WO2021205768A1 - 圧電積層体、圧電積層体の製造方法、および圧電素子 - Google Patents

圧電積層体、圧電積層体の製造方法、および圧電素子 Download PDF

Info

Publication number
WO2021205768A1
WO2021205768A1 PCT/JP2021/006769 JP2021006769W WO2021205768A1 WO 2021205768 A1 WO2021205768 A1 WO 2021205768A1 JP 2021006769 W JP2021006769 W JP 2021006769W WO 2021205768 A1 WO2021205768 A1 WO 2021205768A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
piezoelectric
input
output
electrode film
Prior art date
Application number
PCT/JP2021/006769
Other languages
English (en)
French (fr)
Inventor
稔顕 黒田
柴田 憲治
渡辺 和俊
健司 木村
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to EP21785614.5A priority Critical patent/EP4135344A4/en
Priority to US17/917,055 priority patent/US20230276711A2/en
Publication of WO2021205768A1 publication Critical patent/WO2021205768A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N39/00Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0261Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken from a transducer or electrode connected to the driving transducer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/082Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/101Piezoelectric or electrostrictive devices with electrical and mechanical input and output, e.g. having combined actuator and sensor parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface

Definitions

  • the present invention relates to a piezoelectric laminate, a method for manufacturing a piezoelectric laminate, and a piezoelectric element.
  • Piezoelectric materials may be used, for example, in ultrasonic sensors for p-MUTs (Piezoelectric Micromachined Ultrasonic Transducers).
  • a material for the piezoelectric material for example, a lead zirconate titanate (PZT) -based ferroelectric substance is widely used (see, for example, Patent Document 1).
  • a piezoelectric material used for an ultrasonic sensor or the like a potassium niobate sodium (KNN) -based ferroelectric substance or aluminum nitride (AlN) may be used (see, for example, Patent Document 2).
  • KNN potassium niobate sodium
  • AlN aluminum nitride
  • an ultrasonic sensor having a piezoelectric body has been required to have a higher performance ultrasonic sensor.
  • JP-A-2019-146020 Japanese Unexamined Patent Publication No. 2019-165307
  • An object of the present invention is to obtain a piezoelectric laminate or the like capable of providing a high-performance ultrasonic sensor.
  • the board The output side lower electrode film provided on the substrate and An output-side piezoelectric film provided on the output-side lower electrode film and being an oxide film, The output side upper electrode film provided on the output side piezoelectric film and The input side lower electrode film provided on the substrate and An input-side piezoelectric film provided on the input-side lower electrode film and being a nitride film, An input-side upper electrode film provided on the input-side piezoelectric film is provided.
  • An ultrasonic output unit composed of a laminated portion including the output side lower electrode film, the output side piezoelectric film, and the output side upper electrode film, the input side lower electrode film, the input side piezoelectric film, and the input.
  • An ultrasonic output unit composed of a laminated portion including the output side lower electrode film, the output side piezoelectric film, and the output side upper electrode film, the input side lower electrode film, the input side piezoelectric film, and the input.
  • Piezoelectric laminate having a step of producing a laminate in which an ultrasonic input portion composed of a laminate provided with a side upper electrode film and the substrate are arranged so as not to overlap each other when the substrate is viewed from above. Manufacturing method is provided.
  • (C) is a diagram showing an example of the cross-sectional structure of the laminated body 10c after forming the output side piezoelectric film into a predetermined shape
  • (d) is a diagram showing an example of the cross-sectional structure of the laminated body 10c after forming the protective film. It is a figure which shows an example of the cross-sectional structure of 10d
  • (e) is the figure which shows the example of the cross-sectional structure of the laminated body 10e after forming the input side piezoelectric film
  • (f) is after removing the protective film. It is a figure which shows an example of the cross-sectional structure of the laminated body 10f.
  • FIG. 1 It is a figure which shows the cross-sectional structure of the piezoelectric laminated body which concerns on the modification of one Embodiment of this invention.
  • (A) is a diagram showing an example of the cross-sectional structure of the laminated body 40a before forming the output side piezoelectric film
  • (b) is a view showing the laminated body after forming the output side piezoelectric film and forming it into a predetermined shape.
  • (c) is the figure which shows the example of the cross-sectional structure of the laminated body 40c after forming a protective film
  • (d) is the figure which makes the input side lower electrode film film.
  • (A) is a diagram showing an example of the cross-sectional structure of the laminated body 42a before forming the output side piezoelectric film
  • (b) is an example of the cross-sectional structure of the laminated body 42b after forming the output side piezoelectric film
  • (C) is a diagram showing an example of the cross-sectional structure of the laminated body 42c after forming the protective film
  • (d) is a diagram showing an example of the cross-sectional structure of the laminated body 42d after forming the protective film. It is a figure which shows an example of the cross-sectional structure
  • (e) is the figure which shows the example of the cross-sectional structure of the laminated body 42e after removing the protective film. It is a figure which shows the cross-sectional structure of the piezoelectric laminated body which concerns on the modification of one Embodiment of this invention.
  • the laminate (laminated substrate) 10 having the piezoelectric film according to the present embodiment (hereinafter, also referred to as piezoelectric laminate 10) is on the substrate 1 and the substrate 1.
  • the lower electrode film 2 provided on the lower electrode film 2, the output side piezoelectric film 3A provided on the lower electrode film 2, and the output side piezoelectric film 3A provided on the output side piezoelectric film 3A.
  • the output side upper electrode film 4A (filmed), the input side piezoelectric film 3B provided on the lower electrode film 2 (film-formed), and the input-side piezoelectric film 3B provided (film-formed). It is configured to include an upper electrode film 4B on the input side.
  • the lower electrode film 2 functions as the output side lower electrode film 2A and also as the input side lower electrode film 2B.
  • the substrate 1 is a single crystal silicon (Si) substrate 1a on which a surface oxide film (SiO 2 film) 1b such as a thermal oxide film or a CVD (Chemical Vapor Deposition) oxide film is formed, that is, a Si substrate having a surface oxide film.
  • a Si substrate 1a having an insulating film 1d formed of an insulating material other than SiO 2 on its surface can also be used.
  • a Si substrate 1a in which a Si (100) surface or a Si (111) surface or the like is exposed on the surface that is, a Si substrate having no surface oxide film 1b or insulating film 1d can also be used.
  • the substrate 1 is formed of a metal material such as an SOI (Silicon On Insulator) substrate, a quartz glass (SiO 2 ) substrate, a gallium arsenide (GaAs) substrate, a sapphire (Al 2 O 3 ) substrate, and stainless steel (SUS).
  • a metal substrate can also be used.
  • the thickness of the single crystal Si substrate 1a can be, for example, 300 ⁇ m or more and 1000 ⁇ m or less, and the thickness of the surface oxide film 1b can be, for example, 1 nm or more and 4000 nm or less.
  • the lower electrode film 2 can be formed by using, for example, platinum (Pt).
  • the lower electrode film 2 is a single crystal film or a polycrystalline film (hereinafter, these are also referred to as Pt films).
  • the crystals constituting the Pt film are preferably preferentially oriented in the (111) plane orientation with respect to the surface of the substrate 1. That is, it is preferable that the surface of the lower electrode film (Pt film) 2 (the surface serving as the base of the output-side piezoelectric film 3A) is mainly composed of the Pt (111) surface.
  • the Pt film can be formed by using a method such as a sputtering method or a vapor deposition method.
  • the lower electrode film 2 is formed of various metals such as gold (Au), ruthenium (Ru), or iridium (Ir), alloys containing these as main components, strontium ruthenate (SrRuO 3 , abbreviation: SRO), or It is also possible to form a film using a metal oxide such as lanthanum nickelate (LaNiO 3, abbreviated as LNO). Further, the lower electrode film 2 may be a single-layer film formed by using the above-mentioned various metals or metal oxides, or a Pt film and a film made of LNO provided on the Pt film are laminated. It may be a body, a laminate of a Pt film and a film made of SRO provided on the Pt film, or the like. The thickness of the lower electrode film 2 can be, for example, 100 nm or more and 400 nm or less.
  • an adhesion layer 6 containing iridium oxide (IrO 2 ) or the like as a main component may be provided.
  • the adhesion layer 6 can be formed into a film by using a method such as a sputtering method or a vapor deposition method.
  • the thickness of the adhesion layer 6 can be, for example, 1 nm or more and 200 nm or less.
  • the output side piezoelectric film 3A is composed of a film containing oxygen (O) and not containing nitrogen (N), that is, an oxide film.
  • N-free film as used herein means a film containing no N at all and a film containing a trace amount of N as an unavoidable impurity.
  • the output-side piezoelectric film 3A is preferably a film having a high piezoelectric constant.
  • the piezoelectric constant of the output-side piezoelectric film 3A can be, for example, 100 pm / V or more, preferably 170 pm / V or more.
  • the upper limit of the piezoelectric constant of the output-side piezoelectric film 3A is not particularly limited, but in the current technology, the upper limit is about 200 pm / V.
  • the output side piezoelectric film 3A preferably has a higher piezoelectric constant than the input side piezoelectric film 3B.
  • the output-side piezoelectric film 3A contains, for example, potassium niobate sodium (KNN), that is, potassium (K), sodium (Na), niobium (Nb), and has a composition formula (K 1-x Na x ) y NbO 3 .
  • a film can be formed using the represented alkali niobium oxide.
  • the coefficient x in the above composition formula has a size within the range of 0 ⁇ x ⁇ 1
  • the output-side piezoelectric film 3A is a KNN polycrystalline film (hereinafter, also referred to as KNN film 3A).
  • the crystal structure of KNN is a perovskite structure.
  • the KNN film 3A can be formed by using a method such as a sputtering method, a PLD (Pulsed Laser Deposition) method, or a sol-gel method.
  • the thickness of the KNN film 3A can be, for example, 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the crystals constituting the KNN film 3A are (001) with respect to the surface of the substrate 1 (for example, when the substrate 1 is a Si substrate 1a having a surface oxide film 1b or an insulating film 1d, the surface of the Si substrate 1a, the same applies hereinafter). ) It is preferable that the orientation is preferentially oriented in the plane orientation. That is, it is preferable that the surface of the KNN film 3A (the surface serving as the base of the output side upper electrode film 4A) is mainly composed of the KNN (001) plane orientation.
  • the crystals constituting the KNN film 3A are formed on the surface of the substrate 1 (001).
  • 80% or more of the crystals constituting the KNN film 3A are oriented in the (001) plane orientation with respect to the surface of the substrate 1, and 80% or more of the surface of the KNN film 3A is KNN (001). ) It becomes easy to make a surface.
  • the boundary between the crystals constituting the KNN film 3A that is, the grain boundary existing in the KNN film 3A penetrates in the thickness direction of the KNN film 3A.
  • the grain boundaries penetrating in the thickness direction are larger than the grain boundaries not penetrating in the thickness direction of the KNN film 3A (for example, the grain boundaries parallel to the plane direction of the substrate 1). Is preferable.
  • the KNN film 3A contains at least one metal element (hereinafter, also simply referred to as “metal element”) selected from the group consisting of copper (Cu), manganese (Mn), iron (Fe), and vanadium (V). It is preferable to be. It is more preferable that the KNN film 3A contains at least one of Cu and Mn.
  • metal element selected from the group consisting of copper (Cu), manganese (Mn), iron (Fe), and vanadium (V). It is preferable to be. It is more preferable that the KNN film 3A contains at least one of Cu and Mn.
  • the term "containing at least one of Cu and Mn" may mean that it contains only Cu, that it contains only Mn, or that it contains both Cu and Mn.
  • the KNN film 3A preferably contains the above metal element at a concentration in the range of, for example, 0.2 at% or more and 2.0 at% or less with respect to the amount of niobium (Nb) in the KNN film 3A. That is, the concentration of the metal element in the KNN film 3A is preferably, for example, 0.2 at% or more and 2.0 at% or less.
  • the concentration of the metal elements is the total concentration of the plurality of types of metal elements.
  • the concentration of the metal element in the KNN film 3A is 0.2 at% or more, the insulation property (leak resistance) of the KNN film 3A can be improved, and the resistance to the fluorine-based etching solution (etching resistance) can be improved. It will be possible.
  • a higher voltage can be applied by the voltage application unit 11a described later. As a result, the amount of deformation of the KNN film 3A can be increased.
  • the relative permittivity of the KNN film 3A can be set to a size suitable for applications such as a vibrator for generating ultrasonic waves, which will be described later. It is possible to suppress an increase in power consumption when applied to a vibrator for generating ultrasonic waves.
  • K, Na, Nb, and a secondary component other than the metal element are added within a predetermined range, and the effect obtained by adding the metal element is not impaired, for example, 5 at% or less.
  • the total concentration may be within a range of 5 at% or less.
  • the secondary component include lithium (Li), Ta, antimony (Sb) and the like.
  • the output-side upper electrode film 4A (hereinafter, also referred to as the upper electrode film 4A) can be formed by using various metals such as Pt, Au, aluminum (Al), and Cu, or alloys thereof.
  • the upper electrode film 4A can be formed by using a method such as a sputtering method, a vapor deposition method, a plating method, or a metal paste method.
  • the upper electrode film 4A does not have a great influence on the crystal structure of the KNN film 3A like the lower electrode film 2A. Therefore, the material, crystal structure, and film forming method of the upper electrode film 4A are not particularly limited.
  • an adhesion layer containing Ti, Ta, TiO 2 , Ni, RuO 2 , IrO 2, etc. as main components is provided. It may have been.
  • the thickness of the upper electrode film 4A can be, for example, 10 nm or more and 5000 nm or less, and when the adhesion layer is provided, the thickness of the adhesion layer can be, for example, 1 nm or more and 200 nm or less.
  • the input side piezoelectric film 3B is composed of a film containing nitrogen (N) and not containing oxygen (O), that is, a nitride film.
  • O-free film as used herein means that a film containing no O at all and a film containing a trace amount of O as an unavoidable impurity are also included.
  • the input side piezoelectric film 3B is preferably a film having a low relative permittivity. This makes it possible to increase the reception sensitivity of ultrasonic waves. Specifically, even when the vibration of the input-side vibrating portion, which will be described later, is small, the input-side piezoelectric film 3B can be deformed and a voltage can be generated by the deformation.
  • the relative permittivity of the input side piezoelectric film 3B can be, for example, 25 or less, preferably 15 or less.
  • the lower limit of the relative permittivity of the input side piezoelectric film 3B is not particularly limited, but in the current technology, the lower limit is about 8. Further, the input side piezoelectric film 3B preferably has a lower relative permittivity than the output side piezoelectric film 3A.
  • the input-side piezoelectric film 3B can be formed by using, for example, a nitride containing aluminum (Al), that is, aluminum nitride (AlN).
  • the input-side piezoelectric film 3B is an AlN polycrystalline film (hereinafter, also referred to as AlN film 3B).
  • the AlN film 3B can be formed by using a method such as a sputtering method, a PLD (Pulsed Laser Deposition) method, a MOCVD (Metal Organic Chemical Vapor Deposition) method, or an HVPE (Hydride Vapor Phase Epitaxy) method.
  • the thickness of the AlN film 3B can be, for example, 0.3 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the AlN film 3B is preferably as thick as possible within the above range, which makes it possible to increase the reception sensitivity of ultrasonic waves.
  • the crystals constituting the AlN film 3B are preferentially oriented in the (001) plane orientation with respect to the surface of the substrate 1. That is, it is preferable that the surface of the AlN film 3B (the surface serving as the base of the input side upper electrode film 4B) is mainly composed of the AlN (001) surface.
  • the crystals constituting the AlN film 3B are formed on the surface of the substrate 1. (001) It becomes easy to preferentially orient the plane orientation.
  • 80% or more of the crystals constituting the AlN film 3B are oriented in the (001) plane orientation with respect to the surface of the substrate 1, and 80% or more of the surface of the AlN film 3B is AlN (001). ) It becomes easy to make a surface.
  • the boundary between the crystals constituting the AlN film 3B that is, the grain boundary existing in the AlN film 3B penetrates in the thickness direction of the AlN film 3B.
  • the grain boundaries penetrating in the thickness direction are larger than the grain boundaries not penetrating in the thickness direction of the AlN film 3B (for example, the grain boundaries parallel to the plane direction of the substrate 1). Is preferable.
  • the AlN film 3B may be an AlN film (Sc-AlN film) containing scandium (Sc) or an AlN film (MgZr-AlN film) containing magnesium (Mg) and zirconium (Zr). , May be an AlN film (MgHf-AlN film) containing Mg and hafnium (Hf).
  • the input-side upper electrode film 4B (hereinafter, also referred to as an upper electrode film 4B) can have the same configuration as the above-mentioned upper electrode film 4A. That is, the upper electrode film 4B can be formed by using, for example, various metals such as Pt, Au, Al, and Cu, or alloys thereof. Further, the upper electrode film 4B can also be formed by using various metals such as molybdenum (Mo) and Ru or alloys thereof. For example, the upper electrode film 4B can be formed by using a method such as a sputtering method, a vapor deposition method, a plating method, or a metal paste method.
  • a method such as a sputtering method, a vapor deposition method, a plating method, or a metal paste method.
  • the upper electrode film 4B does not have a great influence on the crystal structure of the AlN film 3B like the lower electrode film 2. Therefore, the material, crystal structure, and film forming method of the upper electrode film 4B are not particularly limited.
  • an adhesion layer containing Ti, Ta, TiO 2 , Ni or the like as a main component may be provided in order to enhance the adhesion between the AlN film 3B and the upper electrode film 4B.
  • the thickness of the upper electrode film 4B can be, for example, 10 nm or more and 5000 nm or less, and when the adhesion layer is provided, the thickness of the adhesion layer can be, for example, 1 nm or more and 200 nm or less.
  • An ultrasonic output unit (hereinafter, also referred to as "output unit") is configured by a laminated portion including a lower electrode film 2, a KNN film 3A, and an upper electrode film 4A.
  • the close contact layer 6 and the output-side vibrating portion formed on the substrate 1 may be included in the output portion.
  • the output unit is a portion that generates and transmits (outputs) ultrasonic waves.
  • the output unit is KNN by applying an electric field (voltage) between the lower electrode film 2 and the upper electrode film 4A by a voltage application unit 11a described later connected between the lower electrode film 2 and the upper electrode film 4A.
  • the film 3A is deformed, the output side vibrating portion vibrates due to the deformation of the KNN film 3A, and the ultrasonic waves generated by the vibration of the output side vibrating portion are output.
  • An ultrasonic input unit (hereinafter, also referred to as “input unit”) is configured by a laminated portion including a lower electrode film 2, an AlN film 3B, and an upper electrode film 4B.
  • the close contact layer 6 and the input-side vibrating portion formed on the substrate 1 may be included in the input portion.
  • the input unit is a unit that receives (inputs) ultrasonic waves that are output from the output unit and reflected by the test object.
  • the input unit is configured so that the AlN film 3B is deformed by receiving ultrasonic waves and vibrating the input side vibrating unit. Due to this deformation of the AlN film 3B, a voltage is generated between the lower electrode film 2 and the upper electrode film 4B.
  • the output unit and the input unit are arranged so as not to overlap each other when the substrate 1 (piezoelectric laminate 10) is viewed from the upper surface. As a result, it is possible to prevent the output unit and the input unit from interfering with each other. As a result, the sensing accuracy of the ultrasonic sensor 30 described later, which is manufactured by using the piezoelectric laminate 10, can be improved.
  • “when the substrate 1 is viewed from above” means "when the main surface of the substrate 1 provided with the KNN film 3A, AlN film 3B, etc. is viewed from above in the vertical direction”.
  • the "vertical direction” referred to here is a direction that coincides with at least one of the propagation direction of the ultrasonic wave transmitted from the output unit and the propagation direction of the ultrasonic wave received by the input unit.
  • the distance d between the output unit and the input unit is preferably a distance at which they do not interfere (contact) with each other and are as short as possible. That is, although the output unit and the input unit are not in contact with each other, it is preferable that the distance d between them is as short as possible.
  • the distance (longest distance) d between the output unit and the input unit is preferably 500 ⁇ m or less. It is more preferable that the output unit and the input unit are brought close to each other as far as possible by the MEMS manufacturing technology. As a result, the ultrasonic sensor 30, which will be described later, can be miniaturized by increasing the degree of integration of the output unit and the input unit while improving the performance.
  • FIG. 3 shows a schematic configuration diagram of the ultrasonic sensor 30 according to the present embodiment.
  • the ultrasonic sensor 30 includes at least one piezoelectric element 20, a voltage application unit 11a and a voltage detection unit 11b connected to the piezoelectric element 20. Examples of applications of the ultrasonic sensor 30 include p-MUT and the like.
  • the piezoelectric element 20 means an element having an output side piezoelectric film 3A and an input side piezoelectric film 3B, and can be obtained by molding the above-mentioned piezoelectric laminated body 10 into a predetermined shape.
  • the output side vibrating portion is formed at the position of the substrate 1 corresponding to the output portion
  • the input side vibrating portion is formed at the position of the substrate 1 corresponding to the input portion. ..
  • FIG. 3 illustrates a piezoelectric element 20 having a membrane structure formed on the substrate 1.
  • the resonance frequencies of the output side vibrating part and the input side vibrating part may be the same or different.
  • the widths of the output side vibrating portion and the input side vibrating portion may be different from each other, for example, the width of the output side vibrating portion may be made larger than the width of the input side vibrating portion according to the resonance frequency.
  • the output side vibrating part and the input side vibrating part are configured such that the thickness of the substrate 1 at the position corresponding to the output part is made thicker than the thickness of the board 1 at the position corresponding to the input part according to the resonance frequency.
  • the thickness of the substrate 1 to be formed may be different.
  • the voltage application unit 11a is a means for applying a voltage between the lower electrode film 2 (output side lower electrode film 2A) and the upper electrode film 4A
  • the voltage detection unit 11b is the lower electrode film 2 (input side). This is a means for detecting the voltage generated between the lower electrode film 2B) and the upper electrode film 4B.
  • various known means can be used as the voltage application unit 11a and the voltage detection unit 11b.
  • the above-mentioned output unit can function as a vibrator for generating ultrasonic waves.
  • the KNN film 3A can be deformed by applying a voltage between the lower electrode film 2 and the upper electrode film 4A by the voltage applying portion 11a. Due to this deformation operation, the output side vibrating portion vibrates, and ultrasonic waves can be generated by this vibration.
  • the input unit can function as a sensor.
  • the input unit receives ultrasonic waves and the vibration unit on the input side vibrates to deform the AlN film 3B, a voltage is generated between the lower electrode film 2 and the upper electrode film 4B due to the deformation.
  • the voltage detection unit 11b By detecting this voltage by the voltage detection unit 11b, the magnitude of the ultrasonic wave received by the input unit can be measured.
  • the ultrasonic sensor 30 is configured to transmit ultrasonic waves from the output unit toward the test object and receive the ultrasonic waves reflected by the test object at the input unit. Therefore, for example, the presence or absence of the test object can be determined by detecting the magnitude of the voltage detected by the voltage detection unit 11b a plurality of times and observing the change in the voltage. Further, for example, the distance to the test object can be known by measuring the time from the start of voltage application by the voltage application unit 11a to the voltage detection by the voltage detection unit 11b a plurality of times and observing the change in this time.
  • FIGS. 4 (a) to 4 (f) are shown for the methods for manufacturing the above-mentioned piezoelectric laminate 10, the piezoelectric element 20, and the ultrasonic sensor 30. It will be explained with reference to it.
  • the substrate 1 is prepared, and the adhesion layer 6 (Ti layer) and the lower electrode film 2 (Pt film) are formed in this order on one of the main surfaces of the substrate 1 by, for example, a sputtering method.
  • the laminated body 10a as shown in FIG. 4A is obtained.
  • a substrate 1 (that is, a laminated body 10a) on which the adhesion layer 6 and the lower electrode film 2 are formed in advance may be prepared on any of the main surfaces.
  • Temperature Substrate temperature: 100 ° C. or higher and 500 ° C. or lower, preferably 200 ° C. or higher and 400 ° C. or lower
  • Discharge power 1000 W or higher and 1500 W or lower, preferably 1100 W or higher and 1300 W or lower
  • Atmosphere Argon (Ar) Gas atmosphere
  • Atmospheric pressure 0.1 Pa or higher 0.5 Pa or less, preferably 0.2 Pa or more and 0.4 Pa or less
  • Time 30 seconds or more and 3 minutes or less, preferably 30 seconds or more and 2 minutes or less
  • the following conditions are exemplified as the conditions for forming the lower electrode film 2.
  • a metal target made of Pt can be used as the target used during sputtering film formation.
  • Film formation atmosphere Ar gas atmosphere Atmospheric pressure: 0.1 Pa More than 0.5 Pa or less, preferably 0.2 Pa or more and 0.4 Pa or less
  • Film formation time 3 minutes or more and 10 minutes or less, preferably 4 minutes or more and 7 minutes or less
  • the KNN film 3A is formed on the laminated body 10a (on the lower electrode film 2) by, for example, a sputtering method.
  • the composition ratio of the KNN film 3A can be adjusted, for example, by controlling the composition of the target material used during sputtering film formation.
  • the target material shall be prepared by mixing K 2 CO 3 powder, Na 2 CO 3 powder, Nb 2 O 5 powder, Cu powder (or Cu O powder, Cu 2 O powder), Mn O powder, etc. and firing them. Can be done.
  • the composition of the target material is controlled by adjusting the mixing ratio of K 2 CO 3 powder, Na 2 CO 3 powder, Nb 2 O 5 powder, Cu powder (or Cu O powder, Cu 2 O powder), Mn O powder, etc. be able to.
  • the following conditions are exemplified as the conditions for forming the KNN film 3A.
  • the film forming time is appropriately set according to the thickness of the KNN film 3A to be formed.
  • Deposition temperature substrate temperature: 350 ° C.
  • Atmosphere Ar gas + oxygen gas (O 2) Mixed gas atmosphere (oxygen (O) -containing atmosphere)
  • Atmospheric pressure 0.2 Pa or more and 0.5 Pa or less, preferably 0.2 Pa or more and 0.4 Pa or less
  • O 2 gas partial pressure Ar / O 2 partial pressure ratio
  • Film formation rate 0.5 ⁇ m / hr or more and 2 ⁇ m / hr or less, preferably 0.5 ⁇ m / hr or more and 1.5 ⁇ m / hr or less
  • the laminated body 10b as shown in FIG. 4B can be obtained. Further, by forming the KNN film 3A under the above-mentioned conditions, it is possible to form a high-quality KNN film 3A, for example, a KNN film 3A having a piezoelectric constant of 100 pm / V or more.
  • the KNN film 3A is formed into a predetermined shape (predetermined pattern) by etching or the like. As a result, the laminated body 10c as shown in FIG. 4C is obtained.
  • a protective film 12 that protects the KNN film 3A is formed.
  • the protective film 12 is provided so as to protect (cover) the KNN film 3A.
  • the protective film 12 is a material capable of protecting the KNN film 3A without being reduced in the film-forming atmosphere (N-containing atmosphere) of the AlN film 3B, that is, without deterioration, and is, for example, fluorine (F).
  • a film can be formed using a material that can be easily removed by wet etching or the like using the contained etching solution.
  • the protective film 12 can be formed by using, for example, silicon oxide (SiO 2).
  • the protective film 12 can be formed by a CVD (Chemical Vapor Deposition) method, a sputtering method, a vapor deposition method, or the like.
  • the thickness of the protective film 12 can be a thickness capable of continuously covering the surface of the KNN film 3A, that is, a thickness at which the protective film 12 becomes a continuous film.
  • the "film-forming atmosphere of AlN film 3B" is also referred to as "N-containing atmosphere”.
  • Film formation temperature board temperature: 200 ° C. or higher and 400 ° C. or lower, preferably 300 ° C. or higher and 400 ° C. or lower, more preferably 350 ° C.
  • Discharge power 70W or more and 150W or less, preferably 70W or more and 120W or less, more preferably 100W
  • Raw material Tetraethoxysilane (abbreviation: TEOS)
  • Film formation atmosphere O 2 Gas atmosphere
  • Atmospheric pressure 50 Pa or more and 100 Pa or less, preferably 60 Pa or more and 70 Pa or less, more preferably 67 Pa
  • the film forming time is appropriately set according to the thickness of the protective film 12 to be formed.
  • the film forming time can be, for example, 5 minutes or more and 15 minutes or less. Specifically, when the protective film 12 having a thickness of 400 nm is formed, the film forming time can be 11 minutes.
  • the protective film 12 By forming the protective film 12 under the above-mentioned conditions, it is possible to form a protective film 12 which is a continuous film and covers the KNN film 3A.
  • the protective film 12 acts as a film that suppresses the reduction of the KNN film 3A in an N-containing atmosphere, and protects the KNN film 3A. Due to this protective action, it is possible to prevent the KNN film 3A from being exposed to the N-containing atmosphere during the formation of the AlN film 3B. As a result, it is possible to prevent the KNN film 3A from being reduced and deteriorated by the N element during the formation of the AlN film 3B, that is, the oxygen in the KNN film 3A is removed by the N element and the KNN film 3A is prevented from deteriorating. It becomes possible to do. As a result, it is possible to suppress changes in the piezoelectric performance and quality of the KNN film 3A (for example, deterioration of insulating properties).
  • the protective film 12 is molded into a predetermined pattern.
  • the protective film 12 is removed by etching or the like from the position on the substrate 1 on which the AlN film 3B is to be formed.
  • the laminated body 10d as shown in FIG. 4D is obtained.
  • the AlN film 3B is formed by, for example, a sputtering method.
  • the target material for example, a metal target made of Al can be used.
  • the following conditions are exemplified as the conditions for forming the AlN film 3B.
  • the film forming time is appropriately set according to the thickness of the AlN film 3B to be formed.
  • Film-forming temperature substrate temperature: 300 ° C. or higher and 350 ° C. or lower
  • Discharge power 600 W or higher and 900 W or lower, preferably 700 W or higher and 800 W or lower
  • Film-forming atmosphere Ar gas + nitrogen (N 2 ) gas mixed gas atmosphere (N-containing atmosphere)
  • Atmospheric pressure 0.5 Pa or more and 2.0 Pa or less, preferably 0.7 Pa or more and 1.0 Pa or less
  • the partial pressure of Ar gas to N 2 gas Ar / N 2 partial pressure ratio: 1/10 to 1/2, preferably 1/10 to 1/2.
  • the laminated body 10e as shown in FIG. 4 (e) can be obtained. Further, by forming the AlN film 3B under the above-mentioned conditions, a high-quality AlN film 3B, for example, an AlN film 3B having a relative permittivity of 25 or less can be formed. As described above, since the KNN film 3A is covered with the protective film 12, the KNN film 3A is hardly reduced by the N element existing in the N-containing atmosphere.
  • the protective film 12 is removed by, for example, wet etching using an etching solution containing fluorine (F). As a result, the KNN film 3A is exposed. Further, the unnecessary AlN film 3B formed on the protective film 12 is removed by using the protective film 12 as a lift-off layer. That is, the AlN film 3B is left only in the region where the AlN film 3B should be formed. As a result, the laminated body 10f as shown in FIG. 4 (f) is obtained.
  • etching solution containing F for example, buffered hydrofluoric acid (BHF) containing hydrogen fluoride (HF) at a concentration of 4.32 mol / L and ammonium fluoride (NH 4 F) at a concentration of 10.67 mol / L. )
  • BHF buffered hydrofluoric acid
  • HF hydrogen fluoride
  • NH 4 F ammonium fluoride
  • the ultrasonic sensor 30 can be obtained by connecting the above.
  • the piezoelectric laminate 10 has an output side piezoelectric film 3A (KNN film 3A) and an input side piezoelectric film 3B (AlN film 3B), and is an output unit composed of a laminated portion provided with the KNN film 3A. And the input portion composed of the laminated portion provided with the AlN film 3B do not overlap each other when the substrate 1 is viewed from the upper surface. This makes it possible to drive the KNN film 3A and the AlN film 3B independently.
  • the output side piezoelectric film 3A is composed of an oxide film (that is, KNN film 3A) having a relatively high piezoelectric constant
  • the input side piezoelectric film 3B is a nitride film having a relatively low relative permittivity (that is, AlN). It is composed of a film 3B).
  • a piezoelectric laminate 10 having an output unit and an input unit, a piezoelectric element 20 obtained by processing the piezoelectric laminate 10, and an ultrasonic wave produced by using the piezoelectric element 20.
  • Sensors 30 can be collectively formed in the process of manufacturing MEMS. That is, it is possible to manufacture a high-performance ultrasonic sensor 30 without complicating the manufacturing process.
  • the distance between the output unit and the input unit is, for example, 500 ⁇ m or less, preferably 300 ⁇ m or less.
  • the output section and the input section are brought close to each other as far as possible by the MEMS manufacturing technique.
  • the KNN film 3A is formed during the formation of the AlN film 3B. It is possible to suppress exposure to an N-containing atmosphere. As a result, it is possible to suppress the KNN film 3A from being reduced and deteriorated by the N element in the N-containing atmosphere, and as a result, it is possible to suppress the deterioration of the piezoelectric performance and quality of the KNN film 3A. That is, it is possible to obtain a piezoelectric laminate 10 including a KNN film 3A having a high quality and high performance KNN film 3A and a high quality and high performance AlN film 3B. For example, it is possible to obtain a piezoelectric laminate 10 having a KNN film 3A having a high piezoelectric constant and an AlN film 3B having a low relative permittivity.
  • the etching resistance of the KNN film 3A to a fluorine-based etching solution such as a BHF solution.
  • a fluorine-based etching solution such as a BHF solution.
  • deterioration of the piezoelectric performance and quality of the KNN film 3A can be reliably suppressed.
  • the inventor of the present application has confirmed that the effect of improving the etching resistance of the KNN film 3A can be particularly enhanced when Cu among the above metal elements is added to the KNN film 3A.
  • a conventional ultrasonic sensor In a conventional ultrasonic sensor, a piezoelectric element having a piezoelectric film made of an oxide film such as a PZT film is used to transmit and receive ultrasonic waves.
  • a piezoelectric element having a piezoelectric film made of an oxide film such as a PZT film is used to transmit and receive ultrasonic waves.
  • such an ultrasonic sensor has a problem that although the penetration depth of ultrasonic waves is deep, the relative permittivity of the piezoelectric film is high and the resolution of the sensor is low (that is, the reception sensitivity is low).
  • the present embodiment has an output-side piezoelectric film 3A (KNN film 3A) composed of an oxide film and an input-side piezoelectric film 3B (AlN film 3B) composed of a nitride film.
  • the output unit including the KNN film 3A transmits ultrasonic waves
  • the input unit including the AlN film 3B receives ultrasonic waves.
  • At least two individual piezoelectric elements one for ultrasonic transmission having a piezoelectric film made of an oxide film and the other for receiving ultrasonic waves having a piezoelectric film made of a nitride film, are prepared, and at least two of these are prepared. It is also conceivable to configure an ultrasonic sensor by providing piezoelectric elements on the vibrating portions of the substrate on which the vibrating portions are formed. However, when manufacturing such an ultrasonic sensor, a process of attaching (adhering) the piezoelectric element onto the substrate is required. This can complicate the manufacturing process of ultrasonic sensors.
  • the distance between the adjacent piezoelectric elements can be made only about 1 mm, and the shortest is about 500 ⁇ m, so that there is a problem that it is difficult to increase the degree of integration of the plurality of piezoelectric elements.
  • a piezoelectric laminate 10 piezoelectric element 20, ultrasonic sensor 30
  • having an output unit including a KNN film 3A and an input unit including an AlN film 3B is subjected to a MEMS manufacturing process. It is possible to make them all at once.
  • the present embodiment it is possible to manufacture a high-performance ultrasonic sensor 30 having a deep ultrasonic penetration depth and high resolution without complicating the manufacturing process. Further, in the present embodiment, since the piezoelectric laminate 10 and the like are collectively manufactured in the MEMS manufacturing process, the output section and the input section can be brought close to each other as far as possible by the MEMS manufacturing technique. As described above, according to the present embodiment, it is possible to collectively manufacture a high-performance and compact ultrasonic sensor 30 in the process of manufacturing the MEMS.
  • the output side lower electrode film 2A (hereinafter, also referred to as lower electrode film 2A) and the input side lower electrode film 2B (hereinafter, also referred to as lower electrode film 2B) provided on the lower electrode film 2A. It may be the piezoelectric laminated body 40 configured by the present invention.
  • the lower electrode film 2A can have the same configuration as the lower electrode film 2 of the above-described embodiment.
  • the lower electrode film 2B can be formed by using at least one of hafnium (Hf) and molybdenum (Mo), for example.
  • the lower electrode film 2B is a single crystal film or a polycrystalline film.
  • the crystals constituting the lower electrode film 2B are preferably preferentially oriented in the (111) plane orientation with respect to the surface of the substrate 1. That is, it is preferable that the surface of the lower electrode film 2B (the surface serving as the base of the input-side piezoelectric film 3B) is mainly composed of an Hf (111) surface or a Mo (111) surface.
  • the lower electrode film 2B can be formed by using a method such as a sputtering method or a vapor deposition method.
  • the lower electrode film 2B can also be configured in the same manner as the lower electrode film 2 described above.
  • the lower electrode film 2B can also be formed by using, for example, Pt. Further, the lower electrode film 2B can also be formed by using, for example, Al, Cu, or silver (Ag).
  • the thickness of the lower electrode film 2B can be, for example, 100 nm or more and 400 nm or less.
  • the output unit is composed of a laminated portion including the lower electrode film 2A, the KNN film 3A, and the upper electrode film 4A.
  • the input portion is composed of a laminated portion including the lower electrode film 2B, the AlN film 3B, and the upper electrode film 4B.
  • the lower electrode film 2A located below the AlN film 3B may be included in the input unit.
  • the substrate 1 is prepared, and the adhesion layer 6 (Ti layer) and the lower electrode film 2A are formed in this order on one of the main surfaces of the substrate 1 by, for example, a sputtering method.
  • the adhesion layer 6 and the lower electrode film 2A the same conditions as those for forming the adhesion layer 6 and the lower electrode film 2 of the above-described embodiment can be set. As a result, the laminated body 40a as shown in FIG. 6A is obtained.
  • the KNN film 3A is formed according to the same procedure and conditions as those in the above-described embodiment, and the KNN film 3A is formed into a predetermined pattern.
  • the laminated body 40b as shown in FIG. 6B is obtained.
  • the protective film 12 is formed according to the same procedure and conditions as those in the above-described embodiment, and is formed into a predetermined pattern.
  • the laminated body 40c as shown in FIG. 6C is obtained.
  • the lower electrode film 2B is formed by, for example, a sputtering method. As a result, the laminated body 40d as shown in FIG. 6D is obtained. In this modification, as shown in FIG. 6D, the lower electrode film 2B is also formed on the protective film 12.
  • the following conditions are exemplified as the conditions for forming the lower electrode film 2B.
  • a metal target made of Hf or Mo can be used as the target used during sputtering film formation.
  • Film formation temperature (substrate temperature) 100 ° C. or higher and 500 ° C. or lower, preferably 200 ° C. or higher and 400 ° C. or lower
  • Discharge power 1000 W or higher and 1500 W or lower, preferably 1100 W or higher and 1300 W or lower
  • Film formation atmosphere Ar gas atmosphere Atmospheric pressure: 0.1 Pa More than 0.5 Pa or less, preferably 0.2 Pa or more and 0.4 Pa or less
  • Film formation time 3 minutes or more and 10 minutes or less, preferably 4 minutes or more and 7 minutes or less
  • the AlN film 3B is formed by the same procedure and conditions as those in the above-described embodiment.
  • the laminated body 40e as shown in FIG. 6 (e) is obtained.
  • the protective film 12 is removed according to the same procedure and conditions as in the above-described embodiment.
  • the KNN film 3A is exposed.
  • unnecessary lower electrode film 2B and AlN film 3B formed on the protective film 12 with the protective film 12 as a lift-off layer are also removed. That is, the lower electrode film 2B and the AlN film 3B are left only in the region where the lower electrode film 2B and the AlN film 3B should be formed.
  • a laminated body 40f as shown in FIG. 6 (f) is obtained.
  • the upper electrode films 4A and 4B are formed according to the same procedure and conditions as those in the above-described embodiment.
  • the piezoelectric laminate 40 as shown in FIG. 5 is obtained.
  • the lower electrode film 2A is provided only at a position on the substrate 1 facing the KNN film 3A, and the lower electrode film 2B is provided only at a position on the substrate 1 facing the AlN film 3B. It may be the piezoelectric laminated body 41.
  • the lower electrode film 2A can have the same configuration as the lower electrode film 2, and the lower electrode film 2B can have the same configuration as the above-described modification 1.
  • the output unit is composed of a laminated portion including the lower electrode film 2A, the KNN film 3A, and the upper electrode film 4A.
  • the input portion is composed of a laminated portion including the lower electrode film 2B, the AlN film 3B, and the upper electrode film 4B.
  • the ultrasonic sensor 30 can continuously measure the time from the start of voltage application by the voltage application unit 11a to the voltage detection by the voltage detection unit 11b. As described above, according to the present modification, it is possible to increase the degree of freedom in transmitting and receiving ultrasonic waves in the ultrasonic sensor 30.
  • the piezoelectric laminate 42 may be formed by providing the AlN film 3B on the KNN film 3A.
  • the output unit is composed of a laminated portion including the lower electrode film 2, the KNN film 3A, and the upper electrode film 4A.
  • the input portion is composed of a laminated portion including the lower electrode film 2, the AlN film 3B, and the upper electrode film 4B.
  • the KNN film 3A located below the AlN film 3B may be included in the input unit.
  • a substrate 1 is prepared, and an adhesion layer 6 (Ti layer) and a lower electrode film 2 are formed on one of the main surfaces of the substrate 1 by, for example, a sputtering method, according to the same procedure and conditions as those in the above-described embodiment. Films are formed in order. As a result, the laminated body 42a as shown in FIG. 9A is obtained.
  • the KNN film 3A is formed by the same procedure and conditions as those in the above-described embodiment.
  • the laminated body 42b as shown in FIG. 9B is obtained.
  • the protective film 12 is formed on the KNN film 3A according to the same procedure and conditions as those in the above-described embodiment.
  • the protective film 12 is formed into a predetermined pattern.
  • the protective film 12 is removed by etching or the like from the position on the substrate 1 on which the AlN film 3B is to be formed, that is, the position on the KNN film 3A.
  • the laminated body 42c as shown in FIG. 9C is obtained.
  • the AlN film 3B is formed according to the same procedure and conditions as those in the above-described embodiment.
  • the laminated body 42d as shown in FIG. 9D is obtained.
  • the protective film 12 is removed according to the same procedure and conditions as in the above-described embodiment.
  • a predetermined region of the KNN film 3A is exposed.
  • the unnecessary AlN film 3B formed on the protective film 12 with the protective film 12 as a lift-off layer is also removed. That is, the AlN film 3B is left only in the region where the AlN film 3B should be formed.
  • a laminated body 42e as shown in FIG. 9E is obtained.
  • the upper electrode films 4A and 4B are formed according to the same procedure and conditions as those in the above-described embodiment.
  • the piezoelectric laminate 42 as shown in FIG. 8 is obtained.
  • the lower electrode film 2 shown in FIG. 8 may function as the lower electrode film 2A, and a lower electrode film 2B having the same configuration as that of the first modification may be provided between the KNN film 3A and the AlN film 3B. ..
  • the protective film 12 is formed so as to cover the AlN film 3B by the same procedure and conditions as in the above-described embodiment. Then, the protective film 12 is formed into a predetermined pattern by removing the protective film 12 from the position on the substrate 1 (lower electrode film 2) on which the KNN film 3A is to be formed by etching or the like. Then, the KNN film 3A is formed by the same procedure and conditions as those in the above-described embodiment. When the formation of the KNN film 3A is completed, the protective film 12 is removed according to the same procedure and conditions as in the above-described embodiment. As a result, the AlN film 3B is exposed and the unnecessary KNN film 3A formed on the protective film 12 is removed. As described above, in this modification, the protective film 12 functions as a lift-off layer for removing unnecessary KNN film 3A.
  • the piezoelectric laminate 43 may be configured to include the upper electrode film 4B provided on the input side piezoelectric film 3B.
  • the output unit is composed of a laminated portion including the lower electrode film 2A, the KNN film 3A, and the upper electrode film 4A.
  • the lower electrode film 2B and the AlN film 3B located below the KNN film 3A may be included in the output unit.
  • the input portion is composed of a laminated portion including the lower electrode film 2B, the AlN film 3B, and the upper electrode film 4B.
  • the lower electrode film 2A is provided on the AlN film 3B, and the KNN film 3A is provided on the lower electrode film 2A.
  • the KNN film 3A is directly formed on the lower electrode film 2A, that is, on the Pt film, the crystals constituting the KNN film 3A are preferentially oriented in the (001) plane orientation. It will be easy.
  • the lower electrode film 2A may not be provided. That is, the lower electrode film 2B may be configured in the same manner as the lower electrode film 2 of the above-described embodiment, and the lower electrode film 2 may function as the output side lower electrode film 2A and also as the input side lower electrode film 2B. ..
  • a substrate on which a semiconductor circuit such as CMOS is formed can also be used.
  • the temperature is less than 500 ° C., more preferably 500 ° C. or higher than the film forming temperature of the AlN film 3B, from the viewpoint of suppressing the destruction of the semiconductor circuit such as CMOS. It is preferable to form a film under a temperature condition of less than ° C. By forming the KNN film 3A under a temperature condition of less than 500 ° C., it is possible to suppress the destruction of the semiconductor circuit formed on the substrate 1 at the time of forming the KNN film 3A.
  • the AlN film 3B is formed after the KNN film 3A is formed as in the above-described embodiment.
  • the inventors of the present application have confirmed that even when the KNN film 3A is formed at a low temperature of less than 500 ° C., the KNN film 3A having a piezoelectric constant of 100 pm / V or more can be obtained.
  • the output unit and the input unit may be in contact with each other. Further, since the output side vibrating portion and the input side vibrating portion are individually and independently formed, it is possible to prevent the output side vibrating portion and the input side vibrating portion from interfering with each other.
  • a high-performance ultrasonic sensor 30 can also be obtained by this modification, and such an ultrasonic sensor 30 can be collectively manufactured in the process of manufacturing the MEMS. However, it is preferable that the output unit and the input unit are not in contact with each other from the viewpoint of surely suppressing the interference between the output unit and the input unit and surely suppressing the deterioration of the sensor performance of the ultrasonic sensor 30. ..
  • the output-side piezoelectric film 3A contains lead zirconate titanate (PZT), that is, lead (Pb), zirconium (Zr), and titanium (Ti) in addition to the above KNN, and has a composition formula Pb (Zr 1-x Ti x). ) O 3 (0 ⁇ x ⁇ 1) can also be used to form a film.
  • PZT lead zirconate titanate
  • Pb lead
  • Zr zirconium
  • Ti titanium
  • the output-side piezoelectric film 3A contains bismuth sodium titanate (BNT), that is, bismuth (Bi), Na, and Ti, and has a composition formula (Bi 1-x Na x ) TiO 3 (0 ⁇ x ⁇ 1).
  • BNT bismuth sodium titanate
  • Ti bismuth
  • the output-side piezoelectric film 3A can also be formed by using bismuth ferrite (BFO), that is, a compound represented by the composition formula BiFeO 3.
  • BFO bismuth ferrite
  • the same effect as that of the above-described embodiment can be obtained. That is, a high-performance ultrasonic sensor 30 can be obtained, and such an ultrasonic sensor 30 can be collectively manufactured in the process of manufacturing MEMS.
  • the input-side piezoelectric film 3B is an AlN film has been described, but the present invention is not limited to this.
  • the input-side piezoelectric film 3B may be another nitride film exhibiting piezoelectric performance equivalent to that of the AlN film.
  • the output-side piezoelectric film 3A contains, in addition to the above-mentioned metal elements such as Cu and Mn, or in place of the above-mentioned metal elements, another metal element having an effect equivalent to that of the above-mentioned metal elements at a predetermined concentration. You may be.
  • the ultrasonic sensor 30 is obtained by using the piezoelectric laminate 10 and the piezoelectric element 20 has been described, but the present invention is not limited to this.
  • the piezoelectric laminate 10 and the piezoelectric element 20 may be used to obtain a piezoelectric device module used for applications such as a head for an inkjet printer, a MEMS mirror for a scanner, an angular velocity sensor, a pressure sensor, and an acceleration sensor.
  • Appendix 2 The piezoelectric laminate according to Appendix 1, preferably.
  • the ultrasonic output unit and the ultrasonic input unit are not in contact with each other.
  • the output-side piezoelectric film has a larger piezoelectric constant than the input-side piezoelectric film, and the input-side piezoelectric film has a lower relative permittivity than the output-side piezoelectric film.
  • the output-side piezoelectric film is formed by using any one of potassium niobate sodium, lead zirconate titanate, bismuth sodium titanate, and bismuth ferrite.
  • the output-side piezoelectric film is formed using potassium niobate sodium, and at least one of Cu and Mn is 0.2 at% or more with respect to the amount of niobium contained in the output-side piezoelectric film. It is contained at a concentration of 0 at% or less.
  • the input-side piezoelectric film is made of aluminum nitride.
  • the input-side piezoelectric film contains scandium (Sc), magnesium (Mg) and zirconium (Zr), or magnesium (Mg) and hafnium (Hf).
  • Appendix 8 The piezoelectric laminate according to any one of Appendix 1 to 7, preferably the piezoelectric laminate.
  • a semiconductor circuit is formed on the substrate.
  • An ultrasonic output unit composed of a laminated portion including the output side lower electrode film, the output side piezoelectric film, and the output side upper electrode film, the input side lower electrode film, the input side piezoelectric film, and the input.
  • a piezoelectric laminate having a step of producing a laminate in which an ultrasonic input portion composed of a laminate provided with a side upper electrode film and the substrate are arranged so as not to overlap each other when the substrate is viewed from above.
  • a manufacturing method is provided.
  • the protective film is a film made of silicon dioxide (SiO 2 ).
  • Appendix 11 The method according to Appendix 9 or 10, preferably.
  • the substrate a substrate on which a semiconductor circuit is formed is prepared.
  • the output-side piezoelectric film is formed under a temperature condition of less than 500 ° C.
  • the output side piezoelectric film is formed under a temperature condition equal to or higher than the film forming temperature of the input side piezoelectric film and less than 500 ° C. in the step of forming the input side piezoelectric film. Form a film.
  • the piezoelectric laminate according to any one of Supplementary notes 1 to 8 and the piezoelectric laminate.
  • a voltage applying means connected between the output-side lower electrode film and the output-side upper electrode film, and A voltage detecting means connected between the input-side lower electrode film and the input-side upper electrode film is provided.
  • the output side piezoelectric film is deformed, and the ultrasonic wave generated by the deformation of the output side piezoelectric film is generated.
  • the ultrasonic wave is transmitted from the ultrasonic output unit, the ultrasonic wave reflected by the test object is received by the ultrasonic input unit, and the input side piezoelectric film is deformed to cause the input side lower electrode film and the input side.
  • a piezoelectric element and an ultrasonic sensor that detect a voltage generated between the upper electrode film and the upper electrode film by the voltage detecting means.
  • Vibration units for example, a membrane structure and a cantilever structure
  • Vibration units are formed at the positions of the substrate corresponding to the ultrasonic output unit and the positions of the substrate corresponding to the ultrasonic input unit, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

基板と、基板上に設けられる出力側下部電極膜と、出力側下部電極膜上に設けられ、酸化膜である出力側圧電膜と、出力側圧電膜上に設けられる出力側上部電極膜と、基板上に設けられる入力側下部電極膜と、入力側下部電極膜上に設けられ、窒化膜である入力側圧電膜と、入力側圧電膜上に設けられる入力側上部電極膜と、を備え、出力側下部電極膜と出力側圧電膜と出力側上部電極膜とを備えた積層部により構成される超音波出力部と、入力側下部電極膜と入力側圧電膜と入力側上部電極膜とを備えた積層部により構成される超音波入力部と、が基板を上面から見たときに互いに重ならないように配置されている。

Description

圧電積層体、圧電積層体の製造方法、および圧電素子
 本発明は、圧電積層体、圧電積層体の製造方法、および圧電素子に関する。
 圧電体が、例えばp-MUT(Piezoelectric Micromachined Ultrasonic Transducer)の超音波センサ等に用いられることがある。圧電体の材料としては、例えば、チタン酸ジルコン酸鉛(PZT)系の強誘電体が広く用いられている(例えば特許文献1参照)。また、超音波センサ等に用いられる圧電材料として、ニオブ酸カリウムナトリウム(KNN)系の強誘電体、あるいは、窒化アルミニウム(AlN)が用いられることもある(例えば特許文献2参照)。近年、圧電体を有する超音波センサにおいて、さらに高性能な超音波センサが要求されている。
特開2019-146020号公報 特開2019-165307号公報
 本発明の目的は、高性能な超音波センサを提供可能な圧電積層体等を得ることにある。
 本発明の一態様によれば、
 基板と、
 前記基板上に設けられる出力側下部電極膜と、
 前記出力側下部電極膜上に設けられ、酸化膜である出力側圧電膜と、
 前記出力側圧電膜上に設けられる出力側上部電極膜と、
 前記基板上に設けられる入力側下部電極膜と、
 前記入力側下部電極膜上に設けられ、窒化膜である入力側圧電膜と、
 前記入力側圧電膜上に設けられる入力側上部電極膜と、を備え、
 前記出力側下部電極膜と前記出力側圧電膜と前記出力側上部電極膜とを備えた積層部により構成される超音波出力部と、前記入力側下部電極膜と前記入力側圧電膜と前記入力側上部電極膜とを備えた積層部により構成される超音波入力部と、が前記基板を上面から見たときに互いに重ならないように配置されている圧電積層体、圧電素子、および超音波センサが提供される。
 本発明の他の態様によれば、
 基板上に出力側下部電極膜および入力側下部電極膜を製膜する工程と、
 前記出力側下部電極膜上に、酸化膜である出力側圧電膜を製膜する工程と、
 前記出力側圧電膜を保護する保護膜を製膜する工程と、
 前記入力側下部電極膜上に、窒化膜である入力側圧電膜を製膜する工程と、
 前記保護膜をエッチングにより除去することで、前記出力側圧電膜を露出させる工程と、
 前記出力側圧電膜上に出力側上部電極膜を製膜し、前記入力側圧電膜上に入力側上部電極膜を製膜する工程と、を行うことで、
 前記出力側下部電極膜と前記出力側圧電膜と前記出力側上部電極膜とを備えた積層部により構成される超音波出力部と、前記入力側下部電極膜と前記入力側圧電膜と前記入力側上部電極膜とを備えた積層部により構成される超音波入力部と、が前記基板を上面から見たときに互いに重ならないように配置されている積層体を作製する工程を有する圧電積層体の製造方法が提供される。
 本発明によれば、高性能な超音波センサを提供可能な圧電積層体、圧電素子を得ることが可能となる。
本発明の一実施形態にかかる圧電積層体の断面構造の一例を示す図である。 本発明の一実施形態にかかる圧電積層体の断面構造の変形例を示す図である。 本発明の一実施形態にかかる超音波センサの概略構成の一例を示す図である。 (a)は出力側圧電膜を製膜する前の積層体10aの断面構造の一例を示す図であり、(b)は出力側圧電膜を製膜した後の積層体10bの断面構造の一例を示す図であり、(c)は出力側圧電膜を所定形状に成形した後の積層体10cの断面構造の一例を示す図であり、(d)は保護膜を製膜した後の積層体10dの断面構造の一例を示す図であり、(e)は入力側圧電膜を製膜した後の積層体10eの断面構造の一例を示す図であり、(f)は保護膜を除去した後の積層体10fの断面構造の一例を示す図である。 本発明の一実施形態の変形例にかかる圧電積層体の断面構造を示す図である。 (a)は出力側圧電膜を製膜する前の積層体40aの断面構造の一例を示す図であり、(b)は出力側圧電膜を製膜し、所定形状に成形した後の積層体40bの断面構造の一例を示す図であり、(c)は保護膜を製膜した後の積層体40cの断面構造の一例を示す図であり、(d)は入力側下部電極膜を製膜した後の積層体40dの断面構造の一例を示す図であり、(e)は入力側圧電膜を製膜した後の積層体40eの断面構造の一例を示す図であり、(f)は保護膜を除去した後の積層体40fの断面構造の一例を示す図である。 本発明の一実施形態の変形例にかかる圧電積層体の断面構造を示す図である。 本発明の一実施形態の変形例にかかる圧電積層体の断面構造を示す図である。 (a)は出力側圧電膜を製膜する前の積層体42aの断面構造の一例を示す図であり、(b)は出力側圧電膜を製膜した後の積層体42bの断面構造の一例を示す図であり、(c)は保護膜を製膜した後の積層体42cの断面構造の一例を示す図であり、(d)は入力側圧電膜を製膜した後の積層体42dの断面構造の一例を示す図であり、(e)は保護膜を除去した後の積層体42eの断面構造の一例を示す図である。 本発明の一実施形態の変形例にかかる圧電積層体の断面構造を示す図である。
<本発明の一実施形態>
 以下、本発明の一実施形態について、図1~図4を参照しながら説明する。
(1)圧電積層体の構成
 図1に示すように、本実施形態にかかる圧電膜を有する積層体(積層基板)10(以下、圧電積層体10とも称する)は、基板1と、基板1上に設けられた(製膜された)下部電極膜2と、下部電極膜2上に設けられた(製膜された)出力側圧電膜3Aと、出力側圧電膜3A上に設けられた(製膜された)出力側上部電極膜4Aと、下部電極膜2上に設けられた(製膜された)入力側圧電膜3Bと、入力側圧電膜3B上に設けられた(製膜された)入力側上部電極膜4Bと、を備えて構成されている。なお、本実施形態では、下部電極膜2が、出力側下部電極膜2Aとして機能するとともに入力側下部電極膜2Bとしても機能する。
 基板1としては、熱酸化膜またはCVD(Chemical Vapor Deposition)酸化膜等の表面酸化膜(SiO膜)1bが形成された単結晶シリコン(Si)基板1a、すなわち、表面酸化膜を有するSi基板を好適に用いることができる。また、基板1としては、図2に示すように、その表面にSiO以外の絶縁性材料により形成された絶縁膜1dを有するSi基板1aを用いることもできる。また、基板1としては、表面にSi(100)面またはSi(111)面等が露出したSi基板1a、すなわち、表面酸化膜1bまたは絶縁膜1dを有さないSi基板を用いることもできる。また、基板1としては、SOI(Silicon On Insulator)基板、石英ガラス(SiO)基板、ガリウム砒素(GaAs)基板、サファイア(Al)基板、ステンレス(SUS)等の金属材料により形成された金属基板を用いることもできる。単結晶Si基板1aの厚さは例えば300μm以上1000μm以下とすることができ、表面酸化膜1bの厚さは例えば1nm以上4000nm以下とすることができる。
 下部電極膜2は、例えば、白金(Pt)を用いて製膜することができる。下部電極膜2は、単結晶膜または多結晶膜(以下、これらをPt膜とも称する)となる。Pt膜を構成する結晶は、基板1の表面に対して(111)面方位に優先配向していることが好ましい。すなわち、下部電極膜(Pt膜)2の表面(出力側圧電膜3Aの下地となる面)は、主にPt(111)面により構成されていることが好ましい。Pt膜は、スパッタリング法、蒸着法等の手法を用いて製膜することができる。下部電極膜2は、Pt以外に、金(Au)、ルテニウム(Ru)、またはイリジウム(Ir)等の各種金属、これらを主成分とする合金、ルテニウム酸ストロンチウム(SrRuO、略称:SRO)またはニッケル酸ランタン(LaNiO、略称:LNO)等の金属酸化物等を用いて製膜することもできる。また、下部電極膜2は、上記各種金属または金属酸化物等を用いて製膜した単層膜であってもよく、あるいは、Pt膜とPt膜上に設けられたLNOからなる膜との積層体や、Pt膜とPt膜上に設けられたSROからなる膜との積層体等であってもよい。下部電極膜2の厚さは例えば100nm以上400nm以下とすることができる。
 基板1と下部電極膜2との間には、これらの密着性を高めるため、例えば、チタン(Ti)、タンタル(Ta)、酸化チタン(TiO)、ニッケル(Ni)、ルテニウム酸化物(RuO)、イリジウム酸化物(IrO)等を主成分とする密着層6が設けられていてもよい。密着層6は、スパッタリング法、蒸着法等の手法を用いて製膜することができる。密着層6の厚さは例えば1nm以上200nm以下とすることができる。
 出力側圧電膜3Aは、酸素(O)を含み窒素(N)を含まない膜、すなわち酸化膜で構成されている。なお、ここでいう「Nを含まない膜」とは、Nを全く含まない膜の他、不可避的不純物として微量のNを含む膜も含むものとする。出力側圧電膜3Aは、圧電定数が高い膜であることが好ましい。これにより、後述の電圧印加部11aにより所定の電圧が印加された際に出力側圧電膜3Aを大きく変形させ、後述の出力側振動部を大きく振動させることが可能となる。その結果、後述の超音波出力部から送信される超音波の強度を高めることが可能となり、被験対象物に対する超音波の振動深さ(深度)を深くすることが可能となる。出力側圧電膜3Aの圧電定数は例えば100pm/V以上、好ましくは170pm/V以上とすることができる。なお、出力側圧電膜3Aの圧電定数の上限は特に限定されないが、現在の技術では、その上限は200pm/V程度である。また、出力側圧電膜3Aは、入力側圧電膜3Bよりも高い圧電定数を有していることが好ましい。
 出力側圧電膜3Aは、例えば、ニオブ酸カリウムナトリウム(KNN)、すなわち、カリウム(K)、ナトリウム(Na)、ニオブ(Nb)を含み、組成式(K1-xNaNbOで表されるアルカリニオブ酸化物を用いて製膜することができる。上述の組成式中の係数x[=Na/(K+Na)]は、0<x<1の範囲内の大きさとする。好ましくは、上述の組成式中の係数xは0<x<1の範囲内の大きさとし、係数y[=(K+Na)/Nb]は、0.7≦y≦1.50の範囲内の大きさとする。出力側圧電膜3Aは、KNNの多結晶膜(以下、KNN膜3Aとも称する)となる。KNNの結晶構造は、ペロブスカイト構造となる。KNN膜3Aは、スパッタリング法、PLD(Pulsed Laser Deposition)法、ゾルゲル法等の手法を用いて製膜することができる。KNN膜3Aの厚さは例えば0.5μm以上5μm以下とすることができる。
 KNN膜3Aを構成する結晶は、基板1の表面(基板1が例えば表面酸化膜1bまたは絶縁膜1d等を有するSi基板1aである場合はSi基板1aの表面、以下同様)に対して(001)面方位に優先配向していることが好ましい。すなわち、KNN膜3Aの表面(出力側上部電極膜4Aの下地となる面)は、主にKNN(001)面方位により構成されていることが好ましい。基板1の表面に対して(111)面方位に優先配向させたPt膜上にKNN膜3Aを直接製膜することで、KNN膜3Aを構成する結晶を、基板1の表面に対して(001)面方位に優先配向させることが容易となる。例えば、KNN膜3Aを構成する結晶群のうち80%以上の結晶を基板1の表面に対して(001)面方位に配向させ、KNN膜3Aの表面のうち80%以上の領域をKNN(001)面とすることが容易となる。
 KNN膜3Aを構成する結晶群のうち半数以上の結晶が柱状構造を有していることが好ましい。また、KNN膜3Aを構成する結晶同士の境界、すなわちKNN膜3Aに存在する結晶粒界は、KNN膜3Aの厚さ方向に貫いていることが好ましい。例えば、KNN膜3Aでは、その厚さ方向に貫く結晶粒界が、KNN膜3Aの厚さ方向に貫いていない結晶粒界(例えば基板1の平面方向に平行な結晶粒界)よりも多いことが好ましい。
 KNN膜3Aは、銅(Cu)、マンガン(Mn)、鉄(Fe)、およびバナジウム(V)からなる群より選択される少なくとも1つの金属元素(以下、単に「金属元素」とも称する)を含んでいることが好ましい。KNN膜3Aは、CuおよびMnのうち少なくともいずれかを含んでいることがより好ましい。CuおよびMnのうち少なくともいずれかを含むとは、Cuのみを含み場合、Mnのみを含む場合、CuおよびMnの両方を含む場合がある。
 KNN膜3Aは、上記金属元素を、KNN膜3A中のニオブ(Nb)の量に対して例えば0.2at%以上2.0at%以下の範囲内の濃度で含むことが好ましい。すなわち、KNN膜3A中の上記金属元素の濃度は例えば0.2at%以上2.0at%以下であることが好ましい。なお、KNN膜3A中に、Cu、Mn、Fe、およびVのうち複数種類の金属元素が含まれている場合の金属元素の濃度は、複数種類の金属元素の合計濃度となる。
 KNN膜3A中の金属元素の濃度が0.2at%以上であることで、KNN膜3Aの絶縁性(リーク耐性)を向上させつつ、フッ素系エッチング液に対する耐性(エッチング耐性)を向上させることが可能となる。KNN膜3Aの絶縁性が向上することで、後述の電圧印加部11aにより、より高い電圧を印加することができるようになる。結果として、KNN膜3Aの変形量をより大きくすることが可能となる。KNN膜3Aのエッチング耐性が向上することで、すなわち、KNN膜3Aがエッチングされにくいことで、圧電積層体10の作製プロセスで、KNN膜3Aの圧電性能や品質が低下することを抑制することができる。
 KNN膜3A中の金属元素の濃度が2.0at%以下であることで、KNN膜3Aの比誘電率を、超音波発生用の振動子等の用途に好適な大きさとすることができ、後述するように超音波発生用の振動子に適用された際の消費電力の増加等を抑制することが可能となる。
 KNN膜3Aは、K、Na、Nb、および上記金属元素以外の副次的な成分を、上記金属元素を所定の範囲内で添加することで得られる効果を損なわない範囲内、例えば5at%以下の範囲内(副次的な成分を複数種類含む場合は、その合計濃度が5at%以下となる範囲内)で含んでいてもよい。副次的な成分としては、リチウム(Li)、Ta、アンチモン(Sb)等が例示される。
 出力側上部電極膜4A(以下、上部電極膜4Aとも称する)は、例えば、Pt、Au、アルミニウム(Al)、Cu等の各種金属またはこれらの合金を用いて製膜することができる。上部電極膜4Aは、スパッタリング法、蒸着法、メッキ法、金属ペースト法等の手法を用いて製膜することができる。上部電極膜4Aは、下部電極膜2AのようにKNN膜3Aの結晶構造に大きな影響を与えるものではない。そのため、上部電極膜4Aの材料、結晶構造、製膜手法は特に限定されない。なお、KNN膜3Aと上部電極膜4Aとの間には、これらの密着性を高めるため、例えば、Ti、Ta、TiO、Ni、RuO、IrO等を主成分とする密着層が設けられていてもよい。上部電極膜4Aの厚さは例えば10nm以上5000nm以下とすることができ、密着層を設ける場合には密着層の厚さは例えば1nm以上200nm以下とすることができる。
 入力側圧電膜3Bは、窒素(N)を含み酸素(O)を含まない膜、すなわち窒化膜で構成されている。なお、ここでいう「Oを含まない膜」とは、Oを全く含まない膜の他、不可避的不純物として微量のOを含む膜も含まれるものとする。入力側圧電膜3Bは比誘電率が低い膜であることが好ましい。これにより、超音波の受信感度を高めることが可能となる。具体的には、後述の入力側振動部の振動が小さい場合であっても、入力側圧電膜3Bを変形させ、その変形により電圧を発生させることが可能となる。入力側圧電膜3Bの比誘電率は例えば25以下、好ましくは15以下とすることができる。なお、入力側圧電膜3Bの比誘電率の下限は特に限定されないが、現在の技術では、その下限は8程度である。また、入力側圧電膜3Bは、出力側圧電膜3Aよりも低い比誘電率を有していることが好ましい。
 入力側圧電膜3Bは、例えば、アルミニウム(Al)を含む窒化物、すなわち、窒化アルミニウム(AlN)を用いて製膜することができる。入力側圧電膜3Bは、AlNの多結晶膜(以下、AlN膜3Bとも称する)となる。AlN膜3Bは、スパッタリング法、PLD(Pulsed Laser Deposition)法、MOCVD(Metal Organic Chemical Vapor Deposition)法、HVPE(Hydride Vapor Phase Epitaxy)法等の手法を用いて製膜することができる。AlN膜3Bの厚さは例えば0.3μm以上5μm以下とすることができる。AlN膜3Bの厚さは、上記範囲内で、できるだけ厚いことが好ましく、これにより、超音波の受信感度を高めることが可能となる。
 AlN膜3Bを構成する結晶は、基板1の表面に対して(001)面方位に優先配向していることが好ましい。すなわち、AlN膜3Bの表面(入力側上部電極膜4Bの下地となる面)は、主にAlN(001)面により構成されていることが好ましい。基板1の表面に対して(111)面方位に優先配向させた下部電極膜2B上にAlN膜3Bを直接製膜することで、AlN膜3Bを構成する結晶を、基板1の表面に対して(001)面方位に優先配向させることが容易となる。例えば、AlN膜3Bを構成する結晶群のうち80%以上の結晶を基板1の表面に対して(001)面方位に配向させ、AlN膜3Bの表面のうち80%以上の領域をAlN(001)面とすることが容易となる。
 AlN膜3Bを構成する結晶群のうち半数以上の結晶が柱状構造を有していることが好ましい。また、AlN膜3Bを構成する結晶同士の境界、すなわちAlN膜3Bに存在する結晶粒界は、AlN膜3Bの厚さ方向に貫いていることが好ましい。例えば、AlN膜3Bでは、その厚さ方向に貫く結晶粒界が、AlN膜3Bの厚さ方向に貫いていない結晶粒界(例えば基板1の平面方向に平行な結晶粒界)よりも多いことが好ましい。
 AlN膜3Bは、スカンジウム(Sc)を含むAlN膜(Sc-AlN膜)であってもよく、マグネシウム(Mg)とジルコニウム(Zr)とを含むAlN膜(MgZr-AlN膜)であってもよく、Mgとハフニウム(Hf)とを含むAlN膜(MgHf-AlN膜)であってもよい。これにより、AlN膜3Bの圧電定数を向上させることができ、その結果、超音波の受信感度を確実に高めることが可能となる。
 入力側上部電極膜4B(以下、上部電極膜4Bとも称する)は、上述の上部電極膜4Aと同様の構成とすることができる。すなわち、上部電極膜4Bは、例えば、Pt、Au、Al、Cu等の各種金属またはこれらの合金を用いて製膜することができる。また、上部電極膜4Bは、モリブデン(Mo)、Ru等の各種金属またはこれらの合金を用いて製膜することもできる。例えば、上部電極膜4Bは、スパッタリング法、蒸着法、メッキ法、金属ペースト法等の手法を用いて製膜することができる。上部電極膜4Bは、下部電極膜2のようにAlN膜3Bの結晶構造に大きな影響を与えるものではない。そのため、上部電極膜4Bの材料、結晶構造、製膜手法は特に限定されない。なお、AlN膜3Bと上部電極膜4Bとの間には、これらの密着性を高めるため、例えば、Ti、Ta、TiO、Ni等を主成分とする密着層が設けられていてもよい。上部電極膜4Bの厚さは例えば10nm以上5000nm以下とすることができ、密着層を設ける場合には密着層の厚さは例えば1nm以上200nm以下とすることができる。
 下部電極膜2と、KNN膜3Aと、上部電極膜4Aとを備えた積層部により、超音波出力部(以下、「出力部」とも称する)が構成される。なお、密着層6や、基板1に形成される後述の出力側振動部等を出力部に含めて考えてもよい。出力部とは、超音波を発生させて送信(出力)する部分である。出力部は、下部電極膜2と上部電極膜4Aとの間に接続される後述の電圧印加部11aにより下部電極膜2と上部電極膜4Aとの間に電界(電圧)を印加することでKNN膜3Aが変形し、このKNN膜3Aの変形により出力側振動部が振動し、この出力側振動部の振動により生じた超音波を出力するように構成されている。
 下部電極膜2と、AlN膜3Bと、上部電極膜4Bとを備えた積層部により、超音波入力部(以下、「入力部」とも称する)が構成される。なお、密着層6や、基板1に形成される後述の入力側振動部等を入力部に含めて考えてもよい。入力部とは、出力部から出力されて被験対象物で反射した超音波を受信(入力)する部分である。入力部は、超音波を受信し、入力側振動部が振動することでAlN膜3Bが変形するように構成されている。このAlN膜3Bの変形により下部電極膜2と上部電極膜4Bとの間に電圧が発生する。
 出力部および入力部は、基板1(圧電積層体10)を上面から見たときに互いに重ならないように配置されている。これにより、出力部と入力部とが互いに干渉することを抑制できる。その結果、圧電積層体10を用いて作製される後述の超音波センサ30のセンシング精度を高めることができる。ここで、「基板1を上面から見たとき」とは、「KNN膜3A、AlN膜3B等が設けられた基板1の主面を垂直方向上方から見たとき」を意味する。なお、ここでいう「垂直方向」とは、出力部から送信される超音波の伝搬方向または入力部で受信する超音波の伝搬方向の少なくともいずれかと一致する方向である。
 出力部と入力部との間の距離dは、これらが互いに干渉しない(接触しない)距離であって、できるだけ短い距離であることが好ましい。すなわち、出力部および入力部は互いに接していないけれども、これらの間の距離dはできるだけ短い方が好ましい。例えば、出力部と入力部との間の距離(最長距離)dは500μm以下であることが好ましい。出力部と入力部とは、MEMS製造技術で可能な距離まで近づけられていることがより好ましい。これにより、後述の超音波センサ30を、高性能にしつつ、出力部および入力部の集積度を高めて小型にすることが可能となる。
(2)圧電素子、超音波センサの構成
 図3に、本実施形態にかかる超音波センサ30の概略構成図を示す。超音波センサ30は、1つの圧電素子20と、この圧電素子20に接続される電圧印加部11aおよび電圧検出部11bと、を少なくとも備えている。超音波センサ30の用途としては、p-MUT等が例示される。
 圧電素子20は、出力側圧電膜3Aおよび入力側圧電膜3Bを有する素子を意味し、上述の圧電積層体10を所定の形状に成形することで得られる。圧電積層体10を所定の形状に成形する際、例えば、出力部に対応する基板1の位置に出力側振動部を形成し、入力部に対応する基板1の位置に入力側振動部を形成する。圧電積層体10が有する基板1に例えばメンブレン構造やカンチレバー構造を形成することで、出力側振動部、入力側振動部を形成することができる。図3には、基板1にメンブレン構造が形成されている圧電素子20を例示している。
 出力側振動部および入力側振動部の共振周波数は同一であってもよく、異なっていてもよい。例えば、共振周波数に応じて、出力側振動部の幅を入力側振動部の幅よりも大きくする等、出力側振動部および入力側振動部の幅を、それぞれ異ならせてもよい。また例えば、共振周波数に応じて、出力部に対応する位置の基板1の厚さを入力部に対応する位置の基板1の厚さよりも厚くする等、出力側振動部および入力側振動部を構成する基板1の厚さをそれぞれ異ならせてもよい。
 電圧印加部11aは、下部電極膜2(出力側下部電極膜2A)と上部電極膜4Aとの間に電圧を印加するための手段であり、電圧検出部11bは、下部電極膜2(入力側下部電極膜2B)と上部電極膜4Bとの間に発生した電圧を検出するための手段である。電圧印加部11a、電圧検出部11bとしては、公知の種々の手段を用いることができる。
 電圧印加部11aを、圧電素子20の下部電極膜2と上部電極膜4Aとの間に接続することで、上述の出力部を超音波発生用の振動子として機能させることができる。電圧印加部11aにより下部電極膜2と上部電極膜4Aとの間に電圧を印加することで、KNN膜3Aを変形させることができる。この変形動作により、出力側振動部が振動し、この振動により超音波を発生させることができる。
 電圧検出部11bを、圧電素子20の下部電極膜2と上部電極膜4Bとの間に接続することで、入力部をセンサとして機能させることができる。入力部が超音波を受信し、入力側振動部が振動することでAlN膜3Bが変形すると、その変形によって下部電極膜2と上部電極膜4Bとの間に電圧が発生する。この電圧を電圧検出部11bによって検出することで、入力部が受信した超音波の大きさを測定することができる。
 超音波センサ30は、出力部から被験対象物に向かって超音波を送信し、被験対象物で反射した超音波を入力部で受信するように構成されている。したがって、例えば、電圧検出部11bにより検出される電圧の大きさを複数回検出し、電圧の変化を観察することで、被験対象物の有無の判定を行うことができる。また例えば、電圧印加部11aによる電圧印加開始から電圧検出部11bによる電圧検出までの時間を複数回測定し、この時間の変化を観察することで、被験対象物までの距離を知ることができる。
(3)圧電積層体、圧電素子、超音波センサの製造方法
 以下では、上述の圧電積層体10、圧電素子20、および超音波センサ30の製造方法について、図4(a)~(f)を参照しながら説明する。
(下部電極膜の製膜)
 まず、基板1を用意し、基板1のいずれかの主面上に、例えばスパッタリング法により密着層6(Ti層)および下部電極膜2(Pt膜)をこの順に製膜する。これにより、図4(a)に示すような積層体10aが得られる。なお、いずれかの主面上に、密着層6や下部電極膜2が予め製膜された基板1(すなわち積層体10a)を用意してもよい。
 密着層6を形成する際の条件としては、下記の条件が例示される。
温度(基板温度):100℃以上500℃以下、好ましくは200℃以上400℃以下
放電パワー:1000W以上1500W以下、好ましくは1100W以上1300W以下
雰囲気:アルゴン(Ar)ガス雰囲気
雰囲気圧力:0.1Pa以上0.5Pa以下、好ましくは0.2Pa以上0.4Pa以下
時間:30秒以上3分以下、好ましくは30秒以上2分以下
 下部電極膜2を製膜する際の条件としては、下記の条件が例示される。スパッタリング製膜時に用いるターゲットとしては、例えばPtからなる金属ターゲットを用いることができる。
製膜温度(基板温度):100℃以上500℃以下、好ましくは200℃以上400℃以下
放電パワー:1000W以上1500W以下、好ましくは1100W以上1300W以下
製膜雰囲気:Arガス雰囲気
雰囲気圧力:0.1Pa以上0.5Pa以下、好ましくは0.2Pa以上0.4Pa以下
製膜時間:3分以上10分以下、好ましくは4分以上7分以下
(出力側圧電膜の製膜)
 下部電極膜2の製膜が完了したら、積層体10a上(下部電極膜2上)にKNN膜3Aを例えばスパッタリング法により製膜する。KNN膜3Aの組成比は、例えばスパッタリング製膜時に用いるターゲット材の組成を制御することで調整可能である。ターゲット材は、KCO粉末、NaCO粉末、Nb粉末、Cu粉末(又はCuO粉末、CuO粉末)、MnO粉末等を混合させて焼成すること等により作製することができる。ターゲット材の組成は、KCO粉末、NaCO粉末、Nb粉末、Cu粉末(又はCuO粉末、CuO粉末)、MnO粉末等の混合比率を調整することで制御することができる。
 KNN膜3Aを製膜する際の条件としては、下記の条件が例示される。なお、製膜時間は製膜するKNN膜3Aの厚さに応じて適宜設定する。
製膜温度(基板温度):350℃超700℃以下、好ましくは550℃以上650℃以下
放電パワー:2000W以上2400W以下、好ましくは2100W以上2300W以下
製膜雰囲気:Arガス+酸素(O)ガスの混合ガス
雰囲気(酸素(O)含有雰囲気)雰囲気圧力:0.2Pa以上0.5Pa以下、好ましくは0.2Pa以上0.4Pa以下
ガスに対するArガスの分圧(Ar/O分圧比):30/1~20/1、好ましくは27/1~23/1
製膜速度:0.5μm/hr以上2μm/hr以下、好ましくは0.5μm/hr以上1.5μm/hr以下
 これにより、図4(b)に示すような積層体10bが得られる。また、上述の条件下でKNN膜3Aを製膜することにより、高品質なKNN膜3A、例えば圧電定数が100pm/V以上であるKNN膜3Aを製膜することができる。
 KNN膜3Aの製膜が完了したら、エッチング等によりKNN膜3Aを所定形状(所定パターン)に成形する。これにより、図4(c)に示すような積層体10cが得られる。
(保護膜の製膜)
 続いて、KNN膜3Aを保護する保護膜12を製膜する。保護膜12は、KNN膜3Aを保護する(覆う)ように設ける。
 保護膜12は、AlN膜3Bの製膜雰囲気(N含有雰囲気)において還元されることなく、すなわち劣化することなく、KNN膜3Aを保護することができる材料であって、例えばフッ素(F)を含有するエッチング液を用いたウェットエッチング等により容易に除去することができる材料を用いて製膜することができる。保護膜12は、例えば、酸化シリコン(SiO)を用いて製膜することができる。保護膜12は、CVD(Chemical Vapor Deposition)法、スパッタリング法、蒸着法等により製膜することができる。保護膜12の厚さは、KNN膜3Aの表面を連続的に覆うことができる厚さ、すなわち、保護膜12が連続膜となる厚さとすることができる。なお、以下では、「AlN膜3Bの製膜雰囲気」を、「N含有雰囲気」とも称する。
 保護膜12をプラズマCVD法により製膜する際の条件としては、下記の条件が例示される。
製膜温度(基板温度):200℃以上400℃以下、好ましくは300℃以上400℃以下、より好ましくは350℃
放電パワー:70W以上150W以下、好ましくは70W以上120W以下、より好ましくは100W
原料:テトラエトキシシラン(略称:TEOS)
製膜雰囲気:Oガス雰囲気
雰囲気圧力:50Pa以上100Pa以下、好ましくは60Pa以上70Pa以下、より好ましくは67Pa
 なお、製膜時間は、製膜する保護膜12の厚さに応じて適宜設定する。製膜時間は、例えば5分以上15分以下とすることができる。具体的には、厚さが400nmである保護膜12を製膜する場合、製膜時間は11分とすることができる。
 上述の条件下で保護膜12を製膜することにより、連続膜であってKNN膜3Aを覆う保護膜12を製膜することができる。保護膜12は、N含有雰囲気においてKNN膜3Aの還元を抑制する膜として作用し、KNN膜3Aを保護する。この保護作用により、AlN膜3Bの製膜時に、KNN膜3AがN含有雰囲気に曝されることを抑制できる。これにより、KNN膜3AがAlN膜3Bの製膜中にN元素により還元されて劣化すること、すなわち、N元素によりKNN膜3A中の酸素が取り去られ、KNN膜3Aが劣化することを抑制することが可能となる。結果として、KNN膜3Aの圧電性能や品質が変わる(例えば絶縁性が低下する)ことを抑制することが可能となる。
 保護膜12の製膜が完了したら、保護膜12を所定のパターンに成形する。例えば、AlN膜3Bを製膜することとなる基板1上の位置から保護膜12をエッチング等により除去する。これにより、図4(d)に示すような積層体10dが得られる。
(入力側圧電膜の製膜)
 続いて、AlN膜3Bを例えばスパッタリング法により製膜する。ターゲット材としては、例えば、Alからなる金属ターゲットを用いることができる。
 AlN膜3Bを製膜する際の条件としては、下記の条件が例示される。なお、製膜時間は製膜するAlN膜3Bの厚さに応じて適宜設定する。
製膜温度(基板温度):300℃以上350℃以下
放電パワー:600W以上900W以下、好ましくは700W以上800W以下
製膜雰囲気:Arガス+窒素(N)ガスの混合ガス雰囲気(N含有雰囲気)
雰囲気圧力:0.5Pa以上2.0Pa以下、好ましくは0.7Pa以上1.0Pa以下
ガスに対するArガスの分圧(Ar/N分圧比):1/10~1/2、好ましくは1/7~1/3、より好ましくは1/6~1/4
製膜速度:0.3μm/hr以上2μm/hr以下、好ましくは0.3μm/hr以上1μm/hr以下、より好ましくは0.3μm/hr以上0.5μm/hr以下
 なお、製膜雰囲気は、Arガスとアンモニア(NH)ガスとの混合ガス雰囲気であってもよい。
 これにより、図4(e)に示すような積層体10eが得られる。また、上述の条件下でAlN膜3Bを製膜することにより、高品質なAlN膜3B、例えば比誘電率が25以下であるAlN膜3Bを製膜することができる。なお、上述のように、KNN膜3Aは保護膜12で覆われていることから、KNN膜3AがN含有雰囲気に存在するN元素により還元されることは殆どない。
 AlN膜3Bの製膜が完了したら、例えばフッ素(F)を含有するエッチング液を用いたウェットエッチングにより、保護膜12を除去する。これにより、KNN膜3Aが露出する。また、保護膜12をリフトオフ層として保護膜12上に形成された不要なAlN膜3Bが除去される。すなわち、AlN膜3Bが製膜されるべき領域のみに、AlN膜3Bが残される。その結果、図4(f)に示すような積層体10fが得られる。なお、Fを含有するエッチング液としては、例えば、フッ化水素(HF)を4.32mol/L、フッ化アンモニウム(NHF)を10.67mol/Lの濃度で含むバッファードフッ酸(BHF)溶液を用いることができる。
(上部電極膜の製膜)
 そして、KNN膜3AおよびAlN膜3B上に、例えばスパッタリング法により上部電極膜4A,4BとしてのPt膜をそれぞれ製膜する。上部電極膜4A,4Bを製膜する際の条件は、上述の下部電極膜2を製膜する際の条件と同様の条件とすることができる。これにより、図1に示すような圧電積層体10が得られる。
 そして、この圧電積層体10をエッチング等により所定の形状に成形することで、図3に示すような圧電素子20が得られ、圧電素子20に電圧印加部11aまたは電圧検出部11bの少なくともいずれかを接続することで、超音波センサ30が得られる。
(4)本実施形態により得られる効果
 本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
 (a)圧電積層体10が出力側圧電膜3A(KNN膜3A)と入力側圧電膜3B(AlN膜3B)とを有しており、KNN膜3Aを備えた積層部により構成される出力部とAlN膜3Bを備えた積層部により構成される入力部とが、基板1を上面から見た際に互いに重なっていない。これにより、KNN膜3AとAlN膜3Bとを、それぞれ独立して駆動させることが可能となる。また、圧電積層体10では、出力側圧電膜3Aを圧電定数が比較的高い酸化膜(すなわちKNN膜3A)で構成し、入力側圧電膜3Bを比誘電率が比較的低い窒化膜(すなわちAlN膜3B)で構成している。このような圧電積層体10を用いることで、被験対象物に対する超音波の浸透深さが深く、かつ、分解能が高い(受信感度が高い)超音波センサ30を得ることが可能となる。すなわち、高性能な超音波センサ30を得ることが可能となる。
 (b)本実施形態によれば、出力部と入力部とを有する圧電積層体10、圧電積層体10を加工することで得られる圧電素子20、および圧電素子20を用いて作製される超音波センサ30を、MEMS製造のプロセスにおいて一括で形成することができる。すなわち、高性能な超音波センサ30を、製造プロセスの複雑化を招くことなく作製することが可能となる。
 (c)出力部と入力部とが互いに接していないことで、出力部と入力部とが互いに干渉することを抑制できる。例えば、出力側振動部の振動が入力側振動部に伝わることを抑制できる。これにより、超音波センサ30のセンシング精度を高めることができる。すなわち、超音波センサ30をより高性能にすることができる。
 (d)圧電積層体10では、出力部と入力部との間の距離が例えば500μm以下、好ましくは300μm以下である。好ましくは、出力部と入力部とは、MEMS製造技術で可能な距離まで近づけられている。これにより、超音波センサ30のセンシング精度を高めつつ、出力部および入力部の集積度を高めることができる。すなわち、高性能かつ小型な超音波センサ30を得ることができる。
 (e)KNN膜3Aを製膜した後であってAlN膜3Bを製膜する前に、KNN膜3Aを保護する保護膜12を設けることにより、AlN膜3Bの製膜中にKNN膜3AがN含有雰囲気に曝されることを抑制できる。これにより、KNN膜3Aが、N含有雰囲気中のN元素により還元されて劣化することを抑制でき、その結果、KNN膜3Aの圧電性能や品質が低下することを抑制できる。すなわち、高品質かつ高性能なKNN膜3Aを有するKNN膜3Aと、高品質かつ高性能なAlN膜3Bと、を備える圧電積層体10を得ることができる。例えば、高い圧電定数を有するKNN膜3Aと、低い比誘電率を有するAlN膜3Bと、を有する圧電積層体10を得ることができる。
 (f)KNN膜3AはCu、Mn、Fe、およびVからなる群より選択される少なくとも1つの金属元素を含んでいることから、例えばBHF溶液等のフッ素系エッチング液に対するKNN膜3Aのエッチング耐性を高めることができる。これにより、BHF溶液等を用いたウェットエッチングにより保護膜12を除去する際、KNN膜3Aがエッチングされることを防止することが可能となる。その結果、KNN膜3Aの圧電性能や品質の低下を確実に抑制することが可能となる。なお、KNN膜3Aのエッチング耐性を向上させる効果は、上記金属元素のうちCuをKNN膜3A中に添加した場合に特に高めることができることを本願発明者は確認済みである。
 ここで、参考までに、従来の超音波センサについて説明する。従来の超音波センサでは、PZT膜等の酸化膜からなる圧電膜を有する圧電素子を用い、超音波の送受信を行っている。しかしながら、このような超音波センサでは、超音波の浸透深さは深いものの、圧電膜の比誘電率が高く、センサの分解能が低い(すなわち、受信感度が低い)という課題がある。一方、従来の超音波センサにおいて、超音波センサの分解能を高くするために、AlN膜等の窒化膜からなる圧電膜を有する圧電素子を用い、超音波の送受信を行うことも考えられる。しかしながら、このような超音波センサでは、分解能は高いものの、圧電膜の圧電定数が低く、超音波の浸透深さが浅いという課題がある。このような課題に対し、本実施形態では、酸化膜で構成された出力側圧電膜3A(KNN膜3A)と、窒化膜で構成された入力側圧電膜3B(AlN膜3B)とを有し、KNN膜3Aを含む出力部で超音波の送信を行い、AlN膜3Bを含む入力部で超音波の受信を行うように構成されている。これにより、本実施形態によれば、超音波の浸透深さが深くかつ分解能が高い高性能な超音波センサ30等を得ることが可能となる。
 また、酸化膜からなる圧電膜を有する超音波送信用の素子と、窒化膜からなる圧電膜を有する超音波受信用の素子と、の少なくとも2つの個別の圧電素子を用意し、これら少なくとも2つの圧電素子を、振動部が形成された基板の振動部上にそれぞれ設けることで超音波センサを構成することも考えられる。しかしながら、このような超音波センサを作製する際、圧電素子を基板上に貼り付ける(接着する)プロセス等が必要となる。このため、超音波センサの製造プロセスが複雑になる場合がある。また、圧電素子を基板上に貼り付けるプロセスでは、隣接する圧電素子間の距離を1mm程度、最短でも500μm程度にしかできないため、複数の圧電素子の集積度を高めることが難しいという課題もある。これに対し、本実施形態によれば、KNN膜3Aを含む出力部と、AlN膜3Bを含む入力部とを有する圧電積層体10(圧電素子20、超音波センサ30)を、MEMS製造のプロセスにおいて一括で作製することが可能である。すなわち、本実施形態によれば、製造プロセスの複雑化を招くことなく、超音波の浸透深さが深くかつ分解能が高い高性能な超音波センサ30を作製することが可能である。また、本実施形態では、MEMS製造のプロセスにおいて一括で圧電積層体10等を作製することから、出力部と入力部とを、MEMS製造技術で可能な距離まで近づけることが可能となる。このように、本実施形態によれば、高性能かつ小型な超音波センサ30を、MEMS製造のプロセスにおいて一括で作製することが可能となる。
(5)変形例
 本実施形態は、以下の変形例のように変形することができる。なお、以下の変形例の説明において、上述の実施形態と同一の構成要素には、同一の符号を付し、その説明を省略する。
(変形例1)
 図5に示すように、出力側下部電極膜2A(以下、下部電極膜2Aとも称する)と、下部電極膜2A上に設けられた入力側下部電極膜2B(以下、下部電極膜2Bとも称する)とを備えて構成された圧電積層体40であってもよい。
 下部電極膜2Aは上述の実施形態の下部電極膜2と同様の構成とすることができる。
 下部電極膜2Bは、例えば、ハフニウム(Hf)またはモリブデン(Mo)の少なくともいずれかを用いて製膜することができる。下部電極膜2Bは、単結晶膜または多結晶膜となる。下部電極膜2Bを構成する結晶は、基板1の表面に対して(111)面方位に優先配向していることが好ましい。すなわち、下部電極膜2Bの表面(入力側圧電膜3Bの下地となる面)は、主にHf(111)面またはMo(111)面により構成されていることが好ましい。下部電極膜2Bは、スパッタリング法、蒸着法等の手法を用いて製膜することができる。下部電極膜2Bは、上述の下部電極膜2と同様に構成することもできる。下部電極膜2Bは例えばPtを用いて製膜することもできる。また、下部電極膜2Bは、例えばAl、Cu、または銀(Ag)を用いて製膜することもできる。下部電極膜2Bの厚さは例えば100nm以上400nm以下とすることができる。なお、図5には示していないが、下部電極膜2Aと下部電極膜2Bとの間には、これらの密着性を高めるため、上述の密着層6と同様の密着層が設けられていてもよい。
 本変形例では、下部電極膜2AとKNN膜3Aと上部電極膜4Aとを備えた積層部により出力部が構成される。また、下部電極膜2BとAlN膜3Bと上部電極膜4Bとを備えた積層部により入力部が構成される。なお、AlN膜3Bの下方に位置する下部電極膜2Aを入力部に含めて考えてもよい。
 図5に示す圧電積層体40の製造方法について、図6(a)~(f)を参照しながら説明する。
 まず、基板1を用意し、基板1のいずれかの主面上に、例えばスパッタリング法により密着層6(Ti層)および下部電極膜2Aをこの順に製膜する。密着層6、下部電極膜2Aを形成する際は、上述の実施形態の密着層6、下部電極膜2を形成する際の条件と同様の条件とすることができる。これにより、図6(a)に示すような積層体40aが得られる。
 続いて、KNN膜3Aを、上述の実施形態と同様の手順、条件により製膜し、KNN膜3Aを所定のパターンに成形する。これにより、図6(b)に示すような積層体40bが得られる。その後、保護膜12を、上述の実施形態と同様の手順、条件により製膜し、所定のパターンに成形する。これにより、図6(c)に示すような積層体40cが得られる。
 そして、下部電極膜2Bを例えばスパッタリング法により製膜する。これにより、図6(d)に示すような積層体40dが得られる。本変形例では、図6(d)に示すように、保護膜12上にも下部電極膜2Bが製膜されることとなる。
 下部電極膜2Bを製膜する際の条件としては、下記の条件が例示される。スパッタリング製膜時に用いるターゲットとしては、例えばHfまたはMoからなる金属ターゲットを用いることができる。
製膜温度(基板温度):100℃以上500℃以下、好ましくは200℃以上400℃以下
放電パワー:1000W以上1500W以下、好ましくは1100W以上1300W以下
製膜雰囲気:Arガス雰囲気
雰囲気圧力:0.1Pa以上0.5Pa以下、好ましくは0.2Pa以上0.4Pa以下
製膜時間:3分以上10分以下、好ましくは4分以上7分以下
 そして、AlN膜3Bを、上述の実施形態と同様の手順、条件により製膜する。これにより、図6(e)に示すような積層体40eが得られる。その後、上述の実施形態と同様の手順、条件により保護膜12を除去する。これにより、KNN膜3Aが露出する。また、保護膜12をリフトオフ層として保護膜12上に形成された不要な下部電極膜2BおよびAlN膜3Bも除去される。すなわち、下部電極膜2BおよびAlN膜3Bが製膜されるべき領域のみに、下部電極膜2BおよびAlN膜3Bが残される。その結果、図6(f)に示すような積層体40fが得られる。その後、上述の実施形態と同様の手順、条件により、上部電極膜4A,4Bを製膜する。これにより、図5に示すような圧電積層体40が得られる。
 その他の点は、上述の実施形態と同様の構成、製法とすることができる。本変形例によっても、上述の実施形態と同様の効果を得ることができる。すなわち、本変形例によっても、高性能な超音波センサ30を得ることができ、また、このような超音波センサ30をMEMS製造のプロセスにおいて一括で作製することができる。
(変形例2)
 図7に示すように、下部電極膜2AがKNN膜3Aに対向する基板1上の位置のみに設けられ、下部電極膜2BがAlN膜3Bに対向する基板1上の位置のみに設けられて構成された圧電積層体41であってもよい。下部電極膜2Aは下部電極膜2と同様の構成とすることができ、下部電極膜2Bは、上述の変形例1と同様の構成とすることができる。
 本変形例では、下部電極膜2AとKNN膜3Aと上部電極膜4Aとを備えた積層部により出力部が構成される。また、下部電極膜2BとAlN膜3Bと上部電極膜4Bとを備えた積層部により入力部が構成される。
 その他の点は、上述の実施形態や変形例と同様の構成とすることができる。本変形例によっても、上述の実施形態等と同様の効果を得ることができる。すなわち、本変形例によっても、高性能な超音波センサ30を得ることができ、また、このような超音波センサ30をMEMS製造のプロセスにおいて一括で作製することができる。
 また、本変形例によれば、出力部から被験対象物に向かって超音波を送信しつつ、被験対象物で反射した超音波を入力部で受信することも可能となる。これにより、例えば、超音波センサ30で電圧検出部11bにより検出される電圧の大きさを連続で検出することが可能となる。また例えば、超音波センサ30で電圧印加部11aによる電圧印加開始から電圧検出部11bによる電圧検出までの時間を連続で測定することが可能となる。このように、本変形例によれば、超音波センサ30における超音波の送受信の自由度を高めることも可能となる。
(変形例3)
 図8に示すように、AlN膜3BがKNN膜3A上に設けられて構成された圧電積層体42であってもよい。
 本変形例では、下部電極膜2とKNN膜3Aと上部電極膜4Aとを備えた積層部により出力部が構成される。また、下部電極膜2とAlN膜3Bと上部電極膜4Bとを備えた積層部により入力部が構成される。なお、AlN膜3Bの下方に位置するKNN膜3Aを入力部に含めて考えてもよい。
 図8に示す圧電積層体42の製造方法について、図9(a)~(e)を参照しながら説明する。
 まず、基板1を用意し、基板1のいずれかの主面上に、例えばスパッタリング法により密着層6(Ti層)および下部電極膜2を、上述の実施形態と同様の手順、条件により、この順に製膜する。これにより、図9(a)に示すような積層体42aが得られる。
 続いて、KNN膜3Aを、上述の実施形態と同様の手順、条件により製膜する。これにより、図9(b)に示すような積層体42bが得られる。その後、保護膜12を、上述の実施形態と同様の手順、条件によりKNN膜3A上に製膜する。そして、保護膜12を所定のパターンに成形する。例えば、AlN膜3Bを製膜することとなる基板1上の位置、すなわちKNN膜3A上の位置から保護膜12をエッチング等により除去する。これにより、図9(c)に示すような積層体42cが得られる。そして、AlN膜3Bを、上述の実施形態と同様の手順、条件により製膜する。これにより、図9(d)に示すような積層体42dが得られる。その後、上述の実施形態と同様の手順、条件により保護膜12を除去する。これにより、KNN膜3Aの所定領域が露出する。また、保護膜12をリフトオフ層として保護膜12上に形成された不要なAlN膜3Bも除去される。すなわち、AlN膜3Bが製膜されるべき領域のみにAlN膜3Bが残される。その結果、図9(e)に示すような積層体42eが得られる。その後、上述の実施形態と同様の手順、条件により、上部電極膜4A,4Bを製膜する。これにより、図8に示すような圧電積層体42が得られる。
 その他の点は、上述の実施形態や変形例と同様の構成とすることができる。本変形例によっても、上述の実施形態や変形例と同様の効果を得ることができる。すなわち、本変形例によっても、高性能な超音波センサ30を得ることができ、また、このような超音波センサ30をMEMS製造のプロセスにおいて一括で作製することができる。なお、本変形例のように、AlN膜3BがKNN膜3A上に設けられている場合であっても、入力部は入力側振動部の振動を感度よく検知できることを本願発明者等は確認済みである。
 本変形例は図8に示す態様に限定されない。例えば、図8に示す下部電極膜2を下部電極膜2Aとして機能させ、KNN膜3AとAlN膜3Bとの間に、変形例1と同様の構成の下部電極膜2Bが設けられていてもよい。
(変形例4)
 上述の実施形態では、KNN膜3Aを製膜した後に、AlN膜3Bを製膜する例について説明したが、このような態様に限定されない。すなわち、AlN膜3Bを製膜した後に、KNN膜3Aを製膜してもよい。
 本変形例では、AlN膜3Bを製膜した後KNN膜3Aを製膜する前に、AlN膜3Bを覆うように保護膜12を、上述の実施形態と同様の手順、条件により製膜する。そして、KNN膜3Aを製膜することとなる基板1(下部電極膜2)上の位置から保護膜12をエッチング等により除去する等、保護膜12を所定のパターンに成形する。それから、KNN膜3Aを上述の実施形態と同様の手順、条件により製膜する。KNN膜3Aの製膜が完了したら、上述の実施形態と同様の手順、条件により保護膜12を除去する。これにより、AlN膜3Bが露出するとともに、保護膜12上に形成された不要なKNN膜3Aが除去される。このように、本変形例では、保護膜12は、不要なKNN膜3Aを除去するリフトオフ層として機能する。
 その他の点は、上述の実施形態や変形例と同様の構成とすることができる。本変形例によっても、上述の実施形態等と同様の効果を得ることができる。すなわち、本変形例によっても、高性能な超音波センサ30を得ることができ、また、このような超音波センサ30をMEMS製造のプロセスにおいて一括で作製することができる。
(変形例5)
 図10に示すように、基板1と、基板1上に設けられた下部電極膜2Bと、下部電極膜2B上に設けられた入力側圧電膜(AlN膜)3Bと、入力側圧電膜3B上に設けられた出力側下部電極膜2Aと、出力側下部電極膜2A上に設けられた出力側圧電膜(KNN膜)3Aと、出力側圧電膜3A上に設けられた上部電極膜4Aと、入力側圧電膜3B上に設けられた上部電極膜4Bとを備えて構成された圧電積層体43であってもよい。
 本変形例では、下部電極膜2AとKNN膜3Aと上部電極膜4Aとを備えた積層部により出力部が構成される。なお、KNN膜3Aの下方に位置する下部電極膜2BおよびAlN膜3Bを出力部に含めて考えてもよい。また、下部電極膜2BとAlN膜3Bと上部電極膜4Bとを備えた積層部により入力部が構成される。
 その他の点は上述の実施形態や変形例と同様とすることができる。本変形例によっても、上述の実施形態や変形例と同様の効果を得ることができるすなわち、本変形例によっても、高性能な超音波センサ30を得ることができ、また、このような超音波センサ30をMEMS製造のプロセスにおいて一括で作製することができる。
 また、本変形例では、AlN膜3B上に下部電極膜2Aを設け、下部電極膜2A上にKNN膜3Aを設けている。これにより、本変形例においても、KNN膜3Aを、下部電極膜2A上、すなわちPt膜上に直接製膜することから、KNN膜3Aを構成する結晶を(001)面方位に優先配向させること容易となる。しかしながら、下部電極膜2Aは設けられていなくてもよい。すなわち、下部電極膜2Bを上述の実施形態の下部電極膜2と同様に構成し、下部電極膜2を出力側下部電極膜2Aとして機能させるとともに、入力側下部電極膜2Bとして機能させてもよい。
(変形例6)
 基板1として、CMOS等の半導体回路が形成された基板を用いることもできる。CMOS等の回路が形成された基板1上にKNN膜3Aを製膜する場合、CMOS等の半導体回路の破壊を抑制する観点から、500℃未満、より好ましくはAlN膜3Bの製膜温度以上500℃未満の温度条件下で製膜することが好ましい。KNN膜3Aを500℃未満の温度条件下で製膜することで、KNN膜3Aの製膜時における基板1に形成された半導体回路の破壊を抑制することが可能となる。KNN膜3AをAlN膜3Bの製膜温度以上の温度条件下で製膜することで、上述の実施形態等のように、KNN膜3Aを製膜した後にAlN膜3Bを製膜する場合であっても、KNN膜3AがAlN膜3Bの製膜雰囲気において還元されることを確実に抑制することが可能となる。なお、KNN膜3Aを500℃未満の低温で製膜した場合であっても、圧電定数が100pm/V以上であるKNN膜3Aを得ることができることを本願発明者等は確認済みである。
 その他の点は上述の実施形態や変形例と同様とすることができる。本変形例によっても、上述の実施形態等と同様の効果が得られる。すなわち、本変形例によっても、高性能な超音波センサ30を得ることができ、また、このような超音波センサ30をMEMS製造のプロセスにおいて一括で作製することができる。
(変形例7)
 出力部と入力部とは、互いに接していてもよい。また、出力側振動部と入力側振動部とがそれぞれ個別に独立して形成されていることで、出力側振動部と入力側振動部とが互いに干渉することを抑制することができる。本変形例によっても、高性能な超音波センサ30を得ることができ、また、このような超音波センサ30をMEMS製造のプロセスにおいて一括で作製することができる。ただし、出力部と入力部とが互いに干渉することを確実に抑制し、超音波センサ30のセンサ性能の低下を確実に抑制する観点から、出力部と入力部とは互いに接していない方が好ましい。
(変形例8)
 上述の実施形態では、AlN膜3BがAlNの多結晶膜である場合について説明したが、AlN膜3BはAlNの単結晶膜であってもよい。本変形例によっても、上述の実施形態や変形例等と同様の効果を得ることができる。
<他の実施形態>
 以上、本発明の実施形態を具体的に説明した。但し、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の実施形態や変形例では、出力側圧電膜3AがKNN膜である場合について説明したが、これに限定されない。出力側圧電膜3Aは、上記KNNの他、チタン酸ジルコン酸鉛(PZT)、すなわち、鉛(Pb)、ジルコニウム(Zr)、チタン(Ti)を含み、組成式Pb(Zr1-xTi)O(0<x<1)で表される化合物を用いて製膜することもできる。また、出力側圧電膜3Aは、チタン酸ビスマスナトリウム(BNT)、すなわち、ビスマス(Bi)、Na、Tiを含み、組成式(Bi1-xNa)TiO(0<x<1)で表される化合物を用いて製膜することもできる。また、出力側圧電膜3Aは、ビスマスフェライト(BFO)、すなわち、組成式BiFeOで表される化合物を用いて製膜することもできる。出力側圧電膜3AをPZT、BNT、BFOを用いて製膜した場合であっても、上述の実施形態等と同様の効果を得ることができる。すなわち、高性能な超音波センサ30を得ることができ、また、このような超音波センサ30をMEMS製造のプロセスにおいて一括で作製することができる。
 上述の実施形態や変形例では、入力側圧電膜3BがAlN膜である場合について説明したが、これに限定されない。入力側圧電膜3Bは、AlN膜と同等の圧電性能を示す他の窒化膜であってもよい。
 また、例えば出力側圧電膜3Aは、CuやMn等の上記金属元素に加えて、あるいは上記金属元素に代えて、上記金属元素と同等の効果を奏する他の金属元素を、所定の濃度で含んでいてもよい。
 上述の実施形態では、圧電積層体10、圧電素子20を用いて超音波センサ30を得る場合について説明したが、これに限定されない。圧電積層体10、圧電素子20を用いて、インクジェットプリンタ用のヘッド、スキャナー用のMEMSミラー、角速度センサ、圧カセンサ、加速度センサ等の用途に用いられる圧電デバイスモジュールを得てもよい。
<本発明の好ましい態様>
 以下、本発明の好ましい態様について付記する。
(付記1)
 本発明の一態様によれば、
 基板と、
 前記基板上に設けられる出力側下部電極膜と、
 前記出力側下部電極膜上に設けられ、酸化膜である出力側圧電膜と、
 前記出力側圧電膜上に設けられる出力側上部電極膜と、
 前記基板上に設けられる入力側下部電極膜と、
 前記入力側下部電極膜上に設けられ、窒化膜である入力側圧電膜と、
 前記入力側圧電膜上に設けられる入力側上部電極膜と、を備え、
 前記出力側下部電極膜と前記出力側圧電膜と前記出力側上部電極膜とを備えた積層部により構成される超音波出力部と、前記入力側下部電極膜と前記入力側圧電膜と前記入力側上部電極膜とを備えた積層部により構成される超音波入力部と、が前記基板を上面から見たときに互いに重ならないように配置されている圧電積層体が提供される。
(付記2)
 付記1に記載の圧電積層体であって、好ましくは、
 前記超音波出力部と前記超音波入力部とは互いに接していない。
(付記3)
 付記1または2に記載の圧電積層体であって、好ましくは、
 前記出力側圧電膜は前記入力側圧電膜よりも圧電定数が大きく、前記入力側圧電膜は前記出力側圧電膜よりも比誘電率が低い。
(付記4)
 付記1~3のいずれか1項に記載の圧電積層体であって、好ましくは、
 前記出力側圧電膜は、ニオブ酸カリウムナトリウム、チタン酸ジルコン酸鉛、チタン酸ビスマスナトリウム、またはビスマスフェライトのいずれかを用いて製膜されている。
(付記5)
 付記1~4のいずれか1項に記載の圧電積層体であって、好ましくは、
 前記出力側圧電膜は、ニオブ酸カリウムナトリウムを用いて製膜され、CuおよびMnのうち少なくともいずれかを、前記出力側圧電膜中に含まれるニオブの量に対して0.2at%以上2.0at%以下の濃度で含んでいる。
(付記6)
 付記1~5のいずれか1項に記載の圧電積層体であって、好ましくは、
 前記入力側圧電膜は、窒化アルミニウムを用いて製膜されている。
(付記7)
 付記6に記載の圧電積層体であって、好ましくは、
 前記入力側圧電膜は、スカンジウム(Sc)を含むか、マグネシウム(Mg)とジルコニウム(Zr)とを含むか、あるいはマグネシウム(Mg)とハフニウム(Hf)とを含む。
(付記8)
 付記1~7のいずれか1項に記載の圧電積層体であって、好ましくは、
 前記基板には、半導体回路が形成されている。
(付記9)
 本発明の他の態様によれば、
 基板上に出力側下部電極膜および入力側下部電極膜を製膜する工程と、
 前記出力側下部電極膜上に、酸化膜である出力側圧電膜を製膜する工程と、
 前記出力側圧電膜を保護する保護膜を製膜する工程と、
 前記入力側下部電極膜上に、窒化膜である入力側圧電膜を製膜する工程と、
 前記保護膜をエッチングにより除去することで、前記出力側圧電膜を露出させる工程と、
 前記出力側圧電膜上に出力側上部電極膜を製膜し、前記入力側圧電膜上に入力側上部電極膜を製膜する工程と、を行うことで、
 前記出力側下部電極膜と前記出力側圧電膜と前記出力側上部電極膜とを備えた積層部により構成される超音波出力部と、前記入力側下部電極膜と前記入力側圧電膜と前記入力側上部電極膜とを備えた積層部により構成される超音波入力部と、が前記基板を上面から見たときに互いに重ならないように配置された積層体を作製する工程を有する圧電積層体の製造方法が提供される。
(付記10)
 付記9に記載の方法であって、好ましくは、
 前記保護膜は、前記保護膜は、二酸化ケイ素(SiO)からなる膜である。
(付記11)
 付記9または10に記載の方法であって、好ましくは、
 前記基板として、半導体回路が形成された基板を用意し、
 前記出力側圧電膜を製膜する工程では、500℃未満の温度条件下で前記出力側圧電膜を製膜する。好ましくは、前記出力側圧電膜を製膜する工程では、前記入力側圧電膜を製膜する工程における前記入力側圧電膜の製膜温度以上500℃未満の温度条件下で前記出力側圧電膜を製膜する。
(付記12)
 本発明のさらに他の態様によれば、
 付記1~8のいずれか1項に記載の圧電積層体と、
 前記出力側下部電極膜と前記出力側上部電極膜との間に接続される電圧印加手段と、
 前記入力側下部電極膜と前記入力側上部電極膜との間に接続される電圧検出手段と、を備え、
 前記電圧印加手段により前記出力側下部電極膜と前記出力側上部電極膜との間に所定の電界を印加することで前記出力側圧電膜が変形し、前記出力側圧電膜の変形により生じた超音波が前記超音波出力部から送信され、被験対象物で反射した前記超音波を前記超音波入力部が受信し、前記入力側圧電膜が変形することで前記入力側下部電極膜と前記入力側上部電極膜との間に生じた電圧を前記電圧検出手段により検出する圧電素子、超音波センサが提供される。
(付記13)
 付記12に記載の素子であって、好ましくは、
 前記超音波出力部に対応する前記基板の位置および前記超音波入力部に対応する前記基板の位置には、振動部(例えばメンブレン構造、カンチレバー構造)がそれぞれ形成されている。
 1        基板
 2A       出力側下部電極膜
 2B       入力側下部電極膜
 3A       出力側圧電膜(KNN膜)
 3B       入力側圧電膜(AlN膜)
 4A       出力側上部電極膜
 4B       入力側上部電極膜
 10,40~43 圧電積層体

Claims (7)

  1.  基板と、
     前記基板上に設けられる出力側下部電極膜と、
     前記出力側下部電極膜上に設けられ、酸化膜である出力側圧電膜と、
     前記出力側圧電膜上に設けられる出力側上部電極膜と、
     前記基板上に設けられる入力側下部電極膜と、
     前記入力側下部電極膜上に設けられ、窒化膜である入力側圧電膜と、
     前記入力側圧電膜上に設けられる入力側上部電極膜と、を備え、
     前記出力側下部電極膜と前記出力側圧電膜と前記出力側上部電極膜とを備えた積層部により構成される超音波出力部と、前記入力側下部電極膜と前記入力側圧電膜と前記入力側上部電極膜とを備えた積層部により構成される超音波入力部と、が前記基板を上面から見たときに互いに重ならないように配置されている圧電積層体。
  2.  前記超音波出力部と前記超音波入力部とは互いに接していない請求項1に記載の圧電積層体。
  3.  前記出力側圧電膜は、ニオブ酸カリウムナトリウム、チタン酸ジルコン酸鉛、チタン酸ビスマスナトリウム、またはビスマスフェライトのいずれかを用いて製膜されている請求項1または2に記載の圧電積層体。
  4.  前記入力側圧電膜は、窒化アルミニウムを用いて製膜されている請求項1~3のいずれか1項に記載の圧電積層体。
  5.  基板上に出力側下部電極膜および入力側下部電極膜を製膜する工程と、
     前記出力側下部電極膜上に、酸化膜である出力側圧電膜を製膜する工程と、
     前記出力側圧電膜を保護する保護膜を製膜する工程と、
     前記入力側下部電極膜上に、窒化膜である入力側圧電膜を製膜する工程と、
     前記保護膜をエッチングにより除去することで、前記出力側圧電膜を露出させる工程と、
     前記出力側圧電膜上に出力側上部電極膜を製膜し、前記入力側圧電膜上に入力側上部電極膜を製膜する工程と、を行うことで、
     前記出力側下部電極膜と前記出力側圧電膜と前記出力側上部電極膜とを備えた積層部により構成される超音波出力部と、前記入力側下部電極膜と前記入力側圧電膜と前記入力側上部電極膜とを備えた積層部により構成される超音波入力部と、が前記基板を上面から見たときに互いに重ならないように配置された積層体を作製する工程を有する圧電積層体の製造方法。
  6.  前記保護膜は、二酸化ケイ素からなる膜、ニッケル酸ランタンからなる膜、またはルテニウム酸ストロンチウムからなる膜のいずれかである請求項5に記載の圧電積層体の製造方法。
  7.  請求項1~4のいずれか1項に記載の圧電積層体と、
     前記出力側下部電極膜と前記出力側上部電極膜との間に接続される電圧印加手段と、
     前記入力側下部電極膜と前記入力側上部電極膜との間に接続される電圧検出手段と、を備え、
     前記電圧印加手段により前記出力側下部電極膜と前記出力側上部電極膜との間に所定の電界を印加することで前記出力側圧電膜が変形し、前記出力側圧電膜の変形により生じた超音波が前記超音波出力部から送信され、被験対象物で反射した前記超音波を前記超音波入力部が受信し、前記入力側圧電膜が変形することで前記入力側下部電極膜と前記入力側上部電極膜との間に生じた電圧を前記電圧検出手段により検出する圧電素子。
PCT/JP2021/006769 2020-04-06 2021-02-24 圧電積層体、圧電積層体の製造方法、および圧電素子 WO2021205768A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21785614.5A EP4135344A4 (en) 2020-04-06 2021-02-24 PIEZOELECTRIC LAMINATE, MANUFACTURING METHOD FOR PIEZOELECTRIC LAMINATE, AND PIEZOELECTRIC ELEMENT
US17/917,055 US20230276711A2 (en) 2020-04-06 2021-02-24 Piezoelectric laminate, production method for piezoelectric laminate, and piezoelectric element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-068252 2020-04-06
JP2020068252A JP7568417B2 (ja) 2020-04-06 2020-04-06 圧電積層体の製造方法

Publications (1)

Publication Number Publication Date
WO2021205768A1 true WO2021205768A1 (ja) 2021-10-14

Family

ID=78022232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006769 WO2021205768A1 (ja) 2020-04-06 2021-02-24 圧電積層体、圧電積層体の製造方法、および圧電素子

Country Status (5)

Country Link
US (1) US20230276711A2 (ja)
EP (1) EP4135344A4 (ja)
JP (1) JP7568417B2 (ja)
TW (1) TW202139493A (ja)
WO (1) WO2021205768A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023147755A (ja) 2022-03-30 2023-10-13 沖電気工業株式会社 圧電体フィルム接合基板及びその製造方法
JP2023148096A (ja) * 2022-03-30 2023-10-13 沖電気工業株式会社 圧電膜集積デバイス、その製造方法、及び音響振動センサ
JP2023147983A (ja) 2022-03-30 2023-10-13 沖電気工業株式会社 圧電膜集積デバイス、その製造方法、及び音響振動センサ
CN117548319A (zh) * 2022-08-05 2024-02-13 天津大学 承载层设置有双pmut的微机械超声换能器结构及其制造方法
CN117548320A (zh) * 2022-08-05 2024-02-13 天津大学 基底同侧设置有双pmut的微机械超声换能器结构及其制造方法
CN117548321A (zh) * 2022-08-05 2024-02-13 天津大学 具有双承载层的微机械超声换能器结构及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175013A1 (ja) * 2015-04-30 2016-11-03 株式会社村田製作所 圧電デバイス、圧電トランスおよび圧電デバイスの製造方法
CN107194345A (zh) * 2017-05-18 2017-09-22 上海思立微电子科技有限公司 电子设备、超声波指纹识别装置及其制造方法
WO2018155276A1 (ja) * 2017-02-24 2018-08-30 京セラ株式会社 超音波センサ
JP2018170343A (ja) * 2017-03-29 2018-11-01 ローム株式会社 圧電素子およびその製造方法
JP2019146020A (ja) 2018-02-21 2019-08-29 セイコーエプソン株式会社 超音波センサー、超音波装置、及び超音波センサーの製造方法
JP2019165307A (ja) 2018-03-19 2019-09-26 京セラ株式会社 超音波センサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058978A1 (ja) 2017-09-21 2019-03-28 パナソニックIpマネジメント株式会社 圧電トランスデューサ及び圧電モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175013A1 (ja) * 2015-04-30 2016-11-03 株式会社村田製作所 圧電デバイス、圧電トランスおよび圧電デバイスの製造方法
WO2018155276A1 (ja) * 2017-02-24 2018-08-30 京セラ株式会社 超音波センサ
JP2018170343A (ja) * 2017-03-29 2018-11-01 ローム株式会社 圧電素子およびその製造方法
CN107194345A (zh) * 2017-05-18 2017-09-22 上海思立微电子科技有限公司 电子设备、超声波指纹识别装置及其制造方法
JP2019146020A (ja) 2018-02-21 2019-08-29 セイコーエプソン株式会社 超音波センサー、超音波装置、及び超音波センサーの製造方法
JP2019165307A (ja) 2018-03-19 2019-09-26 京セラ株式会社 超音波センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4135344A4

Also Published As

Publication number Publication date
EP4135344A4 (en) 2024-04-24
JP7568417B2 (ja) 2024-10-16
TW202139493A (zh) 2021-10-16
US20230142065A1 (en) 2023-05-11
JP2021166220A (ja) 2021-10-14
US20230276711A2 (en) 2023-08-31
EP4135344A1 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
WO2021205768A1 (ja) 圧電積層体、圧電積層体の製造方法、および圧電素子
US6972510B2 (en) Array of ultrasound transducers
JP4735840B2 (ja) 圧電体積層体、表面弾性波素子、薄膜圧電共振子および圧電アクチュエータ
CN102113145B (zh) 压电体薄膜及其制造方法、喷墨头、使用喷墨头形成图像的方法、角速度传感器、使用角速度传感器测定角速度的方法、压电发电元件以及使用了压电发电元件的发电方法
US20230115136A1 (en) Laminated substrate having piezoelectric film, element having piezoelectric film and method for manufacturing this laminated substrate
JP6413485B2 (ja) 圧電素子、圧電アクチュエータ、及び圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
CN105280804B (zh) 压电元件、压电致动器、压电传感器、硬盘驱动器、以及喷墨打印装置
US20230135208A1 (en) Piezoelectric laminate, piezoelectric element, and piezoelectric laminate manufacturing method
EP1503872B1 (en) Array of membrane ultrasound transducers
JP2017117981A (ja) 圧電素子、圧電モジュール、電子機器、及び圧電素子の製造方法
JP2020092322A (ja) 圧電膜およびその製造方法、圧電デバイス、共振器、フィルタ並びにマルチプレクサ
JP6478023B2 (ja) 圧電素子、圧電アクチュエーター装置、液体噴射ヘッド、液体噴射装置及び超音波測定装置
JP6934746B2 (ja) 圧電膜を有する積層基板、圧電膜を有する素子および圧電膜を有する積層基板の製造方法
JP7044600B2 (ja) 圧電積層体、圧電積層体の製造方法および圧電デバイス
JP2015204544A (ja) Mems素子、mems素子の製造方法、及び電子機器
JP7037892B2 (ja) 圧電膜を有する積層基板の製造方法、圧電膜を有する素子の製造方法および圧電膜を有する積層体
JP2021027132A (ja) 圧電積層体、圧電素子、および圧電積層体の製造方法
JP2004186436A (ja) 圧電/電歪膜型素子
JP7074512B2 (ja) 圧電積層体、圧電積層体の製造方法、圧電素子、およびスパッタリングターゲット材
TW202137590A (zh) 壓電膜、壓電積層體、壓電元件及壓電積層體的製造方法
WO2022172672A1 (ja) 圧電積層体、圧電素子および圧電積層体の製造方法
JP7320098B2 (ja) 圧電積層体、圧電積層体の製造方法および圧電デバイス
JP2021027134A (ja) 圧電積層体、圧電積層体の製造方法、および圧電素子
JP2021027133A (ja) 圧電積層体、圧電素子および圧電積層体の製造方法
JP2021002667A (ja) 圧電薄膜付き積層基板および圧電薄膜素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021785614

Country of ref document: EP

Effective date: 20221107