WO2021205569A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2021205569A1
WO2021205569A1 PCT/JP2020/015827 JP2020015827W WO2021205569A1 WO 2021205569 A1 WO2021205569 A1 WO 2021205569A1 JP 2020015827 W JP2020015827 W JP 2020015827W WO 2021205569 A1 WO2021205569 A1 WO 2021205569A1
Authority
WO
WIPO (PCT)
Prior art keywords
multicast
dci
pdsch
transmission
harq
Prior art date
Application number
PCT/JP2020/015827
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/015827 priority Critical patent/WO2021205569A1/ja
Priority to EP20930520.0A priority patent/EP4135396A4/en
Priority to JP2022513771A priority patent/JPWO2021205569A5/ja
Priority to CN202080101646.2A priority patent/CN115918146A/zh
Publication of WO2021205569A1 publication Critical patent/WO2021205569A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0046Code rate detection or code type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 3GPP Rel.15 or later, etc.
  • a future wireless communication system for example, NR
  • a plurality of user terminals (user terminal, User Equipment (UE)) communicate in an ultra-high density and high traffic environment.
  • UE User Equipment
  • the method of retransmitting HARQ-ACK corresponding to PDSCH using the multicast of the UE has not been sufficiently examined. If the method cannot be controlled appropriately, the system performance may be deteriorated such as a decrease in throughput.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately transmit HARQ-ACK corresponding to the multicast PDSCH.
  • the terminal receives a receiving unit that receives the initial transmission of the downlink (DL) data to be multicast, and a retransmission reception of the DL data that is multicast based on the decoding result of the DL data. It has a control unit for controlling.
  • DL downlink
  • HARQ-ACK corresponding to the multicast PDSCH can be appropriately transmitted.
  • FIG. 1 is a diagram showing an example of a procedure for retransmitting a multicast PDSCH.
  • FIG. 2 is a diagram showing another example of the procedure for retransmitting the multicast PDSCH.
  • 3A-3C are diagrams showing an example of resource instructions by DCI for the first-transit multicast PDSCH and the retransmission multicast PDSCH.
  • FIG. 4A is a diagram showing an example of a method for determining the HARQ feedback timing / HARQ-ACK transmission resource for the first-transit multicast PDSCH and the retransmission multicast PDSCH.
  • FIG. 5 is a diagram showing an example of a procedure for retransmitting a multicast PDSCH.
  • FIG. 6 is a diagram showing an example of a procedure for retransmitting a multicast PDSCH.
  • FIG. 7 is a diagram showing an example of the reception timing of the DCI that schedules the retransmission multicast PDSCH.
  • FIG. 8 is a diagram showing an example of the reception timing of the DCI that schedules the retransmission multicast PDSCH.
  • FIG. 9 is a diagram showing an example of repeated transmission of multicast PDSCH.
  • FIG. 10 is a diagram showing an example of repeated transmission of multicast PDSCH.
  • FIG. 11 is a diagram showing an example of repeated transmission of multicast PDSCH.
  • FIG. 12 is a diagram showing an example of HARQ-ACK transmission for repeated transmission of multicast PDSCH.
  • FIG. 13 is a diagram showing an example of HARQ-ACK transmission for repeated transmission of multicast PDSCH.
  • FIG. 14 is a diagram showing an example of upper layer parameter reference of the unicast DCI and the multicast DCI.
  • FIG. 15 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 16 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 17 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 18 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • reception processing for example, reception, demapping, reception, demapping, etc.
  • a signal / channel based on the transmission setting instruction state (Transmission Configuration Indication state (TCI state)).
  • TCI state Transmission Configuration Indication state
  • Controlling demodulation (at least one of decoding) and transmission processing eg, at least one of transmission, mapping, precoding, modulation, and coding) is being considered.
  • the TCI state may represent what applies to the downlink signal / channel.
  • the equivalent of the TCI state applied to the uplink signal / channel may be expressed as a spatial relation.
  • the TCI state is information related to signal / channel pseudo collocation (Quasi-Co-Location (QCL)), and may be called spatial reception parameters, spatial relation information, or the like.
  • the TCI state may be set in the UE on a channel-by-channel or signal-by-signal basis.
  • the TCI states are DL TCI state, UL TCI state, unified TCI state, default TCI state, spatial relationship, default spatial relationship, QCL, QCL relationship, QCL assumption, QCL type. May be read interchangeably with at least one of.
  • QCL is an index showing the statistical properties of signals / channels. For example, when one signal / channel and another signal / channel have a QCL relationship, Doppler shift, Doppler spread, and average delay are performed between these different signals / channels. ), Delay spread, and spatial parameter (for example, spatial Rx parameter) can be assumed to be the same (QCL for at least one of these). You may.
  • the spatial reception parameter may correspond to the received beam of the UE (for example, the received analog beam), or the beam may be specified based on the spatial QCL.
  • the QCL (or at least one element of the QCL) in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be specified for the QCL.
  • QCL types AD QCL types with different parameters (or parameter sets) that can be assumed to be the same may be provided, and the parameters (which may be referred to as QCL parameters) are shown below:
  • QCL Type A QCL-A
  • QCL-B Doppler shift and Doppler spread
  • QCL type C QCL-C
  • QCL-D Spatial reception parameter.
  • the UE may assume that a given control resource set (Control Resource Set (CORESET)), channel or reference signal has a specific QCL (eg, QCL type D) relationship with another CORESET, channel or reference signal.
  • QCL assumption QCL assumption
  • the UE may determine at least one of the transmission beam (Tx beam) and the reception beam (Rx beam) of the signal / channel based on the TCI state of the signal / channel or the QCL assumption.
  • the TCI state may be, for example, information about the QCL of the target channel (in other words, the reference signal (Reference Signal (RS)) for the channel) and another signal (for example, another RS). ..
  • the TCI state may be set (instructed) by higher layer signaling, physical layer signaling, or a combination thereof.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • the channels for which the TCI state or spatial relationship is set are, for example, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), and an uplink shared channel (Physical Uplink Shared). It may be at least one of a Channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCH Downlink Control Channel
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the RS having a QCL relationship with the channel is, for example, a synchronization signal block (Synchronization Signal Block (SSB)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a measurement reference signal (Sounding). It may be at least one of Reference Signal (SRS)), CSI-RS for tracking (also referred to as Tracking Reference Signal (TRS)), and reference signal for QCL detection (also referred to as QRS).
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • Sounding Sounding
  • SRS Reference Signal
  • TRS Tracking Reference Signal
  • QRS reference signal for QCL detection
  • the SSB is a signal block including at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS)), and a broadcast channel (Physical Broadcast Channel (PBCH)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the SSB may be referred to as an SS / PBCH block.
  • the information element of the TCI state (“TCI-state IE” of RRC) set by the upper layer signaling may include one or more QCL information (“QCL-Info”).
  • the QCL information may include at least one of information related to the RS having a QCL relationship (RS-related information) and information indicating the QCL type (QCL type information).
  • RS-related information includes RS index (for example, SSB index, non-zero power CSI-RS (Non-Zero-Power (NZP) CSI-RS) resource ID (Identifier)), cell index where RS is located, and RS position.
  • Information such as the index of the Bandwidth Part (BWP) to be used may be included.
  • both QCL type A RS and QCL type D RS, or only QCL type A RS can be set for the UE.
  • TRS When TRS is set as the RS of QCL type A, it is assumed that the same TRS is periodically transmitted over a long period of time, unlike the PDCCH or PDSCH demodulation reference signal (DeModulation Reference Signal (DMRS)). Will be done.
  • DMRS DeModulation Reference Signal
  • the UE can measure the TRS and calculate the average delay, delay spread, and so on.
  • a UE in which the TRS is set as the QCL type A RS in the TCI state of the PDCCH or PDSCH DMRS has the same parameters (average delay, delay spread, etc.) of the PDCCH or PDSCH DMRS and the TRS QCL type A. Since it can be assumed that there is, the PDCCH or PDSCH DMRS type A parameters (average delay, delay spread, etc.) can be obtained from the TRS measurement result.
  • the UE can perform more accurate channel estimation by using the measurement result of the TRS.
  • a UE set with a QCL type D RS can determine a UE reception beam (spatial domain reception filter, UE spatial domain reception filter) using the QCL type D RS.
  • a TCI-state QCL type X RS may mean an RS that has a QCL type X relationship with a channel / signal (DMRS), and this RS is called the TCI-state QCL type X QCL source. You may.
  • DMRS channel / signal
  • DL DCI (PDSCH) is set both when the TCI information in DCI (upper layer parameter TCI-PresentInDCI) is set to "enabled” and when the TCI information in DCI is not set.
  • TCI-PresentInDCI TCI information in DCI
  • Non-cross-carrier scheduling if the time offset between the receipt of the scheduled DCI) and the corresponding PDSCH (PDSCH scheduled by the DCI) is less than the threshold (timeDurationForQCL) (applicable condition, first condition).
  • the TCI state (default TCI state) of the PDSCH may be the TCI state of the lowest CORESET ID in the latest slot in the active DL BWP of the CC (of the specific UL signal).
  • the DSCH TCI state (default TCI state) may be the TCI state of the PDSCH's lowest TCI state ID in the active DL BWP of the scheduled CC.
  • At least one of the MAC CE for activation / deactivation related to PUCCH space and the MAC CE for activation / deactivation related to SRS space may not be used.
  • FR2 when both the spatial relationship for PUCCH and PL-RS are not set (applicable condition, second condition), the spatial relationship for PUCCH and the default assumption of PL-RS (default spatial relationship and default PL-RS) are set. Applies.
  • FR2 when both the spatial relationship for SRS (SRS resource for SRS or SRS resource corresponding to SRI in DCI format 0_1 for scheduling PUSCH) and PL-RS are not set (application condition, second condition), DCI Spatial relationships and PL-RS default assumptions (default spatial relationships and default PL-RS) apply to PUSCH and SRS scheduled in format 0_1.
  • the default spatial relationship and the default PL-RS may be the TCI state or QCL assumption of the CORESET having the lowest CORESET ID in the active DL BWP. If CORESET is not set in the active DL BWP on the CC, the default spatial relationship and the default PL-RS may be the active TCI state with the lowest ID of the PDSCH in the active DL BWP.
  • the spatial relationship of the PUSCH scheduled by DCI format 0_0 follows the spatial relationship of the PUCCH resource having the lowest PUCCH resource ID among the active spatial relationships of the PUCCH on the same CC.
  • the network needs to update the PUCCH spatial relationships on all SCells, even if the PUCCHs are not transmitted on the SCells.
  • PUCCH settings for PUSCH scheduled by DCI format 0_0 are not required. If there is no active PUCCH spatial relationship or no PUCCH resource on the active UL BWP in the CC for the PUSCH scheduled in DCI format 0_0 (applicable condition, second condition), the PUSCH has a default spatial relationship and The default PL-RS is applied.
  • the transmission of at least one of the signal and the channel (hereinafter referred to as a signal / channel) from the NW to the UE is basically unicast transmission.
  • the same downlink (DL) data signal / channel eg, downlink shared channel (PDSCH)
  • PDSCH downlink shared channel
  • the present inventors have received the downlink control information (DCI) that schedules the PDSCH using multicast of the UE, and the delivery confirmation information (for example, Hybrid Automatic Repeat reQuest) corresponding to the PDSCH using multicast.
  • DCI downlink control information
  • delivery confirmation information for example, Hybrid Automatic Repeat reQuest
  • HARQ-ACK ACKnowledgement
  • HARQ-ACK HARQ-ACK
  • ACK / NACK etc.
  • Multicast / broadcast may be set from the NW to a plurality of UEs.
  • the multicast / broadcast setting may be performed using higher layer signaling.
  • a UE configured for multicast / broadcast is blind-detected (received) in at least one of the downlink control channel (PDCCH) monitoring opportunity, search space, and control resource set (Control Resource Set (CORESET)) corresponding to the multicast / broadcast.
  • You may receive the PDSCH scheduled by the DCI (PDCCH).
  • the PDSCH may be referred to as a PDSCH using multicast.
  • the UE in which the multicast / broadcast is set may transmit HARQ-ACK / NACK for the PDSCH using the multicast by using the PUCCH or the PUSCH.
  • the HARQ-ACK / NACK may transmit 1-bit HARQ-ACK / NACK for each transport block (TB) / codeword (CW) of the PDSCH using multicast, or a plurality of TBs.
  • 1-bit HARQ-ACK / NACK may be transmitted for each / CW.
  • multicast may be read as broadcast (broadcast information). Further, the PDSCH using multicast may be read as a PDSCH common to a plurality of UEs, a common PDSCH, a shared PDSCH, a multicast PDSCH, a broadcast (notification) PDSCH, and the like.
  • a / B may mean at least one of A and B.
  • the HARQ-ACK transmission PUCCH / PUSCH resource corresponding to the multicast PDSCH may be simply referred to as a HARQ-ACK transmission resource.
  • each of the plurality of UEs may be referred to as each UE, or simply a UE.
  • a DCI format dedicated to multicast PDSCH may be newly specified.
  • the UE reports the UE capability information (UE Capability) regarding whether or not the DCI format dedicated to the multicast PDSCH is supported to the network (NW, for example, gNB). May be good.
  • NW for example, gNB
  • the combination of DCI size (payload size, number of bits) increases, the number of DCI blind detections performed by the UE increases, and the complexity of UE operation increases. Therefore, only the UE that supports the DCI format has an increase.
  • the DCI format may be monitored.
  • the multicast PDSCH may be read as a received occasion, an occasion, a downlink (DL) data, a data, a transport block (TB), a code word (CW), a PDSCH, a multicast PUSCH, a PUSCH, and the like.
  • DL downlink
  • TB transport block
  • CW code word
  • PDSCH multicast PUSCH
  • PUSCH PUSCH
  • Multiple DCIs may each schedule one or more multicast PDSCHs (reception occasions).
  • the same DL data may be transmitted to a plurality of UEs in each of one or more multicast PDSCHs.
  • each of the plurality of DCIs may be referred to as a UE-individual DCI.
  • One DCI using QCL # x may schedule DL data having QCL # x'for a plurality of UEs.
  • the DCI detected in the (corresponding) PDCCH monitoring occasion associated with a QCL may schedule DL data in the received occasion associated with that QCL.
  • PDCCH monitoring in a plurality of DCIs may follow at least one of the following PDCCH monitoring methods 1 to 3.
  • a plurality of DCIs may be transmitted (received) in the common search space or the group common search space.
  • the UE may select a PDCCH monitoring occasion corresponding to the QCL set / indicated for the PDCCH for receiving the DCI.
  • a common search space or a group common search space may be set for each of the plurality of QCLs.
  • the UE may select a search space corresponding to the QCL set / instructed for the PDCCH for receiving the DCI.
  • a common CORESET or a group common CORESET may be set for each of the plurality of QCLs.
  • the UE may select a search space corresponding to the QCL set / instructed for the PDCCH for receiving the DCI.
  • the UE detects DCI by monitoring the common search space or the group scheduling search space set as the group common search space.
  • the search space for group scheduling may differ depending on the QCL assumption.
  • the group scheduling search space may have different time domain resources (symbols, slots, etc.) depending on the QCL assumption.
  • the UE may assume that the same DL data is scheduled in each PDCCH monitoring occasion (DCI in each PDCCH monitoring occasion) in the group scheduling search space.
  • the UE may set the search space for group scheduling by higher layer signaling.
  • the UE-specific or dedicated DCI is a cyclic redundancy check (CRC) by a UE-specific wireless network temporary identifier (Radio Network Temporary Identifier (RNTI)) (for example, cell (C-) RNTI). It may be scrambled or CRC scrambled by a UE-common RNTI. The UE-specific DCI may also be CRC scrambled by a RNTI dedicated to multicast / broadcast schedules.
  • CRC cyclic redundancy check
  • RNTI Radio Network Temporary Identifier
  • One DCI for multiple UEs may schedule DL data for multiple UEs.
  • One DCI may schedule the same DL data in one or more multicast PDSCHs.
  • the one DCI may be referred to as a UE-common DCI.
  • DCI may be transmitted in the common search space or may be transmitted in the group common search space.
  • the PDCCH monitoring occasion for DCI may vary depending on the QCL used by the UE.
  • the UE may select a PDCCH monitoring occasion based on multiple QCL assumptions.
  • One DL data may be one code word (CW) or one transport block (TB).
  • the same DL data may have the same size (eg, transport block size (TBS)) or may have different sizes.
  • the base station does not transmit DL data at the same time using a plurality of beams.
  • the DCI common to a plurality of UEs may be CRC scrambled by a UE-specific RNTI (for example, C-RNTI), or may be CRC scrambled by a UE-common RNTI.
  • the UE-specific DCI may also be CRC scrambled by a RNTI dedicated to multicast / broadcast schedules.
  • the search space dedicated to the multicast / broadcast schedule may be a common search space or a group scheduling search space set as a group common search space.
  • the multicast PDSCH does not have to be retransmitted.
  • the NW does not have to retransmit the multicast PDSCH regardless of the success or failure of the reception processing (for example, demodulation, decoding) of the multicast PDSCH of the plurality of UEs.
  • the UE may perform the reception processing of the multicast PDSCH on the assumption that the multicast PDSCH will not be retransmitted.
  • the UE may assume that the value of the NDI field is a certain value (for example, 1), or may ignore the value of the NDI field. At this time, the UE may determine that the multicast PDSCH is the first transmission (first transmission) based on the certain value (for example, 1). Further, the UE may receive the multicast PDSCH regardless of the value of the NDI field (without using the value of the NDI field).
  • DCI Downlink Control Information
  • the NDI field may not be included in the scheduling DCI of the multicast PDSCH.
  • multiple UEs may receive a scheduling DCI for a multicast PDSCH that does not include an NDI field.
  • the NDI field does not have to exist in the DCI format dedicated to multicast PDSCH.
  • multiple UEs may receive a multicast PDSCH scheduled in a DCI format dedicated to multicast PDSCHs that does not include NDI fields.
  • the DCI scrambled by the RNTI dedicated to the multicast schedule does not have to include the NDI field.
  • the multicast PDSCH scheduling DCI is scrambled by an RNTI dedicated to the multicast schedule, multiple UEs may receive the multicast PDSCH scheduled by the DCI format that does not include the NDI field.
  • the DCI scrambled by the RNTI other than the RNTI dedicated to the multicast schedule may have a configuration including an NDI field or a configuration not including the NDI field.
  • the plurality of UEs do not have to transmit HARQ-ACK (at least one of ACK and NACK) to the multicast PDSCH.
  • the first embodiment it is possible to reduce the power consumption of the PUCCH / PUSCH resource for HARQ-ACK transmission and the UE in the situation where the multicast PDSCH is transmitted.
  • the multicast PDSCH may be retransmitted using multicast / broadcast.
  • the NW transmits one data via the multicast PDSCH and multicasts the one data to the failure of the reception process (for example, demodulation, decoding) of any of the multicast PDSCHs of the plurality of UEs. It may be resent using broadcast.
  • the UE may perform the reception processing of the multicast PDSCH on the assumption that the data transmitted by using the first-transit multicast PDSCH is retransmitted by using the multicast / broadcast.
  • the multicast PDSCH retransmitted using multicast / broadcast may be simply referred to as a retransmission multicast PDSCH.
  • the first multicast PDSCH may be read as the first multicast PDSCH, the first multicast PDSCH, and the like.
  • the retransmission multicast PDSCH may be read as a second multicast PDSCH.
  • the scheduling DCI of the first-transit multicast PDSCH may be referred to as the first DCI.
  • the scheduling DCI of the retransmission multicast PDSCH may be referred to as a second DCI.
  • the first DCI and the second DCI may be different DCIs from each other.
  • each of the first DCI and the second DCI may be a UE-individual DCI or a DCI common to a plurality of UEs.
  • the search space for monitoring the DCI of each UE may be a common search space or a UE-specific search space. Further, the search space for monitoring the DCI of each UE may be a search space dedicated to the multicast / broadcast schedule (or a control resource set (CORESET)).
  • CORESET control resource set
  • the search space for monitoring the DCI common to the UEs may be a common search space or a UE-specific search space. Further, the search space for monitoring the DCI common to the UEs may be a search space dedicated to the multicast / broadcast schedule (or a control resource set (CORESET)).
  • CORESET control resource set
  • the UE-individual DCI may be cyclic redundancy check (CRC) scrambled by the UE-specific RNTI (for example, cell (C-) RNTI), or may be CRC scrambled by the UE-common RNTI.
  • CRC cyclic redundancy check
  • the UE-specific DCI may also be CRC scrambled by a RNTI dedicated to multicast / broadcast schedules.
  • the UE-common DCI may be CRC scrambled by the UE-specific RNTI (for example, C-RNTI), or may be CRC scrambled by the UE-common RNTI.
  • the UE-common RNTI may be a newly defined RNTI.
  • the individual UE DCI may be CRC scrambled by the RNTI dedicated to the multicast / broadcast schedule.
  • Embodiment 2-1 a case where the retransmission multicast PDSCH is scheduled by the second DCI will be described.
  • the first DCI and the second DCI may be related.
  • the DCI format of the first DCI and the second DCI, the RNTI, the control channel element (Control Channel Element (CCE)) index / aggregation level of the PDCCH carrying the DCI, the search space / control resource set (Control Resource Set). (CORESET)) may be common.
  • the NDI fields of the first DCI and the second DCI may be limited to a certain value, respectively.
  • the value of the NDI field of the first DCI may be N (for example, 1).
  • the value of the NDI field of the second DCI may be M (for example, 0).
  • the value of the NDI field of the first DCI and the value of the NDI field of the second DCI may be different from each other.
  • FIG. 1 is a diagram showing an example of a multicast PDSCH retransmission procedure.
  • the plurality of UEs receive the multicast PDSCH1 scheduled by DCI1.
  • the multicast PDSCH1 is a PDSCH that carries one DL data (which may be simply referred to as data).
  • UE1 that succeeds in receiving the PDSCH1 transmits an acknowledgment (HARQ-ACK, or simply ACK) using PUCCH1, and UE2 that fails in receiving processing of the PDSCH receives an acknowledgment (HARQ-NACK, simply ACK).
  • simply NACK is transmitted using PUCCH2.
  • the UE receives the multicast-based PDSCH2 scheduled by DCI2.
  • the multicast PDSCH2 is a PDSCH that carries the same data as the data carried by the multicast PDSCH1.
  • DCI1 and DCI2 in FIG. 1 may be a DCI common to UEs or a DCI of individual UEs.
  • the HARQ-ACK transmission resource for the multicast PDSCH may be a HARQ-ACK transmission resource common to UEs, or may be a PUSCH resource.
  • the initial multicast PDSCH and the retransmission multicast PDSCH may be PDSCHs that carry the same DL data. Further, the repeated transmission of the multicast PDSCH may be a multicast PDSCH carrying the same DL data.
  • the UE that succeeded in receiving the multicast PDSCH (the UE that transmitted the ACK for the multicast PDSCH) does not have to be required to monitor the second DCI. Further, the UE that succeeds in the reception processing of the multicast PDSCH may not be requested to receive the retransmission multicast PDSCH, or may not transmit the HARQ-ACK information for the multicast PDSCH.
  • the UE does not have to transmit HARQ-ACK for the retransmission multicast PDSCH. Further, the UE may transmit an ACK for the retransmission multicast PDSCH regardless of the reception result of the retransmission multicast PDSCH. According to this, it is possible to avoid the HARQ-ACK reception error of NW.
  • the UE that failed in the reception processing of the multicast PDSCH may monitor the second DCI and receive the retransmission multicast PDSCH.
  • the UE may transmit ACK / NACK based on the reception result of the retransmission multicast PDSCH. Further, when the upper limit of the number of retransmissions of the multicast PDSCH specified / set in advance is reached, it is not necessary to transmit ACK / NACK to the multicast PDSCH.
  • the upper limit of the number of retransmissions of the multicast PDSCH may be specified in advance in the specifications, or may be set in the UE by higher layer signaling.
  • Embodiment 2-2 a case where the retransmission multicast PDSCH is scheduled by the DCI (first DCI) that schedules the initial multicast PDSCH will be described.
  • the DCI (first DCI) that schedules the first multicast PDSCH may schedule the retransmission multicast PDSCH.
  • the UE may receive the first-transit multicast PDSCH and the retransmission multicast PDSCH scheduled by one scheduling DCI. According to this, it is possible to reduce the overhead for receiving the scheduling DCI of the retransmission multicast PDSCH.
  • the UE may or may not transmit the HARQ-ACK information for the first-transit multicast PDSCH regardless of the reception result of the first-transmission multicast PDSCH.
  • the retransmission multicast PDSCH may be transmitted one or more times. Further, the upper limit value (maximum number) of the number of retransmissions of the multicast PDSCH may be specified in advance in the specifications, may be set in the UE by higher layer signaling, and reported to the NW in the UE capability information (UE Capability). It may be a value to be calculated.
  • the upper limit value (maximum number) of the number of retransmissions of the multicast PDSCH may be specified in advance in the specifications, may be set in the UE by higher layer signaling, and reported to the NW in the UE capability information (UE Capability). It may be a value to be calculated.
  • the value of the NDI field included in the first DCI may be a certain value (for example, 1). Further, when multicast is set for a plurality of UEs, the UE assumes that the value of the NDI field included in the first DCI is a certain value (for example, 1) (reading), and the multicast PDSCH You may receive. Further, the value of the NDI field included in the first DCI does not have to exist.
  • FIG. 2 is a diagram showing another example of the retransmission procedure of the multicast PDSCH.
  • the plurality of UEs receive the multicast PDSCH1 scheduled by DCI1.
  • the UE 1 that succeeds in receiving the PDSCH1 transmits an acknowledgment (HARQ-ACK, or simply ACK) using the PUCCH1
  • the UE 2 that fails in the receiving processing of the PDSCH receives an acknowledgment (HARQ-ACK, or simply ACK).
  • HARQ-NACK, or simply NACK is transmitted using PUCCH2, but ACK / NACK may not be transmitted.
  • the UE then receives the multicast-based PDSCH2 scheduled by DCI1.
  • the number of UEs, DCI, PDSCH, number of PUCCH resources, and time / frequency allocation position shown in FIG. 2 are merely examples, and are not limited to this example.
  • the DCI1 in FIG. 2 may be a DCI common to UEs or a DCI individual to each UE.
  • the HARQ-ACK transmission resource for the multicast PDSCH may be a HARQ-ACK transmission resource common to UEs, or may be a PUSCH resource.
  • the UE that has succeeded in receiving the multicast PDSCH may not be requested to receive the retransmission multicast PDSCH, or may not transmit the HARQ-ACK information for the multicast PDSCH.
  • the UE does not have to transmit HARQ-ACK for the retransmission multicast PDSCH. Further, the UE may transmit an ACK for the retransmission multicast PDSCH regardless of the reception result of the retransmission multicast PDSCH.
  • the UE that failed in the reception processing of the multicast PDSCH may receive the retransmission multicast PDSCH.
  • the UE may transmit ACK / NACK based on the reception result of the retransmission multicast PDSCH. Further, when the upper limit of the number of retransmissions of the multicast PDSCH specified / set in advance is reached, it is not necessary to transmit ACK / NACK to the multicast PDSCH.
  • the upper limit of the number of retransmissions of the multicast PDSCH may be specified in advance in the specifications, or may be set in the UE by higher layer signaling.
  • the UE may receive information about the resources of the retransmission multicast PDSCH included in the scheduling DCI of the initial multicast PDSCH.
  • the DCI field for issuing the resource instruction of the multicast PDSCH may be expanded.
  • the correspondence (table) with at least one of (FDRA)) is notified / specified to the UE, and the UE determines the resource of the initial send / retransmission multicast PDSCH based on the DCI code point included in the scheduling DCI. You may.
  • the correspondence (table) may be specified in advance in the specifications, or may be notified to the UE by higher layer signaling.
  • FIG. 3A is a diagram showing an example of resource instructions by DCI for the initial multicast PDSCH and the retransmission multicast PDSCH.
  • a table for determining the initial multicast PDSCH resource (DCI field 1) and a table for determining the retransmission multicast PDSCH resource (DCI field 2) are notified / set to the UE.
  • the UE receives the first-transit multicast PDSCH by using the PDSCH resource having a value corresponding to the first DCI code point notified by the scheduling DCI among the PDSCH resources shown in the DCI field 1.
  • the UE receives the retransmission multicast PDSCH by using the PDSCH resource having the value corresponding to the second DCI code point notified by the scheduling DCI among the PDSCH resources shown in the DCI field 2.
  • the value corresponding to each DCI code point may be associated with the TDRA / FDRA field of the multicast PDSCH.
  • each table shown in FIG. 3A is just an example, and the DCI code point and the value corresponding to the code point are not limited to this.
  • the DCI field for issuing the resource instruction of the multicast PDSCH does not have to be expanded.
  • the UE may receive the initial / retransmission multicast PDSCH using the resources of the initial multicast PDSCH and the retransmission multicast PDSCH corresponding to one DCI code point.
  • the correspondence (table) between the DCI code point and the TDRA / FDRA field of the multicast PDSCH, which is applied to the initial multicast PDSCH and the retransmission multicast PDSCH, is notified / defined to the UE, and the UE schedules.
  • the resources for the initial and retransmission multicast PDSCHs may be determined based on one DCI code point contained in the DCI. In this case, the time / frequency resources of the initial multicast PDSCH and the retransmission multicast PDSCH may be the same or different.
  • FIG. 3B is a diagram showing an example of resource instructions by DCI for the initial multicast PDSCH and the retransmission multicast PDSCH.
  • a table (DCI field 1) for determining the initial send and retransmission multicast PDSCH resources is notified / set to the UE.
  • the UE receives the initial multicast PDSCH and the retransmission multicast PDSCH by using the PDSCH resource having a value corresponding to the DCI code point notified by the scheduling DCI among the PDSCH resources shown in the DCI field 1.
  • the value corresponding to each DCI code point may be associated with the TDRA / FDRA field of the multicast PDSCH.
  • each table shown in FIG. 3B is just an example, and the DCI code point and the value corresponding to the code point are not limited to this.
  • the UE when scheduling a retransmission multicast PDSCH using the scheduling DCI of the first multicast PDSCH, the UE resends based on the offset value for the time / frequency resource of the first multicast PDSCH notified (set) by the scheduling DCI.
  • the time / frequency resources of the multicast PDSCH may be determined.
  • the offset value may be specified in advance in the specifications, or may be notified to the UE by higher layer signaling.
  • FIG. 3C is a diagram showing an example of resource instructions by DCI for the initial multicast PDSCH and the retransmission multicast PDSCH.
  • the UE notifies / defines the time offset value (K) from the initial transmission multicast PDSCH (multicast PDSCH1) resource to the retransmission multicast PDSCH (multicast PDSCH2) resource, and receives the retransmission multicast PDSCH based on the offset value. ..
  • the UE receives the multicast PDSCH2 from the multicast PDSCH1 resource after the K slot using the same frequency resource as the multicast PDSCH1.
  • time offset may represent the time from the start or end of the first-transit multicast PDSCH resource to the start or end of the retransmission multicast PDSCH resource by a slot / symbol.
  • the frequency offset may be notified / set to the UE, and the time offset and the frequency offset may be notified / set to the UE. It may be set.
  • the frequency offset may be a value from the minimum / maximum / average physical resource block (PRB) of the initial multicast PDSCH resource to the minimum / maximum / average PRB of the retransmission multicast PDSCH resource.
  • PRB physical resource block
  • the time / frequency offset value of each retransmission multicast PDSCH resource may be notified / set to the UE for the first transmission multicast PDSCH resource.
  • the UE may be notified / set of the time / frequency offset value of the retransmission multicast PDSCH resource with respect to the immediately preceding multicast PDSCH resource.
  • the offset value in this case may be one, or may be notified / set to the UE by a certain number (for example, the number in which the retransmission multicast PDSCH is set).
  • the timing from PDSCH to HARQ feedback (PDSCH-to-HARQ_feedback timing indicator, HARQ feedback timing) and the resources for HARQ-ACK transmission when scheduling the retransmission multicast PDSCH using the scheduling DCI of the initial multicast PDSCH A method of instructing at least one of them will be described.
  • the scheduling DCI may include a specific field (HARQ feedback timing indicator field / another field).
  • the other field may be a field for instructing the resource for HARQ-ACK transmission.
  • the correspondence (table) between the DCI code point of the specific field applied to each of the initial multicast PDSCH and the retransmission multicast PDSCH and the HARQ feedback timing / HARQ-ACK transmission resource for the multicast PDSCH is as follows.
  • the HARQ feedback timing / HARQ-ACK transmission resource for the initial / retransmission multicast PDSCH may be determined based on the DCI code points notified / specified to the UE and included in the scheduling DCI.
  • the correspondence (table) may be specified in advance in the specifications, or may be notified to the UE by higher layer signaling.
  • FIG. 4A is a diagram showing an example of a method for determining the HARQ feedback timing / HARQ-ACK transmission resource for the first-transit multicast PDSCH and the retransmission multicast PDSCH.
  • a table (DCI field 1) for determining the HARQ feedback timing / HARQ-ACK transmission resource of the HARQ-ACK for the initial multicast PDSCH and the HARQ feedback timing / HARQ of the HARQ-ACK for the retransmission multicast PDSCH.
  • -A table (DCI field 2) for determining the resource for ACK transmission is notified / set to the UE.
  • the UE performs HARQ feedback timing / HARQ-ACK transmission of a value corresponding to the first DCI code point notified by the scheduling DCI among the HARQ feedback timing / HARQ-ACK transmission resources shown in DCI field 1.
  • the resource is used to transmit HARQ-ACK to the initial multicast PDSCH.
  • the UE selects the HARQ feedback timing / HARQ-ACK transmission resource having a value corresponding to the second DCI code point notified by the scheduling DCI among the HARQ feedback timing / HARQ-ACK transmission resources shown in the DCI field 2. It is used to transmit HARQ-ACK to the retransmission multicast PDSCH.
  • the value corresponding to each DCI code point may be associated with the HARQ feedback timing / HARQ-ACK transmission resource for the initial / retransmission multicast PDSCH.
  • each table shown in FIG. 4A is just an example, and the DCI code point and the value corresponding to the code point are not limited to this.
  • the UE transmits HARQ-ACK to the first-transmission and retransmission multicast PDSCH using the HARQ feedback timing and HARQ-ACK transmission resources for the first-transmission multicast PDSCH and the retransmission multicast PDSCH corresponding to one DCI code point. May be done.
  • the correspondence (table) between the DCI code point applied to the initial multicast PDSCH and the retransmission multicast PDSCH and the HARQ feedback timing / HARQ-ACK transmission resource of HARQ-ACK for the multicast PDSCH is as follows. Notified / specified to the UE, the UE determines the HARQ feedback timing / HARQ-ACK transmission resource of the HARQ-ACK for the initial and retransmission multicast PDSCHs based on one DCI code point included in the scheduling DCI. May be good. In this case, the HARQ feedback timing / HARQ-ACK transmission resources of HARQ-ACK for the initial multicast PDSCH and the retransmission multicast PDSCH may be the same or different.
  • FIG. 4B is a diagram showing an example of a method for determining the HARQ feedback timing / HARQ-ACK transmission resource for the first-transit multicast PDSCH and the retransmission multicast PDSCH.
  • a table (DCI field 1) for determining the HARQ feedback timing / HARQ-ACK transmission resource for the initial transmission and retransmission multicast PDSCH is notified / set to the UE.
  • the UE uses the HARQ feedback timing / HARQ-ACK transmission resource having a value corresponding to the DCI code point notified by the scheduling DCI.
  • Initial transmission and retransmission Perform HARQ-ACK transmission to the multicast PDSCH.
  • the value corresponding to each DCI code point may be associated with the HARQ feedback timing / HARQ-ACK transmission resource of HARQ-ACK for the multicast PDSCH.
  • each table shown in FIG. 4B is just an example, and the DCI code point and the value corresponding to the code point are not limited to this.
  • the UE uses the offset value of the first-transmission multicast PDSCH notified (set) by the scheduling DCI for the HARQ-ACK transmission resource.
  • the resource for HARQ-ACK transmission of the retransmission multicast PDSCH may be determined.
  • the offset value may be specified in advance in the specifications, or may be notified to the UE by higher layer signaling.
  • FIG. 4C is a diagram showing an example of a method for determining a resource for HARQ-ACK transmission for the initial multicast PDSCH and the retransmission multicast PDSCH.
  • the UE is notified / specified of the time offset value (K) from the HARQ-ACK transmission resource (PUCCH1) of the first-transit multicast PDSCH to the HARQ-ACK transmission resource (PUCCH2) of the retransmission multicast PDSCH, and the offset value is set to the time offset value (K). Based on this, HARQ-ACK is transmitted to the initial transmission and retransmission multicast PDSCH.
  • the UE transmits PUCCH2 from PUCCH1 after the K slot using the same frequency resource as PUCCH1.
  • time offset is from the start or end of the HARQ-ACK transmission resource of the first multicast PDSCH to the start or end of the HARQ-ACK transmission resource of the retransmission multicast PDSCH.
  • Time may be represented by slots / symbols.
  • the frequency offset may be notified / set to the UE, and the time offset and the frequency offset may be notified / set to the UE. It may be set.
  • the frequency offset may be a value from the minimum / maximum / average PRB of the HARQ-ACK transmission resource of the initial multicast PDSCH to the minimum / maximum / average PRB of the HARQ-ACK transmission resource of the retransmission multicast PDSCH. ..
  • the UE is notified / set of the time / frequency offset value of the HARQ-ACK transmission resource of the retransmission multicast PDSCH with respect to the HARQ-ACK transmission resource of the immediately preceding multicast PDSCH. May be good.
  • the offset value in this case may be one, or may be notified / set to the UE by a certain number (for example, the number in which the retransmission multicast PDSCH is set).
  • the second embodiment even when the number of UEs that need to retransmit the multicast PDSCH is large, it is possible to retransmit using a small number of PDSCH resources, and the resource utilization efficiency can be improved.
  • the multicast PDSCH may be retransmitted using unicast.
  • the NW transmits one data via the multicast PDSCH, and unicasts the one data in response to a failure in receiving processing (for example, demodulation, decoding) of any of the multicast PDSCHs of the plurality of UEs. You may resend using the cast.
  • the UE may perform the reception processing of the multicast PDSCH on the assumption that the multicast PDSCH is retransmitted using unicast.
  • unicast is referred to as Rel. It may mean that the UE is individually transmitted according to the method specified in 15 and 16.
  • the first DCI and the second DCI may be restricted.
  • the first DCI may be a multicast / broadcast-only DCI, a multicast / broadcast-only DCI format applied, or CRC scrambled by a multicast / broadcast-only RNTI.
  • DCI may be used.
  • the second DCI may be a DCI used for unicast (specified by Rel.15 / 16) or a DCI to which the DCI format used for unicast is applied.
  • DCI may be CRC scrambled by RNTI used for unicast.
  • the second DCI may be a DCI dedicated to multicast / broadcast, a DCI to which a DCI format dedicated to multicast / broadcast is applied, or CRC scrambled by RNTI dedicated to multicast / broadcast. DCI may be used.
  • the DCI format for multicast may be at least one of a DCI format dedicated to multicast / broadcast and a DCI format applied to DCI scrambled by CRC by RNTI dedicated to multicast / broadcast.
  • DCI for unicast is referred to as Rel.
  • DCI DCI, Rel. It may be at least one of the DCIs, which are CRC scrambled by the RNTI specified in 15/16.
  • the DCI format, the RNTI, the control channel element (CCE) index / aggregation level of the PDCCH carrying the DCI, the search space / control resource set. (Control Resource Set (CORESET)), at least one may be associated with each other.
  • the NDI fields of the first DCI and the second DCI may be limited to a certain value, respectively.
  • the value of the NDI field of the first DCI may be N (for example, 1).
  • the value of the NDI field of the second DCI may be M (for example, 0).
  • the value of the NDI field of the first DCI and the value of the NDI field of the second DCI may be different from each other.
  • FIG. 5 is a diagram showing an example of the retransmission procedure of the multicast PDSCH.
  • the plurality of UEs (UE1 and UE2) receive the multicast PDSCH1 scheduled by DCI1.
  • the UE 1 that succeeds in receiving the PDSCH1 transmits an ACK using the PUCCH 1
  • the UE 2 that fails in the receiving processing of the PDSCH transmits an NACK using the PUCCH 2.
  • the UE then receives a unicast-based PDSCH2 scheduled by DCI2.
  • DCI1 and DCI2 in FIG. 5 may be a DCI common to UEs or a DCI of individual UEs.
  • the HARQ-ACK transmission resource for the multicast PDSCH may be a HARQ-ACK transmission resource common to UEs, or may be a PUSCH resource.
  • a different DCI format may be applied to the first DCI and the second DCI.
  • the DCI format for multicast / broadcast may be applied to the first DCI.
  • the DCI format for unicast may be applied to the second DCI.
  • the first DCI format is Rel. It may be in the DCI format specified in 15/16. In this case, the UE is Rel. Among the fields included in the DCI format specified in 15/16, a specific field may be read as a parameter for multicast to receive the multicast PDSCH.
  • the UE will send the initial transmission scheduled by the first DCI. It may be determined that the multicast PDSCH and the retransmission multicast PDSCH scheduled by the second DCI carry the same data.
  • the same (common) DCI format may be applied to the first DCI and the second DCI.
  • the DCI format for multicast / broadcast may be applied to the first DCI and the second DCI.
  • the UE is the first transmission scheduled by the first DCI. It may be determined that the multicast PDSCH and the retransmission multicast PDSCH scheduled by the second DCI carry the same data.
  • the DCI for multicast / broadcast may be defined / set with a field for notifying the UE whether the DCI schedules the multicast PDSCH or the unicast PDSCH.
  • the field may be the first bit of the DCI for multicast / broadcast, and the UE may use subsequent bits as a unicast field or a multicast field based on the first bit. You may.
  • the UE applies to the specific field values contained in the DCI and to the specific field values as to whether the multicast / broadcast DCI schedules the multicast PDSCH or the unicast PDSCH. You may make an implicit decision based on the rules.
  • a UE that does not need to receive the retransmission multicast PDSCH (for example, a UE that succeeds in receiving the first-transit multicast PDSCH) retransmits. Overhead can be suppressed without receiving the multicast PDSCH.
  • the UE may be set with a DCI resource for retransmission (search space, CORESET, at least one of monitoring opportunities) common to each UE / UE.
  • the UE may monitor the second DCI using the retransmission DCI resource.
  • the UE that succeeded in receiving the multicast PDSCH (the UE that transmitted the ACK for the multicast PDSCH) does not have to be required to monitor the second DCI. Further, the UE that succeeds in the reception processing of the multicast PDSCH may not be requested to receive the retransmission multicast PDSCH, or may not transmit the HARQ-ACK information for the multicast PDSCH.
  • the UE does not have to transmit the HARQ-ACK information for the retransmission multicast PDSCH. Further, the UE may transmit HARQ-ACK information indicating ACK for the retransmission multicast PDSCH regardless of the reception result of the retransmission multicast PDSCH.
  • the UE that failed in the reception processing of the multicast PDSCH may monitor the second DCI and receive the retransmission multicast PDSCH.
  • the UE may transmit ACK / NACK based on the reception result of the retransmission multicast PDSCH. Further, when the upper limit (maximum number) of the number of retransmissions of the multicast PDSCH specified / set in advance is reached, it is not necessary to transmit ACK / NACK to the multicast PDSCH.
  • the upper limit of the number of retransmissions of the multicast PDSCH may be specified in advance in the specifications, or may be set in the UE by higher layer signaling.
  • the NW can perform the minimum necessary data transmission, and the resource utilization efficiency can be improved. can.
  • the DCI (second DCI) for scheduling the retransmission multicast PDSCH is notified before the determination of the reception processing result (HARQ determination) of the first-transit multicast PDSCH. (Fig. 6) is assumed. In this case, the NW and the UE cannot recognize whether the first-transit multicast PDSCH has been correctly received by the UE at the time of receiving the second DCI.
  • the UE may assume that the second DCI will be transmitted after a specific time. Specifically, the UE may (or may assume) receive the second DCI after a specific time after receiving the first-transit multicast PDSCH.
  • the specific time may be determined based on the HARQ-ACK process time.
  • the specific time may be the time after the HARQ-ACK processing time has elapsed after receiving the multicast PDSCH.
  • the HARQ-ACK processing time may be the minimum time from PDSCH reception to HARQ transmission (PDSCH to HARQ transmission).
  • the HARQ-ACK processing time may be specified in the specifications, may be set by higher layer signaling, or may be reported by the UE by UE capability information.
  • the specific time may be an integral multiple (M times) of a certain time resource (for example, a symbol, a slot, or a subslot), or may be Tms (T is an arbitrary value).
  • the values M and T may be determined based on the HARQ-ACK processing time. Further, the above values M and T may be specified in advance in the specifications, may be set in the UE by higher layer signaling, and are values reported to the NW in the UE capacity information (UE Capability). May be good.
  • the specific time may be a time / offset separately notified by higher layer signaling. Further, the specific time may be obtained by adding / subtracting the time / offset notified by the upper layer signaling to the HARQ-ACK processing time.
  • FIG. 7 is a diagram showing an example of the reception timing of the DCI that schedules the retransmission multicast PDSCH.
  • the plurality of UEs receive the first-transit multicast PDSCH (multicast PDSCH1) scheduled by DCI1.
  • the UE then receives a retransmission multicast PDSCH (multicast PDSCH2) scheduled by DCI2.
  • the UE receives DCI2 after the HARQ-ACK processing time of the multicast PDSCH1. In other words, the UE does not expect to receive DCI2 prior to the HARQ-ACK processing time of multicast PDSCH1.
  • DCI1 and DCI2 in FIG. 7 may be a DCI common to UEs or a DCI of individual UEs.
  • the UE may switch the monitoring (reception, detection) operation of the second DCI based on whether the monitoring period of the second DCI is before or after a specific time.
  • the specific time may be the HARQ process time.
  • the DCI monitoring period may be read as the DCI measurement time, the DCI detection time, the search space / CORESET / monitoring opportunity set for monitoring the DCI, the DCI reception period, and the like.
  • the UE may measure the second DCI and perform blind detection. If the reception timing of the second DCI is later than a specific time, the UE may decide whether or not to perform blind detection of the second DCI based on the reception processing result of the first-transit multicast PDSCH. good.
  • the UE does not perform the blind detection of the second DCI when the reception processing of the first-transmission multicast PDSCH succeeds, and performs the blind detection of the second DCI when the reception processing of the first-transmission multicast PDSCH fails. It may be (Fig. 8).
  • the UE may be notified by higher layer signaling with respect to the DCI1 resource (search space, CORESET, at least one of the monitoring opportunities) and the DCI2 resource. According to this, the UE recognizes that the DCI resource for initial transmission and the DCI resource for retransmission are different from each other, and can appropriately control the reception of DCI for initial transmission / retransmission.
  • the DCI1 resource search space, CORESET, at least one of the monitoring opportunities
  • the fourth embodiment it is possible to flexibly control the reception of the retransmission multicast PDSCH of the UE regardless of the reception timing of the DCI that schedules the retransmission multicast PDSCH.
  • the HARQ process ID of each multicast PDSCH may be the same.
  • the redundant version (Redundancy Version (RV)) of each multicast PDSCH may be the same, or may be changed based on a specific rule.
  • the number of repetitions of the multicast PDSCH may be specified in advance in the specifications, may be notified (set) to the UE by higher layer signaling, or may be a value reported to the NW in the UE capacity information (UE Capability) of the UE. It may be. Further, the number of repetitions of the multicast PDSCH may use the set value when it is set from NW to UE, or a specific value (for example, 4) when it is not set from NW to UE. May be used.
  • FIG. 9 is a diagram showing an example of repeated transmission of multicast PDSCH.
  • the UE receives repeated transmissions of multicast PDSCH (multicast PDSCH 1-4) scheduled by one scheduling DCI (DCI1).
  • DCI1 scheduling DCI
  • the number of repetitions of the multicast PDSCH is 4.
  • DCI1 in FIG. 9 is shown as a DCI common to each UE, it may be a DCI for each UE.
  • the frequency resource of each multicast PDSCH may be different. Since the frequency resources of each multicast PDSCH are different, the frequency diversity effect can be obtained.
  • Multiple time / frequency resource candidates for each multicast PDSCH may be set in the UE by higher layer signaling. Then, from the plurality of candidates, the UE may determine the time / frequency resource of each multicast PDSCH based on a specific field (for example, TDRA / FDRA field) included in the scheduling DCI of the multicast PDSCH. ..
  • the time / frequency offset value for the time / frequency resource of the specific multicast PDSCH is notified to the UE, and the UE uses the time of the multicast PDSCH other than the specific multicast PDSCH based on the offset value.
  • Frequency resources may be determined.
  • the scheduling DCI may indicate the time / frequency resources of a particular multicast PDSCH.
  • the specific multicast PDSCH may be the multicast PDSCH transmitted first among the plurality of multicast PDSCHs, or may be the multicast PDSCH transmitted immediately before among the plurality of multicast PDSCHs.
  • FIG. 10 is a diagram showing an example of repeated transmission of multicast PDSCH.
  • the UE receives repeated transmissions of multicast PDSCH (multicast PDSCH 1-4) scheduled by one scheduling DCI (DCI1).
  • DCI1 scheduling DCI
  • the number of repetitions of the multicast PDSCH is 4.
  • the UE is notified of the frequency offset value for the immediately preceding multicast PDSCH, and the UE receives a plurality of multicast PDSCHs based on the offset value.
  • DCI1 in FIG. 10 is shown as a DCI common to each UE, it may be a DCI for each UE.
  • the TCI state applied to each multicast PDSCH may be different.
  • the UE may use different spatial domain filters to receive each multicast PDSCH. Since the TCI state applied to each multicast PDSCH is different, the spatial diversity effect can be obtained.
  • a plurality of TCI state candidates applied to each multicast PDSCH may be set in the UE by higher layer signaling. The UE may then determine the TCI state applied to each multicast PDSCH from among the plurality of candidates based on the specific fields included in the scheduling DCI of the multicast PDSCH.
  • the UE may also determine the TCI state applied to each multicast PDSCH based on specific rules (beam cycle, beam cycling).
  • the list of the plurality of TCI states for the beam cycle may be specified in advance in the specifications, or may be notified (set) to the UE by higher layer signaling. Further, the TCI state (initial TCI state) applied to the first multicast PDSCH may be notified to the UE.
  • the beam cycle may mean that a list of a plurality of TCI states is cyclically applied to a plurality of signals / channels (for example, PDSCH).
  • FIG. 11 is a diagram showing an example of repeated transmission of multicast PDSCH.
  • the UE receives repeated transmissions of multicast PDSCH (multicast PDSCH 1-4) scheduled by one scheduling DCI (DCI1).
  • DCI1 scheduling DCI
  • the number of repetitions of the multicast PDSCH is 4.
  • the order of TCI state # 1, TCI state # 2, TCI state # 3, and TCI state # 4 is set as a beam in the UE, and the TCI state is set with respect to the first multicast PDSCH. You will be notified that # 1 will be applied.
  • the UE receives a plurality of multicast PDSCHs based on the cycle and the initial TCI state.
  • DCI1 in FIG. 11 is shown as a DCI common to each UE, it may be a DCI for each UE.
  • the UE does not have to transmit HARQ-ACK for the repeated transmission of the multicast PDSCH.
  • the UE may transmit HARQ-ACK for the repeated transmission of the multicast PDSCH.
  • the UE may transmit HARQ-ACK for repeated transmission of multicast PDSCH using one PUCCH / PUSCH resource for HARQ-ACK transmission.
  • the UE may transmit an ACK if at least one reception process of each multicast PDSCH is successful.
  • the UE may transmit NACK when all the reception processing of each multicast PDSCH fails.
  • the PUCCH / PUSCH resource for HARQ-ACK transmission may be allocated after the last symbol of the last multicast PDSCH.
  • FIG. 12 is a diagram showing an example of HARQ-ACK transmission for repeated transmission of multicast PDSCH.
  • the configuration of the scheduling DCI and each multicast PDSCH shown in FIG. 12 is the same as that of FIG.
  • the UE transmits HARQ-ACK (ACK / NACK) for the repeated transmission of the Marcast PDSCH using the PUCCH resource.
  • DCI1 in FIG. 12 is shown as a DCI common to each UE, it may be a DCI for each UE.
  • the HARQ-ACK transmission resource in FIG. 12 is a PUCCH resource, it may be a PUSCH resource.
  • the UE may transmit the HARQ-ACK for the repeated transmission of the multicast PDSCH using the HARQ-ACK transmission PUCCH / PUSCH resource set for each multicast PDSCH.
  • the UE may perform reception processing of each multicast PDSCH and transmit the ACK corresponding to the first multicast PDSCH in which the reception processing is successful by using the HARQ-ACK transmission resource corresponding to the multicast PDSCH. ..
  • the UE does not have to perform the reception processing of each multicast PDSCH and transmit the HARQ-ACK corresponding to the multicast PDSCH in which the reception processing fails. Further, the UE may perform reception processing of each multicast PDSCH and transmit NACK corresponding to the multicast PDSCH in which the reception processing has failed by using the HARQ-ACK transmission resource corresponding to the multicast PDSCH.
  • the UE When the UE succeeds in receiving processing of at least one multicast PDSCH, it is not necessary to transmit HARQ-ACK for the multicast PDSCH received after the multicast PDSCH which succeeded in the first reception processing. According to this, it is possible to avoid unnecessary power consumption of the UE.
  • the UE succeeds in receiving processing of at least one multicast PDSCH
  • the subsequent multicast PDSCH (subsequent multicast PDSCH) received after the multicast PDSCH that succeeds in the first reception processing is received regardless of the reception processing result.
  • An ACK may be sent to the multicast PDSCH of. According to this, it is possible to avoid an error due to NW, and it is possible to improve the reliability of communication.
  • ACK may be transmitted to the succeeding multicast PDSCH a specific number of times regardless of the reception processing result of the succeeding multicast PDSCH. ..
  • the number of times the ACK is transmitted may be the total value N of the number of times the ACK is transmitted to the multicast PDSCH that succeeded in the first reception processing and the ACK is transmitted to the subsequent multicast PDSCH.
  • the value N may be specified in the specifications in advance, may be notified (set) to the UE by upper layer signaling, or is a value reported to the NW in the UE capacity information (UE Capability) of the UE. May be good.
  • a specific RV value may be applied to the multicast PDSCH. Further, a specific RV value may be applied to at least the first received multicast PDSCH.
  • the particular RV value may be a Self-decodable RV.
  • the probability that the UE can decode based on the PUSCH to which the RV is applied can be increased.
  • the particular RV value may be 0, 0 and 3.
  • FIG. 13 is a diagram showing an example of HARQ-ACK transmission for repeated transmission of multicast PDSCH.
  • the configuration of the scheduling DCI and each multicast PDSCH shown in FIG. 13 is the same as that of FIG.
  • the UE transmits HARQ-ACK (ACK / NACK) for the repeated transmission of the multicast PDSCH using the PUCCH resource corresponding to each multicast PDSCH.
  • PUCCH1-4 is the corresponding HARQ-ACK transmission resource.
  • a certain UE fails in the reception processing of the multicast PDSCH1.
  • the UE does not (or may) transmit HARQ-ACK (NACK) corresponding to multicast PDSCH1.
  • NACK HARQ-ACK
  • the UE succeeds in receiving the multicast PDSCH1.
  • the UE transmits HARQ-ACK (ACK) corresponding to the multicast PDSCH2 by using the PUCCH2.
  • the UE transmits (or does not have to transmit) the ACK corresponding to each of the multicast PDSCHs 3 and 4 regardless of the reception processing result of the multicast PDSCHs 3 and 4 received after the multicast PDSCH2.
  • DCI1 in FIG. 13 is shown as a DCI common to each UE, it may be a DCI for each UE.
  • the HARQ-ACK transmission resource in FIG. 13 is a PUCCH resource, it may be a PUSCH resource.
  • the spatial domain filter (UL beam, UL spatial relation) applied to the transmission of HARQ-ACK corresponding to the multicast PDSCH will be described.
  • the method for determining the spatial domain filter described below may be applied to at least one HARQ-ACK of the first to fourth embodiments.
  • the UE When the UE transmits HARQ-ACK for the repeated transmission of the multicast PDSCH using one PUCCH / PUSCH resource for HARQ-ACK transmission (the case as shown in the example of FIG. 12), the UE is in a specific space.
  • the HARQ-ACK may be transmitted using a domain filter (UL beam).
  • the spatial domain filter may be notified (set, instructed) to the UE using at least one of upper layer signaling (for example, RRC signaling), MAC signaling, and physical layer signaling (for example, DCI). That is, the UE uses at least one of the spatial domain filter indicated by the spatial relation information (SRI) of PUSCH / PUCCH to be set, or the spatial domain filter corresponding to the spatial relation of PUSCH / PUCCH. , HARQ-ACK for repeated transmission of multicast PDSCH may be transmitted.
  • upper layer signaling for example, RRC signaling
  • MAC signaling for example, MAC signaling
  • DCI physical layer signaling
  • the specific spatial domain filter is Rel. It may be a spatial domain filter corresponding to the default spatial relationship specified in 16.
  • the specific domain filter may be a spatial domain filter corresponding to a spatial domain filter (DL beam) applied to a plurality of multicast PDSCHs.
  • the spatial domain filter applied to HARQ-ACK for the repeated transmission of the multicast PDSCH may be the spatial domain filter applied to the first received multicast PDSCH.
  • the spatial domain filter applied to HARQ-ACK for the repeated transmission of the multicast PDSCH may be the spatial domain filter applied to the last received multicast PDSCH.
  • the UE when the UE transmits HARQ-ACK for repeated transmission of the multicast PDSCH using the PUCCH / PUSCH resource for HARQ-ACK transmission set for each multicast PDSCH (shown in the example of FIG. 13). Such a case), the UE may transmit each said HARQ-ACK using a specific spatial domain filter (UL beam).
  • UL beam a specific spatial domain filter
  • the specific spatial domain filter applied to each HARQ-ACK may be common to each HARQ-ACK, or is determined separately for each HARQ-ACK. May be good.
  • the spatial domain filter may be notified (set, instructed) to the UE using at least one of higher layer signaling (eg, RRC signaling), MAC signaling, and physical layer signaling (eg, DCI). That is, the UE uses HARQ-ACK for the repeated transmission of the multicast PDSCH by using at least one of the spatial domain filter indicated by the SRI of PUSCH / PUCCH to be set or the spatial domain filter corresponding to the spatial relationship of PUSCH / PUCCH. May be sent.
  • higher layer signaling eg, RRC signaling
  • MAC signaling e.g, MAC signaling
  • DCI physical layer signaling
  • the specific spatial domain filter is Rel. It may be a spatial domain filter corresponding to the default spatial relationship specified in 16.
  • the specific domain filter may be a spatial domain filter corresponding to a spatial domain filter (DL beam) commonly applied to a plurality of multicast PDSCHs.
  • the spatial domain filter applied to HARQ-ACK for the repeated transmission of the multicast PDSCH may be the spatial domain filter applied to the first received multicast PDSCH.
  • the spatial domain filter applied to HARQ-ACK for the repeated transmission of the multicast PDSCH may be the spatial domain filter applied to the last received multicast PDSCH.
  • the specific domain filter may be a spatial domain filter (DL beam) applied to each of the multicast PDSCHs corresponding to each HARQ-ACK.
  • DL beam spatial domain filter
  • the specific domain filter may be a spatial domain filter corresponding to the spatial domain filter (DL beam) of the multicast PDSCH that succeeded in the reception processing at the end.
  • the UE may apply the spatial domain filter corresponding to the spatial domain filter of the multicast PDSCH that has succeeded in the reception processing to the transmission of HARQ-ACK to the subsequent multicast PDSCH.
  • At least one parameter included in the upper layer (RRC) parameter is a unicast parameter and Each multicast parameter may be notified to the UE.
  • the UE may receive unicast parameters and multicast parameters for TDRA and FDRA included in the PDSCH configuration, respectively.
  • the upper layer parameter in the present disclosure may be read as an upper layer parameter list, an upper layer parameter set, an upper layer parameter table, and the like.
  • the UE may assume that the DCI detected in the resource for multicast (for example, CORESET, search space, monitoring opportunity) refers to the upper layer parameter set for multicast, or other DCI. However, it may be assumed that it refers to the upper layer parameter set for unicast.
  • the DCI detected in the resource for multicast for example, CORESET, search space, monitoring opportunity
  • the UE may also assume that the DCI to which the DCI format for multicast is applied refers to the upper layer parameters set for multicast, and the other DCIs are higher than the DCI set for unicast. It may be assumed that the layer parameters are referenced.
  • the UE may also assume that the DCI CRC scrambled by the RNTI for multicast refers to the higher layer parameters set for multicast, and the other DCIs are higher set for unicast. It may be assumed that the layer parameters are referenced.
  • FIG. 14 is a diagram showing an example of upper layer parameter reference of the unicast DCI and the multicast DCI.
  • the UE assumes that the DCI for unicast refers to the upper layer parameter list configured for unicast, and that the DCI for multicast refers to the upper layer parameter list configured for multicast. Suppose.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 15 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the radio communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR))
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 16 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may transmit the first transmission of the multicast downlink (DL) data.
  • the control unit 110 may control the retransmission of the DL data, which is multicast based on the decoding result of the DL data (second embodiment).
  • the transmission / reception unit 120 may transmit the first transmission of downlink (DL) data scheduled and multicast based on the first downlink control information (DCI).
  • the control unit 110 may control the retransmission of the DL data scheduled and unicast based on the second DCI based on the decoding result of the first transmission (third embodiment).
  • the transmission / reception unit 120 may transmit downlink (DL) data scheduled by one downlink control information (DCI) and multicast on a plurality of opportunities.
  • the control unit 110 may control the reception of Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK) information for the DL data based on the DCI (fifth embodiment).
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • FIG. 17 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitting unit and the receiving unit of the user terminal 20 in the present disclosure may be composed of at least one of the transmitting / receiving unit 220 and the transmitting / receiving antenna 230.
  • the transmission / reception unit 220 may receive the first transmission of the multicast downlink (DL) data.
  • the control unit 210 may control the reception of the retransmission of the DL data, which is multicast based on the decoding result of the DL data (second embodiment).
  • control unit 210 may control not to transmit the Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK) information for the initial transmission (second embodiment).
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • control unit 210 may control to transmit Hybrid Automatic Repeat reQuest ACK knowledgement (HARQ-ACK) information indicating an acknowledgment to the initial transmission (second).
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACK knowledgement
  • the transmission / reception unit 220 may receive downlink control information including information on the resource of the downlink shared channel (PDSCH) carrying the first transmission and information on the resource of the PDSCH carrying the retransmission (second). Embodiment).
  • PDSCH downlink shared channel
  • the transmission / reception unit 220 may receive the first transmission of downlink (DL) data scheduled and multicast based on the first downlink control information (DCI).
  • the control unit 210 may control the reception of the retransmission of the DL data scheduled and unicast based on the second DCI based on the decoding result of the first transmission (third embodiment).
  • the transmission / reception unit 220 may receive the second DCI after a specific time from the reception timing of the first transmission (fourth embodiment).
  • the control unit 210 may control the blind detection of the second DCI based on the reception timing of the second DCI (fourth embodiment).
  • the transmission / reception unit 220 may receive downlink (DL) data scheduled by one downlink control information (DCI) and multicast on a plurality of occasions.
  • the control unit 210 may control the transmission of Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK) information to the DL data based on the DCI (fifth embodiment).
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • the control unit 210 may control not to transmit the HARQ-ACK information (fifth embodiment).
  • control unit 210 When the control unit 210 succeeds in receiving the DL data at at least one of the plurality of opportunities, the control unit 210 may transmit HARQ-ACK information indicating one affirmative response to the DL data. (Fifth embodiment).
  • the control unit 210 uses the HARQ-ACK resource corresponding to the first opportunity of the at least one opportunity.
  • the HARQ-ACK information for the DL data may be controlled to be transmitted (fifth embodiment).
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 18 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier Component Carrier (CC)
  • CC Component Carrier
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may be a time unit based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain.
  • the mini-slot may also be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, integer, fraction)
  • Future Radio Access FAA
  • RAT New -Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • LTE 802.11 Wi-Fi®
  • LTE 802.16 WiMAX®
  • LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios. It may be applied to a system using a communication method, a next-generation system extended based on these, and the like.
  • UMB Ultra-WideBand
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)" of "accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Abstract

本開示の一態様に係る端末は、マルチキャストされる下りリンク(DL)データの初送を受信する受信部と、前記DLデータの復号結果に基づいてマルチキャストされる、前記DLデータの再送の受信を制御する制御部と、を有する。本開示の一態様によれば、マルチキャストPDSCHに対応するHARQ-ACKを適切に送信できる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)において、複数のユーザ端末(user terminal、User Equipment(UE))が、超高密度かつ高トラヒックな環境下で通信を行うことが想定される。
 NRでは、このような環境下において、複数のUEがマルチキャストを利用した同時に同一のPDSCHの受信を行うことが想定される。
 しかしながら、これまでのNR仕様においては、UEのマルチキャストを利用したPDSCHに対応するHARQ-ACKの再送方法について、十分検討がなされていない。当該方法を適切に制御できなければ、スループットの低下など、システム性能が低下するおそれがある。
 そこで、本開示は、マルチキャストPDSCHに対応するHARQ-ACKを適切に送信する端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、マルチキャストされる下りリンク(DL)データの初送を受信する受信部と、前記DLデータの復号結果に基づいてマルチキャストされる、前記DLデータの再送の受信を制御する制御部と、を有する。
 本開示の一態様によれば、マルチキャストPDSCHに対応するHARQ-ACKを適切に送信できる。
図1は、マルチキャストPDSCHの再送手順の一例を示す図である。 図2は、マルチキャストPDSCHの再送手順の別の一例を示す図である。 図3A-図3Cは、初送マルチキャストPDSCH及び再送マルチキャストPDSCHの、DCIによるリソース指示の一例を示す図である。 図4Aは、初送マルチキャストPDSCH及び再送マルチキャストPDSCHに対するHARQフィードバックタイミング/HARQ-ACK送信用リソースの決定方法の一例を示す図である。 図5は、マルチキャストPDSCHの再送手順の一例を示す図である。 図6は、マルチキャストPDSCHの再送手順の一例を示す図である。 図7は、再送マルチキャストPDSCHをスケジュールするDCIの受信タイミングの一例を示す図である。 図8は、再送マルチキャストPDSCHをスケジュールするDCIの受信タイミングの一例を示す図である。 図9は、マルチキャストPDSCHの繰り返し送信の一例を示す図である。 図10は、マルチキャストPDSCHの繰り返し送信の一例を示す図である。 図11は、マルチキャストPDSCHの繰り返し送信の一例を示す図である。 図12は、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACK送信の一例を示す図である。 図13は、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACK送信の一例を示す図である。 図14は、ユニキャスト用DCI及びマルチキャスト用DCIの上位レイヤパラメータ参照の一例を示す図である。 図15は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図16は、一実施形態に係る基地局の構成の一例を示す図である。 図17は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図18は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(以下、信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 なお、本開示において、TCI状態は、DL TCI状態、UL TCI状態、統一されたTCI状態(unified TCI state)、デフォルトTCI状態、空間関係、デフォルト空間関係、QCL、QCL関係、QCL想定、QCLタイプの少なくとも1つと互いに読み替えられてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
 所定の制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(DCI)であってもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 上位レイヤシグナリングによって設定されるTCI状態の情報要素(RRCの「TCI-state IE」)は、1つ又は複数のQCL情報(「QCL-Info」)を含んでもよい。QCL情報は、QCL関係となるRSに関する情報(RS関係情報)及びQCLタイプを示す情報(QCLタイプ情報)の少なくとも1つを含んでもよい。RS関係情報は、RSのインデックス(例えば、SSBインデックス、ノンゼロパワーCSI-RS(Non-Zero-Power(NZP) CSI-RS)リソースID(Identifier))、RSが位置するセルのインデックス、RSが位置するBandwidth Part(BWP)のインデックスなどの情報を含んでもよい。
 Rel.15 NRにおいては、PDCCH及びPDSCHの少なくとも1つのTCI状態として、QCLタイプAのRSとQCLタイプDのRSの両方、又はQCLタイプAのRSのみがUEに対して設定され得る。
 QCLタイプAのRSとしてTRSが設定される場合、TRSは、PDCCH又はPDSCHの復調用参照信号(DeModulation Reference Signal(DMRS))と異なり、長時間にわたって周期的に同じTRSが送信されることが想定される。UEは、TRSを測定し、平均遅延、遅延スプレッドなどを計算することができる。
 PDCCH又はPDSCHのDMRSのTCI状態に、QCLタイプAのRSとして前記TRSを設定されたUEは、PDCCH又はPDSCHのDMRSと前記TRSのQCLタイプAのパラメータ(平均遅延、遅延スプレッドなど)が同じであると想定できるので、前記TRSの測定結果から、PDCCH又はPDSCHのDMRSのタイプAのパラメータ(平均遅延、遅延スプレッドなど)を求めることができる。UEは、PDCCH及びPDSCHの少なくとも1つのチャネル推定を行う際に、前記TRSの測定結果を用いて、より精度の高いチャネル推定を行うことができる。
 QCLタイプDのRSを設定されたUEは、QCLタイプDのRSを用いて、UE受信ビーム(空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ)を決定できる。
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
(デフォルトTCI状態/デフォルト空間関係/デフォルトPL-RS)
 RRC接続モードにおいて、DCI内TCI情報(上位レイヤパラメータTCI-PresentInDCI)が「有効(enabled)」とセットされる場合と、DCI内TCI情報が設定されない場合と、の両方において、DL DCI(PDSCHをスケジュールするDCI)の受信と、対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値(timeDurationForQCL)より小さい場合(適用条件、第1条件)、もし非クロスキャリアスケジューリングの場合、PDSCHのTCI状態(デフォルトTCI状態)は、その(特定UL信号の)CCのアクティブDL BWP内の最新のスロット内の最低のCORESET IDのTCI状態であってもよい。そうでない場合、DSCHのTCI状態(デフォルトTCI状態)は、スケジュールされるCCのアクティブDL BWP内のPDSCHの最低のTCI状態IDのTCI状態であってもよい。
 Rel.15においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の個々のMAC CEが必要である。PUSCH空間関係は、SRS空間関係に従う。
 Rel.16においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の少なくとも1つが用いられなくてもよい。
 FR2において、PUCCHに対する空間関係とPL-RSの両方が設定されない場合(適用条件、第2条件)、PUCCHに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。FR2において、SRS(SRSに対するSRSリソース、又はPUSCHをスケジュールするDCIフォーマット0_1内のSRIに対応するSRSリソース)に対する空間関係とPL-RSの両方が設定されない場合(適用条件、第2条件)、DCIフォーマット0_1によってスケジュールされるPUSCHとSRSとに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。
 そのCC上のアクティブDL BWP内にCORESETが設定される場合、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内の最低CORESET IDを有するCORESETのTCI状態又はQCL想定であってもよい。そのCC上のアクティブDL BWP内にCORESETが設定されない場合、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内のPDSCHの最低IDを有するアクティブTCI状態であってもよい。
 Rel.15において、DCIフォーマット0_0によってスケジュールされるPUSCHの空間関係は、同じCC上のPUCCHのアクティブ空間関係のうち、最低PUCCHリソースIDを有するPUCCHリソースの空間関係に従う。ネットワークは、SCell上でPUCCHが送信されない場合であっても、全てのSCell上のPUCCH空間関係を更新する必要がある。
 Rel.16においては、DCIフォーマット0_0によってスケジュールされるPUSCHのためのPUCCH設定は必要とされない。DCIフォーマット0_0によってスケジュールされるPUSCHに対し、そのCC内のアクティブUL BWP上に、アクティブPUCCH空間関係がない、又はPUCCHリソースがない場合(適用条件、第2条件)、当該PUSCHにデフォルト空間関係及びデフォルトPL-RSが適用される。
(NR マルチキャスト/ブロードキャスト)
 Rel.16までのNRにおいて、NWからUEに対する信号及びチャネルの少なくとも一方(以下、信号/チャネルと表現する)の送信は、ユニキャスト送信が基本である。この場合、NWから複数のUEに対して送信される同一の下りリンク(DL)データ信号/チャネル(例えば、下り共有チャネル(PDSCH))を、NWの複数のビーム(又は、パネル)に対応する複数の受信機会(受信オケージョン)を用いて、各UEが受信することが想定される。
 また、多数のUEが地理的に密集する環境(例えば、スタジアム等)のような、超高密度かつ高トラヒックな状況下において、複数のUEが同時にかつ同一の信号/チャネルを受信する場合が想定される。このような場合に、複数UEが同一エリアに存在し、各UEが同一の信号/チャネルを受信するために、各UEがユニキャストによって当該信号/チャネルの受信を行うことは、通信の信頼性は確保できるものの、リソース利用効率を低下させると考えられる。
 一方、複数のUEに対して、同一のDLデータ信号/チャネルを送信するマルチキャスト(ブロードキャスト)を行うユースケース(例えば、テレビ、ラジオ等)も存在する。しかしながら、当該ユースケースにおいては、NWは、各UEのDLデータ信号/チャネルの受信確認を行わないため、信頼性の確保が困難であった。
 そこで、本発明者らは、UEの、マルチキャストを利用したPDSCHをスケジュールする下り制御情報(DCI)の受信方法、および、マルチキャストを利用したPDSCHに対応する送達確認情報((例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)情報、HARQ-ACK、ACK/NACKなどと呼ばれてもよい))の送信方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(無線通信方法)
 NWから、複数のUEに対し、マルチキャスト/ブロードキャストが設定されてもよい。当該マルチキャスト/ブロードキャストの設定は、上位レイヤシグナリングを用いて行われてもよい。
 マルチキャスト/ブロードキャストが設定されたUEは、マルチキャスト/ブロードキャストに対応する、下り制御チャネル(PDCCH)モニタリング機会、サーチスペース、制御リソースセット(Control Resource Set(CORESET))の少なくとも一つにおいてブラインド検出(受信)したDCI(PDCCH)によってスケジュールされたPDSCHを受信してもよい。当該PDSCHは、マルチキャストを利用したPDSCHと呼ばれてもよい。
 さらに、マルチキャスト/ブロードキャストが設定されたUEは、マルチキャストを利用したPDSCHに対するHARQ-ACK/NACKを、PUCCH又はPUSCHを用いて送信してもよい。
 当該HARQ-ACK/NACKは、マルチキャストを利用したPDSCHの1つのトランスポートブロック(TB)/コードワード(CW)ごとに、1ビットのHARQ-ACK/NACKを送信してもよいし、複数のTB/CWごとに、1ビットのHARQ-ACK/NACKを送信してもよい。
 本開示において、マルチキャストは、ブロードキャスト(報知情報)と互いに読み替えられてもよい。また、マルチキャストを利用するPDSCHは、複数UE共通のPDSCH、共通PDSCH、共有PDSCH、マルチキャストPDSCH、ブロードキャスト(報知)PDSCH、などと互いに読み替えられてもよい。
 本開示において、A/Bは、A及びBの少なくとも一方を意味してもよい。
 本開示において、マルチキャストPDSCHに対応するHARQ-ACK送信用PUCCH/PUSCHリソースは、単にHARQ-ACK送信用リソースと呼ばれてもよい。
 本開示において、複数のUEのそれぞれは、各UE、単にUEと呼ばれてもよい。
 本開示において、マルチキャストPDSCH専用のDCIフォーマットが新たに規定されてもよい。マルチキャストPDSCHがマルチキャストPDSCH専用のDCIフォーマットによってスケジュールされる場合、UEは、当該マルチキャストPDSCH専用のDCIフォーマットのサポート可否に関するUE能力情報(UE Capability)を、ネットワーク(NW、例えば、gNB)に報告してもよい。この場合、DCIサイズ(ペイロードサイズ、ビット数)の組み合わせが増え、UEが実施するDCIのブラインド検出回数が増加し、UE動作の複雑性が増加するため、当該DCIフォーマットをサポートするUEのみが、当該DCIフォーマットをモニタしてもよい。
 本開示において、マルチキャストPDSCHは、受信オケージョン、オケージョン、下りリンク(DL)データ、データ、トランスポートブロック(TB)、コードワード(CW)、PDSCH、マルチキャストPUSCH、PUSCH、などと読み替えられてもよい。
 複数のDCIが、一以上のマルチキャストPDSCH(受信オケージョン)をそれぞれスケジュールしてもよい。一以上のマルチキャストPDSCHのそれぞれにおいて同じDLデータが、複数のUEに対して送信されてもよい。本開示において、当該複数のDCIのそれぞれは、UE個別のDCIと呼ばれてもよい。
 QCL#xを用いる1つのDCIが、複数のUEに対し、QCL#x’を有するDLデータをスケジュールしてもよい。
 あるQCLに関連付けられた(対応する)PDCCHモニタリングオケージョンにおいて検出されたDCIが、当該QCLに関連付けられた受信オケージョンにおけるDLデータをスケジュールしてもよい。
 複数のDCIにおけるPDCCHモニタリングは、次のPDCCHモニタリング方法1から3の少なくとも1つに従ってもよい。
[PDCCHモニタリング方法1]
 共通サーチスペース又はグループ共通サーチスペースにおいて複数のDCIが送信(受信)されてもよい。UEは、PDCCH用に設定/指示されたQCLに対応するPDCCHモニタリングオケージョンを、DCIの受信用に選択してもよい。
[PDCCHモニタリング方法2]
 複数のQCLのそれぞれに対して、共通サーチスペース又はグループ共通サーチスペースが設定されてもよい。UEは、PDCCH用に設定/指示されたQCLに対応するサーチスペースを、DCIの受信用に選択してもよい。
[PDCCHモニタリング方法3]
 複数のQCLのそれぞれに対して、共通CORESET又はグループ共通CORESETが設定されてもよい。UEは、PDCCH用に設定/指示されたQCLに対応するサーチスペースを、DCIの受信用に選択してもよい。
 UEは、共通サーチスペース又はグループ共通サーチスペースとして設定されたグループスケジューリング用サーチスペースをモニタすることによって、DCIを検出する。
 グループスケジューリング用サーチスペースは、QCL想定に依存して異なってもよい。例えば、グループスケジューリング用サーチスペースは、QCL想定に依存して、異なる時間ドメインリソース(シンボル、スロットなど)を有してもよい。
 UEは、グループスケジューリング用サーチスペース内の各PDCCHモニタリングオケージョン(各PDCCHモニタリングオケージョン内のDCI)において、同じDLデータがスケジュールされると想定してもよい。
 UEは、グループスケジューリング用サーチスペースを上位レイヤシグナリングによって設定されてもよい。
 本開示において、UE個別(UE-specific又はdedicated)のDCIは、UE個別の無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))(例えば、セル(C-)RNTI)によってcyclic redundancy check(CRC)スクランブルされてもよいし、UE共通のRNTIによってCRCスクランブルされてもよい。また、UE個別のDCIは、マルチキャスト/ブロードキャストスケジュール専用のRNTIによってCRCスクランブルされてもよい。
 複数のUEに対する1つのDCIが、複数UEに対するDLデータをスケジュールしてもよい。1つのDCIは、一以上のマルチキャストPDSCHにおける同じDLデータをスケジュールしてもよい。本開示において、当該1つのDCIは、UE共通のDCIと呼ばれてもよい。
 DCIは、共通サーチスペースにおいて送信されてもよいし、グループ共通サーチスペースにおいて送信されてもよい。UEに用いられるQCLに応じて、DCIのためのPDCCHモニタリングオケージョンが異なってもよい。UEは、複数のQCL想定(assumption)に基づいて、PDCCHモニタリングオケージョンを選択してもよい。
 1つのDLデータは、1つのコードワード(CW)であってもよいし、1つのトランスポートブロック(TB)であってもよい。同じDLデータは、同じサイズ(例えば、トランスポートブロックサイズ(TBS))を有していてもよいし、異なるサイズを有していてもよい。
 基地局が複数のビームを用いて同時にDLデータを送信しないことが想定されてもよい。
 本開示において、複数のUEに共通(UE-common)のDCIは、UE個別のRNTI(例えば、C-RNTI)によってCRCスクランブルされてもよいし、UE共通のRNTIによってCRCスクランブルされてもよい。また、UE個別のDCIは、マルチキャスト/ブロードキャストスケジュール専用のRNTIによってCRCスクランブルされてもよい。
 本開示において、マルチキャスト/ブロードキャストスケジュール専用のサーチスペースは、共通サーチスペース又はグループ共通サーチスペースとして設定されたグループスケジューリング用サーチスペースであってもよい。
<第1の実施形態>
 マルチキャストPDSCHは、再送されなくてもよい。言い換えれば、NWは、複数のUEのマルチキャストPDSCHの受信処理(例えば、復調、復号)の成功又は失敗に関わらず、マルチキャストPDSCHを再送しなくてもよい。この場合、UEは、マルチキャストPDSCHが再送されないと想定して、マルチキャストPDSCHの受信処理を行ってもよい。
 マルチキャストPDSCHの再送が行われないケースにおいて、マルチキャストPDSCHをスケジュールした下りリンク制御情報(Downlink Control Information(DCI))(スケジューリングDCI、例えば、DCIフォーマット1_0、1_1)に含まれる新規データインジケータ(New Data Indicator(NDI))について、UEは、当該NDIフィールドの値が、ある値(例えば、1)であると想定してもよいし、当該NDIフィールドの値を無視してもよい。このとき、UEは、当該ある値(例えば、1)に基づいて、マルチキャストPDSCHが初回送信(初送)であると判断してもよい。また、UEは、当該NDIフィールドの値に関係なく(当該NDIフィールドの値を使用せず)マルチキャストPDSCHの受信を行ってもよい。
 また、マルチキャストPDSCHの再送が行われないケースにおいて、複数のUEに対して、上位レイヤシグナリングを用いてマルチキャストが設定される場合、マルチキャストPDSCHのスケジューリングDCIに、NDIフィールドが含まれなくてもよい。言い換えれば、上位レイヤシグナリングを用いてマルチキャストが設定される場合、複数のUEは、NDIフィールドが含まれないマルチキャストPDSCHのスケジューリングDCIを受信してもよい。
 また、マルチキャストPDSCH専用のDCIフォーマットには、NDIフィールドが存在しなくてもよい。言い換えれば、複数のUEは、NDIフィールドを含まないマルチキャストPDSCH専用のDCIフォーマットによってスケジュールされるマルチキャストPDSCHを受信してもよい。
 また、マルチキャストスケジュール専用のRNTIによってスクランブルされたDCIは、NDIフィールドを含まなくてもよい。言い換えれば、マルチキャストPDSCHのスケジューリングDCIが、マルチキャストスケジュール専用のRNTIによってスクランブルされる場合、複数のUEは、NDIフィールドを含まない当該DCIフォーマットによってスケジュールされるマルチキャストPDSCHを受信してもよい。
 このとき、マルチキャストスケジュール専用のRNTI以外のRNTIによってスクランブルされたDCIは、NDIフィールドを含む構成であってもよいし、NDIフィールドを含まない構成であってもよい。
 マルチキャストPDSCHの再送が行われないケースにおいて、複数のUEは、マルチキャストPDSCHに対するHARQ-ACK(ACK及びNACKの少なくとも一つ)を送信しなくてもよい。
 以上、第1の実施形態によれば、マルチキャストPDSCHが送信される状況における、HARQ-ACK送信用PUCCH/PUSCHリソース及びUEの消費電力を削減することができる。
<第2の実施形態>
 マルチキャストPDSCHは、マルチキャスト/ブロードキャストを利用して再送されてもよい。言い換えれば、NWは、1つのデータを、マルチキャストPDSCHを介して送信し、複数のUEのいずれかのマルチキャストPDSCHの受信処理(例えば、復調、復号)失敗に対して、当該1つのデータをマルチキャスト/ブロードキャストを利用して再送してもよい。この場合、UEは、初送マルチキャストPDSCHを利用して送信されたデータが、マルチキャスト/ブロードキャストを利用して再送されると想定して、マルチキャストPDSCHの受信処理を行ってもよい。
 なお、本開示において、マルチキャスト/ブロードキャストを利用して再送されるマルチキャストPDSCHは、単に再送マルチキャストPDSCHと呼ばれてもよい。
 また、本開示において、初送のマルチキャストPDSCHは、第1のマルチキャストPDSCH、初送マルチキャストPDSCHなどと読み替えられてもよい。再送マルチキャストPDSCHは、第2のマルチキャストPDSCHと読み替えられてもよい。
 また、本開示において、初送マルチキャストPDSCHのスケジューリングDCIは、第1のDCIと呼ばれてもよい。また、本開示において、再送マルチキャストPDSCHのスケジューリングDCIは、第2のDCIと呼ばれてもよい。第1のDCIと第2のDCIとは、互いに異なるDCIであってもよい。
 本開示において、第1のDCI及び第2のDCIのそれぞれは、UE個別のDCIであってもよいし、複数UEに共通のDCIであってもよい。
 本開示において、UE個別のDCIをモニタするためのサーチスペースは、共通サーチスペースであってもよいし、UE固有の(UE specific)サーチスペースであってもよい。また、UE個別のDCIをモニタするためのサーチスペースは、マルチキャスト/ブロードキャストスケジュール専用のサーチスペース(又は、制御リソースセット(CORESET))であってもよい。
 本開示において、UE共通のDCIをモニタするためのサーチスペースは、共通サーチスペースであってもよいし、UE固有のサーチスペースであってもよい。また、UE共通のDCIをモニタするためのサーチスペースは、マルチキャスト/ブロードキャストスケジュール専用のサーチスペース(又は、制御リソースセット(CORESET))であってもよい。
 本開示において、UE個別のDCIは、UE個別のRNTI(例えば、セル(C-)RNTI)によってcyclic redundancy check(CRC)スクランブルされてもよいし、UE共通のRNTIによってCRCスクランブルされてもよい。また、UE個別のDCIは、マルチキャスト/ブロードキャストスケジュール専用のRNTIによってCRCスクランブルされてもよい。
 本開示において、UE共通のDCIは、UE個別のRNTI(例えば、C-RNTI)によってCRCスクランブルされてもよいし、UE共通のRNTIによってCRCスクランブルされてもよい。当該UE共通のRNTIは、新たに規定されるRNTIであってもよい。また、UE個別のDCIは、マルチキャスト/ブロードキャストスケジュール専用のRNTIでCRCスクランブルされてもよい。
《実施形態2-1》
 以下では、第2のDCIによって、再送マルチキャストPDSCHをスケジュールするケースについて説明する。
 第2のDCIによって、再送マルチキャストPDSCHをスケジューリングする場合、第1のDCIと、第2のDCIとが関連してもよい。例えば、第1のDCI及び第2のDCIの、DCIフォーマット、RNTI、当該DCIを運ぶPDCCHの制御チャネル要素(Control Channel Element(CCE))インデックス/アグリゲーションレベル、サーチスペース/制御リソースセット(Control Resource Set(CORESET))、の少なくとも1つが共通であってもよい。
 また、第1のDCI及び第2のDCIのNDIフィールドが、それぞれある値に制限されてもよい。このとき、第1のDCIのNDIフィールドの値は、N(例えば、1)であってもよい。また、第2のDCIのNDIフィールドの値は、M(例えば、0)であってもよい。第1のDCIのNDIフィールドの値及び第2のDCIのNDIフィールドの値は、互いに異なっていてもよい。
 図1は、マルチキャストPDSCHの再送手順の一例を示す図である。図1において、複数のUE(UE1及びUE2)は、DCI1によってスケジュールされるマルチキャストPDSCH1を受信する。当該マルチキャストPDSCH1は、1つのDLデータ(単にデータと呼ばれてもよい)を運ぶPDSCHである。当該PDSCH1を受信処理に成功したUE1は、肯定応答(HARQ-ACK、又は、単にACK)を、PUCCH1を用いて送信し、当該PDSCHの受信処理に失敗したUE2は、否定応答(HARQ-NACK、又は、単にNACK)を、PUCCH2を用いて送信する。その後、UEは、DCI2によってスケジュールされる、マルチキャストを利用したPDSCH2を受信する。当該マルチキャストPDSCH2は、マルチキャストPDSCH1によって運ばれたデータと同じデータを運ぶPDSCHである。
 なお、図1に示す、UE数、DCI、PDSCH、PUCCHリソースの数、時間/周波数の割当て位置はあくまで一例であり、この例に限られない。また、図1におけるDCI1及びDCI2は、UE共通のDCIであってもよいし、UE個別のDCIであってもよい。また、マルチキャストPDSCHに対するHARQ-ACK送信用リソースは、UE共通のHARQ-ACK送信用リソースであってもよいし、PUSCHリソースであってもよい。
 なお、本開示に示す以下の図において、初送マルチキャストPDSCHと再送マルチキャストPDSCHとは、同じDLデータを運ぶPDSCHであってもよい。また、マルチキャストPDSCHの繰り返し送信は、同じDLデータを運ぶマルチキャストPDSCHであってもよい。
 マルチキャストPDSCHの受信処理に成功したUE(マルチキャストPDSCHに対するACKを送信したUE)は、第2のDCIをモニタすることを要求されなくてもよい。また、マルチキャストPDSCHの受信処理に成功したUEは、再送マルチキャストPDSCHの受信を要求されなくてもよいし、マルチキャストPDSCHに対するHARQ-ACK情報を送信しなくてもよい。
 この場合、当該UEは、再送マルチキャストPDSCHに対するHARQ-ACKを送信しなくてもよい。また、当該UEは、再送マルチキャストPDSCHの受信結果に関わらず、再送マルチキャストPDSCHに対するACKを送信してもよい。これによれば、NWのHARQ-ACK受信エラーを回避することができる。
 マルチキャストPDSCHの受信処理に失敗したUE(マルチキャストPDSCHに対するNACKを送信したUE)は、第2のDCIをモニタし、再送マルチキャストPDSCHの受信を行ってもよい。
 この場合、当該UEは、再送マルチキャストPDSCHの受信結果に基づいて、ACK/NACKの送信を行ってもよい。また、予め規定/設定されているマルチキャストPDSCHの再送回数の上限値に達する場合、マルチキャストPDSCHに対するACK/NACKの送信は行わなくてもよい。マルチキャストPDSCHの再送回数の上限値は、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに設定されてもよい。
《実施形態2-2》
 以下では、初送マルチキャストPDSCHをスケジュールするDCI(第1のDCI)によって、再送マルチキャストPDSCHをスケジュールするケースについて説明する。
 再送マルチキャストPDSCHが、マルチキャストを利用して送信されるケースにおいて、初送マルチキャストPDSCHをスケジュールするDCI(第1のDCI)は、再送マルチキャストPDSCHをスケジュールしてもよい。言い換えれば、UEは、1つのスケジューリングDCIによってスケジュールされた初送マルチキャストPDSCH及び再送マルチキャストPDSCHの受信を行ってもよい。これによれば、再送マルチキャストPDSCHのスケジューリングDCIを受信するためのオーバヘッドを削減することができる。
 この場合、初送マルチキャストPDSCHの受信結果に関わらず、UEは、初送マルチキャストPDSCHに対するHARQ-ACK情報を送信してもよいし、送信しなくてもよい。
 なお、本開示において、再送マルチキャストPDSCHは、1又は複数回送信されてもよい。また、マルチキャストPDSCHの再送回数の上限値(最大数)は、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに設定されてもよいし、UE能力情報(UE Capability)でNWに報告される値であってもよい。
 この場合、第1のDCIに含まれるNDIフィールドの値は、ある値(例えば、1)であってもよい。また、複数のUEにマルチキャストが設定される場合、UEは、第1のDCIに含まれるNDIフィールドの値を、ある値(例えば、1)であると想定して(読み替えて)、マルチキャストPDSCHの受信を行ってもよい。また、第1のDCIに含まれるNDIフィールドの値は存在しなくてもよい。
 図2は、マルチキャストPDSCHの再送手順の別の一例を示す図である。図2において、複数のUE(UE1及びUE2)は、DCI1によってスケジュールされるマルチキャストPDSCH1を受信する。図2では、当該PDSCH1を受信処理に成功したUE1は、肯定応答(HARQ-ACK、又は、単にACK)を、PUCCH1を用いて送信し、当該PDSCHの受信処理に失敗したUE2は、否定応答(HARQ-NACK、又は、単にNACK)を、PUCCH2を用いて送信するが、ACK/NACKは送信されなくてもよい。その後、UEは、DCI1によってスケジュールされる、マルチキャストを利用したPDSCH2を受信する。
 なお、図2に示す、UE数、DCI、PDSCH、PUCCHリソースの数、時間/周波数の割当て位置はあくまで一例であり、この例に限られない。また、図2におけるDCI1は、UE共通のDCIであってもよいし、UE個別のDCIであってもよい。また、マルチキャストPDSCHに対するHARQ-ACK送信用リソースは、UE共通のHARQ-ACK送信用リソースであってもよいし、PUSCHリソースであってもよい。
 マルチキャストPDSCHの受信処理に成功したUE(マルチキャストPDSCHに対するACKを送信したUE)は、再送マルチキャストPDSCHの受信を要求されなくてもよいし、マルチキャストPDSCHに対するHARQ-ACK情報を送信しなくてもよい。
 この場合、当該UEは、再送マルチキャストPDSCHに対するHARQ-ACKを送信しなくてもよい。また、当該UEは、再送マルチキャストPDSCHの受信結果に関わらず、再送マルチキャストPDSCHに対するACKを送信してもよい。
 マルチキャストPDSCHの受信処理に失敗したUE(マルチキャストPDSCHに対するNACKを送信したUE)は、再送マルチキャストPDSCHの受信を行ってもよい。
 この場合、当該UEは、再送マルチキャストPDSCHの受信結果に基づいて、ACK/NACKの送信を行ってもよい。また、予め規定/設定されているマルチキャストPDSCHの再送回数の上限値に達する場合、マルチキャストPDSCHに対するACK/NACKの送信は行わなくてもよい。マルチキャストPDSCHの再送回数の上限値は、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに設定されてもよい。
 以下では、初送マルチキャストPDSCHのスケジューリングDCIによる、再送マルチキャストPDSCHのリソース指示について説明する。UEは、初送マルチキャストPDSCHのスケジューリングDCIに含まれる、再送マルチキャストPDSCHのリソースに関する情報を受信してもよい。
 初送マルチキャストPDSCHのスケジューリングDCIを用いて、再送マルチキャストPDSCHをスケジュールする場合、マルチキャストPDSCHのリソース指示を行うためのDCIフィールドが拡張されてもよい。
 具体的には、初送マルチキャストPDSCH及び再送マルチキャストPDSCHのそれぞれに適用する、DCIコードポイントと、マルチキャストPDSCHの時間ドメインリソース割り当て(Time Domain Resource Assignment(TDRA))、周波数ドメインリソース割り当て(Frequency Domain Resource Assignment(FDRA))の少なくとも一方と、の対応関係(テーブル)が、UEに通知/規定され、UEは、スケジューリングDCIに含まれるDCIコードポイントに基づいて、初送/再送マルチキャストPDSCHのリソースを決定してもよい。当該対応関係(テーブル)は、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに通知されてもよい。
 図3Aは、初送マルチキャストPDSCH及び再送マルチキャストPDSCHの、DCIによるリソース指示の一例を示す図である。図3Aにおいて、初送マルチキャストPDSCHリソースを決定するためのテーブル(DCIフィールド1)及び再送マルチキャストPDSCHリソースを決定するためのテーブル(DCIフィールド2)が、UEに通知/設定される。UEは、DCIフィールド1に示されるPDSCHリソースのうち、スケジューリングDCIによって通知される第1DCIコードポイントに対応する値のPDSCHリソースを用いて、初送マルチキャストPDSCHの受信を行う。また、UEは、DCIフィールド2に示されるPDSCHリソースのうち、スケジューリングDCIによって通知される第2DCIコードポイントに対応する値のPDSCHリソースを用いて、再送マルチキャストPDSCHの受信を行う。各DCIコードポイントに対応する値は、マルチキャストPDSCHのTDRA/FDRAフィールドに関連付いていてもよい。
 なお、図3Aに示す各テーブルはあくまで一例であり、DCIコードポイント及び当該コードポイントに対応する値はこれに限られない。
 また、初送マルチキャストPDSCHのスケジューリングDCIを用いて、再送マルチキャストPDSCHをスケジュールする場合、マルチキャストPDSCHのリソース指示を行うためのDCIフィールドが拡張されなくてもよい。言い換えれば、UEは、1つのDCIコードポイントに対応する、初送マルチキャストPDSCH及び再送マルチキャストPDSCHのリソースを用いて、初送/再送マルチキャストPDSCHの受信を行ってもよい。
 具体的には、初送マルチキャストPDSCH及び再送マルチキャストPDSCHに適用する、DCIコードポイントと、マルチキャストPDSCHのTDRA/FDRAフィールドと、の対応関係(テーブル)が、UEに通知/規定され、UEは、スケジューリングDCIに含まれる1つのDCIコードポイントに基づいて、初送及び再送マルチキャストPDSCHのリソースを決定してもよい。この場合、初送マルチキャストPDSCH及び再送マルチキャストPDSCHの時間/周波数リソースは、同じであってもよいし、異なっていてもよい。
 図3Bは、初送マルチキャストPDSCH及び再送マルチキャストPDSCHの、DCIによるリソース指示の一例を示す図である。図3Bにおいて、初送及び再送マルチキャストPDSCHリソースを決定するためのテーブル(DCIフィールド1)が、UEに通知/設定される。UEは、DCIフィールド1に示されるPDSCHリソースのうち、スケジューリングDCIによって通知されるDCIコードポイントに対応する値のPDSCHリソースを用いて、初送マルチキャストPDSCH及び再送マルチキャストPDSCHの受信を行う。各DCIコードポイントに対応する値は、マルチキャストPDSCHのTDRA/FDRAフィールドに関連付いていてもよい。
 なお、図3Bに示す各テーブルはあくまで一例であり、DCIコードポイント及び当該コードポイントに対応する値はこれに限られない。
 また、初送マルチキャストPDSCHのスケジューリングDCIを用いて、再送マルチキャストPDSCHをスケジュールする場合、UEは、スケジューリングDCIによって通知(設定された)初送マルチキャストPDSCHの時間/周波数リソースに対するオフセット値に基づいて、再送マルチキャストPDSCHの時間/周波数リソースを決定してもよい。
 当該オフセット値は、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに通知されてもよい。
 図3Cは、初送マルチキャストPDSCH及び再送マルチキャストPDSCHの、DCIによるリソース指示の一例を示す図である。UEは、初送マルチキャストPDSCH(マルチキャストPDSCH1)リソースから、再送マルチキャストPDSCH(マルチキャストPDSCH2)リソースまでの時間オフセット値(K)が通知/規定され、当該オフセット値に基づいて、再送マルチキャストPDSCHの受信を行う。図3Cにおいて、UEは、マルチキャストPDSCH1リソースから、Kスロット後に、マルチキャストPDSCH1と同じ周波数リソースを用いて、マルチキャストPDSCH2を受信する。
 なお、図3Cに示す例はあくまで一例であり、時間オフセットは、初送マルチキャストPDSCHリソースの開始又は終了から、再送マルチキャストPDSCHリソースの開始又は終了までの時間をスロット/シンボルによって表してもよい。
 また、図3Cに示す例では、時間オフセットがUEに通知/設定されるケースを示しているが、周波数オフセットがUEに通知/設定されてもよいし、時間オフセット及び周波数オフセットがUEに通知/設定されてもよい。
 当該周波数オフセットは、初送マルチキャストPDSCHリソースの最小/最大/平均物理リソースブロック(PRB)から、再送マルチキャストPDSCHリソースの最小/最大/平均PRBまでの値であってもよい。
 再送マルチキャストPDSCHが複数設定される場合、UEに、初送マルチキャストPDSCHリソースに対する、各再送マルチキャストPDSCHリソースの時間/周波数オフセット値が通知/設定されてもよい。また、再送マルチキャストPDSCHが複数設定される場合、UEに、直前のマルチキャストPDSCHリソースに対する、再送マルチキャストPDSCHリソースの時間/周波数オフセット値が通知/設定されてもよい。この場合のオフセット値は、1つであってもよいし、ある数(例えば、再送マルチキャストPDSCHが設定される数)だけUEに通知/設定されてもよい。
 以下では、初送マルチキャストPDSCHのスケジューリングDCIを用いて再送マルチキャストPDSCHをスケジュールする場合の、PDSCHからHARQフィードバックまでのタイミング(PDSCH-to-HARQ_feedback timing indicator、HARQフィードバックタイミング)及びHARQ-ACK送信用リソースの少なくとも一方を指示する方法について説明する。
 初送マルチキャストPDSCHのスケジューリングDCIを用いて再送マルチキャストPDSCHをスケジュールする場合、当該スケジューリングDCIに、特定フィールド(HARQフィードバックタイミングインジケータフィールド/別フィールド)が含まれてもよい。別フィールドは、HARQ-ACK送信用リソースの指示を行うためのフィールドであってもよい。
 具体的には、初送マルチキャストPDSCH及び再送マルチキャストPDSCHのそれぞれに適用する、特定フィールドのDCIコードポイントと、マルチキャストPDSCHに対するHARQフィードバックタイミング/HARQ-ACK送信用リソースと、の対応関係(テーブル)が、UEに通知/規定され、スケジューリングDCIに含まれるDCIコードポイントに基づいて、初送/再送マルチキャストPDSCHに対するHARQフィードバックタイミング/HARQ-ACK送信用リソースを決定してもよい。当該対応関係(テーブル)は、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに通知されてもよい。
 図4Aは、初送マルチキャストPDSCH及び再送マルチキャストPDSCHに対するHARQフィードバックタイミング/HARQ-ACK送信用リソースの決定方法の一例を示す図である。図4Aにおいて、初送マルチキャストPDSCHに対するHARQ-ACKの、HARQフィードバックタイミング/HARQ-ACK送信用リソースを決定するためのテーブル(DCIフィールド1)及び再送マルチキャストPDSCHに対するHARQ-ACKの、HARQフィードバックタイミング/HARQ-ACK送信用リソースを決定するためのテーブル(DCIフィールド2)が、UEに通知/設定される。
 図4Aにおいて、UEは、DCIフィールド1に示されるHARQフィードバックタイミング/HARQ-ACK送信用リソースのうち、スケジューリングDCIによって通知される第1DCIコードポイントに対応する値のHARQフィードバックタイミング/HARQ-ACK送信用リソースを用いて、初送マルチキャストPDSCHに対するHARQ-ACKの送信を行う。また、UEは、DCIフィールド2に示されるHARQフィードバックタイミング/HARQ-ACK送信用リソースのうち、スケジューリングDCIによって通知される第2DCIコードポイントに対応する値のHARQフィードバックタイミング/HARQ-ACK送信用リソースを用いて、再送マルチキャストPDSCHに対するHARQ-ACKの送信を行う。各DCIコードポイントに対応する値は、初送/再送マルチキャストPDSCHに対する、HARQフィードバックタイミング/HARQ-ACK送信用リソースに関連付いていてもよい。
 なお、図4Aに示す各テーブルはあくまで一例であり、DCIコードポイント及び当該コードポイントに対応する値はこれに限られない。
 また、初送マルチキャストPDSCHのスケジューリングDCIを用いて、再送マルチキャストPDSCHをスケジュールする場合、当該スケジューリングDCIに、マルチキャストPDSCHに対する、HARQフィードバックタイミングとHARQ-ACK送信用リソースと、の指示を行うための1つのDCIフィールドが含まれてもよい。言い換えれば、UEは、1つのDCIコードポイントに対応する、初送マルチキャストPDSCH及び再送マルチキャストPDSCHに対するHARQフィードバックタイミング及びHARQ-ACK送信用リソースを用いて、初送及び再送マルチキャストPDSCHに対するHARQ-ACKの送信を行ってもよい。
 具体的には、初送マルチキャストPDSCH及び再送マルチキャストPDSCHに適用する、DCIコードポイントと、マルチキャストPDSCHに対するHARQ-ACKの、HARQフィードバックタイミング/HARQ-ACK送信用リソースと、の対応関係(テーブル)が、UEに通知/規定され、UEは、スケジューリングDCIに含まれる1つのDCIコードポイントに基づいて、初送及び再送マルチキャストPDSCHに対するHARQ-ACKの、HARQフィードバックタイミング/HARQ-ACK送信用リソースを決定してもよい。この場合、初送マルチキャストPDSCH及び再送マルチキャストPDSCHに対するHARQ-ACKの、HARQフィードバックタイミング/HARQ-ACK送信用リソースは、同じであってもよいし、異なっていてもよい。
 図4Bは、初送マルチキャストPDSCH及び再送マルチキャストPDSCHに対するHARQフィードバックタイミング/HARQ-ACK送信用リソースの決定方法の一例を示す図である。図4Bにおいて、初送及び再送マルチキャストPDSCHに対するHARQフィードバックタイミング/HARQ-ACK送信用リソースを決定するためのテーブル(DCIフィールド1)が、UEに通知/設定される。UEは、DCIフィールド1に示されるHARQフィードバックタイミング/HARQ-ACK送信用リソースのうち、スケジューリングDCIによって通知されるDCIコードポイントに対応する値のHARQフィードバックタイミング/HARQ-ACK送信用リソースを用いて、初送及び再送マルチキャストPDSCHに対するHARQ-ACKの送信を行う。各DCIコードポイントに対応する値は、マルチキャストPDSCHに対するHARQ-ACKの、HARQフィードバックタイミング/HARQ-ACK送信用リソースに関連付いていてもよい。
 なお、図4Bに示す各テーブルはあくまで一例であり、DCIコードポイント及び当該コードポイントに対応する値はこれに限られない。
 また、初送マルチキャストPDSCHのスケジューリングDCIを用いて、再送マルチキャストPDSCHをスケジュールする場合、UEは、スケジューリングDCIによって通知(設定された)初送マルチキャストPDSCHのHARQ-ACK送信用リソースに対するオフセット値に基づいて、再送マルチキャストPDSCHのHARQ-ACK送信用リソースを決定してもよい。
 当該オフセット値は、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに通知されてもよい。
 図4Cは、初送マルチキャストPDSCH及び再送マルチキャストPDSCHに対するHARQ-ACK送信用リソースの決定方法の一例を示す図である。UEは、初送マルチキャストPDSCHのHARQ-ACK送信用リソース(PUCCH1)から、再送マルチキャストPDSCHのHARQ-ACK送信用リソース(PUCCH2)までの時間オフセット値(K)が通知/規定され、当該オフセット値に基づいて、初送及び再送マルチキャストPDSCHに対するHARQ-ACKの送信を行う。図4Cにおいて、UEは、PUCCH1から、Kスロット後に、PUCCH1と同じ周波数リソースを用いて、PUCCH2を送信する。
 なお、図4Cに示す例はあくまで一例であり、時間オフセットは、初送マルチキャストPDSCHのHARQ-ACK送信用リソースの開始又は終了から、再送マルチキャストPDSCHのHARQ-ACK送信用リソースの開始又は終了までの時間をスロット/シンボルによって表してもよい。
 また、図4Cに示す例では、時間オフセットがUEに通知/設定されるケースを示しているが、周波数オフセットがUEに通知/設定されてもよいし、時間オフセット及び周波数オフセットがUEに通知/設定されてもよい。
 当該周波数オフセットは、初送マルチキャストPDSCHのHARQ-ACK送信用リソースの最小/最大/平均PRBから、再送マルチキャストPDSCHのHARQ-ACK送信用リソースの最小/最大/平均PRBまでの値であってもよい。
 再送マルチキャストPDSCHが複数設定される場合、UEに、初送マルチキャストPDSCHのHARQ-ACK送信用リソースに対する、各再送マルチキャストPDSCHのHARQ-ACK送信用リソースの時間/周波数オフセット値が通知/設定されてもよい。また、再送マルチキャストPDSCHが複数設定される場合、UEに、直前のマルチキャストPDSCHのHARQ-ACK送信用リソースに対する、再送マルチキャストPDSCHのHARQ-ACK送信用リソースの時間/周波数オフセット値が通知/設定されてもよい。この場合のオフセット値は、1つであってもよいし、ある数(例えば、再送マルチキャストPDSCHが設定される数)だけUEに通知/設定されてもよい。
 以上、第2の実施形態によれば、マルチキャストPDSCHの再送が必要なUE数が多い場合であっても、少ないPDSCHリソースを用いて再送が可能となり、リソースの利用効率を向上させることができる。
<第3の実施形態>
 マルチキャストPDSCHは、ユニキャストを利用して再送されてもよい。言い換えれば、NWは、1つのデータを、マルチキャストPDSCHを介して送信し、複数のUEのいずれかのマルチキャストPDSCHの受信処理(例えば、復調、復号)失敗に対して、当該1つのデータを、ユニキャストを利用して再送してもよい。この場合、UEは、マルチキャストPDSCHが、ユニキャストを利用して再送されると想定して、マルチキャストPDSCHの受信処理を行ってもよい。
 なお、本開示において、ユニキャストとは、Rel.15、16で規定される方法にしたがってUE個別に送信されること、を意味してもよい。
 本実施形態において、第1のDCIと、第2のDCIとが制約されてもよい。例えば、第1のDCIは、マルチキャスト/ブロードキャスト専用のDCIであってもよいし、マルチキャスト/ブロードキャスト専用のDCIフォーマットが適用されるDCIであってもよいし、マルチキャスト/ブロードキャスト専用のRNTIによってCRCスクランブルされるDCIであってもよい。また、第2のDCIは、ユニキャストに用いられる(Rel.15/16で規定された)DCIであってもよいし、ユニキャストに用いられるDCIフォーマットが適用されるDCIであってもよいし、ユニキャストに用いられるRNTIによってCRCスクランブルされるDCIであってもよい。また、第2のDCIは、マルチキャスト/ブロードキャスト専用のDCIであってもよいし、マルチキャスト/ブロードキャスト専用のDCIフォーマットが適用されるDCIであってもよいし、マルチキャスト/ブロードキャスト専用のRNTIによってCRCスクランブルされるDCIであってもよい。
 本開示において、マルチキャスト用のDCIフォーマットとは、マルチキャスト/ブロードキャスト専用のDCIフォーマット、マルチキャスト/ブロードキャスト専用のRNTIでCRCスクランブルされるDCIに適用されるDCIフォーマット、の少なくとも一方であってもよい。
 また、本開示において、ユニキャスト用のDCIとは、Rel.15/16で規定されたDCIフォーマットが適用されるDCI、Rel.15/16で規定されたRNTIでCRCスクランブルされるDCI、の少なくとも一方であってもよい。
 また、例えば、第1のDCI及び第2のDCIの間において、DCIフォーマット、RNTI、当該DCIを運ぶPDCCHの制御チャネル要素(Control Channel Element(CCE))インデックス/アグリゲーションレベル、サーチスペース/制御リソースセット(Control Resource Set(CORESET))、の少なくとも1つが互いに関連付けられていてもよい。
 また、第1のDCI及び第2のDCIのNDIフィールドが、それぞれある値に制限されてもよい。このとき、第1のDCIのNDIフィールドの値は、N(例えば、1)であってもよい。また、第2のDCIのNDIフィールドの値は、M(例えば、0)であってもよい。第1のDCIのNDIフィールドの値及び第2のDCIのNDIフィールドの値は、互いに異なっていてもよい。
 図5は、マルチキャストPDSCHの再送手順の一例を示す図である。図5において、複数のUE(UE1及びUE2)は、DCI1によってスケジュールされるマルチキャストPDSCH1を受信する。当該PDSCH1を受信処理に成功したUE1は、PUCCH1を用いてACKを送信し、当該PDSCHの受信処理に失敗したUE2は、PUCCH2を用いてNACKを送信する。その後、UEは、DCI2によってスケジュールされる、ユニキャストを利用したPDSCH2を受信する。
 なお、図5に示す、UE数、DCI、PDSCH、PUCCHリソースの数、時間/周波数の割当て位置はあくまで一例であり、この例に限られない。また、図5におけるDCI1及びDCI2は、UE共通のDCIであってもよいし、UE個別のDCIであってもよい。また、マルチキャストPDSCHに対するHARQ-ACK送信用リソースは、UE共通のHARQ-ACK送信用リソースであってもよいし、PUSCHリソースであってもよい。
 第1のDCIと第2のDCIとは、異なるDCIフォーマットが適用されてもよい。具体的には、第1のDCIは、マルチキャスト/ブロードキャスト用のDCIフォーマットが適用されてもよい。また、第2のDCIは、ユニキャスト用のDCIフォーマットが適用されてもよい。
 また、第1のDCIフォーマットは、Rel.15/16で規定されたDCIフォーマットであってもよい。この場合、UEは、Rel.15/16で規定されたDCIフォーマットに含まれるフィールドのうち、特定のフィールドを、マルチキャスト用のパラメータに読み替えて、マルチキャストPDSCHの受信を行ってもよい。
 このとき、UEは、第1のDCI及び第2のDCIそれぞれに含まれるHARQプロセスIDが等しく、NDIフィールドの値が異なる(又は、同じ)である場合、第1のDCIによってスケジュールされる初送マルチキャストPDSCHと、第2のDCIによってスケジュールされる再送マルチキャストPDSCHとが、同一のデータを運ぶと判断してもよい。
 また、第1のDCIと第2のDCIとに、同じ(共通の)DCIフォーマットが適用されてもよい。具体的には、第1のDCI及び第2のDCIは、マルチキャスト/ブロードキャスト用のDCIフォーマットが適用されてもよい。
 このとき、第1のDCI及び第2のDCIそれぞれに含まれるHARQプロセスIDが等しく、NDIフィールドの値が異なる(又は、同じ)である場合、UEは、第1のDCIによってスケジュールされる初送マルチキャストPDSCHと、第2のDCIによってスケジュールされる再送マルチキャストPDSCHとが、同一のデータを運ぶと判断してもよい。
 この場合、マルチキャスト/ブロードキャスト用のDCIに、当該DCIが、マルチキャストPDSCHをスケジュールするかユニキャストPDSCHをスケジュールするかを、UEに通知するためのフィールドが規定/設定されてもよい。
 当該フィールドは、マルチキャスト/ブロードキャスト用のDCIの最初のビットであってもよいし、UEは、当該最初のビットに基づいて、後続のビットを、ユニキャスト用のフィールドあるいはマルチキャスト用のフィールドとして使用してもよい。
 また、この場合、マルチキャスト/ブロードキャスト用のDCIが、マルチキャストPDSCHをスケジュールするかユニキャストPDSCHをスケジュールするかについて、UEは、当該DCIに含まれる特定のフィールド値と、当該特定のフィールド値に適用されるルールとに基づいて、暗黙的に判断してもよい。
 第1のDCI及び第2のDCIに適用されるDCIフォーマットを同じとすることで、再送マルチキャストPDSCHを受信する必要のないUE(例えば、初送マルチキャストPDSCHの受信処理に成功したUE)が、再送マルチキャストPDSCHの受信を行わず、オーバヘッドを抑制することができる。
 第1のDCI及び第2のDCIの異同に関わらず、UEに、UE個別/UE共通の、再送用DCIリソース(サーチスペース、CORESET、モニタリング機会の少なくとも1つ)が設定されてもよい。UEは、当該再送用DCIリソースを用いて、第2のDCIのモニタリングを行ってもよい。
 マルチキャストPDSCHの受信処理に成功したUE(マルチキャストPDSCHに対するACKを送信したUE)は、第2のDCIのモニタリングを要求されなくてもよい。また、マルチキャストPDSCHの受信処理に成功したUEは、再送マルチキャストPDSCHの受信を要求されなくてもよいし、マルチキャストPDSCHに対するHARQ-ACK情報を送信しなくてもよい。
 この場合、当該UEは、再送マルチキャストPDSCHに対するHARQ-ACK情報を送信しなくてもよい。また、当該UEは、再送マルチキャストPDSCHの受信結果に関わらず、再送マルチキャストPDSCHに対するACKを示すHARQ-ACK情報を送信してもよい。
 マルチキャストPDSCHの受信処理に失敗したUE(マルチキャストPDSCHに対するNACKを送信したUE)は、第2のDCIをモニタし、再送マルチキャストPDSCHの受信を行ってもよい。
 この場合、当該UEは、再送マルチキャストPDSCHの受信結果に基づいて、ACK/NACKの送信を行ってもよい。また、予め規定/設定されているマルチキャストPDSCHの再送回数の上限値(最大数)に達する場合、マルチキャストPDSCHに対するACK/NACKの送信は行わなくてもよい。マルチキャストPDSCHの再送回数の上限値は、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに設定されてもよい。
 以上、第3の実施形態によれば、マルチキャストPDSCHの再送が必要なUE数が少ない場合であっても、NWが必要最低限のデータ伝送を行うことができ、リソース利用効率を向上させることができる。
<第4の実施形態>
 上記第2-第3の実施形態を適用する場合、再送マルチキャストPDSCHをスケジュールするDCI(第2のDCI)が、初送マルチキャストPDSCHの受信処理結果の判定(HARQ判定)より前に通知される場合(図6)が想定される。この場合、第2のDCIの受信時点で、初送マルチキャストPDSCHがUEに正しく受信されたかを、NW及びUEが認識できない。
 また、第2のDCIが、常に初送マルチキャストPDSCHに対応するHARQ-ACKの送信より後に受信されるとすると、再送完了までの遅延が大きくなってしまうことが危惧される。
 以下、本実施形態においては、適切な第2のDCIの受信タイミングを制御する方法について説明する。
 UEは、第2のDCIは、特定の時刻より後に送信されると想定してもよい。具体的には、UEは、第2のDCIを、初送マルチキャストPDSCHの受信後の特定の時刻より後に受信してもよい(受信すると想定してもよい)。
 当該特定の時刻は、HARQ-ACK処理時間(HARQ-ACK process time)に基づいて決定されてもよい。当該特定の時刻は、マルチキャストPDSCH受信後、HARQ-ACK処理時間経過後の時刻であってもよい。本開示において、当該HARQ-ACK処理時間は、PDSCH受信からHARQ送信まで(PDSCH to HARQ transmission)の最小時間であってもよい。当該HARQ-ACK処理時間は、仕様で規定されてもよいし、上位レイヤシグナリングによって設定されてもよいし、UE能力情報によってUEから報告されてもよい。
 また、当該特定の時刻は、ある時間リソース(例えば、シンボル、スロット、サブスロット)の整数倍(M倍)であってもよいし、Tms(Tは任意の値)であってもよい。値M及びTは、HARQ-ACK処理時間に基づいて決定されてもよい。また、上記値M及びTは、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに設定されてもよいし、のUE能力情報(UE Capability)でNWに報告される値であってもよい。
 これにより、UEの、初送マルチキャストPDSCHのHARQ-ACK検出を考慮した、マルチキャストPDSCHの再送を制御することができる。
 また、本開示において、当該特定の時刻は、別途上位レイヤシグナリングによって通知される時間/オフセットであってもよい。また、当該特定の時刻は、上記HARQ-ACK処理時間に、上位レイヤシグナリングによって通知される時間/オフセットを加算/減算したものであってもよい。
 図7は、再送マルチキャストPDSCHをスケジュールするDCIの受信タイミングの一例を示す図である。図7において、複数のUEは、DCI1によってスケジュールされる初送マルチキャストPDSCH(マルチキャストPDSCH1)を受信する。その後、UEは、DCI2によってスケジュールされる、再送マルチキャストPDSCH(マルチキャストPDSCH2)を受信する。
 図7において、UEは、マルチキャストPDSCH1のHARQ-ACK処理時間より後に、DCI2を受信する。言い換えれば、UEは、マルチキャストPDSCH1のHARQ-ACK処理時間より前に、DCI2を受信することを想定しない。
 なお、図7に示す、DCI、PDSCH、PUCCHリソースの数、時間/周波数の割当て位置はあくまで一例であり、この例に限られない。また、図7におけるDCI1及びDCI2は、UE共通のDCIであってもよいし、UE個別のDCIであってもよい。
 UEは、第2のDCIのモニタリング期間が、特定の時間より前か後かに基づいて、第2のDCIのモニタリング(受信、検出)動作を切り替えてもよい。なお、当該特定の時間は、HARQプロセス時間であってもよい。また、DCIのモニタリング期間は、DCIの測定時間、DCIの検出時間、DCIをモニタするために設定されたサーチスペース/CORESET/モニタリング機会、DCIの受信期間、などと読み替えられてもよい。
 第2のDCIの受信タイミングが、特定の時間より前である場合、UEは、第2のDCIを測定して、ブラインド検出を行ってもよい。第2のDCIの受信タイミングが、特定の時間より後である場合、UEは、初送マルチキャストPDSCHの受信処理結果に基づいて、第2のDCIのブラインド検出を行うか否かを決定してもよい。
 この場合、UEは、初送マルチキャストPDSCHの受信処理に成功した場合、第2のDCIのブラインド検出を行わず、初送マルチキャストPDSCHの受信処理に失敗した場合、第2のDCIのブラインド検出を行ってもよい(図8)。
 なお、図8に示すような例において、DCI1のリソース(サーチスペース、CORESET、モニタリング機会の少なくとも1つ)と、DCI2のリソースとに関して、UEは、上位レイヤシグナリングによって通知されてもよい。これによれば、UEは、初送用のDCIリソースと、再送用のDCIリソースとが異なることを認識し、初送用/再送用のDCIの受信制御を適切に行うことができる。
 以上、第4の実施形態によれば、再送マルチキャストPDSCHをスケジュールするDCIの受信タイミングに関わらず、UEの柔軟な再送マルチキャストPDSCHの受信制御が可能になる。
<第5の実施形態>
 本実施形態においては、1つのDCIで、マルチキャストPDSCHの繰り返し送信(repetition)を行うケースについて説明する。
 本実施形態において、各マルチキャストPDSCHのHARQプロセスIDは同じであってもよい。また、各マルチキャストPDSCHの冗長バージョン(Redundancy Version(RV))は同じであってもよいし、特定のルールに基づいて変更されてもよい。
 当該マルチキャストPDSCHの繰り返し数は、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに通知(設定)されてもよいし、UEのUE能力情報(UE Capability)でNWに報告される値であってもよい。また、当該マルチキャストPDSCHの繰り返し数は、NWからUEに設定される場合、UEは当該設定される値を使用してもよいし、NWからUEに設定されない場合、特定の値(例えば、4)を使用してもよい。
 図9は、マルチキャストPDSCHの繰り返し送信の一例を示す図である。図9において、UEは、1つのスケジューリングDCI(DCI1)によってスケジュールされる、マルチキャストPDSCHの繰り返し送信(マルチキャストPDSCH1-4)を受信する。図9において、マルチキャストPDSCHの繰り返し数は4である。
 なお、図9に示す、繰り返し数、DCI及びPDSCHリソースの数、時間/周波数の割当て位置はあくまで一例であり、この例に限られない。また、図9におけるDCI1は、それぞれUE共通のDCIとして図示しているが、UE個別のDCIであってもよい。
 マルチキャストPDSCHの繰り返し送信において、各マルチキャストPDSCHの周波数リソースは異なっていてもよい。各マルチキャストPDSCHの周波数リソースが異なることで、周波数ダイバーシチ効果を得ることができる。
 各マルチキャストPDSCHの時間/周波数リソースの候補が、上位レイヤシグナリングによってUEに複数設定されてもよい。次いで、当該複数候補の中から、マルチキャストPDSCHのスケジューリングDCIに含まれる、特定のフィールド(例えば、TDRA/FDRAフィールド)に基づいて、UEは、各マルチキャストPDSCHの時間/周波数リソースを決定してもよい。
 また、複数のマルチキャストPDSCHのうち、特定のマルチキャストPDSCHの時間/周波数リソースに対する時間/周波数オフセット値がUEに通知され、UEは、当該オフセット値に基づいて、特定のマルチキャストPDSCH以外のマルチキャストPDSCHの時間/周波数リソースを決定してもよい。スケジューリングDCIは、特定のマルチキャストPDSCHの時間/周波数リソースを指示してもよい。
 なお、当該特定のマルチキャストPDSCHは、複数のマルチキャストPDSCHのうち最初に送信されるマルチキャストPDSCHであってもよいし、複数のマルチキャストPDSCHのうち直前に送信されるマルチキャストPDSCHであってもよい。
 図10は、マルチキャストPDSCHの繰り返し送信の一例を示す図である。図10において、UEは、1つのスケジューリングDCI(DCI1)によってスケジュールされる、マルチキャストPDSCHの繰り返し送信(マルチキャストPDSCH1-4)を受信する。図10において、マルチキャストPDSCHの繰り返し数は4である。
 図10に示す例では、UEに、直前のマルチキャストPDSCHに対する周波数オフセット値が通知され、当該オフセット値に基づいて、UEは、複数のマルチキャストPDSCHの受信を行う。
 なお、図10に示す、繰り返し数、DCI及びPDSCHリソースの数、時間/周波数の割当て位置はあくまで一例であり、この例に限られない。また、図10におけるDCI1は、それぞれUE共通のDCIとして図示しているが、UE個別のDCIであってもよい。
 マルチキャストPDSCHの繰り返し送信において、各マルチキャストPDSCHに適用されるTCI状態は異なっていてもよい。言い換えれば、UEは、異なる空間ドメインフィルタを使用して、各マルチキャストPDSCHの受信を行ってもよい。各マルチキャストPDSCHに適用されるTCI状態が異なることで、空間ダイバーシチ効果を得ることができる。
 各マルチキャストPDSCHに適用されるTCI状態の候補が、上位レイヤシグナリングによってUEに複数設定されてもよい。次いで、UEは、マルチキャストPDSCHのスケジューリングDCIに含まれる特定のフィールドに基づいて、当該複数候補の中から、各マルチキャストPDSCHに適用されるTCI状態を決定してもよい。
 また、UEは、特定のルール(ビームサイクル、ビームサイクリング)に基づいて、各マルチキャストPDSCHに適用されるTCI状態を決定してもよい。ビームサイクルのための当該複数のTCI状態のリストは、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに通知(設定)されてもよい。また、最初のマルチキャストPDSCHに適用するTCI状態(初期(initial)TCI状態)が、UEに通知されてもよい。
 ビームサイクル(ビームサイクリング)とは、複数のTCI状態のリストが、巡回的に複数の信号/チャネル(例えば、PDSCH)に適用されることであってもよい。
 図11は、マルチキャストPDSCHの繰り返し送信の一例を示す図である。図11において、UEは、1つのスケジューリングDCI(DCI1)によってスケジュールされる、マルチキャストPDSCHの繰り返し送信(マルチキャストPDSCH1-4)を受信する。図11において、マルチキャストPDSCHの繰り返し数は4である。
 図11に示す例では、UEに、ビームとして、TCI状態#1、TCI状態#2、TCI状態#3、TCI状態#4、の順番が設定され、かつ、最初のマルチキャストPDSCHに対してTCI状態#1を適用することが通知される。UEは、当該サイクル及び初期TCI状態に基づいて、UEは、複数のマルチキャストPDSCHの受信を行う。
 なお、図11に示す、繰り返し数、DCI及びPDSCHリソースの数、時間/周波数の割当て位置、TCI状態、TCI状態のサイクル、初期TCI状態はあくまで一例であり、この例に限られない。また、図11におけるDCI1は、それぞれUE共通のDCIとして図示しているが、UE個別のDCIであってもよい。
 以下では、マルチキャストPDSCHの繰り返し送信に対する、UEのHARQ-ACKの送信について説明する。
 UEは、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACKを送信しなくてもよい。
 また、UEは、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACKを送信してもよい。
 例えば、UEは、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACKを、1つのHARQ-ACK送信用PUCCH/PUSCHリソースを用いて送信してもよい。この場合、UEは、各マルチキャストPDSCHの少なくとも1つの受信処理に成功した場合、ACKを送信してもよい。また、UEは、各マルチキャストPDSCHの全ての受信処理に失敗した場合、NACKを送信してもよい。
 この場合、当該HARQ-ACK送信用PUCCH/PUSCHリソースは、最後のマルチキャストPDSCHの最終シンボルより後に割り当てられてもよい。
 図12は、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACK送信の一例を示す図である。図12に示す、スケジューリングDCI及び各マルチキャストPDSCHの構成は、図9と同じである。UEは、マルキャストPDSCHの繰り返し送信に対するHARQ-ACK(ACK/NACK)を、PUCCHリソースを用いて送信する。
 なお、図12に示す、繰り返し数、DCI、PDSCH、PUCCHリソースの数、時間/周波数の割当て位置はあくまで一例であり、この例に限られない。また、図12におけるDCI1は、それぞれUE共通のDCIとして図示しているが、UE個別のDCIであってもよい。また、図12におけるHARQ-ACK送信用リソースはPUCCHリソースであるが、PUSCHリソースであってもよい。
 また、例えば、UEは、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACKを、各マルチキャストPDSCHに対して設定されるHARQ-ACK送信用PUCCH/PUSCHリソースを用いて送信してもよい。
 この場合、UEは、各マルチキャストPDSCHの受信処理を行い、受信処理に成功した最初のマルチキャストPDSCHに対応するACKを、当該マルチキャストPDSCHに対応するHARQ-ACK送信用リソースを用いて送信してもよい。
 一方、UEは、各マルチキャストPDSCHの受信処理を行い、受信処理に失敗したマルチキャストPDSCHに対応するHARQ-ACKを送信しなくてもよい。また、UEは、各マルチキャストPDSCHの受信処理を行い、受信処理に失敗したマルチキャストPDSCHに対応するNACKを、当該マルチキャストPDSCHに対応するHARQ-ACK送信用リソースを用いて送信してもよい。
 UEが、少なくとも1つのマルチキャストPDSCHの受信処理に成功した場合、最初の受信処理に成功したマルチキャストPDSCHより後に受信されるマルチキャストPDSCHに対するHARQ-ACKを送信しなくてもよい。これによれば、UEの不要な電力消費を避けることができる。
 また、UEが、少なくとも1つのマルチキャストPDSCHの受信処理に成功した場合、最初の受信処理に成功したマルチキャストPDSCHより後に受信されるマルチキャストPDSCH(後続のマルチキャストPDSCH)の受信処理結果に関わらず、当該後続のマルチキャストPDSCHに対してACKを送信してもよい。これによれば、NWによるエラーを回避することができ、通信の信頼性の向上を図ることができる。
 また、UEが、少なくとも1つのマルチキャストPDSCHの受信処理に成功した場合、後続のマルチキャストPDSCHの受信処理結果に関わらず、特定の回数だけ、当該後続のマルチキャストPDSCHに対してACKを送信してもよい。ACKを送信する回数は、最初の受信処理に成功したマルチキャストPDSCHに対するACKの送信、および、後続のマルチキャストPDSCHに対するACKを送信、の回数の合計値Nであってもよい。
 当該値Nは、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに通知(設定)されてもよいし、UEのUE能力情報(UE Capability)でNWに報告される値であってもよい。
 また、マルチキャストPDSCHに対して、特定のRV値が適用されてもよい。また、少なくとも最初に受信するマルチキャストPDSCHに対して、特定のRV値が適用されてもよい。特定のRV値は、セルフデコーダブル(Self-decodable)のRVであってもよい。セルフデコーダブルのRVは、特定のRV(例えば、RV=0、3)であってもよい。UEが、セルフデコーダブルのRVが適用されたマルチキャストPDSCHを受信することにより、当該RVが適用されたPUSCHに基づいて復号できる確率を高くすることができる。例えば、特定のRV値は、0であってもよいし、0と3であってもよい。
 図13は、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACK送信の一例を示す図である。図13に示す、スケジューリングDCI及び各マルチキャストPDSCHの構成は、図9と同じである。UEは、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACK(ACK/NACK)を、各マルチキャストPDSCHに対応するPUCCHリソースを用いて送信する。マルチキャストPDSCH1-4に対して、それぞれPUCCH1-4が、対応するHARQ-ACK送信用リソースである。
 図13に示す例において、あるUEは、マルチキャストPDSCH1の受信処理に失敗する。当該UEは、マルチキャストPDSCH1に対応するHARQ-ACK(NACK)を送信しない(送信してもよい)。次いで、当該UEは、マルチキャストPDSCH1の受信処理に成功する。当該UEは、マルチキャストPDSCH2に対応するHARQ-ACK(ACK)を、PUCCH2を用いて送信する。
 さらに、当該UEは、マルチキャストPDSCH2より後に受信されるマルチキャストPDSCH3及び4の受信処理結果に関わらず、マルチキャストPDSCH3及び4のそれぞれに対応するACKを送信する(送信しなくてもよい)。
 なお、図13に示す、繰り返し数、DCI、PDSCH、PUCCHリソースの数、時間/周波数の割当て位置はあくまで一例であり、この例に限られない。また、図13におけるDCI1は、それぞれUE共通のDCIとして図示しているが、UE個別のDCIであってもよい。また、図13におけるHARQ-ACK送信用リソースはPUCCHリソースであるが、PUSCHリソースであってもよい。
 以下では、マルチキャストPDSCHに対応するHARQ-ACKの送信に適用する、空間ドメインフィルタ(ULビーム、UL空間関係(spatial relation))について説明する。なお、以下に記載する空間ドメインフィルタの決定方法は、上記第1-第4の実施形態の少なくとも1つのHARQ-ACKに適用されてもよい。
 UEが、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACKを、1つのHARQ-ACK送信用PUCCH/PUSCHリソースを用いて送信する場合(図12の例で示されるようなケース)、UEは、特定の空間ドメインフィルタ(ULビーム)を用いて、当該HARQ-ACKを送信してもよい。
 当該空間ドメインフィルタは、上位レイヤシグナリング(例えば、RRCシグナリング)、MACシグナリング、物理レイヤシグナリング(例えば、DCI)の少なくとも1つを用いて、UEに通知(設定、指示)されてもよい。すなわち、UEは、設定されるPUSCH/PUCCHの空間関係情報(Spatial Relation Information(SRI))によって示される空間ドメインフィルタ、または、PUSCH/PUCCHの空間関係に対応する空間ドメインフィルタの少なくとも一方を用いて、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACKを送信してもよい。
 また、特定の空間ドメインフィルタは、Rel.16で規定された、デフォルト空間関係に対応する空間ドメインフィルタであってもよい。
 また、特定のドメインフィルタは、複数のマルチキャストPDSCHに適用される空間ドメインフィルタ(DLビーム)に対応する空間ドメインフィルタであってもよい。この場合、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACKに適用する空間ドメインフィルタは、最初に受信するマルチキャストPDSCHに適用される空間ドメインフィルタであってもよい。また、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACKに適用する空間ドメインフィルタは、最後に受信するマルチキャストPDSCHに適用される空間ドメインフィルタであってもよい。
 また、例えば、UEは、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACKを、各マルチキャストPDSCHに対して設定されるHARQ-ACK送信用PUCCH/PUSCHリソースを用いて送信する場合(図13の例で示されるようなケース)、UEは、特定の空間ドメインフィルタ(ULビーム)を用いて、当該各HARQ-ACKを送信してもよい。
 以下において、特定の空間ドメインフィルタについて説明するが、各HARQ-ACKに適用される特定の空間ドメインフィルタは、各HARQ-ACKに共通であってもよいし、HARQ-ACKごと別々に決定されてもよい。
 当該空間ドメインフィルタは、上位レイヤシグナリング(例えば、RRCシグナリング)、MACシグナリング、物理レイヤシグナリング(例えば、DCI)の少なくとも1つを用いて、UEに通知(設定、指示)されてもよい。すなわち、UEは、設定されるPUSCH/PUCCHのSRIによって示される空間ドメインフィルタ、または、PUSCH/PUCCHの空間関係に対応する空間ドメインフィルタの少なくとも一方を用いて、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACKを送信してもよい。
 また、特定の空間ドメインフィルタは、Rel.16で規定された、デフォルト空間関係に対応する空間ドメインフィルタであってもよい。
 また、特定のドメインフィルタは、複数のマルチキャストPDSCHに、共通に適用される空間ドメインフィルタ(DLビーム)に対応する空間ドメインフィルタであってもよい。この場合、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACKに適用する空間ドメインフィルタは、最初に受信するマルチキャストPDSCHに適用される空間ドメインフィルタであってもよい。また、マルチキャストPDSCHの繰り返し送信に対するHARQ-ACKに適用する空間ドメインフィルタは、最後に受信するマルチキャストPDSCHに適用される空間ドメインフィルタであってもよい。
 また、特定のドメインフィルタは、各HARQ-ACKに対応するマルチキャストPDSCHのそれぞれに適用される空間ドメインフィルタ(DLビーム)であってもよい。
 また、特定のドメインフィルタは、最後に受信処理に成功したマルチキャストPDSCHの空間ドメインフィルタ(DLビーム)に対応する空間ドメインフィルタであってもよい。この場合、UEは、受信処理に成功したマルチキャストPDSCHの空間ドメインフィルタに対応する空間ドメインフィルタを、後続のマルチキャストPDSCHに対するHARQ-ACKの送信に適用してもよい。
 以上、第5の実施形態によれば、低遅延かつPDCCHの低オーバヘッドを図ることができ、信頼性の高いマルチキャストPDSCH受信が可能になる。
<第6の実施形態>
 上位レイヤ(RRC)パラメータ(PDSCH設定(PDSCH-Config)、PUCCH設定(PUCCH-Config)、PUSCH設定(PUSCH-Config)の少なくとも1つ)に含まれる、少なくとも1つのパラメータは、ユニキャスト用パラメータ及びマルチキャスト用パラメータがそれぞれUEに通知されてもよい。例えば、UEは、PDSCH設定に含まれるTDRA及びFDRAについて、ユニキャスト用パラメータ及びマルチキャスト用パラメータをそれぞれ受信してもよい。
 なお、本実施形態は、上記第1-第5の実施形態の少なくとも1つに適用されてもよい。
 なお、本開示における、上位レイヤパラメータは、上位レイヤパラメータリスト、上位レイヤパラメータセット、上位レイヤパラメータテーブル、などと読み替えられてもよい。
 また、UEは、マルチキャスト用のリソース(例えば、CORESET、サーチスペース、モニタリング機会)において検出されたDCIが、マルチキャスト用に設定された上位レイヤパラメータを参照すると想定してもよいし、それ以外のDCIが、ユニキャスト用に設定された上位レイヤパラメータを参照すると想定してもよい。
 また、UEは、マルチキャスト用のDCIフォーマットが適用されるDCIが、マルチキャスト用に設定された上位レイヤパラメータを参照すると想定してもよいし、それ以外のDCIが、ユニキャスト用に設定された上位レイヤパラメータを参照すると想定してもよい。
 また、UEは、マルチキャスト用のRNTIでCRCスクランブルされるDCIが、マルチキャスト用に設定された上位レイヤパラメータを参照すると想定してもよいし、それ以外のDCIが、ユニキャスト用に設定された上位レイヤパラメータを参照すると想定してもよい。
 図14は、ユニキャスト用DCI及びマルチキャスト用DCIの上位レイヤパラメータ参照の一例を示す図である。図14において、UEは、ユニキャスト用のDCIが、ユニキャスト用に設定された上位レイヤパラメータリストを参照すると想定し、マルチキャスト用のDCIが、マルチキャスト用に設定された上位レイヤパラメータリストを参照すると想定する。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図15は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図16は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、マルチキャストされる下りリンク(DL)データの初送を送信してもよい。制御部110は、前記DLデータの復号結果に基づいてマルチキャストされる、前記DLデータの再送を制御してもよい(第2の実施形態)。
 送受信部120は、第1の下りリンク制御情報(DCI)を基づいてスケジュールされマルチキャストされる下りリンク(DL)データの初送を送信してもよい。制御部110は、第2のDCIに基づいてスケジュールされユニキャストされる前記DLデータの再送を、前記初送の復号結果に基づいて制御してもよい(第3の実施形態)。
 送受信部120は、1つの下りリンク制御情報(DCI)によってスケジュールされ複数の機会においてマルチキャストされる下りリンク(DL)データを送信してもよい。制御部110は、前記DCIに基づいて、前記DLデータに対するHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)情報の受信を制御してもよい(第5の実施形態)。
(ユーザ端末)
 図17は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、マルチキャストされる下りリンク(DL)データの初送を受信してもよい。制御部210は、前記DLデータの復号結果に基づいてマルチキャストされる、前記DLデータの再送の受信を制御してもよい(第2の実施形態)。
 制御部210は、前記DLデータの復号に成功した場合、前記初送に対するHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)情報を送信しないよう制御してもよい(第2の実施形態)。
 制御部210は、前記DLデータの復号に成功した場合、前記初送に対して、肯定応答を示すHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)情報を送信するよう制御してもよい(第2の実施形態)。
 送受信部220は、前記初送を運ぶ下りリンク共有チャネル(PDSCH)のリソースに関する情報と、前記再送を運ぶPDSCHのリソースに関する情報と、を含む下りリンク制御情報を受信してもよい(第2の実施形態)。
 送受信部220は、第1の下りリンク制御情報(DCI)を基づいてスケジュールされマルチキャストされる下りリンク(DL)データの初送を受信してもよい。制御部210は、第2のDCIに基づいてスケジュールされユニキャストされる前記DLデータの再送の受信を、前記初送の復号結果に基づいて制御してもよい(第3の実施形態)。
 送受信部220は、前記初送の受信タイミングから特定の時間以後に前記第2のDCIを受信してもよい(第4の実施形態)。
 制御部210は、前記第2のDCIの受信タイミングに基づいて、前記第2のDCIのブラインド検出を制御してもよい(第4の実施形態)。
 送受信部220は、1つの下りリンク制御情報(DCI)によってスケジュールされ複数の機会においてマルチキャストされる下りリンク(DL)データを受信してもよい。制御部210は、前記DCIに基づいて、前記DLデータに対するHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)情報の送信を制御してもよい(第5の実施形態)。
 制御部210は、前記HARQ-ACK情報を送信しないよう制御してもよい(第5の実施形態)。
 制御部210は、前記複数の機会のうち、少なくとも1つの機会において前記DLデータの受信処理に成功した場合、前記DLデータに対して1つの肯定応答を示すHARQ-ACK情報を送信してもよい(第5の実施形態)。
 制御部210は、前記複数の機会のうち、少なくとも1つの機会における前記DLデータの受信処理に成功した場合、前記少なくとも1つの機会のうち、最初の機会に対応するHARQ-ACKリソースを用いて、前記DLデータに対するHARQ-ACK情報を送信するよう制御してもよい(第5の実施形態)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図18は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  マルチキャストされる下りリンク(DL)データの初送を受信する受信部と、
     前記DLデータの復号結果に基づいてマルチキャストされる、前記DLデータの再送の受信を制御する制御部と、を有する端末。
  2.  前記制御部は、前記DLデータの復号に成功した場合、前記初送に対するHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)情報を送信しないよう制御する請求項1に記載の端末。
  3.  前記制御部は、前記DLデータの復号に成功した場合、前記初送に対して、肯定応答を示すHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)情報を送信するよう制御する請求項1に記載の端末。
  4.  前記受信部は、前記初送を運ぶ下りリンク共有チャネル(PDSCH)のリソースに関する情報と、前記再送を運ぶPDSCHのリソースに関する情報と、を含む下りリンク制御情報を受信する請求項1に記載の端末。
  5.  マルチキャストされる下りリンク(DL)データの初送を受信するステップと、
     前記DLデータの復号結果に基づいてマルチキャストされる、前記DLデータの再送の受信を制御するステップと、を有する端末の無線通信方法。
  6.  マルチキャストされる下りリンク(DL)データの初送を送信する送信部と、
     前記DLデータの復号結果に基づいてマルチキャストされる、前記DLデータの再送を制御する制御部と、を有する基地局。
PCT/JP2020/015827 2020-04-08 2020-04-08 端末、無線通信方法及び基地局 WO2021205569A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/015827 WO2021205569A1 (ja) 2020-04-08 2020-04-08 端末、無線通信方法及び基地局
EP20930520.0A EP4135396A4 (en) 2020-04-08 2020-04-08 TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION
JP2022513771A JPWO2021205569A5 (ja) 2020-04-08 端末、無線通信方法及びシステム
CN202080101646.2A CN115918146A (zh) 2020-04-08 2020-04-08 终端、无线通信方法以及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015827 WO2021205569A1 (ja) 2020-04-08 2020-04-08 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2021205569A1 true WO2021205569A1 (ja) 2021-10-14

Family

ID=78023606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015827 WO2021205569A1 (ja) 2020-04-08 2020-04-08 端末、無線通信方法及び基地局

Country Status (3)

Country Link
EP (1) EP4135396A4 (ja)
CN (1) CN115918146A (ja)
WO (1) WO2021205569A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11812447B2 (en) * 2020-08-06 2023-11-07 Qualcomm Incorporated Semi persistent scheduling physical downlink shared channels for new radio multicast

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120294223A1 (en) * 2009-09-24 2012-11-22 Nokia Corporation Multicast Service
WO2016163548A1 (ja) * 2015-04-10 2016-10-13 京セラ株式会社 基地局及びユーザ端末
WO2018021298A1 (ja) * 2016-07-28 2018-02-01 京セラ株式会社 無線端末及び方法
JP2018505613A (ja) * 2015-01-30 2018-02-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated ポイントツーマルチポイント送信に関するueのフィードバック

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11399364B2 (en) * 2017-03-24 2022-07-26 Samsung Electronics Co., Ltd. Apparatus and method for semi-persistent scheduling and power control in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120294223A1 (en) * 2009-09-24 2012-11-22 Nokia Corporation Multicast Service
JP2018505613A (ja) * 2015-01-30 2018-02-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated ポイントツーマルチポイント送信に関するueのフィードバック
WO2016163548A1 (ja) * 2015-04-10 2016-10-13 京セラ株式会社 基地局及びユーザ端末
WO2018021298A1 (ja) * 2016-07-28 2018-02-01 京セラ株式会社 無線端末及び方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
See also references of EP4135396A4

Also Published As

Publication number Publication date
JPWO2021205569A1 (ja) 2021-10-14
EP4135396A1 (en) 2023-02-15
CN115918146A (zh) 2023-04-04
EP4135396A4 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
WO2020246014A1 (ja) 端末及び無線通信方法
JP7193549B2 (ja) 端末、無線通信方法及びシステム
WO2020246013A1 (ja) 端末及び無線通信方法
WO2021090507A1 (ja) 端末及び無線通信方法
WO2020194404A1 (ja) ユーザ端末及び無線通信方法
WO2022097619A1 (ja) 端末、無線通信方法及び基地局
WO2021106169A1 (ja) 端末及び無線通信方法
WO2020235454A1 (ja) ユーザ端末及び無線通信方法
WO2021192301A1 (ja) 端末、無線通信方法及び基地局
WO2020194400A1 (ja) ユーザ端末及び無線通信方法
WO2021205570A1 (ja) 端末、無線通信方法及び基地局
WO2021192299A1 (ja) 端末、無線通信方法及び基地局
WO2021192302A1 (ja) 端末、無線通信方法及び基地局
WO2021106168A1 (ja) 端末及び無線通信方法
WO2021090506A1 (ja) 端末及び無線通信方法
WO2021029061A1 (ja) 端末及び無線通信方法
WO2021205569A1 (ja) 端末、無線通信方法及び基地局
WO2022059072A1 (ja) 端末、無線通信方法及び基地局
JP7351921B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022054236A1 (ja) 端末、無線通信方法及び基地局
WO2021205572A1 (ja) 端末、無線通信方法及び基地局
WO2020235453A1 (ja) ユーザ端末及び無線通信方法
WO2022014055A1 (ja) 端末、無線通信方法及び基地局
WO2021192300A1 (ja) 端末、無線通信方法及び基地局
WO2021192303A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020930520

Country of ref document: EP

Effective date: 20221108