of the P-side first barrier layer 43a.
  • the Al composition changes in the interface region between the N-type clad layer 20 and the N-type guide layer 30 and the interface region between the P-type guide layer 50 and the P-type clad layer 60. doing. Specifically, the Al composition at least in the interface region between the N-type clad layer 20 and the N-type guide layer 30 gradually increases as the distance from the well layer 41 increases. Similarly, the Al composition at least in the interface region between the P-type guide layer 50 and the P-type clad layer 60 gradually increases as the distance from the well layer 41 increases.
  • FIG. 5A is a diagram showing an impurity concentration profile and a band structure of the semiconductor laminate in the semiconductor laser device 1 of the first embodiment.
  • FIG. 5B is a diagram showing an impurity concentration profile and a band structure of the semiconductor laminate in the semiconductor laser device 1 of the second embodiment.
  • FIG. 5C is a diagram showing an impurity concentration profile and a band structure of the semiconductor laminate in the semiconductor laser device 1 of the third embodiment.
  • D NB1 represents the length of the undoped region in the N-side first barrier layer 42a
  • D PB1 indicates the length of the undoped region in the P-side first barrier layer 43a ing.
  • the N-type clad layer 20, the N-type guide layer 30, and the N-side second barrier are used.
  • the concentration of impurities doped in the layer 42b and the N-side first barrier layer 42a gradually increases as the distance from the well layer 41 increases. That is, as the distance from the well layer 41 increases, the concentration of impurities gradually increases in the order of the N-side first barrier layer 42a, the N-side second barrier layer 42b, the N-type guide layer 30, and the N-type clad layer 20.
  • the impurity concentration is constant in each of the N-side first barrier layer 42a, the N-side second barrier layer 42b, the N-type guide layer 30, and the N-type clad layer 20.
  • the concentration of impurities doped in the N-type clad layer 20, the N-type guide layer 30, the N-side second barrier layer 42b, and the N-side first barrier layer 42a is not gradual and is separated from the well layer 41. Therefore, it may be gradually increased (that is, the inclination is increased).
  • the concentration of impurities doped in the interface region between the P-type clad layer 60 and the P-type guide layer 50 is constant at 2 ⁇ 10 18 cm -3.
  • the impurity concentration of the P-type clad layer 60 may be gradually increased in the direction away from the well layer 41, or may be continuously increased. Since the vertical light distribution intensity of the waveguide light is attenuated in the region of the P-type clad layer 60 far from the well layer 41, the impurity concentration may be increased for doping.
  • the P-type impurity concentration of the P-type clad layer 60 is such that the impurity concentration on the well layer 41 side is 2 ⁇ 10 18 cm -3, and the impurity concentration at the portion farthest from the well layer 41 is 5 ⁇ 10. It may be gradually increased to 18 cm- 3 , or it may be gradually increased so that the impurity concentration increases in the direction away from the well layer 41.
  • the Al composition of the P-type clad layer 60 is more than twice the Al composition of the P-type guide layer 50, the light distribution intensity in the direction perpendicular to the substrate normal direction is higher than that of the P-type clad layer 60. Since the difference in refractive index of the P-type guide layer 50 is large, the light is rapidly attenuated from the P-type guide layer 50 toward the P-type clad layer 60. In this case, in order to reduce the series resistance of the semiconductor laser device while suppressing the increase in the waveguide loss due to the occurrence of free carrier loss due to impurity doping, the impurity concentration is increased from the well layer 41 toward the P-type clad layer 60. It is good to increase it continuously.
  • the increase in waveguide loss is suppressed because the impurity concentration is low in the region where the light distribution intensity is high, and the series resistance of the semiconductor laser device is reduced because the impurity concentration is high in the region where the light distribution intensity is low. This is because the increase in waveguide loss is also suppressed.
  • the concentration of impurities doped in the P-type guide layer 50, the P-side second barrier layer 43b, and the P-side first barrier layer 43a gradually increases as the distance from the well layer 41 increases (that is, the inclination increases). doing).
  • the impurity concentration is continuously increased from 2 ⁇ 10 17 cm -3 to 5 ⁇ 10 17 cm -3.
  • the concentration of impurities doped in the interface region between the P-type clad layer 60 and the P-type guide layer 50 is continuously increased from 5 ⁇ 10 17 cm -3 to 2 ⁇ 10 18 cm -3. good. In this case, it is possible to suppress an increase in waveguide loss due to free carrier absorption loss generated by impurity doping in the interface region between the P-type clad layer 60 and the P-type guide layer 50.
  • the N-side first barrier layer 42a has an undoped region in which impurities are not doped in the region near the well layer 41, and is far from the well layer 41. Has a doping region in which impurities are doped.
  • the film thickness of the undoped region of the N-side first barrier layer 42a is 5 nm.
  • impurities are doped in the entire region of the N-side second barrier layer 42b. That is, impurities are intentionally doped in the entire N-side second barrier layer 42b in the thickness direction.
  • the impurity concentration of the N-side second barrier layer 42b is the same as the impurity concentration of the doping region of the N-side first barrier layer 42a.
  • the P-side first barrier layer 43a has an undoped region in which impurities are not doped in the region near the well layer 41, and impurities are doped in the region far from the well layer 41. It has a doping region.
  • the film thickness of the undoped region of the P-side first barrier layer 43a is 5 nm.
  • impurities are doped in the entire region of the P-side second barrier layer 43b. That is, impurities are intentionally doped in the entire P-side second barrier layer 43b in the thickness direction.
  • the bandgap energy of the N-side second barrier layer 42b is the N-side first barrier layer 42a. Greater than the bandgap energy of.
  • the bandgap energy of the P-side second barrier layer 43b is larger than the bandgap energy of the P-side first barrier layer 43a.
  • the bandgap energy of the P-type clad layer 60 is larger than the bandgap energy of the N-type clad layer 20.
  • the semiconductor laser device 1 has an end face window structure in which the window region 120 is formed. Specifically, the semiconductor laser device 1 has an end face window structure in which the bandgap energy of the well layer 41 near the front end surface 1a is larger than the bandgap energy of the well layer 41 in the central portion in the resonator length direction of the semiconductor laser device 1. Has.
  • the bandgap energy of the N-side second barrier layer 42b was constant, but it is not limited to this.
  • the bandgap energy of the N-side second barrier layer 42b may gradually increase as the distance from the well layer 41 increases. As a result, it is possible to suppress the formation of heterostructure spikes and notches in the conduction band and valence band formed at the interface between the N-side first barrier layer 42a and the N-side second barrier layer 42b, and the operating voltage. Can be reduced.
  • the bandgap energy of the second barrier layer 43b on the P side was constant, but it is not limited to this.
  • the bandgap energy of the P-side second barrier layer 43b may gradually increase as the distance from the well layer 41 increases. As a result, it is possible to suppress the formation of heterostructure spikes and notches in the conduction band and valence band formed at the interface between the P-side first barrier layer 43a and the P-side second barrier layer 43b, and the operating voltage. Can be reduced.
  • the bandgap energy of the P-type guide layer 50 was the same as the bandgap energy of the N-type guide layer 30, but the bandgap energy is not limited to this. That is, the composition of the N-type guide layer 30 and the P-type guide layer 50 may be asymmetrical.
  • the bandgap energy of the P-type guide layer 50 is larger than the bandgap energy of the N-type guide layer 30, the electrons injected into the well layer 41 are excited by heat and the P-type guide is excited. The generation of the current leaking to the layer 50 can be suppressed.
  • the N-type guide layer 30 has a higher refractive index than the P-type guide layer 50, the vertical light distribution in the substrate normal direction of the waveguide can be made closer to the N-type layer.
  • the vertical light distribution can be precisely controlled by controlling the Al composition difference between the N-type guide layer 30 and the P-type guide layer 50.
  • the Al composition difference between the N-type guide layer 30 and the P-type guide layer 50 if the P-type guide layer 50 becomes too large, the vertical light distribution becomes too close to the N-type layer, and light is confined in the well layer 41.
  • the difference in Al composition between the N-type guide layer 30 and the P-type guide layer 50 may be such that the Al composition of the P-type guide layer 50 is relatively large and the difference is 0.05 or less.
  • the bandgap energy of the P-type guide layer 50 is smaller than the bandgap energy of the N-type guide layer 30, the refractive index of the N-type guide layer 30 is lower than the refractive index of the P-type guide layer 50. Therefore, the vertical light distribution in the substrate normal direction of the waveguide can be brought closer to the P side. As a result, a high light confinement coefficient to the well layer 41 can be obtained, and a semiconductor laser device capable of high-temperature and high-output operation with good temperature characteristics while reducing the oscillation threshold current can be obtained.
  • the difference in Al composition between the N-type guide layer 30 and the P-type guide layer 50 may be such that the Al composition of the N-type guide layer 30 is relatively large and the difference is 0.04 or less.
  • the maximum value of the bandgap energy of the P-side second barrier layer 43b was the same as, but not limited to, the maximum value of the bandgap energy of the N-side second barrier layer 42b. ..
  • the maximum value of the bandgap energy of the P-side second barrier layer 43b may be larger than the maximum value of the bandgap energy of the N-side second barrier layer 42b.
  • the N-type guide layer 30 has a higher refractive index than the P-type guide layer 50, the vertical light distribution in the substrate normal direction of the waveguide can be made closer to the N-type layer.
  • the vertical light distribution can be precisely controlled by controlling the Al composition of the N-side second barrier layer 42b, the N-type guide layer 30, the P-side second barrier layer 43b, and the P-type guide layer 50. ..
  • the Al composition difference between the maximum value of the Al composition of the P-side second barrier layer 43b and the maximum value of the Al composition of the N-side second barrier layer 42b is too large, the Al composition of the P-side second barrier layer 43b becomes too large.
  • the vertical light distribution becomes too close to the N-type layer, the light confinement coefficient to the well layer 41 decreases, and the oscillation threshold current value increases. Therefore, the difference in Al composition between the maximum value of the Al composition of the P-side second barrier layer 43b and the maximum value of the Al composition of the N-side second barrier layer 42b is the maximum value of the Al composition of the P-side second barrier layer 43b. Is relatively large, and the difference may be 0.05 or less.
  • the maximum value of the bandgap energy of the P-side second barrier layer 43b may be smaller than the maximum value of the bandgap energy of the N-side second barrier layer 42b.
  • the bandgap energy of the P-type guide layer 50 is smaller than the bandgap energy of the N-type guide layer 30.
  • the refractive index of the N-type guide layer 30 is lower than the refractive index of the P-type guide layer 50. The light distribution in the vertical direction in the normal direction of the substrate of the waveguide can be brought closer to the P side.
  • the difference in Al composition between the N-type guide layer 30 and the P-type guide layer 50 may be such that the Al composition of the N-type guide layer 30 is relatively large and the difference is 0.04 or less.
  • the difference in Al composition between the maximum value of the Al composition of the N-side second barrier layer 42b and the maximum value of the Al composition of the P-side second barrier layer 43b is relative to the Al composition of the N-side second barrier layer 42b. It may be increased and the difference may be 0.04 or less.
  • the bandgap energies of the P-type guide layer 50 and the P-side second barrier layer 43b are the same, but are not limited to this.
  • the bandgap energy of the P-type guide layer 50 may be larger than the bandgap energy of the P-side second barrier layer 43b.
  • the electrons injected into the well layer 41 are heated during high-temperature and high-output operation. It is possible to suppress the generation of an electron current that is excited by and leaks to the P-type guide layer 50. As a result, it is possible to obtain a semiconductor laser device excellent in high temperature and high output operation.
  • the bandgap energy of the N-side first barrier layer 42a and the N-side second barrier layer 42b may be the same, but the bandgap energy of the N-type guide layer 30 is the bandgap of the N-side second barrier layer 42b. It may be more than energy.
  • the refractive index of the N-side second barrier layer 42b and the N-side first barrier layer 42a is equal to or higher than the refractive index of the N-type guide layer 30, and the light confinement coefficient to the well layer 41 can be increased.
  • the oscillation threshold value and the leakage current during high-temperature and high-output operation are reduced, and a semiconductor laser device excellent in high-temperature and high-output operation can be obtained.
  • the bandgap energy of the P-side first barrier layer 43a and the P-side second barrier layer 43b may be the same, but the bandgap energy of the P-type guide layer 50 is the bandgap energy of the P-side second barrier layer 43b.
  • the refractive index of the P-side second barrier layer 43b and the P-side first barrier layer 43a is equal to or higher than the refractive index of the P-type guide layer 50, and the light confinement coefficient to the well layer 41 can be increased.
  • FIG. 5E shows, in the structure of the semiconductor laser apparatus shown in Example 1, an N-side high Al composition layer having an Al composition higher than that of the N-side first barrier layer 42a between the N-side first barrier layer 42a and the well layer 41.
  • the semiconductor of Example 5 provided with both the 44 and the P-side high Al composition layer 45 having an Al composition higher than that of the P-side first barrier layer 43a between the P-side first barrier layer 43a and the well layer 41.
  • the impurity concentration profile and band structure of the semiconductor laminate in the laser device are shown.
  • Example 5 shown in FIG. 5E includes both the N-side high Al composition layer 44 and the P-side high Al composition layer 45, only one of them may be provided.
  • the thickness of the N-side high Al composition layer 44 and the P-side high Al composition layer 45 becomes too thin, the disordering effect of the quantum well structure due to the mutual exchange of atoms with the well layer 41 decreases, and the wells in the window region 120 The effect of increasing the bandgap energy of the layer 41 by the window forming thermal annealing step is reduced.
  • the thickness of the N-side high Al composition layer 44 and the P-side high Al composition layer 45 becomes too thick, the N-side high Al composition layer 44 has a lower refractive index than the N-side first barrier layer 42a, and Since the P-side high Al composition layer 45 has a lower refractive index than the P-side first barrier layer 43a, the light confinement coefficient to the well layer 41 decreases.
  • the bandgap energy of the N-side high Al composition layer 44 is larger than that of the N-side first barrier layer 42a
  • the bandgap energy of the P-side high Al composition layer 45 is larger than that of the P-side first barrier layer 43a.
  • the N-side high Al composition layer 44 inhibits the injection of electrons into the well layer 41
  • the P-side high Al composition layer 45 inhibits the injection of holes into the well layer 41, so that the operating voltage increases.
  • the thickness of the N-side high Al composition layer 44 and the P-side high Al composition layer 45 may be 3 nm or more and 10 nm.
  • the Al composition of the N-side high Al composition layer 44 and the P-side high Al composition layer 45 becomes too small, the well layer 41 and the N-side high Al composition layer 44 and the well layer 41 and the P-side high Al composition layer 45 The disordering effect of the quantum well structure due to the mutual exchange of atoms with and from is reduced, and the effect of increasing the bandgap energy of the well layer 41 of the window region 120 by the window forming thermal annealing step is reduced.
  • the Al composition becomes too large, the N-side high Al composition layer 44 has a lower refractive index than the N-side first barrier layer 42a, and the P-side high Al composition layer 45 has a lower refractive index than the P-side first barrier layer 43a.
  • the refractive index is low, the light confinement coefficient to the well layer 41 is lowered. Further, the bandgap energy of the N-side high Al composition layer 44 is larger than that of the N-side first barrier layer 42a, and the bandgap energy of the P-side high Al composition layer 45 is larger than that of the P-side first barrier layer 43a.
  • the N-side high Al composition layer 44 inhibits the injection of electrons into the well layer 41, and the P-side high Al composition layer 45 inhibits the injection of holes into the well layer 41, so that the operating voltage increases.
  • the Al composition of the N-side high Al composition layer 44 and the P-side high Al composition layer 45 may be 0.27 or more and 0.35 or less.
  • N-side high Al composition layer 44 and the P-side high Al composition layer 45 it becomes easy to increase the bandgap energy of the well layer 41 in the window region 120 even if the well layer 41 becomes thicker. , A semiconductor laser device having an excellent high temperature operation characteristic and a high COD level can be easily obtained.
  • the N-side high Al composition layer 44 is N-type.
  • the series resistance of the semi-conducting laser device can be reduced.
  • the N-side high Al composition layer 44 is doped with N-type impurities, the potential energy of the valence band is lowered, so that the leakage of the hole current injected into the well layer 41 can be suppressed.
  • the P-side high Al composition layer 45 is doped with a P-type impurity, so that the potential energy of the conduction band increases, so that the leakage of the electron current injected into the well layer 41 can be suppressed. As a result, it is possible to suppress the generation of leakage current when the semiconductor laser device is operated at high temperature and high output, and it is possible to obtain a semiconductor laser device having excellent temperature characteristics.
  • the N-side high Al composition layer 44 should be doped with N-type impurities in the range of 1 ⁇ 10 17 cm -3 to 1 ⁇ 10 18 cm -3.
  • the P-type impurity may be doped into the P-side high Al composition layer 45 in the range of 1 ⁇ 10 17 cm -3 to 5 ⁇ 10 17 cm -3.
  • the N-side high Al composition layer 44 and the P-side high Al composition layer 45 may be an AlGaAs layer or an AlGaInAs layer.
  • AlGaInAs is used for the P-side high Al composition layer 45, it is possible to increase the potential energy of the conduction band while reducing the potential energy of the valence band of the P-side first barrier layer 43a, and the well layer 41 to P-type.
  • the window region 120 can be easily formed while suppressing the generation of electrons leaking to the layer side.
  • the N-side high Al composition layer 44 and the P-side high Al composition layer 45 are AlGaInAs
  • the Al composition is 0.3 or more and 0.45 or less
  • the In composition is 0.05 or more and 0.15 or less.
  • the difference in the potential energy of the valence band between the P-side first barrier layer 43a and the P-side high Al composition layer 45 can be reduced.
  • the bandgap energy of the N-side high Al composition layer 44 is reduced by containing In in the N-side high Al composition layer 44, the band gap energy between the N-side first barrier layer 42a and the N-side high Al composition layer 44 is reduced. The difference in potential energy of the conduction band can be reduced.
  • the injection of electrons and holes into the well layer 41 becomes easier and the operating voltage is reduced as compared with the case where the AlGaAs layer having the same Al composition is used. Further, since the Al composition difference between the well layer 41 and the N-side high Al composition layer 44 and the P-side high Al composition layer 45 becomes large, during the window forming thermal annealing step for forming the window region 120, The ion implantation process tends to cause disordering of the group III atomic arrangement due to atomic exchange, and the difference in bandgap energy between the window portion and the gain portion tends to be large. Therefore, a semiconductor laser device having a high COD level can be obtained.
  • the N-type guide layer 30 is an AlGaInAs layer containing In having an In composition of 0.02 or less
  • the refractive index of the N-type guide layer 30 is slightly increased while suppressing the occurrence of lattice defects in the N-type guide layer 30. This makes it possible to easily collect light in the N-type guide layer 30 in the vertical light distribution, so that the controllability of the light distribution shape closer to the N-type layer can be improved.
  • the N-type guide layer 30 may be formed of a superlattice of InGaAs and AlGaAs.
  • FIG. 6 is a diagram for explaining the operation and effect of the semiconductor laser device 1 according to the embodiment.
  • FIG. 6 shows a band structure before and after annealing in a region (window portion) intended to form a window region and a region (gain portion) not intended to form a window region in a semiconductor laser device having an end face window structure. ing.
  • the “present embodiment” is the semiconductor laser device 1 according to the above-described present embodiment.
  • the "comparative example” is a semiconductor laser device of the comparative example.
  • the semiconductor laser device of the comparative example has an active layer in which a well layer made of InGaAs is formed between an N-side barrier layer made of AlGaAs and a P-side barrier layer made of AlGaAs, aiming at high output.
  • the Al composition of the barrier layer is increased to improve the thermal saturation level.
  • a window region is formed near the end face to improve the COD level.
  • the window region can be formed by disordering the atomic arrangement of the barrier layer and the well layer at the end face portion by diffusion of pores or the like.
  • the bandgap energy (Eg W1 ) after annealing can be made larger than the bandgap energy (Eg W0) before annealing in the window portion intended to form the window region. ..
  • the window region can be formed even if the well layer is thick.
  • the bandgap energy (Eg G1 ) after annealing becomes larger than the bandgap energy (Eg G0) before annealing even in the gain portion. That is, the bandgap energy increases not only in the window portion but also in the gain portion.
  • the leakage current in the gain portion increases and the temperature characteristics deteriorate, and the pores introduced during crystal growth or the pores on the growth layer surface due to the dangling bond on the growth layer surface tend to diffuse.
  • the controllability of the oscillation wavelength decreases and the long-term reliability decreases.
  • the P-side first barrier layer 43a and the P-side second barrier layer 43b are formed on one side of the well layer 41, and at least 2
  • the structure is such that the Al composition is changed in stages.
  • the Al composition ratio of the P-side second barrier layer 43b is relatively higher than the Al composition ratio of the P-side first barrier layer 43a. That is, the Al composition of the P-side first barrier layer 43a on the side closer to the well layer 41 is lowered, and the Al composition of the P-side second barrier layer 43b on the side farther from the well layer 41 is increased.
  • the bandgap energy of the P-side second barrier layer 43b is made higher than the bandgap energy of the P-side first barrier layer 43a.
  • the window portion intended to form the window region is after annealing.
  • the bandgap energy (Eg W1 ) of the above is made larger than the bandgap energy (Eg W0 ) before annealing, and the bandgap energy (Eg G1 ) after annealing is annealed in the gain portion where the formation of the window region is not intended. It can be comparable to the previous bandgap energy (Eg G0).
  • the change in the bandgap energy can be suppressed before and after annealing to suppress the increase in the bandgap energy, while in the window portion, the bandgap energy can be increased. Therefore, in the window portion, the transparency of the semiconductor laminate including the active layer 40 can be promoted, and in the gain portion, the transparency of the semiconductor laminate including the active layer 40 can be suppressed.
  • the semiconductor laser apparatus 1 since the P-side first barrier layer 43a having a low Al composition and a high refractive index is used, the light confinement coefficient to the well layer 41 increases. As a result, the operating carrier density is reduced.
  • the annealing temperature at the time of forming the window region is increased in order to increase the bandgap energy of the window portion and form the window region when the well layer is thickened, Al of the P-side first barrier layer 43a Since the composition is low, the bandgap energy of the well layer 41 in the gain portion is not easily affected by the change due to impurity diffusion, and the wavelength change of the well layer 41 in the gain portion due to the increase in the bandgap energy can be suppressed. As a result, it is possible to suppress a decrease in long-term reliability. In addition, it is possible to suppress that the effect of improving the CCOD level is hindered, and it is also possible to suppress a decrease in slope efficiency and a decrease in temperature characteristics.
  • the semiconductor laser device 1 even if the well layer 41 is thickened in the semiconductor laser device having an end face window structure, deterioration of temperature characteristics and deterioration of long-term reliability are suppressed. , It is possible to suppress the inhibition of the effect of improving the COD level.
  • the bandgap energy of the P-type clad layer 60 is larger than the bandgap energy of the N-type clad layer 20.
  • the refractive index of the P-type clad layer 60 becomes smaller than the refractive index of the N-type clad layer 20, so that the light distribution in the vertical direction of the substrate is closer to the N-type clad layer, and the waveguide loss in the optical waveguide is reduced. be able to. Therefore, it is possible to realize the semiconductor laser device 1 that emits light with high efficiency.
  • the P-type clad layer 60 is susceptible to mounting distortion when the semiconductor laser device 1 is mounted at the junction down (that is, when the P-side electrode 91 side far from the substrate 10 is mounted on the submount). Moreover, since the Al composition is high, the lattice irregular distortion with the substrate 10 is large and the influence of the mounting strain is large. Therefore, when birefringence occurs and the light distribution propagating through the optical waveguide seeps out toward the P-type clad layer 60 more than on the N-type clad layer 20 side, the polarization ratio decreases.
  • the bandgap energy of the P-type clad layer 60 larger than the bandgap energy of the N-type clad layer 20
  • the light distribution in the vertical direction of the substrate becomes closer to the N-type clad layer, and the P-type clad layer 60 becomes The proportion of existing light distribution can be reduced. As a result, it is possible to suppress a decrease in the polarization ratio.
  • the thickness of the well layer 41 is 6 nm or more.
  • the thickness of the well layer 41 As described above, by setting the thickness of the well layer 41 to 6 nm or more, the light confinement coefficient to the well layer 41 can be greatly increased, so that the operating carrier density can be reduced and the heat saturation level can be improved. can. Therefore, the temperature characteristics can be improved.
  • the light confinement coefficient to the well layer 41 decreases, the oscillation threshold value increases, and the operating current value increases, resulting in leakage current.
  • the light confinement coefficient to the well layer 41 is reduced even when the light distribution is closer to the N-type clad layer 20. The influence of can be reduced.
  • the well layer 41 is represented by the composition formula of Al X Ga 1-XY In y As (0 ⁇ X ⁇ 1, 0 ⁇ Y ⁇ 1). It is composed of semiconductor materials.
  • the compressive strain of the well layer 41 is increased, and the energy between the levels of the heavy hole (HH1) at the first level and the light heavy hole (LH1) at the first level can be increased.
  • the number of light heavy holes (LH number) that contributes to the TM mode is reduced.
  • the number of levels (LH levels) of the light holes formed by the P-side first barrier layer 43a and the N-side first barrier layer 42a can be set to one level. Therefore, the polarization ratio can be increased.
  • InAs has the largest lattice constant and the smallest bandgap energy.
  • a semiconductor material having a quaternary composition consisting of AlGaInAs is used for the well layer and the barrier layer of the active layer to obtain a desired bandgap energy
  • a desired bandgap can be obtained with InGaAs or AlGaAs.
  • the strain of compressibility becomes large because the content of In increases.
  • the well layer 41 with AlGaInAs as in the semiconductor laser apparatus 1 according to the present embodiment, it is possible to suppress the generation of COD in which the vicinity of the front end surface 1a is melt-broken by absorption of laser light. ..
  • the window region 120 by forming the window region 120 by vacancy diffusion, the occurrence of free carrier loss due to the presence of impurities is suppressed as compared with the case where the window region 120 is formed by impurity diffusion. be able to. As a result, it is possible to suppress a decrease in slope efficiency.
  • the bandgap energy of the P-side second barrier layer 43b gradually increases as the distance from the well layer 41 increases.
  • the average refractive index of the P-side second barrier layer 43b can be increased.
  • the light confinement coefficient in the well layer 41 can be greatly increased, so that the operating carrier density can be reduced and the heat saturation level can be improved. Therefore, the temperature characteristics can be improved.
  • the series resistance of the semiconductor laser device 1 can be reduced by gradually increasing the bandgap energy of the P-side second barrier layer 43b as the distance from the well layer 41 increases. Therefore, the low voltage drive semiconductor laser device 1 can be realized.
  • the P-side first barrier layer 43a includes an undoped region in which impurities are not doped, and the film thickness of the undoped region is preferably 5 nm or more. ..
  • This undoped region is preferably 40 nm or less because the series resistance of the semiconductor laser device increases if it becomes too thick.
  • impurities are doped in the entire region of the P-side second barrier layer 43b, and the P-side first barrier layer 43a is located in the region near the well layer 41. It has an undoped region where impurities are not doped, and has a doped region where impurities are doped in a region far from the well layer 41.
  • the doping of impurities starts in the middle of the P-side first barrier layer 43a, so that the series resistance of the semiconductor laser device 1 can be reduced. Further, since the electron potential barriers of the P-side first barrier layer 43a and the P-side second barrier layer 43b are increased, leaked electrons can be suppressed.
  • the concentration of impurities doped in the P-side second barrier layer 43b gradually increases as the distance from the well layer 41 increases.
  • this configuration increases the electronic potential barrier of the second barrier layer 43b on the P side, it is possible to simultaneously suppress current leakage and reduce the series resistance of the semiconductor laser device while suppressing the increase in waveguide loss. be able to.
  • the semiconductor laser device 1 further includes a P-type guide layer 50 between the P-side second barrier layer 43b and the P-type clad layer 60.
  • the P-type guide layer 50 By providing the P-type guide layer 50 in this way, the light confinement coefficient in the well layer 41 can be further increased. As a result, the operating carrier density can be further reduced, and the heat saturation level can be further improved. Therefore, the temperature characteristics can be further improved.
  • the Al composition at least in the interface region between the P-type guide layer 50 and the P-type clad layer 60 gradually increases as the distance from the well layer 41 increases.
  • the bandgap energy in the interface region between the P-type guide layer 50 and the P-type clad layer 60 can be increased in inclination.
  • the resistance can be reduced.
  • FIG. 7A shows the dependence of the light confinement rate on the Al composition gradient region length in the semiconductor laser device 1 according to the present embodiment.
  • FIG. 7B shows the dependence of the waveguide loss on the Al composition gradient region length in the semiconductor laser device 1.
  • the Al composition gradient region length is the length of the region where the Al composition is inclined and increased at the interface region between the P-type guide layer 50 and the P-type clad layer 60.
  • the light confinement rate can be improved by lengthening the Al composition gradient region length, so that the operating threshold current can be reduced and the maximum light output can be improved.
  • the Al composition gradient region length is 200 nm or less.
  • the length of the Al composition gradient region is preferably 20 nm or more from the viewpoint of suppressing the occurrence of spikes in the valence band at the interface between the P-type guide layer 50 and the P-type clad layer 60.
  • the concentration of impurities doped in the P-type guide layer 50 gradually increases as the distance from the well layer 41 increases. That is, the concentration of impurities doped in the P-type guide layer 50 is increasing in inclination.
  • FIG. 8A shows the dependence of the light confinement rate on the concentration of P-type impurities in the semiconductor laser device 1 according to the embodiment.
  • FIG. 8B shows the dependence of the waveguide loss on the P-type impurity concentration in the semiconductor laser device 1.
  • 8A and 8B show simulations of four samples when the Al composition and thickness of the P-side first barrier layer 43a and the P-side second barrier layer 43b are changed in the semiconductor laser apparatus 1 according to the present embodiment. The result is shown.
  • the sample 1 has a P-side first barrier layer 43a having an Al composition of 0.12 and a thickness of 30 nm, and the Al composition increasing in inclination from 0.12 to 0.24 and having a thickness of 15 nm.
  • the P-side second barrier layer 43b in the sample 2 the P-side first barrier layer 43a having an Al composition of 0.12 and a thickness of 15 nm and the Al composition are changed from 0.12 to 0.24.
  • the sample 3 had an Al composition of 0.18 and a P-side first barrier layer 43a having a thickness of 30 nm and an Al composition.
  • the P-type impurity concentration is almost independent of the light confinement rate, but the lower the Al composition of the P-side first barrier layer 43a, the thicker the P-side first barrier layer 43a. It can be seen that the effect of increasing the light confinement rate at that time is great.
  • FIG. 8B if the P-type impurity concentration is too high, the waveguide loss increases, so it is better not to make the P-type impurity concentration too high.
  • the active layer 40 is further arranged below the N-side first barrier layer 42a and the N-side first barrier layer 42a arranged below the well layer 41. It has an N-side second barrier layer 42b to be formed.
  • the Al composition ratio of the N-side second barrier layer 42b is higher than the Al composition ratio of the N-side first barrier layer 42a, and the bandgap energy of the N-side second barrier layer 42b is the N-side first barrier layer 42b. It is larger than the bandgap energy of the barrier layer 42a.
  • the annealing temperature is raised when the well layer is thickened to form the window region, not only in the P-side region of the well layer 41 but also in the N-side region, the gain portion due to the increase in bandgap energy
  • the bandgap energy can be increased in the window portion to increase the wavelength change while suppressing the wavelength change of the well layer 41.
  • the bandgap energy of the N-side second barrier layer 42b gradually increases as the distance from the well layer 41 increases.
  • the average refractive index of the N-side second barrier layer 42b can be increased.
  • the light confinement coefficient to the well layer 41 can be further increased, so that the operating carrier density can be further reduced and the heat saturation level can be further improved. Therefore, the temperature characteristics can be further improved.
  • the series resistance of the semiconductor laser device 1 can be reduced by gradually increasing the bandgap energy of the N-side second barrier layer 42b as the distance from the well layer 41 increases.
  • impurities are doped in the entire region of the N-side second barrier layer 42b, and the N-side first barrier layer 42a is located in the region near the well layer 41. It has an undoped region where impurities are not doped, and has a doped region where impurities are doped in a region far from the well layer 41.
  • the bandgap energy of the P-side second barrier layer 43b is larger than the bandgap energy of the N-side second barrier layer 42b.
  • the semiconductor laser device 1 further includes an N-type guide layer 30 between the N-side second barrier layer 42b and the N-type clad layer 20.
  • the N-type guide layer 30 By providing the N-type guide layer 30 in this way, the light confinement coefficient in the well layer 41 can be further increased. As a result, the operating carrier density can be further reduced and the heat saturation level can be further improved. Therefore, the temperature characteristics can be further improved.
  • the Al composition at least in the interface region between the N-type guide layer 30 and the N-type clad layer 20 gradually increases as the distance from the well layer 41 increases.
  • the bandgap energy in the interface region between the N-type guide layer 30 and the N-type clad layer 20 can be increased in inclination.
  • the concentration of impurities doped in the N-type clad layer 20, the N-type guide layer 30, the N-side second barrier layer 42b, and the N-side first barrier layer 42a is , It is preferable that the amount gradually increases as the distance from the well layer 41 increases, or gradually increases.
  • the active layer 40 is arranged below the N-side first barrier layer 42a arranged below the well layer 41 and below the N-side first barrier layer 42a. It has an N-side second barrier layer 42b, and the Al composition ratio of the N-side second barrier layer 42b is higher than the Al composition ratio of the N-side first barrier layer 42a, and the band gap of the N-side second barrier layer 42b.
  • the energy is larger than the bandgap energy of the N-side first barrier layer 42a, the N-type guide layer 30 is provided between the N-side second barrier layer 42b and the N-type clad layer 20, and the band of the P-type guide layer 50 is provided.
  • the gap energy may be different from the bandgap energy of the N-type guide layer 30.
  • the bandgap energy of the P-type guide layer 50 is smaller than the bandgap energy of the N-type guide layer 30
  • the refractive index of the N-type guide layer 30 is lower than the refractive index of the P-type guide layer 50, and the N-type guide is By weakening the light confinement to the layer 30, a high light confinement coefficient to the well layer 41 can be obtained.
  • the N-side first barrier layer 42a and N are located between the well layer 41 and the N-type clad layer 20 from the well layer 41 toward the N-type clad layer 20.
  • the second barrier layer 42b on the N side is provided, the Al composition ratio of the second barrier layer 42b on the N side is higher than the Al composition ratio of the first barrier layer 42a on the N side, and the bandgap energy of the second barrier layer 42b on the N side is It is larger than the bandgap energy of the N-side first barrier layer 42a, and the bandgap energy of the N-side second barrier layer 42b gradually increases as the distance from the well layer 41 increases, and the bandgap of the P-side second barrier layer 43b
  • the maximum value of energy is preferably larger than the maximum value of the bandgap energy of the N-side second barrier layer 42b.
  • FIGS. 9 and 10 show the film thicknesses of the N-side first barrier layer 42a, the N-side second barrier layer 42b, the P-side first barrier layer 43a, and the P-side second barrier layer 43b in the active layer 40. It will be described using.
  • FIG. 9 shows the relationship of the waveguide loss with respect to the light confinement rate with respect to the film thickness of the N-side first barrier layer 42a and the P-side first barrier layer 43a.
  • FIG. 10 shows the relationship of the waveguide loss with respect to the light confinement rate with respect to the film thickness of the N-side second barrier layer 42b and the P-side second barrier layer 43b.
  • FIGS. 9 and 10 show simulation results when the film thickness is changed at 5 nm intervals in the range of 15 nm to 40 nm. Further, in FIGS. 9 and 10, each point is plotted with reference to the case where the film thickness is 15 nm.
  • the film thickness of the N-side first barrier layer 42a As shown in FIG. 9, by making the film thickness of the N-side first barrier layer 42a larger than the film thickness of the P-side first barrier layer 43a, the waveguide loss can be reduced and the light confinement efficiency can be increased. You can see that you can. That is, of the N-side first barrier layer 42a, the N-side second barrier layer 42b, the P-side first barrier layer 43a, and the P-side second barrier layer 43b, the N-side first barrier layer 42a on the side closer to the well layer 41. With respect to the P-side first barrier layer 43a, the film thickness of the N-side first barrier layer 42a should be thicker than the film thickness of the P-side first barrier layer 43a.
  • the film thickness of the P-side second barrier layer 43b should be thicker than the film thickness of the N-side second barrier layer 42b. .. Specifically, by making the film thickness of the P-side second barrier layer 43b larger than the film thickness of the N-side second barrier layer 42b, the waveguide loss can be reduced and the light confinement efficiency can be increased. You can see that you can.
  • the impurity concentration to be doped in the P-type semiconductor layer is larger than the impurity concentration to be doped in the N-type semiconductor layer. Therefore, it is necessary to increase the carrier density of holes. Therefore, the free carrier loss that occurs in the light distribution propagating through the optical waveguide has a greater effect on the P-type semiconductor layer than on the N-type semiconductor layer, and the doping profile of P-type impurities is precisely controlled. There is a need to.
  • the present inventors examined the concentration of impurities to be doped in the P-type semiconductor layer in the semiconductor laser device 1 in the present embodiment.
  • the examination results will be described with reference to FIGS. 11A to 16B.
  • the examination was carried out based on the four samples of sample 1, sample 2, sample 3 and sample 4 described in FIGS. 8A and 8B.
  • FIG. 11A shows that in the semiconductor laser device 1 according to the present embodiment, among the P-type guide layer 50, the P-side first barrier layer 43a and the P-side second barrier layer 43b, the P-type guide layer 50 contains P-type impurities.
  • FIG. 11B shows the dependence of the electron current density at that time on the concentration of P-type impurities in the P-type guide layer 50.
  • the P-side first barrier layer 43a and the N-side first barrier layer 42a had Al compositions of 0.12 and 0.18 and thicknesses of 15 nm and 30 nm. Further, with respect to the P-side second barrier layer 43b and the N-side second barrier layer 42b, the Al composition was inclined from 0.12 to 0.24 and from 0.18 to 0.24. In some cases, the thickness was 15 nm. The entire region of the P-side first barrier layer 43a and the P-side second barrier layer 43b was undoped.
  • the N-side first barrier layer 42a the 5 nm region on the well layer 41 side was used as the undoped region, and the region at a distance of 5 nm or more from the well layer 41 was doped with impurities of 1 ⁇ 10 17 cm -3. ..
  • the entire region of the N-side second barrier layer 42b was doped with an impurity of 1.4 ⁇ 10 17 cm -3.
  • the N-type guide layer 30 was doped with an impurity of 1.4 ⁇ 10 17 cm -3.
  • the concentration of P-type impurities doped in the P-type guide layer 50 is such that the average value of the concentration of P-type impurities in the entire P-type guide layer 50 is between 2 ⁇ 10 17 cm -3 and 4 ⁇ 10 17 cm -3 .
  • the P-side first barrier layer 43a Since the P-side first barrier layer 43a has a higher refractive index than the P-side second barrier layer 43b, the thicker the film thickness of the P-side first barrier layer 43a, the higher the light confinement coefficient in the well layer 41. Increase. In particular, in an optical waveguide in which the light distribution is closer to the N-type semiconductor layer, the light confinement coefficient to the well layer 41 tends to be small. Therefore, in order to suppress the decrease in the light confinement coefficient, the P-side first barrier layer 43a It is effective to increase the film thickness of. However, the electron current that exceeds the well layer 41 and flows through the P-type guide layer 50 increases as the film thickness of the P-side first barrier layer 43a increases. Therefore, the film thickness of the P-side first barrier layer 43a is preferably 10 nm or more and 30 nm or less.
  • FIG. 12A shows when a certain P-type impurity is doped into any of the P-type guide layer 50, the P-side first barrier layer 43a, and the P-side second barrier layer 43b in the semiconductor laser device 1 according to the present embodiment. It shows the dependence of the P-type impurity concentration of the potential barrier ( ⁇ Eg).
  • FIG. 12B shows the dependence of the electron current density at that time on the P-type impurity concentration.
  • the P-side first barrier layer 43a and the N-side first barrier layer 42a had Al compositions of 0.12 and 0.18 and thicknesses of 15 nm and 30 nm.
  • the 5 nm region on the well layer 41 side was set as the undoped region.
  • the N-side first barrier layer 42a the 5 nm region on the well layer 41 side is an undoping region, and the region at a distance of 5 nm or more from the well layer 41 is a 1 ⁇ 10 17 cm -3 N-type impurity. Was doped.
  • the Al composition was inclined from 0.12 to 0.24 and from 0.18 to 0.24. In some cases, the thickness was 15 nm.
  • the N-side second barrier layer 42b was doped with 1 ⁇ 10 17 cm -3 N-type impurities in the entire region.
  • the N-type guide layer 30 was doped with impurities of 1 ⁇ 10 17 cm -3.
  • the P-type impurity concentration of the P-side first barrier layer 43a, the P-side second barrier layer 43b, and the P-type guide layer 50 is 1 ⁇ 10 17 cm -3 to 5 ⁇ 17 cm.
  • the potential barrier ( ⁇ Eg) increases from 0.216 eV to 0.254 eV, and the electron current flowing through the P-type guide layer 50 decreases. It can be seen that it has the effect of suppressing the ineffective current.
  • the average value of the P-type impurity concentration in the entire P-type guide layer 50 is 2 ⁇ 10 17 cm -3 to 4 ⁇ 10 17 cm ⁇ .
  • the P-side first barrier layer 43a, the P-side second barrier layer 43b, and the P-type guide layer 50 are doped.
  • the electron current flowing beyond the well layer 41 to the P-type semiconductor layer side can be reduced to reduce the leakage current, and the potential barrier can be reduced. The effect of increasing is also large.
  • the P-side first barrier layer 43a Since the P-side first barrier layer 43a has a higher refractive index than the P-side second barrier layer 43b, the thicker the film thickness of the P-side first barrier layer 43a, the higher the light confinement coefficient in the well layer 41. Increase. In particular, in an optical waveguide in which the light distribution is closer to the N-type semiconductor layer, the light confinement coefficient to the well layer 41 tends to be small. Therefore, in order to suppress the decrease in the light confinement coefficient, the P-side first barrier layer 43a It is effective to increase the film thickness of. However, the electron current flowing beyond the well layer 41 and flowing through the P-type guide layer 50 increases as the thickness of the P-side first barrier layer 43a increases, but the increase in leakage electron current increases on the P-side first barrier layer 43a.
  • the P-side second barrier layer 43b and the P-type guide layer 50 are about 10% smaller than the case where the P-type impurity concentration is not doped. Therefore, the film thickness of the P-side first barrier layer 43a is about 10% as compared with the case where the P-side first barrier layer 43a, the P-side second barrier layer 43b, and the P-type guide layer 50 are not doped with the P-type impurity concentration. It can be made thicker, preferably 15 nm or more and 40 nm or less.
  • FIGS. 12A and 12B the P-type impurity concentration to be doped in the P-side first barrier layer 43a, the P-side second barrier layer 43b, and the P-type guide layer 50 was not inclined, but the P-side.
  • the concentration of P-type impurities to be doped in the first barrier layer 43a, the P-side second barrier layer 43b, and the P-type guide layer 50 is inclined, the results shown in FIGS. 13A and 13B are obtained.
  • FIG. 13A shows the dependence of the P-type impurity concentration of the potential barrier ( ⁇ Eg) when impurities are doped with the impurity doping profile of the semiconductor laser device 1 of Example 1 shown in FIG. 5A.
  • FIG. 13B shows the dependence of the electron current density at that time on the P-type impurity concentration.
  • the P-side first barrier layer 43a and the N-side first barrier layer 42a had Al compositions of 0.12 and 0.18 and thicknesses of 15 nm and 30 nm.
  • the 5 nm region on the well layer 41 side was set as the undoped region.
  • the N-side first barrier layer 42a the 5 nm region on the well layer 41 side is an undoping region, and the region at a distance of 5 nm or more from the well layer 41 is a 1 ⁇ 10 17 cm -3 N-type impurity. Was doped.
  • the Al composition was inclined from 0.12 to 0.24 and from 0.18 to 0.24. In some cases, the thickness was 15 nm.
  • the N-side second barrier layer 42b was doped with 1 ⁇ 10 17 cm -3 N-type impurities in the entire region.
  • the N-type guide layer 30 was doped with impurities of 1 ⁇ 10 17 cm -3.
  • the impurity concentration at the doping start position P1 of the P-type impurity in the P-side first barrier layer 43a is set to 1 ⁇ 10 17 cm -3, and the position P2 of the P-type guide layer 50 on the side away from the well layer 41.
  • the P-type impurity is doped so as to increase the concentration of the P-type impurity in 1 ⁇ 10 17 cm -3 to 1 ⁇ 10 18 cm -3
  • the first P-type impurity is shown in FIGS. 13A and 13B.
  • the potential barrier ( ⁇ Eg) increases from 0.216 eV to 0.254 eV
  • the P-side second barrier layer 43b and the N-side second barrier When the thickness of the layer 42b is 30 nm, the potential barrier ( ⁇ Eg) increases from 0.215 eV to 0.234 eV.
  • the P-type impure concentration at the position P2 is increased, the electron current flowing through the P-type guide layer 50 is reduced, and the reactive current can be suppressed.
  • the P-type impurity concentration at the position P2 is increased, the potential barrier is increased and the series resistance of the semiconductor laser device is also decreased.
  • the P-type impurity concentration is inclined in the P-type guide layer 50, the increase in waveguide loss is suppressed even if the P-type impurity concentration at the position P2 is increased.
  • the concentration of P-type impurities doped in the P-type guide layer 50 is such that the average value of the concentration of P-type impurities in the entire P-type guide layer 50 is between 2 ⁇ 10 17 cm -3 and 4 ⁇ 10 17 cm -3 .
  • the leakage current can be reduced by doping the P-side first barrier layer 43a, the P-side second barrier layer 43b, and the P-type guide layer 50 with P-type impurities so that the impurity concentration is inclined.
  • the P-side first barrier layer 43a Since the P-side first barrier layer 43a has a higher refractive index than the P-side second barrier layer 43b, the thicker the film thickness of the P-side first barrier layer 43a, the higher the light confinement coefficient in the well layer 41. Increase. In particular, in an optical waveguide in which the light distribution is closer to the N-type semiconductor layer, the light confinement coefficient to the well layer 41 tends to be small. Therefore, in order to suppress the decrease in the light confinement coefficient, the P-side first barrier layer 43a It is effective to increase the film thickness of. However, if the film thickness of the first barrier layer 43a on the P side is made too thick, light confinement in the well layer 41 becomes large and COD is likely to occur.
  • the film thickness of the P-side first barrier layer 43a is preferably 15 nm or more and 50 nm or less.
  • FIGS. 14A and 14B the Al composition of the N-type guide layer 30 and the P-type guide layer 50 was symmetrical, but the Al composition of the N-type guide layer 30 and the P-type guide layer 50 was asymmetrical. Then, the results shown in FIGS. 14A and 14B are obtained. Specifically, in FIGS. 14A and 14B, the Al composition of the P-type guide layer 50 is adjusted so that the bandgap energy of the P-type guide layer 50 is larger than the bandgap energy of the N-type guide layer 30. It is made larger than the Al composition of 30.
  • FIG. 14A shows the dependence of the Al composition of the potential barrier on the P-type guide layer 50 of the semiconductor laser device 1 of Example 3 shown in FIG. 5C.
  • FIG. 14B shows the dependence of the electron current density on the Al composition of the P-type guide layer 50 of the semiconductor laser device 1.
  • the P-side first barrier layer 43a and the N-side first barrier layer 42a had Al compositions of 0.12 and 0.18 and thicknesses of 15 nm and 30 nm.
  • the 5 nm region on the well layer 41 side was set as the undoped region.
  • the N-side first barrier layer 42a the 5 nm region on the well layer 41 side is an undoping region, and the region at a distance of 5 nm or more from the well layer 41 is a 1 ⁇ 10 17 cm -3 N-type impurity. Was doped.
  • the Al composition was inclined from 0.12 to 0.24 and the composition was inclined from 0.18 to 0.24, and the thickness was 15 nm. bottom.
  • the Al composition was inclined from 0.12 to XPg and the composition was inclined from 0.18 to XPg, and the thickness was set to 15 nm.
  • the N-side second barrier layer 42b was doped with 1 ⁇ 10 17 cm -3 N-type impurities in the entire region.
  • the Al composition of the N-type guide layer 30 was 0.24, and the Al composition of the P-type guide layer 50 was Xpg.
  • the impurity concentration at the doping start position P1 of the P-type impurity in the P-side first barrier layer 43a is set to 1 ⁇ 10 17 cm -3, and the position P2 of the P-type guide layer 50 on the side away from the well layer 41.
  • P-type impurities are doped so as to increase the concentration of P-type impurities in 5 ⁇ 10 18 cm -3.
  • the P-type impure concentration at the position P2 is increased, the electron current flowing through the P-type guide layer 50 is reduced, and the reactive current can be suppressed.
  • the P-type impurity concentration at the position P2 is increased, the potential barrier is increased and the series resistance of the semiconductor laser device is also decreased.
  • the P-type impurity concentration is inclined in the P-type guide layer 50, the increase in waveguide loss is suppressed even if the P-type impurity concentration at the position P2 is increased.
  • the Al composition of the P-type guide layer 50 increases, the electron current flowing through the P-type guide layer 50 beyond the well layer 41 sharply decreases.
  • the average value of the P-type impurity concentration in the P-type guide layer 50 is about 3 ⁇ 10 17 cm -3 , and the impurities are doped so that the P-type impurity concentration on the side closer to the well layer 41 becomes smaller. In a state where the waveguide loss is small, the series resistance can be reduced and the increase of the potential barrier can be suppressed.
  • the above effect can be obtained by making the Al composition of the P-type guide layer 50 relatively higher than the Al composition of the N-type guide layer 30. Specifically, if the Al composition of the P-type guide layer 50 is 0.02 larger than the Al composition of the N-type guide layer 30, the potential barrier becomes 0.03 eV larger and the electron current leaking to the P-type guide layer 50 also increases. It can be reduced to about 50% or less. Further, if the Al composition of the P-type guide layer 50 is set to 0.27, which is 0.03 larger than the Al composition of the N-type guide layer, the potential barrier can be increased to a size of 0.27 eV or more, and the P-type guide layer can be increased to 0.27 eV or more. If the Al composition of the guide layer 50 is set to 0.29, which is 0.05 larger than the Al composition of the N-type guide layer, the potential barrier can be increased to a size of 0.3 eV or more.
  • the well layer thickness is 8 nm or more
  • the Al composition of the P-type clad layer 60 is made larger than the Al composition of the N-type clad layer 20
  • the Al composition of the P-type guide layer 50 is higher than the Al composition of the N-type guide layer 30.
  • FIG. 15A shows the dependence of the hole current density of the N-type impurity concentration at a position 100 nm from the interface on the N side of the well layer 41 in the semiconductor laser device 1 according to the present embodiment.
  • FIG. 15B shows the dependence of the hole current density on the N-type impurity concentration at the position of the N-type clad layer substrate side interface in the semiconductor laser device 1 according to the present embodiment.
  • FIG. 16A shows an example of the N-type impurity concentration distribution in the N-type semiconductor layer in the semiconductor laser device 1 according to the present embodiment
  • FIG. 16B shows the N-type impurity concentration distribution in the N-type semiconductor layer. Another example is shown.
  • the impurity concentration at the doping start position P1 of the P-type impurity in the P-side first barrier layer 43a is set to 1 ⁇ 10 17 cm -3, and the position P2 of the P-type guide layer 50 on the side away from the well layer 41.
  • P-type impurities are doped so as to increase the concentration of P-type impurities in 1 ⁇ 10 17 cm -3 to 1 ⁇ 10 18 cm -3.
  • the P-type clad layer 60 is doped with 2 ⁇ 10 18 cm -3 P-type impurities.
  • the P-type impure concentration at the position P2 When the P-type impure concentration at the position P2 is increased, the electron current flowing through the P-type guide layer 50 is reduced, and the reactive current can be suppressed.
  • the P-type impurity concentration at the position P2 when the P-type impurity concentration at the position P2 is increased, the potential barrier is increased and the series resistance of the semiconductor laser device is also decreased. Further, since the P-type impurity concentration is inclined in the P-type guide layer 50, the increase in waveguide loss is suppressed even if the P-type impurity concentration at the position P2 is increased.
  • the concentration of P-type impurities doped in the P-type guide layer 50 is such that the average value of the concentration of P-type impurities in the entire P-type guide layer 50 is between 2 ⁇ 10 17 cm -3 and 4 ⁇ 10 17 cm -3 .
  • N-type impurities in the N-type semiconductor layer are doped so that the light distribution in the vertical direction is closer to the N-type semiconductor layer, the N-type impurities are doped so that the concentration of the N-type impurities increases in the direction away from the well layer 41. It is carried out.
  • N-type impurities are contained in the region from the well layer 41 of the N-type guide layer 30 and the N-side first barrier layer 42a to the N-type guide layer 30 toward the substrate 10 side from a distance of 5 nm or more.
  • the film thickness of the region near the well layer 41 is equal to or less than the film thickness of the region far from the well layer. This is because the light distribution intensity in the vertical direction is attenuated in the region of the N-type cladding layer 20 having the highest impurity concentration on the side farthest from the well layer 41, and even if the impurity concentration is increased, the influence of free carrier loss is exerted. Because it is small, it does not lead to an increase in waveguide loss, and the effect of reducing the series resistance of the semiconductor laser device can be obtained.
  • the vertical light distribution intensity in the N-type clad layer 20 and the rate of change in the attenuation of the intensity are larger as they are closer to the well layer 41. From this, in order to avoid an increase in waveguide loss due to an increase in impurity concentration, in each region where the concentration is constant when the impurity concentration is increased in multiple stages in a region where the vertical light distribution is not sufficiently attenuated. As for the film thickness, it is better to make the region closer to the well layer 41 thinner.
  • each concentration is set to 1 time, 1.2 times, 1.5 times, 2 times, and 3 times, and in FIG. 15A, the position 100 nm from the interface on the N side of the well layer 41.
  • FIG. 15B shows the calculation result of the hole current density at the position of the interface on the N-type clad layer substrate side.
  • the series resistance of the semiconductor laser device is reduced, so that the operating current of the semiconductor laser device can be reduced.
  • the N-type impurity concentration of the N-type guide layer 30 is set to the other N-type semiconductor layer. It is possible to reduce the waveguide loss by making it the lowest as compared with the N-type impurity of. Therefore, by setting the doping profile of the N-type impurity concentration to the pattern shown in FIG. 16A, it is possible to simultaneously reduce the series resistance of the semiconductor laser device and the waveguide loss.
  • the concentration of N-type impurities on the substrate 10 side continuously increases. You may do so.
  • the N-type impurity concentration at the position where the light distribution intensity is highest is lowered, and the N-type impurity concentration is continuously continued from that position toward the substrate 10.
  • the waveguide loss can be further reduced by increasing the number in a target or stepwise manner.
  • the alternate long and short dash line in FIG. 16B the N-type impurity concentration may be changed non-linearly.
  • the impurity concentration to be doped in the N-side first barrier layer 42a is increased to make the impurity concentration in the N-side second barrier layer 42b lower than the doping concentration in the N-side first barrier layer 42a.
  • the N-type impurity concentration may be gradually increased from the well layer 41 toward the substrate 10.
  • the concentration of impurities to be doped in the N-side first barrier layer may be from 5 ⁇ 10 17 cm -3 to 1 ⁇ 10 18 cm -3.
  • the potential potential of the valence band of the N-side first barrier layer 42a is lowered, and it becomes possible to suppress the leakage of the hole current in which the holes injected into the well layer 41 leak to the N-type layer side.
  • the high temperature and high output operation of the semiconductor laser device can be further enhanced.
  • the N-type impurity concentration of the N-side second barrier layer 42b may be increased with respect to the N-type impurity concentration of the N-type guide layer 30 in the same manner as the impurity concentration of the N-side first barrier layer 42a, but the waveguide loss.
  • the doping concentration of the N-side first barrier layer 42a is increased, when the window region is formed by vacancy diffusion or ion implantation, N-type impurities are present even if the temperature of the thermal annealing step of window formation is lowered. As a result, atomic exchange with the well layer 41 is likely to occur, and the band gap energy of the well layer 41 of the window portion is likely to be increased.
  • the doping of the N-type impurity to the N-type guide layer 30 may be gradually increased from the vicinity of the interface with the N-type clad layer 20 toward the substrate 10 side as shown in FIG. 16D.
  • the portion having the highest light intensity in the vertical light distribution in the normal direction of the substrate is in the region on the well layer 41 side of the N-type guide layer 30.
  • the region on the well layer 41 side of the N-type guide layer 30 has the lowest concentration region of the N-type impurity concentration, an increase in waveguide loss can be suppressed.
  • the waveguide loss increases. It is possible to obtain all the effects of suppressing, suppressing the generation of hole leakage current, and suppressing the increase in series resistance of the semiconductor laser device. Further, even if the concentration of N-type impurities on the substrate 10 side of the N-type clad layer 20 is increased, the N-type clad layer 20 in a region of 1 ⁇ m or more from the interface between the N-type guide layer 30 and the N-type clad layer 20 toward the substrate 10 side.
  • the concentration of N-type impurities in the N-type clad layer 20 in the region of 1 ⁇ m or more from the interface between the N-type guide layer 30 and the N-type clad layer 20 toward the substrate 10 is set. It should be high enough not to reduce the mobility, for example, 1 ⁇ 10 18 cm -3 or more and 3 ⁇ 10 18 cm -3 or less.
  • the N-type impurities in the N-side second barrier layer 42b, the N-type guide layer 30, and the N-type clad layer 20 are increased.
  • the concentration may be changed continuously as shown in FIG. 16B.
  • the region where the N-type impurity concentration is increased in the vicinity of the well layer 41 includes not only the N-side first barrier layer 42a but also a part of the N-side second barrier layer 42b, but the thickness of the region is 10 nm or less. If this is the case, it is possible to reduce the series resistance of the semiconductor laser device and further suppress the leakage of the hole current while suppressing the increase in the waveguide loss to a small value.
  • FIGS. 17 to 19 are diagrams showing the dependence of the Al composition of the well layer of the heavy hole and light hole quantum level energies.
  • the Al composition is 0.06
  • the P-side first barrier layer 43a and the N-side second barrier layer 42b are Al 0.06 Ga 0.94 As, and the thickness is 15 nm
  • the P-side second barrier layer is Al 0.24 Ga 0.76 As and the thickness is 15 nm
  • the well layer 41 is Al X Ga 1-XY In Y As
  • the well layer 41 Depends on the Al composition of the relative potential energies of the heavy holes (HH) and light holes (LH) formed in the well layer 41 when the thickness is 6 nm, 8.5 nm, 12 nm, and 15 nm. The calculation result of sex is shown.
  • the electron level, the HH level, and the LH level are represented as En, HHn, and LHn. Further, n is a natural number, and the base level is 1.
  • the energy difference between E1-H1 is set to be constant (1.35 eV) in order to obtain the same oscillation wavelength of 915 nm.
  • FIG. 17 shows the relational expression between the In composition Y and the Al composition X for obtaining the same oscillation wavelength when the Al composition X of the well layer 41 is changed. Also.
  • the irregularity of delivery of the well layer 41 having each Al composition with the GaAs substrate is shown by a alternate long and short dash line.
  • the magnitude relation of the potential energy with respect to the electron level and the magnitude relation of the potential energy with respect to the hole level are opposite.
  • the level with the highest relative potential energy that is, located on the graph
  • the compressive strain of the well layer 41 increases, so that the level of HH changes in the direction in which the potential energy for holes is low, and the level of LH.
  • the potential energy for holes changes in the higher direction. From this, as the Al composition of the well layer 41 is increased to increase the compressive strain, the difference in energy between H1 and L1 becomes larger, and holes are more likely to exist in H1 having the smallest hole potential energy in HH. On the contrary, holes are less likely to exist in L1 having the largest hole potential energy in LH. From this, when the Al composition of the well layer 41 is increased to increase the compressible strain, the number of holes in HH is increased and the number of holes in LH is decreased.
  • the thickness of the well layer 41 is 6 nm, two HH levels having a potential energy lower than the potential energy of LH are formed, so that the holes can exist preferentially in the HH level, and TE. It is possible to obtain a laser beam having a high polarization ratio and a large number of mode components.
  • the LH level is more positive than the energy of the valence band of the first barrier layer.
  • the hole potential energy becomes high, and the quantum level of LH is not formed in the quantum well formed by the P-side first barrier layer 43a, the N-side first barrier layer 42a, and the well layer 41, and the P-side second barrier is formed.
  • a quantum level is formed with the layer 43b and the N-side second barrier layer 42b as the barrier layer.
  • the density of states of the quantum level is inversely proportional to the thickness of the quantum well structure, the density of states of LH1 becomes smaller and the effect of increasing the polarization ratio increases.
  • This state is shown by a thick broken line of L1 in each graph of FIG.
  • the Al composition of the well layer 41 is 0.04 or more and is contained in the P-side first barrier layer 43a and the N-side first barrier layer 42a.
  • LH is not formed, and the thicker the well layer 41, the less LH is formed in the P-side first barrier layer 43a and the N-side first barrier layer 42a in a state where the lattice irregularity of the well layer 41 is low.
  • the well layer 41 is made thicker, the number of HH levels having a lower potential energy of holes is larger than that of L1, and the number of holes existing in L1 is likely to be reduced.
  • the Al composition of the well layer 41 is 0.04 or more and the number of HH levels having a lower hole potential energy than L1 is 3 levels. Therefore, the number of LHs existing at the LH level can be reduced, which is effective in increasing the polarization ratio.
  • the HH level number in which the Al composition of the well layer 41 is 0.0 or more and the hole potential energy is lower than that of L1 becomes 3 levels, which becomes the LH level.
  • the number of existing LHs can be reduced, which is effective in increasing the polarization ratio.
  • the well layer 41 Since the well layer 41 has a high refractive index, the thicker the film thickness, the larger the light confinement coefficient to the well layer 41, and the lower the threshold carrier density required for laser oscillation. The number of holes is reduced and the polarization ratio is increased.
  • the P-side first barrier layer 43a and the N-side first barrier layer 42a also have a low Al composition, and the P-side second barrier layer 43b, the N-side second barrier layer 42b, the N-type guide layer 30, the N-type clad layer 20, and P. Since the refractive index is higher than that of the mold guide layer 50 and the P-type clad layer 60, the thicker the thickness of the P-side first barrier layer 43a and the N-side first barrier layer 42a, the higher the light confinement coefficient in the well layer 41. As the value increases and the threshold carrier density required for laser oscillation is reduced, the number of holes present in L1 is further reduced and the polarization ratio is increased.
  • the total film thickness of the P-side first barrier layer 43a and the N-side first barrier layer 42a is 20 nm or more, it is effective in increasing the light confinement coefficient. However, if the total film thickness is too large, the light confinement coefficient in the well layer 41 increases and the COD level is lowered. Therefore, the total thickness may be 80 nm or less.
  • the Al composition is 0.12
  • the P-side first barrier layer 43a and the N-side first barrier layer 42a are Al 0.12 Ga 0.88 As
  • the thickness is 15 nm.
  • the barrier layer 43b and the N-side second barrier layer 42b are Al 0.24 Ga 0.76 As and the thickness is 15 nm
  • the well layer 41 is Al X Ga 1-XY In Y As
  • the wells are formed.
  • the layer thickness is 6 nm, 8.5 nm, 12 nm, and 15 nm
  • HH heavy hole
  • LH light hole
  • the electron level, the HH level, and the LH level are represented as En, HHn, and LHn. Further, n is a natural number, and the base level is 1.
  • the energy difference between E1-H1 is set to be constant (1.35 eV) in order to obtain the same oscillation wavelength of 915 nm.
  • FIG. 18 shows the relational expression between the In composition Y and the Al composition X for obtaining the same oscillation wavelength when the Al composition X of the well layer 41 is changed. Also. The irregularity of delivery of the well layer 41 having each Al composition with the GaAs substrate is shown by a alternate long and short dash line.
  • the compressive strain of the well layer 41 increases, so that the level of HH changes in the direction in which the potential energy for holes is low, and the level of LH. Changes in the direction in which the potential energy for holes is low. From this, as the Al composition of the well layer 41 is increased to increase the compressive strain, the difference in energy between H1 and L1 becomes larger, and holes are more likely to exist in H1 having the smallest hole potential energy in HH. On the contrary, holes are less likely to exist in L1 having the largest hole potential energy in LH. From this, when the Al composition of the well layer 41 is increased to increase the compressible strain, the number of holes in HH is increased and the number of holes in LH is decreased.
  • the thickness of the well layer 41 is 6 nm, two HH levels having a potential energy lower than the potential energy of LH are formed, so that the holes can preferentially exist in the HH level, and TE. It is possible to obtain a laser beam having a high polarization ratio and a large number of mode components.
  • the LH level is more positive than the energy of the valence band of the first barrier layer.
  • the hole potential energy becomes high, and the quantum level of LH is not formed in the quantum well formed by the P-side first barrier layer 43a, the N-side first barrier layer 42a, and the well layer 41, and the P-side second barrier is formed.
  • a quantum level is formed with the layer 43b and the N-side second barrier layer 42b as the barrier layer.
  • the density of states of the quantum level is inversely proportional to the thickness of the quantum well structure, the density of states of LH1 becomes smaller and the effect of increasing the polarization ratio increases.
  • This state is shown by a thick broken line of L1 or L2 in each graph of FIG.
  • the Al composition of the well layer 41 is 0.08 or more and is contained in the P-side first barrier layer 43a and the N-side first barrier layer 42a.
  • LH is not formed, and the thicker the well layer 41, the less LH is formed in the P-side first barrier layer 43a and the N-side first barrier layer 42a in a state where the lattice irregularity of the well layer 41 is low.
  • the well layer 41 is made thicker, the number of HH levels having a lower potential energy of holes is larger than that of L1, and the number of holes existing in L1 is likely to be reduced.
  • the Al composition of the well layer 41 is 0.02 or more, and the number of HH levels having a lower hole potential energy than L1 is 3 levels. Therefore, the number of LHs existing at the LH level can be reduced, which is effective in increasing the polarization ratio.
  • the HH level number in which the Al composition of the well layer 41 is 0.0 or more and the hole potential energy is lower than that of L1 becomes 3 levels, and becomes the LH level.
  • the number of existing LHs can be reduced, which is effective in increasing the polarization ratio.
  • the well layer 41 Since the well layer 41 has a high refractive index, the thicker the film thickness, the larger the light confinement coefficient to the well layer 41, and the lower the threshold carrier density required for laser oscillation. The number of holes is reduced and the polarization ratio is increased.
  • the P-side first barrier layer 43a and the N-side first barrier layer 42a also have a low Al composition, and the P-side second barrier layer 43b, the N-side second barrier layer 42b, the N-type guide layer 30, the N-type clad layer 20, and P. Since the refractive index is higher than that of the mold guide layer 50 and the P-type clad layer 60, the thicker the thickness of the P-side first barrier layer 43a and the N-side first barrier layer 42a, the higher the light confinement coefficient in the well layer 41. As the value increases and the threshold carrier density required for laser oscillation is reduced, the number of holes present in L1 is further reduced and the polarization ratio is increased.
  • the total film thickness of the P-side first barrier layer 43a and the N-side first barrier layer 42a is 25 nm or more, it is effective in increasing the light confinement coefficient. However, if the total film thickness is made too thick, the light confinement coefficient in the well layer 41 becomes large and the COD level is lowered. Therefore, the total film thickness may be 90 nm or less.
  • the Al composition is 0.18
  • the P-side first barrier layer 43a and the N-side first barrier layer 42a are Al 0.18 Ga 0.82 As
  • the thickness is 15 nm.
  • the barrier layer 43b and the N-side second barrier layer 42b are Al 0.24 Ga 0.76 As and the thickness is 15 nm
  • the well layer 41 is Al X Ga 1-XY In Y As
  • the wells are formed.
  • the layer thickness is 6 nm, 8.5 nm, 12 nm, and 15 nm
  • HH heavy hole
  • LH light hole
  • the electron level, the HH level, and the LH level are represented as En, HHn, and LHn. Further, n is a natural number, and the base level is 1.
  • the energy difference between E1-H1 is set to be constant (1.35 eV) in order to obtain the same oscillation wavelength of 915 nm.
  • FIG. 19 shows a relational expression between the In composition Y and the Al composition X for obtaining the same oscillation wavelength when the Al composition X of the well layer 41 is changed. Also. The irregularity of delivery of the well layer 41 having each Al composition with the GaAs substrate is shown by a alternate long and short dash line.
  • the compressive strain of the well layer 41 increases, so that the level of HH changes in the direction in which the potential energy for holes is low, and the level of LH. Changes in the direction in which the potential energy for holes is low. From this, similarly to the above, as the Al composition of the well layer 41 is increased to increase the compressive strain, the difference in energy between H1 and L1 becomes larger, and holes are formed in H1 having the smallest hole potential energy in HH. Is more likely to exist, and conversely, holes are less likely to exist in L1 having the largest hole potential energy in LH.
  • the thickness of the well layer 41 is 6 nm, two HH levels having a potential energy lower than the potential energy of LH are formed, so that the holes can preferentially exist in the HH level, and TE. It is possible to obtain a laser beam having a high polarization ratio and a large number of mode components.
  • the Al composition of the well layer 41 is 0.02 or more and the number of HH levels having a lower hole potential energy than L1 is 3 levels. Therefore, the number of LHs existing at the LH level can be reduced, which is effective in increasing the polarization ratio.
  • the HH level number in which the Al composition of the well layer 41 is 0.0 or more and the hole potential energy is lower than that of L1 becomes 3 levels, which becomes the LH level.
  • the number of existing LHs can be reduced, which is effective in increasing the polarization ratio.
  • the well layer 41 Since the well layer 41 has a high refractive index, the thicker the film thickness, the larger the light confinement coefficient to the well layer 41, and the lower the threshold carrier density required for laser oscillation. The number of holes is reduced and the polarization ratio is increased.
  • the P-side first barrier layer 43a and the N-side first barrier layer 42a also have a low Al composition, and the P-side second barrier layer 43b, the N-side second barrier layer 42b, the N-type guide layer 30, the N-type clad layer 20, and P. Since the refractive index is higher than that of the mold guide layer 50 and the P-type clad layer 60, the thicker the thickness of the P-side first barrier layer 43a and the N-side first barrier layer 42a, the higher the light confinement coefficient in the well layer 41. As the value increases and the threshold carrier density required for laser oscillation is reduced, the number of holes present in L1 is further reduced and the polarization ratio is increased.
  • the total film thickness of the P-side first barrier layer 43a and the N-side first barrier layer 42a is 30 nm or more, it is effective in increasing the light confinement coefficient. However, if the total film thickness is made too thick, the light confinement coefficient in the well layer 41 becomes large and the COD level is lowered. Therefore, the total thickness may be 100 nm or less.
  • the Al composition of the P-side first barrier layer 43a and the N-side first barrier layer 42a is changed from 0.06 to 0.18, and the thickness of the well layer 41 is changed from 6 nm.
  • two or more HH levels which are potential energies lower than the potential energy of LH, are formed. Therefore, holes can preferentially exist in the HH levels, and have a large TE mode component and a high polarization ratio. Laser light can be obtained.
  • the Al composition of the P-side first barrier layer 43a and the N-side first barrier layer 42a is 0.06 to 0.18 and the thickness of the well layer 41 is 8.5 nm to 15 nm, the film of the well layer 41 is formed.
  • the number of levels of HH having a potential energy lower than the hole potential energy of LH can be increased.
  • the Al composition of the well layer 41 is 0.02 or more, and when the thickness of the well layer 41 is 12 nm, the Al composition of the well layer 41 is Al. Even if InGaAs having a composition of 0 is used as the well layer 41, the number of levels of HH having a potential energy lower than the hole potential energy can be 3 or more, and the number of LHs present in L1 is small. Therefore, the effect of increasing the polarization ratio can be obtained.
  • the thickness of the well layer 41 is thicker than 15 nm, the light confinement coefficient in the well layer 41 may increase and the COD level may decrease. Further, when the window region is formed near the end face of the resonator, if the well layer 41 becomes too thick, group III atom exchange between the P-side first barrier layer 43a and the N-side first barrier layer 42a and the well layer 41 is performed. As a result, the shortening of the wavelength of the band gap in the window region is reduced, and the effect of suppressing COD generation is reduced.
  • the thickness of the well layer 41 is preferably 6 nm or more and 15 nm or less.
  • the Al composition of the P-side first barrier layer 43a and the N-side first barrier layer 42a made of AlGaAs is 0.06 to 0.18, but the P-side first barrier layer 43a and If the Al composition of the N-side first barrier layer 42a is made too large, the light confinement coefficient in the well layer 41 becomes small, so that the temperature characteristics of the semiconductor laser device deteriorate. Therefore, the Al composition of the P-side first barrier layer 43a and the N-side first barrier layer 42a is preferably 0.06 or more and 0.22 or less.
  • the Al composition of the N-side second barrier layer 42b and the P-side second barrier layer 43b made of AlGaAs is increased, electron current leaks from the well layer 41 to the P-type layer side and the well layer 41 to the N-type layer
  • the Al composition is preferably 0.24 or more because the leakage of the hole current to the side can be suppressed.
  • the Al composition of the N-side second barrier layer 42b and the P-side second barrier layer 43b is increased too much, the operating voltage will increase. Therefore, the Al composition is preferably 0.32 or less.
  • the resonator length is long. Specifically, the resonator length of the semiconductor laser device 1 is 2 mm or more.
  • the mirror loss of the cavity may increase and the slope efficiency may decrease.
  • the light distribution is guided closer to the N-type semiconductor layer. Since the waveguide loss is reduced, the decrease in slope efficiency can be suppressed and the maximum optical output can be increased even if the cavity length of the semiconductor laser device 1 is increased.
  • the current injection region is defined by providing the current block layer 80 having the opening 80a in the P-type contact layer 70, but the present invention is not limited to this.
  • the current injection region may be defined by providing the ridge portion 200A.
  • FIG. 20 is a top view of the semiconductor laser device 1A according to the modified example.
  • 21A is a cross-sectional view of the semiconductor laser device 1A on the XXIA-XXIA line of FIG. 20
  • FIG. 21B is a cross-sectional view of the semiconductor laser device 1A on the XXIB-XXIB line of FIG. 20, and FIG.
  • FIG. 21C is a cross-sectional view of the semiconductor laser device 1A. It is sectional drawing of the semiconductor laser apparatus 1A in the XXIC-XXIC line of FIG. Note that FIG. 21A shows a cross section of the gain portion of the semiconductor laser device 1A, and FIG. 21B shows a cross section of the semiconductor laser device 1A on the front end surface 1a side.
  • the semiconductor laser device 1A in this modification is a semiconductor laser element having a ridge stripe structure having a ridge portion 200A extending in the longitudinal direction of the resonator as an optical waveguide.
  • an insulating film 100A having an opening 100a corresponding to the ridge portion 200A is formed.
  • the insulating film 100A is a dielectric film having a current blocking function.
  • the insulating film 100A is composed of, for example, an insulating film such as SiO 2.
  • a pair of grooves having a depth of 0.2 ⁇ m are formed in the P-type contact layer 70, and the P-type contact other than the ridge portion 200A serving as a current injection path.
  • the surface of the layer 70 is covered with the insulating film 100A.
  • the groove for forming the ridge portion 200A may be formed not only in the P-type contact layer 70 but also in the P-type clad layer 60.
  • the configurations other than the ridge portion 200A and the insulating film 100A are basically the same configurations as those of the semiconductor laser device 1 in the above embodiment.
  • the semiconductor laser device 1A according to the present modification also has the same effect as the semiconductor laser device 1 according to the above embodiment.
  • the opening 80a in the above embodiment that defines the current injection region, the opening 100a in this modification, the resonator length, and the well layer 41.
  • the input current to a semiconductor laser device having an aperture width of 90 ⁇ m or more and 300 ⁇ m or less and a resonator length of 2000 ⁇ m or more and 6000 ⁇ m or less shall be about 15 A or more and 40 A or less, and the input voltage shall be about 1.7 V or more and 3 V or less. Therefore, it is possible to realize a semiconductor laser device having a wavelength in the band of about 780 nm or more and 800 nm or less and having optical characteristics of emitting laser light having an optical output of about 15 W or more and about 30 W or less.
  • the input current to a semiconductor laser device having an aperture width of 90 ⁇ m or more and 300 ⁇ m or less and a resonator length of 2000 ⁇ m or more and 6000 ⁇ m or less shall be about 15 A or more and 40 A or less, and the input voltage shall be about 1.6 V or more and 3 V or less. Therefore, it is possible to realize a semiconductor laser device having a wavelength in a band of about 800 nm or more and 820 nm or less and having optical characteristics of emitting laser light having an optical output of about 15 W or more and about 30 W or less.
  • the input current to a semiconductor laser device having an aperture width of 90 ⁇ m or more and 300 ⁇ m or less and a resonator length of 2000 ⁇ m or more and 6000 ⁇ m or less shall be about 15 A or more and 40 A or less, and the input voltage shall be about 1.5 V or more and 3 V or less. Therefore, it is possible to realize a semiconductor laser device having a wavelength in a band of about 850 nm or more and 900 nm or less and having optical characteristics of emitting laser light having an optical output of about 15 W or more and about 30 W or less.
  • the input current to a semiconductor laser device having an aperture width of 90 ⁇ m or more and 300 ⁇ m or less and a resonator length of 2000 ⁇ m or more and 6000 ⁇ m or less shall be about 15 A or more and 50 A or less, and the input voltage shall be about 1.45 V or more and 3 V or less. Therefore, it is possible to realize a semiconductor laser device having a wavelength in a band of about 900 nm or more and 930 nm or less and having optical characteristics of emitting laser light having an optical output of about 15 W or more and 40 W or less.
  • the input current to a semiconductor laser device having an aperture width of 90 ⁇ m or more and 300 ⁇ m or less and a resonator length of 2000 ⁇ m or more and 6000 ⁇ m or less shall be about 15 A or more and 50 A or less, and the input voltage shall be about 1.4 or more and 3 V or less. Therefore, it is possible to realize a semiconductor laser device having a wavelength in a band of about 930 nm or more and 960 nm or less and having optical characteristics of emitting laser light having an optical output of about 15 W or more and 40 W or less.
  • the input current to a semiconductor laser device having an aperture width of 4 ⁇ m or more and 300 ⁇ m or less and a resonator length of 2000 ⁇ m or more and 6000 ⁇ m or less shall be about 1 A or more and 50 A or less, and the input voltage shall be about 1.4 or more and 3 V or less. Therefore, it is possible to realize a semiconductor laser device having a wavelength in the band of about 960 nm or more and 990 nm or less and having optical characteristics of emitting laser light having an optical output of about 1 W or more and 40 W or less.
  • the semiconductor laser device 1A according to this modification has a ridge portion 200A, it is possible to suppress deterioration of characteristics when the semiconductor laser device 1A is mounted on a submount or the like. This point will be described below.
  • the influence of the shear strain generated at the widthwise end of the semiconductor laser device 1 on the optical waveguide becomes large when the semiconductor laser device 1 is mounted on the submount.
  • the polarization plane of the laser beam propagating in the optical waveguide is tilted and becomes elliptically polarized, resulting in a decrease in the polarization ratio.
  • the ridge portion 200A is provided and the optical waveguide is made into a ridge type as in the semiconductor laser device 1A according to the present modification, the shear stress generated in the ridge portion 200A when the semiconductor laser device 1A is mounted at the junction down. And the shear stress generated at the widthwise end of the semiconductor laser device cancel each other out, and the shear stress generated in the optical waveguide is reduced. As a result, it is possible to prevent the polarization plane of the laser beam propagating in the optical waveguide from being tilted and the polarization ratio from being lowered.
  • FIG. 22 is a diagram showing a state when the semiconductor laser device 1A according to the present modification is mounted on the submount 2 at the junction down.
  • the submount 2 one having a larger coefficient of thermal expansion than that of the semiconductor laser device 1A is used.
  • the coefficient of thermal expansion of each semiconductor material constituting the semiconductor laser device 1A is 5.35 ⁇ 10-6 for GaAs, 3.4 ⁇ 10-6 for AlAs, and 4.33 ⁇ 10-6 for InAs.
  • GaN is 5.59 ⁇ 10-6
  • AlN is 4.15 ⁇ 10-6
  • InN is 2.85 ⁇ 10-6 . Therefore, as the submount 2, a material containing a metal material or a ceramic material as a main constituent material is used.
  • the main constituent material of the submount 2 Cu (coefficient of thermal expansion 16.8 ⁇ 10 -6), Ti (thermal expansion coefficient of 8.4 ⁇ 10 -6), Pt (thermal expansion coefficient of 8.4 ⁇ 10 -6 ), Au (coefficient of thermal expansion 14.2 ⁇ 10-6 ), Ni (coefficient of thermal expansion 13.4 ⁇ 10-6 ), SiC (coefficient of thermal expansion 6.6 ⁇ 10-6 ) can be used.
  • the semiconductor laser device 1A when the semiconductor laser device 1A is mounted on the submount 2 by junction down (face down), the semiconductor laser device 1A is caused by the difference in thermal expansion coefficient between the semiconductor laser device 1A and the submount 2.
  • a shear stress ( ⁇ 1) generated at the widthwise end of the semiconductor laser device 1 and a shear stress ( ⁇ 2) generated at the ridge portion 200A are added to the active layer 40 of the above.
  • the submount 2 shifts the semiconductor laser device 1A in the horizontal direction (X direction in FIG. 22). Stress is generated in the semiconductor laser device 1A so as to shrink.
  • the shear stress ( ⁇ 1L) generated at the left end portion in the width direction of the semiconductor laser apparatus 1A and the left side of the ridge portion 200A are opposite to each other. Therefore, the shear stresses cancel each other out, and the magnitude thereof becomes smaller.
  • the shear stress generated at the widthwise end of the semiconductor laser apparatus 1A when mounted on the submount 2 is the shear stress due to the groove on the side of the ridge portion. Since it can be canceled by, the influence of shear stress on the light distribution can be reduced. As a result, it is possible to prevent the polarization plane of the laser beam propagating in the optical waveguide from being tilted and the polarization ratio from being lowered.
  • the Al composition of the P-type clad layer 60 should be 0.8 or more. For example, it is effective because the exudation of the light distribution into the P-type clad layer 60 can be reduced. If the Al composition is increased to 0.9 or more, the lattice irregularity with the GaAs substrate may increase and the crystallinity may decrease due to the occurrence of lattice defects. Therefore, the Al composition should be 0.8 or more and 0.9 or less. Just do it.
  • the width of the groove formed on the side of the ridge portion 200A is preferably 10 ⁇ m or more. Thereby, the shear stress outside the ridge portion 200A can be reduced. Specifically, if the width of the groove is widened too much, the load at the time of mounting is concentrated on the ridge portion 200A which is the current injection region, so that the width of the groove is preferably 25 ⁇ m ⁇ 15 ⁇ m. By forming a groove having such a width, rotation of the polarizing surface due to shear stress can be effectively suppressed.
  • the semiconductor laser device 1A is mounted on the submount 2 by junction down, but the present invention is not limited to this.
  • the semiconductor laser device 1A may be mounted on a support substrate such as a submount 2 by junction up (face up).
  • the semiconductor laser device 1 in the above embodiment may be mounted by either a junction down method or a junction up method.
  • the semiconductor laser device may be made of an AlGaInP-based semiconductor material.
  • the semiconductor laser device made of an AlGaInP-based semiconductor material has, for example, an N-type buffer layer 11 and an N-type clad layer 20 on a substrate 10 which is an n-type GaAs substrate.
  • the N-type guide layer 30, the active layer 40, the P-type guide layer 50, the P-type clad layer 60, the intermediate layer 64, the P-type contact layer 70, the insulating film 100A, and the P-side electrode 91 may be sequentially laminated.
  • the intermediate layer 64 has a structure in which the first intermediate layer 61, the second intermediate layer 62, and the third intermediate layer 63 are sequentially laminated.
  • the N-type buffer layer 11 is AlGaAs or GaAs (film thickness: 0.5 ⁇ m, Si impurity concentration: 3 ⁇ 10 17 cm -3 ).
  • the N-type clad layer 20 is (Al X Ga 1-X ) 0.5 In 0.5 P (thickness: 3.6 ⁇ m, Al composition: 0.18, Si impurity concentration: 2 ⁇ 10 18 cm -3 , 6 ⁇ 10 17 cm -3 , 1.4 ⁇ 10 17 cm -3 ), the interface region between the N-type buffer layer 11 and the N-type clad layer 20 is Al x Ga 1-x As, and the film thickness is At 75 nm, the Al composition continuously changes from 0 to 0.31 and the impurity concentration is 3 ⁇ 10 17 cm- 3 .
  • the N-type guide layer 30 is (Al X Ga 1-X ) 0.5 In 0.5 P (thickness: 85 nm, Al composition: zero, active layer 40 side 80 nm: undoped, Si impurity concentration in the remaining portion: At 1 ⁇ 10 17 cm -3 ), the interface region between the N-type clad layer 20 and the N-type guide layer 30 has a film thickness of 20 nm, and the Al composition continuously changes from 0.18 to 0.
  • the N-side second barrier layer 42b is AlGaAs (thickness: 6.5 nm, Al composition: 0.59, undoped), and the N-side first barrier layer 42a is AlGaAs (thickness: 3.5 nm).
  • the well layer 41 is GaInAs (thickness: 8.5 nm, In composition: 0.12)
  • the P-side first barrier layer 43a is AlGaAs (thickness: 3.5 nm).
  • the P-side second barrier layer 43b is AlGaAs (thickness: 17.5 nm, Al composition: 0.59, undoped).
  • the P-type guide layer 50 is (Al X Ga 1-X ) 0.5 In 0.5 P (thickness: 0.17 ⁇ m, Al composition: zero, active layer 40 side 50 nm: undoped, C impurities in the remaining portion. Concentration: 5 ⁇ 10 17 cm -3 ), the P-type clad layer 60 is (Al X Ga 1-X ) 0.5 In 0.5 P (thickness: 0.6 ⁇ m, Al composition: 0.69, C impurity concentration: 5 ⁇ 10 17 cm -3 , 1.2 ⁇ 10 18 cm -3 ), the interface region between the P-type guide layer 50 and the P-type clad layer 60 has a film thickness of 50 nm and is Al. The composition continuously changes from 0 to 0.69, and the C impurity concentration is: 5 ⁇ 10 17 cm -3 ).
  • the first intermediate layer 61 is (Al X Ga 1-X ) 0.5 In 0.5 P (thickness: 0.2 ⁇ m, Al composition: 0.30, C impurity concentration: 1.2. ⁇ 10 18 cm -3 )
  • the second intermediate layer 62 is (Al X Ga 1-X ) 0.5 In 0.5 P (thickness: 0.038 ⁇ m, Al composition: zero, C impurity concentration: 1.
  • the third intermediate layer 63 continuously changes from AlGaAs (thickness: 0.05 ⁇ m, Al composition gradient: 0.52 to 0, C impurity concentration: 1.2 ⁇ 10). It is 18 cm -3 ).
  • the P-type contact layer 70 is GaAs (film thickness: 0.4 ⁇ m, C impurity concentration: 2 ⁇ 10 18 cm -3 ).
  • the semiconductor laser device also has the same effect as that of the first embodiment. For example, even if the well layer 41 is made thicker, it is possible to suppress the deterioration of the temperature characteristics and the deterioration of the long-term reliability, and the inhibition of the effect of improving the COD level.
  • the semiconductor laser device according to the present modification shown in FIG. 23 can also obtain the following effects.
  • the semiconductor laser device according to this modification is made of an AlGaInP-based semiconductor material having a higher bandgap energy than the AlGaAs-based semiconductor material, a high potential barrier can be obtained. As a result, carriers that leak beyond the active layer 40 to the P-type guide layer 50 can be suppressed, so that the slope efficiency can be improved and a semiconductor laser device that can be driven by high-temperature and high-output operation can be obtained.
  • the semiconductor laser device (element) can be aligned. Warpage is reduced. By reducing this warpage, even when asymmetric distortion occurs in the semiconductor laser device during junction-down mounting, the generated asymmetric distortion can be reduced, so that the current block layer is made of an oxide film.
  • the effect of the insulating film 100A that is, the effect of canceling the shear stress generated at the end of the semiconductor laser device by the shear stress due to the ridge shape can be enhanced.
  • the intermediate layer 64 can suppress an increase in the drive voltage of the semiconductor laser device. Specifically, since the Al composition is gradually reduced by the first intermediate layer 61 and the second intermediate layer 62 in the intermediate layer 64, the bandgap energy difference generated when AlGaInP and GaAs are joined is minimized. It is possible to suppress an increase in the drive voltage. Further, by providing the inclined layer of AlGaAs Al composition by the third intermediate layer 63, the bandgap energy of the hetero interface can be smoothed and the increase of the driving voltage can be suppressed.
  • a constricted structure is formed in a plurality of semiconductor layers constituting the semiconductor laminate, and the side surface of the semiconductor laminate is an inclined surface, but the present invention is not limited to this.
  • the semiconductor laser device of the present disclosure is, for example, as a high-power light source, a light source of an image display device such as a display or a projector, a light source of an in-vehicle head lamp, a light source of industrial lighting or consumer lighting, or a laser welding device or a thin film. It can be applied to light sources for various purposes such as light sources for industrial equipment such as annealing equipment and laser processing equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

半導体レーザ装置(1)は、N型クラッド層(20)と、活性層(40)と、P型クラッド層(60)とを備え、活性層(40)は、ウェル層(41)と、ウェル層(41)の上方に配置されるP側第1バリア層(43a)と、P側第1バリア層(43a)の上方に配置されるP側第2バリア層(43b)とを有する。P側第2バリア層(43b)のAl組成比は、P側第1バリア層(43a)のAl組成比よりも高く、P側第2バリア層(43b)のバンドギャップエネルギーは、P側第1バリア層(43a)のバンドギャップエネルギーよりも大きい。半導体レーザ装置(1)は、前端面(1a)近傍のウェル層(41)のバンドギャップエネルギーが、共振器長方向の中央部のウェル層(41)のバンドギャップエネルギーよりも大きい端面窓構造を有する。

Description

半導体レーザ装置及び半導体レーザ装置の製造方法
 本開示は、半導体レーザ装置及び半導体レーザ装置の製造方法に関する。
 半導体レーザ素子は、ディスプレイやプロジェクタなどの画像表示装置の光源、車載ヘッドランプの光源、産業用照明や民生用照明の光源、又は、レーザ溶接装置や薄膜アニール装置、レーザ加工装置などの産業機器の光源など、様々な用途の光源として注目されている。
 中でも、プロジェクタ、レーザ加工装置又はレーザ溶接装置の光源に用いられる半導体レーザ素子には、光出力が1ワットを大きく超える高出力特性が要望されている。例えば、レーザ溶接装置の光源に用いられる波長915nm帯の半導体レーザ素子には、25W以上の高出力特性が要望されている。
 半導体レーザ素子は、例えば、基板と、基板の上方に配置されたN型クラッド層と、N型クラッド層の上方に配置され、ウェル層及びバリア層を有する活性層と、活性層の上方に配置されたP型クラッド層とを備える(例えば、特許文献1)。
 発振レーザ波長が900nm~980nmの半導体レーザ素子においては、ウェル層をInGaAsとしバリア層をAlGaAsとした量子井戸構造の活性層が広く用いられている。
特開昭62-249496号公報
 半導体レーザ素子をワット級に高出力化するには、熱飽和レベルを向上させたり、COD(Catastrophic Optical Damage:端面破壊)レベルを向上させたりすることが考えられる。
 しかしながら、CODレベルを向上させるために半導体レーザ素子の端面部に窓領域を形成し、さらに、熱飽和レベルを向上させるために活性層のウェル層を厚くすると、温度特性が劣化したり長期信頼性が低下したり、CODレベルの向上効果が阻害されたりする。
 本開示は、このような課題を解決するものであり、端面窓構造を有する半導体レーザ装置において、ウェル層を厚くしたとしても、温度特性の劣化と長期信頼性の低下とを抑制しつつ、CODレベルの向上効果が阻害されることを抑制できる半導体レーザ装置及びその製造方法を提供することを目的とする。
 上記課題を解決するために、本開示に係る半導体レーザ装置の一態様は、レーザ光を出射する半導体レーザ装置であって、基板と、前記基板の上方に配置されるN型クラッド層と、前記N型クラッド層の上方に配置される活性層と、前記活性層の上方に配置されるP型クラッド層とを備え、前記活性層は、ウェル層と、前記ウェル層の上方に配置されるP側第1バリア層と、前記P側第1バリア層の上方に配置されるP側第2バリア層とを有し、前記P側第2バリア層のAl組成比は、前記P側第1バリア層のAl組成比よりも高く、前記P側第2バリア層のバンドギャップエネルギーは、前記P側第1バリア層のバンドギャップエネルギーよりも大きく、前記半導体レーザ装置は、前記レーザ光が出射する端面近傍の前記ウェル層のバンドギャップエネルギーが、共振器長方向の中央部の前記ウェル層のバンドギャップエネルギーよりも大きい端面窓構造を有する。
 本開示によれば、端面窓構造を有する半導体レーザ装置において、ウェル層を厚くしたとしても、温度特性の劣化と長期信頼性の低下とを抑制しつつ、CODレベルの向上効果が阻害されることを抑制できる。
図1は、実施の形態に係る半導体レーザ装置の上面図である。 図2Aは、図1のIIA-IIA線における実施の形態に係る半導体レーザ装置の断面図である。 図2Bは、図1のIIB-IIB線における実施の形態に係る半導体レーザ装置の断面図である。 図2Cは、図1のIIC-IIC線における実施の形態に係る半導体レーザ装置の断面図である。 図3Aは、実施の形態に係る半導体レーザ装置の製造方法における半導体層積層工程を説明するための図である。 図3Bは、実施の形態に係る半導体レーザ装置の製造方法における電流注入領域形成工程を説明するための図である。 図3Cは、実施の形態に係る半導体レーザ装置の製造方法における埋込工程を説明するための図である。 図3Dは、実施の形態に係る半導体レーザ装置の製造方法における窓領域形成工程を説明するための図である。 図3Eは、実施の形態に係る半導体レーザ装置の製造方法における溝形成工程を説明するための図である。 図3Fは、実施の形態に係る半導体レーザ装置の製造方法における絶縁膜形成工程を説明するための図である。 図3Gは、実施の形態に係る半導体レーザ装置の製造方法におけるP側電極形成工程を説明するための図である。 図3Hは、実施の形態に係る半導体レーザ装置の製造方法におけるN側電極形成工程を説明するための図である。 図4は、実施の形態に係る半導体レーザ装置について、実施例1、実施例2及び実施例3の3つの実施例における各半導体層の組成、膜厚及び不純物濃度の具体例を示す図である。 図5Aは、実施例1の半導体レーザ装置における半導体積層体の不純物濃度プロファイルとバンド構造とを示す図である。 図5Bは、実施例2の半導体レーザ装置における半導体積層体の不純物濃度プロファイルとバンド構造とを示す図である。 図5Cは、実施例3の半導体レーザ装置における半導体積層体の不純物濃度プロファイルとバンド構造とを示す図である。 図5Dは、実施例4の半導体レーザ装置における半導体積層体の不純物濃度プロファイルとバンド構造とを示す図である。 図5Eは、実施例5の半導体レーザ装置における半導体積層体の不純物濃度プロファイルとバンド構造とを示す図である。 図6は、実施の形態に係る半導体レーザ装置の作用及び効果を説明するための図である。 図7Aは、実施の形態に係る半導体レーザ装置において、光閉じ込め率のAl組成傾斜領域長の依存性を示す図である。 図7Bは、実施の形態に係る半導体レーザ装置において、導波路損失のAl組成傾斜領域長の依存性を示す図である。 図8Aは、実施の形態に係る半導体レーザ装置において、光閉じ込め率のP型不純物濃度の依存性を示す図である。 図8Bは、実施の形態に係る半導体レーザ装置において、導波路損失のP型不純物濃度の依存性を示す図である。 図9は、実施の形態に係る半導体レーザ装置におけるN側第1バリア層とP側第1バリア層との膜厚について、光閉じ込め率に対する導波路損失の関係を示す図である。 図10は、実施の形態に係る半導体レーザ装置におけるN側第2バリア層とP側第2バリア層との膜厚について、光閉じ込め率に対する導波路損失の関係を示す図である。 図11Aは、実施の形態に係る半導体レーザ装置のP型ガイド層についてのポテンシャル障壁のP型不純物濃度の依存性を示す図である。 図11Bは、実施の形態に係る半導体レーザ装置のP型ガイド層についての電子電流密度のP型不純物濃度の依存性を示す図である。 図12Aは、実施の形態に係る半導体レーザ装置のP型半導体層についてのポテンシャル障壁のP型不純物濃度の依存性を示す図である。 図12Bは、実施の形態に係る半導体レーザ装置のP型半導体層についての電子電流密度のP型不純物濃度の依存性を示す図である。 図13Aは、実施例1の半導体レーザ装置のP型半導体層についてのポテンシャル障壁のP型不純物濃度の依存性を示す図である。 図13Bは、実施例1の半導体レーザ装置のP型半導体層についての電子電流密度のP型不純物濃度の依存性を示す図である。 図14Aは、実施例3の半導体レーザ装置のP型ガイド層についてのポテンシャル障壁のAl組成の依存性を示す図である。 図14Bは、実施例3の半導体レーザ装置のP型ガイド層についての電子電流密度のAl組成の依存性を示す図である。 図15Aは、実施の形態に係る半導体レーザ装置において、ウェル層のN側の界面から100nmの位置での正孔電流密度のN型不純物濃度の依存性を示す図である。 図15Bは、実施の形態に係る半導体レーザ装置において、N型クラッド層基板側界面の位置での正孔電流密度のN型不純物濃度の依存性を示す図である。 図16Aは、実施の形態に係る半導体レーザ装置において、N型半導体層におけるN型不純物濃度分布の第1の例を示す図である。 図16Bは、実施の形態に係る半導体レーザ装置において、N型半導体層におけるN型不純物濃度分布の第2の例を示す図である。 図16Cは、実施の形態に係る半導体レーザ装置において、N型半導体層におけるN型不純物濃度分布の第3の例を示す図である。 図16Dは、実施の形態に係る半導体レーザ装置において、N型半導体層におけるN型不純物濃度分布の第4の例を示す図である。 図17は、P側第1バリア層及びN側第2バリア層のAl組成が0.06である場合における、ヘビーホール及びライトホール量子準位エネルギーのウェル層のAl組成の依存性を示す図である。 図18は、P側第1バリア層及びN側第2バリア層のAl組成が0.12である場合における、ヘビーホール及びライトホール量子準位エネルギーのウェル層のAl組成の依存性を示す図である。 図19は、P側第1バリア層及びN側第2バリア層のAl組成が0.18である場合における、ヘビーホール及びライトホール量子準位エネルギーのウェル層のAl組成の依存性を示す図である。 図20は、変形例に係る半導体レーザ装置の上面図である。 図21Aは、図20のXXIA-XXIA線における実施の形態に係る半導体レーザ装置の断面図である。 図21Bは、図20のXXIB-XXIB線における実施の形態に係る半導体レーザ装置の断面図である。 図21Cは、図20のXXIC-XXIC線における実施の形態に係る半導体レーザ装置の断面図である。 図22は、変形例に係る半導体レーザ装置をジャンクションダウンでサブマウントに実装したときの様子を示す図である。 図23は、他の変形例に係る半導体レーザ装置の断面図である。
 (本開示の一態様を得るに至った経緯)
 まず、本開示の実施の形態の説明に先立ち、本開示の一態様を得るに至った経緯を説明する。
 半導体レーザ素子をワット級に高出力化するには、熱飽和レベルを向上させたり、CODレベルを向上させたり、長共振器長化によって熱抵抗を低減したりすることが考えられる。
 具体的には、熱飽和レベルを向上させるには、ウェル層を厚くすることでウェル層への光閉じ込め係数を大きくして発振しきい値を低減したり、AlGaAsからなるバリア層のAl組成を高めて伝導帯バンドオフセット(ΔEc)を大きくすることで電位障壁を高くして電子オーバーフローの発生を抑制したり、共振器長を長くして長共振器長化することで動作キャリア密度を低減したりすることが考えられる。
 また、CODレベルを向上させるには、レーザ光の出射端面である前端面側の端面部に窓領域を形成し、半導体レーザ素子に端面窓構造を持たせることが考えられる。端面窓構造は、空孔拡散、不純物拡散又はイオン注入などよって端面部におけるバリア層及びウェル層の原子配列を無秩序化することで形成することができる。
 しかしながら、ウェル層への光閉じ込め係数を大きくしようとしてウェル層を厚くすると、バリア層及びウェル層の原子配列を無秩序化しにくくなり、窓領域を形成することが難しくなる。
 そこで、窓領域を形成する際のアニール温度を高くすることで、ウェル層とバリア層との間の原子の相互交換を促進して原子配列を無秩序化させることが考えられる。
 しかしながら、窓領域を形成する際のアニール温度を高くすると、窓領域の形成を意図していない利得部での活性層におけるウェル層とバリア層との間においても原子交換が生じてしまう。この結果、利得部でのバンドギャップエネルギー(Eg)が増大することとなり、利得部における漏れ電流が増大して温度特性が劣化したり、結晶成長時に導入される空孔又は成長層表面のダングリングボンドに起因する成長層表面の空孔が拡散しやすくなって発振波長制御性が低下して長期信頼性が低下したりする。具体的には、バンドギャップエネルギーが増大すると、利得部における量子井戸層の遷移波長が短波長化する。
 さらに、窓領域を形成する際のアニール温度を高くすると、窓領域の形成を意図した領域(窓部)と窓領域の形成を意図していない領域(利得部)との境界に形成される遷移領域が長くなりやすくなる。この結果、遷移領域での光吸収によって窓領域によるCODレベルの向上効果が阻害される。
 このように、CODレベルを向上させるために半導体レーザ素子の端面部に窓領域を形成し、さらに、熱飽和レベルを向上させるために活性層のウェル層を厚くすると、温度特性が劣化したり長期信頼性が低下したり、CODレベルの向上効果が阻害されたりするという課題がある。
 本開示は、このような課題を解決するためになされたものであり、端面窓構造を有する半導体レーザ装置において、ウェル層を厚くしたとしても、温度特性の劣化と長期信頼性の低下とを抑制しつつ、CODレベルの向上効果が阻害されることを抑制できる半導体レーザ装置及びその製造方法を提供することを目的とする。
 また、熱抵抗を低減させるために長共振器長化すると、半導体レーザ素子を実装するときの実装歪によるバンド構造変化の影響を受けやすくなるので、偏光比が低下しやすくなるという課題もある。
 したがって、本開示は、長共振器長化しても、偏光比が低下することを抑制できる半導体レーザ装置及びその製造方法を提供することも目的としている。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、及び、構成要素の配置位置や接続形態などは、一例であって本開示を限定する主旨ではない。
 また、各図は模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 また、本明細書において、「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を示すものではなく、積層構成における積層順をもとにした相対的な位置関係により規定される用語として用いられる。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに接する状態で配置される場合にも適用される。
 (実施の形態)
 [半導体レーザ装置の層構成]
 まず、実施の形態に係る半導体レーザ装置1の層構成について、図1、図2A、図2B及び図2Cを用いて説明する。図1は、実施の形態に係る半導体レーザ装置1の上面図である。図2Aは、図1のIIA-IIA線における同半導体レーザ装置1の断面図であり、図2Bは、図1のIIB-IIB線における同半導体レーザ装置1の断面図であり、図2Cは、図1のIIC-IIC線における同半導体レーザ装置1の断面図である。なお、図2Aは、半導体レーザ装置1の利得部における断面を示しており、図2Bは、半導体レーザ装置1の前端面1a側の端面部における断面を示している。
 半導体レーザ装置1は、レーザ光を出射する半導体レーザ素子であって、基板と、基板の上方に配置された複数の半導体層からなる半導体積層体(半導体積層構造)とを備える。具体的には、半導体レーザ装置1は、図1~図2Cに示すように、半導体積層体を構成する半導体層として、基板10の上方に配置されるN型クラッド層20と、N型クラッド層20の上方に配置される活性層40と、活性層40の上方に配置されるP型クラッド層60とを備える。
 半導体レーザ装置1は、さらに、半導体積層体を構成する半導体層として、N型クラッド層20と活性層40との間に配置されるN型ガイド層30と、活性層40とP型クラッド層60との間に配置されるP型ガイド層50と、P型クラッド層60の上方に配置されるP型コンタクト層70と、電流ブロック層80とを備える。
 また、半導体レーザ装置1は、半導体積層体に接続されたP側電極91及びN側電極92と、半導体積層体の少なくとも一部を覆う絶縁膜100とを備える。
 本実施の形態に係る半導体レーザ装置1は、波長が900nm~980nmのレーザ光を出射する半導体レーザ素子であり、例えば、半導体レーザ装置1における半導体積層体は、AlGaInAs系材料からなるIII-V族化合物半導体によって構成されている。一例として、半導体レーザ装置1は、波長915nm帯のレーザ光を出射する。また、詳細は後述するが、半導体レーザ装置1は、半導体積層体に窓領域120が形成された端面窓構造を有する。
 以下、本実施の形態に係る半導体レーザ装置1の各構成要素について、詳細に説明する。
 基板10は、主面が一様に平面である平面状の基板である。基板10は、GaAs基板等の半導体基板又はサファイア基板等の絶縁基板である。本実施の形態において、基板10は、n型GaAs基板である。なお、基板10とN型クラッド層20との間にバッファ層が形成されていてもよい。バッファ層は、例えばn型GaAs層であり、基板10に積層される。
 N型クラッド層20は、基板10の上方に形成される。基板10の上にバッファ層が形成されている場合、N型クラッド層20は、バッファ層の上に形成される。N型クラッド層20は、不純物が意図的にドーピングされたN型の半導体層であり、例えばn型AlGaAs層である。N型クラッド層20にドーピングされる不純物は、例えばシリコン(Si)である。
 N型ガイド層30は、N型クラッド層20と活性層40のN側第2バリア層42bとの間に配置されている。具体的には、N型ガイド層30は、N型クラッド層20の上に形成されている。N型ガイド層30は、不純物が意図的にドーピングされたN型の半導体層であり、例えばn型AlGaAs層である。N型ガイド層30にドーピングされる不純物は、例えばシリコン(Si)である。
 活性層40は、発光層を含む半導体層であり、N型クラッド層20とP型クラッド層60との間に位置している。具体的には、活性層40は、N型ガイド層30とP型ガイド層50との間に位置している。本実施の形態において、活性層40は、N型ガイド層30の上に形成される。
 活性層40は、ウェル層41と、ウェル層41の下方に配置されるN側第1バリア層42aと、N側第1バリア層42aの下方に配置されるN側第2バリア層42bと、ウェル層41の上方に配置されるP側第1バリア層43aと、P側第1バリア層43aの上方に配置されるP側第2バリア層43bとを有する。
 ウェル層41は、N側第1バリア層42aとP側第1バリア層43aとの間に位置しており、N側第1バリア層42aとP側第1バリア層43aとに接している。具体的には、ウェル層41は、N側第1バリア層42aの上に形成される。
 ウェル層41(井戸層)は、例えば、単一の量子井戸層を含む単一量子井戸構造である。ウェル層41は、例えば、アンドープのGaInAs層である。なお、ウェル層41は、単一量子井戸構造に限らず、複数の量子井戸層を含む多重量子井戸構造であってもよい。なお、本実施の形態において、ウェル層41の厚さは、厚くなっており、例えば6nm以上である。
 N側第1バリア層42aとN側第2バリア層42bとは、N型クラッド層20とウェル層41との間に位置しており、ウェル層41からN型クラッド層20に向かってこの順で配置されている。具体的には、N側第1バリア層42aとN側第2バリア層42bとは、N型ガイド層30とウェル層41との間に位置している。
 N側第1バリア層42aは、N側第2バリア層42bの上に形成される。本実施の形態において、N側第1バリア層42aは、不純物が意図的にドーピングされたN型の半導体層であり、例えばn型AlGaAs層である。N側第1バリア層42aにドーピングされる不純物は、例えばシリコン(Si)である。
 N側第1バリア層42aは、不純物がドーピングされたドープ領域以外に、不純物がドーピングされていないアンドープ領域を有していてもよい。この場合、N側第1バリア層42aは、ウェル層41に近い側の領域にアンドープ領域を有し、ウェル層41から遠い側にドープ領域を有しているとよい。N側第1バリア層42aのアンドープ領域の膜厚は、5nm以上であるとよい。ウェル層41近傍のN側第1バリア層42aに不純物をドーピングすると半導体レーザ装置の直列抵抗が低減するが、フリーキャリア損失が発生し導波路損失が増大する。アンドープ領域の膜厚が厚くなり過ぎると半導体レーザ装置の直列抵抗が増大するため、直列抵抗の増大を抑制しつつ不純物のドーピングによるフリーキャリア損失の増大を抑制するためには、アンドープ領域の膜厚は5nm以上、40nm以下とすればよい。N型ガイド層30における不純物のドーピング濃度がウェル層41から遠ざかる方向に徐々に増大するように変化している場合は、このアンドープ領域の膜厚を最大20nm以下としても導波路損失の増大を抑制することができる。
 N側第1バリア層42aの下に位置するN側第2バリア層42bは、N型ガイド層30の上に形成される。本実施の形態において、N側第2バリア層42bは、不純物が意図的にドーピングされたN型の半導体層であり、例えばn型AlGaAs層である。N側第2バリア層42bにドーピングされる不純物は、例えばシリコン(Si)である。
 P側第1バリア層43aとP側第2バリア層43bとは、ウェル層41とP型クラッド層60との間に位置しており、ウェル層41からP型クラッド層60に向かってこの順で配置されている。具体的には、P側第1バリア層43aとP側第2バリア層43bとは、ウェル層41とP型ガイド層50との間に位置している。
 P側第1バリア層43aは、ウェル層41の上に形成される。本実施の形態において、P側第1バリア層43aは、不純物が意図的にドーピングされたP型の半導体層であり、例えばP型AlGaAs層である。P側第1バリア層43aにドーピングされる不純物は、例えば炭素(C)である。
 P側第1バリア層43aは、不純物がドーピングされたドープ領域以外に、不純物がドーピングされていないアンドープ領域を有していてもよい。この場合、P側第1バリア層43aは、ウェル層41に近い側の領域にアンドープ領域を有し、ウェル層41から遠い側にドープ領域を有しているとよい。P側第1バリア層43aのアンドープ領域の膜厚は、5nm以上であるとよい。ウェル層41近傍のP側第1バリア層43aに不純物をドーピングすると半導体レーザ装置の直列抵抗が低減するが、フリーキャリア損失が発生し導波路損失が増大する。アンドープ領域の膜厚が厚くなり過ぎると半導体レーザ装置の直列抵抗が増大するため、直列抵抗の増大を抑制しつつ不純物のドーピングによるフリーキャリア損失の増大を抑制するためには、アンドープ領域の膜厚は5nm以上、40nm以下とすればよい。P型ガイド層における不純物のドーピング濃度がウェル層41から遠ざかる方向に徐々に増大するように変化している場合は、このアンドープ領域の膜厚を最大20nm以下としても導波路損失の増大を抑制することができる。
 P側第2バリア層43bは、P側第1バリア層43aの上に形成される。本実施の形態において、P側第2バリア層43bは、不純物が意図的にドーピングされたP型の半導体層であり、例えばP型AlGaAs層である。P側第2バリア層43bにドーピングされる不純物は、例えば炭素(C)である。
 P型ガイド層50は、活性層40のP側第2バリア層43bとP型クラッド層60との間に配置されている。具体的には、P型ガイド層50は、P側第2バリア層43bの上に形成されている。P型ガイド層50は、不純物が意図的にドーピングされたP型の半導体層であり、例えばP型AlGaAs層である。P型ガイド層50にドーピングされる不純物は、例えば炭素(C)である。
 P型クラッド層60は、P型ガイド層50の上に形成される。P型クラッド層60は、不純物が意図的にドーピングされたP型の半導体層であり、例えばP型AlGaAs層である。不純物としてCがドーピングされている。P型クラッド層60にドーピングされる不純物は、例えば炭素(C)である。
 P型コンタクト層70は、P型クラッド層60の上に形成される。P型コンタクト層70は、P型クラッド層60とP側電極91との間に形成される。P型コンタクト層70は、不純物が意図的にドーピングされたP型の半導体層であり、例えばP型GaAs層である。
 本実施の形態において、P型コンタクト層70は、P型クラッド層60側から順に第1コンタクト層71と第2コンタクト層72とが積層された積層膜である。一例として、第1コンタクト層71は、膜厚0.2μmのP型GaAs層である。また、第2コンタクト層72は、膜厚1μmのP型GaAs層であり、電流ブロック層80の開口部80aを埋めるように、第1コンタクト層71上及び電流ブロック層80上に形成される。
 電流ブロック層80は、P型コンタクト層70の内部に設けられている。具体的には、電流ブロック層80は、P型コンタクト層70の第1コンタクト層71上に形成されている。本実施の形態において、電流ブロック層80は、不純物が意図的にドーピングされたP型の半導体層によって構成されている。具体的には、電流ブロック層80は、不純物としてシリコン(Si)がドーピングされたn型GaAs層である。
 電流ブロック層80は、電流注入領域を画定するための開口部80aを有する。電流ブロック層80の開口部80aは、半導体レーザ装置1の共振器長方向に沿って直線状に延在している。電流ブロック層80の開口部80aは、半導体レーザ装置1の利得部に存在するが、半導体レーザ装置1の端面部には存在しない。したがって、図2Aに示すように、半導体レーザ装置1の利得部では、電流ブロック層80は、第1コンタクト層71の中央部を覆っていない。一方、図2Bに示すように、半導体レーザ装置1の端面部では、電流ブロック層80の開口部80aが形成されていないので、電流ブロック層80は、第1コンタクト層71の全体を覆っている。
 このように、P型コンタクト層70の内部にN型の電流ブロック層80を設けることで、電流ブロック層80によって電流閉じ込めを行って電流注入領域となる第1コンタクト層71における発熱により活性層40の水平方向に対して実効屈折率ステップが形成される。これにより、水平方向の光閉じ込めを行うことができる。
 P側電極91は、P型クラッド層60側に配置されており、P型コンタクト層70に接続されている。具体的には、P側電極91は、P型コンタクト層70の上に形成されている。P側電極91は、例えば、Pt、Ti、Cr、Ni、Mo及びAuの少なくとの一つの金属を含む。
 本実施の形態において、P側電極91は、複数層によって構成されている。具体的には、P側電極91は、第1P電極層91aとめっき層91bと第2P電極層91cとの3層によって構成されている。第1P電極層91a、めっき層91b及び第2P電極層91cは、P型コンタクト層70の上にこの順で積層されている。また、第1P電極層91aと第2P電極層91cとは、さらに複数膜によって構成されており、例えば、それぞれ、Ti/Pt/Auの3層構造である。また、めっき層91bは、Auめっき膜である。
 また、図2Aに示すように、半導体レーザ装置1の利得部には、第1P電極層91a、めっき層91b及び第2P電極層91cの3層が存在するが、図2Bに示すように、半導体レーザ装置1の端面部には、めっき層91bが存在せず、第1P電極層91a及び第2P電極層91cの2層が存在する。
 N側電極92は、N型クラッド層20側に配置されている。本実施の形態において、N側電極92は、基板10の下面(つまり、基板10の裏側の主面)に形成されている。N側電極92は、例えば、基板10側から順に積層されたAuGe膜、Ni膜、Au膜、Ti膜、Pt膜及びAu膜を含む。
 絶縁膜100は、少なくとも活性層40の側面を覆う誘電体膜である。本実施の形態において、絶縁膜100は、半導体積層体の一対の側面を覆っている。具体的には、絶縁膜100は、N型クラッド層20、N型ガイド層30、活性層40、P型ガイド層50、P型クラッド層60、P型コンタクト層70及び電流ブロック層80の側面を覆っている。絶縁膜100は、例えばSiN又はSiO等の絶縁膜によって構成されており、電流ブロック膜として機能する。
 本実施の形態において、半導体積層体の一対の側面は傾斜する傾斜面であり、絶縁膜100は、少なくとも傾斜面を覆っている。また、半導体積層体の傾斜面は、少なくとも活性層40の側面に形成されている。活性層40の側面が傾斜していることで、活性層40の幅方向の中央部から側面に向かう迷光が、再度中央部に戻ることを低減することができる。したがって、活性層40で発振するレーザ光と迷光との競合を抑制できるため、レーザ駆動動作が安定化する。
 また、絶縁膜100は、開口部100aを有する。絶縁膜100の開口部100aは、半導体レーザ装置1の共振器長方向に沿って直線状に延在している。絶縁膜100の開口部100aは、半導体レーザ装置1の利得部に存在するが、半導体レーザ装置1の端面部には存在しない。したがって、図2Aに示すように、半導体レーザ装置1の利得部では、絶縁膜100は、P型コンタクト層70の端部しか覆っていない。一方、図2Bに示すように、半導体レーザ装置1の端面部では、絶縁膜100の開口部100aが形成されていないので、絶縁膜100は、P型コンタクト層70の全体を覆っている。
 図1及び図2Cに示すように、半導体レーザ装置1は、レーザ光が出射するフロント側の端面である前端面1a(光出射端面)と、前端面1aとは反対側のリア側の端面である後端面1bとを有する。
 半導体レーザ装置1の半導体積層体は、前端面1aと後端面1bとを共振器反射ミラーとした光導波路とを備える。したがって、前端面1a及び後端面1bは、共振器端面となり、半導体レーザ装置1の共振器長は、前端面1aと後端面1bとの間の距離である。本実施の形態において、半導体レーザ装置1の共振器長は、2mm以上と長くなっており、さらに4mm以上であってもよい。なお、半導体レーザ装置1の共振器長は、2mm未満であってもよい。
 光導波路への電流注入領域の幅は、電流ブロック層80の開口部80aにより画定される。電流ブロック層80の開口部80aは、前端面1a及び後端面1bよりも内側に形成されている。つまり、電流注入領域の共振器長方向の端部は、前端面1a及び後端面1bよりも内側に位置している。
 また、半導体レーザ装置1では、半導体積層体の前端面1aに第1端面コート膜111が形成されており、半導体積層体の後端面1bに第2端面コート膜112が形成されている。第1端面コート膜111及び第2端面コート膜112は、誘電体多層膜によって構成された反射膜である。例えば、第1端面コート膜111は、AlとTaとの多層膜であり、第2端面コート膜112は、AlとSiOとTaとの多層膜である。一例として、第1端面コート膜111の反射率は2%であり、第2端面コート膜112の反射率は95%である。
 なお、第1端面コート膜111及び第2端面コート膜112の反射率は、これに限るものではない。例えば、半導体レーザ装置1が外部共振器で構成される半導体レーザモジュールで使用される場合には、第1端面コート膜111の反射率は0.2%以下であってもよい。これにより、半導体レーザ装置1でのレーザ発振モードと外部共振器でのレーザ発振モードとが競合することによるキンク発生等の問題を抑えることができる。
 また、本実施の形態において、半導体レーザ装置1における半導体積層体は、共振器長方向の両端部に端面窓構造を有する。具体的には、活性層40における光導波路の両端面付近の電流非注入領域において、前端面1aから所定の長さの領域に窓領域120が形成されている。窓領域120は、半導体積層体の前端面1a側の端面部に形成されている。なお、半導体積層体の後端面1b側の端面部にも、同様の窓領域が形成されていてもよい。後端面1b側の窓領域は、必ずしも形成されなくてもよい。
 ここで、活性層40において窓領域120が形成されていない領域のフォトルミネッセンスのピークエネルギーをEg1とし、活性層40において窓領域120が形成された領域のフォトルミネッセンスのピークエネルギーEg2とし、Eg1とEg2との差をΔEgとすると、例えば、ΔEg=Eg2-Eg1=100meVの関係になるように窓領域120を形成する。つまり、前端面1a近傍及び後端面1b近傍の領域における活性層40のバンドギャップを、前端面1a近傍及び後端面1b近傍以外の領域における活性層40のバンドギャップよりも大きくしている。具体的には、前端面1a近傍及び後端面1b近傍のウェル層41のバンドギャップエネルギーが、共振器長方向の中央部のウェル層41のバンドギャップエネルギーよりも大きい。
 また、窓領域120を形成するための窓形成方法は、一般に不純物拡散法と空孔拡散法とがあるが、本実施の形態では、空孔拡散法によって窓形成を行っている。これは、1エミッタ当たり10Wを超えるような超高出力の半導体レーザ装置においては、低損失化による光吸収量の低減が重要であるからである。つまり、不純物拡散法で窓領域を形成すると、不純物によって光吸収が大きくなってしまって光吸収ロスを低減することが難しくなるが、空孔拡散法は不純物フリーであるため、空孔拡散法で窓領域を形成することで、不純物導入に起因する光吸収ロスを無くすことができるからである。空孔拡散法によって窓領域を形成することで、端面窓構造として、前端面1a側に窓領域120が形成される。また、後端面1b側にも同様の窓領域が形成される。
 なお、空孔拡散法は、急速高温処理を施すことで窓領域を形成することができる。例えば、高温処理時にGa空孔を生成する保護膜を窓領域の形成を行う領域の半導体層上に形成した後、結晶成長温度付近の800℃~950℃の非常に高温な熱にさらしてGa空孔を拡散させることで、空孔とIII族元素との相互拡散により活性層40の量子井戸構造を無秩序化して窓化(透明化)することができる。この結果、活性層40のバンドギャップを大きくすることができ、量子井戸構造を無秩序化した領域を、窓領域として機能させることができる。また、窓領域以外の領域においては、高温処理時にGa空孔の生成を抑制する保護膜を形成することで、量子井戸構造の無秩序化を抑えることができる。
 このように、半導体レーザ装置1が端面窓構造を有することで、半導体レーザ装置1の共振器端面を透明化して前端面1a付近における光吸収を低減することができる。これにより、前端面1aにおいてCODが発生することを抑制できる。
 [半導体レーザ装置の製造方法]
 次に、図3A~図3Hを用いて、実施の形態に係る半導体レーザ装置1の製造方法を説明する。図3A~図3Hは、実施の形態に係る半導体レーザ装置1の製造方法における各工程を説明するための図である。なお、図3B~図3Hにおいて、上図は、電流が注入される領域である電流注入領域に対応する部分の断面が示されており、下図は、電流が注入されない領域である電流非注入領域に対応する部分の断面が示されている。
 図3Aに示すように、まず、基板10を準備し、基板10の上に複数の半導体層を積層する。複数の半導体層を積層する工程には、少なくとも、基板10の上方にN型クラッド層20を配置する工程と、N型クラッド層20の上方に活性層40を配置する工程と、活性層40の上方にP型クラッド層60を配置する工程とが含まれる。
 具体的には、n-GaAsのウエハである基板10の上に、有機金属気相成長法(MOCVD;Metalorganic Chemical Vapor Deposition)による結晶成長技術により、N型クラッド層20、N型ガイド層30、活性層40、P型ガイド層50、P型クラッド層60、P型コンタクト層70の第1コンタクト層71と、電流ブロック層80とを順次結晶成長させることで積層する。
 活性層40としては、N型ガイド層30の上に、N側第2バリア層42b、N側第1バリア層42a、ウェル層41と、P側第1バリア層43a、及び、P側第2バリア層43bを順次結晶成長させることで積層する。
 次に、図3Bに示すように、電流ブロック層80に、電流注入領域を画定するための開口部80aを形成する。具体的には、第1コンタクト層71の上に、フォトリソグラフィー技術によってSiOなどからなるマスクを所定のパターンで形成し、その後、ウェットエッチング技術によって電流ブロック層80を第1コンタクト層71が露出するまでエッチングすることで、電流注入領域に対応する部分の電流ブロック層80に開口部80aを形成する。一方、半導体レーザ装置1の端面部における電流非注入領域では、電流ブロック層80に開口部80aが形成されない。なお、電流ブロック層80をエッチングするためのエッチング液は、硫酸系のエッチング液が好適に用いられる。例えば、硫酸:過酸化水素水:水=1:1:40のエッチング液などを用いることができる。
 次に、図3Cに示すように、電流ブロック層80に開口部80aを形成する際のマスクをフッ酸系のエッチング液で除去した後、MOCVD法による結晶成長技術により、P型コンタクト層70の第2コンタクト層72を結晶成長させる。具体的には、電流注入領域における電流ブロック層80の開口部80aを埋め込むようにして、電流ブロック層80の上と電流ブロック層80の開口部80aから露出する第1コンタクト層71の上とに第2コンタクト層72を結晶成長させる。
 次に、図3Dに示すように、複数の半導体層の半導体積層体における共振器長方向の端面部に対応する部分に窓領域120を形成する。具体的には、半導体積層体の前端面1a側の端面部に対応する部分に窓領域120を形成する。本実施の形態において、窓領域120はP型コンタクト層70、P型クラッド層60、P型ガイド層50、活性層40、N型ガイド層30、N型クラッド層20及び基板10の一部における前端面1a近傍に対応する部分に形成される。なお、窓領域120は、空孔拡散法によって形成したが、これに限らない。
 次に、図3Eに示すように、半導体積層体の側面に傾斜面を有する溝130を形成する。具体的には、P型コンタクト層70の上に、フォトリソグラフィー技術を用いてSiOなどからなるマスクを所定のパターンで形成し、その後、ウェットエッチング技術によって、P型コンタクト層70からN型クラッド層20の途中までをエッチングすることで、半導体積層体の側面において傾斜する溝130を形成することができる。溝130は、半導体レーザ装置1を個片化する際の分離溝であり、上面視において、共振器長方向に延在している。
 なお、溝130を形成する際のエッチング液は、例えば、硫酸系のエッチング液を用いることができる。この場合、硫酸:過酸化水素水:水=1:1:10のエッチング液を用いることができる。また、エッチング液は、硫酸系のエッチング液に限らず、有機酸系のエッチング液又はアンモニア系のエッチング液を用いてもよい。
 また、溝130は、等方性のウェットエッチングにより形成される。これにより、複数の半導体層の側面に傾斜面を形成して、複数の半導体層にくびれ構造(つまりオーバーハング構造)を形成することができる。溝130の側面の傾斜角度は、複数の半導体層を構成する各層のAlGaAs材料のAl組成の組成比で変化する。この場合、AlGaAs材料のAl組成を高くすることで、エッチング速度を速めることができる。したがって、図3Eに示されるような傾斜を有する側面を複数の半導体層に形成するためには、P型クラッド層60のAl組成の組成比を最も高くすることで、複数の半導体層において横方向(水平方向)のエッチング速度を最も速くすることができる。これにより、P型クラッド層60付近に、複数の半導体層の最狭部(水平方向において最も狭い部分)を形成することができる。
 次に、図3Fに示すように、溝130を形成する際のマスクをフッ酸系のエッチング液で除去した後に、基板10上の全面に、絶縁膜100としてSiN膜を堆積し、その後、フォトリソグラフィー技術及びエッチング技術を用いて、電流注入領域に対応する部分の絶縁膜100を除去することで開口部100aを形成する。なお、電流非注入領域に対応する部分の絶縁膜100は除去されず、電流非注入領域に対応する部分には開口部100aが形成されない。
 絶縁膜100のエッチングとしては、フッ酸系エッチング液を用いたウェットエッチング又は反応性イオンエッチング(RIE)によるドライエッチングを用いることができる。また、絶縁膜100は、SiN膜としたが、これに限らず、SiO膜などであってもよい。
 次に、図3Gに示すように、半導体積層体の上に、P側電極91を形成する。本実施の形態では、P型コンタクト層70の上に、P側電極91として、第1P電極層91aとめっき層91bと第2P電極層91cとをこの順で形成する。
 具体的には、電子ビーム蒸着法によってTi膜とPt膜とAu膜との積層膜からなる第1P電極層91aを下地電極として形成し、その後、電解めっき法によってAuめっき膜からなるめっき層91bを形成する。そして、フォトリソグラフィー技術及びリフトオフ技術を用いて、電流非注入領域に対応する部分のめっき層91bを選択的にエッチングして除去する。この場合、Auめっき膜からなるめっき層91bをエッチングするためのエッチング液としては、ヨード液を用いることができる。本実施の形態においては、ヨウ素:ヨウ化カリウム:水=288.8g:490g:3500gのヨード液を用いて、さらに、エッチングを安定化するために、バブリング状態でエッチングを行った。その後、電子ビーム蒸着法によって、めっき層91bの上に、Ti膜とPt膜とAu膜との積層膜からなる第2P電極層91cを形成する。このように、第1P電極層91a及び第2P電極層91cについては、共振器長方向のほぼ全長にわたって形成されるが、Auめっき層91bについては、電流非注入領域に形成されない。
 次に、図3Hに示すように、基板10の下面に、N側電極92を形成する。具体的には、基板10側から、AuGe膜、Ni膜、Au膜、Ti膜、Pt膜、及び、Au膜を順に成膜することで、N側電極92を形成する。
 その後、図示しないが、半導体積層体が形成された基板10を、ブレードを用いたダイシング又は劈開等によってバー状に分離し、その後、さらに溝130を切断部として切断することでチップ分離を行う。これにより、個片状の半導体レーザ装置1を作製することができる。
 [半導体層の組成とバンド構造]
 次に、本実施の形態に係る半導体レーザ装置1の具体例について説明する。
 図4は、上記実施の形態に係る半導体レーザ装置1について、実施例1、実施例2及び実施例3の3つの実施例における各半導体層の組成、膜厚及び不純物濃度の具体例を示す図である。
 本実施の形態に係る半導体レーザ装置1における半導体積層体の各半導体層は、AlGaInAs系材料からなるIII-V族化合物半導体によって構成されており、Al組成及びIn組成をそれぞれX及びYとして、AlGa1-X-YInAs(0<X<1、0<Y<1)の組成式で表される。
 図4において、N型クラッド層20のAl組成及びIn組成をXNC及びYNCとし、N型ガイド層30のAl組成及びIn組成をXNG及びYNGとし、活性層40におけるN側第2バリア層42bのAl組成及びIn組成をXNB2及びYNB2とし、活性層40におけるN側第1バリア層42aのAl組成及びIn組成をXNB1及びYNB1とし、活性層40におけるウェル層41のAl組成及びIn組成をX及びYとし、活性層40におけるP側第1バリア層43aのAl組成及びIn組成をXPB1及びYPB1とし、活性層40におけるP側第2バリア層43bのAl組成及びIn組成をXPB2及びYPB2とし、P型ガイド層50のAl組成及びIn組成をXPG及びYPGとし、P型クラッド層60のAl組成及びIn組成をXPC及びYPCとしている。なお、図4には、波長915nm帯のレーザ光を得るための条件が示されている。
 図4に示すように、本実施の形態における半導体レーザ装置1では、活性層40において、N側第2バリア層42bのAl組成比は、N側第1バリア層42aのAl組成比よりも高くなっており、P側第2バリア層43bのAl組成比は、P側第1バリア層43aのAl組成比よりも高くなっている。
 また、本実施の形態における半導体レーザ装置1では、N型クラッド層20とN型ガイド層30との界面領域及びP型ガイド層50とP型クラッド層60との界面領域において、Al組成が変化している。具体的には、N型クラッド層20とN型ガイド層30との少なくとも界面領域におけるAl組成は、ウェル層41から離れるにしたがって徐々に増大している。同様に、P型ガイド層50とP型クラッド層60との少なくとも界面領域におけるAl組成は、ウェル層41から離れるにしたがって徐々に増大している。
 次に、図4に示される実施例1~3の半導体レーザ装置1における半導体積層体の不純物濃度プロファイルとバンド構造とについて、図5A~図5Cを用いて説明する。
 図5Aは、実施例1の半導体レーザ装置1における半導体積層体の不純物濃度プロファイルとバンド構造とを示す図である。
 図5Bは、実施例2の半導体レーザ装置1における半導体積層体の不純物濃度プロファイルとバンド構造とを示す図である。
 図5Cは、実施例3の半導体レーザ装置1における半導体積層体の不純物濃度プロファイルとバンド構造とを示す図である。
 なお、図5A~図5Cにおいて、DNB1は、N側第1バリア層42aにおけるアンドープ領域の長さを示しており、DPB1は、P側第1バリア層43aにおけるアンドープ領域の長さを示している。
 図5A~図5Cに示すように、本実施の形態における半導体レーザ装置1では、実施例1~実施例3のいずれにおいても、N型クラッド層20、N型ガイド層30、N側第2バリア層42b及びN側第1バリア層42aにドーピングされている不純物の濃度は、ウェル層41から離れるにしたがって段階的に増大している。つまり、ウェル層41から離れるにしたがって、N側第1バリア層42a、N側第2バリア層42b、N型ガイド層30及びN型クラッド層20の順で、不純物の濃度が段階的に増大している。また、本実施の形態において、N側第1バリア層42a、N側第2バリア層42b、N型ガイド層30及びN型クラッド層20の各層において、不純物濃度は一定である。
 なお、N型クラッド層20、N型ガイド層30、N側第2バリア層42b及びN側第1バリア層42aにドーピングされている不純物の濃度は、段階的ではなく、ウェル層41から離れるにしたがって徐々に増大(つまり傾斜増大)していてもよい。
 一方、P型クラッド層60とP型ガイド層50との界面領域にドーピングされている不純物濃度は2×1018cm-3で一定としている。P型クラッド層60の不純物濃度は、ウェル層41から遠ざかる方向に段階的に増大させてもよいし、連続的に増大させてもよい。P型クラッド層60のウェル層41から遠い側の領域には、導波光の垂直方向の光分布強度が減衰しているため、不純物濃度を高めてドーピングしてもよい。この領域は、光分布強度が小さいため不純物によるフリーキャリア吸収損失の発生が小さく、また、不純物濃度の増大により抵抗値が低下するため、導波路損失の増大を招くことなく、半導体レーザ装置の直列抵抗を低減することができる。具体的には、P型クラッド層60のP型不純物濃度は、ウェル層41側の不純物濃度を2×1018cm-3とし、ウェル層41から最も離れた部分での不純物濃度を5×1018cm-3となるように徐々に増大させてもよいし、ウェル層41から遠ざかる方向に不純物濃度が高くなるように段階的に増大させてもよい。ここで、P型クラッド層60のAl組成が、P型ガイド層50のAl組成に対して2倍以上ある場合、基板法線方向の垂直方向の光分布強度は、P型クラッド層60と、P型ガイド層50の屈折率差が大きいため、P型ガイド層50からP型クラッド層60に向かって急激に減衰する。この場合、不純物ドーピングによるフリーキャリア損失の発生による導波路損失の増大を抑制しつつ、半導体レーザ装置の直列抵抗を低減するためには、ウェル層41からP型クラッド層60に向かって不純物濃度を連続的に高めるとよい。このようにすると、光分布強度の大きい領域では不純物濃度が低いため導波路損失の増大が抑制され、光分布強度の小さい領域では不純物濃度が高いため半導体レーザ装置の直列抵抗が低減する効果を得つつ導波路損失の増大も抑制されるためである。
 また、P型ガイド層50、P側第2バリア層43b及びP側第1バリア層43aにドーピングされている不純物の濃度は、ウェル層41から離れるにしたがって徐々に大きくなっている(つまり傾斜増大している)。実施例1から実施例3に示す構造では、P型不純物濃度は2×1017cm-3から5×1017cm-3となるように連続的に不純物濃度を増大させている。また、P型クラッド層60とP型ガイド層50との界面領域にドーピングされている不純物濃度は、5×1017cm-3から2×1018cm-3へと連続的に増大させてもよい。この場合、P型クラッド層60とP型ガイド層50との界面領域で不純物ドーピングにより発生するフリーキャリア吸収損失による導波路損失の増大を抑制することができる。
 また、図5A~図5Cに示すように、N側第1バリア層42aは、ウェル層41に近い側の領域に不純物がドーピングされていないアンドープ領域を有し、かつ、ウェル層41から遠い側の領域に不純物がドーピングされているドープ領域を有する。本実施例において、N側第1バリア層42aのアンドープ領域の膜厚は5nmである。
 一方、N側第2バリア層42bについては、全領域に不純物がドーピングされている。つまり、厚み方向においてN側第2バリア層42bの全体に不純物が意図的にドーピングされている。N側第2バリア層42bの不純物濃度と、N側第1バリア層42aのドープ領域の不純物濃度とは同じである。
 同様に、P側第1バリア層43aは、ウェル層41に近い側の領域に不純物がドーピングされていないアンドープ領域を有し、かつ、ウェル層41から遠い側の領域に不純物がドーピングされているドープ領域を有する。本実施例において、P側第1バリア層43aのアンドープ領域の膜厚は5nmである。
 一方、P側第2バリア層43bについては、全領域に不純物がドーピングされている。つまり、厚み方向においてP側第2バリア層43bの全体に不純物が意図的にドーピングされている。
 各実施例におけるバンドギャップエネルギーについては、図5A~図5Cに示すように、活性層40のN側半導体領域において、N側第2バリア層42bのバンドギャップエネルギーは、N側第1バリア層42aのバンドギャップエネルギーよりも大きい。同様に、活性層40のP側半導体領域において、P側第2バリア層43bのバンドギャップエネルギーは、P側第1バリア層43aのバンドギャップエネルギーよりも大きい。
 また、P型クラッド層60のバンドギャップエネルギーは、N型クラッド層20のバンドギャップエネルギーよりも大きい。
 また、上記のように、半導体レーザ装置1は、窓領域120が形成された端面窓構造を有する。具体的には、半導体レーザ装置1は、前端面1a近傍のウェル層41のバンドギャップエネルギーが半導体レーザ装置1の共振器長方向の中央部のウェル層41のバンドギャップエネルギーよりも大きい端面窓構造を有する。
 なお、図5Aでは、N側第2バリア層42bのバンドギャップエネルギーは、一定であったが、これに限らない。例えば、図5Bに示すように、N側第2バリア層42bのバンドギャップエネルギーは、ウェル層41から離れるにしたがって徐々に大きくなっていてもよい。これにより、N側第1バリア層42aとN側第2バリア層42bとの界面に形成される伝導帯バンドや価電子帯バンドにおけるヘテロ構造スパイクやノッチの形成を抑制することができ、動作電圧を低減することができる。
 同様に、図5Aでは、P側第2バリア層43bのバンドギャップエネルギーは、一定であったが、これに限らない。例えば、P側第2バリア層43bのバンドギャップエネルギーは、ウェル層41から離れるにしたがって徐々に大きくなっていてもよい。これにより、P側第1バリア層43aとP側第2バリア層43bとの界面に形成される伝導帯バンドや価電子帯バンドにおけるヘテロ構造スパイクやノッチの形成を抑制することができ、動作電圧を低減することができる。
 また、図5A及び図5Bでは、P型ガイド層50のバンドギャップエネルギーは、N型ガイド層30のバンドギャップエネルギーと同じであったが、これに限らない。つまり、N型ガイド層30とP型ガイド層50とで組成が非対称になっていてもよい。例えば、図5Cに示すように、P型ガイド層50のバンドギャップエネルギーがN型ガイド層30のバンドギャップエネルギーよりも大きい場合、ウェル層41に注入された電子が熱により励起されてP型ガイド層50に漏れる電流の発生を抑制することができる。また、N型ガイド層30の方が、P型ガイド層50の屈折率よりも高くなるため、導波路の基板法線方向の垂直方向光分布をN型層寄りとすることができる。この場合、N型ガイド層30とP型ガイド層50のAl組成差を制御することで精密に垂直方向光分布を制御することができる。この結果、導波路損失を低減しつつ温度特性のより優れた高温高出力動作可能な半導体レーザ装置を再現性良く得ることができる。N型ガイド層30とP型ガイド層50のAl組成差において、P型ガイド層50の方が大きくなりすぎると垂直方向光分布はN型層寄りになりすぎて、ウェル層41への光閉じ込め係数が低下し、発振しきい電流値の増大を招いてしまう。このため、N型ガイド層30とP型ガイド層50のAl組成差は、P型ガイド層50のAl組成を相対的に大きくし、その差が0.05以下であればよい。
 また、P型ガイド層50のバンドギャップエネルギーが、N型ガイド層30のバンドギャップエネルギーよりも小さい場合、N型ガイド層30の屈折率が、P型ガイド層50の屈折率よりも低くなることで、導波路の基板法線方向の垂直方向光分布をP側に寄せることができる。この結果、ウェル層41への高い光閉じ込め係数を得ることができ、発振しきい値電流を低減しつつ温度特性のよい優れた高温高出力動作可能な半導体レーザ装置を得ることができる。N型ガイド層30とP型ガイド層50のAl組成差において、N型ガイド層30の方が大きくなりすぎると垂直方向光分布はP型層に寄りすぎ、導波路損失が増大し、発振しきい値電流の増大及びスロープ効率の低下を招いてしまう。このため、N型ガイド層30とP型ガイド層50のAl組成差は、N型ガイド層30のAl組成を相対的に大きくし、その差が0.04以下であればよい。
 また、図5A及び図5Bでは、P側第2バリア層43bのバンドギャップエネルギーの最大値は、N側第2バリア層42bのバンドギャップエネルギーの最大値と同じであったが、これに限らない。例えば、P側第2バリア層43bのバンドギャップエネルギーの最大値は、N側第2バリア層42bのバンドギャップエネルギーの最大値よりも大きくてもよい。これにより、ウェル層41に注入された電子が熱により励起されてP型ガイド層50に漏れる電流の発生を抑制することができる。また、N型ガイド層30の方が、P型ガイド層50の屈折率よりも高くなるため、導波路の基板法線方向の垂直方向光分布をN型層寄りとすることができる。この場合、N側第2バリア層42b、N型ガイド層30、P側第2バリア層43b及びP型ガイド層50のAl組成を制御することで精密に垂直方向光分布を制御することができる。この結果、温度特性により優れた高温高出力動作可能な半導体レーザ装置を再現性よく得ることができる。P側第2バリア層43bのAl組成の最大値と、N側第2バリア層42bのAl組成の最大値のAl組成差において、P側第2バリア層43bのAl組成が大きくなりすぎると、垂直方向光分布はN型層寄りになりすぎて、ウェル層41への光閉じ込め係数が低下し、発振しきい電流値の増大を招いてしまう。このため、P側第2バリア層43bのAl組成の最大値と、N側第2バリア層42bのAl組成の最大値のAl組成差は、P側第2バリア層43bのAl組成の最大値を相対的に大きくしつつ、その差が0.05以下であればよい。
 また、P側第2バリア層43bのバンドギャップエネルギーの最大値は、N側第2バリア層42bのバンドギャップエネルギーの最大値よりも小さくてもよい。この場合、P型ガイド層50のバンドギャップエネルギーは、N型ガイド層30のバンドギャップエネルギーよりも小さくなる。P型ガイド層50のバンドギャップエネルギーが、N型ガイド層30のバンドギャップエネルギーよりも小さい場合、N型ガイド層30の屈折率が、P型ガイド層50の屈折率よりも低くなることで、導波路の基板法線方向の垂直方向光分布をP側に寄せることができる。この結果、ウェル層41への高い光閉じ込め係数を得ることができ、発振しきい値電流を低減しつつ温度特性のよい優れた高温高出力動作可能な半導体レーザ装置を得ることができる。N型ガイド層30とP型ガイド層50のAl組成差において、N型ガイド層30の方が大きくなりすぎると垂直方向光分布はP型層に寄りすぎ、導波路損失が増大し、発振しきい値電流の増大及びスロープ効率の低下を招いてしまう。このため、N型ガイド層30とP型ガイド層50のAl組成差は、N型ガイド層30のAl組成を相対的に大きくし、その差が0.04以下であればよい。つまり、N側第2バリア層42bのAl組成の最大値と、P側第2バリア層43bのAl組成の最大値のAl組成差は、N側第2バリア層42bのAl組成を相対的に大きくし、その差が0.04以下であればよい。
 なお、図5Aでは、P型ガイド層50とP側第2バリア層43bとのバンドギャップエネルギーは、同じであったが、これに限らない。例えば、図5Dに示すように、P型ガイド層50のバンドギャップエネルギーは、P側第2バリア層43bのバンドギャップエネルギーよりも大きくてもよい。この構成により、ウェル層41に注入された電子が、高温高出力動作時において熱により励起されてP型ガイド層50に漏れる電子電流の発生を抑制することが可能となる。この結果、高温高出力動作に優れた半導体レーザ装置を得ることができる。
 また、P側第2バリア層43bのバンドギャップエネルギーは、N側第2バリア層42bのバンドギャップエネルギーよりも大きくすることで、ウェル層41に注入された電子が、高温高出力動作時において熱により励起されP型ガイド層50に漏れる電子電流の発生を抑制することが可能となる。この結果、高温高出力動作に優れた半導体レーザ装置を得ることができる。
 また、N側第1バリア層42aとN側第2バリア層42bのバンドギャップエネルギーは同じであってもよいが、N型ガイド層30のバンドギャップエネルギーはN側第2バリア層42bのバンドギャップエネルギー以上であればよい。この構成により、N側第2バリア層42b、N側第1バリア層42aの屈折率は、N型ガイド層30の屈折率以上となり、ウェル層41への光閉じ込め係数を増大させることができる。この結果、発振しきい値と高温高出力動作時の漏れ電流が低減し、高温高出力動作に優れた半導体レーザ装置を得ることができる。
 また、P側第1バリア層43aとP側第2バリア層43bのバンドギャップエネルギーは同じであってよいが、P型ガイド層50のバンドギャップエネルギーはP側第2バリア層43bのバンドギャップエネルギー以上であればよい。この構成により、P側第2バリア層43b、P側第1バリア層43aの屈折率は、P型ガイド層50の屈折率以上となり、ウェル層41への光閉じ込め係数を増大させることができる。
 この結果、発振しきい値と高温高出力動作時の漏れ電流が低減し、高温高出力動作に優れた半導体レーザ装置を得ることができる。
 図5Eに、実施例1に示した半導体レーザ装置の構造において、N側第1バリア層42aとウェル層41間に、N側第1バリア層42aよりも高いAl組成のN側高Al組成層44、及び、P側第1バリア層43aとウェル層41間との間にP側第1バリア層43aよりも高いAl組成のP側高Al組成層45の両方を備えた実施例5の半導体レーザ装置における半導体積層体の不純物濃度プロファイルとバンド構造を示す。なお、図5Eに示す実施例5は、N側高Al組成層44とP側高Al組成層45の両方を備えているが、いずれか一方のみを備えていてもよい。
 この構造により、空孔拡散、不純物拡散で窓部を形成する場合の熱アニール工程やイオン注入による窓形成時においてウェル層41とN側高Al組成層44、及び、ウェル層41とP側高Al組成層45のAl組成差が大きくなるため両層間において原子の相互交換により、窓部のウェル層41におけるバンドギャップが大きくなりやすくなるため、窓部と利得部のバンドギャップエネルギーの差を大きくしやすくなる。これにより、ウェル層41が厚くても、より容易に窓領域120を形成することができる。
 N側高Al組成層44とP側高Al組成層45の厚さは、薄くなりすぎるとウェル層41との原子の相互交換による量子井戸構造の無秩序化効果が低下し、窓領域120のウェル層41のバンドギャップエネルギーの窓形成熱アニール工程による増大効果が低下する。逆に、N側高Al組成層44とP側高Al組成層45の厚さが厚くなりすぎると、N側高Al組成層44はN側第1バリア層42aよりも屈折率が低く、且つP側高Al組成層45はP側第1バリア層43aよりも屈折率が低いため、ウェル層41への光閉じ込め係数が低下する。さらに、N側高Al組成層44はN側第1バリア層42aよりもバンドギャップエネルギーが大きく、且つP側高Al組成層45はP側第1バリア層43aよりもバンドギャップエネルギーが大きくなるため、N側高Al組成層44はウェル層41への電子の注入を阻害し、P側高Al組成層45はウェル層41への正孔の注入を阻害することから動作電圧が増大する。
 したがって、N側高Al組成層44とP側高Al組成層45の厚さは、厚さ3nm以上、10nmであればよい。
 また、N側高Al組成層44とP側高Al組成層45のAl組成は、小さくなりすぎると、ウェル層41とN側高Al組成層44及びウェル層41とP側高Al組成層45との原子の相互交換による量子井戸構造の無秩序化効果が低下し、窓領域120のウェル層41のバンドギャップエネルギーの窓形成熱アニール工程による増大効果が低下する。逆に、Al組成が大きくなりすぎると、N側高Al組成層44はN側第1バリア層42aよりも屈折率が低く、P側高Al組成層45はP側第1バリア層43aよりも屈折率が低いため、ウェル層41への光閉じ込め係数が低下する。さらに、N側高Al組成層44はN側第1バリア層42aよりもバンドギャップエネルギーが大きく、P側高Al組成層45はP側第1バリア層43aよりもバンドギャップエネルギーが大きくなるため、N側高Al組成層44はウェル層41への電子の注入を阻害し、P側高Al組成層45はウェル層41への正孔の注入を阻害することから動作電圧が増大する。
 したがって、N側高Al組成層44とP側高Al組成層45のAl組成は、0.27以上、0.35以下であればよい。
 N側高Al組成層44とP側高Al組成層45を備えることにより、ウェル層41の厚さが厚くなっても窓領域120のウェル層41のバンドギャップエネルギーを増大させることが容易になり、高温動作特性に優れた、CODレベルの高い半導体レーザ装置を容易に得ることができる。
 また、図5Eに示す構造では、N側高Al組成層44とP側高Al組成層45には、不純物をドーピングしていない例を示しているが、N側高Al組成層44にN型不純物をドーピングし、P側高Al組成層45にP型不純物をドーピングすることで、半導レーザ装置の直列抵抗を低減することができる。さらに、N側高Al組成層44にN型不純物をドーピングすれば、価電子帯のポテンシャルエネルギーが低下するためにウェル層41に注入された正孔電流の漏れを抑制することができる。また、P側高Al組成層45にP型不純物をドーピングすれば、伝導帯のポテンシャルエネルギーが増大するためにウェル層41に注入された電子電流の漏れを抑制することができる。この結果、半導体レーザ装置を高温高出力動作させた場合に漏れ電流の発生を抑制することができ、温度特性に優れた半導体レーザ装置を得ることができる。半導体レーザ装置の直列抵抗低減と温度特性向上を実現するためには、N側高Al組成層44にN型不純物を1×1017cm-3から1×1018cm-3の範囲でドーピングすればよく、P側高Al組成層45にP型不純物を1×1017cm-3から5×1017cm-3の範囲でドーピングすればよい。
 N側高Al組成層44とP側高Al組成層45はAlGaAs層であってもよいし、AlGaInAs層であってもよい。P側高Al組成層45にAlGaInAsを用いると、P側第1バリア層43aの価電子帯のポテンシャルエネルギーを小さくしつつ、伝導帯のポテンシャルエネルギーを高めることが可能となり、ウェル層41からP型層側に漏れ出す電子の発生を抑制しつつ、容易に窓領域120を形成することができる。
 特に、N側高Al組成層44とP側高Al組成層45をAlGaInAsとする場合、Al組成を0.3以上、0.45以下とし、In組成を0.05以上、0.15以下とすることで、P側第1バリア層43aとP側高Al組成層45との間の価電子帯のポテンシャルエネルギーの差を小さくすることができる。さらに、N側高Al組成層44にInを含有させることでN側高Al組成層44のバンドギャップエネルギーが小さくなるため、N側第1バリア層42aとN側高Al組成層44との間の伝導帯のポテンシャルエネルギーの差を小さくすることができる。この結果、ウェル層41への電子、正孔の注入が、同じAl組成のAlGaAs層を用いた場合と比較して、容易になり動作電圧が低減する。また、ウェル層41と、N側高Al組成層44及びP側高Al組成層45との間のAl組成差が大きくなるため、窓領域120を形成するための、窓形成熱アニール工程時やイオン注入工程により原子交換によるIII族原子配列の無秩序化が生じやすくなり窓部と利得部とのバンドギャップエネルギーの差が大きくなりやすくなる。このためCODレベルの高い半導体レーザ装置を得ることができる。
 また、N型ガイド層30をIn組成が0.02以下のInを含むAlGaInAs層とすると、N型ガイド層30での格子欠陥の発生を抑制しつつN型ガイド層30の屈折率を若干高めることが可能となり、垂直方向光分布においてN型ガイド層30に光を集めやすくなるため、N型層寄りの光分布形状の制御性を向上させることができる。この場合、N型ガイド層30は、InGaAsとAlGaAsの超格子から形成されていてもよい。
 [半導体レーザ装置の作用・効果]
 次に、本実施の形態に係る半導体レーザ装置1の作用及び効果について、図6を用いて説明する。図6は、実施の形態に係る半導体レーザ装置1の作用及び効果を説明するための図である。図6では、端面窓構造を有する半導体レーザ装置において、窓領域の形成を意図した領域(窓部)と窓領域の形成を意図していない領域(利得部)とにおけるアニール前後のバンド構造を示している。
 図6において、「本実施形態」は、上記の本実施の形態に係る半導体レーザ装置1である。
 また、図6において、「比較例」は、比較例の半導体レーザ装置である。比較例の半導体レーザ装置は、AlGaAsからなるN側バリア層とAlGaAsからなるP側バリア層との間にInGaAsからなるウェル層が形成された活性層を有しており、高出力化を目指して、バリア層のAl組成を高くして熱飽和レバルを向上させた構成になっている。
 半導体レーザ装置では、高出力化を図るために、端面近傍に窓領域を形成してCODレベルを向上させている。窓領域は、空孔拡散等によって端面部におけるバリア層及びウェル層の原子配列を無秩序化することで形成することができる。
 端面窓構造を有する半導体レーザ装置において、さらに高出力を図るために、ウェル層を厚くして光閉じ込め係数を大きくすることが考えられる。しかしながら、ウェル層を厚くすると、バリア層及びウェル層の原子配列を無秩序化しにくくなり、窓領域を形成することが難しくなる。そこで、窓領域を形成する際のアニール温度を高くすることで、ウェル層とバリア層との間の原子の相互交換を促進して原子配列を無秩序化させることが考えられる。
 この場合、図6に示すように、窓領域の形成を意図した窓部では、アニール後のバンドギャップエネルギー(EgW1)を、アニール前のバンドギャップエネルギー(EgW0)よりも大きくすることができる。これにより、ウェル層が厚くても、窓領域を形成することができる。
 しかしながら、窓領域を形成する際のアニール温度を高くすると、窓領域の形成を意図していない利得部での活性層におけるウェル層とバリア層との間においても原子交換が生じてしまう。この結果、利得部においても、アニール後のバンドギャップエネルギー(EgG1)がアニール前のバンドギャップエネルギー(EgG0)よりも大きくなってしまう。つまり、窓部だけではなく、利得部においても、バンドギャップエネルギーが増大してしまう。この結果、利得部での漏れ電流が増大して温度特性が劣化したり、結晶成長時に導入される空孔又は成長層表面のダングリングボンドに起因する成長層表面の空孔が拡散しやすくなって発振波長制御性が低下して長期信頼性が低下したりする。
 これに対して、本実施の形態における半導体レーザ装置1では、上記のように、ウェル層41の一方側にP側第1バリア層43aとP側第2バリア層43bとを形成し、少なくとも2段階でAl組成を変化させる構造にしている。具体的には、P側第2バリア層43bのAl組成比をP側第1バリア層43aのAl組成比よりも相対的に高くしている。つまり、ウェル層41に近い側のP側第1バリア層43aのAl組成を低くし、ウェル層41に遠い側のP側第2バリア層43bのAl組成を高くしている。さらに、本実施の形態における半導体レーザ装置1では、P側第2バリア層43bのバンドギャップエネルギーを、P側第1バリア層43aのバンドギャップエネルギーよりも高くしている。
 これにより、ウェル層を厚くして窓領域を形成する際のアニール温度を高くしたとしても、図6の「本実施形態」に示すように、窓領域の形成を意図した窓部では、アニール後のバンドギャップエネルギー(EgW1)をアニール前のバンドギャップエネルギー(EgW0)よりも大きくしつつ、窓領域の形成を意図していない利得部では、アニール後のバンドギャップエネルギー(EgG1)をアニール前のバンドギャップエネルギー(EgG0)と同程度にすることができる。
 つまり、利得部では、アニール前後でバンドギャップエネルギーの変化を抑制してバンドギャップエネルギーの増大を抑制しつつ、窓部では、バンドギャップエネルギーを増大させることができる。したがって、窓部では、活性層40を含む半導体積層体の透明化を促進させつつ、利得部では、活性層40を含む半導体積層体の透明化を抑制することができる。
 このように、本実施の形態に係る半導体レーザ装置1によれば、Al組成が低くて屈折率が高いP側第1バリア層43aを用いているので、ウェル層41への光閉じ込め係数が増大して動作キャリア密度が低減する。また、ウェル層を厚くしたときに窓部のバンドギャップエネルギーを増大させて窓領域を形成するために窓領域を形成する際のアニール温度を高めたとしても、P側第1バリア層43aのAl組成が低いために利得部でのウェル層41のバンドギャップエネルギーが不純物拡散による変化の影響を受けにくく、バンドギャップエネルギーの増大による利得部でのウェル層41の波長変化を抑制することができる。この結果、長期信頼性が低下することを抑制できる。また、CCODレベルの向上効果が阻害されることを抑制することができるとともに、スロープ効率が低下したり温度特性が低下したりすることも抑制できる。
 したがって、本実施の形態に係る半導体レーザ装置1によれば、端面窓構造を有する半導体レーザ装置において、ウェル層41を厚くしたとしても、温度特性の劣化と長期信頼性の低下とを抑制しつつ、CODレベルの向上効果が阻害されることを抑制することができる。
 また、本実施の形態に係る半導体レーザ装置1において、P型クラッド層60のバンドギャップエネルギーは、N型クラッド層20のバンドギャップエネルギーよりも大きくなっている。
 これにより、P型クラッド層60の屈折率がN型クラッド層20の屈折率よりも小さくなるので、基板垂直方向の光分布がN型クラッド層寄りになり、光導波路における導波路損失を低減させることができる。したがって、高効率に発光する半導体レーザ装置1を実現することができる。
 さらに、P型クラッド層60は、半導体レーザ装置1をジャンクションダウンに実装した場合(つまり、基板10から遠い側のP側電極91側をサブマウントに実装した場合)に実装歪の影響を受けやすくなり、しかも、Al組成が高いことで基板10との格子不整歪が大きく実装歪の影響が大きくなる。このため、複屈折率性が生じ、光導波路を伝搬する光分布がN型クラッド層20側よりもP型クラッド層60の方に大きく染み出すと、偏光比が低下する。
 このとき、P型クラッド層60のバンドギャップエネルギーをN型クラッド層20のバンドギャップエネルギーよりも大きくすることで、基板垂直方向の光分布がN型クラッド層寄りになり、P型クラッド層60に存在する光分布の割合を小さくすることができる。これにより、偏光比が低下することも抑制できる。
 また、本実施の形態に係る半導体レーザ装置1において、ウェル層41の厚さは、6nm以上である。
 このように、ウェル層41の厚さを6nm以上とすることで、ウェル層41への光閉じ込め係数を大きく増大させることができるので、動作キャリア密度が低減し、熱飽和レベルを向上させることができる。したがって、温度特性を向上させることができる。
 さらに、光分布をN型クラッド層20寄りとした場合には、ウェル層41への光閉じ込め係数が低下し、発振しきい値が増大したり動作電流値が増大したりして漏れ電流の発生及び熱飽和レベルの低下を招いてしまうが、ウェル層41の厚さを6nm以上にすることで、光分布をN型クラッド層20寄りにした場合でも、ウェル層41への光閉じ込め係数の低下の影響を軽減することができる。
 また、本実施の形態に係る半導体レーザ装置1において、ウェル層41は、AlGa1-X-YInAs(0<X<1、0<Y<1)の組成式で表される半導体材料によって構成されている。
 この構成により、ウェル層41の圧縮歪が増大して、第1準位のヘビーホール(HH1)と第1準位のライトヘビーホール(LH1)の準位間エネルギーを増大させることができる。これにより、TMモードに寄与するライトヘビーホール数(LH数)が低減する。しかも、P側第1バリア層43a及びN側第1バリア層42aで形成されるライトホールの準位数(LH準位数)を1準位とすることが可能となる。したがって、偏光比を増大させることができる。
 ここで、AlAs、GaAs及びInAsの中で、InAsが最も格子定数が大きく、バンドギャップエネルギーが最も小さい。この場合、活性層のウェル層及びバリア層にAlGaInAsからなる4元系の組成を有す半導体材料を用いて所望のバンドギャップエネルギーを得る場合には、InGaAsやAlGaAsで所望のバンドギャップを得る場合と比較して、Inの含有率が高まるために圧縮性の歪が大きくなる。
 このため、本実施の形態のように、ウェル層及びバリア層にAlGaInAsが用いられた半導体レーザ装置において、レーザ光が出射する前端面に空孔又は不純物を拡散して端面窓構造を形成した場合には、ウェル層の歪エネルギーを小さくするため、ウェル層のIn原子が積層方向に対してIII族の格子位置に存在するAl原子やGa原子と交換しやすくなり、ウェル層のバンドギャップエネルギー(Eg)が大きくなりやすくなる。
 この結果、レーザ光の出射端面である光密度が大きい前端面近傍におけるウェル層のバンドギャップエネルギーが容易に大きくなるため、前端面近傍のバンドギャップエネルギーが発熱により小さくなっても、前端面近傍のウェル層では光吸収が小さい状態を容易に維持することができる。
 したがって、本実施の形態に係る半導体レーザ装置1のように、ウェル層41をAlGaInAsによって構成することで、前端面1a近傍がレーザ光の吸収で溶融破壊されるCODの発生を抑制することができる。
 さらに、本実施の形態のように、窓領域120を空孔拡散によって形成することで、不純物拡散によって窓領域120を形成した場合と比較して、不純物の存在によるフリーキャリア損失の発生を抑制することができる。これにより、スロープ効率の低下を抑制することができる。
 また、本実施の形態に係る半導体レーザ装置1において、P側第2バリア層43bのバンドギャップエネルギーは、ウェル層41から離れるにしたがって徐々に大きくなっている。
 この構成により、P側第2バリア層43bの平均屈折率を増大させることができる。これにより、ウェル層41への光閉じ込め係数を大きく増大させることができるので、動作キャリア密度が低減し、熱飽和レベルを向上させることができる。したがって、温度特性を向上させることができる。
 しかも、P側第2バリア層43bのバンドギャップエネルギーをウェル層41から離れるにしたがって徐々に大きくすることで、半導体レーザ装置1の直列抵抗を低減させることができる。したがって、低電圧駆動の半導体レーザ装置1を実現することができる。
 また、本実施の形態に係る半導体レーザ装置1において、P側第1バリア層43aは、不純物がドーピングされていないアンドープ領域を含んでおり、そのアンドープ領域の膜厚は、5nm以上であるとよい。
 これにより、P側第1バリア層43aの途中から不純物のドーピングが開始することになるので、半導体レーザ装置1の直列抵抗を低減させることができる。さらに、P側第1バリア層43aの電子ポテンシャル障壁が増大するので、漏れ電子を抑制することができる。このアンドープ領域は、厚くなり過ぎると半導体レーザ装置の直列抵抗が増大するため40nm以下であるとよい。
 また、本実施の形態に係る半導体レーザ装置1では、P側第2バリア層43bの全領域に不純物がドーピングされており、P側第1バリア層43aは、ウェル層41に近い側の領域に不純物がドーピングされていないアンドープ領域を有し、かつ、ウェル層41から遠い側の領域に不純物がドーピングされているドープ領域を有する。
 これにより、P側第1バリア層43aの途中から不純物のドーピングが開始することになるので、半導体レーザ装置1の直列抵抗を低減させることができる。また、P側第1バリア層43a及びP側第2バリア層43bの各々の電子ポテンシャル障壁が増大するので、漏れ電子を抑制することもできる。
 また、本実施の形態に係る半導体レーザ装置1において、P側第2バリア層43bにドーピングされている不純物の濃度は、ウェル層41から離れるにしたがって徐々に大きくなっている。
 この構成により、P側第2バリア層43bの電子ポテンシャル障壁が増大するので、電流漏れの抑制と、導波路損失の増大を抑制しつつ半導体レーザ装置の直列抵抗を低減させることとを同時に実現することができる。
 また、本実施の形態に係る半導体レーザ装置1は、さらに、P側第2バリア層43bとP型クラッド層60との間にP型ガイド層50を備える。
 このように、P型ガイド層50を設けることで、ウェル層41への光閉じ込め係数をさらに増大させることができる。これにより、動作キャリア密度が一層低減し、熱飽和レベルをさらに向上させることができる。したがって、温度特性を一層向上させることができる。
 また、本実施の形態に係る半導体レーザ装置1において、P型ガイド層50とP型クラッド層60との少なくとも界面領域におけるAl組成は、ウェル層41から離れるにしたがって徐々に増大している。
 この構成により、P型ガイド層50とP型クラッド層60との界面領域におけるバンドギャップエネルギーを傾斜増大させることができる。これにより、P型ガイド層50とP型クラッド層60との界面での価電子帯におけるヘテロ接合スパイクやノッチの発生を抑制することができ、ホールの伝導性が向上して半導体レーザ装置の直列抵抗を低減させることができる。
 さらに、P型ガイド層50とP型クラッド層60との界面領域におけるAl組成をウェル層41から離れるにしたがって徐々に増大させることで、高い光閉じ込め率を得ることもできる。この点について、図7A及び図7Bを用いて説明する。図7Aは、本実施の形態に係る半導体レーザ装置1において、光閉じ込め率のAl組成傾斜領域長の依存性を示している。図7Bは、同半導体レーザ装置1において、導波路損失のAl組成傾斜領域長の依存性を示している。なお、図7A及び図7Bにおいて、Al組成傾斜領域長は、P型ガイド層50とP型クラッド層60との界面領域において、Al組成が傾斜して増大する領域の長さである。
 図7Aに示すように、Al組成傾斜領域長を長くすることで、光閉じ込め率を向上させることができるので、動作閾値電流の低減及び最大光出力の向上を図ることができる。一方、図7Bに示すように、Al組成傾斜領域長を長くしすぎると、抵抗成分が増大して導波路損失が増大する。したがって、Al組成傾斜領域長は、200nm以下にすることが望ましい。なお、上記のように、P型ガイド層50とP型クラッド層60との界面での価電子帯におけるスパイクの発生を抑制するとの観点では、Al組成傾斜領域長は、20nm以上にするとよい。
 また、本実施の形態に係る半導体レーザ装置1において、P型ガイド層50にドーピングされている不純物の濃度は、ウェル層41から離れるにしたがって徐々に大きくなっている。つまり、P型ガイド層50にドーピングされている不純物の濃度は、傾斜増大している。
 この構成により、P型ガイド層50の電子ポテンシャル障壁が増大するので、電流漏れの抑制と、導波路損失の増大を抑制しつつ半導体レーザ装置の直列抵抗を低減させることとを同時に実現することができる。
 ここで、P側の半導体層のP型不純物濃度に傾斜を持たせることについて、図8A及び図8Bを用いて説明する。図8Aは、実施の形態に係る半導体レーザ装置1において、光閉じ込め率のP型不純物濃度の依存性を示している。図8Bは、同半導体レーザ装置1において、導波路損失のP型不純物濃度の依存性を示している。図8A及び図8Bでは、本実施の形態に係る半導体レーザ装置1において、P側第1バリア層43aとP側第2バリア層43bのAl組成と厚さとを変えたときの4つのサンプルのシミュレーション結果を示している。図8A及び図8Bにおいて、サンプル1は、Al組成が0.12で厚さが30nmのP側第1バリア層43aとAl組成が0.12から0.24に傾斜増大し厚さが15nmのP側第2バリア層43bとを用いた場合であり、サンプル2は、Al組成が0.12で厚さが15nmのP側第1バリア層43aとAl組成が0.12から0.24に傾斜増大し厚さが15nmのP側第2バリア層43bとを用いた場合であり、サンプル3は、Al組成が0.18で厚さが30nmのP側第1バリア層43aとAl組成が0.12から0.24に傾斜増大し厚さが15nmのP側第2バリア層43bとを用いた場合であり、サンプル4は、Al組成が0.18で厚さが15nmのP側第1バリア層43aとAl組成が0.12から0.24に傾斜増大し厚さが15nmのP側第2バリア層43bとを用いた場合である。
 図8Aに示すように、P型不純物濃度は光閉じ込め率にほぼ依存しないが、P側第1バリア層43aのAl組成を低くした方が、P側第1バリア層43aの厚さを厚くしたときの光閉じ込め率が増加する効果が大きいことが分かる。一方、図8Bに示すように、P型不純物濃度を高くしすぎると、導波路損失が増大するので、P型不純物濃度は高くしすぎない方がよい。
 また、本実施の形態に係る半導体レーザ装置1において、活性層40は、さらに、ウェル層41の下方に配置されるN側第1バリア層42aと、N側第1バリア層42aの下方に配置されるN側第2バリア層42bとを有する。そして、N側第2バリア層42bのAl組成比は、N側第1バリア層42aのAl組成比よりも高くなっており、N側第2バリア層42bのバンドギャップエネルギーは、N側第1バリア層42aのバンドギャップエネルギーよりも大きくなっている。
 この構成により、ウェル層を厚くして窓領域を形成する際のアニール温度を高くした場合に、ウェル層41のP側領域だけではなくN側領域においても、バンドギャップエネルギーの増大による利得部でのウェル層41の波長変化を抑制しつつ、窓部ではバンドギャップエネルギーを増大させて波長変化を増大できる。これにより、温度特性の劣化と長期信頼性の低下とを一層抑制しつつ、CODレベルの向上効果が阻害されることを一層抑制することができる。
 また、本実施の形態に係る半導体レーザ装置1において、N側第2バリア層42bのバンドギャップエネルギーは、ウェル層41から離れるにしたがって徐々に大きくなっている。
 この構成により、N側第2バリア層42bの平均屈折率を増大させることができる。これにより、ウェル層41への光閉じ込め係数をさらに大きく増大させることができるので、動作キャリア密度が一層低減し、熱飽和レベルをさらに向上させることができる。したがって、温度特性をさらに向上させることができる。
 しかも、N側第2バリア層42bのバンドギャップエネルギーをウェル層41から離れるにしたがって徐々に大きくすることで、半導体レーザ装置1の直列抵抗を低減させることができる。
 また、本実施の形態に係る半導体レーザ装置1では、N側第2バリア層42bの全領域に不純物がドーピングされており、N側第1バリア層42aは、ウェル層41に近い側の領域に不純物がドーピングされていないアンドープ領域を有し、かつ、ウェル層41から遠い側の領域に不純物がドーピングされているドープ領域を有する。
 これにより、N側第1バリア層42aの途中から不純物のドーピングが開始することになるので、半導体レーザ装置の直列抵抗を低減させることができる。また、N側第1バリア層42a及びN側第2バリア層42bの各々の電子ポテンシャル障壁が増大するので、漏れ電子を抑制することもできる。しかも、N側第1バリア層42aにおけるウェル層41との界面をアンドープ領域にすることで、ウェル層41の利得の低下を抑制することもできる。
 また、本実施の形態に係る半導体レーザ装置1では、P側第2バリア層43bのバンドギャップエネルギーは、N側第2バリア層42bのバンドギャップエネルギーよりも大きくなっている。
 これにより、動作電圧が増大することを抑制しつつ、漏れ電子が発生することを効果的に抑制することができる。
 また、本実施の形態に係る半導体レーザ装置1は、さらに、N側第2バリア層42bとN型クラッド層20との間にN型ガイド層30を備える。
 このように、N型ガイド層30を設けることで、ウェル層41への光閉じ込め係数をさらに増大させることができる。これにより、動作キャリア密度がいっそう低減し、熱飽和レベルをさらに向上させることができる。したがって、温度特性をいっそう向上させることができる。
 また、本実施の形態に係る半導体レーザ装置1において、N型ガイド層30とN型クラッド層20との少なくとも界面領域におけるAl組成は、ウェル層41から離れるにしたがって徐々に増大している。
 この構成により、N型ガイド層30とN型クラッド層20との界面領域におけるバンドギャップエネルギーを傾斜増大させることができる。これにより、N型ガイド層30とN型クラッド層20との界面での価電子帯におけるスパイクの発生を抑制することができ、ホールの伝導性が向上して半導体レーザ装置の直列抵抗を低減させることができる。
 また、本実施の形態に係る半導体レーザ装置1において、N型クラッド層20、N型ガイド層30、N側第2バリア層42b及びN側第1バリア層42aにドーピングされている不純物の濃度は、ウェル層41から離れるにしたがって徐々に増大する、又は、段階的に増大しているとよい。
 この構成により、半導体レーザ装置の直列抵抗を低減させつつ導波路損失を低減させることができ、動作電圧を低減させることができるとともに高いスロープ効率による高効率のレーザ発振を実現することができる。
 また、本実施の形態に係る半導体レーザ装置1において、活性層40は、ウェル層41の下方に配置されるN側第1バリア層42aと、N側第1バリア層42aの下方に配置されるN側第2バリア層42bとを有し、N側第2バリア層42bのAl組成比は、N側第1バリア層42aのAl組成比よりも高く、N側第2バリア層42bのバンドギャップエネルギーは、N側第1バリア層42aのバンドギャップエネルギーよりも大きく、N側第2バリア層42bとN型クラッド層20との間にN型ガイド層30を備え、P型ガイド層50のバンドギャップエネルギーは、N型ガイド層30のバンドギャップエネルギーと異なっているとよい。
 この構成により、P型ガイド層50のバンドギャップエネルギーがN型ガイド層30のバンドギャップエネルギーよりも大きい場合、電子ポテンシャル障壁が増大し、漏れ電子の発生を抑制することができる。
 また、P型ガイド層50のバンドギャップエネルギーがN型ガイド層30のバンドギャップエネルギーよりも小さい場合、N型ガイド層30の屈折率がP型ガイド層50の屈折率より低くなり、N型ガイド層30への光閉じ込めが弱くなることで、ウェル層41への高い光閉じ込め係数を得ることができる。
 また、本実施の形態に係る半導体レーザ装置1において、ウェル層41とN型クラッド層20の間に位置し、ウェル層41からN型クラッド層20に向かってN側第1バリア層42aとN側第2バリア層42bを備え、N側第2バリア層42bのAl組成比は、N側第1バリア層42aのAl組成比よりも高く、N側第2バリア層42bのバンドギャップエネルギーは、N側第1バリア層42aのバンドギャップエネルギーよりも大きく、N側第2バリア層42bのバンドギャップエネルギーは、ウェル層41から離れるにしたがって徐々に大きくなり、P側第2バリア層43bのバンドギャップエネルギーの最大値は、N側第2バリア層42bのバンドギャップエネルギーの最大値より大きくなっているとよい。
 この構成により、電子ポテンシャル障壁が増大し、漏れ電子の発生を抑制することができる。
 ここで、活性層40における、N側第1バリア層42a、N側第2バリア層42b、P側第1バリア層43a及びP側第2バリア層43bの膜厚について、図9及び図10を用いて説明する。図9は、N側第1バリア層42aとP側第1バリア層43aとの膜厚について、光閉じ込め率に対する導波路損失の関係を示している。図10は、N側第2バリア層42bとP側第2バリア層43bとの膜厚について、光閉じ込め率に対する導波路損失の関係を示している。なお、図9及び図10では、15nm~40nmの範囲において5nm間隔で膜厚を変えていったときのシミュレーション結果を示している。また、図9及び図10では、膜厚が15nmのときを基準として各点をプロットしている。
 図9に示すように、N側第1バリア層42aの膜厚をP側第1バリア層43aの膜厚よりも大きくすることで、導波路損失を低くすることができるとともに光閉じ込め効率を高くすることができることが分かる。つまり、N側第1バリア層42a、N側第2バリア層42b、P側第1バリア層43a及びP側第2バリア層43bのうち、ウェル層41に近い側のN側第1バリア層42aとP側第1バリア層43aとについては、N側第1バリア層42aの膜厚は、P側第1バリア層43aの膜厚よりも厚い方がよい。
 一方、図10に示すように、N側第1バリア層42a、N側第2バリア層42b、P側第1バリア層43a及びP側第2バリア層43bのうち、ウェル層41に遠い側のN側第2バリア層42bとP側第2バリア層43bとについては、P側第2バリア層43bの膜厚は、N側第2バリア層42bの膜厚よりも厚い方がよいことが分かる。具体的には、P側第2バリア層43bの膜厚をN側第2バリア層42bの膜厚よりも大きくすることで、導波路損失を低くすることができるとともに光閉じ込め効率を高くすることができることが分かる。
 ここで、正孔は電子よりも移動度が小さく、また、不純物の活性化率も小さい。このため、半導体レーザ装置の直列抵抗を低減し、また、PN接合の立ち上がり電圧を低減するためには、P型半導体層にドーピングする不純物濃度を、N型半導体層にドーピングする不純物濃度よりも大きくして、正孔のキャリア密度を高める必要がある。このため、光導波路を伝搬する光分布に生じるフリーキャリア損失は、P型半導体層で生じる影響の方がN型半導体層で生じる影響よりも大きく、P型不純物のドーピングプロファイルについては、精密に制御する必要がある。
 そこで、本発明者らは、本実施の形態における半導体レーザ装置1において、P型半導体層にドーピングする不純物濃度について検討した。以下、その検討結果について、図11A~図16Bを用いて説明する。なお、図11A~図16Bでは、図8A及び図8Bで説明した、サンプル1、サンプル2、サンプル3及びサンプル4の4つのサンプルをベースに検討した。
 まず、P型ガイド層50の不純物ドーピング効果について、図11A及び図11Bを用いて説明する。図11Aは、本実施の形態に係る半導体レーザ装置1において、P型ガイド層50、P側第1バリア層43a及びP側第2バリア層43bのうち、P型ガイド層50にP型不純物をドーピングし、かつ、P側第1バリア層43a及びP側第2バリア層43bにはP型不純物をドーピングしなかった(アンドープ)ときの、ポテンシャル障壁(ΔEg)のP型ガイド層50のP型不純物濃度の依存性を示している。図11Bは、そのときの電子電流密度のP型ガイド層50のP型不純物濃度の依存性を示している。
 具体的には、P側第1バリア層43a及びN側第1バリア層42aについては、Al組成を0.12と0.18とし、厚さを15nmと30nmとした。また、P側第2バリア層43b及びN側第2バリア層42bについては、Al組成を0.12から0.24への組成傾斜した場合と、0.18から0.24への組成傾斜した場合とし、厚さを15nmとした。そして、P側第1バリア層43a及びP側第2バリア層43bについては、いずれも全領域をアンドープとした。また、N側第1バリア層42aについては、ウェル層41側の5nmの領域をアンドープ領域とし、ウェル層41から5nm以上の距離にある領域には1×1017cm-3の不純物をドーピングした。また、N側第2バリア層42bについては、全領域に1.4×1017cm-3の不純物をドーピングした。また、N型ガイド層30については、1.4×1017cm-3の不純物をドーピングした。なお、N型クラッド層20については、ウェル層41に近い方から遠い方に向かって、1.4×1017cm-3、2×1017cm-3、6×1017cm-3、2×1018cm-3と多段階に不純物をドーピングして不純物濃度を増大させた。
 この構造において、膜厚0.2μmのP型ガイド層50のP型不純物濃度を1×1017cm-3から5×1017cm-3へと増大させると、図11A及び図11Bに示すように、ポテンシャル障壁(ΔEg)が0.215eVから0.25eV以上へと増大するとともに、P型ガイド層50に流れる電子電流が減少して無効電流を抑制する効果があることが分かる。また、P型ガイド層50のP型不純物濃度を高くすると、ウェル層41を超えてP側半導体層に流れる電子電流を抑制できる。
 一方、P型ガイド層50のP型不純物濃度を高くすると、ポテンシャル障壁が大きくなって半導体レーザ装置の直列抵抗が小さくなるものの、導波路損失が大きくなって発光効率(スロープ効率)が低下する。
 したがって、P型ガイド層50にドーピングするP型不純物濃度は、P型ガイド層50全体へのP型不純物濃度の平均値が2×1017cm-3から4×1017cm-3の間となるように制御することで、導波路損失、半導体レーザ装置の直列抵抗及び漏れ電子電流を低減することができ、ポテンシャル障壁を増大させることができる。
 なお、P側第1バリア層43aは、P側第2バリア層43bよりも屈折率が高いため、P側第1バリア層43aの膜厚を厚くした方がウェル層41への光閉じ込め係数が増大する。特に、光分布がN型半導体層寄りとなる光導波路においては、ウェル層41への光閉じ込め係数が小さくなりやすいため、光閉じ込め係数の低下を抑制するためには、P側第1バリア層43aの膜厚を厚くすることが有効である。ただし、ウェル層41を超えてP型ガイド層50を流れる電子電流は、P側第1バリア層43aの膜厚が厚くなると増大する。したがって、P側第1バリア層43aの膜厚は、10nm以上、30nm以下にするとよい。
 次に、P側第1バリア層43a及びP側第2バリア層43bとP型ガイド層50との不純物ドーピング効果について、図12A及び図12Bを用いて説明する。図12Aは、本実施の形態に係る半導体レーザ装置1において、P型ガイド層50、P側第1バリア層43a及びP側第2バリア層43bのいずれにも一定のP型不純物をドーピングしたときの、ポテンシャル障壁(ΔEg)のP型不純物濃度の依存性を示している。図12Bは、そのときの電子電流密度のP型不純物濃度の依存性を示している。
 具体的には、P側第1バリア層43a及びN側第1バリア層42aについては、Al組成を0.12と0.18とし、厚さを15nmと30nmとした。この場合、P側第1バリア層43aについては、ウェル層41側の5nmの領域をアンドープ領域とした。一方、N側第1バリア層42aについては、ウェル層41側の5nmの領域をアンドープ領域とし、ウェル層41から5nm以上の距離にある領域には、1×1017cm-3のN型不純物をドーピングした。また、P側第2バリア層43b及びN側第2バリア層42bについては、Al組成を0.12から0.24への組成傾斜した場合と、0.18から0.24への組成傾斜した場合とし、厚さを15nmとした。この場合、N側第2バリア層42bについては、全領域に1×1017cm-3のN型不純物をドーピングした。また、N型ガイド層30については、1×1017cm-3の不純物をドーピングした。なお、N型クラッド層20については、ウェル層41に近い方から遠い方に向かって、1.4×1017cm-3、2×1017cm-3、6×1017cm-3、2×1018cm-3と多段階に不純物をドーピングして不純物濃度を増大させた。
 この構造において、P側第1バリア層43a、P側第2バリア層43b及びP型ガイド層50(膜厚0.2μm)のP型不純物濃度を1×1017cm-3から5×17cm-3へと増大させると、図12A及び図12Bに示すように、ポテンシャル障壁(ΔEg)は0.216eVから0.254eVへと増大するとともに、P型ガイド層50に流れる電子電流が減少して無効電流を抑制する効果があることが分かる。一方、P型ガイド層50のP型不純物濃度を高くすると、ポテンシャル障壁が大きくなって半導体レーザ装置の直列抵抗が小さくなるものの、導波路損失が大きくなって発光効率(スロープ効率)が低下する。
 したがって、この場合も、P型ガイド層50にドーピングするP型不純物濃度は、P型ガイド層50全体へのP型不純物濃度の平均値が2×1017cm-3から4×1017cm-3の間となるように制御することで、導波路損失、半導体レーザ装置の直列抵抗及び漏れ電子電流を低減することができ、ポテンシャル障壁を増大させることができる。
 また、P側第1バリア層43a、P側第2バリア層43b及びP型ガイド層50にP型不純物濃度をドーピングすることで、P側第1バリア層43a、P側第2バリア層43b及びP型ガイド層50にP型不純物濃度をドーピングしない場合と比較して、ウェル層41を超えてP型半導体層側に流れる電子電流を小さくして漏れ電流を低減することができるとともに、ポテンシャル障壁が増大する効果も大きくなる。
 なお、P側第1バリア層43aは、P側第2バリア層43bよりも屈折率が高いため、P側第1バリア層43aの膜厚を厚くした方がウェル層41への光閉じ込め係数が増大する。特に、光分布がN型半導体層寄りとなる光導波路においては、ウェル層41への光閉じ込め係数が小さくなりやすいため、光閉じ込め係数の低下を抑制するためには、P側第1バリア層43aの膜厚を厚くすることが有効である。ただし、ウェル層41を超えてP型ガイド層50を流れる電子電流は、P側第1バリア層43aの膜厚が厚くなると増大するが、漏れ電子電流の増大は、P側第1バリア層43a、P側第2バリア層43b及びP型ガイド層50にP型不純物濃度をドーピングしない場合と比べて10%程度小さくなっている。したがって、P側第1バリア層43aの膜厚は、P側第1バリア層43a、P側第2バリア層43b及びP型ガイド層50にP型不純物濃度をドーピングしない場合と比べて10%程度厚くすることができ、15nm以上、40nm以下にするとよい。
 ここで、図12A及び図12Bでは、P側第1バリア層43a、P側第2バリア層43b及びP型ガイド層50にドーピングするP型不純物濃度に傾斜を持たせていなかったが、P側第1バリア層43a、P側第2バリア層43b及びP型ガイド層50にドーピングするP型不純物濃度に傾斜を持たせると、図13A及び図13Bに示す結果となる。図13Aは、図5Aに示される実施例1の半導体レーザ装置1の不純物ドーピングプロファイルで不純物をドーピングしたときの、ポテンシャル障壁(ΔEg)のP型不純物濃度の依存性を示している。図13Bは、そのときの電子電流密度のP型不純物濃度の依存性を示している。
 具体的には、P側第1バリア層43a及びN側第1バリア層42aについては、Al組成を0.12と0.18とし、厚さを15nmと30nmとした。この場合、P側第1バリア層43aについては、ウェル層41側の5nmの領域をアンドープ領域とした。一方、N側第1バリア層42aについては、ウェル層41側の5nmの領域をアンドープ領域とし、ウェル層41から5nm以上の距離にある領域には、1×1017cm-3のN型不純物をドーピングした。また、P側第2バリア層43b及びN側第2バリア層42bについては、Al組成を0.12から0.24への組成傾斜した場合と、0.18から0.24への組成傾斜した場合とし、厚さを15nmとした。この場合、N側第2バリア層42bについては、全領域に1×1017cm-3のN型不純物をドーピングした。また、N型ガイド層30については、1×1017cm-3の不純物をドーピングした。なお、N型クラッド層20については、ウェル層41に近い方から遠い方に向かって、1.4×1017cm-3、2×1017cm-3、6×1017cm-3、2×1018cm-3と多段階に不純物をドーピングして不純物濃度を増大させた。
 この構造において、P側第1バリア層43aにおけるP型不純物のドーピング開始位置P1での不純物濃度を1×1017cm-3とし、ウェル層41から離れた側のP型ガイド層50の位置P2でのP型不純物濃度を1×1017cm-3から1×1018cm-3へと傾斜増大するようにP型不純物をドーピングすると、図13A及び図13Bに示すように、P側第1バリア層43a及びN側第1バリア層42aの厚さが15nmの場合は、ポテンシャル障壁(ΔEg)が0.216eVから0.254eVに増大し、P側第2バリア層43b及びN側第2バリア層42bの厚さが30nmの場合は、ポテンシャル障壁(ΔEg)が0.215eVから0.234eVに増大する。
 また、上記位置P2でのP型不純濃度を増大させると、P型ガイド層50に流れる電子電流が減少して無効電流を抑制することができる。ここで、位置P2でのP型不純物濃度を大きくすると、ポテンシャル障壁が大きくなり、半導体レーザ装置の直列抵抗も小さくなる。また、P型ガイド層50においてP型不純物濃度が傾斜しているので、位置P2でのP型不純物濃度を増大させても導波路損失の増大が抑制される。
 したがって、P型ガイド層50にドーピングするP型不純物濃度は、P型ガイド層50全体へのP型不純物濃度の平均値が2×1017cm-3から4×1017cm-3の間となるように制御することで、導波路損失、半導体レーザ装置の直列抵抗及び漏れ電子電流を低減することができ、ポテンシャル障壁を増大させることができる。
 また、P側第1バリア層43a、P側第2バリア層43b及びP型ガイド層50に不純物濃度が傾斜するようにP型不純物をドーピングすることで、漏れ電流を低減することができる。
 なお、P側第1バリア層43aは、P側第2バリア層43bよりも屈折率が高いため、P側第1バリア層43aの膜厚を厚くした方がウェル層41への光閉じ込め係数が増大する。特に、光分布がN型半導体層寄りとなる光導波路においては、ウェル層41への光閉じ込め係数が小さくなりやすいため、光閉じ込め係数の低下を抑制するためには、P側第1バリア層43aの膜厚を厚くすることが有効である。しかしながら、P側第1バリア層43aの膜厚を厚くし過ぎるとウェル層41への光閉じ込めが大きくなりCODが生じやすくなる。具体的には、P側第1バリア層43aの膜厚は、15nm以上、50nm以下であるとよい。この結果、光分布がN型半導体層寄りとなる光導波路において、CODの発生を抑制しつつ、ウェル層41への光閉じ込めを大きくし、発振しきい電流値を低減することができる。
 ここで、図13A及び図13Bでは、N型ガイド層30とP型ガイド層50とのAl組成が対称であったが、N型ガイド層30とP型ガイド層50とのAl組成を非対称にすると、図14A及び図14Bに示す結果となる。具体的には、図14A及び図14Bでは、P型ガイド層50のバンドギャップエネルギーがN型ガイド層30のバンドギャップエネルギーよりも大きくなるようにP型ガイド層50のAl組成をN型ガイド層30のAl組成よりも大きくしている。なお、図14Aは、図5Cに示される実施例3の半導体レーザ装置1のP型ガイド層50についてのポテンシャル障壁のAl組成の依存性を示している。図14Bは、同半導体レーザ装置1のP型ガイド層50についての電子電流密度のAl組成の依存性を示している。
 具体的には、P側第1バリア層43a及びN側第1バリア層42aについては、Al組成を0.12と0.18とし、厚さを15nmと30nmとした。この場合、P側第1バリア層43aについては、ウェル層41側の5nmの領域をアンドープ領域とした。一方、N側第1バリア層42aについては、ウェル層41側の5nmの領域をアンドープ領域とし、ウェル層41から5nm以上の距離にある領域には、1×1017cm-3のN型不純物をドーピングした。また、N側第2バリア層42bについては、Al組成を0.12から0.24への組成傾斜した場合と、0.18から0.24への組成傾斜した場合とし、厚さを15nmとした。P側第2バリア層43bについては、Al組成を0.12からXpgへの組成傾斜した場合と、0.18からXpgへの組成傾斜した場合とし、厚さを15nmとした。この場合、N側第2バリア層42bについては、全領域に1×1017cm-3のN型不純物をドーピングした。また、N型ガイド層30のAl組成を0.24とし、P型ガイド層50のAl組成をXpgとした。なお、N型クラッド層20については、ウェル層41に近い方から遠い方に向かって、1.4×1017cm-3、2×1017cm-3、6×1017cm-3、2×1018cm-3と多段階に不純物をドーピングして不純物濃度を増大させた。
 この構造において、P側第1バリア層43aにおけるP型不純物のドーピング開始位置P1での不純物濃度を1×1017cm-3とし、ウェル層41から離れた側のP型ガイド層50の位置P2でのP型不純物濃度を5×1018cm-3へと傾斜増大するようにP型不純物をドーピングしている。
 ここで、Xpgを0.24から0.3まで変化させると、図14A及び図14Bに示すように、P側第1バリア層43a及びN側第1バリア層42aの厚さが15nmの場合は、ポテンシャル障壁(ΔEg)が0.235eVから0.32eVに増大し、P側第2バリア層43b及びN側第2バリア層42bの厚さが30nmの場合は、ポテンシャル障壁(ΔEg)が0.25eVから0.315eVに増大する。
 また、上記位置P2でのP型不純濃度を増大させると、P型ガイド層50に流れる電子電流が減少して無効電流を抑制することができる。ここで、位置P2でのP型不純物濃度を大きくすると、ポテンシャル障壁が大きくなり、半導体レーザ装置の直列抵抗も小さくなる。また、P型ガイド層50においてP型不純物濃度が傾斜しているので、位置P2でのP型不純物濃度を増大させても導波路損失の増大が抑制される。
 また、P型ガイド層50のAl組成が増大すると、ウェル層41を超えてP型ガイド層50に流れる電子電流が急激に減少することが分かる。P型ガイド層50でのP型不純物濃度の平均値は、3×1017cm-3程度であり、ウェル層41に近い側のP型不純物濃度が小さくなるように不純物がドーピングされているため、導波路損失が小さい状態で、直列抵抗を低減できるとともにポテンシャル障壁の増大を抑制することができる。
 また、P型ガイド層50のAl組成をN型ガイド層30のAl組成よりも相対的に高くすることで、上述の効果を得ることができる。具体的には、P型ガイド層50のAl組成をN型ガイド層30のAl組成よりも0.02大きくすれば、ポテンシャル障壁は0.03eV大きくなり、P型ガイド層50に漏れる電子電流も50%程度以下に低減することができる。また、P型ガイド層50のAl組成をN型ガイド層のAl組成よりも0.03大きい0.27にすれば、ポテンシャル障壁は0.27eV以上の大きさに増大することができ、P型ガイド層50のAl組成をN型ガイド層のAl組成よりも0.05大きい0.29にすれば、ポテンシャル障壁は0.3eV以上の大きさに増大することができる。
 さらに、ウェル層厚を8nm以上とし、P型クラッド層60のAl組成をN型クラッド層20のAl組成よりも大きくし、P型ガイド層50のAl組成をN型ガイド層30のAl組成よりも大きくすることで、ウェル層41への光閉じ込め係数を増大させつつ、光分布をN型半導体層寄りとし、P型クラッド層60への光分布の染み出しを低減することができる。この結果、熱飽和レベルが高く、温度特性が良好で、偏光比の高い半導体レーザ装置を得ることができる。
 次に、N型不純物濃度の正孔漏れ電流への影響について、図15A、図15B、図16A及び図16Bを用いて説明する。図15Aは、本実施の形態に係る半導体レーザ装置1において、ウェル層41のN側の界面から100nmの位置での正孔電流密度のN型不純物濃度の依存性を示している。図15Bは、本実施の形態に係る半導体レーザ装置1において、N型クラッド層基板側界面の位置での正孔電流密度のN型不純物濃度の依存性を示している。また、図16Aは、本実施の形態に係る半導体レーザ装置1において、N型半導体層におけるN型不純物濃度分布の一例を示しており、図16Bは、N型半導体層におけるN型不純物濃度分布の他の一例を示している。
 この構造において、P側第1バリア層43aにおけるP型不純物のドーピング開始位置P1での不純物濃度を1×1017cm-3とし、ウェル層41から離れた側のP型ガイド層50の位置P2でのP型不純物濃度を1×1017cm-3から1×1018cm-3へと傾斜増大するようにP型不純物をドーピングしている。また、P型クラッド層60には2×1018cm-3のP型不純物をドーピングしている。
 上記位置P2でのP型不純濃度を増大させると、P型ガイド層50に流れる電子電流が減少して無効電流を抑制することができる。ここで、位置P2でのP型不純物濃度を大きくすると、ポテンシャル障壁が大きくなり、半導体レーザ装置の直列抵抗も小さくなる。また、P型ガイド層50においてP型不純物濃度が傾斜しているので、位置P2でのP型不純物濃度を増大させても導波路損失の増大が抑制される。
 したがって、P型ガイド層50にドーピングするP型不純物濃度は、P型ガイド層50全体へのP型不純物濃度の平均値が2×1017cm-3から4×1017cm-3の間となるように制御することで、導波路損失、半導体レーザ装置の直列抵抗及び漏れ電子電流を低減することができ、ポテンシャル障壁を増大させることができる。
 また、N型半導体層のN型不純物は、垂直方向の光分布がN型半導体層寄りとなるようにドーピングしているため、ウェル層41から遠ざかる向きにN型不純物濃度が高くなるようにドーピングを行っている。図16Aに示される場合は、N型ガイド層30とN側第1バリア層42aのウェル層41から5nm以上の距離から基板10側に向かってN型ガイド層30までの領域ではN型不純物を5×1016cm-3のドーピングを行い、N型クラッド層20については、ウェル層41に近い方から遠い方に向かって、7×1016cm-3(0.25μm)、1×1017cm-3(0.25μm)、3×1017cm-3(0.5μm)、1×1018cm-3(2μm)と多段階に不純物をドーピングして不純物濃度を増大させた。なお、多段階にN型不純物をドーピングする場合、N型クラッド層20において、異なる不純物濃度を有する隣接した領域では、ウェル層41から最も遠い領域の膜厚が最も厚く、それ以外の領域では、ウェル層41に近い側の領域の膜厚はウェル層から遠い側の領域の膜厚以下としている。これは、N型クラッド層20においてウェル層41から最も遠い側における最も高い不純物濃度を有する領域では、垂直方向の光分布強度が減衰しており、不純物濃度を高めてもフリーキャリア損失の影響が小さいので、導波路損失の増大につながらず、半導体レーザ装置の直列抵抗低減の効果を得ることができるためである。
 また、N型クラッド層20における垂直方向の光分布強度と、その強度の減衰の変化率は、ウェル層41に近いほど大きい。このことから、不純物濃度の増大による導波路損失の増大をさけるためには、垂直方向光分布が十分に減衰していない領域において不純物濃度を多段階に増大させていく場合の各濃度一定領域の膜厚は、ウェル層41に近い側の領域を薄くした方がよい。
 このN型層不純物濃度プロファイルを基本として、各濃度を1倍、1.2倍、1.5倍、2倍、3倍として、図15Aでは、ウェル層41のN側の界面から100nmの位置での正孔電流密度の計算結果を示しており、図15Bでは、N型クラッド層基板側界面の位置での正孔電流密度の計算結果を示している。
 図15A及び図15Bに示すように、N型不純物濃度を高めた方が、正孔電流密度が低くなり、ウェル層41を超えてN型半導体層に漏れて流れる正孔電流が低減されることが分かる。
 また、N型不純物濃度を高めることで、半導体レーザ装置の直列抵抗が低減するため半導体レーザ装置の動作電流を低減することもできる。また、光分布が存在する割合がN型ガイド層30において最も大きくなるように光分布をN型半導体層寄りにしているため、N型ガイド層30のN型不純物濃度を他のN型半導体層のN型不純物と比較して最も低くすることで、導波路損失を低減することができる。このことから、N型不純物濃度のドーピングプロファイルを図16Aに示されるパターンにすることで、半導体レーザ装置の直列抵抗の低減と導波路損失の低減とを同時に実現することができる。
 なお、N型不純物のドーピングプロファイルは、図16Aに示すように階段状に変化させた場合のみでなく、図16Bの実線に示すように、基板10側のN型不純物濃度が連続的に増大するようにしてもよい。また、図16Bの破線に示すように、N型ガイド層30において、最も光分布強度が高くなる位置のN型不純物濃度を低くし、その位置から基板10側に向かってN型不純物濃度を連続的又は階段状に増大させることで、導波路損失をさらに低減することができる。なお、図16Bの一点鎖線に示すように、N型不純物濃度は、非線形に変化させてもよい。
 また、図16Cに示すように、N側第1バリア層42aにドーピングする不純物濃度を高めて、N側第2バリア層42bの不純物濃度をN側第1バリア層42aのドーピング濃度よりも低くし、ウェル層41から基板10に向かって段階的にN型不純物濃度を高めてもよい。
 この場合、N側第1バリア層にドーピングする不純物濃度は5×1017cm-3から1×1018cm-3であればよい。これにより、N側第1バリア層42aの価電子帯の電位ポテンシャルが低下し、ウェル層41に注入された正孔がN型層側に漏れる正孔電流の漏れを抑制することが可能となり、半導体レーザ装置の高温高出力動作をより高めることができる。また、N側第2バリア層42bのN型不純物濃度をN側第1バリア層42aの不純物濃度と同様にN型ガイド層30のN型不純物濃度に対して高めてもよいが、導波路損失の増大を伴うため、N側第2バリア層42bにおいて、N側第2バリア層42bとN側第1バリア層42aとの界面近傍から10nm以内の距離の領域のN型不純物濃度を高めても、正孔電流の漏れを抑制することができる。
 さらに、N側第1バリア層42aのドーピング濃度を高めると、空孔拡散やイオン注入により窓領域を形成する場合、窓部形成の熱アニール工程の温度を低くしても、N型不純物を介在して、ウェル層41との間で原子交換が生じやすくなり、窓部のウェル層41のバンドギャップエネルギーが大きくなりやすくなるという効果を得ることができる。
 また、N型ガイド層30へのN型不純物のドーピングは、図16Dに示すようにN型クラッド層20との界面近傍から段階的に基板10側に向かって段階的に増加されてもよい。N型光分布がN型半導体層寄りとなる光導波路においては、基板法線方向の垂直光分布における最も光強度の高い部分がN型ガイド層30中のウェル層41側の領域にあるため、N型ガイド層30においては、N型ガイド層30中のウェル層41側の領域にN型不純物濃度の最低濃度領域があれば導波路損失の増大を抑制することができる。
 図16Aから図16Dに示す例において、N型ガイド層30におけるN型不純物濃度の最小値は5×1016cm-3以上、3×1017cm-3以下であれば、導波路損失の増大抑制、正孔漏れ電流発生抑制、半導体レーザ装置の直列抵抗増大抑制の効果を全て得ることができる。また、N型クラッド層20の基板10側のN型不純物濃度を高めても、N型ガイド層30とN型クラッド層20との界面から基板10側へ1μm以上の領域のN型クラッド層20に存在する光分布の割合が小さいため、導波路損失の増大は小さい。したがって、半導体レーザ装置の直列抵抗の低減のためには、N型ガイド層30とN型クラッド層20との界面から基板10側へ1μm以上の領域のN型クラッド層20のN型不純物濃度は移動度が低下しない程度に高い方がよく、例えば、1×1018cm-3以上、3×1018cm-3以下であるとよい。
 また、N側第1バリア層42aのN型不純物濃度を図16C及び図16Dに示すように高めつつ、N側第2バリア層42b、N型ガイド層30及びN型クラッド層20のN型不純物濃度を図16Bに示すように連続的に変化させてもよい。また、ウェル層41近傍でN型不純物濃度を高める領域は、N側第1バリア層42aだけでなく、N側第2バリア層42bを一部含んでいても、その領域の膜厚が10nm以下であれば、導波路損失の増大を小さく抑えつつ、半導体レーザ装置の直列抵抗を低減し、正孔電流の漏れをよりいっそう抑制することができる。
 次に、活性層40のウェル層41の量子井戸構造について検討した。以下、その検討結果について、図17~図19を用いて説明する。図17~図19は、ヘビーホール及びライトホール量子準位エネルギーのウェル層のAl組成の依存性を示す図である。
 図17は、Al組成を0.06としてP側第1バリア層43a及びN側第2バリア層42bをAl0.06Ga0.94As、厚さ15nmとし、また、P側第2バリア層43b及びN側第2バリア層42bをAl0.24Ga0.76As、厚さ15nmとし、また、ウェル層41をAlGa1-X-YInAsとした場合に、ウェル層41の厚さを、6nm、8.5nm、12nm、15nmとしたときにおいて、ウェル層41に形成されるヘビーホール(HH)及びライトホール(LH)の準位の相対的なポテンシャルエネルギーのAl組成依存性の計算結果を示している。ここで、電子準位、HH準位、LH準位を、En、HHn、LHnと表す。また、nは自然数で、基底準位を1とする。この計算では、波長915nmの同じ発振波長を得るために、E1-H1間のエネルギー差を一定(1.35eV)としている。なお、図17には、ウェル層41のAl組成Xを変え場合に、同一の発振波長を得るためのIn組成YとAl組成Xとの関係式が示されている。また。各Al組成を有するウェル層41におけるGaAs基板との交付不整を一点鎖線で示している。
 ここで、電子準位に対するポテンシャルエネルギーの大小関係と正孔準位に対するポテンシャルエネルギーの大小関係とは、逆になる。図17に示される計算結果において、各準位間のポテンシャルエネルギーを相対的に比較した場合、相対ポテンシャルエネルギーが最も大きい(つまりグラフの上に位置する)準位が、正孔に対するポテンシャルが最も低くなると解釈する。
 図17に示すように、ウェル層41の厚さが6nmの場合、L1より相対に低いポテンシャルエネルギーを有するHHの準位が2準位形成されている。したがって、ウェル層41にホールが注入された場合、ポテンシャルエネルギーの最も低い方から、H1、H2、L1の順にホールが満たされる。
 ここで、ウェル層41のAl組成を増大していくと、ウェル層41の圧縮歪が増大するため、HHの準位は、正孔に対するポテンンシャルエネルギーが低い方向に変化し、LHの準位は、正孔に対するポテンンシャルエネルギーが高い方向に変化する。このことから、ウェル層41のAl組成を大きくして圧縮性の歪を高めるほど、H1とL1のエネルギーの差が大きくなり、HHで最も正孔ポテンシャルエネルギーが小さいH1にホールが存在しやすくなり、逆に、LHで最も正孔ポテンシャルエネルギーが大きいL1にホールが存在しにくくなる。このことから、ウェル層41のAl組成を大きくして圧縮性の歪を高めた方が、HHの正孔数が大きくなり、LHの正孔数が小さくなる。LHは、発振したレーザ光において、偏光方向が基板法線方向にあるTMモード光の発生に寄与するため、LHの正孔数が多くなると偏光比(TE/(TE+TM))の低下につながる。したがって、ウェル層41のAl組成を高めて圧縮性の歪を高めた方が偏光比を高めることができることが分かる。
 また、ウェル層41の厚さが6nmあれば、LHのポテンシャルエネルギーよりも低いポテンシャルエネルギーとなるHH準位を2準位形成されるため、ホールはHHの準位に優先的に存在でき、TEモード成分の多い、高い偏光比のレーザ光を得ることができる。
 ウェル層41の厚さが8.5nmの場合の結果では、ウェル層41のAl組成を0.08以上とすると第1バリア層の価電子帯のエネルギーよりもLHの準位の方が、正孔ポテンシャルエネルギーが高くなり、P側第1バリア層43a及びN側第1バリア層42aとウェル層41とで形成される量子井戸内にLHの量子準位が形成されず、P側第2バリア層43b及びN側第2バリア層42bをバリア層とする量子準位が形成される。この場合、量子準位の状態密度は量子井戸構造の厚さに反比例するため、LH1の状態密度がさらに小さくなり、偏光比の増大効果が増す。この状態を、図17の各グラフにおいてL1の太い破線で示している。図17に示すように、ウェル層41の厚さを8.5nm以上にすると、ウェル層41のAl組成が0.04以上でP側第1バリア層43a及びN側第1バリア層42a内にLHが形成されず、また、ウェル層41が厚いほど、ウェル層41の格子不整が低い状態で、P側第1バリア層43a及びN側第1バリア層42a内にLHが形成されなくなることが分かる。また、ウェル層41は、厚くした方が、L1よりも正孔のポテンシャルエネルギーの低いHH準位の数が多くなり、L1に存在する正孔数が低減しやすいことが分かる。
 図17に示すように、ウェル層41の厚さを8.5nm以上にすると、ウェル層41のAl組成が0.04以上でL1よりも正孔ポテンシャルエネルギーの低いHH準位数が3準位になり、LH準位に存在するLH数を低減することができ、偏光比の増大に効果的である。
 また、ウェル層41の厚さを12nm以上にすると、ウェル層41のAl組成が0.0以上でL1よりも正孔ポテンシャルエネルギーの低いHH準位数は3準位になり、LH準位に存在するLH数を低減することができ、偏光比の増大に効果的である。
 なお、ウェル層41は屈折率が高いため、膜厚が厚い方がウェル層41への光閉じ込め係数が大きくなり、レーザ発振に必要な閾キャリア密度が低減されるため、さらにL1に存在する正孔数が低減し偏光比が増大する。
 P側第1バリア層43a及びN側第1バリア層42aもAl組成が低く、P側第2バリア層43b、N側第2バリア層42b、N型ガイド層30、N型クラッド層20、P型ガイド層50及びP型クラッド層60よりも屈折率が高いため、P側第1バリア層43a及びN側第1バリア層42aの膜厚は、厚い方がウェル層41への光閉じ込め係数が大きくなり、レーザ発振に必要な閾キャリア密度が低減されるため、さらにL1に存在する正孔数が低減し偏光比が増大する。例えば、P側第1バリア層43aとN側第1バリア層42aとの合計膜厚を20nm以上にすれば、光閉じ込め係数の増大に効果がある。ただし、あまりの合計膜厚を厚くするとウェル層41への光閉じ込め係数が大きくなりCODレベルの低下をもたらすため、合計厚は80nm以下であればよい。
 また、図18は、Al組成を0.12としてP側第1バリア層43a及びN側第1バリア層42aをAl0.12Ga0.88As、厚さ15nmとし、また、P側第2バリア層43b及びN側第2バリア層42bをAl0.24Ga0.76As、厚さ15nmとし、また、ウェル層41をAlGa1-X-YInAsとした場合に、ウェル層の厚さを、6nm、8.5nm、12nm、15nmとしたときにおいて、ウェル層41に形成されるヘビーホール(HH)及びライトホール(LH)の準位の相対的なポテンシャルエネルギーのAl組成依存性の計算結果を示している。ここで、図17と同様に、電子準位、HH準位、LH準位を、En、HHn、LHnと表す。また、nは自然数で、基底準位を1とする。この計算でも、波長915nmの同じ発振波長を得るために、E1-H1間のエネルギー差を一定(1.35eV)としている。なお、図18には、ウェル層41のAl組成Xを変え場合に、同一の発振波長を得るためのIn組成YとAl組成Xとの関係式が示されている。また。各Al組成を有するウェル層41におけるGaAs基板との交付不整を一点鎖線で示している。
 図18に示すように、ウェル層41の厚さが6nmの場合、L1より相対に低いポテンシャルエネルギーを有するHHの準位は2準位形成されている。したがって、上記と同様に、ウェル層41にホールが注入された場合、ポテンシャルエネルギーの最も低い方から、H1、H2、L1の順にホールが満たされる。
 ここで、ウェル層41のAl組成を増大していくと、ウェル層41の圧縮歪が増大するため、HHの準位は、正孔に対するポテンンシャルエネルギーが低い方向に変化し、LHの準位は正孔に対するポテンンシャルエネルギーが低い方向に変化する。このことから、ウェル層41のAl組成を大きくして圧縮性の歪を高めるほど、H1とL1のエネルギーの差が大きくなり、HHで最も正孔ポテンシャルエネルギーが小さいH1にホールが存在しやすくなり、逆に、LHで最も正孔ポテンシャルエネルギーが大きいL1にホールが存在しにくくなる。このことから、ウェル層41のAl組成を大きくして圧縮性の歪を高めた方が、HHの正孔数が大きくなり、LHの正孔数が小さくなる。LHは、発振したレーザ光において、偏光方向が基板法線方向にあるTMモード光の発生に寄与するため、LHの正孔数が多くなると偏光比(TE/(TE+TM))の低下につながる。したがって、ウェル層41のAl組成を高めて圧縮性の歪を高めた方が偏光比を高めることができることが分かる。
 また、ウェル層41の膜厚が6nmあれば、LHのポテンシャルエネルギーよりも低いポテンシャルエネルギーとなるHH準位を2準位形成されるため、ホールはHHの準位に優先的に存在でき、TEモード成分の多い、高い偏光比のレーザ光を得ることができる。
 ウェル層41の厚さが8.5nmの場合の結果では、ウェル層41のAl組成を0.08以上とすると第1バリア層の価電子帯のエネルギーよりもLHの準位の方が、正孔ポテンシャルエネルギーが高くなり、P側第1バリア層43a及びN側第1バリア層42aとウェル層41とで形成される量子井戸内にLHの量子準位が形成されず、P側第2バリア層43b及びN側第2バリア層42bをバリア層とする量子準位が形成される。この場合、量子準位の状態密度は量子井戸構造の厚さに反比例するため、LH1の状態密度がさらに小さくなり、偏光比の増大効果が増す。この状態を図17の各グラフにおいてL1又はL2の太い破線で示している。図18に示すように、ウェル層41の厚さを8.5nm以上にすると、ウェル層41のAl組成が0.08以上でP側第1バリア層43a及びN側第1バリア層42a内にLHが形成されず、また、ウェル層41が厚いほど、ウェル層41の格子不整が低い状態で、P側第1バリア層43a及びN側第1バリア層42a内にLHが形成されなくなることが分かる。また、ウェル層41は、厚くした方が、L1よりも正孔のポテンシャルエネルギーの低いHH準位の数が多くなり、L1に存在する正孔数が低減しやすいことが分かる。
 図18に示すように、ウェル層41の厚さを8.5nm以上とすると、ウェル層41のAl組成が0.02以上でL1よりも正孔ポテンシャルエネルギーの低いHH準位数が3準位になり、LH準位に存在するLH数を低減することができ、偏光比の増大に効果的である。
 また、ウェル層41の厚さを12nm以上にすると、ウェル層41のAl組成が0.0以上でL1よりも正孔ポテンシャルエネルギーの低いHH準位数が3準位になり、LH準位に存在するLH数を低減することができ、偏光比の増大に効果的である。
 なお、ウェル層41は屈折率が高いため、膜厚が厚い方がウェル層41への光閉じ込め係数が大きくなり、レーザ発振に必要な閾キャリア密度が低減されるため、さらにL1に存在する正孔数が低減し偏光比が増大する。
 P側第1バリア層43a及びN側第1バリア層42aもAl組成が低く、P側第2バリア層43b、N側第2バリア層42b、N型ガイド層30、N型クラッド層20、P型ガイド層50及びP型クラッド層60よりも屈折率が高いため、P側第1バリア層43a及びN側第1バリア層42aの膜厚は、厚い方がウェル層41への光閉じ込め係数が大きくなり、レーザ発振に必要な閾キャリア密度が低減されるため、さらにL1に存在する正孔数が低減し偏光比が増大する。例えば、P側第1バリア層43aとN側第1バリア層42aとの合計膜厚を25nm以上にすれば、光閉じ込め係数の増大に効果がある。ただし、あまり合計膜厚を厚くするとウェル層41への光閉じ込め係数が大きくなりCODレベルの低下をもたらすため、合計膜厚は90nm以下であればよい。
 また、図19は、Al組成を0.18としてP側第1バリア層43a及びN側第1バリア層42aをAl0.18Ga0.82As、厚さ15nmとし、また、P側第2バリア層43b及びN側第2バリア層42bをAl0.24Ga0.76As、厚さ15nmとし、また、ウェル層41をAlGa1-X-YInAsとした場合に、ウェル層の厚さを、6nm、8.5nm、12nm、15nmとしたときにおいて、ウェル層41に形成されるヘビーホール(HH)及びライトホール(LH)の準位の相対的なポテンシャルエネルギーのAl組成依存性の計算結果を示している。ここで、図17と同様に、電子準位、HH準位、LH準位を、En、HHn、LHnと表す。また、nは自然数で、基底準位を1とする。この計算でも、波長915nmの同じ発振波長を得るために、E1-H1間のエネルギー差を一定(1.35eV)としている。なお、図19には、ウェル層41のAl組成Xを変え場合に、同一の発振波長を得るためのIn組成YとAl組成Xとの関係式が示されている。また。各Al組成を有するウェル層41におけるGaAs基板との交付不整を一点鎖線で示している。
 図19に示すように、ウェル層41の厚さが6nmの場合、L1より相対に低いポテンシャルエネルギーを有するHHの準位は2準位形成されている。したがって、上記と同様に、ウェル層41にホールが注入された場合、ポテンシャルエネルギーの最も低い方から、H1、H2、L1の順にホールが満たされる。
 ここで、ウェル層41のAl組成を増大していくと、ウェル層41の圧縮歪が増大するため、HHの準位は、正孔に対するポテンンシャルエネルギーが低い方向に変化し、LHの準位は正孔に対するポテンンシャルエネルギーが低い方向に変化する。このことから、上記と同様に、ウェル層41のAl組成を大きくして圧縮性の歪を高めるほど、H1とL1のエネルギーの差が大きくなり、HHで最も正孔ポテンシャルエネルギーが小さいH1にホールが存在しやすくなり、逆に、LHで最も正孔ポテンシャルエネルギーが大きいL1にホールが存在しにくくなる。このことから、ウェル層41のAl組成を大きくして圧縮性の歪を高めた方が、HHの正孔数が大きくなり、LHの正孔数が小さくなる。LHは、発振したレーザ光において、偏光方向が基板法線方向にあるTMモード光の発生に寄与するため、LHの正孔数が多くなると偏光比(TE/(TE+TM))の低下につながる。したがって、ウェル層41のAl組成を高めて圧縮性の歪を高めた方が偏光比を高めることができることが分かる。
 また、ウェル層41の膜厚が6nmあれば、LHのポテンシャルエネルギーよりも低いポテンシャルエネルギーとなるHH準位を2準位形成されるため、ホールはHHの準位に優先的に存在でき、TEモード成分の多い、高い偏光比のレーザ光を得ることができる。
 図19に示すように、ウェル層41の厚さを8.5nm以上とすると、ウェル層41のAl組成が0.02以上でL1よりも正孔ポテンシャルエネルギーの低いHH準位数が3準位になり、LH準位に存在するLH数を低減することができ、偏光比の増大に効果的である。
 また、ウェル層41の厚さを12nm以上とすると、ウェル層41のAl組成が0.0以上でL1よりも正孔ポテンシャルエネルギーの低いHH準位数は3準位になり、LH準位に存在するLH数を低減することができ、偏光比の増大に効果的である。
 なお、ウェル層41は屈折率が高いため、膜厚が厚い方がウェル層41への光閉じ込め係数が大きくなり、レーザ発振に必要な閾キャリア密度が低減されるため、さらにL1に存在する正孔数が低減し偏光比が増大する。
 P側第1バリア層43a及びN側第1バリア層42aもAl組成が低く、P側第2バリア層43b、N側第2バリア層42b、N型ガイド層30、N型クラッド層20、P型ガイド層50及びP型クラッド層60よりも屈折率が高いため、P側第1バリア層43a及びN側第1バリア層42aの膜厚は、厚い方がウェル層41への光閉じ込め係数が大きくなり、レーザ発振に必要な閾キャリア密度が低減されるため、さらにL1に存在する正孔数が低減し偏光比が増大する。例えば、P側第1バリア層43aとN側第1バリア層42aとの合計膜厚を30nm以上にすれば、光閉じ込め係数の増大に効果がある。ただし、あまり合計膜厚を厚くするとウェル層41への光閉じ込め係数が大きくなりCODレベルの低下をもたらすため、合計厚は100nm以下であればよい。
 以上、図17~図19で説明したように、P側第1バリア層43a及びN側第1バリア層42aのAl組成を0.06から0.18とし、ウェル層41の厚さを6nmから15nmとするとLHのポテンシャルエネルギーよりも低いポテンシャルエネルギーとなるHH準位を2準位以上形成されるため、ホールはHHの準位に優先的に存在でき、TEモード成分の多い、高い偏光比のレーザ光を得ることができる。
 また、P側第1バリア層43a及びN側第1バリア層42aのAl組成を0.06から0.18とし、ウェル層41の厚さを8.5nmから15nmとすると、ウェル層41の膜厚が6nmの場合よりも広いウェル層のAl組成範囲において、LHの正孔ポテンシャルエネルギーよりも低いポテンシャルエネルギーを有するHHの準位の数を多くすることができる。
 また、ウェル層41の厚さが8.5nmの場合では、ウェル層41のAl組成が0.02以上のInGaAsを、また、ウェル層41の厚さが12nmの場合では、ウェル層41のAl組成が0であるInGaAsをウェル層41として使用しても、正孔ポテンシャルエネルギーよりも低いポテンシャルエネルギーを有するHHの準位の数を3以上とすることができ、L1に存在するLH数が少なくなり、偏光比増大の効果を得ることができる。
 なお、ウェル層41の厚さが15nmよりも厚くなると、ウェル層41への光閉じ込め係数が大きくなりCODレベルが低下するおそれがある。また、共振器端面近傍に窓領域を形成する場合、ウェル層41が厚くなりすぎると、P側第1バリア層43a及びN側第1バリア層42aとウェル層41との間のIII族原子交換による窓領域におけるバンドギャップの短波長化が小さくなり、COD発生抑制効果が低減する。また、ウェル層41の厚さが薄くなりすぎると窓形成時の高温アニール工程において、窓領域120を形成しない利得部のウェル層41のバンドギャップの短波長化が生じやすくなり、半導体レーザ装置の温度特性が低下する。このため、ウェル層41の厚さは6nm以上15nm以下とするとよい。
 また、図17~図19では、AlGaAsからなるP側第1バリア層43a及びN側第1バリア層42aのAl組成を0.06から0.18としているが、P側第1バリア層43a及びN側第1バリア層42aのAl組成を大きくし過ぎると、ウェル層41への光閉じ込め係数が小さくなるため半導体レーザ装置の温度特性が低下する。このため、P側第1バリア層43a及びN側第1バリア層42aのAl組成は、0.06以上、0.22以下であるとよい。
 また、AlGaAsからなるN側第2バリア層42bとP側第2バリア層43bのAl組成を高めると、ウェル層41からP型層側への電子電流の漏れと、ウェル層41からN型層側への正孔電流の漏れを抑制することができるため、Al組成は0.24以上がよい。しかしながら、あまりにN側第2バリア層42bとP側第2バリア層43bのAl組成を高めると動作電圧の増大を招くため、Al組成は0.32以下がよい。
 また、本実施の形態に係る半導体レーザ装置1では、共振器長が長くなっている。具体的には、半導体レーザ装置1の共振器長は、2mm以上になっている。
 このように、半導体レーザ装置1の共振器長を長くすることで、半導体レーザ装置1の熱抵抗が低減し、放熱性が向上する。これにより、熱飽和する光出力を増大させることができる。
 なお、半導体レーザ装置1の共振器長を長くしすぎると、共振器のミラー損失が増大してスロープ効率が低下するおそれがあるが、本開示では、光分布をN型半導体層寄りにして導波路損失を小さくしているため、半導体レーザ装置1の共振器長を長くしてもスロープ効率の低下が抑制され、最大光出力を増大させることができる。
 (変形例)
 以上、本開示に係る半導体レーザ装置及びその製造方法について、実施の形態に基づいて説明したが、本開示は、上記各実施の形態に限定されるものではない。
 例えば、上記実施の形態では、開口部80aを有する電流ブロック層80をP型コンタクト層70内に設けることで電流注入領域が画定されていたが、これに限らない。具体的には、図20、図21A、図21B及び図21Cに示される半導体レーザ装置1Aのように、リッジ部200Aを設けることで電流注入領域が画定されていてもよい。図20は、変形例に係る半導体レーザ装置1Aの上面図である。図21Aは、図20のXXIA-XXIA線における同半導体レーザ装置1Aの断面図であり、図21Bは、図20のXXIB-XXIB線における同半導体レーザ装置1Aの断面図であり、図21Cは、図20のXXIC-XXIC線における同半導体レーザ装置1Aの断面図である。なお、図21Aは、半導体レーザ装置1Aの利得部における断面を示しており、図21Bは、半導体レーザ装置1Aの前端面1a側の端面部における断面を示している。
 図20~図21Cに示すように、本変形例における半導体レーザ装置1Aは、光導波路として共振器長方向に延在するリッジ部200Aを有するリッジストライプ構造の半導体レーザ素子である。
 半導体レーザ装置1Aでは、リッジ部200Aに対応する開口部100aを有する絶縁膜100Aが形成されている。絶縁膜100Aは、電流ブロック機能を有する誘電体膜である。絶縁膜100Aは、例えばSiO等の絶縁膜によって構成されている。
 また、本変形例では、リッジ部200Aを形成するために、P型コンタクト層70に深さ0.2μmの一対の溝が形成されており、電流注入経路となるリッジ部200A以外のP型コンタクト層70の表面が絶縁膜100Aで覆われている。これにより、流入された電流をリッジ部200Aに集中して流すことができる。なお、リッジ部200Aを形成するための溝は、P型コンタクト層70だけではなく、P型クラッド層60にまで形成されていてもよい。
 本変形例において、リッジ部200A及び絶縁膜100A以外の構成は、基本的には、上記実施の形態における半導体レーザ装置1と同様の構成である。
 したがって、本変形例に係る半導体レーザ装置1Aについても、上記実施の形態に係る半導体レーザ装置1と同様の作用効果を奏する。
 また、電流注入領域を画定する上記実施の形態における開口部80a及び本変形例における開口部100aや共振器長、ウェル層41の組み合わせにより種々の波長帯の半導体レーザ装置として適用することができる。
 例えば、開口幅90μm以上300μm以下程度で、且つ、共振器長2000μm以上6000μm以下程度の半導体レーザ装置への投入電流を15A以上40A以下程度とし、投入電圧を1.7V以上3V以下程度とすることで、780nm以上800nm以下程度の帯域の波長を有し、且つ、光出力が15W以上30W以下程度であるレーザ光を出射する光学特性を有する半導体レーザ装置を実現できる。
 例えば、開口幅90μm以上300μm以下程度で、且つ、共振器長2000μm以上6000μm以下程度の半導体レーザ装置への投入電流を15A以上40A以下程度とし、投入電圧を1.6V以上3V以下程度とすることで、800nm以上820nm以下程度の帯域の波長を有し、且つ、光出力が15W以上30W以下程度であるレーザ光を出射する光学特性を有する半導体レーザ装置を実現できる。
 例えば、開口幅90μm以上300μm以下程度で、且つ、共振器長2000μm以上6000μm以下程度の半導体レーザ装置への投入電流を15A以上40A以下程度とし、投入電圧を1.5V以上3V以下程度とすることで、850nm以上900nm以下程度の帯域の波長を有し、且つ、光出力が15W以上30W以下程度であるレーザ光を出射する光学特性を有する半導体レーザ装置を実現できる。
 例えば、開口幅90μm以上300μm以下程度で、且つ、共振器長2000μm以上6000μm以下程度の半導体レーザ装置への投入電流を15A以上50A以下程度とし、投入電圧を1.45V以上3V以下程度とすることで、900nm以上930nm以下程度の帯域の波長を有し、且つ、光出力が15W以上40W以下程度であるレーザ光を出射する光学特性を有する半導体レーザ装置を実現できる。
 例えば、開口幅90μm以上300μm以下程度で、且つ、共振器長2000μm以上6000μm以下程度の半導体レーザ装置への投入電流を15A以上50A以下程度とし、投入電圧を1.4以上3V以下程度とすることで、930nm以上960nm以下程度の帯域の波長を有し、且つ、光出力が15W以上40W以下程度であるレーザ光を出射する光学特性を有する半導体レーザ装置を実現できる。
 例えば、開口幅4μm以上300μm以下程度で、且つ、共振器長2000μm以上6000μm以下程度の半導体レーザ装置への投入電流を1A以上50A以下程度とし、投入電圧を1.4以上3V以下程度とすることで、960nm以上990nm以下程度の帯域の波長を有し、且つ、光出力が1W以上40W以下程度であるレーザ光を出射する光学特性を有する半導体レーザ装置を実現できる。
 また、本変形例に係る半導体レーザ装置1Aでは、リッジ部200Aを有するので、半導体レーザ装置1Aをサブマウント等に実装したときの特性劣化等を抑制することができる。この点について、以下説明する。
 半導体レーザ装置1Aの共振器長を長くすると、半導体レーザ装置1をサブマウントに実装したときに半導体レーザ装置1の幅方向の端部に生じるせん断歪が光導波路に及ぼす影響が大きくなる。この場合、光導波路となる電流注入領域に左右非対称なせん断応力が生じると、光導波路を伝搬するレーザ光の偏光面が傾き、楕円偏波となり、偏光比の低下をもたらす。
 そこで、本変形例に係る半導体レーザ装置1Aのように、リッジ部200Aを設けて、光導波路をリッジ型にすると、半導体レーザ装置1Aをジャンクションダウンで実装したときに、リッジ部200Aで生じるせん断応力と半導体レーザ装置の幅方向の端部で生じるせん断応力とが打ち消し合って、光導波路に生じるせん断応力が低減される。これにより、光導波路を伝搬するレーザ光の偏光面が傾いて偏光比が低下することを抑制することができる。
 このことについて、図22を用いてさらに詳細に説明する。図22は、本変形例に係る半導体レーザ装置1Aをジャンクションダウンでサブマウント2に実装したときの様子を示す図である。
 サブマウント2としては、半導体レーザ装置1Aよりも熱膨張係数が大きいものを用いる。例えば、半導体レーザ装置1Aを構成する各半導体材料の熱膨張係数は、GaAsが5.35×10-6で、AlAsが3.4×10-6で、InAsが4.33×10-6で、GaNが5.59×10-6で、AlNが4.15×10-6で、InNが2.85×10-6である。したがって、サブマウント2としては、金属材料又はセラミック材料を主要構成材料として含むものを用いる。サブマウント2の主要構成材料としては、Cu(熱膨張係数16.8×10-6)、Ti(熱膨張係数8.4×10-6)、Pt(熱膨張係数8.4×10-6)、Au(熱膨張係数14.2×10-6)、Ni(熱膨張係数13.4×10-6)、SiC(熱膨張係数6.6×10-6)を用いることができる。
 この場合、図22に示すように、半導体レーザ装置1Aをサブマウント2にジャンクションダウン(フェイスダウン)で実装すると、半導体レーザ装置1Aとサブマウント2との熱膨張係数の差によって、半導体レーザ装置1Aの活性層40には、半導体レーザ装置1の幅方向の端部で生じるせん断応力(σ1)とリッジ部200Aで生じるせん断応力(σ2)とが付加される。
 ここで、サブマウント2の平均熱膨張係数(例えばサブマウントが複数層の材料によって構成されている場合は、各材料の熱膨張係数をL(i)、膜厚をTi(i)とすると、ΣL(i)T(i)/ΣL(i)のこと)が半導体レーザ装置1Aの平均熱膨張係数よりも大きい場合、サブマウント2は半導体レーザ装置1Aを水平方向(図22のX方向)に縮めるように半導体レーザ装置1Aに応力が生じる。また、リッジ部200Aの両側に存在する溝に埋め込まれた金属の熱膨張係数は、半導体レーザ装置1Aの熱膨張係数よりも大きいため、溝幅を広げるように半導体レーザ装置1Aに応力が生じる。この結果、半導体レーザ装置1AのXY面内には、図22に示されるように、溝の間の電流注入領域の中央に対して反対称的なせん断応力が生じる。
 具体的には、リッジ部200Aの横に形成された溝とX方向の位置が同じ活性層において、半導体レーザ装置1Aの幅方向の左端部で生じるせん断応力(σ1L)及びリッジ部200Aの左側の溝で生じるせん断応力(σ2L)と、半導体レーザ装置1Aの幅方向の右端部で生じるせん断応力(σ1R)及びリッジ部200Aの右側の溝で生じるせん断応力(σ2R)とが、それぞれ逆向きであるため、せん断応力が打ち消し合って、その大きさが小さくなる。
 また、光導波路を伝搬する光の光分布は、水平方向に対して溝の領域まで広がっているため、光分布の端部において光分布が受けるせん断応力の影響は、溝のせん断応力により打ち消されて小さくなる。
 なお、リッジ部200Aの幅方向の中央に対して左右のせん断応力が完全に反対称でなければ、せん断応力により半導体レーザ装置1Aに複屈折率性が生じた場合、光分布とせん断応力との相関積分が0でなくなるため、偏光面が傾斜してしまう。
 このように、本変形例に係る半導体レーザ装置1Aによれば、サブマウント2に実装したときに、半導体レーザ装置1Aの幅方向の端部に生じるせん断応力をリッジ部の横の溝によるせん断応力で打ち消すことができるので、光分布に対するせん断応力の影響を低減することができる。これにより、光導波路を伝搬するレーザ光の偏光面が傾いて偏光比が低下することを抑制することができる。
 リッジ型の半導体レーザ装置1Aの幅方向の端部に生じるせん断応力の光導波路を伝搬するレーザ光への影響を低減するためには、P型クラッド層60のAl組成を0.8以上とすれば、光分布のP型クラッド層60への染み出しを低減できるため効果的である。Al組成を0.9以上に高めると、GaAs基板との格子不整が大きくなり格子欠陥の発生による結晶性が低下する可能性があるため、Al組成は0.8以上、0.9以下とすればよい。
 なお、リッジ部200Aの横に形成された溝の幅は、10μm以上であるとよい。これにより、リッジ部200Aの外部でのせん断応力を低減することができる。具体的には、溝の幅を広げすぎると電流注入領域となるリッジ部200Aに実装時の加重が集中するため、溝の幅は、25μm±15μmであるとよい。このような幅の溝にすることで、せん断応力による偏光面の回転を効果的に抑制することができる。
 また、本変形例において、半導体レーザ装置1Aは、ジャンクションダウンによってサブマウント2に実装されていたが、これに限らない。例えば、半導体レーザ装置1Aは、ジャンクションアップ(フェイスアップ)によってサブマウント2等の支持基体に実装されていてもよい。
 なお、上記実施の形態における半導体レーザ装置1をサブマウントに実装する場合についても、半導体レーザ装置1は、ジャンクションダウン及びジャンクションアップのいずれの方法で実装されていてもよい。
 (その他の変形例)
 例えば、上記実施の形態における半導体レーザ装置1では、AlGaInAs系の半導体材料を用いる場合を例示したが、これに限らず、他の半導体材料を用いてもよい。
 具体的には、半導体レーザ装置は、AlGaInP系の半導体材料によって構成されていてもよい。この場合、図23に示すように、AlGaInP系の半導体材料によって構成された半導体レーザ装置は、例えば、n型GaAs基板である基板10の上に、N型バッファ層11、N型クラッド層20、N型ガイド層30、活性層40、P型ガイド層50、P型クラッド層60、中間層64、P型コンタクト層70、絶縁膜100A及びP側電極91が順次積層された構成とすることができる。中間層64は、第1中間層61、第2中間層62及び第3中間層63が順次積層された構成である。
 一例として、N型バッファ層11は、AlGaAs又はGaAs(膜厚:0.5μm、Si不純物濃度:3×1017cm-3)である。N型クラッド層20は、(AlGa1-X0.5In0.5P(膜厚:3.6μm、Al組成:0.18、Si不純物濃度:2×1018cm-3、6×1017cm-3、1.4×1017cm-3の多段)で、N型バッファ層11とN型クラッド層20との界面領域は、AlGa1-xAsで膜厚は75nm、Al組成は0から0.31へ連続的に変化し、不純物濃度は3×1017cm―3である。N型ガイド層30は、(AlGa1-X0.5In0.5P(膜厚:85nm、Al組成:ゼロ、活性層40側80nm:アンドープ、残りの部分のSi不純物濃度:1×1017cm-3)で、N型クラッド層20とN型ガイド層30との界面領域は、膜厚が20nmで、Al組成は0.18から0へ連続的に変化する。
 活性層40については、N側第2バリア層42bがAlGaAs(膜厚:6.5nm、Al組成:0.59、アンドープ)で、N側第1バリア層42aがAlGaAs(膜厚:3.5nm、Al組成:0.53、アンドープ)で、ウェル層41がGaInAs(膜厚:8.5nm、In組成:0.12)で、P側第1バリア層43aがAlGaAs(膜厚:3.5nm、Al組成:0.53、アンドープ)で、P側第2バリア層43bがAlGaAs(膜厚:17.5nm、Al組成:0.59、アンドープ)である。
 P型ガイド層50は、(AlGa1-X0.5In0.5P(膜厚:0.17μm、Al組成:ゼロ、活性層40側50nm:アンドープ、残りの部分のC不純物濃度:5×1017cm-3)で、P型クラッド層60は、(AlGa1-X0.5In0.5P(膜厚:0.6μm、Al組成:0.69、C不純物濃度:5×1017cm-3、1.2×1018cm-3の多段)で、P型ガイド層50とP型クラッド層60との界面領域は、膜厚が50nmで、Al組成は0から0.69へ連続的に変化し、C不純物濃度は:5×1017cm-3)である。
 中間層64については、第1中間層61が(AlGa1-X0.5In0.5P(膜厚:0.2μm、Al組成:0.30、C不純物濃度:1.2×1018cm-3)で、第2中間層62が(AlGa1-X0.5In0.5P(膜厚:0.038μm、Al組成:ゼロ、C不純物濃度:1.2×1018cm-3)で、第3中間層63がAlGaAs(膜厚:0.05μm、Al組成傾斜:0.52から0へ連続的に変化し、C不純物濃度:1.2×1018cm-3)である。
 なお、P型コンタクト層70は、GaAs(膜厚:0.4μm、C不純物濃度:2×1018cm-3)である。
 このように構成される変形例に係る半導体レーザ装置についても、上記実施の形態1と同様の効果を奏する。例えば、ウェル層41を厚くしたとしても、温度特性の劣化と長期信頼性の低下とを抑制しつつ、CODレベルの向上効果が阻害されることを抑制できる。
 さらに、図23に示される本変形例に係る半導体レーザ装置では、以下の効果を得ることもできる。
 第1に、本変形例に係る半導体レーザ装置は、AlGaAs系の半導体材料よりバンドギャップエネルギーが高いAlGaInP系の半導体材料で構成されているので、高いポテンシャル障壁が得られる。これにより、活性層40を超えてP型ガイド層50に漏れるキャリアを抑制できるので、スロープ効率を向上させることができるとともに高温高出力動作で駆動できる半導体レーザ装置を得ることができる。
 第2に、不純物(Zn)が拡散しやすくなるため、窓形成に必要な不純物濃度を低減することができる。これにより、不純物によるフリーキャリア損失を低減することができるので、スロープ効率を向上させることができる。
 第3に、N型クラッド層20、N型ガイド層30、P型ガイド層50およびP型クラッド層60とGaAs基板である基板10とを格子整合させることができるので、半導体レーザ装置(素子)の反りが低減する。そして、この反りの低減により、ジャンクションダウン実装時に半導体レーザ装置に非対称な歪が生じた場合においても、生じた非対称な歪を低減することができるため、酸化膜で構成された電流ブロック層である絶縁膜100Aの効果、すなわち、半導体レーザ装置の端部に生じるせん断応力をリッジ形状によるせん断応力で打ち消す効果を高めることができる。
 第4に、中間層64によって、半導体レーザ装置の駆動電圧が上昇することを抑制できる。具体的には、中間層64における第1中間層61及び第2中間層62によって、Al組成が段階的に低減されているので、AlGaInPとGaAsとを接合した際に生じるバンドギャップエネルギー差を最小化することができ、駆動電圧の上昇を抑制することができる。さらに第3中間層63によってAlGaAsのAl組成の傾斜層を設けることで、ヘテロ界面のバンドギャップエネルギーを平滑化し、駆動電圧の上昇を抑制することができる。
 また、上記実施の形態における半導体レーザ装置1では、半導体積層体を構成する複数の半導体層にくびれ構造を形成して、半導体積層体の側面を傾斜面としたが、これに限らない。
 その他、上記各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示の半導体レーザ装置は、例えば、高出力の光源として、ディスプレイやプロジェクタなどの画像表示装置の光源、車載ヘッドランプの光源、産業用照明や民生用照明の光源、又は、レーザ溶接装置や薄膜アニール装置、レーザ加工装置などの産業機器の光源など、様々な用途の光源に適用できる。
 1、1A 半導体レーザ装置
 1a 前端面
 1b 後端面
 2 サブマウント
 10 基板
 11 N型バッファ層
 20 N型クラッド層
 30 N型ガイド層
 40 活性層
 41 ウェル層
 42a N側第1バリア層
 42b N側第2バリア層
 43a P側第1バリア層
 43b P側第2バリア層
 44 N側高Al組成層
 45 P側高Al組成層
 50 P型ガイド層
 60 P型クラッド層
 61 第1中間層
 62 第2中間層
 63 第3中間層
 64 中間層
 70 P型コンタクト層
 71 第1コンタクト層
 72 第2コンタクト層
 80 電流ブロック層
 80a 開口部
 91 P側電極
 91a 第1P電極層
 91b めっき層
 91c 第2P電極層
 92 N側電極
 100、100A 絶縁膜
 100a 開口部
 111 第1端面コート膜
 112 第2端面コート膜
 120 窓領域
 130 溝
 200A リッジ部

Claims (23)

  1.  レーザ光を出射する半導体レーザ装置であって、
     基板と、
     前記基板の上方に配置されるN型クラッド層と、
     前記N型クラッド層の上方に配置される活性層と、
     前記活性層の上方に配置されるP型クラッド層とを備え、
     前記活性層は、
     ウェル層と、
     前記ウェル層の上方に配置されるP側第1バリア層と、
     前記P側第1バリア層の上方に配置されるP側第2バリア層とを有し、
     前記P側第2バリア層のAl組成比は、前記P側第1バリア層のAl組成比よりも高く、
     前記P側第2バリア層のバンドギャップエネルギーは、前記P側第1バリア層のバンドギャップエネルギーよりも大きく、
     前記半導体レーザ装置は、前記レーザ光が出射する端面近傍の前記ウェル層のバンドギャップエネルギーが、共振器長方向の中央部の前記ウェル層のバンドギャップエネルギーよりも大きい端面窓構造を有する
     半導体レーザ装置。
  2.  前記P型クラッド層のバンドギャップエネルギーは、前記N型クラッド層のバンドギャップエネルギーよりも大きい
     請求項1に記載の半導体レーザ装置。
  3.  前記ウェル層の厚さは、6nm以上である
     請求項1又は2に記載の半導体レーザ装置。
  4.  前記ウェル層は、AlGa1-X-YInAs(0<X<1、0<Y<1)の組成式で表される半導体材料によって構成されている
     請求項1から3のいずれか1項に記載の半導体レーザ装置。
  5.  前記P側第2バリア層のバンドギャップエネルギーは、前記ウェル層から離れるにしたがって徐々に大きくなる
     請求項1から4のいずれか1項に記載の半導体レーザ装置。
  6.  前記P側第1バリア層は、不純物がドーピングされていないアンドープ領域を含み、
     前記アンドープ領域の膜厚は、5nm以上である
     請求項1から5のいずれか1項に記載の半導体レーザ装置。
  7.  前記P側第2バリア層の全領域に不純物がドーピングされており、
     前記P側第1バリア層は、前記ウェル層に近い側の領域に不純物がドーピングされていないアンドープ領域を有し、かつ、前記ウェル層から遠い側の領域に不純物がドーピングされているドープ領域を有する
     請求項1から6のいずれか1項に記載の半導体レーザ装置。
  8.  前記P側第2バリア層にドーピングされている不純物の濃度は、前記ウェル層から離れるにしたがって徐々に大きくなる
     請求項1から7のいずれか1項に記載の半導体レーザ装置。
  9.  前記ウェル層と前記P側第1バリア層の間に前記P側第1バリアよりもAl組成の高いP側高Al組成層を備える
     請求項1から8のいずれか1項に記載の半導体レーザ装置。
  10.  さらに、前記P側第2バリア層と前記P型クラッド層との間にP型ガイド層を備える
     請求項1から9のいずれか1項に記載の半導体レーザ装置。
  11.  前記P型ガイド層と前記P型クラッド層との少なくとも界面領域におけるAl組成は、前記ウェル層から離れるにしたがって徐々に増大する
     請求項10に記載の半導体レーザ装置。
  12.  前記P型ガイド層にドーピングされている不純物の濃度は、前記ウェル層から離れるにしたがって徐々に大きくなる
     請求項10又は11に記載の半導体レーザ装置。
  13.  前記活性層は、さらに、前記ウェル層の下方に配置されるN側第1バリア層と、前記N側第1バリア層の下方に配置されるN側第2バリア層とを有し、
     前記N側第2バリア層のAl組成比は、前記N側第1バリア層のAl組成比よりも高く、
     前記N側第2バリア層のバンドギャップエネルギーは、前記N側第1バリア層のバンドギャップエネルギーよりも大きい
     請求項1から12のいずれか1項に記載の半導体レーザ装置。
  14.  前記N側第2バリア層のバンドギャップエネルギーは、前記ウェル層から離れるにしたがって徐々に大きくなる
     請求項13に記載の半導体レーザ装置。
  15.  前記N側第2バリア層の全領域に不純物がドーピングされており、
     前記N側第1バリア層は、前記ウェル層に近い側の領域に不純物がドーピングされていないアンドープ領域を有し、かつ、前記ウェル層から遠い側の領域に不純物がドーピングされているドープ領域を有する
     請求項13又は14に記載の半導体レーザ装置。
  16.  前記P側第2バリア層のバンドギャップエネルギーは、前記N側第2バリア層のバンドギャップエネルギーよりも大きい
     請求項13から15のいずれか1項に記載の半導体レーザ装置。
  17.  前記ウェル層と前記N側第1バリアの間に前記N側第1バリアよりもAl組成の高いN側高Al組成層を備える
     請求項13から16のいずれか1項に記載の半導体レーザ装置。
  18.  さらに、前記N側第2バリア層と前記N型クラッド層の間にN型ガイド層を備える
     請求項13から17のいずれか1項に記載の半導体レーザ装置。
  19.  前記N型ガイド層と前記N型クラッド層との少なくとも界面領域におけるAl組成は、前記ウェル層から離れるにしたがって徐々に増大する
     請求項18に記載の半導体レーザ装置。
  20.  前記N型クラッド層、前記N型ガイド層、前記N側第2バリア層及び前記N側第1バリア層にドーピングされている不純物の濃度は、前記ウェル層から離れるにしたがって徐々に増大する、又は、段階的に増大する
     請求項18又は19に記載の半導体レーザ装置。
  21.  前記活性層は、前記ウェル層の下方に配置されるN側第1バリア層と、前記N側第1バリア層の下方に配置されるN側第2バリア層とを有し、
     前記N側第2バリア層のAl組成比は、前記N側第1バリア層のAl組成比よりも高く、
     前記N側第2バリア層のバンドギャップエネルギーは、前記N側第1バリア層のバンドギャップエネルギーよりも大きく、
     前記N側第2バリア層と前記N型クラッド層との間にN型ガイド層を備え、
     前記P型ガイド層のバンドギャップエネルギーは、前記N型ガイド層のバンドギャップエネルギーと異なる
     請求項10から12のいずれか1項に記載の半導体レーザ装置。
  22.  前記ウェル層と前記N型クラッド層の間に位置し、前記ウェル層から前記N型クラッド層に向かってN側第1バリア層とN側第2バリア層を備え、
     前記N側第2バリア層のAl組成比は、前記N側第1バリア層のAl組成比よりも高く、
     前記N側第2バリア層のバンドギャップエネルギーは、前記N側第1バリア層のバンドギャップエネルギーよりも大きく、
     前記N側第2バリア層のバンドギャップエネルギーは、前記ウェル層から離れるにしたがって徐々に大きくなり、
     前記P側第2バリア層のバンドギャップエネルギーの最大値は、前記N側第2バリア層のバンドギャップエネルギーの最大値より大きい
     請求項5に記載の半導体レーザ装置。
  23.  レーザ光を出射する半導体レーザ装置の製造方法であって、
     基板の上方にN型クラッド層を配置する工程と、
     前記N型クラッド層の上方に活性層を配置する工程と、
     前記活性層の上方にP型クラッド層を配置する工程とを含み、
     前記活性層は、
     ウェル層と、
     前記ウェル層の上方に配置されるP側第1バリア層と、
     前記P側第1バリア層の上方に配置されるP側第2バリア層とを有し、
     前記P側第2バリア層のAl組成比は、前記P側第1バリア層のAl組成比よりも高く、
     前記P側第2バリア層のバンドギャップエネルギーは、前記P側第1バリア層のバンドギャップエネルギーよりも大きく、
     前記半導体レーザ装置は、前記レーザ光が出射する端面近傍の前記ウェル層のバンドギャップエネルギーが、共振器長方向の中央部の前記ウェル層のバンドギャップエネルギーよりも大きい端面窓構造を有する
     半導体レーザ装置の製造方法。
PCT/JP2021/014301 2020-04-06 2021-04-02 半導体レーザ装置及び半導体レーザ装置の製造方法 WO2021206012A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180025008.1A CN115362609A (zh) 2020-04-06 2021-04-02 半导体激光装置以及半导体激光装置的制造方法
JP2022514042A JPWO2021206012A1 (ja) 2020-04-06 2021-04-02
US17/954,587 US20230021325A1 (en) 2020-04-06 2022-09-28 Semiconductor laser device and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020068647 2020-04-06
JP2020-068647 2020-04-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/954,587 Continuation US20230021325A1 (en) 2020-04-06 2022-09-28 Semiconductor laser device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2021206012A1 true WO2021206012A1 (ja) 2021-10-14

Family

ID=78022515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014301 WO2021206012A1 (ja) 2020-04-06 2021-04-02 半導体レーザ装置及び半導体レーザ装置の製造方法

Country Status (4)

Country Link
US (1) US20230021325A1 (ja)
JP (1) JPWO2021206012A1 (ja)
CN (1) CN115362609A (ja)
WO (1) WO2021206012A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210184434A1 (en) * 2018-08-24 2021-06-17 Sony Semiconductor Solutions Corporation Light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220085574A1 (en) * 2020-09-14 2022-03-17 Lumentum Japan, Inc. Optical semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340580A (ja) * 1997-07-30 1999-12-10 Fujitsu Ltd 半導体レーザ、半導体発光素子、及び、その製造方法
JP2004128442A (ja) * 2002-07-29 2004-04-22 Ricoh Co Ltd 半導体発光素子および光送信用モジュールおよび光通信システム
JP2005191349A (ja) * 2003-12-26 2005-07-14 Furukawa Electric Co Ltd:The 半導体レーザ素子
US20070248135A1 (en) * 2006-04-19 2007-10-25 Mawst Luke J Quantum well lasers with strained quantum wells and dilute nitride barriers
WO2014126164A1 (ja) * 2013-02-13 2014-08-21 古河電気工業株式会社 半導体光素子、半導体レーザ素子、及びその製造方法、並びに半導体レーザモジュール及び半導体素子の製造方法
WO2017195502A1 (ja) * 2016-05-13 2017-11-16 パナソニックIpマネジメント株式会社 窒化物系発光素子
WO2018003551A1 (ja) * 2016-06-30 2018-01-04 パナソニックIpマネジメント株式会社 半導体レーザ装置、半導体レーザモジュール及び溶接用レーザ光源システム
WO2020022116A1 (ja) * 2018-07-27 2020-01-30 パナソニックIpマネジメント株式会社 半導体レーザ素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340580A (ja) * 1997-07-30 1999-12-10 Fujitsu Ltd 半導体レーザ、半導体発光素子、及び、その製造方法
JP2004128442A (ja) * 2002-07-29 2004-04-22 Ricoh Co Ltd 半導体発光素子および光送信用モジュールおよび光通信システム
JP2005191349A (ja) * 2003-12-26 2005-07-14 Furukawa Electric Co Ltd:The 半導体レーザ素子
US20070248135A1 (en) * 2006-04-19 2007-10-25 Mawst Luke J Quantum well lasers with strained quantum wells and dilute nitride barriers
WO2014126164A1 (ja) * 2013-02-13 2014-08-21 古河電気工業株式会社 半導体光素子、半導体レーザ素子、及びその製造方法、並びに半導体レーザモジュール及び半導体素子の製造方法
WO2017195502A1 (ja) * 2016-05-13 2017-11-16 パナソニックIpマネジメント株式会社 窒化物系発光素子
WO2018003551A1 (ja) * 2016-06-30 2018-01-04 パナソニックIpマネジメント株式会社 半導体レーザ装置、半導体レーザモジュール及び溶接用レーザ光源システム
WO2020022116A1 (ja) * 2018-07-27 2020-01-30 パナソニックIpマネジメント株式会社 半導体レーザ素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210184434A1 (en) * 2018-08-24 2021-06-17 Sony Semiconductor Solutions Corporation Light-emitting device

Also Published As

Publication number Publication date
US20230021325A1 (en) 2023-01-26
CN115362609A (zh) 2022-11-18
JPWO2021206012A1 (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
US7756177B2 (en) Semiconductor light-emitting device
EP1453160A1 (en) Semiconductor element
US7411988B2 (en) Semiconductor laser device
US7830930B2 (en) Semiconductor laser device
JP5272308B2 (ja) 電流狭窄構造および半導体レーザ
KR20110106879A (ko) 복수의 mqw 영역을 포함하는 mqw 레이저 구조
US20230021325A1 (en) Semiconductor laser device and method of manufacturing the same
JP6754918B2 (ja) 半導体発光素子
JP2002057406A (ja) 端面非注入型半導体レーザおよびその製造方法
JP4821385B2 (ja) Iii族窒化物半導体光素子
US7251381B2 (en) Single-mode optical device
US20220285918A1 (en) Semiconductor light-emitting element and method of manufacturing the same
US10109982B2 (en) Semiconductor device
US6625190B1 (en) Semiconductor laser device having thickened impurity-doped aluminum-free optical waveguide layers
US10439362B2 (en) AlInGaN alloy based laser diode
JP6347573B2 (ja) 半導体レーザ素子
US20220013987A1 (en) Semiconductor laser element
US7738521B2 (en) Semiconductor laser device
JP3658048B2 (ja) 半導体レーザ素子
JP2007088132A (ja) 半導体レーザ
JP3763459B2 (ja) 半導体レーザ素子及びその製造方法
JPH11340568A (ja) 半導体装置及びその作製方法
US20230387662A1 (en) Semiconductor laser element
JP2019041102A (ja) レーザダイオード
JP2006114660A (ja) 半導体レーザおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514042

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785554

Country of ref document: EP

Kind code of ref document: A1