WO2021192303A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2021192303A1
WO2021192303A1 PCT/JP2020/014297 JP2020014297W WO2021192303A1 WO 2021192303 A1 WO2021192303 A1 WO 2021192303A1 JP 2020014297 W JP2020014297 W JP 2020014297W WO 2021192303 A1 WO2021192303 A1 WO 2021192303A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception
qcl
pdsch
occasion
dci
Prior art date
Application number
PCT/JP2020/014297
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2022510401A priority Critical patent/JP7445367B2/ja
Priority to PCT/JP2020/014297 priority patent/WO2021192303A1/ja
Priority to US17/914,654 priority patent/US20230144020A1/en
Priority to CN202080101431.0A priority patent/CN115699936A/zh
Priority to EP20927133.7A priority patent/EP4132147A4/en
Publication of WO2021192303A1 publication Critical patent/WO2021192303A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows

Definitions

  • This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 3GPP Rel.15 or later, etc.
  • a future wireless communication system for example, NR
  • a plurality of user terminals (user terminal, User Equipment (UE)) communicate in an ultra-high density and high traffic environment.
  • UE User Equipment
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately receive multicast downlink data.
  • the terminal includes a receiving unit that receives one downlink control information of a plurality of downlink control information, and a receiving occasion corresponding to a pseudo-colocation (QCL) parameter among the plurality of received occasions. It has a control unit used for receiving data, and the plurality of downlink control information schedules the plurality of reception occasions, respectively, and the data is transmitted in each of the plurality of reception occasions.
  • a receiving unit that receives one downlink control information of a plurality of downlink control information, and a receiving occasion corresponding to a pseudo-colocation (QCL) parameter among the plurality of received occasions. It has a control unit used for receiving data, and the plurality of downlink control information schedules the plurality of reception occasions, respectively, and the data is transmitted in each of the plurality of reception occasions.
  • QCL pseudo-colocation
  • multicast downlink data can be appropriately received.
  • FIG. 1 is a diagram showing an example of group scheduling according to the first embodiment.
  • 2A and 2B are diagrams showing an example of the association between the reception occasion and the QCL assumption.
  • FIG. 3 is a diagram showing an example of selection of a reception occasion.
  • 4A and 4B are diagrams showing an example of the association between the received occasion and the PDSCH resource.
  • 5A and 5B are diagrams showing an example of the resource setting / instruction method 1.
  • 6A and 6B are diagrams showing an example of the resource setting / instruction method 2.
  • FIG. 7 is a diagram showing an example of FDRA according to Definition 1.
  • FIG. 8 is a diagram showing an example of FDRA according to Definition 2.
  • FIG. 9 is a diagram showing another example of FDRA according to Definition 2.
  • FIG. 10 is a diagram showing an example of a method for determining the TCI state according to the fourth embodiment.
  • FIG. 11 is a diagram showing an example of group scheduling according to the fifth embodiment.
  • 12A-12C is a diagram showing an example of a PDCCH monitoring method.
  • FIG. 13 is a diagram showing an example of the TCI state setting / activation method 1.
  • FIG. 14 is a diagram showing an example of the TCI state setting / activation method 2.
  • FIG. 15 is a diagram showing an example of the TCI state setting / activation method 3.
  • FIG. 16 is a diagram showing an example of TDRA according to the sixth embodiment.
  • FIG. 17 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 18 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 19 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 20 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • reception processing for example, reception, demapping, demodulation, etc.
  • transmission processing e.g., at least one of transmission, mapping, precoding, modulation, and coding
  • the TCI state may represent what applies to the downlink signal / channel.
  • the equivalent of the TCI state applied to the uplink signal / channel may be expressed as a spatial relation.
  • the TCI state is information related to signal / channel pseudo colocation (Quasi-Co-Location (QCL)), and may be called spatial reception parameters, spatial relation information, or the like.
  • QCL Quality of Service
  • the TCI state may be set in the UE on a channel-by-channel or signal-by-signal basis.
  • the TCI state of DL, the spatial relationship of UL, and the TCI state of UL may be read as each other.
  • QCL is an index showing the statistical properties of signals / channels. For example, when one signal / channel and another signal / channel have a QCL relationship, Doppler shift, Doppler spread, and average delay are performed between these different signals / channels. ), Delay spread, and spatial parameter (for example, spatial Rx parameter) can be assumed to be the same (QCL for at least one of these). You may.
  • the spatial reception parameter may correspond to the received beam of the UE (for example, the received analog beam), or the beam may be specified based on the spatial QCL.
  • the QCL (or at least one element of the QCL) in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be specified for the QCL.
  • QCL types AD QCL types with different parameters (or parameter sets) that can be assumed to be the same may be provided, and the parameters (which may be referred to as QCL parameters) are shown below:
  • QCL Type A QCL-A
  • QCL-B Doppler shift and Doppler spread
  • QCL type C QCL-C
  • QCL-D Spatial reception parameter.
  • Control Resource Set (CORESET)
  • channel or reference signal has a specific QCL (eg, QCL type D) relationship with another CORESET, channel or reference signal. It may be called a QCL assumption.
  • QCL Control Resource Set
  • the UE may determine at least one of the transmission beam (Tx beam) and the reception beam (Rx beam) of the signal / channel based on the TCI state of the signal / channel or the QCL assumption.
  • the TCI state may be, for example, information about the QCL of the target channel (in other words, the reference signal (Reference Signal (RS)) for the channel) and another signal (for example, another RS). ..
  • the TCI state may be set (instructed) by higher layer signaling, physical layer signaling, or a combination thereof.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • the channels for which the TCI state or spatial relationship is set are, for example, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), and an uplink shared channel (Physical Uplink Shared). It may be at least one of a Channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCH Downlink Control Channel
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the RS having a QCL relationship with the channel is, for example, a synchronization signal block (Synchronization Signal Block (SSB)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a measurement reference signal (Sounding). It may be at least one of Reference Signal (SRS)), CSI-RS for tracking (also referred to as Tracking Reference Signal (TRS)), and reference signal for QCL detection (also referred to as QRS).
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • Sounding Sounding
  • SRS Reference Signal
  • TRS Tracking Reference Signal
  • QRS reference signal for QCL detection
  • the SSB is a signal block including at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS)), and a broadcast channel (Physical Broadcast Channel (PBCH)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the SSB may be referred to as an SS / PBCH block.
  • the UE may receive setting information (for example, PDSCH-Config, tci-StatesToAddModList) including a list of information elements of the TCI state by upper layer signaling.
  • setting information for example, PDSCH-Config, tci-StatesToAddModList
  • the TCI state information element (RRC "TCI-state IE") set by the upper layer signaling may include a TCI state ID and one or more QCL information ("QCL-Info").
  • the QCL information may include at least one of information related to the RS having a QCL relationship (RS-related information) and information indicating the QCL type (QCL type information).
  • RS-related information includes RS index (for example, SSB index, non-zero power CSI-RS (Non-Zero-Power (NZP) CSI-RS) resource ID (Identifier)), cell index where RS is located, and RS position.
  • Information such as the index of the Bandwidth Part (BWP) to be used may be included.
  • both QCL type A RS and QCL type D RS, or only QCL type A RS can be set for the UE.
  • TRS When TRS is set as the RS of QCL type A, it is assumed that the same TRS is periodically transmitted over a long period of time, unlike the PDCCH or PDSCH demodulation reference signal (DeModulation Reference Signal (DMRS)). Will be done.
  • DMRS DeModulation Reference Signal
  • the UE can measure the TRS and calculate the average delay, delay spread, and so on.
  • a UE in which the TRS is set as the RS of the QCL type A in the TCI state of the DMRS of the PDCCH or PDSCH has the same parameters (average delay, delay spread, etc.) of the DMRS of the PDCCH or PDSCH and the QCL type A of the TRS. Since it can be assumed that there is, it is possible to obtain the type A parameters (average delay, delay spread, etc.) of DMRS of PDCCH or PDSCH from the measurement result of TRS. When performing at least one channel estimation of PDCCH and PDSCH, the UE can perform more accurate channel estimation by using the measurement result of the TRS.
  • a UE set with a QCL type D RS can determine a UE reception beam (spatial domain reception filter, UE spatial domain reception filter) using the QCL type D RS.
  • a TCI-state QCL type X RS may mean an RS that has a QCL type X relationship with a channel / signal (DMRS), and this RS is called the TCI-state QCL type X QCL source. You may.
  • DMRS channel / signal
  • TCI state for PDCCH Information about the QCL between the PDCCH (or DMRS antenna port associated with the PDCCH) and an RS may be referred to as the TCI state for the PDCCH or the like.
  • the UE may determine the TCI state for the UE-specific PDCCH (CORESET) based on the upper layer signaling. For example, for the UE, one or more (K) TCI states may be set by RRC signaling for each CORESET.
  • CORESET UE-specific PDCCH
  • the UE may activate one of the plurality of TCI states set by RRC signaling for each CORESET by MAC CE.
  • the MAC CE may be called a TCI state indicating MAC CE (TCI State Indication for UE-specific PDCCH MAC CE) for UE-specific PDCCH.
  • the UE may monitor the CORESET based on the active TCI state corresponding to the CORESET.
  • TCI state for PDSCH Information about the QCL between the PDSCH (or DMRS antenna port associated with the PDSCH) and a DL-RS may be referred to as the TCI state for the PDSCH or the like.
  • the UE may notify (set) M (M ⁇ 1) TCI states (QCL information for M PDSCHs) for PDSCH by higher layer signaling.
  • the number M of TCI states set in the UE may be limited by at least one of the UE capability and the QCL type.
  • the DCI used for scheduling the PDSCH may include a field indicating the TCI state for the PDSCH (for example, it may be called a TCI field, a TCI state field, or the like).
  • the DCI may be used for scheduling the PDSCH of one cell, and may be called, for example, DL DCI, DL assignment, DCI format 1_0, DCI format 1-1-1 and the like.
  • Whether or not the TCI field is included in the DCI may be controlled by the information notified from the base station to the UE.
  • the information may be information indicating whether or not a TCI field exists in DCI (present or absent) (for example, TCI existence information, TCI existence information in DCI, upper layer parameter TCI-PresentInDCI).
  • the information may be set in the UE by, for example, higher layer signaling.
  • TCI states When more than 8 types of TCI states are set in the UE, 8 or less types of TCI states may be activated (or specified) using MAC CE.
  • the MAC CE may be referred to as a UE-specific PDSCH TCI state activation / deactivation MAC CE (TCI States Activation / Deactivation for UE-specific PDSCH MAC CE).
  • TCI States Activation / Deactivation for UE-specific PDSCH MAC CE The value of the TCI field in DCI may indicate one of the TCI states activated by MAC CE.
  • the UE When the UE sets the TCI existence information set to "enabled” for the CORESET that schedules the PDSCH (CORESET used for the PDCCH transmission that schedules the PDSCH), the UE is set to the TCI field. It may be assumed that it exists in the DCI format 1-11 of the PDCCH transmitted on the CORESET.
  • the UE uses the TCI state or QCL assumption for the PDSCH to determine the QCL of the PDSCH antenna port for the PDCCH transmission that schedules the PDSCH. It may be assumed that it is the same as the TCI state or QCL assumption applied to.
  • the TCI presence information is set to "enabled"
  • the TCI field in the DCI in the component carrier (CC) that schedules (PDSCH) will be in the activated TCI state in the scheduled CC or DL BWP.
  • the UE uses a TCI that has a DCI and follows the value of the TCI field in the detected PDCCH to determine the QCL of the PDSCH antenna port. May be good.
  • the time offset between the reception of the DL DCI (scheduling the PDSCH) and the PDSCH corresponding to the DCI (PDSCH scheduled by the DCI) is equal to or greater than the threshold value, the UE performs the PDSCH of the serving cell. It may be assumed that the DM-RS ports are RSs and QCLs in the TCI state with respect to the QCL type parameters given by the indicated TCI state.
  • the indicated TCI state may be based on the activated TCI state in the slot with the scheduled PDSCH. If the UE is configured with a multi-slot PDSCH, the indicated TCI state may be based on the activated TCI state in the first slot with the scheduled PDSCH, and the UE may span the slot with the scheduled PDSCH. You may expect them to be the same. If the UE is configured with a CORESET associated with a search space set for cross-carrier scheduling, the UE will set the TCI presence information to "valid" for that CORESET and for the serving cell scheduled by the search space set. If at least one of the TCI states set in is containing a QCL type D, the UE may assume that the time offset between the detected PDCCH and the PDSCH corresponding to that PDCCH is greater than or equal to the threshold. good.
  • DL DCI In the RRC connection mode, DL DCI (PDSCH) is used both when the TCI information in DCI (upper layer parameter TCI-PresentInDCI) is set to "enabled” and when the TCI information in DCI is not set.
  • TCI information in DCI upper layer parameter TCI-PresentInDCI
  • the UE When the time offset between the reception of the scheduled DCI) and the corresponding PDSCH (PDSCH scheduled by the DCI) is less than the threshold (applicable condition, first condition), the UE is the PDSCH of the serving cell.
  • the DM-RS port has the lowest (lowest) CORESET-ID in the latest (latest) slot in which one or more CORESETs in the active BWP of the serving cell are monitored by the UE and is monitored.
  • the CORESET associated with the monitored search space is the RS and QCL related to the QCL parameters used for the PDCCH QCL instruction.
  • This RS may be referred to as the PDSCH default TCI state or the PDSCH default QCL assumption.
  • the time offset between the reception of the DL DCI and the reception of the PDSCH corresponding to the DCI may be referred to as a scheduling offset.
  • thresholds are QCL time duration, "timeDurationForQCL”, “Threshold”, “Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI", “Threshold-Sched-Offset”. , Schedule offset threshold, scheduling offset threshold, and the like.
  • the QCL time length may be based on the UE capability, for example, the delay required for PDCCH decoding and beam switching.
  • the QCL time length may be the minimum time required for the UE to perform PDCCH reception and application of spatial QCL information received in the DCI for PDSCH processing.
  • the QCL time length may be represented by the number of symbols for each subcarrier interval, or may be represented by the time (for example, ⁇ s).
  • the QCL time length information may be reported from the UE to the base station as UE capability information, or may be set in the UE from the base station using higher layer signaling.
  • the UE may assume that the DMRS port of the PDSCH is a DL-RS and QCL based on the TCI state activated for the CORESET corresponding to the minimum CORESET-ID.
  • the latest slot may be, for example, a slot that receives the DCI that schedules the PDSCH.
  • CORESET-ID may be an ID (ID for identifying CORESET, controlResourceSetId) set by the RRC information element "ControlResourceSet”.
  • the default TCI state is the activated TCI state that is applicable to the PDSCH in the active DL BWP of that CC and has the lowest ID. good.
  • the delay from PDCCH to PDSCH is for QCL. If it is shorter than the time length, or if the TCI state is not in the DCI for the scheduling, the UE will from the active TCI state that is applicable to the PDSCH in the active BWP of the scheduled cell and has the lowest ID. QCL assumptions for the scheduled PDSCH of may be acquired.
  • the transmission of at least one of the signal and the channel (hereinafter referred to as a signal / channel) from the NW to the UE is basically unicast transmission.
  • the same downlink (DL) data signal / channel eg, downlink shared channel (PDSCH)
  • PDSCH downlink shared channel
  • a group scheduling mechanism is being studied in order for the UE to receive the multicast / broadcast service.
  • the PDSCH settings include resource allocation (eg, resourceAllocation), PDSCH time domain allocation list (eg, pdsch-TimeDomainAllocationList), PDSCH aggregation factor (eg, PDSCH-Aggregation Factor).
  • resource allocation eg, resourceAllocation
  • PDSCH time domain allocation list e.g, pdsch-TimeDomainAllocationList
  • PDSCH aggregation factor eg, PDSCH-Aggregation Factor
  • pdsch-AggregationFactor contains UE-specific information.
  • group scheduling is not clear. If group scheduling is not performed properly, there is a risk of system performance degradation such as throughput degradation. For example, if the existing PDSCH setting is used for group scheduling, there are many UE individual parameters and the setting overhead becomes large.
  • a / B and “at least one of A and B” may be read interchangeably.
  • cells, CCs, carriers, BWPs, active DL BWPs, active UL BWPs, bands may be read interchangeably.
  • the index, the ID, the indicator, and the resource ID may be read as each other.
  • the RRC parameter, the upper layer parameter, the RRC information element (IE), and the RRC message may be read as each other.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • multicast and broadcast may be read as each other.
  • the PDSCH using multicast the PDSCH common to a plurality of UEs, the common PDSCH, the shared PDSCH, the multicast PDSCH, and the broadcast PDSCH may be read as each other.
  • DL data, codeword (CW), transport block (TB), and PDSCH may be read as each other.
  • QCL type D RS, TCI state or QCL assumed QCL type A RS may be read interchangeably.
  • the QCL type X-RS, the DL-RS associated with the QCL type X, the DL-RS having the QCL type X, the source of the DL-RS, the SSB, and the CSI-RS may be read as each other.
  • X is QCLed with Y (X is quasi co-located (QCLed) with Y), and X and Y are QCLed with QCL type D (X and Y are quasi co-located with'QCL).
  • X and Y are QCLed with respect to QCL type D (X and Y are quasi co-located with respect to'QCL-TypeD')
  • X and Y are in a QCL type D relationship. May be.
  • X and Y may be RS or RS resources.
  • One DCI may schedule DL data for multiple UEs.
  • One DCI may schedule the same DL data in multiple reception occasions.
  • the appropriate beam may differ in multiple UEs.
  • the plurality of reception occasions may be associated with a plurality of QCL parameters (eg, beam, QCL assumption, TCI state), respectively.
  • the DL data in each reception occasion may be transmitted (received) using the corresponding QCL parameters.
  • one DCI schedules the same DL data in received occasions (occasions) # 0 to # 3.
  • the DL data in occasions # 0, # 1, # 2, and # 3 are transmitted (received) using QCL parameters (QCL) # 0, # 1, # 2, and # 3, respectively.
  • the DCI is transmitted to all UEs.
  • the DL data in occasion # 0 is transmitted to UEs # 0 and # 1.
  • the DL data in Occasion # 1 is transmitted to UE # 2.
  • the DL data in Occasion # 2 is transmitted to UE # 3.
  • the DL data in occasion # 3 is transmitted to UE # 4.
  • DCI may be transmitted in the common search space or may be transmitted in the group common search space.
  • the PDCCH monitoring occasion for DCI may vary depending on the QCL used by the UE.
  • the UE may select a PDCCH monitoring occasion based on multiple QCL assumptions.
  • One DL data may be one code word (CW) or one transport block (TB).
  • the same DL data may have the same size (eg, transport block size (TBS)) or may have different sizes.
  • the base station does not transmit DL data at the same time using a plurality of beams.
  • the RRC parameters in the second and third embodiments are set in the PDSCH setting
  • the RRC parameters in the second and third embodiments are set in the PDCCH setting (for example, PDCCH-Config). It may be set in.
  • a search space for multicast PDSCH may be specified in the specification, and RRC parameters in the second and third embodiments may be set within the search space settings.
  • the UE can appropriately receive at least one of a plurality of DL data in a plurality of reception occasions.
  • the UE may set / instruct the association (QCL parameter information) between the reception occasion and the QCL assumption by at least one of the RRC parameter, the MAC CE, and the DCI.
  • association QCL parameter information
  • a plurality of associations may be set by the RRC parameter, and one of the plurality of associations may be activated by MAC CE.
  • the UE may set / instruct the association between the reception occasion and the QCL assumption by any of the following QCL assumption setting / instruction methods 1 and 2.
  • a list of reception occasions for DL data may be set for each PDSCH setting.
  • a QCL assumption may be set for each reception occasion.
  • the QCL assumption may be the index or ID of the corresponding SSB / CSI-RS / TRS / TCI state.
  • QCL assumption setting / instruction method 2 For example, as shown in FIG. 2B, a QCL assumption for the first occasion # 0 for DL data may be set for each PDSCH setting. The QCL assumptions for the remaining occasions may be implicitly set (or derived).
  • SSB # 0 is set as the QCL assumption for occasion # 0
  • the UE will increment the index of the SSB / CSI-RS / TRS / TCI state to assume QCL for the remaining occasions (occasion # 1).
  • SSB # 1 as the QCL assumption for the occasion # 2
  • SSB # 2 as the QCL assumption for the occasion # 2
  • SSB # 3 if SSB # 0 is set as the QCL assumption for occasion # 0, the UE will increment the index of the SSB / CSI-RS / TRS / TCI state to assume QCL for the remaining occasions (occasion # 1).
  • SSB # 1 as the QCL assumption for the occasion # 2
  • SSB # 2 as the QCL assumption for the occasion # 2
  • SSB # 3 As the QCL assumption for the occasion # 3.
  • the UE may select one or more reception occasions for DL data based on the QCL assumption.
  • the UE may select the QCL assumption according to at least one of the following QCL assumption determination methods 1 to 5.
  • the QCL assumption may be an SSB index corresponding to a recent PRACH transmission occasion.
  • the QCL assumption may be a DCI QCL assumption.
  • the DCI, the DCI that schedules DL data, and the PDCCH monitoring occasion in the common search space may be read interchangeably.
  • the QCL assumption may be the best beam in the (recent) L1-RSRP / L1-SINR beam report.
  • the QCL assumption may be the best beam identified to the UE by L1-RSRP / L1-SINR beam measurements. This best beam does not have to be reported.
  • the QCL assumption may depend on the UE implementation.
  • Which of the QCL assumption determination methods 1 to 5 is used may be specified in the specifications, may be set by higher layer signaling, or may be reported as UE capability.
  • the UE can appropriately determine the DL data corresponding to the QCL assumption among the plurality of DL data in the plurality of reception occasions.
  • the UE may set / indicate the association (resource information) between the received occasion and the PDSCH resource by at least one of the RRC parameter, MAC CE and DCI.
  • the RRC parameter may set multiple associations and the MAC CE may activate one of the multiple associations.
  • the PDSCH resource may be set according to any of the following resource setting / instruction methods 1 and 2.
  • a list of reception occasions for DL data may be set for each PDSCH setting.
  • a PDSCH resource may be set for each reception occasion.
  • the PDSCH resource may be configured by at least one of time domain resource allocation (TDRA) and frequency domain resource allocation (FDRA).
  • the PDSCH resource may be set for one receive occasion.
  • One reception occasion may be the first reception occasion or the last reception occasion.
  • a PDSCH resource for the first reception occasion of DL data may be set.
  • the PDSCH resources for the remaining received occasions may be implicitly set (or derived).
  • the (FD) resource may be the same as the FD resource of the (m-1) th reception occasion.
  • the T offset may be specified by the specification, set by the RRC parameter, or determined by the UE capability report.
  • the T offset may be the time from the start of the TD resource of the (m-1) th reception occasion to the start of the TD resource of the mth reception occasion, or the T offset of the (m-1) th reception occasion. It may be the time from the end of the TD resource to the start of the TD resource of the mth reception occasion.
  • both TDRA and FDRA of PDSCH are set for each reception occasion.
  • the PDSCH resource of each reception occasion can be flexibly set.
  • the PDSCH FDRA is set for each reception occasion in the resource setting / instruction method 1.
  • the TDRA of the first received occasion is set, the TDRA of the second and subsequent received occasions is not set, and it is derived based on the T offset.
  • the frequency domain resource of the first reception occasion is set and used to determine the remaining reception occasions.
  • the T offset is the time (interval) from the end of the TD resource of the (m-1) th received occasion to the start of the TD resource of the mth received occasion.
  • the relationship between the frequency domain resource of the (m-1) th reception occasion and the FD resource of the mth reception occasion may be determined by the frequency offset F offset.
  • the F offset may be specified by the specification, set by the RRC parameter, or determined by the UE capability report.
  • the F offset may be an index (number, number of PRBs) from the lowest frequency of the FD resource of the (m-1) th reception occasion to the lowest frequency of the FD resource of the mth reception occasion, or (m). -1) It may be an index (number, interval, number of PRBs) from the highest frequency of the FD resource of the third reception occasion to the lowest frequency of the FD resource of the mth reception occasion.
  • the T offset is the time (interval) from the end of the TD resource of the (m-1) th reception occasion to the start of the TD resource of the mth reception occasion.
  • the F offset is the PRB index (PRB) from the lowest frequency (first PRB index) of the FD resource of the (m-1) th received occasion to the lowest frequency (first PRB index) of the FD resource of the mth received occasion. Number).
  • TDRA / FDRA The value of TDRA / FDRA may follow any of the following definitions 1 and 2.
  • the definition of the TDRA / FDRA value of the second and subsequent received occasions may be the same as the definition of the TDRA / FDRA value of the first received occasion.
  • each FD resource of occasions # 0 to # 3 may be represented as a PRB index (number of PRBs) from the first PRB index of BWP.
  • the TD resource may be expressed as the time from the scheduling DCI (start or end) (for example, at least one of the number of slots, the number of symbols, the time [ms], and the start and length indicator value (SLIV)).
  • the definition of the TDRA / FDRA value for the second and subsequent reception occasions may differ from the definition of the TDRA / FDRA value for the first reception occasion.
  • the TD / FD resource of the m (m ⁇ 2) th reception occasion may be expressed as a difference (relative value) from the TD / FD resource of the first reception occasion.
  • the first PRB index of the FD resource of occasion # 0 is represented as a PRB index from the first PRB index of BWP.
  • the first PRB index of each of the FD resources of occasions # 1, # 2, and # 3 is represented as the PRB index from the first PRB index of the FD resource of occasion # 0.
  • the TD / FD resource of the m (m ⁇ 2) th received occasion may be expressed as a difference (relative value) from the TD / FD resource of the (m-1) th received occasion.
  • the first PRB index of the FD resource of occasion # 0 is represented as a PRB index from the first PRB index of BWP.
  • ⁇ PDSCH setting The following at least one parameter for PDSCH may be common to all receiving occasions.
  • ⁇ Data scrambling identification information eg dataScramblingIdentityPDSCH
  • PDSCH mapping type A for example, dmrs-DownlinkForPDSCH-MappingTypeA
  • PDSCH mapping type B for example, dmrs-DownlinkForPDSCH-MappingTypeB
  • VRB Virtual Resource Block
  • PRB Physical Resource Block
  • Interleaver eg vrb-ToPRB-Interleaver
  • -PDSCH aggregation factor eg, pdsch-AggregationFactor
  • Rate match pattern list for addition and change
  • rateMatchPatternToAddModList for example, rateMatchPatternToAddModList
  • rateMatchPatternToReleaseList for example, rateMatchPatternToReleaseList
  • Rate match pattern group 1 for example, rateMatchPattern
  • the parameters common to all reception occasions may be the parameters of the PDSCH settings excluding the FDRA, TDRA, and TCI states.
  • the UE can appropriately determine the PDSCH resource of each of the plurality of received occasions.
  • the existence of TCI in DCI (existence of TCI in DCI, for example, tci-PresentInDCI) may not be set.
  • TCI in DCI may be set for the multicast PDSCH.
  • the active TCI status for PDSCH may be set / notified for each received occasion, and one value of a field (eg, TCI field) in the DCI may indicate the TCI status of all received occasions.
  • the UE may select a PDSCH reception occasion based on the QCL assumption and use the TCI state indicated by the scheduling DCI to receive the PDSCH DMRS (the PDSCH DMRS is QCLed with the indicated TCI state). You can assume that).
  • the beam can be controlled more appropriately. ..
  • a plurality of TCI states are activated for each of occasions # 0 to # 3.
  • the UE determines QCL # 1 as the QCL assumption and determines the occasion # 1 corresponding to the QCL assumption.
  • the PDSCH scheduling DCI indicates TCI status # 1-3.
  • occasion # 1 the UE uses the TCI state # 1-3 instructed to receive the DMRS of the PDSCH.
  • the UE can appropriately determine the TCI state used for receiving the PDSCH DMRS in the reception occasion.
  • Multiple DCIs may each schedule multiple reception occasions.
  • the same DL data may be transmitted in each of the plurality of reception occasions.
  • a DCI using a QCL # x may schedule DL data with a QCL # x'for multiple UEs.
  • the DCI detected in the (corresponding) PDCCH monitoring occasion associated with a QCL may schedule DL data in the received occasion associated with that QCL.
  • QCL # 0 to # 3 are used for DCI # 0 to # 3 in one search space, respectively.
  • the search space is monitored by UEs # 0 through # 4.
  • the search space may be a common search space, a group common search space, or a group scheduling search space.
  • the UE may determine the PDCCH monitoring occasion to receive the DCI according to the QCL (TCI state) for the PDCCH.
  • the monitoring occasion of the PDCCH may differ depending on the QCL for the PDCCH.
  • DCI # 0 to # 3 schedule occasions # 0 to # 3, respectively.
  • the same DL data is transmitted in occasions # 0 to # 3.
  • the DL data in occasions # 0, # 1, # 2, and # 3 are transmitted using QCL # 0, # 1, # 2, and # 3, respectively.
  • the DL data in occasion # 0 is transmitted to UEs # 0 and # 1.
  • the DL data in Occasion # 1 is transmitted to UE # 2.
  • the DL data in Occasion # 2 is transmitted to UE # 3.
  • the DL data in occasion # 3 is transmitted to UE # 4.
  • PDCCH monitoring may follow at least one of the following PDCCH monitoring methods 1 to 3.
  • a plurality of DCIs may be transmitted (received) in the common search space or the group common search space.
  • the UE may select a PDCCH monitoring occasion corresponding to the QCL set / indicated for the PDCCH for receiving the DCI.
  • DCI # 0 to # 3 are transmitted in one search space.
  • DCI # 0 to # 3 are transmitted using QCL # 0 to # 3, respectively.
  • DCI # 0 to # 3 are transmitted in PDCCH monitoring occasions (MO) # 0 to # 3, respectively.
  • the UE monitors the DCI in a PDCCH monitoring occasion that corresponds to the QCL for the PDCCH.
  • a common search space or a group common search space may be set for each of the plurality of QCLs.
  • the UE may select a search space corresponding to the QCL set / instructed for the PDCCH for receiving the DCI.
  • DCI # 0 to # 3 are transmitted in the search space (SS) # 0 to # 3, respectively.
  • DCI # 0 to # 3 are transmitted using QCL # 0 to # 3, respectively.
  • the UE monitors the DCI in the search space corresponding to the QCL for the PDCCH.
  • a common CORESET or a group common CORESET may be set for each of the plurality of QCLs.
  • the UE may select a search space corresponding to the QCL set / instructed for the PDCCH for receiving the DCI.
  • DCI # 0 to # 3 are transmitted in CORESET (CR) # 0 to # 3, respectively.
  • DCI # 0 to # 3 are transmitted using QCL # 0 to # 3, respectively.
  • the UE monitors the DCI in the CORESET corresponding to the QCL for the PDCCH.
  • the UE detects DCI by monitoring the common search space or the group scheduling search space set as the group common search space.
  • the search space for group scheduling may differ depending on the QCL assumption.
  • the group scheduling search space may have different time domain resources (symbols, slots, etc.) depending on the QCL assumption.
  • the UE may assume that the same DL data is scheduled in each PDCCH monitoring occasion (DCI in each PDCCH monitoring occasion) in the group scheduling search space.
  • the UE may set the search space for group scheduling by higher layer signaling.
  • the UE can receive any DL data of occasions # 0 to # 3.
  • the UE may follow any of the following decoding operations 1 to 3.
  • the UE may decode all of DCI # 0 to # 3, and if it succeeds in decoding any of the DL data of occasions # 0 to # 3, it may transmit (report) HARQ-ACK.
  • Decoding operation 2 The UE decodes all of DCI # 0 to # 3, decodes the DL data in one occasion based on the QCL assumption among the occasions # 0 to # 3, and if the decoding of the DL data is successful, HARQ- An ACK may be sent (reported).
  • Decryption operation 3 The UE decodes the DCI in one PDCCH monitoring occasion based on the QCL assumption among DCI # 0 to # 3, and decodes the DL data scheduled by the DCI (DL data in the reception occasion based on the QCL assumption). If the DL data is successfully decoded, HARQ-ACK may be transmitted (reported).
  • x x'.
  • the PDSCH QCL scheduled by the DCI detected in the group scheduling search space may be equal to the DCI QCL.
  • the PDSCH QCL scheduled by the DCI detected in the group scheduling search space may be different from the DCI QCL.
  • the QCL of each reception occasion of the DL data may be set / notified / indicated by the RRC parameter / MAC CE / DCI.
  • the QCL of each reception occasion of the DL data may be determined in the same manner as in the second embodiment.
  • the DCI detected in the group scheduling search space may be the following DCI 1 or 2.
  • the DCI detected in the group scheduling search space does not have (does not include) a field for DCI level beam indication.
  • the TCI field for PDSCH may be 0 bits, or the presence of TCI in DCI (eg, tci-PresentInDCI) may not be set.
  • DCI1 may be used.
  • the DCI detected in the group scheduling search space has (includes) a field for DCI level beam indication.
  • the TCI field for PDSCH may be 3 bits, or the existence of TCI in DCI may be set.
  • DCI2 may be in DCI format 1-1.1. According to DCI 1, since the beam can be indicated by DCI, more flexible instruction becomes possible. In addition, it becomes possible to improve the coverage of multicast / broadcast. In addition, high-speed beam control becomes possible for high-speed mobile UEs.
  • TCI status setting / activation The PDSCH TCI status list setting / activation may follow at least one of the following TCI status setting / activation methods 1 to 3.
  • the PDSCH TCI status list may be set / activated.
  • the PDSCH TCI status list may be set / activated for all received occasions.
  • the UE may use the same set of active TCI states for PDSCH for all reception occasions. If different QCL parameters are expected for multiple receive occasions, the TCI fields in the multiple scheduling DCIs may point to different code points.
  • TCI states # 0 to # 7 are activated for occasions # 0 to # 3.
  • the TCI field in DCI # 1 that schedules the DL data for occasion # 1 points to code point 011.
  • the UE uses the TCI state # 3, which corresponds to the code point 011 among the activated TCI states # 0 to # 7, to receive the DL data of the occasion # 1.
  • the PDSCH TCI status list may be set / activated for each received occasion.
  • the TCI states # 0-0 to # 0-7 for occasion # 0 are activated, and the TCI states # 1-0 to # 1-7 for occasion # 1 are activated.
  • the TCI field in DCI # 1 that schedules the DL data for occasion # 1 points to code point 011.
  • the UE uses the TCI state # 1-3 corresponding to the code point 011 among the TCI states # 1-0 to # 1-7 activated for the occasion # 1 to receive the DL data of the occasion # 1.
  • the TCI status list of PDSCH may be set / activated for each DCI / PDCCH / CORESET / search space / PDCCH monitoring occasion.
  • TCI states # 0-0 to # 0-7 for PDCCH carrying DCI # 0 are activated, and TCI states # 1-0 to # 1-7 for PDCCH carrying DCI # 1 are activated. Will be done.
  • the TCI field in DCI # 1 that schedules the DL data for occasion # 1 points to code point 011.
  • the UE performs TCI state # 1-3 corresponding to code point 011 in occasion # 1 scheduled by DCI # 1. Used for receiving DL data.
  • the DCI size in each PDCCH monitoring occasion in one group scheduling search space may follow at least one of the following DCI sizes 1 and 2.
  • the DCI size within each PDCCH monitoring occasion in one group scheduling search space may be equal.
  • blind decoding of the UE can be simplified.
  • in-phase addition of the bit before decoding or the received signal before demodulation becomes possible.
  • the value of the upper layer parameter (specific parameter, for example, tci-PresentInDCI) for determining the DCI size may be set in common for all PDCCH monitoring occasions.
  • the UE may follow any of the following specific parameter determination methods 1 to 4.
  • Specific parameter determination method 1 When a specific parameter is set for a certain reception occasion, a specific parameter is always set for another reception occasion. The UE applies specific parameters for the received occasion to the fields in the corresponding DCI.
  • the UE sets the PDSCH TCI status list for other reception occasions and the active TCI. Assume that the status is notified (activated).
  • the UE also uses certain parameters set for one receive occasion for other receive occasions.
  • the UE applies specific parameters for the received occasion to the fields in the corresponding DCI.
  • the UE will perform the PDSCH of the first reception occasion. Based on the active TCI state for PDSCH, the active TCI state for PDSCH of the second reception occasion is derived.
  • the UE obtains the instruction regarding the specific parameter from the field in the DCI for the received occasion in which the specific parameter is set / notified, and ignores the field related to the specific parameter in the DCI for the received occasion in which the specific parameter is set / notified.
  • the UE will perform the DCI for the first receive occasion.
  • the TCI state (beam) for PDSCH of the first reception occasion is determined, and the TCI field of DCI for the second reception occasion is ignored.
  • Specific parameter determination method 4 The UE does not use the specific parameters set / notified for a given occasion. The UE ignores fields related to specific parameters in each DCI.
  • the UE will perform DCI for all receive occasions. Ignore the TCI field of.
  • the default TCI state may be used for PDSCH reception for that received occasion.
  • the default TCI state may be specified in the specification or set / notified by higher layer signaling.
  • the DCI size within each PDCCH monitoring occasion in one group scheduling search space may be different.
  • the value of the upper layer parameter (specific parameter, for example, tci-PresentInDCI) for determining the DCI size may be set for each PDCCH monitoring occasion.
  • the setting / activation of the TCI status list for PDSCH may be performed for each received occasion or for each DCI.
  • the UE can appropriately monitor the DCI that schedules DL data in at least one of a plurality of received occasions.
  • the UE may set / indicate the association (resource information) between the received occasion and the PDSCH resource by at least one of the RRC parameter, MAC CE and DCI.
  • the RRC parameter may set multiple associations and the MAC CE may activate one of the multiple associations.
  • At least one of the following allocations 1 and 2 may be used for a PDSCH having multiple reception occasions.
  • a PDSCH resource may be set for each received occasion or DCI.
  • a list of reception occasions or DCIs for DL data may be set in one PDSCH setting.
  • a PDSCH resource may be set for each received occasion or DCI.
  • the PDSCH resource may include at least one of TDRA and FDRA.
  • a PDSCH resource may be set for one reception occasion (eg, first or last reception occasion) or one DCCI (eg, first or last DCI).
  • one PDSCH resource for one reception occasion (one DCI) for DL data may be set in one PDSCH setting.
  • the PDSCH resource may be used to derive the PDSCH resource for the remaining Receive Occasion (DCI) (may be implied).
  • DCI Receive Occasion
  • the relationship between the TD resource of the (m-1) th receive occasion and the TD resource of the mth receive occasion may be specified in the specification or set by the RRC parameter. It may be reported by UE capability.
  • the FD resource of the m-th reception occasion may be the same as the FD resource of the (m-1) th reception occasion.
  • TDRA / FDRA may follow any of the definitions 1 and 2 of TDRA / FDRA of the third embodiment.
  • the UE is not only scheduled DCI. Since it is necessary to detect the DCI before that, the TD / FD resource of the m-th reception occasion in the present embodiment is the TD / FD resource of the first reception occasion or the (m-1) th reception occasion. It does not have to depend on TD / FD resources.
  • the FD resource of each received occasion may be represented as a PRB index from the first PRB index of the BWP.
  • the TD resource for each received occasion may be represented as the time (number of slots / number of symbols) from the scheduled DCI (start or end).
  • the UE can appropriately determine the resource of the PDSCH having a plurality of reception occasions.
  • a first function using at least one of the first to third embodiments and a second function using at least one of the fourth to sixth embodiments may be specified in the specifications.
  • the UE may set either the first function or the second function by higher layer signaling.
  • the UE may report that it supports at least one of the first and second functions.
  • a specific radio network temporarilyally identifier (RNTI) for scheduling at least one PDSCH of the first to sixth embodiments may be defined and set in the UE.
  • the DCI that schedules the PDSCH may have a cyclic redundancy check (CRC) that is scrambled by a particular RNTI.
  • the PDSCH data may be scrambled by a particular RNTI.
  • the UE may decode the DCI or PDSCH assuming scrambling by the specific RNTI.
  • the specific RNTI may be set for a plurality of group UEs, or may be set individually for each UE.
  • the specific RNTI may be an existing RNTI (for example, RA-RNTI, C-RNTI, etc.).
  • the DCI that schedules the PDSCH may have a CRC scrambled by a particular RNTI.
  • the PDSCH data may be scrambled by a particular RNTI.
  • the UE may decode the DCI or PDSCH assuming scrambling by the specific RNTI.
  • the specific RNTI may be set for a plurality of group UEs, or may be set individually for each UE.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 17 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the radio communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR))
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 18 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may transmit downlink control information.
  • the control unit 110 may use the reception occasion corresponding to the pseudo-collocation (QCL) parameter among the plurality of reception occasions for data transmission.
  • the downlink control information may schedule the plurality of reception occasions.
  • the data may be transmitted in each of the plurality of reception occasions.
  • the transmission / reception unit 120 may transmit a plurality of downlink control information.
  • the control unit 110 may use the reception occasion corresponding to the pseudo-collocation (QCL) parameter among the plurality of reception occasions for data transmission.
  • the plurality of downlink control information may schedule the plurality of reception occasions, respectively.
  • the data may be transmitted in each of the plurality of reception occasions.
  • FIG. 19 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitting unit and the receiving unit of the user terminal 20 in the present disclosure may be composed of at least one of the transmitting / receiving unit 220 and the transmitting / receiving antenna 230.
  • the transmission / reception unit 220 may receive downlink control information.
  • the control unit 210 may use the reception occasion corresponding to the pseudo collocation (QCL) parameter among the plurality of reception occasions for data reception.
  • the downlink control information may schedule the plurality of reception occasions.
  • the data may be transmitted in each of the plurality of reception occasions.
  • the transmission / reception unit 220 may receive QCL parameter information indicating a plurality of QCL parameters associated with each of the plurality of reception occasions, or QCL parameters associated with one of the plurality of reception occasions.
  • the control unit 210 may determine the QCL parameter to be used based on the QCL parameter information.
  • the transmission / reception unit 220 may receive resource information indicating a plurality of resources associated with each of the plurality of reception occasions, or a resource associated with one of the plurality of reception occasions.
  • the control unit 210 may determine the resource of the data based on the resource information.
  • the control unit 210 may use the transmission setting instruction (TCI) state instructed by the downlink control information for receiving the data.
  • TCI transmission setting instruction
  • the transmission / reception unit 220 may receive one downlink control information of a plurality of downlink control information.
  • the control unit 210 may use the reception occasion corresponding to the pseudo-collocation (QCL) parameter among the plurality of reception occasions for data reception.
  • the plurality of downlink control information may schedule the plurality of reception occasions, respectively.
  • the data may be transmitted in each of the plurality of reception occasions.
  • the plurality of downlink control information may be transmitted in a plurality of physical downlink control channel monitoring occasions, a plurality of search spaces, or a plurality of control resource sets, respectively.
  • the control unit 210 obtains one of the QCL parameters used for receiving the downlink control information, the QCL parameters corresponding to the reception occasion, and the QCL parameters indicated by the downlink control information as the data. It may be used for receiving.
  • the transmission / reception unit 220 may receive resource information indicating a plurality of resources associated with each of the plurality of reception occasions, or a resource associated with one of the plurality of reception occasions.
  • the control unit 210 may determine the resource of the data based on the resource information.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 20 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may be a time unit based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a numerology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained in a slot, the number of symbols and RBs contained in a slot or minislot, and included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, integer, fraction)
  • Future Radio Access FAA
  • RAT New -Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • LTE 802.11 Wi-Fi®
  • LTE 802.16 WiMAX®
  • LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios. It may be applied to a system using a communication method, a next-generation system extended based on these, and the like.
  • UMB Ultra-WideBand
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)” such as “accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Abstract

本開示の一態様に係る端末は、複数の下りリンク制御情報の1つの下りリンク制御情報を受信する受信部と、複数の受信オケージョンのうち、疑似コロケーション(QCL)パラメータに対応する受信オケージョンを、データの受信に用いる制御部と、を有し、前記複数の下りリンク制御情報は、前記複数の受信オケージョンをそれぞれスケジュールし、前記データは、前記複数の受信オケージョンのそれぞれにおいて送信される。本開示の一態様によれば、マルチキャストの下りリンクデータを適切に受信できる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)において、複数のユーザ端末(user terminal、User Equipment(UE))が、超高密度かつ高トラヒックな環境下で通信を行うことが想定される。
 NRでは、このような環境下において、複数のUEがマルチキャストを利用した下りリンクデータの受信を行うことが想定される。
 しかしながら、これまでのNR仕様においては、UEの、マルチキャストの下りリンクデータの受信について、十分検討がなされていない。マルチキャストを利用した下りリンクデータの受信が適切に行われなければ、スループットの低下など、システム性能が低下するおそれがある。
 そこで、本開示は、マルチキャストの下りリンクデータを適切に受信する端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、複数の下りリンク制御情報の1つの下りリンク制御情報を受信する受信部と、複数の受信オケージョンのうち、疑似コロケーション(QCL)パラメータに対応する受信オケージョンを、データの受信に用いる制御部と、を有し、前記複数の下りリンク制御情報は、前記複数の受信オケージョンをそれぞれスケジュールし、前記データは、前記複数の受信オケージョンのそれぞれにおいて送信される。
 本開示の一態様によれば、マルチキャストの下りリンクデータを適切に受信できる。
図1は、第1の実施形態に係るグループスケジューリングの一例を示す図である。 図2A及び2Bは、受信オケージョンとQCL想定の関連付けの一例を示す図である。 図3は、受信オケージョンの選択の一例を示す図である。 図4A及び4Bは、受信オケージョンとPDSCHリソースの関連付けの一例を示す図である。 図5A及び5Bは、リソース設定/指示方法1の一例を示す図である。 図6A及び6Bは、リソース設定/指示方法2の一例を示す図である。 図7は、定義1に係るFDRAの一例を示す図である。 図8は、定義2に係るFDRAの一例を示す図である。 図9は、定義2に係るFDRAの別の一例を示す図である。 図10は、第4の実施形態に係るTCI状態の決定方法一例を示す図である。 図11は、第5の実施形態に係るグループスケジューリングの一例を示す図である。 図12A-12Cは、PDCCHモニタリング方法の一例を示す図である。 図13は、TCI状態設定/アクティベーション方法1の一例を示す図である。 図14は、TCI状態設定/アクティベーション方法2の一例を示す図である。 図15は、TCI状態設定/アクティベーション方法3の一例を示す図である。 図16は、第6の実施形態に係るTDRAの一例を示す図である。 図17は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図18は、一実施形態に係る基地局の構成の一例を示す図である。 図19は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図20は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 なお、本開示において、DLのTCI状態、ULの空間関係、ULのTCI状態、は互いに読み替えられてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 UEは、TCI状態の情報要素のリストを含む設定情報(例えば、PDSCH-Config、tci-StatesToAddModList)を上位レイヤシグナリングによって受信してもよい。
 上位レイヤシグナリングによって設定されるTCI状態の情報要素(RRCの「TCI-state IE」)は、TCI状態IDと、1つ又は複数のQCL情報(「QCL-Info」)と、を含んでもよい。QCL情報は、QCL関係となるRSに関する情報(RS関係情報)及びQCLタイプを示す情報(QCLタイプ情報)の少なくとも1つを含んでもよい。RS関係情報は、RSのインデックス(例えば、SSBインデックス、ノンゼロパワーCSI-RS(Non-Zero-Power(NZP) CSI-RS)リソースID(Identifier))、RSが位置するセルのインデックス、RSが位置するBandwidth Part(BWP)のインデックスなどの情報を含んでもよい。
 Rel.15 NRにおいては、PDCCH及びPDSCHの少なくとも1つのTCI状態として、QCLタイプAのRSとQCLタイプDのRSの両方、又はQCLタイプAのRSのみがUEに対して設定され得る。
 QCLタイプAのRSとしてTRSが設定される場合、TRSは、PDCCH又はPDSCHの復調用参照信号(DeModulation Reference Signal(DMRS))と異なり、長時間にわたって周期的に同じTRSが送信されることが想定される。UEは、TRSを測定し、平均遅延、遅延スプレッドなどを計算することができる。
 PDCCH又はPDSCHのDMRSのTCI状態に、QCLタイプAのRSとして前記TRSを設定されたUEは、PDCCH又はPDSCHのDMRSと前記TRSのQCLタイプAのパラメータ(平均遅延、遅延スプレッドなど)が同じであると想定できるので、前記TRSの測定結果から、PDCCH又はPDSCHのDMRSのタイプAのパラメータ(平均遅延、遅延スプレッドなど)を求めることができる。UEは、PDCCH及びPDSCHの少なくとも1つのチャネル推定を行う際に、前記TRSの測定結果を用いて、より精度の高いチャネル推定を行うことができる。
 QCLタイプDのRSを設定されたUEは、QCLタイプDのRSを用いて、UE受信ビーム(空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ)を決定できる。
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
<PDCCHのためのTCI状態>
 PDCCH(又はPDCCHに関連するDMRSアンテナポート)と、あるRSとの、QCLに関する情報は、PDCCHのためのTCI状態などと呼ばれてもよい。
 UEは、UE固有のPDCCH(CORESET)のためのTCI状態を、上位レイヤシグナリングに基づいて判断してもよい。例えば、UEに対して、CORESETごとに、1つ又は複数(K個)のTCI状態がRRCシグナリングによって設定されてもよい。
 UEは、各CORESETに対し、RRCシグナリングによって設定された複数のTCI状態の1つを、MAC CEによってアクティベートされてもよい。当該MAC CEは、UE固有PDCCH用TCI状態指示MAC CE(TCI State Indication for UE-specific PDCCH MAC CE)と呼ばれてもよい。UEは、CORESETのモニタを、当該CORESETに対応するアクティブなTCI状態に基づいて実施してもよい。
<PDSCHのためのTCI状態>
 PDSCH(又はPDSCHに関連するDMRSアンテナポート)と、あるDL-RSとの、QCLに関する情報は、PDSCHのためのTCI状態などと呼ばれてもよい。
 UEは、PDSCH用のM(M≧1)個のTCI状態(M個のPDSCH用のQCL情報)を、上位レイヤシグナリングによって通知(設定)されてもよい。なお、UEに設定されるTCI状態の数Mは、UE能力(UE capability)及びQCLタイプの少なくとも1つによって制限されてもよい。
 PDSCHのスケジューリングに用いられるDCIは、当該PDSCH用のTCI状態を示すフィールド(例えば、TCIフィールド、TCI状態フィールドなどと呼ばれてもよい)を含んでもよい。当該DCIは、1つのセルのPDSCHのスケジューリングに用いられてもよく、例えば、DL DCI、DLアサインメント、DCIフォーマット1_0、DCIフォーマット1_1などと呼ばれてもよい。
 TCIフィールドがDCIに含まれるか否かは、基地局からUEに通知される情報によって制御されてもよい。当該情報は、DCI内にTCIフィールドが存在するか否か(present or absent)を示す情報(例えば、TCI存在情報、DCI内TCI存在情報、上位レイヤパラメータTCI-PresentInDCI)であってもよい。当該情報は、例えば、上位レイヤシグナリングによってUEに設定されてもよい。
 8種類を超えるTCI状態がUEに設定される場合、MAC CEを用いて、8種類以下のTCI状態がアクティベート(又は指定)されてもよい。当該MAC CEは、UE固有PDSCH用TCI状態アクティベーション/ディアクティベーションMAC CE(TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)と呼ばれてもよい。DCI内のTCIフィールドの値は、MAC CEによりアクティベートされたTCI状態の一つを示してもよい。
 UEが、PDSCHをスケジュールするCORESET(PDSCHをスケジュールするPDCCH送信に用いられるCORESET)に対して、「有効(enabled)」とセットされたTCI存在情報を設定される場合、UEは、TCIフィールドが、当該CORESET上で送信されるPDCCHのDCIフォーマット1_1内に存在すると想定してもよい。
 PDSCHをスケジュールするCORESETに対して、TCI存在情報が設定されない、又は、当該PDSCHがDCIフォーマット1_0によってスケジュールされる場合において、DL DCI(当該PDSCHをスケジュールするDCI)の受信と当該DCIに対応するPDSCHの受信との間の時間オフセットが閾値以上である場合、UEは、PDSCHアンテナポートのQCLを決定するために、当該PDSCHに対するTCI状態又はQCL想定が、当該PDSCHをスケジュールするPDCCH送信に用いられるCORESETに対して適用されるTCI状態又はQCL想定と同一であると想定してもよい。
 TCI存在情報が「有効(enabled)」とセットされた場合、(PDSCHを)スケジュールするコンポーネントキャリア(CC)内のDCI内のTCIフィールドが、スケジュールされるCC又はDL BWP内のアクティベートされたTCI状態を示し、且つ当該PDSCHがDCIフォーマット1_1によってスケジュールされる場合、UEは、当該PDSCHアンテナポートのQCLを決定するために、DCIを有し検出されたPDCCH内のTCIフィールドの値に従うTCIを用いてもよい。(当該PDSCHをスケジュールする)DL DCIの受信と、当該DCIに対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値以上である場合、UEは、サービングセルのPDSCHのDM-RSポートが、指示されたTCI状態によって与えられるQCLタイプパラメータに関するTCI状態内のRSとQCLである、と想定してもよい。
 UEが単一スロットPDSCHを設定された場合、指示されたTCI状態は、スケジュールされたPDSCHを有するスロット内のアクティベートされたTCI状態に基づいてもよい。UEが複数スロットPDSCHを設定された場合、指示されたTCI状態は、スケジュールされたPDSCHを有する最初のスロット内のアクティベートされたTCI状態に基づいてもよく、UEはスケジュールされたPDSCHを有するスロットにわたって同一であると期待してもよい。UEがクロスキャリアスケジューリング用のサーチスペースセットに関連付けられたCORESETを設定される場合、UEは、当該CORESETに対し、TCI存在情報が「有効」とセットされ、サーチスペースセットによってスケジュールされるサービングセルに対して設定されるTCI状態の少なくとも1つがQCLタイプDを含む場合、UEは、検出されたPDCCHと、当該PDCCHに対応するPDSCHと、の間の時間オフセットが、閾値以上であると想定してもよい。
 RRC接続モードにおいて、DCI内TCI情報(上位レイヤパラメータTCI-PresentInDCI)が「有効(enabled)」とセットされる場合と、DCI内TCI情報が設定されない場合と、の両方において、DL DCI(PDSCHをスケジュールするDCI)の受信と、対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値未満である場合(適用条件、第1条件)、UEは、サービングセルのPDSCHのDM-RSポートが、サービングセルのアクティブBWP内の1つ以上のCORESETが当該UEによってモニタされる最新(直近、latest)のスロットにおける最小(最低、lowest)のCORESET-IDを有し、モニタされるサーチスペース(monitored search space)に関連付けられたCORESETの、PDCCHのQCL指示に用いられるQCLパラメータに関するRSとQCLである、と想定してもよい。このRSは、PDSCHのデフォルトTCI状態又はPDSCHのデフォルトQCL想定と呼ばれてもよい。
 DL DCIの受信と当該DCIに対応するPDSCHの受信との間の時間オフセットは、スケジューリングオフセットと呼ばれてもよい。
 また、上記閾値は、QCL用時間長(time duration)、「timeDurationForQCL」、「Threshold」、「Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI」、「Threshold-Sched-Offset」、スケジュールオフセット閾値、スケジューリングオフセット閾値、などと呼ばれてもよい。
 QCL用時間長は、UE能力に基づいてもよく、例えばPDCCHの復号及びビーム切り替えに掛かる遅延に基づいてもよい。QCL用時間長は、PDCCH受信と、PDSCH処理用のDCI内で受信される空間QCL情報の適用と、を行うためにUEに必要とされる最小時間であってもよい。QCL用時間長は、サブキャリア間隔毎にシンボル数で表されてもよいし、時間(例えば、μs)で表されてもよい。当該QCL用時間長の情報は、UEからUE能力情報として基地局に報告されてもよいし、基地局から上位レイヤシグナリングを用いてUEに設定されてもよい。
 例えば、UEは、上記PDSCHのDMRSポートが、上記最小のCORESET-IDに対応するCORESETについてアクティベートされたTCI状態に基づくDL-RSとQCLであると想定してもよい。最新のスロットは、例えば、上記PDSCHをスケジュールするDCIを受信するスロットであってもよい。
 なお、CORESET-IDは、RRC情報要素「ControlResourceSet」によって設定されるID(CORESETの識別のためのID、controlResourceSetId)であってもよい。
 その(PDSCHの)CCに対してCORESETが1つも設定されない場合、デフォルトTCI状態は、当該CCのアクティブDL BWP内のPDSCHに適用可能であって最低IDを有するアクティベートされたTCI状態であってもよい。
 Rel.16以降において、PDSCHと、それをスケジュールするPDCCHとが、異なるcomponent carrier(CC)内にある場合(クロスキャリアスケジューリング)において、もしPDCCHからPDSCHまでの遅延(PDCCH-to-PDSCH delay)がQCL用時間長よりも短い場合、又は、もしTCI状態が当該スケジューリングのためのDCIに無い場合、UEは、当該スケジュールされたセルのアクティブBWP内のPDSCHに適用可能であり最低IDを有するアクティブTCI状態からのスケジュールされたPDSCH用のQCL想定を取得してもよい。
(NR マルチキャスト/ブロードキャスト)
 Rel.16までのNRにおいて、NWからUEに対する信号及びチャネルの少なくとも一方(以下、信号/チャネルと表現する)の送信は、ユニキャスト送信が基本である。この場合、NWから複数のUEに対して送信される同一の下りリンク(DL)データ信号/チャネル(例えば、下りリンク共有チャネル(PDSCH))を、NWの複数のビーム(又は、パネル)に対応する複数の受信機会(受信オケージョン)を用いて、各UEが受信することが想定される。
 また、多数のUEが地理的に密集する環境(例えば、スタジアム等)のような、超高密度かつ高トラヒックな状況下において、複数のUEが同時にかつ同一の信号/チャネルを受信する場合が想定される。このような場合に、複数UEが同一エリアに存在し、各UEが同一の信号/チャネルを受信するために、各UEがユニキャストによって当該信号/チャネルの受信を行うことは、通信の信頼性は確保できるものの、リソース利用効率を低下させると考えられる。
 マルチキャスト/ブロードキャストのサービスをUEに受信されるために、グループスケジューリングの仕組みが検討されている。
 一方、既存(例えば、Rel.16)のNRにおいて、PDSCH設定(例えば、PDSCH-Config)は、リソース割り当て(例えば、resourceAllocation)、PDSCH時間ドメイン割り当てリスト(例えば、pdsch-TimeDomainAllocationList)、PDSCHアグリゲーションファクタ(例えば、pdsch-AggregationFactor)、など、UE個別の情報が含まれる。
 グループスケジューリングの動作が明らかでない。グループスケジューリングが適切に行われなければ、スループットの低下など、システム性能の低下を招くおそれがある。例えば、グループスケジューリングに既存のPDSCH設定を用いると、UE個別パラメータが多く、設定のオーバーヘッドが大きくなる。
 そこで、本発明者らは、グループスケジューリングの動作を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(無線通信方法)
 本開示において、「A/B」、「A及びBの少なくとも一方」、は互いに読み替えられてもよい。本開示において、セル、CC、キャリア、BWP、アクティブDL BWP、アクティブUL BWP、バンド、は互いに読み替えられてもよい。本開示において、インデックス、ID、インジケータ、リソースID、は互いに読み替えられてもよい。本開示において、RRCパラメータ、上位レイヤパラメータ、RRC情報要素(IE)、RRCメッセージ、は互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 本開示において、マルチキャスト、ブロードキャスト(報知)、は互いに読み替えられてもよい。また、マルチキャストを利用するPDSCH、複数UE共通のPDSCH、共通PDSCH、共有PDSCH、マルチキャストPDSCH、ブロードキャストPDSCH、は互いに読み替えられてもよい。
 本開示において、DLデータ、コードワード(CW)、トランスポートブロック(TB)、PDSCH、は互いに読み替えられてもよい。
 本開示において、ビーム、TCI状態、QCL想定、QCLパラメータ、空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ、UE受信ビーム、DL受信ビーム、DLプリコーディング、DLプリコーダ、DL-RS、TCI状態又はQCL想定のQCLタイプDのRS、TCI状態又はQCL想定のQCLタイプAのRS、は互いに読み替えられてもよい。本開示において、QCLタイプX-RS、QCLタイプXに関連付けられたDL-RS、QCLタイプXを有するDL-RS、DL-RSのソース、SSB、CSI-RS、は互いに読み替えられてもよい。
 本開示において、XはYとQCLされる(X is quasi co-located(QCLed) with Y)、XとYがQCLタイプDを用いてQCLされる(X and Y are quasi co-located with 'QCL-TypeD')、XとYがQCLタイプDに関してQCLされる(X and Y are quasi co-located with respect to 'QCL-TypeD')、XとYがQCLタイプDの関係である、は互いに読み替えられてもよい。XとYは、RS又はRSリソースであってもよい。
<第1の実施形態>
 1つのDCIが、複数UEに対するDLデータをスケジュールしてもよい。1つのDCIは、複数の受信オケージョンにおける同じDLデータをスケジュールしてもよい。
 複数UEにおいて適切なビーム(最良のビーム)は異なってもよい。複数の受信オケージョンは、複数のQCLパラメータ(例えば、ビーム、QCL想定、TCI状態)にそれぞれ関連付けられてもよい。各受信オケージョンにおけるDLデータは、対応するQCLパラメータを用いて送信(受信)されてもよい。
 図1の例において、1つのDCIは、受信オケージョン(オケージョン)#0から#3における同じDLデータをスケジュールする。オケージョン#0、#1、#2、#3におけるDLデータは、それぞれQCLパラメータ(QCL)#0、#1、#2、#3を用いて送信(受信)される。当該DCIは、全てのUEに対して送信される。オケージョン#0におけるDLデータは、UE#0、#1に対して送信される。オケージョン#1におけるDLデータは、UE#2に対して送信される。オケージョン#2におけるDLデータは、UE#3に対して送信される。オケージョン#3におけるDLデータは、UE#4に対して送信される。
 DCIは、共通サーチスペースにおいて送信されてもよいし、グループ共通サーチスペースにおいて送信されてもよい。UEに用いられるQCLに応じて、DCIのためのPDCCHモニタリングオケージョンが異なってもよい。UEは、複数のQCL想定(assumption)に基づいて、PDCCHモニタリングオケージョンを選択してもよい。
 1つのDLデータは、1つのコードワード(CW)であってもよいし、1つのトランスポートブロック(TB)であってもよい。同じDLデータは、同じサイズ(例えば、トランスポートブロックサイズ(TBS))を有していてもよいし、異なるサイズを有していてもよい。
 基地局が複数のビームを用いて同時にDLデータを送信しないことが想定されてもよい。
 以下、第2及び第3の実施形態におけるRRCパラメータが、PDSCH設定内において設定される例について説明するが、第2及び第3の実施形態におけるRRCパラメータが、PDCCH設定(例えば、PDCCH-Config)内において設定されてもよい。例えば、マルチキャストPDSCH用のサーチスペースが仕様に規定され、第2及び第3の実施形態におけるRRCパラメータが、当該サーチスペースの設定内において設定されてもよい。
 以上の第1の実施形態によれば、UEは、複数の受信オケージョンにおける複数のDLデータの少なくとも1つを適切に受信できる。
<第2の実施形態>
《受信オケージョンとQCL想定の関連付け》
 1つのDCIが、DLデータ用の複数の受信オケージョンをスケジュールし、UEは、QCL想定に対応する受信オケージョンにおいてDLデータを受信してもよい。
 UEは、RRCパラメータとMAC CEとDCIとの少なくとも1つによって、受信オケージョンとQCL想定の間の関連付け(QCLパラメータ情報)を設定/指示されてもよい。例えば、RRCパラメータによって複数の関連付けが設定され、MAC CEによって複数の関連付けの1つがアクティベートされてもよい。
 UEは、次のQCL想定設定/指示方法1及び2のいずれかによって、受信オケージョンとQCL想定の間の関連付けを設定/指示されてもよい。
[QCL想定設定/指示方法1]
 例えば、図2Aに示すように、PDSCH設定毎に、DLデータ用の受信オケージョンのリストが設定されてもよい。受信オケージョン毎に、QCL想定が設定されてもよい。QCL想定は、対応するSSB/CSI-RS/TRS/TCI状態のインデックス又はIDであってもよい。
[QCL想定設定/指示方法2]
 例えば、図2Bに示すように、PDSCH設定毎に、DLデータ用の1番目のオケージョン#0に対するQCL想定が設定されてもよい。残りのオケージョンのQCL想定は、暗示的に設定されてもよい(導出されてもよい)。
 例えば、もしオケージョン#0に対するQCL想定としてSSB#0が設定される場合、UEは、SSB/CSI-RS/TRS/TCI状態のインデックスをインクリメントすることによって、残りのオケージョンに対するQCL想定(オケージョン#1に対するQCL想定としてSSB#1、オケージョン#2に対するQCL想定としてSSB#2、オケージョン#3に対するQCL想定としてSSB#3、…)を導出する。
《受信オケージョン決定方法》
 例えば、図3に示すように、UEは、QCL想定に基づいて、DLデータ用の1以上の受信オケージョンを選択してもよい。
 UEは、次のQCL想定決定方法1から5の少なくとも1つに従ってQCL想定を選択されてもよい。
[QCL想定決定方法1]
 QCL想定は、最近のPRACH送信オケージョンに対応するSSBインデックスであってもよい。
[QCL想定決定方法2]
 QCL想定は、DCIのQCL想定であってもよい。DCI、DLデータをスケジュールするDCI、共通サーチスペースのPDCCHモニタリングオケージョン、は互いに読み替えられてもよい。
[QCL想定決定方法3]
 QCL想定は、(最近の)L1-RSRP/L1-SINRビーム報告の最良ビームであってもよい。
[QCL想定決定方法4]
 QCL想定は、L1-RSRP/L1-SINRビーム測定によってUEに識別された最良ビームであってもよい。この最良ビームは報告されてなくてもよい。
[QCL想定決定方法5]
 QCL想定は、UE実装に依存してもよい。
 QCL想定決定方法1から5のうち、どれが用いられるかは、仕様に規定されてもよいし、上位レイヤシグナリングによって設定されてもよいし、UE能力として報告されてもよい。
 以上の第2の実施形態によれば、UEは、複数の受信オケージョンにおける複数のDLデータのうち、QCL想定に対応するDLデータを適切に決定できる。
<第3の実施形態>
《受信オケージョンとPDSCHリソースの関連付け》
 UEは、RRCパラメータとMAC CEとDCIとの少なくとも1つによって、受信オケージョンとPDSCHリソースの間の関連付け(リソース情報)を設定/指示されてもよい。例えば、RRCパラメータによって複数の関連付けが設定され、MAC CEによって複数の関連付けの1つがアクティベートされてもよい。
 PDSCHリソースは、次のリソース設定/指示方法1及び2のいずれかに従って設定されてもよい。
[リソース設定/指示方法1]
 例えば、図4Aに示すように、PDSCH設定毎に、DLデータ用の受信オケージョンのリストが設定されてもよい。受信オケージョン毎に、PDSCHリソースが設定されてもよい。PDSCHリソースは、time domain resource allocation(TDRA)とfrequency domain resource allocation(FDRA)との少なくとも1つによって設定されてもよい。
[リソース設定/指示方法2]
 例えば、図4Bに示すように、PDSCHリソースは、1つの受信オケージョンに対して設定されてもよい。1つの受信オケージョンは、最初の受信オケージョンであってもよいし、最後の受信オケージョンであってもよい。PDSCH設定毎に、DLデータの1番目の受信オケージョン用のPDSCHリソースが設定されてもよい。残りの受信オケージョンのPDSCHリソースは、暗示的に設定されてもよい(導出されてもよい)。
 もし(m-1)番目の受信オケージョンの時間ドメイン(TD)リソースとm番目の受信オケージョンのTDリソースとの間の関係が時間オフセットToffsetによって決定される場合、m番目の受信オケージョンの周波数ドメイン(FD)リソースは、(m-1)番目の受信オケージョンのFDリソースと同じであってもよい。
 Toffsetは、仕様によって規定されてもよいし、RRCパラメータによって設定されてもよいし、UE能力報告によって決定されてもよい。
 Toffsetは、(m-1)番目の受信オケージョンのTDリソースの開始から、m番目の受信オケージョンのTDリソースの開始までの時間であってもよいし、(m-1)番目の受信オケージョンのTDリソースの終了から、m番目の受信オケージョンのTDリソースの開始までの時間であってもよい。
 図5Aの例では、リソース設定/指示方法1において、受信オケージョン毎に、PDSCHのTDRA及びFDRAの両方が設定される。この例によれば、各受信オケージョンのPDSCHリソースを柔軟に設定できる。
 図5Bの例では、リソース設定/指示方法1において、受信オケージョン毎にPDSCHのFDRAが設定される。1番目の受信オケージョンのTDRAは設定され、2番目以降の受信オケージョンのTDRAは設定されず、Toffsetに基づいて導出される。
 図6Aの例では、リソース設定/指示方法2において、1番目の受信オケージョンの周波数ドメインリソースが設定され、残りの受信オケージョンの決定に用いられる。ここでのToffsetは、(m-1)番目の受信オケージョンのTDリソースの終了から、m番目の受信オケージョンのTDリソースの開始までの時間(間隔)である。
 (m-1)番目の受信オケージョンの周波数ドメインリソースとm番目の受信オケージョンのFDリソースとの間の関係が周波数オフセットFoffsetによって決定されてもよい。
 Foffsetは、仕様によって規定されてもよいし、RRCパラメータによって設定されてもよいし、UE能力報告によって決定されてもよい。
 Foffsetは、(m-1)番目の受信オケージョンのFDリソースの最低周波数から、m番目の受信オケージョンのFDリソースの最低周波数までのインデックス(数、PRB数)であってもよいし、(m-1)番目の受信オケージョンのFDリソースの最高周波数から、m番目の受信オケージョンのFDリソースの最低周波数までのインデックス(数、間隔、PRB数)であってもよい。
 図6Bの例では、リソース設定/指示方法2において、Toffsetは、(m-1)番目の受信オケージョンのTDリソースの終了から、m番目の受信オケージョンのTDリソースの開始までの時間(間隔)である。Foffsetは、(m-1)番目の受信オケージョンのFDリソースの最低周波数(最初のPRBインデックス)から、m番目の受信オケージョンのFDリソースの最低周波数(最初のPRBインデックス)までのPRBインデックス(PRB数)である。
《TDRA/FDRA》
 TDRA/FDRAの値は、次の定義1及び2のいずれかに従ってもよい。
[定義1]
 2番目以降の受信オケージョンのTDRA/FDRAの値の定義は、1番目の受信オケージョンのTDRA/FDRAの値の定義と同様であってもよい。
 例えば、図7に示すように、オケージョン#0から#3のそれぞれのFDリソースは、BWPの最初のPRBインデックスからのPRBインデックス(PRB数)として表されてもよい。
 TDリソースは、スケジューリングDCI(開始又は終了)からの時間(例えば、スロット数、シンボル数、時間[ms]、start and length indicator value(SLIV)の少なくとも1つ)として表されてもよい。
[定義2]
 2番目以降の受信オケージョンのTDRA/FDRAの値の定義は、1番目の受信オケージョンのTDRA/FDRAの値の定義と異なってもよい。
 m(m≧2)番目の受信オケージョンのTD/FDリソースは、1番目の受信オケージョンのTD/FDリソースからの差分(相対値)として表されてもよい。
 例えば、図8に示すように、オケージョン#0のFDリソースの最初のPRBインデックスは、BWPの最初のPRBインデックスからのPRBインデックスとして表される。オケージョン#1、#2、#3のそれぞれのFDリソースの最初のPRBインデックスは、オケージョン#0のFDリソースの最初のPRBインデックスからのPRBインデックスとして表される。
 m(m≧2)番目の受信オケージョンのTD/FDリソースは、(m-1)番目の受信オケージョンのTD/FDリソースからの差分(相対値)として表されてもよい。
 例えば、図9に示すように、オケージョン#0のFDリソースの最初のPRBインデックスは、BWPの最初のPRBインデックスからのPRBインデックスとして表される。オケージョン#m(m=1,2,3)のFDリソースの最初のPRBインデックスは、オケージョン#(m-1)のFDリソースの最初のPRBインデックスからのPRBインデックスとして表される。
《PDSCH設定》
 PDSCHのための次の少なくとも1つのパラメータは、全ての受信オケージョンに共通であってもよい。
・データスクランブリング識別情報(例えば、dataScramblingIdentityPDSCH)
・PDSCHマッピングタイプA用下りリンクDMRS(例えば、dmrs-DownlinkForPDSCH-MappingTypeA)
・PDSCHマッピングタイプB用下りリンクDMRS(例えば、dmrs-DownlinkForPDSCH-MappingTypeB)
・仮想リソースブロック(VRB)-物理リソースブロック(PRB)インターリーバ(例えば、vrb-ToPRB-Interleaver)
・PDSCHアグリゲーションファクタ(例えば、pdsch-AggregationFactor)
・追加変更用レートマッチパターンリスト(例えば、rateMatchPatternToAddModList)
・解放用レートマッチパターンリスト(例えば、rateMatchPatternToReleaseList)
・レートマッチパターングループ1(例えば、rateMatchPatternGroup1)
・レートマッチパターングループ2(例えば、rateMatchPatternGroup2)
・リソースブロックグループ(RBG)サイズ(例えば、rbg-Size)
・modulation and coding scheme(MCS)テーブル(例えば、mcs-Table)
・DCIによってスケジュールされるコードワードの最大数(例えば、maxNrofCodeWordsScheduledByDCI)
・PRBバンドリングタイプ(例えば、prb-BundlingType)
・追加変更用ゼロパワー(ZP)-CSI-RSリソースセットリスト(例えば、zp-CSI-RS-ResourceToAddModList)
・解放用ZP-CSI-RSリソースセットリスト(例えば、zp-CSI-RS-ResourceToReleaseList)
・追加変更用非周期的(aperiodic)ゼロパワー(ZP)-CSI-RSリソースセットリスト(例えば、aperiodic-ZP-CSI-RS-ResourceSetsToAddModList)
・解放用非周期的ZP-CSI-RSリソースセットリスト(例えば、aperiodic-ZP-CSI-RS-ResourceSetsToReleaseList)
・追加変更用セミパーシステント(SP)-ZP-CSI-RSリソースセットリスト(例えば、sp-ZP-CSI-RS-ResourceSetsToAddModList)
・解放用SP-ZP-CSI-RSリソースセットリスト(例えば、sp-ZP-CSI-RS-ResourceSetsToReleaseList)
・周期的(periodic)-ZP-CSI-RSリソースセット(例えば、p-ZP-CSI-RS-ResourceSet)
 全ての受信オケージョンに共通のパラメータは、PDSCH設定のうち、FDRA、TDRA、TCI状態を除くパラメータであってもよい。
 以上の第3の実施形態によれば、UEは、複数の受信オケージョンのそれぞれのPDSCHリソースを適切に決定できる。
<第4の実施形態>
 マルチキャストPDSCHに対し、DCI内にTCIが存在すること(DCI内TCI存在、例えば、tci-PresentInDCI)は設定されなくてもよい。
 マルチキャストPDSCHに対し、DCI内TCI存在は設定されてもよい。PDSCH用アクティブTCI状態が、受信オケージョン毎に設定/通知され、DCI内のフィールド(例えば、TCIフィールド)の1つの値が全ての受信オケージョンのTCI状態を示してもよい。DCI内のフィールドが受信オケージョン毎の値を示してもよい。1つの受信オケージョンのTCI状態に3ビットを用い、4つの受信オケージョンがスケジュールされる場合、フィールドのサイズは、3×4=12ビットであってもよい。
 UEは、QCL想定に基づいてPDSCHの受信オケージョンを選択し、スケジューリングDCIによって指示されたTCI状態をPDSCHのDMRSを受信に用いてもよい(PDSCHのDMRSが、当該指示されたTCI状態とQCLされると想定してもよい)。この動作によれば、例えば、あるセルが、SSBの送信に広いビームを用い、CSI-RSの送信にSSBよりも細いビームを用いて運用される場合、より適切にビームを制御することができる。
 図10の例において、オケージョン#0から#3のそれぞれに対し、複数のTCI状態がアクティベートされる。UEは、QCL想定としてQCL#1を決定し、QCL想定に対応するオケージョン#1を決定する。PDSCHのスケジューリングDCIは、TCI状態#1-3を示す。UEは、オケージョン#1において、PDSCHのDMRSの受信に指示されたTCI状態#1-3を用いる。
 以上の第4の実施形態によれば、UEは、受信オケージョンにおけるPDSCH DMRSの受信に用いるTCI状態を適切に決定できる。
<第5の実施形態>
 複数のDCIが、複数の受信オケージョンをそれぞれスケジュールしてもよい。複数の受信オケージョンのそれぞれにおいて同じDLデータが送信されてもよい。
《QCLとDCIとDLデータとの関連付け》
 QCL#xを用いる1つのDCIが、複数のUEに対し、QCL#x’を有するDLデータをスケジュールしてもよい。
 あるQCLに関連付けられた(対応する)PDCCHモニタリングオケージョンにおいて検出されたDCIが、当該QCLに関連付けられた受信オケージョンにおけるDLデータをスケジュールしてもよい。
 図11の例において、1つのサーチスペースにおけるDCI#0から#3はそれぞれQCL#0から#3を用いる。当該サーチスペースは、UE#0から#4によってモニタされる。当該サーチスペースは、共通サーチスペースであってもよいし、グループ共通サーチスペースであってもよいし、グループスケジューリング用サーチスペースであってもよい。UEは、PDCCH用のQCL(TCI状態)に応じて、DCIを受信するPDCCHモニタリングオケージョンを決定してもよい。PDCCH用のQCLに依存して、当該PDCCHのモニタリングオケージョンが異なってもよい。
 DCI#0から#3は、オケージョン#0から#3をそれぞれスケジュールする。オケージョン#0から#3において同じDLデータが送信される。オケージョン#0、#1、#2、#3におけるDLデータは、それぞれQCL#0、#1、#2、#3を用いて送信される。オケージョン#0におけるDLデータは、UE#0、#1に対して送信される。オケージョン#1におけるDLデータは、UE#2に対して送信される。オケージョン#2におけるDLデータは、UE#3に対して送信される。オケージョン#3におけるDLデータは、UE#4に対して送信される。
《PDCCHモニタリング》
 PDCCHモニタリングは、次のPDCCHモニタリング方法1から3の少なくとも1つに従ってもよい。
[PDCCHモニタリング方法1]
 共通サーチスペース又はグループ共通サーチスペースにおいて複数のDCIが送信(受信)されてもよい。UEは、PDCCH用に設定/指示されたQCLに対応するPDCCHモニタリングオケージョンを、DCIの受信用に選択してもよい。
 図12Aの例では、1つのサーチスペースにおいてDCI#0から#3が送信される。DCI#0から#3は、QCL#0から#3をそれぞれ用いて送信される。PDCCHモニタリングオケージョン(MO)#0から#3においてDCI#0から#3がそれぞれ送信される。UEは、PDCCH用のQCLに対応するPDCCHモニタリングオケージョンにおいてDCIをモニタする。
[PDCCHモニタリング方法2]
 複数のQCLのそれぞれに対して、共通サーチスペース又はグループ共通サーチスペースが設定されてもよい。UEは、PDCCH用に設定/指示されたQCLに対応するサーチスペースを、DCIの受信用に選択してもよい。
 図12Bの例では、サーチスペース(SS)#0から#3においてDCI#0から#3がそれぞれ送信される。DCI#0から#3は、QCL#0から#3をそれぞれ用いて送信される。UEは、PDCCH用のQCLに対応するサーチスペースにおいてDCIをモニタする。
[PDCCHモニタリング方法3]
 複数のQCLのそれぞれに対して、共通CORESET又はグループ共通CORESETが設定されてもよい。UEは、PDCCH用に設定/指示されたQCLに対応するサーチスペースを、DCIの受信用に選択してもよい。
 図12Cの例では、CORESET(CR)#0から#3においてDCI#0から#3がそれぞれ送信される。DCI#0から#3は、QCL#0から#3をそれぞれ用いて送信される。UEは、PDCCH用のQCLに対応するCORESETにおいてDCIをモニタする。
 UEは、共通サーチスペース又はグループ共通サーチスペースとして設定されたグループスケジューリング用サーチスペースをモニタすることによって、DCIを検出する。
 グループスケジューリング用サーチスペースは、QCL想定に依存して異なってもよい。例えば、グループスケジューリング用サーチスペースは、QCL想定に依存して、異なる時間ドメインリソース(シンボル、スロットなど)を有してもよい。
 UEは、グループスケジューリング用サーチスペース内の各PDCCHモニタリングオケージョン(各PDCCHモニタリングオケージョン内のDCI)において、同じDLデータがスケジュールされると想定してもよい。
 UEは、グループスケジューリング用サーチスペースを上位レイヤシグナリングによって設定されてもよい。
 図12Aから12Cの例において、UEは、オケージョン#0から#3のいずれかのDLデータを受信できればよい。この場合、UEは、次の復号動作1から3のいずれかに従ってもよい。
[復号動作1]
 UEは、DCI#0から#3の全てを復号し、オケージョン#0から#3のいずれかのDLデータの復号に成功した場合、HARQ-ACKを送信(報告)してもよい。
[復号動作2]
 UEは、DCI#0から#3の全てを復号し、オケージョン#0から#3のうち、QCL想定に基づく1つのオケージョンにおけるDLデータを復号し、当該DLデータの復号に成功した場合、HARQ-ACKを送信(報告)してもよい。
[復号動作3]
 UEは、DCI#0から#3のうち、QCL想定に基づく1つのPDCCHモニタリングオケージョンにおけるDCIを復号し、当該DCIによってスケジュールされるDLデータ(当該QCL想定に基づく受信オケージョンにおけるDLデータ)を復号し、当該DLデータの復号に成功した場合、HARQ-ACKを送信(報告)してもよい。
《DCIのQCLとDLデータのQCLとの関係》
 DCIのQCL(x)と、DLデータのQCL(x’)と、の関係は、次の関係1又は2であってもよい。
[関係1]
 x=x’。グループスケジューリング用サーチスペースにおいて検出されたDCIによってスケジュールされるPDSCHのQCLは、当該DCIのQCLと等しくてもよい。
[関係2]
 x≠x’。グループスケジューリング用サーチスペースにおいて検出されたDCIによってスケジュールされるPDSCHのQCLは、当該DCIのQCLと異なってもよい。DLデータの各受信オケージョンのQCLはRRCパラメータ/MAC CE/DCIによって設定/通知/指示されてもよい。DLデータの各受信オケージョンのQCLは、第2の実施形態と同様に決定されてもよい。
 グループスケジューリング用サーチスペースにおいて検出されるDCIは、次のDCI1又は2であってもよい。
[DCI1]
 グループスケジューリング用サーチスペースにおいて検出されるDCIに、DCIレベルビーム指示のためのフィールドが存在しない(含まれない)。例えば、PDSCH用のTCIフィールドが0ビットであってもよいし、DCI内TCI存在(例えば、tci-PresentInDCI)が設定されなくてもよい。グループスケジューリング用サーチスペースが共通サーチスペースである場合、DCI1が用いられてもよい。
[DCI2]
 もし設定される場合、グループスケジューリング用サーチスペースにおいて検出されるDCIに、DCIレベルビーム指示のためのフィールドが存在する(含まれる)。例えば、PDSCH用のTCIフィールドが3ビットであってもよいし、DCI内TCI存在が設定されてもよい。DCI2は、DCIフォーマット1_1であってもよい。DCI1によれば、DCIによってビームを指示することができるため、より柔軟な指示が可能になる。また、マルチキャスト/ブロードキャストのカバレッジ改善が可能になる。また、高速移動UEに対して、高速ビーム制御が可能になる。
《TCI状態の設定/アクティベーション》
 PDSCHのTCI状態リストの設定/アクティベーションは、次のTCI状態設定/アクティベーション方法1から3の少なくとも1つに従ってもよい。
[TCI状態設定/アクティベーション方法1]
 PDSCH設定毎に、PDSCHのTCI状態リストが設定/アクティベートされてもよい。全ての受信オケージョンに対して、PDSCHのTCI状態リストが設定/アクティベートされてもよい。
 UEは、全ての受信オケージョンに対して、PDSCH用のアクティブTCI状態の同じセットを用いてもよい。複数の受信オケージョンに対して異なるQCLパラメータが想定される場合、複数のスケジューリングDCI内のTCIフィールドが異なるコードポイントを指示してもよい。
 図13の例において、オケージョン#0から#3のために、TCI状態#0から#7がアクティベートされる。オケージョン#1のDLデータをスケジュールするDCI#1内のTCIフィールドは、コードポイント011を指示する。UEは、アクティベートされたTCI状態#0から#7のうち、コードポイント011に対応するTCI状態#3を、オケージョン#1のDLデータの受信に用いる。
[TCI状態設定/アクティベーション方法2]
 受信オケージョン毎に、PDSCHのTCI状態リストが設定/アクティベートされてもよい。
 図14の例において、オケージョン#0用のTCI状態#0-0から#0-7がアクティベートされ、オケージョン#1用のTCI状態#1-0から#1-7がアクティベートされる。オケージョン#1のDLデータをスケジュールするDCI#1内のTCIフィールドは、コードポイント011を指示する。UEは、オケージョン#1用にアクティベートされたTCI状態#1-0から#1-7のうち、コードポイント011に対応するTCI状態#1-3を、オケージョン#1のDLデータの受信に用いる。
[TCI状態設定/アクティベーション方法3]
 DCI/PDCCH/CORESET/サーチスペース/PDCCHモニタリングオケージョン毎に、PDSCHのTCI状態リストが設定/アクティベートされてもよい。
 図15の例において、DCI#0を運ぶPDCCH用のTCI状態#0-0から#0-7がアクティベートされ、DCI#1を運ぶPDCCH用のTCI状態#1-0から#1-7がアクティベートされる。オケージョン#1のDLデータをスケジュールするDCI#1内のTCIフィールドは、コードポイント011を指示する。UEは、DCI#1用にアクティベートされたTCI状態#1-0から#1-7のうち、コードポイント011に対応するTCI状態#1-3を、DCI#1によってスケジュールされるオケージョン#1のDLデータの受信に用いる。
《DCIサイズ》
 1つのグループスケジューリング用サーチスペースにおける各PDCCHモニタリングオケージョン内のDCIサイズは、次のDCIサイズ1及び2の少なくとも1つに従ってもよい。
[DCIサイズ1]
 1つのグループスケジューリング用サーチスペースにおける各PDCCHモニタリングオケージョン内のDCIサイズは等しくてもよい。
 DCIサイズ1によれば、UEのブラインド復号を簡略化できる。また、復号前ビット又は復調前受信信号の同相加算が可能となる。
 DCIサイズを決定するための上位レイヤパラメータ(特定パラメータ、例えば、tci-PresentInDCI)の値は、全てのPDCCHモニタリングオケージョンに共通に設定されてもよい。
 特定パラメータに対し、UEは、次の特定パラメータ決定方法1から4のいずれかに従ってもよい。
[特定パラメータ決定方法1]
 ある受信オケージョンに対して特定パラメータが設定される場合、他の受信オケージョンに対しても特定パラメータが必ず設定される。UEは、受信オケージョンに対する特定パラメータを、対応するDCI内のフィールドに適用する。
 例えば、ある受信オケージョンに対し、PDSCH TCI状態リストが設定され、アクティブTCI状態が通知(アクティベート)される場合、UEは、他の受信オケージョンに対しても、PDSCH TCI状態リストが設定され、アクティブTCI状態が通知(アクティベート)される、と想定する。
[特定パラメータ決定方法2]
 UEは、ある受信オケージョンに対して設定される特定パラメータを、他の受信オケージョンにも用いる。UEは、受信オケージョンに対する特定パラメータを、対応するDCI内のフィールドに適用する。
 例えば、第1受信オケージョンに対してPDSCH TCI状態リストが設定され、且つ第2受信オケージョンに対してPDSCH TCI状態リストが設定されない又はアクティブTCI状態が通知されない場合、UEは、第1受信オケージョンのPDSCH用アクティブTCI状態に基づいて、第2受信オケージョンのPDSCH用アクティブTCI状態を導出する。
[特定パラメータ決定方法3]
 UEは、特定パラメータが設定/通知された受信オケージョンに対するDCI内のフィールドから、特定パラメータに関する指示を取得し、特定パラメータが設定/通知されない受信オケージョンに対するDCIにおいて、特定パラメータに関するフィールドを無視する。
 例えば、第1受信オケージョンに対してPDSCH TCI状態リストが設定され、且つ第2受信オケージョンに対してPDSCH TCI状態リストが設定されない又はアクティブTCI状態が通知されない場合、UEは、第1受信オケージョンに対するDCIのTCIフィールドを参照することによって、第1受信オケージョンのPDSCH用のTCI状態(ビーム)を決定し、第2受信オケージョンに対するDCIのTCIフィールドを無視する。
[特定パラメータ決定方法4]
 UEは、ある受信オケージョンに対して設定/通知された特定パラメータを使用しない。UEは、各DCIにおいて特定パラメータに関するフィールドを無視する。
 例えば、第1受信オケージョンに対してPDSCH TCI状態リストが設定され、且つ第2受信オケージョンに対してPDSCH TCI状態リストが設定されない又はアクティブTCI状態が通知されない場合、UEは、全ての受信オケージョンに対するDCIのTCIフィールドを無視する。
 UEが、ある受信オケージョンに対するDCIのTCIフィールドを無視する場合、当該受信オケージョンのPDSCH受信にデフォルトTCI状態を用いてもよい。デフォルトTCI状態は、仕様に規定されてもよいし、上位レイヤシグナリングによって設定/通知されてもよい。
[DCIサイズ2]
 1つのグループスケジューリング用サーチスペースにおける各PDCCHモニタリングオケージョン内のDCIサイズは異なってもよい。
 DCIサイズを決定するための上位レイヤパラメータ(特定パラメータ、例えば、tci-PresentInDCI)の値は、PDCCHモニタリングオケージョン毎に設定されてもよい。
 PDSCH用TCI状態リストの設定/アクティベーションは、受信オケージョン毎に行われてもよいし、DCI毎に行われてもよい。
 以上の第5の実施形態によれば、UEは、複数の受信オケージョンの少なくとも1つにおけるDLデータをスケジュールするDCIを適切にモニタできる。
<第6の実施形態>
《PDSCHリソース配置》
 UEは、RRCパラメータとMAC CEとDCIとの少なくとも1つによって、受信オケージョンとPDSCHリソースの間の関連付け(リソース情報)を設定/指示されてもよい。例えば、RRCパラメータによって複数の関連付けが設定され、MAC CEによって複数の関連付けの1つがアクティベートされてもよい。
 複数の受信オケージョンを有するPDSCHのために、次のリソース配置(allocation)1及び2の少なくとも1つが用いられてもよい。
[リソース配置1]
 受信オケージョン又はDCI毎に、PDSCHリソースが設定されてもよい。
 例えば、前述の図4Aに示すように、1つのPDSCH設定において、DLデータ用の受信オケージョン又はDCIのリストが設定されてもよい。受信オケージョン又はDCI毎に、PDSCHリソースが設定されてもよい。PDSCHリソースは、TDRAとFDRAとの少なくとも1つを含んでもよい。
[リソース配置2]
 1つの受信オケージョン(例えば、最初又は最後の受信オケージョン)又は1つのDCCI(例えば、最初又は最後のDCI)に対して、PDSCHリソースが設定されてもよい。
 例えば、前述の図4Bに示すように、1つのPDSCH設定において、DLデータ用の1つの受信オケージョン(1つのDCI)用のPDSCHリソースが設定されてもよい。当該PDSCHリソースを用いて、残りの受信オケージョン(DCI)用のPDSCHリソースが導出されてもよい(暗示的に通知されてもよい)。
 例えば、(m-1)番目の受信オケージョンのTDリソースと、m番目の受信オケージョンのTDリソースとの関係(例えば、Toffset)が、仕様に規定されてもよいし、RRCパラメータによって設定されてもよいし、UE能力によって報告されてもよい。m番目の受信オケージョンのFDリソースが、(m-1)番目の受信オケージョンのFDリソースと同じであってもよい。
 TDRA/FDRAの値は、第3の実施形態のTDRA/FDRAの定義1及び2のいずれかに従ってもよい。
 m番目の受信オケージョンのTD/FDリソースが、1番目の受信オケージョンのTD/FDリソース又は(m-1)番目の受信オケージョンのTD/FDリソースに依存する場合、UEは、スケジュールDCIだけでなく、それ以前のDCIを検出する必要があるため、本実施形態におけるm番目の受信オケージョンのTD/FDリソースは、1番目の受信オケージョンのTD/FDリソース又は(m-1)番目の受信オケージョンのTD/FDリソースに依存しなくてもよい。
 例えば、各受信オケージョンのFDリソースは、BWPの最初のPRBインデックスからのPRBインデックスとして表されてもよい。例えば、図16に示すように、各受信オケージョンのTDリソースは、スケジュールDCI(開始又は終了)からの時間(スロット数/シンボル数)として表されてもよい。
 以上の第6の実施形態によれば、UEは、複数の受信オケージョンを有するPDSCHのリソースを適切に決定できる。
<他の実施形態>
 第1から第3の実施形態の少なくとも1つを用いる第1機能と、第4から第6の実施形態の少なくとも1つを用いる第2機能と、が仕様に規定されてもよい。UEは、第1機能と第2機能のいずれかを上位レイヤシグナリングによって設定されてもよい。UEは、第1機能と第2機能の少なくとも1つをサポートすることを報告してもよい。
 第1から第6の実施形態の少なくとも1つのPDSCHのスケジューリングのための特定radio network temporally identifier(RNTI)が規定され、UEに設定されてもよい。当該PDSCHをスケジュールするDCIは、特定RNTIによってスクランブルされるcyclic redundancy check(CRC)を有してもよい。当該PDSCHのデータは、特定RNTIによってスクランブルされてもよい。UEは、特定RNTIによるスクランブリングを想定してDCI又はPDSCHを復号してもよい。特定RNTIは、複数のグループUEに対して設定されてもよいし、UE個別に設定されてもよい。
 特定RNTIは、既存のRNTI(例えば、RA-RNTI、C-RNTIなど)であってもよい。当該PDSCHをスケジュールするDCIは、特定RNTIによってスクランブルされるCRCを有してもよい。当該PDSCHのデータは、特定RNTIによってスクランブルされてもよい。UEは、特定RNTIによるスクランブリングを想定してDCI又はPDSCHを復号してもよい。特定RNTIは、複数のグループUEに対して設定されてもよいし、UE個別に設定されてもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図17は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図18は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、下りリンク制御情報を送信してもよい。制御部110は、前記複数の受信オケージョンのうち、疑似コロケーション(QCL)パラメータに対応する受信オケージョンを、データの送信に用いてもよい。前記下りリンク制御情報は、前記複数の受信オケージョンをスケジュールしてもよい。前記データは、前記複数の受信オケージョンのそれぞれにおいて送信されてもよい。
 送受信部120は、複数の下りリンク制御情報を送信してもよい。制御部110は、複数の受信オケージョンのうち、疑似コロケーション(QCL)パラメータに対応する受信オケージョンを、データの送信に用いてもよい。前記複数の下りリンク制御情報は、前記複数の受信オケージョンをそれぞれスケジュールしてもよい。前記データは、前記複数の受信オケージョンのそれぞれにおいて送信されてもよい。
(ユーザ端末)
 図19は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、下りリンク制御情報を受信してもよい。制御部210は、前記複数の受信オケージョンのうち、疑似コロケーション(QCL)パラメータに対応する受信オケージョンを、データの受信に用いてもよい。前記下りリンク制御情報は、前記複数の受信オケージョンをスケジュールしてもよい。前記データは、前記複数の受信オケージョンのそれぞれにおいて送信されてもよい。
 前記送受信部220は、前記複数の受信オケージョンにそれぞれ関連付けられる複数のQCLパラメータ、又は前記複数の受信オケージョンの1つに関連付けられるQCLパラメータ、を示すQCLパラメータ情報、を受信してもよい。前記制御部210は、前記QCLパラメータ情報に基づいて、前記用いられるQCLパラメータを決定してもよい。
 前記送受信部220は、前記複数の受信オケージョンにそれぞれ関連付けられる複数のリソース、又は前記複数の受信オケージョンの1つに関連付けられるリソース、を示すリソース情報を受信してもよい。前記制御部210は、前記リソース情報に基づいて、前記データのリソースを決定してもよい。
 前記制御部210は、前記下りリンク制御情報によって指示される送信設定指示(TCI)状態を、前記データの受信に用いてもよい。
 送受信部220は、複数の下りリンク制御情報の1つの下りリンク制御情報を受信してもよい。制御部210は、複数の受信オケージョンのうち、疑似コロケーション(QCL)パラメータに対応する受信オケージョンを、データの受信に用いてもよい。前記複数の下りリンク制御情報は、前記複数の受信オケージョンをそれぞれスケジュールしてもよい。前記データは、前記複数の受信オケージョンのそれぞれにおいて送信されてもよい。
 前記複数の下りリンク制御情報は、複数の物理下りリンク制御チャネルモニタリングオケージョン、複数のサーチスペース、又は複数の制御リソースセット、においてそれぞれ送信されてもよい。
 前記制御部210は、前記下りリンク制御情報の受信に用いられるQCLパラメータと、前記受信オケージョンに対応するQCLパラメータと、前記下りリンク制御情報によって指示されるQCLパラメータと、のいずれかを、前記データの受信に用いてもよい。
 前記送受信部220は、前記複数の受信オケージョンにそれぞれ関連付けられる複数のリソース、又は前記複数の受信オケージョンの1つに関連付けられるリソース、を示すリソース情報を受信してもよい。前記制御部210は、前記リソース情報に基づいて、前記データのリソースを決定してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図20は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  複数の下りリンク制御情報の1つの下りリンク制御情報を受信する受信部と、
     複数の受信オケージョンのうち、疑似コロケーション(QCL)パラメータに対応する受信オケージョンを、データの受信に用いる制御部と、を有し、
     前記複数の下りリンク制御情報は、前記複数の受信オケージョンをそれぞれスケジュールし、
     前記データは、前記複数の受信オケージョンのそれぞれにおいて送信される、端末。
  2.  前記複数の下りリンク制御情報は、1つのサーチスペース、複数の物理下りリンク制御チャネルモニタリングオケージョン、複数のサーチスペース、又は複数の制御リソースセット、においてそれぞれ送信される、請求項1に記載の端末。
  3.  前記制御部は、前記下りリンク制御情報の受信に用いられるQCLパラメータと、前記受信オケージョンに対応するQCLパラメータと、前記下りリンク制御情報によって指示されるQCLパラメータと、のいずれかを、前記データの受信に用いる、請求項1又は請求項2に記載の端末。
  4.  前記受信部は、前記複数の受信オケージョンにそれぞれ関連付けられる複数のリソース、又は前記複数の受信オケージョンの1つに関連付けられるリソース、を示すリソース情報を受信し、
     前記制御部は、前記リソース情報に基づいて、前記データのリソースを決定する、請求項1から請求項3のいずれかに記載の端末。
  5.  複数の下りリンク制御情報の1つの下りリンク制御情報を受信するステップと、
     複数の受信オケージョンのうち、疑似コロケーション(QCL)パラメータに対応する受信オケージョンを、データの受信に用いるステップと、を有し、
     前記複数の下りリンク制御情報は、前記複数の受信オケージョンをそれぞれスケジュールし、
     前記データは、前記複数の受信オケージョンのそれぞれにおいて送信される、端末の無線通信方法。
  6.  複数の下りリンク制御情報を送信する送信部と、
     複数の受信オケージョンのうち、疑似コロケーション(QCL)パラメータに対応する受信オケージョンを、データの送信に用いる制御部と、を有し、
     前記複数の下りリンク制御情報は、前記複数の受信オケージョンをそれぞれスケジュールし、
     前記データは、前記複数の受信オケージョンのそれぞれにおいて送信される、基地局。
PCT/JP2020/014297 2020-03-27 2020-03-27 端末、無線通信方法及び基地局 WO2021192303A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022510401A JP7445367B2 (ja) 2020-03-27 2020-03-27 端末、無線通信方法、基地局及びシステム
PCT/JP2020/014297 WO2021192303A1 (ja) 2020-03-27 2020-03-27 端末、無線通信方法及び基地局
US17/914,654 US20230144020A1 (en) 2020-03-27 2020-03-27 Terminal, radio communication method, and base station
CN202080101431.0A CN115699936A (zh) 2020-03-27 2020-03-27 终端、无线通信方法以及基站
EP20927133.7A EP4132147A4 (en) 2020-03-27 2020-03-27 TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014297 WO2021192303A1 (ja) 2020-03-27 2020-03-27 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2021192303A1 true WO2021192303A1 (ja) 2021-09-30

Family

ID=77891551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014297 WO2021192303A1 (ja) 2020-03-27 2020-03-27 端末、無線通信方法及び基地局

Country Status (5)

Country Link
US (1) US20230144020A1 (ja)
EP (1) EP4132147A4 (ja)
JP (1) JP7445367B2 (ja)
CN (1) CN115699936A (ja)
WO (1) WO2021192303A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207446A1 (zh) * 2022-04-27 2023-11-02 深圳市中兴微电子技术有限公司 Prach发送时机确定方法、ue、计算机可读存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190054978A (ko) * 2017-11-13 2019-05-22 주식회사 윌러스표준기술연구소 무선 통신 시스템의 통신을 위한 빔 운영 방법 및 이를 이용하는 장치
JP6845883B2 (ja) * 2018-03-26 2021-03-24 華碩電腦股▲ふん▼有限公司 無線通信システムにおいてクロスキャリア・スケジューリングを考慮した下りリンクデータのバッファリングのための方法および装置
CN110719631B (zh) 2018-07-12 2021-12-28 维沃移动通信有限公司 调度参数的确定方法、配置方法、终端和网络侧设备

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
HUAWEI, HISILICON: "UE power saving for paging", 3GPP DRAFT; R1-1903192, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens Greece; 20190225 - 20190301, 16 February 2019 (2019-02-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051600888 *
NTT DOCOMO, INC: "Enhancements on multi-TRP/panel transmission", 3GPP DRAFT; R1-1912893, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051820229 *
QUALCOMM INCORPORATED: "Remaining Details on QCL", 3GPP DRAFT; R1-1807398, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051442590 *
See also references of EP4132147A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207446A1 (zh) * 2022-04-27 2023-11-02 深圳市中兴微电子技术有限公司 Prach发送时机确定方法、ue、计算机可读存储介质

Also Published As

Publication number Publication date
EP4132147A4 (en) 2023-11-15
US20230144020A1 (en) 2023-05-11
JP7445367B2 (ja) 2024-03-07
JPWO2021192303A1 (ja) 2021-09-30
CN115699936A (zh) 2023-02-03
EP4132147A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
JP7193549B2 (ja) 端末、無線通信方法及びシステム
WO2021024494A1 (ja) 端末及び無線通信方法
JP7193550B2 (ja) 端末、無線通信方法及びシステム
WO2020209282A1 (ja) ユーザ端末及び無線通信方法
JPWO2020170398A1 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2020170444A1 (ja) ユーザ端末及び無線通信方法
WO2020209281A1 (ja) ユーザ端末及び無線通信方法
WO2021090507A1 (ja) 端末及び無線通信方法
WO2021161472A1 (ja) 端末、無線通信方法及び基地局
WO2020255263A1 (ja) 端末及び無線通信方法
WO2021065010A1 (ja) 端末及び無線通信方法
WO2021186700A1 (ja) 端末、無線通信方法及び基地局
JPWO2020144818A1 (ja) ユーザ端末及び無線通信方法
JP7299300B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2021192302A1 (ja) 端末、無線通信方法及び基地局
WO2021192160A1 (ja) 端末、無線通信方法及び基地局
WO2021210109A1 (ja) 端末、無線通信方法及び基地局
WO2021149263A1 (ja) 端末、無線通信方法及び基地局
WO2021106168A1 (ja) 端末及び無線通信方法
WO2021106092A1 (ja) 端末及び無線通信方法
WO2021090506A1 (ja) 端末及び無線通信方法
WO2021038659A1 (ja) 端末及び無線通信方法
WO2020144871A1 (ja) ユーザ端末及び無線通信方法
WO2021192303A1 (ja) 端末、無線通信方法及び基地局
WO2021205572A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510401

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020927133

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020927133

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE