WO2021205829A1 - Building assistance method and building assistance system - Google Patents
Building assistance method and building assistance system Download PDFInfo
- Publication number
- WO2021205829A1 WO2021205829A1 PCT/JP2021/010765 JP2021010765W WO2021205829A1 WO 2021205829 A1 WO2021205829 A1 WO 2021205829A1 JP 2021010765 W JP2021010765 W JP 2021010765W WO 2021205829 A1 WO2021205829 A1 WO 2021205829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- correction
- prism
- marker
- building
- structural material
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G21/00—Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
- E04G21/14—Conveying or assembling building elements
- E04G21/16—Tools or apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
Definitions
- the present invention relates to a building support method and a building support system.
- Patent Document 1 proposes a construction support system that enables a worker to quickly and appropriately adjust columns.
- the construction support system includes a surveying instrument, a first mobile device, and a second mobile device.
- the first mobile device is a pillar core of the pillar based on a communication interface for the surveying instrument, a design value input in advance for the built-in pillar, and an actually measured value obtained through the communication interface. It is provided with a correction processing unit that calculates a correction amount and a correction direction for the above, and a first display processing unit that displays a correction guide image indicating the correction amount and the correction direction calculated by the correction processing unit on the display unit.
- the second mobile device is an image sharing reception processing unit that is arranged in the vicinity of a worker who operates a building adjustment jig attached to the pillar and shares a display image with the first mobile device. And a second display processing unit that displays the correction guide image shared by the image sharing reception processing unit on the display unit.
- the correction guide image includes an azimuth line that intersects at a reference position indicating the design value of the column core, a column core marker indicating the current position of the column core calculated from the measured value, and a partition around the reference position.
- the first region indicating the permissible range, the second region partitioned outside the first region and indicating the non-permissible region, the correction amount and the correction direction for adjusting the pillar core marker to the reference position are set. include.
- Patent Document 2 includes a prism attached to a non-vibrating portion of a vibro hammer to measure the penetration depth of a pile during driving, and an automatic tracking type total station targeting the prism.
- a pile driving management system has been proposed, which is characterized in that the driving management is performed based on the penetration depth measured by the total station during construction.
- An object of the present invention is a construction support method and construction capable of performing adjustment work of building structural materials by a worker as quickly and appropriately as possible while suppressing labor costs in view of the above-mentioned conventional problems.
- the point is to provide a support system.
- the first characteristic configuration of the construction support method according to the present invention is a construction support method for supporting a worker who adjusts a building structural material so as to be within a predetermined construction accuracy.
- a surveying instrument equipped with an imaging device in which the collimation direction and the image center have a predetermined positional relationship, collimate a marker prism installed at a position having a predetermined positional relationship with the member core of the building structural material.
- the operator Based on the second display step of displaying the second correction guide image indicating the amount and the correction direction on the display device and the second correction guide image displayed in the second display step, the operator sets the building adjustment jig. It includes a second adjustment step to be operated, and is configured to repeat a series of steps from the second measurement step to the second adjustment step.
- the marker prism installed on the building structural material is collimated by the surveying instrument to acquire the prism survey data, and the imaging data including the marker prism is acquired. Based on this, the current position of the member core of the building structural material is calculated.
- the correction amount and the correction direction for guiding the current position of the member core toward the design position are calculated, and in the first display step, the first correction guide image showing the correction amount and the correction direction is displayed on the display device. Will be done.
- the collimation direction of the surveying instrument is switched from the marker prism to the design position in the collimation direction switching step, and the current position of the member core is set to the design position based on the first correction guide image displayed on the display device in the first adjustment step.
- the building adjustment jig attached to the building structural material is operated by the operator to bring it closer.
- the second measurement step is executed, and the non-prism survey data is acquired by the surveying instrument while maintaining the collimation direction switched to the design position in the collimation direction switching step, and the captured data is further acquired as a reference image.
- the correction amount and the correction direction for guiding the current position of the member core toward the design position are calculated, and the second correction amount is calculated.
- the display step the correction amount and the correction direction are displayed as the second correction guide image
- the worker uses the building structural material to bring the current position of the member core closer to the design position based on the second correction guide image.
- the installed building adjustment jig is operated.
- the collimation direction of the surveying instrument is fixed at the design position and is not changed, so that the time required for the survey is shortened and the adjustment work can be performed efficiently. Become so.
- the correction amount and correction direction calculated in the second correction calculation step are the reference image and the reference image acquired in the first measurement step.
- the image position of the marker prism is extracted by performing the matching process, and the angle formed by the image position of the marker prism included in the reference image and the image position corresponding to the collimation direction of the reference image from the surveying instrument. It is a point including a correction amount and a correction direction calculated based on the non-prism survey data.
- the image position of the marker prism included in the reference image is extracted by performing matching processing between the reference image and the reference image, and the image position of the marker prism included in the reference image and the reference image are extracted from the surveying instrument.
- the correction amount and correction direction are calculated based on the angle formed by the image position corresponding to the collimation direction and the non-prism survey data, that is, the distance to the surface of any of the building structural materials.
- the first measurement step collimates the marker prism. Then, the prism survey data is acquired, and the non-prism survey data is acquired by collimating a point on the outer periphery of the columnar building structural material having the same height as the marker prism, and the member core position is calculated.
- the step is configured to calculate the current position of the member core of the columnar building structural material based on the prism survey data and the non-prism survey data acquired in the first measurement step and the radius of the columnar building structural material. There is a point.
- prism survey data collimating the marker prism and non-prism survey data collimating a point on the outer circumference of the columnar building structural material having the same height as the marker prism are acquired, and the member core position is calculated.
- the current position of the member core of the columnar building structural material is geometrically calculated from the respective position data and the radius of the columnar building structural material.
- the fourth feature configuration is, in addition to the first or second feature configuration described above, for each marker prism installed corresponding to at least two member cores set in the building structural material.
- the first measurement step, the member core position calculation step, the first correction calculation step, and the first display step are executed, and the processes after the first adjustment step are executed for a plurality of member cores.
- the collimation direction switching step is configured to switch the collimation direction of the surveying instrument to the design position of the corresponding member core.
- the above-mentioned first measurement step, member core position calculation step, first correction calculation step, and first display are performed on the markers installed corresponding to at least two member cores.
- the steps and the collimation direction switching step are executed and the processing after the first adjustment step is executed for a plurality of member cores, the collimation direction of the surveying instrument is executed by the collimation direction switching step.
- the plurality of member cores are based on the correction amount and the correction direction for each member core position calculated by the first correction calculation step. The point is that the member core is determined to require processing after the first adjustment step.
- the operator confirms the correction amount and the correction direction for each member core position calculated by the first correction calculation step, and performs the processing after the first adjustment step for the member core position determined to be necessary for adjustment. This enables efficient construction support.
- the first characteristic configuration of the construction support system according to the present invention is a construction support system that assists a worker who adjusts the built-in building structural material so as to be within a predetermined construction accuracy, and is a collimation direction.
- a surveying instrument equipped with an imaging device in which the image center and the image center have a predetermined positional relationship, and a marker prism installed at a position having a predetermined positional relationship with the member core of the building structural material using the surveying instrument are collimated. Acquired by collimating the design position of the member core of the building structural material with the first storage unit that stores the prism survey data acquired in the above process and the imaging data as a reference image including the marker prism, and the surveying instrument.
- the current position of the member core of the building structural material is calculated based on the survey control device including the non-prism survey data and the second storage unit for storing the imaging data as the reference image, and the prism survey data.
- the first correction calculation unit that calculates the correction amount and the correction direction for guiding the current position of the member core toward the design position and generates the first correction guide image, the position of the marker prism extracted from the reference image, and the above.
- Correction including a second correction calculation unit that calculates a correction amount and a correction direction for guiding the current position of the member core toward the design position based on the non-prism survey data and generates a second correction guide image. It is provided with a calculation device and a display device installed in the vicinity of a worker who operates a building adjustment jig attached to the building structural material and displaying a correction guidance image generated by the correction calculation device. At the point.
- the surveying instrument is provided with a posture adjusting device capable of remotely controlling the collimation direction, and the display device is remotely controlled by the posture adjusting device.
- the display device is remotely controlled by the posture adjusting device. The point is that it is provided with a remote control unit that collimates the marker.
- FIG. 1 is an explanatory diagram of a construction support system.
- FIG. 2 is an explanatory diagram of functional blocks of a building support device, a surveying instrument, a display device, and a building management server that constitute a building support system.
- 3 (a), 3 (b), and 3 (c) are explanatory views of a calculation algorithm for a correction amount and a correction direction.
- 4 (a), 4 (b), and 4 (c) are explanatory views of the first and second correction guide images.
- FIG. 5 is an explanatory diagram of the basic procedure of the construction support method.
- FIG. 6 is a detailed procedure explanatory diagram of the construction support method.
- 7 (a), 7 (b), 7 (c), and 7 (d) are explanatory views of building structural materials and member cores.
- FIG. 8A shows the positional relationship between the member core (pillar core) of the building structural member (pillar) having a substantially rectangular plan view and the marker.
- (B) is an explanatory diagram of a method of calculating a member core (pillar core) of a building structural member (pillar) having a circular plan view.
- FIG. 9 is an explanatory diagram of a basic procedure of a construction support method showing another embodiment.
- FIG. 10 is an explanatory view of an example of a finished drawing.
- the building support system is a computer application system used to support workers who adjust building structural materials so that they fall within a predetermined building accuracy.
- the building structural materials to which the present invention is applied include pillar materials that receive vertical loads such as steel columns, diagonal materials such as streaks used to stiffen the framework against horizontal external force, and horizontal spanning between columns. It refers to a beam material that mainly bears bending stress, a building member that serves as a framework for maintaining the rigidity of a building structure such as a wall material made of steel plate, and an assembly of a column material and a beam material.
- FIG. 7A shows the column member 11, and the line penetrating the center of the column member 11 in the vertical direction is the member core P, and the member core P is located on the upper end side so as to be located at the design position.
- One marker prism 12 for adjustment is installed. Since the position of the marker prism 12 is defined by an offset value from the member core P, the position of the member core P can be calculated once the position of the marker prism 12 is known.
- the marker prism 12 is installed on at least two adjacent surfaces in case the marker prism 12 enters the blind spot of the surveying instrument.
- Reference numeral 13 indicates a building-in adjustment jig, and the posture of the pillar member 11 is adjusted in the vertical direction, the horizontal direction, and the depth front direction by the operator operating the building-in adjustment jig 13.
- FIG. 7B shows the diagonal member 11, and like the pillar member 11, the line penetrating the center in the vertical direction is the member core P, and one member core P is located on the upper end side so as to be located at the design position.
- a marker prism 12 is installed.
- FIG. 7C shows the beam member 11, and the line penetrating the center of the beam member 11 in the lateral direction is the member core P in the side view, and the member core P is located on both the left and right ends so as to be located at the design position.
- Marker prisms 12 are installed in each.
- a plurality of beam members 11 are connected and arranged so as to connect between the column members 11, and the left and right beam members 11 are arranged horizontally along the design position via the build-in adjustment jig 13. The posture is adjusted.
- FIG. 7D shows the wall material 11, and two lines penetrating the left and right end sides of the wall material 11 in the vertical direction form the member core P, and each member core P is at the design position.
- Marker prisms 12 are installed on the upper side at both the left and right ends so as to be located.
- the wall material 11 is a member that constitutes the surface of the building, and a plurality of the wall materials 11 are connected and arranged vertically and horizontally, and each of the left and right walls is arranged along the design position via the building adjustment jig 13. The posture is adjusted. As shown in FIGS. 7A to 7D, the position where the building adjustment jig 13 is arranged is the connection position between the members.
- the construction support system 1 is a system that supports the worker H who adjusts the built-in steel column (hereinafter, simply referred to as “column”) 11 so as to be within a predetermined construction accuracy. It is provided with a surveying instrument 10, a building support device 20, a single or a plurality of display devices 30, a building management server 40, and the like.
- the surveying instrument 10 and the construction support device 20 are connected to each other so as to be able to communicate with each other via a first communication interface (hereinafter referred to as "IF") that operates according to a wireless communication standard such as Bluetooth (registered trademark).
- IF first communication interface
- the building support device 20, the display device 30, and the building management server 40 are connected to the Internet 5 via a second communication IF that operates according to a wireless communication standard such as Wi-Fi.
- the surveying instrument 10 and the construction support device 20 may be connected via a repeater such as a wireless router.
- the surveying instrument 10 and the repeater may be communicably connected via the first communication IF, and the repeater and the construction support device 20 may be connected via the second communication IF.
- the construction support device 20 can be installed at a position away from the construction site such as a management office.
- the building management server 40 is provided with a database DB in which design data 40a (see FIG. 2) such as the position of the design column core is stored in advance.
- the database DB stores management data 40b (see FIG. 2) including the adjusted actual column core positions of each column supported and adjusted by the construction support device 20.
- the surveying instrument 10 includes a surveying unit 10a, an imaging device 10b, and a posture adjusting device 10c, which are provided with a spirit level and consist of a total station for measuring by combining a light wave rangefinder and a theodolite for measuring an angle.
- the first communication IF10d is provided, and is fixed to a tripod (see FIG. 1) in a predetermined posture.
- the surveying unit 10a has a prism function for collimating and measuring with a marker prism for collimation (hereinafter, simply referred to as “marker”) 12 attached to a predetermined position above the pillar 11 as a target, and the marker 12 is used. It has a non-prism function that enables surveying based on the scattered and reflected light from the irradiation point of the light wave.
- the marker 12 is composed of, for example, a retroreflective member in which prisms and micromirrors installed so as to reflect light waves toward the total station 4 are arranged.
- the image pickup device 10b surveys so that the collimation direction of the surveying unit 10a and the optical axis direction of the image pickup device 10b are parallel to each other, and the collimation direction of the surveying section 10a and the image center of the image captured by the image pickup device 10b have a predetermined relationship. It is fixed to the portion 10a. In this embodiment, the collimation direction is adjusted so as to coincide with the center of the image. Therefore, the center of the image obtained by the image pickup apparatus 10b becomes an image corresponding to the collimation direction.
- the surveying instrument 10 has acquired its own coordinates (X, Y, Z) for the positional relationship between two known points and the three points of the surveying instrument 10 by using the backward association method or the like. The survey is performed by collimating an arbitrary survey target with reference to the coordinates (X, Y, Z) of.
- the surveying unit 10a first obtains survey data including the direction (horizontal angle, vertical angle) of the surveying point calculated based on the distance obtained by the light wave rangefinder and the angle obtained by the theodolite with respect to the collimated survey target. It is output to an external device including the construction support device 20 via the communication IF10d. Further, the image pickup device 10b outputs an image captured in synchronization with the surveying process by the surveying unit 10a to an external device including the construction support device 20 via the first communication IF 10d.
- the survey data obtained by using the prism function will be referred to as prism survey data
- the survey data obtained by using the non-prism function will be referred to as non-prism survey data.
- the attitude adjusting device 10c includes a first motor that rotates the measuring unit 10a and the imaging device 10b around the horizontal axis, a second motor that rotates around the vertical axis, and a motor control unit that drives each motor. , It has an automatic tracking function that automatically tracks the collimation direction with respect to the marker 12 when the prism function is used.
- the display device 30 is composed of a mobile computer, for example, a tablet computer having a touch panel type liquid crystal display unit, a mobile phone device, or the like. It is provided with a functional block such as a remote control unit 30c for remotely controlling the posture adjusting device 10c provided.
- the guide image display processing unit 30a is a functional block that operates based on an application program installed in the display device 30 in advance, and is a first or second correction guide image described later that is generated and transmitted by the construction support device 20. Is a functional block that displays on the liquid crystal display.
- the application program also has a function as a remote control unit 30c for remotely controlling the posture adjusting device 10c provided in the surveying instrument 10.
- the built-in pillar 11 is temporarily fixed to the base downstairs to which the cross beams are connected after the building is completed via the building adjustment jig 13.
- a building adjustment jig 13 is attached to each surface of the rectangular pillar 11 in a plan view, and the posture of the pillar 11 can be adjusted by operating the building adjustment jig 13.
- a hydraulic or screw type jig can be used as the building adjustment jig 13. In this embodiment, "Ace Up" (registered trademark) manufactured by Technos Co., Ltd. is used.
- the sword craftsman who is the worker H who operates the building adjustment jig 13, visually observes the first or second correction guide image displayed on the liquid crystal display unit of the display device 30 provided at hand.
- the sword craftsman who is the worker H who operates the building adjustment jig 13 based on the guidance instruction, it becomes possible to efficiently adjust the actual pillar core position of the pillar 11 so as to approach the design pillar core position (FIG. 1). reference).
- the construction support device 20 is composed of a mobile computer having a built-in CPU board including a CPU, a memory, an input / output circuit, and a liquid crystal display unit, and is connected to a first communication IF 20a connected to a surveying instrument 10 and the Internet 5. It includes a second communication IF 20b to be connected, a storage device 20c, a correction calculation device 20f, a functional block such as a remote operation unit 20i, and the like. Each functional block is embodied by executing an application program stored in a memory mounted on the CPU board on the CPU.
- the survey control device 20c collimates the marker 12 installed at a position having a predetermined positional relationship with the member core of the building structural material (pillar core P of the pillar 11) using the surveying instrument 10, and obtains prism survey data.
- Non-prism survey data and reference image acquired by collimating the design position of the member core of the building structural material using the first storage unit 20d that stores the imaged data as the reference image including the marker 12 and the surveying instrument 10. It is provided with a second storage unit 20e for storing the imaged data.
- the meaning of "to collimate the design position of the member core” is to collimate the position where the marker 12 attached to the building structural material exists when it is assumed that the member core exists at the design position. This means collimating the position of the member core at the same height as the mounting height of the marker 12.
- the correction calculation device 20f calculates the current position of the member core (column core P of the column 11) of the building structural material based on the prism survey data, and guides the current position of the member core toward the design position. Based on the first correction calculation unit 20g that calculates the direction and generates the first correction guide image, the position of the marker 12 extracted from the reference image, and the non-prism survey data, the current position of the member core is directed to the design position. It is provided with a second correction calculation unit 20h that calculates a correction amount and a correction direction to guide the guide and generates a second correction guide image. The first correction guide image and the second correction guide image are stored in the memory provided in the building support device 20 and then transmitted to the display device 30.
- the construction support methods include a first measurement step and (SA1), a member core position calculation step and (SA2), a first correction calculation step and (SA3), and a first display step and (SA4). , Collimation direction switching step and (SA5), first adjustment step and (SA6), second measurement step and (SA7), second correction calculation step and (SA8), second display step and (SA9), second It includes an adjustment step and (SA10).
- the first measurement step (SA1) is executed by the survey control device 20c, and the above-mentioned surveying instrument 10 is used to collimate the marker 12 installed at a position having a predetermined positional relationship with the pillar core P of the pillar 11.
- the prism survey data is acquired and the imaging data including the marker 12 is acquired as a reference image and stored in the first storage unit 20d.
- the member core position calculation step (SA2) is executed by the correction calculation device 20f, and the current position of the pillar core P of the pillar 11 is calculated based on the prism survey data acquired in the first measurement step.
- the first correction calculation step (SA3) is executed by the first correction calculation unit 20g provided in the correction calculation device 20f, and calculates the correction amount and the correction direction for guiding the current position of the column core P toward the design position. , The first correction guide image is generated and stored.
- the first display step (SA4) is executed by the first correction calculation unit 20g and the guide image display processing unit 30a of the display device 30, and the first correction guide image showing the correction amount and the correction direction calculated in the first correction calculation step. Is displayed on the display device.
- the collimation direction switching step (SA5) is executed by the survey control device 20c, and the collimation direction of the surveying instrument 10 is switched from the marker 12 to the design position.
- the first adjustment step (SA6) is executed by the operator, and the building adjustment jig 13 attached to the pillar 11 is operated based on the first correction guide image displayed in the first display step.
- the second measurement step (SA7) is executed by the survey control device 20c, and after the adjustment in the first adjustment step, the non-prism survey data is acquired while maintaining the collimation direction switched in the collimation direction switching step. At the same time, the captured data is acquired as a reference image and stored in the second storage unit 20e.
- the second correction calculation step (SA8) is executed by the second correction calculation unit 20h provided in the correction calculation device 20f, and is based on the position of the marker 12 extracted from the reference image and the non-prism survey data.
- the correction amount and the correction direction for guiding the position toward the design position are calculated, and the second correction guide image is generated and stored.
- the second display step (SA9) is executed by the second correction calculation unit 20h and the guide image display processing unit 30a of the display device 30, and the second correction guide image showing the correction amount and the correction direction calculated in the second correction calculation step. Is displayed on the display device.
- the second adjustment step (SA10) is executed by the operator, and the building adjustment jig 13 attached to the pillar 11 is operated based on the second correction guide image displayed in the second display step.
- the process returns to step SA7 and the series of processes from the second measurement step to the second adjustment step in step SA10 is switched. Then, when the adjustment is made to a predetermined allowable range in the second adjustment step (SA10) (SA11, Y), the adjustment process of the pillar 11 is completed.
- the collimation direction switching step (SA5) described above may be executed at any timing from the completion of the first measurement step (SA1) to the execution of the second measurement step. Specifically, at the end of the first measurement step (SA1), at the end of the member core position calculation step (SA2), at the end of the first correction calculation step (SA3), or at the end of the first display step (SA4). You may execute it with.
- the position of the pillar core P can be automatically calculated from the relationship between the shape data of the known pillar 11 and the mounting position of the known marker 12.
- the positional relationship between the marker 12 and the axis P is determined in advance by the offset values (x1, y1, z1), so that the position of the marker 12 ( When xm, ym, zm) is surveyed by the surveying instrument 10, the (x, y) coordinates of the axis P are (xm, ym + y1), and the (x, y, z) at the same height as the marker 12 is (x, y, z). ) The coordinates are obtained as (xm, ym + y1, zm).
- the marker 12 may be attached to other than the building structural material 11.
- the marker 12 When the building structural material 11 enters the blind spot and the surveying instrument 10 cannot collimate the building structural material 11, the marker 12 is located at a position where the surveying instrument 10 can collimate with the connecting member connected to the building structural material 11. May be installed. Even in this case, if the positional relationship between the member core of the building structural material 11 and the marker 12 is determined in advance by the offset values (x1, y1, z1), the position of the member core can be obtained in the same manner as described above.
- the design position of the marker 12 can be calculated based on the design position of the member core, and the actual position of the marker 12 is the design position of the marker 12. It is also possible to operate the building adjustment jig 13 so as to approach. In that sense, the meaning of "colliming the design position of the member core” is to collimate the position where the marker 12 attached to the building structural material exists, assuming that the member core exists at the design position. Alternatively, it has been described above that the position of the member core having the same height as the mounting height of the marker 12 is collimated.
- the positional relationship between the marker 12 and the member core P is determined in advance by an offset value in the same manner as described above. ing.
- the surveying instrument 10 is used to acquire the prism survey data for the marker 12, and the non-prism survey data is acquired for the position Q separated from the marker 12 along the peripheral surface at the same height as the marker 12. Calculate the position of the member core P with.
- the intersection of the radius circle of the pillar 11 centered on the position of the marker 12 and the radius circle of the pillar 11 centered on the position Q can be calculated as the position of the member core P.
- the angle ⁇ between the collimation line from the surveying instrument 10 to the marker 12 and the collimation line to the position Q is obtained, the distance L between the surveying instrument 10 and the marker 12, the distance L1 between the surveying instrument 10 and the position Q, and the pillar.
- the position of the member core P may be calculated geometrically from the length of the diameter of 11.
- the marker 12 is collimated to acquire prism survey data, and the columnar building structural material having the same height as the marker 12 is used. It is configured to collimate a point on the outer circumference and acquire non-prism survey data, and the member core position calculation step includes the prism survey data and non-prism survey data acquired in the first measurement step, and a columnar building structural material. It is configured to calculate the current position of the member core of the columnar building structural material based on the radius of
- the current position of the axis P of the pillar 11 is calculated in the member core position calculation step based on the prism survey data for the marker 12 acquired in the first measurement step, so that the axis P is designed.
- the correction direction and the correction amount with respect to the position can be calculated.
- the correction direction includes four directions of north, south, east, and west in a plan view, and a height direction in a front view.
- the surveying instrument 10 constantly collimates the design position of the axis P without collimating the marker 12, so that the correction direction and the correction amount are as in the first correction calculation step described above. Cannot be calculated.
- the image position of the marker 12 is extracted by performing matching processing between the reference image and the reference image acquired in the first measurement step, and the image of the marker 12 included in the reference image is extracted from the surveying instrument 10.
- the correction amount and the correction direction are calculated based on the angle ⁇ formed by the position and the image position corresponding to the collimation direction of the reference image and the non-prism survey data.
- FIG. 3A shows the reference image acquired in the first measurement step
- FIG. 3B shows the collimation direction switched to the design position in the collimation direction switching step and acquired in the second measurement step.
- a reference image is shown.
- the symbol CP indicates a collimation point
- the alternate long and short dash line indicates the design position of the pillar 11.
- the image of the marker 12 appears at the center position of the reference image indicating the collimation direction of the surveying instrument 10.
- FIG. 3C shows a virtual diagram showing the positional relationship between the surveying instrument 10, the pillar 11 at the current position, and the pillar 11D (indicated by the alternate long and short dash line) at the design position in a plan view.
- the pixel position at the center of the marker 12 included in the reference image can be specified.
- the deviation between the position of the center pixel of the marker 12 on the reference image and the center position of the reference image corresponds to the amount of deviation ⁇ x in the left-right direction and the amount of deviation ⁇ z in the height direction.
- the template image including the marker 12 is not limited to the reference image, and may be an image prepared in advance.
- the deviation angle k per pixel is a value peculiar to the image pickup apparatus 10b and can be obtained by actually measuring it in advance, and can be obtained by dividing the angle of view of the image pickup apparatus 10b by the number of pixels in the width direction of the image.
- the design position of the axis P exists in the collimation direction of the surveying instrument 10, and the distance L to the surface of the pillar 11 at the current position imaged at the center position of the reference image is included in the non-prism survey data. From the coordinates of the collimation point CP of the pillar 11 at the current position and the offset value with respect to the marker 12, the deviation ⁇ y in the depth direction from the pillar 11D at the design position can be calculated.
- the correction guide image 50 is illustrated in FIGS. 4 (a) to 4 (c).
- the first correction guide image and the second correction guide image are basically correction guide images having the same configuration.
- the correction guide image 50 is formed around the directional lines 52 and 53 intersecting at the design position 51 of the column core, the column core marker 54 indicating the current position of the column core calculated from the measured value, and the design position 51 of the column core. East and west for adjusting the column core marker 54 to move to the design position 51, the first region 55 which is partitioned and shows the allowable range, the second region 56 which is partitioned outside the first region 55 and shows the non-allowable region.
- the unit 57 is provided.
- the background of the screen is set to white
- the azimuth lines 52 and 53 are set to black
- the pillar core marker 12 is set to red
- the first region 55 is set to blue
- the second region 56 is set to yellow.
- the correction guide image 50 includes a measurement start unit 58A for starting the measurement of the marker 12 installed on the pillar 11 by the surveying instrument 10, a collimation switching unit 58B for switching the collimation from the marker 12 to the design position, and stopping the measurement.
- Each touch switch unit includes a measurement stop unit 58C for instructing, a registration unit 58D for registering the column core position after the adjustment work is completed, and an end unit 58E for inputting the end of the adjustment work.
- the pillar core marker 54 is displaced by 3 mm to the west, 4 mm to the south, and 3 mm downward from the set position 51, the pillar core marker 54 is 3 mm to the east, 4 mm to the north, and 3 mm to the top.
- the display unit 57 of the correction amount and the correction direction indicates that the pillar core marker 54 reaches the design position 51 if adjusted so as to move, and the pillar core marker 54 with respect to the first region 55 indicating the allowable range after adjustment is shown. Relative positions are shown.
- the building adjustment jig 13 is operated by the worker H to adjust the position of the column core marker 54 to a position corresponding to the design position 51 in the east-west direction, and slightly toward the design position in the vertical direction. It is shown that the position has been adjusted, and in FIG. 4C, the building adjustment jig 13 is operated by the worker H to adjust the position of the column core marker 54 in the north-south direction and enter the first region 25. It is shown.
- the scale including the allowable range may be displayed in the height direction as well. For example, in a bar graph that is long in the vertical direction, the center position is the design position, the allowable range is shown in the vertical direction across the design position, and the column core marker is displayed in one of the bar graphs in the vertical direction. May be good.
- the first region 55 indicating the north, south, east, and west permissible range is displayed as a perfect circle with the permissible range as the radius centered on the design position 51, but the permissible range differs depending on the north, south, east, and west directions. It may be set. For example, it may be a rectangle centered on the reference position 21 or an ellipse.
- the range of the first area 55 indicating the allowable range is variably set according to the location of the pillar 11 to be built.
- the construction accuracy of the built-in pillars 11 is not always the same, and may differ for each pillar 11.
- the construction accuracy of the structurally important pillars 11 and the non-structurally important pillars 11 may be different. Therefore, work efficiency can be improved. Therefore, by setting the range of the first area 55 variably according to the pillar 11 to be built, flexible construction support becomes possible. The same applies to the height direction.
- Such a correction guide image is generated by the correction calculation device 20f and displayed on the display unit of the building support device 20, and is also displayed on the display device 30 possessed by the operator who operates the building adjustment jig. Will be done. That is, the display images of the building support device 20 and the display device 30 are shared.
- the corrected guidance image may be simply transmitted to the display device 30 and displayed on the display screen of the display device 30 by the guidance image processing unit 30a of the display device 30, via an image sharing system server connected via the Internet 5.
- An image sharing system that displays the same image on both the building support device 20 and the display device 30 may be used.
- the building support device 20 itself is constructed as an application on the cloud server, and a plurality of or specific display devices 30 execute the application on the cloud server via the Internet 5 to function as the building support device 20. It may be configured.
- the surveying instrument 10 and the repeater are connected via the first communication IF, and the repeater and the construction support device 20 are connected via the second communication IF.
- FIG. 6 shows a more detailed procedure of the construction support method.
- the building support application program is started up by the building support device 20 (SB1)
- the design file is downloaded from the building management server 40 and stored in the storage device (SB2).
- the surveying instrument 10 is activated and communication is established with the construction support device 20 (SB3), the surveying instrument 10 is initially set (SB4).
- the target pillar 11 markers 12 are collimated.
- the surveying instrument 10 can be remotely controlled via the display device 30 based on the image.
- the marker 12 is correctly collimated.
- the coordinates of the design axis input to the display device 30 are input to the surveying instrument 10 via the construction support device 20, and after the surveying instrument 10 collimates the design axis, the surveying instrument 10 is used. By activating the provided automatic tracking mechanism, the surveying instrument 10 can be collimated with the marker 12.
- the first measurement step is executed, the prism survey data is acquired (SB5), the member core position calculation step is executed (SB6), the first correction calculation step is executed (SB7), and the first correction guide image is displayed. It is generated and displayed on the display device 30 (SB8).
- the surveying instrument 10 switches to the non-prism mode, and the collimation direction switching step is executed (see FIG. 4A). SB9).
- the surveying instrument 10 may be programmed so that the surveying instrument 10 automatically switches to the non-prism mode and collimates the design axis.
- step SB17 When the operator visually observes the first correction guide image displayed on the screen of the display device 30 and operates the building adjustment jig 13, and the adjustment is completed (the first area 55 indicating the allowable range of the first correction guide image).
- the adjustment is completed when the pillar core marker 54 is inserted in (SB11, Y), and the process proceeds to step SB17.
- the second measurement step is executed (SB12)
- the second correction calculation step is executed based on the acquired non-prism survey data (SB13)
- the second correction guide is executed.
- An image is generated and displayed on the display device 30 (SB14).
- the operator visually observes the second correction guide image displayed on the screen of the display device 30 and operates the building adjustment jig 13, and if the adjustment is not completed (the first indicating the allowable range of the first correction guide image).
- the adjustment is completed when the column core marker 54 enters the region 55) (SB16, N), and the processes of steps SB12 to SB15 are repeated.
- step SB16, Y When the adjustment is completed (SB16, Y), the processes from step SB5 to step SB16 are repeated for each pillar 11 until the construction of all the pillars 11 is completed (SB17, N).
- the data showing the adjustment result of each pillar 11 is collected in the building support device 20 to generate an overall evaluation map (SB18), and the building support device 20 It is stored in the memory of (SB19), uploaded to the building management server 40, and stored in the management data storage area of the database (SB20).
- a first measurement step for each marker 12 installed corresponding to at least two member cores P set in the building structural material 11, a first measurement step, a member core position calculation step, and a first correction calculation step.
- the first display step and at least when the processing after the first adjustment step is executed for each member core P, the collimation direction of the surveying instrument 10 is supported by the collimation direction switching step. It may be configured to switch to the design position of the member core to be used, and the second measurement step, the second correction calculation step, the second display step, and the second adjustment step may be executed for each member core. Since the first correction guide image for each member core displayed in the first display step is stored in the memory, it is not necessary to repeat the first measurement step, the member core position calculation step, and the first correction calculation step.
- the prism survey data is acquired for the marker 12B, and the member cores PA and PB, respectively.
- the first correction guide image for is generated and displayed.
- the collimation direction of the surveying instrument 10 is switched to the design position of the member core PA. Further, when the first adjustment step is executed on the member core PB and the second adjustment step is repeated from the second measurement step, the collimation direction of the surveying instrument 10 is switched to the design position of the member core PB.
- the values of the member cores PA and PB are downloaded in advance from the building management server 40 to the building support device 20.
- the collimation direction may be switched to the design position of the member core PA or the member core PB each time.
- the processing after the first adjustment step can be executed in order from the member core having the larger correction amount, and the processing after the first adjustment step is executed with priority given to the member cores having the same correction direction. It is possible to execute the processing after the first adjustment step by giving priority to the member core whose correction direction is different from that of the other member cores. Further, the execution order of the processes after the first adjustment step can be determined based on the combination of the correction amount and the correction direction.
- FIG. 9 shows the procedure of the above-mentioned construction support method.
- each process of the first measurement step, the member core position calculation step, the first correction calculation step, and the first display step is executed (SA20) for all member cores (markers) ( SA21).
- the member cores that need to be adjusted are selected based on the correction amount and the correction direction for each member core position (SA22), and the collimation direction switching step (SA23) and the first adjustment step and (SA24) are executed. Then, each step of the second measurement step, the second correction calculation step, the second display step, and the second adjustment step (SA25) is repeatedly executed until the adjustment is made within a predetermined allowable range (SA26). The process from step SA22 to step SA26 is repeated until the adjustment of the member core requiring adjustment is completed (SA27).
- the procedure described in the second correction calculation step is the first correction.
- the correction direction and the correction amount may be calculated by adopting it in the calculation step.
- the building support method and the building support system for each building structural material have been described, but the present invention is not limited to the individual building support for each building structural material, and a plurality of building structural materials. It can also be applied to the group of.
- the first measurement step, members are applied to all or a plurality of columns temporarily fixed to the base downstairs to which the cross beams are connected after the building is completed via the building adjustment jig.
- Each process of the core position calculation step, the first correction calculation step, and the first display step is executed to calculate the correction direction and the correction amount of the member core for each pillar 11, and based on the result, for example, it is shown in FIG.
- Such a completed drawing showing the correction direction and the correction amount for each pillar may be displayed on the display device, the pillars requiring adjustment may be specified based on the state, and the adjustment order for each pillar may be formulated. ..
- the display device is arranged not only in the worker but also in the construction office so that the site manager can identify the pillars that need to be adjusted and formulate the order of adjustment for each pillar.
- the collimation direction switching step and the first adjustment step are executed for the pillar to be adjusted, and each step of the second measurement step, the second correction calculation step, the second display step, and the second adjustment step is performed. It is repeatedly executed until it is adjusted to a predetermined allowable range, and the above process is repeated until the adjustment of the member core that needs to be adjusted is completed.
- the above method may be applied to a combination of different types of building structural materials.
- FIG. 10 shows a plan view showing the reference positions of some pillars 11 built on a predetermined floor and the positions of the cores of the pillars after temporary fixing, together with the deviation amount and direction with respect to each reference position.
- the correction amount and correction direction calculated in the first correction calculation step are shown for the pillars in which the white arrows and the black-painted arrows are shown from each side of the rectangular shape indicating the pillars.
- the value indicated at the tip of the black arrow is the amount of deviation. Based on such a finished drawing, adjustment work can be performed in consideration of the overall balance of construction accuracy.
- Building support system 5 Internet 10: Surveying instrument 11: Building structural material (pillar) 12: Marker prism 13: Building adjustment jig 20: Building support device 20c: Surveying control device 20f Correction calculation device 30: Display device 30a: Guidance image display processing unit 40: Building management server DB: Database
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Conveying And Assembling Of Building Elements In Situ (AREA)
Abstract
Provided is a building assistance method that enables a worker to adjust a building structural material as quickly and appropriately as possible while minimizing labor costs. On the basis of a design value for a built-in building structural material and a measured value obtained via a surveying instrument, a correction amount and a correction direction for the component core of the building structural material are calculated to display a correction guide image. A worker operates an adjustment jig on the basis of the correction guide image. After the correction amount and the correction direction have been calculated by using a prism mode to collimate markers initially installed on the building structural material, the collimation direction of the surveying instrument is set to a design position for the component core, and a process of calculating the correction amount and the correction direction on the basis of non-prism survey data surveyed in a non-prism mode and imaging data captured at the time is repeated.
Description
本発明は、建方支援方法及び建方支援システムに関する。
The present invention relates to a building support method and a building support system.
特許文献1には、作業者による柱の調整作業を迅速且つ適切に行なうことができる建方支援システムが提案されている。当該建方支援システムは、測量機器と、第1のモバイル機器と、第2のモバイル機器と、を備えて構成されている。
Patent Document 1 proposes a construction support system that enables a worker to quickly and appropriately adjust columns. The construction support system includes a surveying instrument, a first mobile device, and a second mobile device.
第1のモバイル機器は、測量機器に対する通信インタフェースと、建て込まれた柱に対して予め入力された設計値と前記通信インタフェースを介して得られた実測値とに基づいて、当該柱の柱芯に対する補正量及び補正方向を算出する補正処理部と、前記補正処理部で算出された補正量及び補正方向を示す補正案内画像を表示部に表示する第1表示処理部とを備えている。
The first mobile device is a pillar core of the pillar based on a communication interface for the surveying instrument, a design value input in advance for the built-in pillar, and an actually measured value obtained through the communication interface. It is provided with a correction processing unit that calculates a correction amount and a correction direction for the above, and a first display processing unit that displays a correction guide image indicating the correction amount and the correction direction calculated by the correction processing unit on the display unit.
第2のモバイル機器は、当該柱に取付けられた建入れ調整治具を操作する作業者の近傍に配置され、前記第1のモバイル機器との間で表示画像を共有処理する画像共有受信処理部と、前記画像共有受信処理部で共有された前記補正案内画像を表示部に表示する第2表示処理部とを備えている。
The second mobile device is an image sharing reception processing unit that is arranged in the vicinity of a worker who operates a building adjustment jig attached to the pillar and shares a display image with the first mobile device. And a second display processing unit that displays the correction guide image shared by the image sharing reception processing unit on the display unit.
前記補正案内画像は、前記柱芯の設計値を示す基準位置で交差する方位線と、前記実測値から算出される前記柱芯の現在位置を示す柱芯マーカーと、前記基準位置の周りに区画され許容範囲を示す第1領域と、前記第1領域の外側に区画され非許容領域を示す第2領域と、前記柱芯マーカーを前記基準位置に調整するための前記補正量及び前記補正方向を含む。
The correction guide image includes an azimuth line that intersects at a reference position indicating the design value of the column core, a column core marker indicating the current position of the column core calculated from the measured value, and a partition around the reference position. The first region indicating the permissible range, the second region partitioned outside the first region and indicating the non-permissible region, the correction amount and the correction direction for adjusting the pillar core marker to the reference position are set. include.
特許文献2には、打設中の杭の貫入深度を計測するべくバイブロハンマの非振動部に取付けられたプリズムと、前記プリズムをターゲットとする自動追尾式のトータルステーションと、を有し、杭の打設中に前記トータルステーションにより計測された貫入深度に基づいて前記打設管理を行うことを特徴とする杭打設管理システムが提案されている。
Patent Document 2 includes a prism attached to a non-vibrating portion of a vibro hammer to measure the penetration depth of a pile during driving, and an automatic tracking type total station targeting the prism. A pile driving management system has been proposed, which is characterized in that the driving management is performed based on the penetration depth measured by the total station during construction.
しかし、特許文献1に開示された建方支援システムでは、調整用の治具で柱の姿勢が調整される過程で、測量機器の近傍に測定者が常に待機して柱に設置されたプリズムを常時視準し、第1のモバイル機器を操作する必要があり、人件費の抑制という観点で課題があった。
However, in the construction support system disclosed in Patent Document 1, in the process of adjusting the posture of the pillar with the adjustment jig, the measurer always waits in the vicinity of the surveying instrument to install the prism installed on the pillar. It is necessary to constantly collimate and operate the first mobile device, which poses a problem from the viewpoint of controlling labor costs.
また第2のモバイル機器に表示された表示画像に基づいて作業者が柱に取付けられた建入れ調整治具を操作する過程で、測定者が測量機器を操作してプリズム視準することに時間を要するため、調整作業にある程度の時間がかかり、さらに効率的に調整できるようになることが求められていた。
In addition, in the process of the operator operating the building adjustment jig attached to the pillar based on the display image displayed on the second mobile device, it takes time for the measurer to operate the surveying instrument and collimate the prism. Therefore, it takes a certain amount of time for the adjustment work, and it is required that the adjustment can be performed more efficiently.
特許文献2に開示された自動追尾式のトータルステーションを用いる場合には、調整用の治具で柱の姿勢が調整される過程で自動追尾のための時間応答遅れが生じ、第2のモバイル機器に表示される補正案内画像と自動追尾のタイミングにずれが生じて適正に調整することができないという問題があった。
When the automatic tracking type total station disclosed in Patent Document 2 is used, a time response delay for automatic tracking occurs in the process of adjusting the posture of the pillar by the adjustment jig, and the second mobile device has a delay. There is a problem that the correction guide image to be displayed and the timing of automatic tracking are out of alignment and cannot be adjusted properly.
そこで、補正案内画像に基づいて調整用の治具で柱の姿勢を調整した後に、遠隔操作で自動追尾機能を作動させると、上述した不都合は生じないのであるが、自動追尾に要する時間遅れの影響があり、それに対応して作業者による調整作業に時間遅れが生じるという問題があった。
Therefore, if the posture of the pillar is adjusted with the adjustment jig based on the correction guide image and then the automatic tracking function is activated by remote control, the above-mentioned inconvenience does not occur, but the time delay required for automatic tracking is delayed. There was an impact, and there was a problem that the adjustment work by the operator was delayed accordingly.
そして、鉄骨柱のような柱材のみならず、梁材、壁材、斜材、並びに柱材と梁材の組立体などの建築構造材であっても、建入れ調整治具を用いてそれらの建築構造材を所定の位置に位置決め調整する際に、上述と同様の問題があった。
Then, not only pillar materials such as steel columns, but also beam materials, wall materials, diagonal materials, and building structural materials such as columns and assembly of beam materials are used by using a building adjustment jig. There was the same problem as described above when positioning and adjusting the building structural material in the above position.
本発明の目的は、上述した従来の問題点に鑑み、人件費を抑制しつつ作業者による建築構造材の調整作業を可及的に速やかに且つ適切に行なうことができる建方支援方法及び建方支援システムを提供する点にある。
An object of the present invention is a construction support method and construction capable of performing adjustment work of building structural materials by a worker as quickly and appropriately as possible while suppressing labor costs in view of the above-mentioned conventional problems. The point is to provide a support system.
上述の目的を達成するため、本発明による建方支援方法の第一の特徴構成は、建築構造材が所定の建方精度に収まるように調整する作業者を支援する建方支援方法であって、視準方向と画像中心とが所定の位置関係となる撮像装置を備えた測量機器を用いて、前記建築構造材の部材芯と所定の位置関係を有する位置に設置されたマーカープリズムを視準してプリズム測量データを取得するとともに前記マーカープリズムを含む撮像データを基準画像として取得する第1計測ステップと、前記第1計測ステップで取得したプリズム測量データに基づいて前記建築構造材の部材芯の現在位置を算出する部材芯位置算出ステップと、前記部材芯の現在位置を設計位置に向けて案内する補正量及び補正方向を算出する第1補正演算ステップと、前記第1補正演算ステップで算出した補正量及び補正方向を示す第1補正案内画像を表示装置に表示する第1表示ステップと、前記測量機器の視準方向を前記マーカープリズムから前記設計位置に切り替える視準方向切替ステップと、第1表示ステップで表示される前記第1補正案内画像に基づいて作業者が前記建築構造材に取付けた建入れ調整治具を操作する第1調整ステップと、前記第1調整ステップで調整された後に、前記視準方向切替ステップで切り替えた視準方向を維持した状態でノンプリズム測量データを取得するとともに撮像データを参照画像として取得する第2計測ステップと、前記参照画像から抽出した前記マーカープリズムの位置と前記ノンプリズム測量データとに基づいて、前記部材芯の現在位置を設計位置に向けて案内する補正量及び補正方向を算出する第2補正演算ステップと、前記第2補正演算ステップで算出した補正量及び補正方向を示す第2補正案内画像を表示装置に表示する第2表示ステップと、第2表示ステップで表示される前記第2補正案内画像に基づいて作業者が前記建入れ調整治具を操作する第2調整ステップと、を備え、前記第2計測ステップから前記第2調整ステップの一連のステップを繰り返すように構成されている点にある。
In order to achieve the above object, the first characteristic configuration of the construction support method according to the present invention is a construction support method for supporting a worker who adjusts a building structural material so as to be within a predetermined construction accuracy. Using a surveying instrument equipped with an imaging device in which the collimation direction and the image center have a predetermined positional relationship, collimate a marker prism installed at a position having a predetermined positional relationship with the member core of the building structural material. The first measurement step of acquiring the prism survey data and the imaging data including the marker prism as a reference image, and the member core of the building structural material based on the prism survey data acquired in the first measurement step. Calculated in the member core position calculation step for calculating the current position, the first correction calculation step for calculating the correction amount and the correction direction for guiding the current position of the member core toward the design position, and the first correction calculation step. The first display step of displaying the first correction guide image showing the correction amount and the correction direction on the display device, the collimation direction switching step of switching the collimation direction of the surveying instrument from the marker prism to the design position, and the first. After the first adjustment step in which the operator operates the building adjustment jig attached to the building structural material based on the first correction guide image displayed in the display step, and the adjustment in the first adjustment step, The second measurement step of acquiring the non-prism survey data and the captured data as a reference image while maintaining the collimation direction switched in the collimation direction switching step, and the position of the marker prism extracted from the reference image. The second correction calculation step for calculating the correction amount and the correction direction for guiding the current position of the member core toward the design position based on the non-prism survey data and the correction calculated in the second correction calculation step. Based on the second display step of displaying the second correction guide image indicating the amount and the correction direction on the display device and the second correction guide image displayed in the second display step, the operator sets the building adjustment jig. It includes a second adjustment step to be operated, and is configured to repeat a series of steps from the second measurement step to the second adjustment step.
第1計測ステップで測量機器により建築構造材に設置されたマーカープリズムを視準してプリズム測量データが取得されるとともにマーカープリズムを含む撮像データが取得され、部材芯位置算出ステップでプリズム測量データに基づいて建築構造材の部材芯の現在位置が算出される。第1補正演算ステップで部材芯の現在位置を設計位置に向けて案内する補正量及び補正方向が算出され、第1表示ステップで補正量及び補正方向を示す第1補正案内画像が表示装置に表示される。
In the first measurement step, the marker prism installed on the building structural material is collimated by the surveying instrument to acquire the prism survey data, and the imaging data including the marker prism is acquired. Based on this, the current position of the member core of the building structural material is calculated. In the first correction calculation step, the correction amount and the correction direction for guiding the current position of the member core toward the design position are calculated, and in the first display step, the first correction guide image showing the correction amount and the correction direction is displayed on the display device. Will be done.
視準方向切替ステップで測量機器の視準方向がマーカープリズムから設計位置に切り替えられ、第1調整ステップで表示装置に表示された第1補正案内画像に基づいて部材芯の現在位置を設計位置に近づけるべく作業者によって建築構造材に取付けた建入れ調整治具が操作される。
The collimation direction of the surveying instrument is switched from the marker prism to the design position in the collimation direction switching step, and the current position of the member core is set to the design position based on the first correction guide image displayed on the display device in the first adjustment step. The building adjustment jig attached to the building structural material is operated by the operator to bring it closer.
次に第2計測ステップが実行されて、視準方向切替ステップで設計位置に切り替えた視準方向を維持した状態で測量機器によりノンプリズム測量データが取得され、さらに撮像データが参照画像として取得される。第2補正演算ステップで参照画像から抽出したマーカープリズムの位置とノンプリズム測量データとに基づいて、部材芯の現在位置を設計位置に向けて案内する補正量及び補正方向が算出されて、第2表示ステップで補正量及び補正方向が第2補正案内画像として表示され、第2調整ステップでは、第2補正案内画像に基づいて部材芯の現在位置を設計位置に近づけるべく作業者によって建築構造材に取付けた建入れ調整治具が操作される。第2計測ステップから前記第2調整ステップの一連のステップが繰り返されることにより、部材芯の現在位置が設計位置に向けて調整される。
Next, the second measurement step is executed, and the non-prism survey data is acquired by the surveying instrument while maintaining the collimation direction switched to the design position in the collimation direction switching step, and the captured data is further acquired as a reference image. NS. Based on the position of the marker prism extracted from the reference image and the non-prism survey data in the second correction calculation step, the correction amount and the correction direction for guiding the current position of the member core toward the design position are calculated, and the second correction amount is calculated. In the display step, the correction amount and the correction direction are displayed as the second correction guide image, and in the second adjustment step, the worker uses the building structural material to bring the current position of the member core closer to the design position based on the second correction guide image. The installed building adjustment jig is operated. By repeating a series of steps from the second measurement step to the second adjustment step, the current position of the member core is adjusted toward the design position.
第2計測ステップから第2調整ステップの一連のステップでは、測量機器の視準方向が設計位置に固定されて変更されることがないので、測量に要する時間が短くなり効率的に調整作業が行なえるようになる。
In the series of steps from the second measurement step to the second adjustment step, the collimation direction of the surveying instrument is fixed at the design position and is not changed, so that the time required for the survey is shortened and the adjustment work can be performed efficiently. Become so.
同第二の特徴構成は、上述の第一の特徴構成に加えて、前記第2補正演算ステップで算出する補正量及び補正方向は、前記参照画像と前記第1計測ステップで取得した基準画像のマッチング処理を行なうことにより前記マーカープリズムの画像位置を抽出し、前記測量機器から前記参照画像に含まれる前記マーカープリズムの画像位置と前記参照画像の視準方向に対応する画像位置との成す角度と前記ノンプリズム測量データとに基づいて算出する補正量及び補正方向を含む点にある。
In the second feature configuration, in addition to the first feature configuration described above, the correction amount and correction direction calculated in the second correction calculation step are the reference image and the reference image acquired in the first measurement step. The image position of the marker prism is extracted by performing the matching process, and the angle formed by the image position of the marker prism included in the reference image and the image position corresponding to the collimation direction of the reference image from the surveying instrument. It is a point including a correction amount and a correction direction calculated based on the non-prism survey data.
第2補正演算ステップでは、参照画像と基準画像のマッチング処理を行なうことにより参照画像に含まれるマーカープリズムの画像位置が抽出され、測量機器から参照画像に含まれるマーカープリズムの画像位置と参照画像の視準方向に対応する画像位置との成す角度とノンプリズム測量データつまり建築構造材の何れかの表面までの距離に基づいて補正量及び補正方向が算出される。
In the second correction calculation step, the image position of the marker prism included in the reference image is extracted by performing matching processing between the reference image and the reference image, and the image position of the marker prism included in the reference image and the reference image are extracted from the surveying instrument. The correction amount and correction direction are calculated based on the angle formed by the image position corresponding to the collimation direction and the non-prism survey data, that is, the distance to the surface of any of the building structural materials.
同第三の特徴構成は、上述した第一または第二の特徴構成に加えて、前記建築構造材が円柱状建築構造材である場合に、前記第1計測ステップは、前記マーカープリズムを視準してプリズム測量データを取得するとともに前記マーカープリズムと同一高さの前記円柱状建築構造材の外周上の一点を視準してノンプリズム測量データを取得するように構成され、前記部材芯位置算出ステップは、第1計測ステップで取得したプリズム測量データ及びノンプリズム測量データと、前記円柱状建築構造材の半径に基づいて前記円柱状建築構造材の部材芯の現在位置を算出するように構成されている点にある。
In the third feature configuration, in addition to the first or second feature configuration described above, when the building structural material is a columnar building structural material, the first measurement step collimates the marker prism. Then, the prism survey data is acquired, and the non-prism survey data is acquired by collimating a point on the outer periphery of the columnar building structural material having the same height as the marker prism, and the member core position is calculated. The step is configured to calculate the current position of the member core of the columnar building structural material based on the prism survey data and the non-prism survey data acquired in the first measurement step and the radius of the columnar building structural material. There is a point.
第1計測ステップで、マーカープリズムを視準したプリズム測量データと、マーカープリズムと同一高さの円柱状建築構造材の外周上の一点を視準したノンプリズム測量データが取得され、部材芯位置算出ステップで、其々の位置データと円柱状建築構造材の半径から幾何学的に円柱状建築構造材の部材芯の現在位置が算出される。
In the first measurement step, prism survey data collimating the marker prism and non-prism survey data collimating a point on the outer circumference of the columnar building structural material having the same height as the marker prism are acquired, and the member core position is calculated. In each step, the current position of the member core of the columnar building structural material is geometrically calculated from the respective position data and the radius of the columnar building structural material.
同第四の特徴構成は、上述した第一または第二の特徴構成に加えて、前記建築構造材に設定された少なくとも二つの部材芯に対応して其々設置された各マーカープリズムに対して、前記第1計測ステップと、部材芯位置算出ステップと、前記第1補正演算ステップと、前記第1表示ステップとを実行し、複数の部材芯に対して前記第1調整ステップ以降の処理を実行する際に、前記視準方向切替ステップにより前記測量機器の視準方向を対応する部材芯の設計位置に切り替えるように構成されている点にある。
The fourth feature configuration is, in addition to the first or second feature configuration described above, for each marker prism installed corresponding to at least two member cores set in the building structural material. , The first measurement step, the member core position calculation step, the first correction calculation step, and the first display step are executed, and the processes after the first adjustment step are executed for a plurality of member cores. At that time, the collimation direction switching step is configured to switch the collimation direction of the surveying instrument to the design position of the corresponding member core.
建築構造材が例えば梁部材や壁部材のように少なくとも二つの部材芯が設定されている場合には、其々の部材芯に対して位置調整する必要がある。このような場合でも、少なくとも二つの部材芯に対応して其々設置されたマーカに対して、上述した第1計測ステップと、部材芯位置算出ステップと、第1補正演算ステップと、第1表示ステップとを実行し、視準方向切替ステップとを実行しておき、複数の部材芯に対して第1調整ステップ以降の処理を実行する際に、視準方向切替ステップにより測量機器の視準方向を調整対象の部材芯の設計位置に切り替えることで、時間を要することなく対応する部材芯の現在位置を個別に調整できるようになる。
When at least two member cores are set for the building structural material, for example, a beam member or a wall member, it is necessary to adjust the position with respect to each member core. Even in such a case, the above-mentioned first measurement step, member core position calculation step, first correction calculation step, and first display are performed on the markers installed corresponding to at least two member cores. When the steps and the collimation direction switching step are executed and the processing after the first adjustment step is executed for a plurality of member cores, the collimation direction of the surveying instrument is executed by the collimation direction switching step. By switching to the design position of the member core to be adjusted, the current position of the corresponding member core can be individually adjusted without requiring time.
同第五の特徴構成は、上述した第四の特徴構成に加えて、前記複数の部材芯は、前記第1補正演算ステップにより算出された各部材芯位置に対する補正量及び補正方向に基づいて、前記第1調整ステップ以降の処理が必要と判断された部材芯である点にある。
In the fifth feature configuration, in addition to the fourth feature configuration described above, the plurality of member cores are based on the correction amount and the correction direction for each member core position calculated by the first correction calculation step. The point is that the member core is determined to require processing after the first adjustment step.
第1補正演算ステップにより算出された各部材芯位置に対する補正量及び補正方向を作業者が確認して、調整が必要であると判断した部材芯位置に対して第1調整ステップ以降の処理を行なうことで効率的な建方支援が可能になる。
The operator confirms the correction amount and the correction direction for each member core position calculated by the first correction calculation step, and performs the processing after the first adjustment step for the member core position determined to be necessary for adjustment. This enables efficient construction support.
本発明による建方支援システムの第一の特徴構成は、建て込まれた建築構造材が所定の建方精度に収まるように調整する作業者を支援する建方支援システムであって、視準方向と画像中心とが所定の位置関係となる撮像装置を備えた測量機器と、前記測量機器を用いて前記建築構造材の部材芯と所定の位置関係を有する位置に設置されたマーカープリズムを視準して取得したプリズム測量データと前記マーカープリズムを含む基準画像としての撮像データを記憶する第1記憶部と、前記測量機を用いて前記建築構造材の部材芯の設計位置を視準して取得したノンプリズム測量データと参照画像となる撮像データを記憶する第2記憶部と、を含む測量制御装置と、前記プリズム測量データに基づいて前記建築構造材の部材芯の現在位置を算出し、前記部材芯の現在位置を設計位置に向けて案内する補正量及び補正方向を算出して第1補正案内画像を生成する第1補正演算部と、前記参照画像から抽出した前記マーカープリズムの位置と前記ノンプリズム測量データとに基づいて、前記部材芯の現在位置を設計位置に向けて案内する補正量及び補正方向を算出して第2補正案内画像を生成する第2補正演算部と、を含む補正演算装置と、前記建築構造材に取付けられた建入れ調整治具を操作する作業者の近傍に設置され、前記補正演算装置で生成された補正案内画像を表示する表示装置と、を備えている点にある。
The first characteristic configuration of the construction support system according to the present invention is a construction support system that assists a worker who adjusts the built-in building structural material so as to be within a predetermined construction accuracy, and is a collimation direction. A surveying instrument equipped with an imaging device in which the image center and the image center have a predetermined positional relationship, and a marker prism installed at a position having a predetermined positional relationship with the member core of the building structural material using the surveying instrument are collimated. Acquired by collimating the design position of the member core of the building structural material with the first storage unit that stores the prism survey data acquired in the above process and the imaging data as a reference image including the marker prism, and the surveying instrument. The current position of the member core of the building structural material is calculated based on the survey control device including the non-prism survey data and the second storage unit for storing the imaging data as the reference image, and the prism survey data. The first correction calculation unit that calculates the correction amount and the correction direction for guiding the current position of the member core toward the design position and generates the first correction guide image, the position of the marker prism extracted from the reference image, and the above. Correction including a second correction calculation unit that calculates a correction amount and a correction direction for guiding the current position of the member core toward the design position based on the non-prism survey data and generates a second correction guide image. It is provided with a calculation device and a display device installed in the vicinity of a worker who operates a building adjustment jig attached to the building structural material and displaying a correction guidance image generated by the correction calculation device. At the point.
同第二の特徴構成は、上述した第一の特徴構成に加えて、前記測量機器は視準方向を遠隔操作可能な姿勢調整装置を備え、前記表示装置に前記姿勢調整装置を遠隔操作して前記マーカを視準する遠隔操作部を備えている点にある。
In the second feature configuration, in addition to the first feature configuration described above, the surveying instrument is provided with a posture adjusting device capable of remotely controlling the collimation direction, and the display device is remotely controlled by the posture adjusting device. The point is that it is provided with a remote control unit that collimates the marker.
以上説明した通り、本発明によれば、人件費を抑制しつつ作業者による建築構造材の調整作業を可及的に速やかに且つ適切に行なうことができる建方支援方法及び建方支援システムを提供することができるようになった。
As described above, according to the present invention, there is a construction support method and a construction support system that can perform the adjustment work of building structural materials by a worker as quickly and appropriately as possible while suppressing labor costs. It is now possible to provide.
以下に、本発明による建方支援方法及び建方支援システムを説明する。建方支援システムとは、建築構造材が所定の建方精度に収まるように調整する作業者を支援するために用いるコンピュータ応用システムである。
The construction support method and construction support system according to the present invention will be described below. The building support system is a computer application system used to support workers who adjust building structural materials so that they fall within a predetermined building accuracy.
[建築構造材の説明]
本発明が適用される建築構造材とは、鉄骨柱などの垂直荷重を受ける柱材、水平外力に対して軸組の補剛に用いる筋かいなどの斜材、柱材間に水平方向に架けられ、主に曲げ応力を担う梁材、鋼板製の壁材などの建築構造物の剛性を保つための骨組みとなる建築部材、並びに柱材と梁材の組立体をいう。 [Explanation of building structural materials]
The building structural materials to which the present invention is applied include pillar materials that receive vertical loads such as steel columns, diagonal materials such as streaks used to stiffen the framework against horizontal external force, and horizontal spanning between columns. It refers to a beam material that mainly bears bending stress, a building member that serves as a framework for maintaining the rigidity of a building structure such as a wall material made of steel plate, and an assembly of a column material and a beam material.
本発明が適用される建築構造材とは、鉄骨柱などの垂直荷重を受ける柱材、水平外力に対して軸組の補剛に用いる筋かいなどの斜材、柱材間に水平方向に架けられ、主に曲げ応力を担う梁材、鋼板製の壁材などの建築構造物の剛性を保つための骨組みとなる建築部材、並びに柱材と梁材の組立体をいう。 [Explanation of building structural materials]
The building structural materials to which the present invention is applied include pillar materials that receive vertical loads such as steel columns, diagonal materials such as streaks used to stiffen the framework against horizontal external force, and horizontal spanning between columns. It refers to a beam material that mainly bears bending stress, a building member that serves as a framework for maintaining the rigidity of a building structure such as a wall material made of steel plate, and an assembly of a column material and a beam material.
また、各建築構造部材を設計位置に位置調整するための基準として各建築構造部材には単一または複数の部材芯が予め定義されている。以下、例示する。
図7(a)には柱材11が示され、平面視で柱材11の中心を縦方向に貫く線が部材芯Pとなり、部材芯Pが設計位置に位置するように、上端側に位置調整のための一つのマーカープリズム12が設置されている。マーカープリズム12の位置は、部材芯Pからのオフセット値で規定されているため、マーカープリズム12の位置が判明すると部材芯Pの位置が算出できる。 Further, as a reference for adjusting the position of each building structural member to the design position, a single or a plurality of member cores are defined in advance for each building structural member. Hereinafter, an example will be given.
FIG. 7A shows thecolumn member 11, and the line penetrating the center of the column member 11 in the vertical direction is the member core P, and the member core P is located on the upper end side so as to be located at the design position. One marker prism 12 for adjustment is installed. Since the position of the marker prism 12 is defined by an offset value from the member core P, the position of the member core P can be calculated once the position of the marker prism 12 is known.
図7(a)には柱材11が示され、平面視で柱材11の中心を縦方向に貫く線が部材芯Pとなり、部材芯Pが設計位置に位置するように、上端側に位置調整のための一つのマーカープリズム12が設置されている。マーカープリズム12の位置は、部材芯Pからのオフセット値で規定されているため、マーカープリズム12の位置が判明すると部材芯Pの位置が算出できる。 Further, as a reference for adjusting the position of each building structural member to the design position, a single or a plurality of member cores are defined in advance for each building structural member. Hereinafter, an example will be given.
FIG. 7A shows the
なお、マーカープリズム12が測量機器の死角に入る場合に備えて、少なくとも隣接する2面にマーカープリズム12が設置されている。符号13は建入れ調整治具を示し、作業者が建入れ調整治具13を操作することにより、柱材11の姿勢が上下方向、左右方向、奥行き手前方向に調整される。
The marker prism 12 is installed on at least two adjacent surfaces in case the marker prism 12 enters the blind spot of the surveying instrument. Reference numeral 13 indicates a building-in adjustment jig, and the posture of the pillar member 11 is adjusted in the vertical direction, the horizontal direction, and the depth front direction by the operator operating the building-in adjustment jig 13.
図7(b)には斜材11が示され、柱材11と同様に中心を縦方向に貫く線が部材芯Pとなり、部材芯Pが設計位置に位置するように、上端側に一つのマーカープリズム12が設置されている。
FIG. 7B shows the diagonal member 11, and like the pillar member 11, the line penetrating the center in the vertical direction is the member core P, and one member core P is located on the upper end side so as to be located at the design position. A marker prism 12 is installed.
図7(c)には梁材11が示され、側面視で梁材11の中心を横方向に貫く線が部材芯Pとなり、部材芯Pが設計位置に位置するように、左右両端側に其々マーカープリズム12が設置されている。梁材11は柱材11の間を接続するように複数本が連結配置され、其々が設計位置に沿って水平に配置されるように、左右其々で建入れ調整治具13を介して姿勢調整される。
FIG. 7C shows the beam member 11, and the line penetrating the center of the beam member 11 in the lateral direction is the member core P in the side view, and the member core P is located on both the left and right ends so as to be located at the design position. Marker prisms 12 are installed in each. A plurality of beam members 11 are connected and arranged so as to connect between the column members 11, and the left and right beam members 11 are arranged horizontally along the design position via the build-in adjustment jig 13. The posture is adjusted.
図7(d)には壁材11が示され、平面視で壁材11の左右端部側を縦方向に貫く2本の線が部材芯Pとなり、其々の部材芯Pが設計位置に位置するように、左右両端で上部側に其々マーカープリズム12が設置されている。壁材11は建築物の面を構成する部材で複数枚が上下左右に連結配置され、其々が設計位置に沿って配置されるように、左右其々で建入れ調整治具13を介して姿勢調整される。図7(a)~(d)に示したように、建入れ調整治具13が配されている箇所が部材間の連結位置となる。
FIG. 7D shows the wall material 11, and two lines penetrating the left and right end sides of the wall material 11 in the vertical direction form the member core P, and each member core P is at the design position. Marker prisms 12 are installed on the upper side at both the left and right ends so as to be located. The wall material 11 is a member that constitutes the surface of the building, and a plurality of the wall materials 11 are connected and arranged vertically and horizontally, and each of the left and right walls is arranged along the design position via the building adjustment jig 13. The posture is adjusted. As shown in FIGS. 7A to 7D, the position where the building adjustment jig 13 is arranged is the connection position between the members.
[柱材の建方支援システム]
以下、建築構造材として柱材を例にして本発明による建方支援システムを説明する。柱材11の部材芯Pとして柱材11の長手方向に沿って柱材を貫く柱芯Pが用いられる(図7(a)参照。)。 [Pillar construction support system]
Hereinafter, the construction support system according to the present invention will be described by taking a pillar material as an example of a building structural material. As the member core P of thepillar material 11, the pillar core P penetrating the pillar material along the longitudinal direction of the pillar material 11 is used (see FIG. 7A).
以下、建築構造材として柱材を例にして本発明による建方支援システムを説明する。柱材11の部材芯Pとして柱材11の長手方向に沿って柱材を貫く柱芯Pが用いられる(図7(a)参照。)。 [Pillar construction support system]
Hereinafter, the construction support system according to the present invention will be described by taking a pillar material as an example of a building structural material. As the member core P of the
[柱材の建方支援システム]
図1に示すように、建方支援システム1は、建て込まれた鉄骨柱(以下、単に「柱」という。)11が所定の建方精度に収まるように調整する作業者Hを支援するシステムであり、測量機器10と、建方支援装置20と、単一または複数の表示装置30と、建方管理サーバ40などを備えている。 [Pillar construction support system]
As shown in FIG. 1, theconstruction support system 1 is a system that supports the worker H who adjusts the built-in steel column (hereinafter, simply referred to as “column”) 11 so as to be within a predetermined construction accuracy. It is provided with a surveying instrument 10, a building support device 20, a single or a plurality of display devices 30, a building management server 40, and the like.
図1に示すように、建方支援システム1は、建て込まれた鉄骨柱(以下、単に「柱」という。)11が所定の建方精度に収まるように調整する作業者Hを支援するシステムであり、測量機器10と、建方支援装置20と、単一または複数の表示装置30と、建方管理サーバ40などを備えている。 [Pillar construction support system]
As shown in FIG. 1, the
測量機器10と建方支援装置20とがブルートゥース(Bluetooth)(登録商標)などの無線通信規格で動作する第1通信インタフェース(以下、「IF」と記す。)を介して通信可能に接続され、建方支援装置20と表示装置30と建方管理サーバ40とがWi-Fiなどの無線通信規格で動作する第2通信IFを介してインターネット5に接続されている。
The surveying instrument 10 and the construction support device 20 are connected to each other so as to be able to communicate with each other via a first communication interface (hereinafter referred to as "IF") that operates according to a wireless communication standard such as Bluetooth (registered trademark). The building support device 20, the display device 30, and the building management server 40 are connected to the Internet 5 via a second communication IF that operates according to a wireless communication standard such as Wi-Fi.
測量機器10と建方支援装置20とは、無線ルータのような中継器を介して接続されていてもよい。例えば、測量機器10と中継器とが第1通信IFを介して通信可能に接続され、中継器と建方支援装置20とが第2通信IFを介して接続されていてもよい。測量機器10の近傍に中継器を備えることにより建方支援装置20を管理事務所など建設現場から離れた位置に設置することが可能になる。
The surveying instrument 10 and the construction support device 20 may be connected via a repeater such as a wireless router. For example, the surveying instrument 10 and the repeater may be communicably connected via the first communication IF, and the repeater and the construction support device 20 may be connected via the second communication IF. By providing a repeater in the vicinity of the surveying instrument 10, the construction support device 20 can be installed at a position away from the construction site such as a management office.
建方管理サーバ40には、予め設計柱芯位置などの設計データ40a(図2参照)が格納されたデータベースDBを備えている。当該データベースDBに建方支援装置20で支援されて調整された各柱の調整後の実柱芯位置を含む管理データ40b(図2参照)が記憶される。
The building management server 40 is provided with a database DB in which design data 40a (see FIG. 2) such as the position of the design column core is stored in advance. The database DB stores management data 40b (see FIG. 2) including the adjusted actual column core positions of each column supported and adjusted by the construction support device 20.
[測量機器の説明]
図2に示すように、測量機器10は、水準器を備え、光波測距儀と角度を計測するセオドライトを組み合わせて測量するトータルステーションからなる測量部10aと、撮像装置10bと、姿勢調整装置10cと、第1通信IF10dを備えて構成され、三脚(図1参照。)に所定姿勢で固定されている。 [Explanation of surveying instruments]
As shown in FIG. 2, the surveyinginstrument 10 includes a surveying unit 10a, an imaging device 10b, and a posture adjusting device 10c, which are provided with a spirit level and consist of a total station for measuring by combining a light wave rangefinder and a theodolite for measuring an angle. , The first communication IF10d is provided, and is fixed to a tripod (see FIG. 1) in a predetermined posture.
図2に示すように、測量機器10は、水準器を備え、光波測距儀と角度を計測するセオドライトを組み合わせて測量するトータルステーションからなる測量部10aと、撮像装置10bと、姿勢調整装置10cと、第1通信IF10dを備えて構成され、三脚(図1参照。)に所定姿勢で固定されている。 [Explanation of surveying instruments]
As shown in FIG. 2, the surveying
測量部10aは柱11の上方所定位置に取り付けられた視準用のマーカープリズム(以下、単に「マーカー」と記す。)12をターゲットとして視準して測量するプリズム機能を備えるとともに、マーカー12を用いずに光波の照射点からの散乱反射光に基づいて測量可能なノンプリズム機能を備えている。マーカー12は例えばトータルステーション4に向けて光波を反射するように設置されたプリズムやマイクロミラーが配列された再帰性反射部材で構成されている。プリズム機能で測量する場合には、マーカー12の中心位置に視準する処理に十数秒の時間を要し、ノンプリズム機能で測量する場合には予め設定された視準方向に光波を照射して反射光を受光するだけであるため、殆ど時間を要しない。
The surveying unit 10a has a prism function for collimating and measuring with a marker prism for collimation (hereinafter, simply referred to as “marker”) 12 attached to a predetermined position above the pillar 11 as a target, and the marker 12 is used. It has a non-prism function that enables surveying based on the scattered and reflected light from the irradiation point of the light wave. The marker 12 is composed of, for example, a retroreflective member in which prisms and micromirrors installed so as to reflect light waves toward the total station 4 are arranged. When surveying with the prism function, it takes a dozen seconds to collimate the center position of the marker 12, and when surveying with the non-prism function, light waves are irradiated in a preset collimation direction. It takes almost no time because it only receives the reflected light.
測量部10aの視準方向と撮像装置10bの光軸方向が平行となり、測量部10aの視準方向と撮像装置10bによる撮像画像の画像中心が所定の関係となるように、撮像装置10bが測量部10aに固定されている。本実施形態では、視準方向が画像中心と一致するように調整されている。従って、撮像装置10bによって得られた画像の中心が視準方向に対応する画像となる。なお、測量機器10は、予め既知の2点と測量機器10との3点の位置関係に対して後方交会法などを用いて自己の座標(X,Y,Z)を取得しており、自己の座標(X,Y,Z)を基準に任意の測量対象を視準して測量する。
The image pickup device 10b surveys so that the collimation direction of the surveying unit 10a and the optical axis direction of the image pickup device 10b are parallel to each other, and the collimation direction of the surveying section 10a and the image center of the image captured by the image pickup device 10b have a predetermined relationship. It is fixed to the portion 10a. In this embodiment, the collimation direction is adjusted so as to coincide with the center of the image. Therefore, the center of the image obtained by the image pickup apparatus 10b becomes an image corresponding to the collimation direction. The surveying instrument 10 has acquired its own coordinates (X, Y, Z) for the positional relationship between two known points and the three points of the surveying instrument 10 by using the backward association method or the like. The survey is performed by collimating an arbitrary survey target with reference to the coordinates (X, Y, Z) of.
測量部10aは視準した測量対象に対して、光波測距儀により求まる距離とセオドライトで求まる角度に基づいて算出した測量点の方位(水平角、鉛直角)とを含む測量データを、第1通信IF10dを介して建方支援装置20を含む外部装置に出力する。また、撮像装置10bは測量部10aによる測量処理と同期して撮像した画像を、第1通信IF10dを介して建方支援装置20を含む外部装置に出力する。以下の説明では、プリズム機能を用いて得られた測量データをプリズム測量データ、ノンプリズム機能を用いて得られた測量データをノンプリズム測量データと表記する。
The surveying unit 10a first obtains survey data including the direction (horizontal angle, vertical angle) of the surveying point calculated based on the distance obtained by the light wave rangefinder and the angle obtained by the theodolite with respect to the collimated survey target. It is output to an external device including the construction support device 20 via the communication IF10d. Further, the image pickup device 10b outputs an image captured in synchronization with the surveying process by the surveying unit 10a to an external device including the construction support device 20 via the first communication IF 10d. In the following description, the survey data obtained by using the prism function will be referred to as prism survey data, and the survey data obtained by using the non-prism function will be referred to as non-prism survey data.
姿勢調整装置10cは、測量部10a及び撮像装置10bを水平軸芯周りに回転させる第1モータ及び垂直軸芯周りに回転させる第2モータと、各モータを駆動するモータ制御部を備えて構成され、プリズム機能を用いる場合にマーカー12に対する視準方向を自動追尾する自動追尾機能を備えている。
The attitude adjusting device 10c includes a first motor that rotates the measuring unit 10a and the imaging device 10b around the horizontal axis, a second motor that rotates around the vertical axis, and a motor control unit that drives each motor. , It has an automatic tracking function that automatically tracks the collimation direction with respect to the marker 12 when the prism function is used.
[表示装置の構成]
表示装置30はモバイルコンピュータ、例えばタッチパネル式の液晶表示部を備えたタブレット型のコンピュータや携帯電話装置などで構成され、案内画像表示処理部30aと、第2通信IF30bと、上述した測量機器10に備えた姿勢調整装置10cを遠隔操作する遠隔操作部30cなどの機能ブロックを備えている。 [Display device configuration]
Thedisplay device 30 is composed of a mobile computer, for example, a tablet computer having a touch panel type liquid crystal display unit, a mobile phone device, or the like. It is provided with a functional block such as a remote control unit 30c for remotely controlling the posture adjusting device 10c provided.
表示装置30はモバイルコンピュータ、例えばタッチパネル式の液晶表示部を備えたタブレット型のコンピュータや携帯電話装置などで構成され、案内画像表示処理部30aと、第2通信IF30bと、上述した測量機器10に備えた姿勢調整装置10cを遠隔操作する遠隔操作部30cなどの機能ブロックを備えている。 [Display device configuration]
The
案内画像表示処理部30aは、予め表示装置30にインストールされたアプリケーションプログラムに基づいて動作する機能ブロックであり、建方支援装置20で生成され、送信された後述の第1または第2補正案内画像を液晶表示部に表示する機能ブロックである。当該アプリケーションプログラムには表示処理以外に、測量機器10に備えた姿勢調整装置10cを遠隔操作する遠隔操作部30cとしての機能も備わっている。
The guide image display processing unit 30a is a functional block that operates based on an application program installed in the display device 30 in advance, and is a first or second correction guide image described later that is generated and transmitted by the construction support device 20. Is a functional block that displays on the liquid crystal display. In addition to the display processing, the application program also has a function as a remote control unit 30c for remotely controlling the posture adjusting device 10c provided in the surveying instrument 10.
建て込まれた柱11は、建入れが終了し横梁が接続された階下の基部に、建入れ調整治具13を介して仮止めされている。平面視矩形の柱11の各面に建入れ調整治具13が装着され、当該建入れ調整治具13を操作することにより柱11の姿勢が調整可能に構成されている。建入れ調整治具13として油圧式やネジ式の治具を用いることができる。本実施形態ではテクノス株式会社製の「エースアップ」(登録商標)が用いられている。
The built-in pillar 11 is temporarily fixed to the base downstairs to which the cross beams are connected after the building is completed via the building adjustment jig 13. A building adjustment jig 13 is attached to each surface of the rectangular pillar 11 in a plan view, and the posture of the pillar 11 can be adjusted by operating the building adjustment jig 13. A hydraulic or screw type jig can be used as the building adjustment jig 13. In this embodiment, "Ace Up" (registered trademark) manufactured by Technos Co., Ltd. is used.
そして、当該建入れ調整治具13を操作する作業者Hである鳶職人が、手元に備えた表示装置30の液晶表示部に表示された第1または第2の補正案内画像を目視して、その案内指示に基づいて各建入れ調整治具13を操作することで、効率的に柱11の実柱芯位置が設計柱芯位置に接近するように調整することができるようになる(図1参照)。
Then, the sword craftsman, who is the worker H who operates the building adjustment jig 13, visually observes the first or second correction guide image displayed on the liquid crystal display unit of the display device 30 provided at hand. By operating each building adjustment jig 13 based on the guidance instruction, it becomes possible to efficiently adjust the actual pillar core position of the pillar 11 so as to approach the design pillar core position (FIG. 1). reference).
[建方支援装置の構成]
建方支援装置20は、CPU、メモリ及び入出力回路などを備えたCPUボードが内蔵され液晶表示部を備えたモバイルコンピュータで構成され、測量機器10と接続する第1通信IF20aと、インターネット5に接続する第2通信IF20bと、記憶装置20cと、補正演算装置20f、遠隔操作部20iなどの機能ブロックを備えている。当該CPUボードに搭載されたメモリに記憶されるアプリケーションプログラムがCPUで実行されることによって各機能ブロックが具現化される。 [Configuration of construction support equipment]
Theconstruction support device 20 is composed of a mobile computer having a built-in CPU board including a CPU, a memory, an input / output circuit, and a liquid crystal display unit, and is connected to a first communication IF 20a connected to a surveying instrument 10 and the Internet 5. It includes a second communication IF 20b to be connected, a storage device 20c, a correction calculation device 20f, a functional block such as a remote operation unit 20i, and the like. Each functional block is embodied by executing an application program stored in a memory mounted on the CPU board on the CPU.
建方支援装置20は、CPU、メモリ及び入出力回路などを備えたCPUボードが内蔵され液晶表示部を備えたモバイルコンピュータで構成され、測量機器10と接続する第1通信IF20aと、インターネット5に接続する第2通信IF20bと、記憶装置20cと、補正演算装置20f、遠隔操作部20iなどの機能ブロックを備えている。当該CPUボードに搭載されたメモリに記憶されるアプリケーションプログラムがCPUで実行されることによって各機能ブロックが具現化される。 [Configuration of construction support equipment]
The
測量制御装置20cは、測量機器10を用いて建築構造材の部材芯(柱11の柱芯P)と所定の位置関係を有する位置に設置されたマーカー12を視準して取得したプリズム測量データとマーカー12を含む基準画像としての撮像データを記憶する第1記憶部20dと、測量機器10を用いて建築構造材の部材芯の設計位置を視準して取得したノンプリズム測量データと参照画像となる撮像データを記憶する第2記憶部20eとを備えている。「部材芯の設計位置を視準する」との意義は、部材芯が設計位置に存在すると仮定した場合にその建築構造材に取り付けられたマーカー12の存在する位置を視準する、或いは、当該マーカー12の取付高さと同じ高さの部材芯の位置を視準するということである。
The survey control device 20c collimates the marker 12 installed at a position having a predetermined positional relationship with the member core of the building structural material (pillar core P of the pillar 11) using the surveying instrument 10, and obtains prism survey data. Non-prism survey data and reference image acquired by collimating the design position of the member core of the building structural material using the first storage unit 20d that stores the imaged data as the reference image including the marker 12 and the surveying instrument 10. It is provided with a second storage unit 20e for storing the imaged data. The meaning of "to collimate the design position of the member core" is to collimate the position where the marker 12 attached to the building structural material exists when it is assumed that the member core exists at the design position. This means collimating the position of the member core at the same height as the mounting height of the marker 12.
補正演算装置20fは、プリズム測量データに基づいて建築構造材の部材芯(柱11の柱芯P)の現在位置を算出し、部材芯の現在位置を設計位置に向けて案内する補正量及び補正方向を算出して第1補正案内画像を生成する第1補正演算部20gと、参照画像から抽出したマーカー12の位置とノンプリズム測量データとに基づいて、部材芯の現在位置を設計位置に向けて案内する補正量及び補正方向を算出して第2補正案内画像を生成する第2補正演算部20hとを備えている。なお、第1補正案内画像及び第2補正案内画像は建方支援装置20に備えたメモリに記憶された後に表示装置30に送信される。
The correction calculation device 20f calculates the current position of the member core (column core P of the column 11) of the building structural material based on the prism survey data, and guides the current position of the member core toward the design position. Based on the first correction calculation unit 20g that calculates the direction and generates the first correction guide image, the position of the marker 12 extracted from the reference image, and the non-prism survey data, the current position of the member core is directed to the design position. It is provided with a second correction calculation unit 20h that calculates a correction amount and a correction direction to guide the guide and generates a second correction guide image. The first correction guide image and the second correction guide image are stored in the memory provided in the building support device 20 and then transmitted to the display device 30.
[柱材の建方支援方法]
上述の建方支援システムを用いた柱材の建方支援方法について説明する。
図5に示すように、建方支援方法は、第1計測ステップと(SA1)、部材芯位置算出ステップと(SA2)、第1補正演算ステップと(SA3)、第1表示ステップと(SA4)、視準方向切替ステップと(SA5)、第1調整ステップと(SA6)、第2計測ステップと(SA7)、第2補正演算ステップと(SA8)、第2表示ステップと(SA9)、第2調整ステップと(SA10)、を備えている。 [How to support the construction of pillars]
A method of supporting the construction of pillar lumber using the above-mentioned construction support system will be described.
As shown in FIG. 5, the construction support methods include a first measurement step and (SA1), a member core position calculation step and (SA2), a first correction calculation step and (SA3), and a first display step and (SA4). , Collimation direction switching step and (SA5), first adjustment step and (SA6), second measurement step and (SA7), second correction calculation step and (SA8), second display step and (SA9), second It includes an adjustment step and (SA10).
上述の建方支援システムを用いた柱材の建方支援方法について説明する。
図5に示すように、建方支援方法は、第1計測ステップと(SA1)、部材芯位置算出ステップと(SA2)、第1補正演算ステップと(SA3)、第1表示ステップと(SA4)、視準方向切替ステップと(SA5)、第1調整ステップと(SA6)、第2計測ステップと(SA7)、第2補正演算ステップと(SA8)、第2表示ステップと(SA9)、第2調整ステップと(SA10)、を備えている。 [How to support the construction of pillars]
A method of supporting the construction of pillar lumber using the above-mentioned construction support system will be described.
As shown in FIG. 5, the construction support methods include a first measurement step and (SA1), a member core position calculation step and (SA2), a first correction calculation step and (SA3), and a first display step and (SA4). , Collimation direction switching step and (SA5), first adjustment step and (SA6), second measurement step and (SA7), second correction calculation step and (SA8), second display step and (SA9), second It includes an adjustment step and (SA10).
第1計測ステップ(SA1)は、測量制御装置20cにより実行され、上述した測量機器10を用いて、柱11の柱芯Pと所定の位置関係を有する位置に設置されたマーカー12を視準してプリズム測量データを取得するとともにマーカー12を含む撮像データを基準画像として取得して、第1記憶部20dに記憶する。
The first measurement step (SA1) is executed by the survey control device 20c, and the above-mentioned surveying instrument 10 is used to collimate the marker 12 installed at a position having a predetermined positional relationship with the pillar core P of the pillar 11. The prism survey data is acquired and the imaging data including the marker 12 is acquired as a reference image and stored in the first storage unit 20d.
部材芯位置算出ステップ(SA2)は、補正演算装置20fにより実行され、第1計測ステップで取得したプリズム測量データに基づいて柱11の柱芯Pの現在位置を算出する。
The member core position calculation step (SA2) is executed by the correction calculation device 20f, and the current position of the pillar core P of the pillar 11 is calculated based on the prism survey data acquired in the first measurement step.
第1補正演算ステップ(SA3)は、補正演算装置20fに備えた第1補正演算部20gにより実行され、柱芯Pの現在位置を設計位置に向けて案内する補正量及び補正方向を算出して、第1補正案内画像を生成して記憶する。
The first correction calculation step (SA3) is executed by the first correction calculation unit 20g provided in the correction calculation device 20f, and calculates the correction amount and the correction direction for guiding the current position of the column core P toward the design position. , The first correction guide image is generated and stored.
第1表示ステップ(SA4)は、第1補正演算部20gと表示装置30の案内画像表示処理部30aにより実行され、第1補正演算ステップで算出した補正量及び補正方向を示す第1補正案内画像を表示装置に表示する。
The first display step (SA4) is executed by the first correction calculation unit 20g and the guide image display processing unit 30a of the display device 30, and the first correction guide image showing the correction amount and the correction direction calculated in the first correction calculation step. Is displayed on the display device.
視準方向切替ステップ(SA5)は、測量制御装置20cにより実行され、測量機器10の視準方向をマーカー12から設計位置に切り替える。
The collimation direction switching step (SA5) is executed by the survey control device 20c, and the collimation direction of the surveying instrument 10 is switched from the marker 12 to the design position.
第1調整ステップ(SA6)は、作業者により実行され、第1表示ステップで表示される第1補正案内画像に基づいて柱11に取付けた建入れ調整治具13を操作する。
The first adjustment step (SA6) is executed by the operator, and the building adjustment jig 13 attached to the pillar 11 is operated based on the first correction guide image displayed in the first display step.
第2計測ステップ(SA7)は、測量制御装置20cにより実行され、第1調整ステップで調整された後に、視準方向切替ステップで切り替えた視準方向を維持した状態でノンプリズム測量データを取得するとともに撮像データを参照画像として取得して第2記憶部20eに記憶する。
The second measurement step (SA7) is executed by the survey control device 20c, and after the adjustment in the first adjustment step, the non-prism survey data is acquired while maintaining the collimation direction switched in the collimation direction switching step. At the same time, the captured data is acquired as a reference image and stored in the second storage unit 20e.
第2補正演算ステップ(SA8)は、補正演算装置20fに備えた第2補正演算部20hにより実行され、参照画像から抽出したマーカー12の位置とノンプリズム測量データとに基づいて、柱芯の現在位置を設計位置に向けて案内する補正量及び補正方向を算出して、第2補正案内画像を生成して記憶する。
The second correction calculation step (SA8) is executed by the second correction calculation unit 20h provided in the correction calculation device 20f, and is based on the position of the marker 12 extracted from the reference image and the non-prism survey data. The correction amount and the correction direction for guiding the position toward the design position are calculated, and the second correction guide image is generated and stored.
第2表示ステップ(SA9)は、第2補正演算部20hと表示装置30の案内画像表示処理部30aにより実行され、第2補正演算ステップで算出した補正量及び補正方向を示す第2補正案内画像を表示装置に表示する。
The second display step (SA9) is executed by the second correction calculation unit 20h and the guide image display processing unit 30a of the display device 30, and the second correction guide image showing the correction amount and the correction direction calculated in the second correction calculation step. Is displayed on the display device.
第2調整ステップ(SA10)は、作業者により実行され、第2表示ステップで表示される第2補正案内画像に基づいて柱11に取付けた建入れ調整治具13を操作する。
The second adjustment step (SA10) is executed by the operator, and the building adjustment jig 13 attached to the pillar 11 is operated based on the second correction guide image displayed in the second display step.
第2調整ステップ(SA10)で所定の許容範囲に調整できなかった場合には(SA11,N)、ステップSA7に戻って第2計測ステップからステップSA10の第2調整ステップまでの一連の処理が切替され、第2調整ステップ(SA10)で所定の許容範囲に調整されると(SA11,Y)、当該柱11の調整処理を終える。
If the adjustment cannot be made within the predetermined allowable range in the second adjustment step (SA10) (SA11, N), the process returns to step SA7 and the series of processes from the second measurement step to the second adjustment step in step SA10 is switched. Then, when the adjustment is made to a predetermined allowable range in the second adjustment step (SA10) (SA11, Y), the adjustment process of the pillar 11 is completed.
上述した視準方向切替ステップ(SA5)は、第1計測ステップ(SA1)が終了した後、第2計測ステップが実行されるまでの間であれば、何れのタイミングで実行してもよい。具体的に第1計測ステップ(SA1)の終了時、部材芯位置算出ステップ(SA2)の終了時、第1補正演算ステップ(SA3)の終了時、第1表示ステップ(SA4)の終了時の何れで実行してもよい。
The collimation direction switching step (SA5) described above may be executed at any timing from the completion of the first measurement step (SA1) to the execution of the second measurement step. Specifically, at the end of the first measurement step (SA1), at the end of the member core position calculation step (SA2), at the end of the first correction calculation step (SA3), or at the end of the first display step (SA4). You may execute it with.
部材芯位置算出ステップでは、既知の柱11の形状データと既知のマーカー12の取付位置との関係から柱芯Pの位置を自動的に算出することができる。
例えば、図8(a)に示す平面視が略矩形の柱11では、予めマーカー12と軸心Pの位置関係がオフセット値(x1、y1、z1)で定まっているため、マーカー12の位置(xm、ym、zm)が測量機器10で測量されると、軸心Pの(x、y)座標は(xm、ym+y1)、マーカー12と同じ高さの軸心位置の(x、y、z)座標は(xm、ym+y1、zm)と求まる。 In the member core position calculation step, the position of the pillar core P can be automatically calculated from the relationship between the shape data of the knownpillar 11 and the mounting position of the known marker 12.
For example, in thecolumn 11 having a substantially rectangular plan view shown in FIG. 8A, the positional relationship between the marker 12 and the axis P is determined in advance by the offset values (x1, y1, z1), so that the position of the marker 12 ( When xm, ym, zm) is surveyed by the surveying instrument 10, the (x, y) coordinates of the axis P are (xm, ym + y1), and the (x, y, z) at the same height as the marker 12 is (x, y, z). ) The coordinates are obtained as (xm, ym + y1, zm).
例えば、図8(a)に示す平面視が略矩形の柱11では、予めマーカー12と軸心Pの位置関係がオフセット値(x1、y1、z1)で定まっているため、マーカー12の位置(xm、ym、zm)が測量機器10で測量されると、軸心Pの(x、y)座標は(xm、ym+y1)、マーカー12と同じ高さの軸心位置の(x、y、z)座標は(xm、ym+y1、zm)と求まる。 In the member core position calculation step, the position of the pillar core P can be automatically calculated from the relationship between the shape data of the known
For example, in the
マーカー12は建築構造材11以外にも取り付けられる場合がある。建築構造材11が死角に入り、測量機器10から建築構造材11を視準できないような場合には、建築構造材11に連結された連結部材で測量機器10から視準可能な位置にマーカー12が取り付けられる場合もある。この場合でも、建築構造材11の部材芯とマーカー12の位置関係が予めオフセット値(x1、y1、z1)で定まっていれば、上述と同様に部材芯の位置が求まる。
The marker 12 may be attached to other than the building structural material 11. When the building structural material 11 enters the blind spot and the surveying instrument 10 cannot collimate the building structural material 11, the marker 12 is located at a position where the surveying instrument 10 can collimate with the connecting member connected to the building structural material 11. May be installed. Even in this case, if the positional relationship between the member core of the building structural material 11 and the marker 12 is determined in advance by the offset values (x1, y1, z1), the position of the member core can be obtained in the same manner as described above.
従って、建築構造材11を設計位置に位置決め調整するために、逆に部材芯の設計位置に基づいてマーカー12の設計位置を算出することができ、マーカー12の実際の位置がマーカー12の設計位置に近づくように建入れ調整治具13を操作することも可能である。その意味で、「部材芯の設計位置を視準する」との意義は、部材芯が設計位置に存在すると仮定した場合にその建築構造材に取り付けられたマーカー12の存在する位置を視準する、或いは、当該マーカー12の取付高さと同じ高さの部材芯の位置を視準すると先に説明した。
Therefore, in order to position and adjust the building structural material 11 to the design position, the design position of the marker 12 can be calculated based on the design position of the member core, and the actual position of the marker 12 is the design position of the marker 12. It is also possible to operate the building adjustment jig 13 so as to approach. In that sense, the meaning of "colliming the design position of the member core" is to collimate the position where the marker 12 attached to the building structural material exists, assuming that the member core exists at the design position. Alternatively, it has been described above that the position of the member core having the same height as the mounting height of the marker 12 is collimated.
図7(b)の斜材11、図7(c)の斜材11、図7(d)の壁材11も上述と同様にマーカー12と部材芯Pとの位置関係が予めオフセット値で定まっている。
In the slanted lumber 11 of FIG. 7 (b), the slanted lumber 11 of FIG. 7 (c), and the wall material 11 of FIG. 7 (d), the positional relationship between the marker 12 and the member core P is determined in advance by an offset value in the same manner as described above. ing.
図8(b)に示すように、建築構造材が平面視円形の柱11では、マーカー12と部材芯Pとの位置関係をオフセット値で特定できない。そこで、測量機器10を用いてマーカー12に対するプリズム測量データを取得するとともに、マーカー12と同一の高さでマーカー12から周面に沿って離隔した位置Qに対してノンプリズム測量データを取得することで部材芯Pの位置を算出する。
As shown in FIG. 8B, in the pillar 11 whose building structural material is circular in a plan view, the positional relationship between the marker 12 and the member core P cannot be specified by an offset value. Therefore, the surveying instrument 10 is used to acquire the prism survey data for the marker 12, and the non-prism survey data is acquired for the position Q separated from the marker 12 along the peripheral surface at the same height as the marker 12. Calculate the position of the member core P with.
マーカー12の位置を中心とする柱11の半径の円と、位置Qを中心とする柱11の半径の円との交点を部材芯Pの位置として算出することができる。
The intersection of the radius circle of the pillar 11 centered on the position of the marker 12 and the radius circle of the pillar 11 centered on the position Q can be calculated as the position of the member core P.
また、測量機器10からマーカー12への視準線と位置Qへの視準線の角度θを求め、測量機器10とマーカー12との距離L、測量機器10と位置Qとの距離L1、柱11の直径の長さから幾何学的に部材芯Pの位置を算出してもよい。
Further, the angle θ between the collimation line from the surveying instrument 10 to the marker 12 and the collimation line to the position Q is obtained, the distance L between the surveying instrument 10 and the marker 12, the distance L1 between the surveying instrument 10 and the position Q, and the pillar. The position of the member core P may be calculated geometrically from the length of the diameter of 11.
つまり、建築構造材が円柱状建築構造材である場合に、第1計測ステップは、マーカー12を視準してプリズム測量データを取得するとともにマーカー12と同一高さの前記円柱状建築構造材の外周上の一点を視準してノンプリズム測量データを取得するように構成され、部材芯位置算出ステップは、第1計測ステップで取得したプリズム測量データ及びノンプリズム測量データと、円柱状建築構造材の半径に基づいて円柱状建築構造材の部材芯の現在位置を算出するように構成されている
That is, when the building structural material is a columnar building structural material, in the first measurement step, the marker 12 is collimated to acquire prism survey data, and the columnar building structural material having the same height as the marker 12 is used. It is configured to collimate a point on the outer circumference and acquire non-prism survey data, and the member core position calculation step includes the prism survey data and non-prism survey data acquired in the first measurement step, and a columnar building structural material. It is configured to calculate the current position of the member core of the columnar building structural material based on the radius of
第1補正演算ステップでは、第1計測ステップで取得したマーカー12に対するプリズム測量データに基づいて、部材芯位置算出ステップで柱11の軸心Pの現在位置が算出されるので、軸心Pの設計位置に対する補正方向及び補正量を算出することができる。補正方向とは平面視で東西南北の4方向、正面視で高さ方向が含まれる。
In the first correction calculation step, the current position of the axis P of the pillar 11 is calculated in the member core position calculation step based on the prism survey data for the marker 12 acquired in the first measurement step, so that the axis P is designed. The correction direction and the correction amount with respect to the position can be calculated. The correction direction includes four directions of north, south, east, and west in a plan view, and a height direction in a front view.
第2補正演算ステップでは、測量機器10はマーカー12を視準することなく、軸心Pの設計位置を常時視準しているため、上述した第1補正演算ステップのように補正方向及び補正量を算出することができない。
In the second correction calculation step, the surveying instrument 10 constantly collimates the design position of the axis P without collimating the marker 12, so that the correction direction and the correction amount are as in the first correction calculation step described above. Cannot be calculated.
そこで、第2補正演算ステップでは、参照画像と第1計測ステップで取得した基準画像のマッチング処理を行なうことによりマーカー12の画像位置を抽出し、測量機器10から参照画像に含まれるマーカー12の画像位置と参照画像の視準方向に対応する画像位置との成す角度φとノンプリズム測量データとに基づいて補正量及び補正方向を算出するように構成されている。
Therefore, in the second correction calculation step, the image position of the marker 12 is extracted by performing matching processing between the reference image and the reference image acquired in the first measurement step, and the image of the marker 12 included in the reference image is extracted from the surveying instrument 10. The correction amount and the correction direction are calculated based on the angle φ formed by the position and the image position corresponding to the collimation direction of the reference image and the non-prism survey data.
図3(a)には第1計測ステップで取得した基準画像が示され、図3(b)には視準方向切替ステップで設計位置に視準方向が切り替えられ、第2計測ステップで取得した参照画像が示されている。符号CPは視準点を示し、二点鎖線は柱11の設計位置を示す。マーカー12の画像は測量機器10の視準方向を示す基準画像の中心位置に現れる。また図3(c)には平面視で測量機器10と現在位置の柱11と設計位置の柱11D(二点鎖線で示す。)の位置関係を示す仮想図が示されている。
FIG. 3A shows the reference image acquired in the first measurement step, and FIG. 3B shows the collimation direction switched to the design position in the collimation direction switching step and acquired in the second measurement step. A reference image is shown. The symbol CP indicates a collimation point, and the alternate long and short dash line indicates the design position of the pillar 11. The image of the marker 12 appears at the center position of the reference image indicating the collimation direction of the surveying instrument 10. Further, FIG. 3C shows a virtual diagram showing the positional relationship between the surveying instrument 10, the pillar 11 at the current position, and the pillar 11D (indicated by the alternate long and short dash line) at the design position in a plan view.
そこで、基準画像をテンプレート画像として参照画像とマッチング処理を行なうことにより、参照画像に含まれるマーカー12の中心の画素位置が特定できる。参照画像上のマーカー12の中心画素の位置と参照画像の中心位置との偏りが左右方向のずれ量Δx及び高さ方向のずれ量Δzに対応する。なお、参照画像からマーカー12を識別できれば、マーカー12を含むテンプレート画像は基準画像に限るものではなく、事前に準備された画像であってもよい。
Therefore, by performing matching processing with the reference image using the reference image as the template image, the pixel position at the center of the marker 12 included in the reference image can be specified. The deviation between the position of the center pixel of the marker 12 on the reference image and the center position of the reference image corresponds to the amount of deviation Δx in the left-right direction and the amount of deviation Δz in the height direction. If the marker 12 can be identified from the reference image, the template image including the marker 12 is not limited to the reference image, and may be an image prepared in advance.
参照画像上のマーカー12の中心画素の位置と参照画像の中心位置との間の1画素当たりの偏り角度kは既知であるので、ずれ量Δx、Δzに対応する偏り角度φx、φzは、其々以下の数式で求まる。
φx=k×nx(nxはx方向画素数)
φz=k×nz(nzはz方向画素数)
なお、1画素当たりの偏り角度kは撮像装置10b固有の値であり、予め実測しておくことにより獲得でき、撮像装置10bの画角を画像の幅方向のピクセル数で除すことで求まる。 Since the deviation angle k per pixel between the position of the center pixel of themarker 12 on the reference image and the center position of the reference image is known, the deviation angles φx and φz corresponding to the deviation amounts Δx and Δz are the same. It can be calculated by the following formulas.
φx = k × nx (nx is the number of pixels in the x direction)
φz = k × nz (nz is the number of pixels in the z direction)
The bias angle k per pixel is a value peculiar to theimage pickup apparatus 10b and can be obtained by actually measuring it in advance, and can be obtained by dividing the angle of view of the image pickup apparatus 10b by the number of pixels in the width direction of the image.
φx=k×nx(nxはx方向画素数)
φz=k×nz(nzはz方向画素数)
なお、1画素当たりの偏り角度kは撮像装置10b固有の値であり、予め実測しておくことにより獲得でき、撮像装置10bの画角を画像の幅方向のピクセル数で除すことで求まる。 Since the deviation angle k per pixel between the position of the center pixel of the
φx = k × nx (nx is the number of pixels in the x direction)
φz = k × nz (nz is the number of pixels in the z direction)
The bias angle k per pixel is a value peculiar to the
測量機器10と柱11の距離Lはノンプリズム測量データに含まれているので、Δx=Ltanφxと求まり、Δz=Ltanφzと求まる。
Since the distance L between the surveying instrument 10 and the pillar 11 is included in the non-prism survey data, Δx = Ltanφx and Δz = Ltanφz.
測量機器10の視準方向に軸心Pの設計位置が存在し、参照画像の中心位置に撮像されている現在位置の柱11の表面までの距離Lがノンプリズム測量データに含まれているので、現在位置の柱11の視準点CPの座標とマーカー12に対するオフセット値から設計位置の柱11Dとの奥行き方向の偏りΔyが算出できる。
Since the design position of the axis P exists in the collimation direction of the surveying instrument 10, and the distance L to the surface of the pillar 11 at the current position imaged at the center position of the reference image is included in the non-prism survey data. From the coordinates of the collimation point CP of the pillar 11 at the current position and the offset value with respect to the marker 12, the deviation Δy in the depth direction from the pillar 11D at the design position can be calculated.
図4(a)から図4(c)には、補正案内画像50が例示されている。第1補正案内画像と第2補正案内画像は基本的に同一構成の補正案内画像となる。
補正案内画像50は、柱芯の設計位置51で交差する方位線52,53と、実測値から算出される柱芯の現在位置を示す柱芯マーカー54と、柱芯の設計位置51の周りに区画され許容範囲を示す第1領域55と、第1領域55の外側に区画され非許容領域を示す第2領域56と、柱芯マーカー54を設計位置51に移動するように調整するための東西南北の補正方向及び補正量(矢印が補正方向を示し、数値が補正量を示す。)と、高さ方向の補正量(矢印が補正方向を示し、数値が補正量を示す。)を示す表示部57を備えている。本実施形態では、画面の背景は白色、方位線52,53は黒色、柱芯マーカー12は赤色、第1領域55は青色、第2領域56は黄色に設定されている。 Thecorrection guide image 50 is illustrated in FIGS. 4 (a) to 4 (c). The first correction guide image and the second correction guide image are basically correction guide images having the same configuration.
Thecorrection guide image 50 is formed around the directional lines 52 and 53 intersecting at the design position 51 of the column core, the column core marker 54 indicating the current position of the column core calculated from the measured value, and the design position 51 of the column core. East and west for adjusting the column core marker 54 to move to the design position 51, the first region 55 which is partitioned and shows the allowable range, the second region 56 which is partitioned outside the first region 55 and shows the non-allowable region. A display showing the north-south correction direction and the correction amount (arrows indicate the correction direction and the numerical values indicate the correction amount) and the correction amount in the height direction (arrows indicate the correction direction and the numerical values indicate the correction amount). The unit 57 is provided. In the present embodiment, the background of the screen is set to white, the azimuth lines 52 and 53 are set to black, the pillar core marker 12 is set to red, the first region 55 is set to blue, and the second region 56 is set to yellow.
補正案内画像50は、柱芯の設計位置51で交差する方位線52,53と、実測値から算出される柱芯の現在位置を示す柱芯マーカー54と、柱芯の設計位置51の周りに区画され許容範囲を示す第1領域55と、第1領域55の外側に区画され非許容領域を示す第2領域56と、柱芯マーカー54を設計位置51に移動するように調整するための東西南北の補正方向及び補正量(矢印が補正方向を示し、数値が補正量を示す。)と、高さ方向の補正量(矢印が補正方向を示し、数値が補正量を示す。)を示す表示部57を備えている。本実施形態では、画面の背景は白色、方位線52,53は黒色、柱芯マーカー12は赤色、第1領域55は青色、第2領域56は黄色に設定されている。 The
The
また、補正案内画像50は、測量機器10による柱11に設置されたマーカー12の計測を開始する計測開始部58A、マーカー12から設計位置に視準を切り替える視準切替部58B、計測の停止を指示する計測停止部58C、調整作業の終了後の柱芯位置を登録する登録部58D、調整作業の終了を入力する終了部58Eの各タッチスイッチ部を備えている。
Further, the correction guide image 50 includes a measurement start unit 58A for starting the measurement of the marker 12 installed on the pillar 11 by the surveying instrument 10, a collimation switching unit 58B for switching the collimation from the marker 12 to the design position, and stopping the measurement. Each touch switch unit includes a measurement stop unit 58C for instructing, a registration unit 58D for registering the column core position after the adjustment work is completed, and an end unit 58E for inputting the end of the adjustment work.
図4(a)では、設定位置51に対して柱芯マーカー54が西に3mm、南に4mm、下方に3mmずれているため、柱芯マーカー54を東に3mm、北に4mm、上方に3mm移動するように調整すれば柱芯マーカー54が設計位置51に到ることが補正量及び補正方向の表示部57に示され、調整後の許容範囲を示す第1領域55に対する柱芯マーカー54の相対位置が示されている。
In FIG. 4A, since the pillar core marker 54 is displaced by 3 mm to the west, 4 mm to the south, and 3 mm downward from the set position 51, the pillar core marker 54 is 3 mm to the east, 4 mm to the north, and 3 mm to the top. The display unit 57 of the correction amount and the correction direction indicates that the pillar core marker 54 reaches the design position 51 if adjusted so as to move, and the pillar core marker 54 with respect to the first region 55 indicating the allowable range after adjustment is shown. Relative positions are shown.
図4(b)では、作業者Hにより建入れ調整治具13が操作されて柱芯マーカー54が東西方向で設計位置51に対応する位置に位置調整され、上下方向で設計位置に向けて少し位置調整されたことが示され、図4(c)では、作業者Hにより建入れ調整治具13が操作されて柱芯マーカー54が南北方向で位置調整されて第1領域25に入ったことが示されている。なお、高さ方向にも許容範囲を含むスケールが表示されるように構成されていてもよい。例えば、上下に長い帯状のバーグラフで中央位置が設計位置となり、設計位置を挟んで上下に許容範囲が示され、柱芯マーカーが帯状のバーグラフの何れかに表示されるように構成してもよい。
In FIG. 4B, the building adjustment jig 13 is operated by the worker H to adjust the position of the column core marker 54 to a position corresponding to the design position 51 in the east-west direction, and slightly toward the design position in the vertical direction. It is shown that the position has been adjusted, and in FIG. 4C, the building adjustment jig 13 is operated by the worker H to adjust the position of the column core marker 54 in the north-south direction and enter the first region 25. It is shown. In addition, the scale including the allowable range may be displayed in the height direction as well. For example, in a bar graph that is long in the vertical direction, the center position is the design position, the allowable range is shown in the vertical direction across the design position, and the column core marker is displayed in one of the bar graphs in the vertical direction. May be good.
本実施形態では、東西南北の許容範囲を示す第1領域55が設計位置51を中心に、許容範囲を半径とする真円で表示されているが、東西南北の方向により許容範囲が異なるように設定されていてもよい。例えば基準位置21を中心とする矩形であってもよく楕円であってもよい。
In the present embodiment, the first region 55 indicating the north, south, east, and west permissible range is displayed as a perfect circle with the permissible range as the radius centered on the design position 51, but the permissible range differs depending on the north, south, east, and west directions. It may be set. For example, it may be a rectangle centered on the reference position 21 or an ellipse.
また、建て込まれる柱11のロケーションに応じて許容範囲を示す第1領域55の範囲が可変に設定されるように構成されている。建て込まれた柱11に対する建方精度は全て同一であるとは限らず、柱11毎に異なる場合があり、例えば、構造上重要な柱11とそうでない柱11の建方精度を異ならせることにより、作業効率を高めることができる。そこで、建て込まれる柱11に応じて第1領域55の範囲を可変に設定することにより、柔軟な建方支援が可能になる。高さ方向も同様である。
Further, the range of the first area 55 indicating the allowable range is variably set according to the location of the pillar 11 to be built. The construction accuracy of the built-in pillars 11 is not always the same, and may differ for each pillar 11. For example, the construction accuracy of the structurally important pillars 11 and the non-structurally important pillars 11 may be different. Therefore, work efficiency can be improved. Therefore, by setting the range of the first area 55 variably according to the pillar 11 to be built, flexible construction support becomes possible. The same applies to the height direction.
このような補正案内画像は、補正演算装置20fで生成されて、建方支援装置20の表示部に表示されるとともに、建入れ調整治具を操作する作業者が所持する表示装置30にも表示される。つまり、建方支援装置20と表示装置30の表示画像が共有化される。
Such a correction guide image is generated by the correction calculation device 20f and displayed on the display unit of the building support device 20, and is also displayed on the display device 30 possessed by the operator who operates the building adjustment jig. Will be done. That is, the display images of the building support device 20 and the display device 30 are shared.
補正案内画像を単純に表示装置30に送信して表示装置30の案内画像処理部30aで表示装置30の表示画面に表示してもよく、インターネット5を介して接続した画像共有システムサーバを介して建方支援装置20と表示装置30の双方で同じ画像を表示する画像共有システムを利用してもよい。
The corrected guidance image may be simply transmitted to the display device 30 and displayed on the display screen of the display device 30 by the guidance image processing unit 30a of the display device 30, via an image sharing system server connected via the Internet 5. An image sharing system that displays the same image on both the building support device 20 and the display device 30 may be used.
また、建方支援装置20そのものをクラウドサーバ上のアプリケーションとして構築し、インターネット5を介して複数または特定の表示装置30がクラウドサーバ上のアプリケーションを実行させて建方支援装置20として機能するように構成してもよい。この場合は、測量機器10と中継器とが第1通信IFを介して接続され、中継器と施工支援装置20とが第2通信IFを介して接続される。
Further, the building support device 20 itself is constructed as an application on the cloud server, and a plurality of or specific display devices 30 execute the application on the cloud server via the Internet 5 to function as the building support device 20. It may be configured. In this case, the surveying instrument 10 and the repeater are connected via the first communication IF, and the repeater and the construction support device 20 are connected via the second communication IF.
図6には、建方支援方法のさらに詳細な手順が示されている。
建方支援装置20で建方支援アプリケーションプログラムが立ち上がると(SB1)、建方管理サーバ40から設計ファイルがダウンロードされて記憶装置に記憶される(SB2)。測量機器10が起動されて建方支援装置20との間で通信が確立すると(SB3)、測量機器10が初期設定される(SB4)。 FIG. 6 shows a more detailed procedure of the construction support method.
When the building support application program is started up by the building support device 20 (SB1), the design file is downloaded from thebuilding management server 40 and stored in the storage device (SB2). When the surveying instrument 10 is activated and communication is established with the construction support device 20 (SB3), the surveying instrument 10 is initially set (SB4).
建方支援装置20で建方支援アプリケーションプログラムが立ち上がると(SB1)、建方管理サーバ40から設計ファイルがダウンロードされて記憶装置に記憶される(SB2)。測量機器10が起動されて建方支援装置20との間で通信が確立すると(SB3)、測量機器10が初期設定される(SB4)。 FIG. 6 shows a more detailed procedure of the construction support method.
When the building support application program is started up by the building support device 20 (SB1), the design file is downloaded from the
建方支援装置20と表示装置30とが通信可能に接続され、表示装置30の表示画面に設けられた計測開始スイッチ58A(図4(a)参照。)が操作されると、対象となる柱11のマーカー12が視準される。このとき、表示装置30の表示画面には、測量機器10に備えた撮像装置10bによる画像が表示されるので、その画像に基づいて表示装置30を介して測量機器10を遠隔操作することで、正しくマーカー12が視準される。例えば、表示装置30に入力した設計軸心の座標を入力して、建方支援装置20を介して測量機器10に入力し、測量機器10が設計軸心を視準した後に、測量機器10に備えた自動追尾機構を作動させることで、測量機器10をマーカー12に視準させることができる。
When the building support device 20 and the display device 30 are communicably connected and the measurement start switch 58A (see FIG. 4A) provided on the display screen of the display device 30 is operated, the target pillar 11 markers 12 are collimated. At this time, since an image by the image pickup device 10b provided in the surveying instrument 10 is displayed on the display screen of the display device 30, the surveying instrument 10 can be remotely controlled via the display device 30 based on the image. The marker 12 is correctly collimated. For example, the coordinates of the design axis input to the display device 30 are input to the surveying instrument 10 via the construction support device 20, and after the surveying instrument 10 collimates the design axis, the surveying instrument 10 is used. By activating the provided automatic tracking mechanism, the surveying instrument 10 can be collimated with the marker 12.
そして、第1計測ステップが実行されてプリズム測量データが取得され(SB5)、部材芯位置算出ステップが実行され(SB6)、第1補正演算ステップが実行され(SB7)、第1補正案内画像が生成されて表示装置30に表示される(SB8)。
Then, the first measurement step is executed, the prism survey data is acquired (SB5), the member core position calculation step is executed (SB6), the first correction calculation step is executed (SB7), and the first correction guide image is displayed. It is generated and displayed on the display device 30 (SB8).
表示装置30の表示画面に設けられた視準切替スイッチ58B(図4(a)参照。)が操作されると、測量機器10がノンプリズムモードに切り替わり、視準方向切替ステップが実行される(SB9)。なお、第1計測ステップが実行された後に、測量機器10が自動的にノンプリズムモードに切り替わり、設計軸芯を視準するように測量機器10をプログラミングしておいてもよい。
When the collimation changeover switch 58B (see FIG. 4A) provided on the display screen of the display device 30 is operated, the surveying instrument 10 switches to the non-prism mode, and the collimation direction switching step is executed (see FIG. 4A). SB9). After the first measurement step is executed, the surveying instrument 10 may be programmed so that the surveying instrument 10 automatically switches to the non-prism mode and collimates the design axis.
作業者が表示装置30の画面に表示された第1補正案内画像を目視して建入れ調整治具13を操作し、調整が完了すると(第1補正案内画像の許容範囲を示す第1領域55に柱芯マーカー54が入ると調整が完了する)(SB11,Y)、ステップSB17に移行する。
When the operator visually observes the first correction guide image displayed on the screen of the display device 30 and operates the building adjustment jig 13, and the adjustment is completed (the first area 55 indicating the allowable range of the first correction guide image). The adjustment is completed when the pillar core marker 54 is inserted in (SB11, Y), and the process proceeds to step SB17.
調整が完了しない場合には(SB11,N)、第2計測ステップが実行され(SB12)、取得されたノンプリズム測量データに基づいて第2補正演算ステップが実行され(SB13)、第2補正案内画像が生成されて表示装置30に表示される(SB14)。
If the adjustment is not completed (SB11, N), the second measurement step is executed (SB12), the second correction calculation step is executed based on the acquired non-prism survey data (SB13), and the second correction guide is executed. An image is generated and displayed on the display device 30 (SB14).
作業者が表示装置30の画面に表示された第2補正案内画像を目視して建入れ調整治具13を操作し、調整が完了しなければ(第1補正案内画像の許容範囲を示す第1領域55に柱芯マーカー54が入ると調整が完了する)(SB16,N)、ステップSB12からステップSB15の処理が繰り返される。
The operator visually observes the second correction guide image displayed on the screen of the display device 30 and operates the building adjustment jig 13, and if the adjustment is not completed (the first indicating the allowable range of the first correction guide image). The adjustment is completed when the column core marker 54 enters the region 55) (SB16, N), and the processes of steps SB12 to SB15 are repeated.
調整が完了すると(SB16,Y)、全ての柱11の建入れが終了するまで(SB17,N)、ステップSB5からステップSB16までの処理が各柱11に対して繰り返される。
When the adjustment is completed (SB16, Y), the processes from step SB5 to step SB16 are repeated for each pillar 11 until the construction of all the pillars 11 is completed (SB17, N).
全ての柱11の建入れが終了すると(SB17,Y)、各柱11の調整結果を示すデータが建方支援装置20に収集されて全体評価図が生成され(SB18)、建方支援装置20のメモリに格納されるとともに(SB19)、建方管理サーバ40にアップロードされてデータベースの管理データ格納領域に格納される(SB20)。
When the construction of all the pillars 11 is completed (SB17, Y), the data showing the adjustment result of each pillar 11 is collected in the building support device 20 to generate an overall evaluation map (SB18), and the building support device 20 It is stored in the memory of (SB19), uploaded to the building management server 40, and stored in the management data storage area of the database (SB20).
以下別実施形態を説明する。
上述した実施形態では、建入れ作業に用いるマーカー12が各建築構造材に一つ設置された場合の態様を説明したが、図7(c),(d)に示したような、各建築構造材にマーカー12が複数設置され、其々のマーカー12に対して部材芯を調整する必要がある場合にも、本発明を適用することができる。 Another embodiment will be described below.
In the above-described embodiment, the mode in which onemarker 12 used for the building work is installed in each building structural material has been described, but each building structure as shown in FIGS. 7C and 7D has been described. The present invention can also be applied when a plurality of markers 12 are installed on the material and it is necessary to adjust the member core with respect to each marker 12.
上述した実施形態では、建入れ作業に用いるマーカー12が各建築構造材に一つ設置された場合の態様を説明したが、図7(c),(d)に示したような、各建築構造材にマーカー12が複数設置され、其々のマーカー12に対して部材芯を調整する必要がある場合にも、本発明を適用することができる。 Another embodiment will be described below.
In the above-described embodiment, the mode in which one
即ち、建築構造材11に設定された少なくとも二つの部材芯Pに対応して其々設置された各マーカー12に対して、第1計測ステップと、部材芯位置算出ステップと、第1補正演算ステップと、第1表示ステップとを実行し、少なくとも、其々の部材芯Pに対して第1調整ステップ以降の処理を実行する際に、視準方向切替ステップにより測量機器10の視準方向を対応する部材芯の設計位置に切り替えるように構成し、各部材芯に対して第2計測ステップ、第2補正演算ステップ、第2表示ステップ、第2調整ステップを実行すればよい。第1表示ステップで表示される各部材芯に対する第1補正案内画像はメモリに記憶されているため、第1計測ステップ、部材芯位置算出ステップ、第1補正演算ステップを繰り返す必要はない。
That is, for each marker 12 installed corresponding to at least two member cores P set in the building structural material 11, a first measurement step, a member core position calculation step, and a first correction calculation step. And the first display step, and at least when the processing after the first adjustment step is executed for each member core P, the collimation direction of the surveying instrument 10 is supported by the collimation direction switching step. It may be configured to switch to the design position of the member core to be used, and the second measurement step, the second correction calculation step, the second display step, and the second adjustment step may be executed for each member core. Since the first correction guide image for each member core displayed in the first display step is stored in the memory, it is not necessary to repeat the first measurement step, the member core position calculation step, and the first correction calculation step.
例えば、図7(d)に示す壁材を例に説明すると、マーカー12Aに対してプリズム測量データを取得した後に、マーカー12Bに対してプリズム測量データを取得し、其々の部材芯PA,PBに対する第1補正案内画像を生成して表示する。
For example, to explain the wall material shown in FIG. 7D as an example, after acquiring the prism survey data for the marker 12A, the prism survey data is acquired for the marker 12B, and the member cores PA and PB, respectively. The first correction guide image for is generated and displayed.
部材芯PAに対して第1調整ステップを実行し、第2計測ステップから第2調整ステップを繰り返す際には、測量機器10の視準方向を部材芯PAの設計位置に切り替える。また、部材芯PBに対して第1調整ステップを実行し、第2計測ステップから第2調整ステップを繰り返す際には、測量機器10の視準方向を部材芯PBの設計位置に切り替える。なお、各部材芯PA,PBの値は予め建方管理サーバ40から建方支援装置20にダウンロードされている。
When the first adjustment step is executed for the member core PA and the second adjustment step is repeated from the second measurement step, the collimation direction of the surveying instrument 10 is switched to the design position of the member core PA. Further, when the first adjustment step is executed on the member core PB and the second adjustment step is repeated from the second measurement step, the collimation direction of the surveying instrument 10 is switched to the design position of the member core PB. The values of the member cores PA and PB are downloaded in advance from the building management server 40 to the building support device 20.
部材芯PA,PBに対する上述の調整作業を複数回繰り返す必要がある場合には、繰り返すたびに視準方向を部材芯PAまたは部材芯PBの設計位置に切り替えればよい。
When it is necessary to repeat the above-mentioned adjustment work for the member cores PA and PB a plurality of times, the collimation direction may be switched to the design position of the member core PA or the member core PB each time.
第1補正演算ステップにより算出された各部材芯位置に対する補正量及び補正方向に基づいて、調整が必要と判断した部材芯に対してのみ第1調整ステップ以降の処理を実行することも可能である。また、各部材芯位置に対する補正量及び補正方向に基づいて、第1調整ステップ以降の処理を実行する順序を決定することも可能である。
Based on the correction amount and correction direction for each member core position calculated by the first correction calculation step, it is also possible to execute the processing after the first adjustment step only for the member core determined to be necessary for adjustment. .. It is also possible to determine the order in which the processes after the first adjustment step are executed based on the correction amount and the correction direction for each member core position.
例えば、補正量が大きな値となる部材芯から順番に第1調整ステップ以降の処理を実行することができ、補正方向が同一の部材芯を優先して第1調整ステップ以降の処理を実行することができ、補正方向が他の部材芯とは異なる方向となる部材芯を優先して第1調整ステップ以降の処理を実行することができる。また、補正量と補正方向の組み合わせに基づいて第1調整ステップ以降の処理の実行順序を決定することもできる。
For example, the processing after the first adjustment step can be executed in order from the member core having the larger correction amount, and the processing after the first adjustment step is executed with priority given to the member cores having the same correction direction. It is possible to execute the processing after the first adjustment step by giving priority to the member core whose correction direction is different from that of the other member cores. Further, the execution order of the processes after the first adjustment step can be determined based on the combination of the correction amount and the correction direction.
図9には、上述した建方支援方法の手順が示されている。当該建方支援方法は、先ず、第1計測ステップ、部材芯位置算出ステップ、第1補正演算ステップ、第1表示ステップの各処理を(SA20)、全部材芯(マーカー)に対して実行する(SA21)。
FIG. 9 shows the procedure of the above-mentioned construction support method. In the construction support method, first, each process of the first measurement step, the member core position calculation step, the first correction calculation step, and the first display step is executed (SA20) for all member cores (markers) ( SA21).
次に、各部材芯位置に対する補正量及び補正方向に基づいて、調整が必要な部材芯を選択し(SA22)、視準方向切替ステップと(SA23)、第1調整ステップと(SA24)を実行し、さらに第2計測ステップ、第2補正演算ステップ、第2表示ステップ、第2調整ステップの各ステップを(SA25)、所定の許容範囲に調整されるまで繰り返し実行する(SA26)。調整が必要な部材芯の調整が終了するまでステップSA22からステップSA26の処理を繰り返す(SA27)。
Next, the member cores that need to be adjusted are selected based on the correction amount and the correction direction for each member core position (SA22), and the collimation direction switching step (SA23) and the first adjustment step and (SA24) are executed. Then, each step of the second measurement step, the second correction calculation step, the second display step, and the second adjustment step (SA25) is repeatedly executed until the adjustment is made within a predetermined allowable range (SA26). The process from step SA22 to step SA26 is repeated until the adjustment of the member core requiring adjustment is completed (SA27).
第1補正演算ステップでは、マーカー12に対するプリズム測量データと部材芯の設計位置とに基づいて補正方向及び補正量を算出した例を説明したが、第2補正演算ステップで説明した手順を第1補正演算ステップに採用して補正方向及び補正量を算出してもよい。
In the first correction calculation step, an example in which the correction direction and the correction amount are calculated based on the prism survey data for the marker 12 and the design position of the member core has been described, but the procedure described in the second correction calculation step is the first correction. The correction direction and the correction amount may be calculated by adopting it in the calculation step.
以上説明した実施形態では、各建築構造材に対する建方支援方法及び建方支援システムについて説明したが、本発明は各建築構造材に対する個別の建方支援に限るものではなく、複数の建築構造材のグループに対しても適用できる。
In the embodiment described above, the building support method and the building support system for each building structural material have been described, but the present invention is not limited to the individual building support for each building structural material, and a plurality of building structural materials. It can also be applied to the group of.
例えば柱を例に説明すると、建入れが終了し横梁が接続された階下の基部に、建入れ調整治具を介して仮止めされた全てまたは複数の柱に対して、第1計測ステップ、部材芯位置算出ステップ、第1補正演算ステップ、第1表示ステップの各処理を実行して、各柱11に対する部材芯の補正方向及び補正量を算出し、その結果に基づいて、例えば図10に示すような、各柱に対する補正方向及び補正量を表示した出来形図面を表示装置に表示し、その状態に基づいて調整が必要な柱を特定し、各柱に対する調整の順序を策定してもよい。表示装置は作業者のみならず工事事務所内にも配置され、現場責任者によって調整が必要な柱が特定され、各柱に対する調整の順序が策定されるようにすることが好ましい。
For example, taking columns as an example, the first measurement step, members, are applied to all or a plurality of columns temporarily fixed to the base downstairs to which the cross beams are connected after the building is completed via the building adjustment jig. Each process of the core position calculation step, the first correction calculation step, and the first display step is executed to calculate the correction direction and the correction amount of the member core for each pillar 11, and based on the result, for example, it is shown in FIG. Such a completed drawing showing the correction direction and the correction amount for each pillar may be displayed on the display device, the pillars requiring adjustment may be specified based on the state, and the adjustment order for each pillar may be formulated. .. It is preferable that the display device is arranged not only in the worker but also in the construction office so that the site manager can identify the pillars that need to be adjusted and formulate the order of adjustment for each pillar.
調整対象となる柱に対して視準方向切替ステップと、第1調整ステップとを実行し、さらに第2計測ステップ、第2補正演算ステップ、第2表示ステップ、第2調整ステップの各ステップを、所定の許容範囲に調整されるまで繰り返し実行し、調整が必要な部材芯の調整が終了するまで上述の処理を繰り返すのである。なお、種類の異なる建築構造材の組み合わせに対して上述の方法を適用してもよい。
The collimation direction switching step and the first adjustment step are executed for the pillar to be adjusted, and each step of the second measurement step, the second correction calculation step, the second display step, and the second adjustment step is performed. It is repeatedly executed until it is adjusted to a predetermined allowable range, and the above process is repeated until the adjustment of the member core that needs to be adjusted is completed. The above method may be applied to a combination of different types of building structural materials.
図10には、所定階で建入れされた幾つかの柱11の基準位置と仮止め後の各柱芯の位置とを各基準位置に対する偏差量及び方向とともに全体表示した平面図が示されている。柱を示す矩形形状の各辺から白抜きの矢印と黒塗り矢印が示されている柱に対して、第1補正演算ステップで算出された補正量及び補正方向が示されている。黒塗り矢印の先端に表記された数値がずれ量となる。このような出来形図面に基づいて、建方精度の全体バランスを考慮した調整作業が可能になる。
FIG. 10 shows a plan view showing the reference positions of some pillars 11 built on a predetermined floor and the positions of the cores of the pillars after temporary fixing, together with the deviation amount and direction with respect to each reference position. There is. The correction amount and correction direction calculated in the first correction calculation step are shown for the pillars in which the white arrows and the black-painted arrows are shown from each side of the rectangular shape indicating the pillars. The value indicated at the tip of the black arrow is the amount of deviation. Based on such a finished drawing, adjustment work can be performed in consideration of the overall balance of construction accuracy.
上述した実施形態は何れも本発明の一態様に過ぎず、該記載により本発明の技術的範囲が限定されるものではなく、本発明の作用効果を奏する範囲で各部の具体的な構成は適宜変更設計することができることはいうまでもない。
All of the above-described embodiments are merely one aspect of the present invention, and the description does not limit the technical scope of the present invention, and the specific configuration of each part is appropriately configured within the range in which the effects of the present invention are exhibited. Needless to say, it can be modified and designed.
1:建方支援システム
5:インターネット
10:測量機器
11:建築構造材(柱)
12:マーカープリズム
13:建入れ調整治具
20:建方支援装置
20c:測量制御装置
20f補正演算装置
30:表示装置
30a:案内画像表示処理部
40:建方管理サーバ
DB:データベース
1: Building support system 5: Internet 10: Surveying instrument 11: Building structural material (pillar)
12: Marker prism 13: Building adjustment jig 20: Buildingsupport device 20c: Surveying control device 20f Correction calculation device 30: Display device 30a: Guidance image display processing unit 40: Building management server DB: Database
5:インターネット
10:測量機器
11:建築構造材(柱)
12:マーカープリズム
13:建入れ調整治具
20:建方支援装置
20c:測量制御装置
20f補正演算装置
30:表示装置
30a:案内画像表示処理部
40:建方管理サーバ
DB:データベース
1: Building support system 5: Internet 10: Surveying instrument 11: Building structural material (pillar)
12: Marker prism 13: Building adjustment jig 20: Building
Claims (7)
- 建築構造材が所定の建方精度に収まるように調整する作業者を支援する建方支援方法であって、
視準方向と画像中心とが所定の位置関係となる撮像装置を備えた測量機器を用いて、前記建築構造材の部材芯と所定の位置関係を有する位置に設置されたマーカープリズムを視準してプリズム測量データを取得するとともに前記マーカープリズムを含む撮像データを基準画像として取得する第1計測ステップと、
前記第1計測ステップで取得したプリズム測量データに基づいて前記建築構造材の部材芯の現在位置を算出する部材芯位置算出ステップと、
前記部材芯の現在位置を設計位置に向けて案内する補正量及び補正方向を算出する第1補正演算ステップと、
前記第1補正演算ステップで算出した補正量及び補正方向を示す第1補正案内画像を表示装置に表示する第1表示ステップと、
前記測量機器の視準方向を前記マーカープリズムから前記設計位置に切り替える視準方向切替ステップと、
第1表示ステップで表示される前記第1補正案内画像に基づいて作業者が前記建築構造材に取付けた建入れ調整治具を操作する第1調整ステップと、
前記第1調整ステップで調整された後に、前記視準方向切替ステップで切り替えた視準方向を維持した状態でノンプリズム測量データを取得するとともに撮像データを参照画像として取得する第2計測ステップと、
前記参照画像から抽出した前記マーカープリズムの位置と前記ノンプリズム測量データとに基づいて、前記部材芯の現在位置を設計位置に向けて案内する補正量及び補正方向を算出する第2補正演算ステップと、
前記第2補正演算ステップで算出した補正量及び補正方向を示す第2補正案内画像を表示装置に表示する第2表示ステップと、
第2表示ステップで表示される前記第2補正案内画像に基づいて作業者が前記建入れ調整治具を操作する第2調整ステップと、
を備え、
前記第2計測ステップから前記第2調整ステップの一連のステップを繰り返すように構成されている建方支援方法。 It is a construction support method that supports workers who adjust building structural materials so that they fit within the specified construction accuracy.
Using a surveying instrument equipped with an imaging device in which the collimation direction and the image center have a predetermined positional relationship, a marker prism installed at a position having a predetermined positional relationship with the member core of the building structural material is collimated. In the first measurement step of acquiring the prism survey data and acquiring the imaging data including the marker prism as a reference image.
A member core position calculation step for calculating the current position of the member core of the building structural material based on the prism survey data acquired in the first measurement step, and a member core position calculation step.
The first correction calculation step for calculating the correction amount and the correction direction for guiding the current position of the member core toward the design position, and
The first display step of displaying the first correction guide image indicating the correction amount and the correction direction calculated in the first correction calculation step on the display device, and
A collimation direction switching step of switching the collimation direction of the surveying instrument from the marker prism to the design position, and
The first adjustment step in which the operator operates the building adjustment jig attached to the building structural material based on the first correction guide image displayed in the first display step, and
After the adjustment in the first adjustment step, the second measurement step of acquiring the non-prism survey data and acquiring the captured data as a reference image while maintaining the collimation direction switched in the collimation direction switching step.
A second correction calculation step for calculating a correction amount and a correction direction for guiding the current position of the member core toward the design position based on the position of the marker prism extracted from the reference image and the non-prism survey data. ,
A second display step of displaying a second correction guide image indicating the correction amount and the correction direction calculated in the second correction calculation step on the display device, and
A second adjustment step in which the operator operates the building adjustment jig based on the second correction guide image displayed in the second display step, and
With
A construction support method configured to repeat a series of steps from the second measurement step to the second adjustment step. - 前記第2補正演算ステップで算出する補正量及び補正方向は、前記参照画像と前記第1計測ステップで取得した基準画像のマッチング処理を行なうことにより前記マーカープリズムの画像位置を抽出し、前記測量機器から前記参照画像に含まれる前記マーカープリズムの画像位置と前記参照画像の視準方向に対応する画像位置との成す角度と前記ノンプリズム測量データとに基づいて算出する補正量及び補正方向を含む請求項1記載の建方支援方法。 The correction amount and correction direction calculated in the second correction calculation step are obtained by extracting the image position of the marker prism by performing matching processing between the reference image and the reference image acquired in the first measurement step, and the surveying instrument. A claim including a correction amount and a correction direction calculated based on the angle formed by the image position of the marker prism included in the reference image and the image position corresponding to the collimation direction of the reference image, and the non-prism survey data. The construction support method described in Item 1.
- 前記建築構造材が円柱状建築構造材である場合に、前記第1計測ステップは、前記マーカープリズムを視準してプリズム測量データを取得するとともに前記マーカープリズムと同一高さの前記円柱状建築構造材の外周上の一点を視準してノンプリズム測量データを取得するように構成され、前記部材芯位置算出ステップは、第1計測ステップで取得したプリズム測量データ及びノンプリズム測量データと、前記円柱状建築構造材の半径に基づいて前記円柱状建築構造材の部材芯の現在位置を算出するように構成されている請求項1または2記載の建方支援方法。 When the building structural material is a columnar building structural material, the first measurement step collimates the marker prism to acquire prism measurement data and the columnar building structure having the same height as the marker prism. It is configured to acquire non-prism survey data by collimating a point on the outer circumference of the material, and the member core position calculation step includes the prism survey data and the non-prism survey data acquired in the first measurement step, and the circle. The construction support method according to claim 1 or 2, wherein the current position of the member core of the columnar building structural material is calculated based on the radius of the columnar building structural material.
- 前記建築構造材に設定された少なくとも二つの部材芯に対応して其々設置された各マーカープリズムに対して、前記第1計測ステップと、部材芯位置算出ステップと、前記第1補正演算ステップと、前記第1表示ステップとを実行し、
複数の部材芯に対して前記第1調整ステップ以降の処理を実行する際に、前記視準方向切替ステップにより前記測量機器の視準方向を対応する部材芯の設計位置に切り替えるように構成されている請求項1または2記載の建方支援方法。 The first measurement step, the member core position calculation step, and the first correction calculation step for each marker prism installed corresponding to at least two member cores set in the building structural material. , The first display step and the above are executed,
When the processing after the first adjustment step is executed for a plurality of member cores, the collimation direction of the surveying instrument is switched to the design position of the corresponding member cores by the collimation direction switching step. The construction support method according to claim 1 or 2. - 前記複数の部材芯は、前記第1補正演算ステップにより算出された各部材芯位置に対する補正量及び補正方向に基づいて、前記第1調整ステップ以降の処理が必要と判断された部材芯である請求項4記載の建方支援方法。 The plurality of member cores are member cores for which it is determined that processing after the first adjustment step is necessary based on the correction amount and the correction direction for each member core position calculated by the first correction calculation step. The construction support method described in Item 4.
- 建て込まれた建築構造材が所定の建方精度に収まるように調整する作業者を支援する建方支援システムであって、
視準方向と画像中心とが所定の位置関係となる撮像装置を備えた測量機器と、
前記測量機器を用いて前記建築構造材の部材芯と所定の位置関係を有する位置に設置されたマーカープリズムを視準して取得したプリズム測量データと前記マーカープリズムを含む基準画像としての撮像データを記憶する第1記憶部と、前記測量機を用いて前記建築構造材の部材芯の設計位置を視準して取得したノンプリズム測量データと参照画像となる撮像データを記憶する第2記憶部と、を含む測量制御装置と、
前記プリズム測量データに基づいて前記建築構造材の部材芯の現在位置を算出し、前記部材芯の現在位置を設計位置に向けて案内する補正量及び補正方向を算出して第1補正案内画像を生成する第1補正演算部と、前記参照画像から抽出した前記マーカープリズムの位置と前記ノンプリズム測量データとに基づいて、前記部材芯の現在位置を設計位置に向けて案内する補正量及び補正方向を算出して第2補正案内画像を生成する第2補正演算部と、を含む補正演算装置と、
前記建築構造材に取付けられた建入れ調整治具を操作する作業者の近傍に設置され、前記補正演算装置で生成された補正案内画像を表示する表示装置と、
を備えている建方支援システム。 It is a construction support system that supports workers who adjust the built-in building structural materials so that they fit within the specified construction accuracy.
A surveying instrument equipped with an imaging device in which the collimation direction and the center of the image have a predetermined positional relationship,
Prism survey data acquired by collimating a marker prism installed at a position having a predetermined positional relationship with the member core of the building structural material using the surveying instrument, and imaging data as a reference image including the marker prism. A first storage unit for storing, a second storage unit for storing non-prism survey data acquired by collimating the design position of the member core of the building structural material using the surveying instrument, and imaging data as a reference image. , Including surveying control devices,
Based on the prism survey data, the current position of the member core of the building structural material is calculated, the correction amount and the correction direction for guiding the current position of the member core toward the design position are calculated, and the first correction guide image is obtained. A correction amount and a correction direction for guiding the current position of the member core toward the design position based on the generated first correction calculation unit, the position of the marker prism extracted from the reference image, and the non-prism survey data. A correction calculation device including a second correction calculation unit that calculates and generates a second correction guidance image, and
A display device installed in the vicinity of a worker who operates a building adjustment jig attached to the building structural material and displaying a correction guide image generated by the correction calculation device.
Construction support system equipped with. - 前記測量機器は視準方向を遠隔操作可能な姿勢調整装置を備え、前記表示装置に前記姿勢調整装置を遠隔操作して前記マーカーを視準する遠隔操作部を備えている請求項6記載の建方支援システム。
The building according to claim 6, wherein the surveying instrument is provided with a posture adjusting device capable of remotely controlling the collimation direction, and the display device is provided with a remote control unit for remotely controlling the posture adjusting device to collimate the marker. Support system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-070995 | 2020-04-10 | ||
JP2020070995A JP6990809B2 (en) | 2020-04-10 | 2020-04-10 | Building support method and building support system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021205829A1 true WO2021205829A1 (en) | 2021-10-14 |
Family
ID=78022564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/010765 WO2021205829A1 (en) | 2020-04-10 | 2021-03-17 | Building assistance method and building assistance system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6990809B2 (en) |
TW (1) | TW202140892A (en) |
WO (1) | WO2021205829A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09242339A (en) * | 1996-03-08 | 1997-09-16 | Kawasaki Heavy Ind Ltd | Vertical positioning method of building main post |
JP2000275044A (en) * | 1999-03-25 | 2000-10-06 | Kumagai Gumi Co Ltd | Building measurement method for pillar and device therefor |
JP2014091925A (en) * | 2012-10-31 | 2014-05-19 | Taisei Corp | Erection method, and measurement unit |
JP2019052864A (en) * | 2017-09-13 | 2019-04-04 | 計測技研株式会社 | Core coordinate measurement device and core coordinate measurement method |
-
2020
- 2020-04-10 JP JP2020070995A patent/JP6990809B2/en active Active
-
2021
- 2021-03-17 WO PCT/JP2021/010765 patent/WO2021205829A1/en active Application Filing
- 2021-03-25 TW TW110110893A patent/TW202140892A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09242339A (en) * | 1996-03-08 | 1997-09-16 | Kawasaki Heavy Ind Ltd | Vertical positioning method of building main post |
JP2000275044A (en) * | 1999-03-25 | 2000-10-06 | Kumagai Gumi Co Ltd | Building measurement method for pillar and device therefor |
JP2014091925A (en) * | 2012-10-31 | 2014-05-19 | Taisei Corp | Erection method, and measurement unit |
JP2019052864A (en) * | 2017-09-13 | 2019-04-04 | 計測技研株式会社 | Core coordinate measurement device and core coordinate measurement method |
Also Published As
Publication number | Publication date |
---|---|
JP2021167526A (en) | 2021-10-21 |
TW202140892A (en) | 2021-11-01 |
JP6990809B2 (en) | 2022-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8310535B2 (en) | Surveying system | |
JP6630515B2 (en) | Position guidance device, position guidance method, program | |
EP3550262B1 (en) | Surveying instrument | |
JP6721925B1 (en) | Foundation pile construction support method and construction support system | |
EP2728309A2 (en) | Robotic laser pointer apparatus and methods | |
JP4559346B2 (en) | Support construction method and support construction system | |
JP6433033B1 (en) | Construction support system and mobile device used in construction support system | |
JP7017422B2 (en) | Surveying device | |
JP2017115387A (en) | Construction machine automatic control system | |
JP6864653B2 (en) | Vertical measurement system and reference point tracing method | |
JP2000275044A (en) | Building measurement method for pillar and device therefor | |
US20170291242A1 (en) | Systems and methods for automated stud placement and welding | |
EP3945282B1 (en) | Surveying system, staking assistance method, and staking assistance program | |
WO2021205829A1 (en) | Building assistance method and building assistance system | |
JP6812114B2 (en) | Surveying position display device and surveying position display program | |
JP2024060019A (en) | Survey system, finishing stake installation support method, and finishing stake installation support program | |
JP2020056710A (en) | Automatic surveying system and automatic surveying method | |
JP2005003448A (en) | Electronic survey device | |
JP2021144003A5 (en) | ||
WO2021181928A1 (en) | Measurement assistance system, measurement information display method, and measurement information display program | |
WO2021187199A1 (en) | Portable display terminal for survey assistance, survey assistance system, survey assistance method, and survey assistance program | |
JP3174872U (en) | Building accuracy calculation device | |
JP4933077B2 (en) | Surveying instrument and surveying method using this surveying instrument | |
WO2023008305A1 (en) | Survey setting point editing method, survey setting point editing device, and survey setting point editing program | |
JP5685788B2 (en) | Building accuracy calculation device and building accuracy calculation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21784578 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21784578 Country of ref document: EP Kind code of ref document: A1 |