WO2021192160A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2021192160A1
WO2021192160A1 PCT/JP2020/013731 JP2020013731W WO2021192160A1 WO 2021192160 A1 WO2021192160 A1 WO 2021192160A1 JP 2020013731 W JP2020013731 W JP 2020013731W WO 2021192160 A1 WO2021192160 A1 WO 2021192160A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
dci
transmission
csi
sch
Prior art date
Application number
PCT/JP2020/013731
Other languages
English (en)
French (fr)
Inventor
真哉 岡村
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2022510273A priority Critical patent/JP7467602B2/ja
Priority to US17/914,083 priority patent/US20230155774A1/en
Priority to CN202080101486.1A priority patent/CN115669029A/zh
Priority to PCT/JP2020/013731 priority patent/WO2021192160A1/ja
Priority to EP20927129.5A priority patent/EP4132146A4/en
Publication of WO2021192160A1 publication Critical patent/WO2021192160A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 3GPP Rel.15 or later, etc.
  • A-SRS aperiodic SRS
  • DCI format 0_1 / 1-1 / 2_3 the cyclic redundancy check (Cyclic Redundancy Check (CRC)) of DCI
  • RNTI Radio Network Temporary Identifier
  • the PUSCH must also send the UL-SCH (UL data) or A-CSI report.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station capable of appropriately setting the trigger of A-SRS.
  • the terminal goes up when the cyclic redundancy check (CRC) of the DCI is scrambled by the receiving unit that receives the downlink control information (DCI) and the specific wireless network temporary identifier (RNTI). It is not assumed that the link shared channel (UL-SCH) and the aperiodic channel state information (A-CSI) report will be transmitted, and the aperiodic measurement reference signal (A-SRS) will be triggered. It is characterized by having an assumed control unit.
  • CRC cyclic redundancy check
  • DCI downlink control information
  • RNTI specific wireless network temporary identifier
  • the trigger of A-SRS can be appropriately set.
  • FIG. 1 is a diagram showing an example of a setting pattern of DCI format 0-1.
  • 2A, 2B and 2C show the correspondence between the value of the SRS request field when the UL-SCH identifier is 1 (or when the CSI request is triggered) and the triggered A-SRS resource set. It is a figure which shows an example.
  • 3A and 3B show another example of the correspondence between the value of the SRS request field when the UL-SCH identifier is 0 (or the CSI request is not triggered) and the triggered A-SRS resource set. It is a figure.
  • FIG. 1 is a diagram showing an example of a setting pattern of DCI format 0-1.
  • 2A, 2B and 2C show the correspondence between the value of the SRS request field when the UL-SCH identifier is 1 (or when the CSI request is triggered) and the triggered A-SRS resource set. It is a figure which shows an example.
  • 3A and 3B show another example of the correspondence between the value
  • FIG. 4 is a diagram showing an example of the correspondence between the value of the SRS request field and the triggered A-SRS resource set for each RNTI scrambling the CRC of the DCI.
  • FIG. 5 is a diagram showing an example of the correspondence between the value of the SRS request field, the precoding information, and the value of the number of layers field and the triggered A-SRS resource set.
  • FIG. 6 is a diagram showing an example of the correspondence between the value of the SRS request field and the value of the CSI request field and the triggered A-SRS resource set.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 8 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 9 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 10 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the reference signal for measurement (Sounding Reference Signal (SRS)
  • SRS Sounding Reference Signal
  • the SRS of NR is used not only for the CSI measurement of the uplink (Uplink (UL)) used in the existing LTE (LTE Rel.8-14), but also for the CSI measurement of the downlink (Downlink (DL)) and the beam. It is also used for management (beam management).
  • the UE may configure one or more SRS resources.
  • SRS resources may be specified by an SRS resource index (SRS Resource Index (SRI)).
  • SRS Resource Index SRI
  • Each SRS resource may have one or more SRS ports (may correspond to one or more SRS ports).
  • the number of ports for each SRS may be 1, 2, 4, or the like.
  • the UE may be set with one or more SRS resource sets (SRS resource sets).
  • SRS resource sets may be associated with a predetermined number of SRS resources.
  • the UE may commonly use higher layer parameters for SRS resources included in one SRS resource set.
  • the resource set in the present disclosure may be read as a set, a resource group, a group, or the like.
  • Information about SRS resources or resource sets may be set in the UE using higher layer signaling, physical layer signaling, or a combination thereof.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI: Downlink Control Information).
  • DCI Downlink Control Information
  • the SRS setting information (for example, "SRS-Config" of the RRC information element) may include SRS resource set setting information, SRS resource setting information, and the like.
  • the SRS resource set setting information (for example, the RRC parameter "SRS-ResourceSet”) includes an SRS resource set ID (Identifier) (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, and SRS. Information on the resource type and the usage of the SRS may be included.
  • the SRS resource types are periodic SRS (Periodic SRS (P-SRS)), semi-persistent SRS (Semi-Persistent SRS (SP-SRS)), and aperiodic SRS (Aperiodic SRS (A-SRS)). You may indicate any of.
  • the UE may transmit P-SRS and SP-SRS periodically (or periodically after activation).
  • the UE may transmit the A-SRS based on the DCI SRS request.
  • SRS RRC parameter "usage", L1 (Layer-1) parameter "SRS-SetUse"
  • L1 (Layer-1) parameter "SRS-SetUse” are, for example, beam management, codebook, non-codebook, antenna. It may be switching or the like.
  • SRS for codebook or non-codebook use may be used to determine a precoder for codebook-based or non-codebook-based Uplink Shared Channel (PUSCH) transmission based on SRI.
  • PUSCH Uplink Shared Channel
  • An SRS for beam management may be assumed that only one SRS resource for each SRS resource set can be transmitted in an instant at a predetermined time. When a plurality of SRS resources belong to different SRS resource sets, these SRS resources may be transmitted at the same time.
  • the SRS resource setting information (for example, the RRC parameter "SRS-Resource”) includes the SRS resource ID (SRS-ResourceId), the number of SRS ports, the SRS port number, the transmission comb, and the SRS resource mapping (for example, time and / or frequency resource). It may include position, resource offset, resource period, number of iterations, number of SRS symbols, SRS bandwidth, etc.), hopping-related information, SRS resource type, sequence ID, spatial relation information, and the like.
  • SRS resource ID SRS-ResourceId
  • the SRS resource mapping for example, time and / or frequency resource. It may include position, resource offset, resource period, number of iterations, number of SRS symbols, SRS bandwidth, etc.
  • hopping-related information for example, SRS resource type, sequence ID, spatial relation information, and the like.
  • the UE may switch the BWP (Bandwidth Part) that transmits SRS for each slot, or may switch the antenna.
  • the UE may apply at least one of in-slot hopping and inter-slot hopping to SRS transmission.
  • Rel. 15 and 16 specify that the maximum number of A-SRS resource sets that can be dynamically triggered by DCI is 3 across all SRS resource set applications. In the future, it is preferable that a larger number of A-SRS resource sets are available.
  • CSI feedback methods include (1) periodic CSI (Periodic CSI (P-CSI)) reports, (2) aperiodic CSI (Aperiodic CSI (A-CSI)) reports, and (3) half. Permanent (semi-persistent, semi-persistent) CSI (Semi-Persistent CSI (SP-CSI)) reports are being considered.
  • the cyclic redundancy check (Cyclic Redundancy Check (CRC)) of DCI (PDCCH) is the wireless network temporary identifier (Radio Network Temporary Identifier (RNTI)) for SP-CSI reporting.
  • RNTI Radio Network Temporary Identifier
  • the PUSCH must also send the UL-SCH (UL data) or A-CSI report.
  • SP-CSI-RNTI is used by DCI to activate / deactivate SP-CSI reporting.
  • DCI format 0_1 when the uplink shared channel (UL-SCH) identifier (indicator) is 0, the UE does not transmit UL data in the PUSCH scheduled by the DCI format 0_1. .. Further, when the UL-SCH identifier is 1, the UE transmits UL data in the PUSCH. Then, the UE does not assume that the UL-SCH identifier is 0 and the CSI request fields are all 0, except when the CRC of DCI format 0_1 is scrambled by SP-CSI-RNTI (ie, UE). Sends UL data or A-CSI reports on PUSCH).
  • SP-CSI-RNTI ie, UE
  • FIG. 1 is a diagram showing an example of a setting pattern of DCI format 0-1.
  • C-RNTI Cell RNTI
  • CS-RNTI Configure Scheduling RNTI
  • MCS-C-RNTI Modulation Coding Scheme Cell RNTI
  • UL- A PUSCH containing at least one of the SCH and A-CSI reports is transmitted, and the A-SRS is further triggered by Rel. It can be set on 15/16 (Case 1-1).
  • the PUSCH containing at least one of the UL-SCH and A-CSI reports is not transmitted and the A-SRS is further triggered. It cannot be set on 15/16 (Case 1-2).
  • a PUSCH containing at least one of UL-SCH and A-CSI reports is transmitted (or not transmitted), and further SP-CSI reports (active). (Activation / deactivation) is transmitted, and A-SRS is triggered by Rel. It can be set at 15/16.
  • the existing control of A-SRS transmission using DCI has a point that it is not flexible.
  • the setting as in case 1-2 of FIG. 1 is not allowed. If SRS is not properly controlled, throughput may decrease or communication quality may deteriorate.
  • the present inventors do not assume the transmission of the UL-SCH and A-CSI reports, and the A-SRS is triggered. I came up with a way to assume that. This makes it possible to appropriately set (or specify) the trigger of A-SRS.
  • activation, deactivation, instruction, selection, update, decision, etc. may be read as each other. Further, in the present disclosure, sequences, lists, sets, groups, etc. may be read as each other. Further, in the present disclosure, the UL-SCH, the uplink transport channel, the uplink data, the UL data, and the transport block (Transport Block (TB)) may be read as each other.
  • Transport Block Transport Block
  • the A-SRS resource trigger may be simply referred to as a resource trigger.
  • “(A-SRS) resource trigger SRS resource set of i" (i is an integer) is an SRS resource in which the upper layer parameter A-SRS resource trigger (aperiodicSRS-ResourceTrigger) is set to i. At least one of the set and the SRS resource set in which the entry of the A-SRS resource trigger list (aperiodicSRS-ResourceTriggerList) of the upper layer parameter is set to i may be read.
  • the UE receives the DCI (for example, DCI format 0_1), and the CRC of the DCI is scrambled by a specific RNTI (RNTI other than SP-CSI-RNTI), and the setting / instruction not to transmit the UL-SCH (for example). If the UL-SCH identifier is 0) and the CSI request is not triggered (all CSI request fields are 0 or CSI request fields are 0 bits) (A-CSI report is not sent), A-SRS is sent by SRS request. May be assumed to be triggered. In the present disclosure, "triggered” may be read as "trigger is set / instructed".
  • the specific RNTI may be any of C-RNTI, CS-RNTI, MCS-C-RNTI, or the specific RNTI specified in the specifications. ..
  • DCI format 0_1 may be read as DCI format 1-11, DCI format 2_3, other DCI format, and the like.
  • the correspondence relationship (for example, table) between the value of the SRS request field and the triggered A-SRS resource set used in the above case may be specified. Then, in the above case, the UE may determine the A-SRS resource set to be triggered based on the correspondence and the value of the SRS request field.
  • correspondences, tables, lists, mathematical formulas based on correspondences, arrays based on correspondences, and the like may be read as each other.
  • X may be set by RRC, activated by MAC, or specified in the specifications.
  • the UE selects the X bits from the lower (or higher) of the Y bits. It may be assumed as the value of the SRS request. In other words, the UE interprets the Y bits as the value of the SRS request field from the lower (or higher) of the Y bits and the remaining bits of the Y bits as specific values (for example, 0, 1). It may be used to refer to the table of the SRS request field of the Y bit.
  • FIGS. 2A, 2B and 2C show the correspondence between the value of the SRS request field when the UL-SCH identifier is 1 (or when the CSI request is triggered) and the triggered A-SRS resource set. It is a figure which shows an example.
  • FIG. 2A shows an example in which the SRS request field is 2 bits.
  • FIG. 2B shows an example in which the SRS request field is 3 bits.
  • the UE has the value of the SRS request field when the UL-SCH identifier is 1 (or when the CSI request is triggered) and when the UL-SCH identifier is 0 (or when the CSI request is not triggered). It may be assumed that the correspondence (table) with the A-SRS resource set that is triggered is different.
  • 3A and 3B show another example of the correspondence between the value of the SRS request field when the UL-SCH identifier is 0 (or the CSI request is not triggered) and the triggered A-SRS resource set. It is a figure. In this example, it is assumed that the correspondence between the value of the SRS request field when the UL-SCH identifier is 1 (or when the CSI request is triggered) and the triggered A-SRS resource set is shown in FIG. 2A. do.
  • FIG. 3A is a diagram showing an example of the correspondence between the value of the SRS request field when the UL-SCH identifier is 0 (or when the CSI request is not triggered) and the triggered A-SRS resource set.
  • FIG. 3A when some settings (for example, "set to 1", “set to 2", “set to 3") have a UL-SCH identifier of 1 (or a CSI request is triggered). Case) may be the same as the setting (FIG. 2A).
  • FIG. 3B is a diagram showing another example of the correspondence between the value of the SRS request field when the UL-SCH identifier is 0 (or when the CSI request is not triggered) and the triggered A-SRS resource set. ..
  • the triggered A-SRS resource set is 1 in FIG. 3A and 4 in FIG. 3B. Note that there are no triggered A-SRS resource sets 1 to 3 in FIG. 3B. Therefore, when triggering A-SRS resource sets 1 to 3, it is necessary to set the UL-SCH identifier to 1 or trigger a CSI request. Although the case of "A-SRS resource set is not triggered” does not exist in FIGS. 3A and 3B, it may exist.
  • the UE may assume that a correspondence (table) between the value of the SRS request field and the triggered A-SRS resource set is set for each RNTI that scrambles the CRC of the DCI.
  • FIG. 4 is a diagram showing an example of the correspondence between the value of the SRS request field and the triggered A-SRS resource set for each RNTI that scrambles the CRC of DCI. As shown in FIG. 4, the relationship between the value of the SRS request field and the triggered A-SRS resource set may be different, or at least partially matched, depending on the RNTI scrambling the CRC of the DCI. May be.
  • the triggered A-SRS resource set is the same when the CRC is scrambled by C-RNTI and when the CRC is scrambled by CS-RNTI.
  • the triggered A-SRS resource set is when the CRC is scrambled by C-RNTI or CS-RNTI and when the CRC is scrambled by MCS-C-RNTI or SP-CSI-RNTI. It's different.
  • the table referenced by the UE may be switched by higher layer signaling (eg, RRC or MAC CE).
  • the bit numbers X and Y of the SRS request field may be set by RRC, activated by MAC, or specified in the specifications.
  • the UE is configured not to send the UL-SCH and the A-SRS does not send the A-CSI report even if the CSI request is not triggered (does not send the A-CSI report). Can be triggered. That is, only A-SRS can be triggered while the current terminal operation can be set. Therefore, the trigger of A-SRS can be set (or specified) appropriately.
  • the UE receives a DCI (for example, format 0_1), scrambles the CRC of the DCI by a specific RNTI (RNTI other than SP-CSI-RNTI), and sets / instructs (UL) to transmit the UL-SCH.
  • a DCI for example, format 0_1
  • RNTI RNTI other than SP-CSI-RNTI
  • UL instructs
  • the UE may operate according to at least one of the following options 2-1 to 2-3.
  • the UE does not have to transmit the UL-SCH in the PUSCH (it is not necessary to assume the transmission of the UL-SCH in the PUSCH). That is, the UE may read the UL-SCH identifier as 0.
  • the UE may not transmit the UL-SCH and A-CSI reports on the PUSCH (it does not have to assume the transmission of the UL-SCH and A-CSI reports). That is, the UE may read the UL-SCH identifier as 0 and all CSI requests as 0.
  • the UE may use Option 2-1 or Option 2-2, or Rel. Which of the 15/16 operations to apply may be switched based on higher layer signaling (eg, RRC or MAC CE).
  • the "operation of Rel.15 / 16" here may be read as "an operation in which the UL-SCH identifier field and the CSI request field are not replaced by the value of the SRS request field".
  • the UE can trigger the A-SRS without transmitting the UL-SCH.
  • the UE receives the DCI (for example, format 0_1), the CRC of the DCI is scrambled by the RNTI other than SP-CSI-RNTI, the CSI request is triggered (the CSI requests are not all 0), and If the SRS request triggers the A-SRS, it is not necessary to assume the transmission of the A-CSI report (the A-CSI report may not be transmitted). That is, the UE may ignore the CSI request. In this case, the UE may operate according to at least one of the following options 3-1 to 3-3.
  • the UE does not have to send the A-CSI report on the PUSCH (it does not have to assume the A-CSI report on the PUSCH). That is, the UE may read all CSI requests as 0.
  • the UE may not transmit the UL-SCH and A-CSI reports on the PUSCH (it does not have to assume the transmission of the UL-SCH and A-CSI reports). That is, the UE may read the UL-SCH identifier as 0 and all CSI requests as 0.
  • the UE may use Option 3-1 or Option 3-2, or Rel. Which of the 15/16 operations to apply may be switched based on higher layer signaling (eg, RRC or MAC CE).
  • the "operation of Rel.15 / 16" here may be read as "an operation in which the UL-SCH identifier field and the CSI request field are not replaced by the value of the SRS request field".
  • the UE can trigger the A-SRS without sending the A-CSI report.
  • the UE uses the DCI field (for example, precoding information and number) used for the UL-SCH transmission in the PUSCH.
  • the DCI field for example, precoding information and number
  • the triggered A-SRS resource set is set according to the combination of the SRS request field (of layers) field, Modulation and Coding Scheme (MCS) field, etc.
  • MCS Modulation and Coding Scheme
  • the SRS request field in the first embodiment / the second embodiment may be read as a set of the SRS request field and other DCI fields.
  • FIG. 5 is a diagram showing an example of the correspondence between the value of the SRS request field, the precoding information, and the value of the number of layers field and the triggered A-SRS resource set.
  • the UE may determine the ASRS resource set based on the value of the RS request field and the precoding information and the value of the number of layers field.
  • the values of the precoding information and the number of layers field in FIG. 5 may be read as the values of the modulation / coding method (MCS).
  • MCS modulation / coding method
  • the trigger candidates of the A-SRS resource set can be increased as compared with the case where only the SRS request field is used.
  • the UE when not sending an A-CSI report, the UE triggers depending on the pair of DCI fields (eg, CSI request fields) and SRS request fields used for A-CSI reporting in PUSCH. It may be assumed that the A-SRS resource set to be set is set.
  • FIG. 6 is a diagram showing an example of the correspondence between the value of the SRS request field and the value of the CSI request field and the triggered A-SRS resource set.
  • the UE may determine the A-SRS resource set based on the value of the SRS request field and the value of the CSI request field.
  • the trigger candidates of the A-SRS resource set can be increased as compared with the case where only the SRS request field is used.
  • ⁇ Modification example 3> When the processing shown in the first embodiment / second embodiment / third embodiment is set by higher layer signaling (for example, RRC) (or when a specific setting is made), UL-SCH in PUSCH
  • the DCI field used for transmission eg, modulation / coding method (MCS) field / precoding information and number of layers field
  • the DCI field used for A-CSI reporting eg, CSI request
  • MCS modulation / coding method
  • A-CSI reporting eg, CSI request
  • the UE receives a CRC scrambled DCI with an RNTI other than SP-CSI-RNTI, the UL-SCH identifier is 0, and the CSI request field is all 0 (or CSI). It may be the case that the request field is 0 bit) is specified.
  • the UE can refer to the zero-padded DCI field and decide not to send the UL-SCH and A-CSI reports.
  • the first embodiment / second embodiment / third embodiment When the UE receives the DCI scrambled by the CRC by the RNTI for triggering the A-SRS (eg, the A-SRS-RNTI), the first embodiment / second embodiment / third embodiment.
  • the processing of the embodiment may be performed.
  • DCI format 0-1 When the processing shown in the first embodiment / second embodiment / third embodiment is set by upper layer signaling (for example, RRC) (for example, the upper layer parameter "aperiodicSrsConfig" is set), DCI The format 0-1 may be defined as follows.
  • the UL-SCH indicator indicates that the UL-SCH is transmitted on the PUSCH when the value is "1" and that the UL-SCH is not transmitted on the PUSCH when the value is "0".
  • the UE may expect to receive the DCI format 0_1 with the UL-SCH identifier set to 0 and the CSI request set to all zeros.
  • the UE sets the UL-SCH identifier to 0 and all CSI requests are zero, except when the CRC is scrambled in DCI format0-1 by SP-CSI-RNTI. It is not necessary to expect to receive the DCI format 0-1 in which is set.
  • DCI form 2_4, DCI form 0_2, DCI form 3_0, etc. DCI form dedicated to A-SRS triggers
  • the UE can appropriately set (or specify) the trigger of A-SRS.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the radio communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR))
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 8 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may transmit DCI.
  • the control unit 110 is downlink control information (DCI) in which the cyclic redundancy check (CRC) is scrambled by a specific wireless network temporary identifier (RNTI), and is an aperiodic measurement reference signal (A-SRS). It may be assumed that the DCI for reception is generated and that the uplink shared channel (UL-SCH) and aperiodic channel state information (A-CSI) reports are not transmitted based on the DCI.
  • DCI downlink control information
  • CRC cyclic redundancy check
  • RNTI wireless network temporary identifier
  • A-SRS aperiodic measurement reference signal
  • FIG. 9 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitting unit and the receiving unit of the user terminal 20 in the present disclosure may be composed of at least one of the transmitting / receiving unit 220 and the transmitting / receiving antenna 230.
  • the transmission / reception unit 220 may receive downlink control information (DCI).
  • DCI downlink control information
  • the control unit 210 scrambles the uplink shared channel (UL-SCH) and the aperiodic channel state information (A).
  • -CSI uplink shared channel
  • A-SRS aperiodic measurement reference signal
  • the control unit 210 determines that the A-SRS is triggered when the CRC of the DCI is scrambled by a specific RNTI, the UL-SCH is not transmitted, and the CSI request is not triggered. You may assume.
  • the control unit 210 assumes the transmission of the UL-SCH. You don't have to.
  • the control unit 210 does not have to assume the transmission of the A-CSI report when the CRC of the DCI is scrambled by a specific RNTI, the CSI request is triggered, and the A-SRS is triggered. ..
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 10 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may be a time unit based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a numerology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained in a slot, the number of symbols and RBs contained in a slot or minislot, and included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, integer, fraction)
  • Future Radio Access FAA
  • RAT New -Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • LTE 802.11 Wi-Fi®
  • LTE 802.16 WiMAX®
  • LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios. It may be applied to a system using a communication method, a next-generation system extended based on these, and the like.
  • UMB Ultra-WideBand
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)” such as “accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、下り制御情報(DCI)を受信する受信部と、特定の無線ネットワーク一時識別子(RNTI)により前記DCIの巡回冗長検査(CRC)がスクランブリングされた場合、上りリンク共有チャネル(UL-SCH)及び非周期的なチャネル状態情報(A-CSI)報告の送信を想定せず、かつ、非周期的な測定用参照信号(A-SRS)がトリガされることを想定する制御部と、を有することを特徴とする。本開示の一態様によれば、A-SRSのトリガを適切に設定することができる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 Rel.15/16ではDCI format 0_1/1_1/2_3で非周期的SRS(Aperiodic SRS(A-SRS))をトリガすることが可能である。しかし、DCI format 0_1でA-SRSをトリガする場合、DCI(PDCCH)の巡回冗長検査(Cyclic Redundancy Check(CRC))がSP-CSI報告用の無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))(SP-CSI-RNTI)によりスクランブリングされている場合を除き、PUSCHでUL-SCH(ULデータ)又はA-CSI報告も送信しなくてはならない。
 このように、既存のA-SRS送信の制御は、柔軟でない点がある。SRSが適切に制御されない場合、スループットの低下又は通信品質が劣化するおそれがある。
 そこで、本開示は、A-SRSのトリガを適切に設定することができる端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、下り制御情報(DCI)を受信する受信部と、特定の無線ネットワーク一時識別子(RNTI)により前記DCIの巡回冗長検査(CRC)がスクランブリングされた場合、上りリンク共有チャネル(UL-SCH)及び非周期的なチャネル状態情報(A-CSI)報告の送信を想定せず、かつ、非周期的な測定用参照信号(A-SRS)がトリガされることを想定する制御部と、を有することを特徴とする。
 本開示の一態様によれば、A-SRSのトリガを適切に設定することができる。
図1は、DCI format 0_1の設定パターンの例を示す図である。 図2A、図2B及び図2Cは、UL-SCH識別子が1である場合(又はCSIリクエストがトリガされる場合)のSRSリクエストフィールドの値と、トリガされるA-SRSリソースセットとの対応関係の例を示す図である。 図3A及び図3Bは、UL-SCH識別子が0である場合(又はCSIリクエストがトリガされない場合)のSRSリクエストフィールドの値とトリガされるA-SRSリソースセットとの対応関係の別の例を示す図である。 図4は、DCIのCRCをスクランブリングするRNTI毎の、SRSリクエストフィールドの値とトリガされるA-SRSリソースセットとの対応関係の例を示す図である。 図5は、SRSリクエストフィールドの値及びプリコーディング情報及びレイヤ数フィールドの値と、トリガされるA-SRSリソースセットとの対応関係の例を示す図である。 図6は、SRSリクエストフィールドの値及びCSIリクエストフィールドの値と、トリガされるA-SRSリソースセットとの対応関係の例を示す図である。 図7は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図8は、一実施形態に係る基地局の構成の一例を示す図である。 図9は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図10は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(SRS)
 NRにおいては、測定用参照信号(Sounding Reference Signal(SRS))の用途が多岐にわたっている。NRのSRSは、既存のLTE(LTE Rel.8-14)でも利用された上りリンク(Uplink(UL))のCSI測定のためだけでなく、下りリンク(Downlink(DL))のCSI測定、ビーム管理(beam management)などにも利用される。
 UEは、1つ又は複数のSRSリソースを設定(configure)されてもよい。SRSリソースは、SRSリソースインデックス(SRS Resource Index(SRI))によって特定されてもよい。
 各SRSリソースは、1つ又は複数のSRSポートを有してもよい(1つ又は複数のSRSポートに対応してもよい)。例えば、SRSごとのポート数は、1、2、4などであってもよい。
 UEは、1つ又は複数のSRSリソースセット(SRS resource set)を設定されてもよい。1つのSRSリソースセットは、所定数のSRSリソースに関連してもよい。UEは、1つのSRSリソースセットに含まれるSRSリソースに関して、上位レイヤパラメータを共通で用いてもよい。なお、本開示におけるリソースセットは、セット、リソースグループ、グループなどで読み替えられてもよい。
 SRSリソース又はリソースセットに関する情報は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いてUEに設定されてもよい。
 なお、本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(DCI:Downlink Control Information)であってもよい。
 SRS設定情報(例えば、RRC情報要素の「SRS-Config」)は、SRSリソースセット設定情報、SRSリソース設定情報などを含んでもよい。
 SRSリソースセット設定情報(例えば、RRCパラメータの「SRS-ResourceSet」)は、SRSリソースセットID(Identifier)(SRS-ResourceSetId)、当該リソースセットにおいて用いられるSRSリソースID(SRS-ResourceId)のリスト、SRSリソースタイプ(resourceType)、SRSの用途(usage)の情報を含んでもよい。
 ここで、SRSリソースタイプは、周期的SRS(Periodic SRS(P-SRS))、セミパーシステントSRS(Semi-Persistent SRS(SP-SRS))、非周期的SRS(Aperiodic SRS(A-SRS))のいずれかを示してもよい。なお、UEは、P-SRS及びSP-SRSを周期的(又はアクティベート後、周期的)に送信してもよい。UEは、A-SRSをDCIのSRSリクエストに基づいて送信してもよい。
 また、SRSの用途(RRCパラメータの「usage」、L1(Layer-1)パラメータの「SRS-SetUse」)は、例えば、ビーム管理、コードブック(codebook)、ノンコードブック(non-codebook)、アンテナスイッチングなどであってもよい。例えば、コードブック又はノンコードブック用途のSRSは、SRIに基づくコードブックベース又はノンコードブックベースの上り共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のプリコーダの決定に用いられてもよい。
 ビーム管理用途のSRSは、各SRSリソースセットについて1つのSRSリソースだけが、所定の時間インスタントにおいて送信可能であると想定されてもよい。なお、複数のSRSリソースがそれぞれ異なるSRSリソースセットに属する場合、これらのSRSリソースは同時に送信されてもよい。
 SRSリソース設定情報(例えば、RRCパラメータの「SRS-Resource」)は、SRSリソースID(SRS-ResourceId)、SRSポート数、SRSポート番号、送信Comb、SRSリソースマッピング(例えば、時間及び/又は周波数リソース位置、リソースオフセット、リソースの周期、繰り返し数、SRSシンボル数、SRS帯域幅など)、ホッピング関連情報、SRSリソースタイプ、系列ID、空間関係情報などを含んでもよい。
 UEは、スロットごとにSRSを送信するBWP(Bandwidth Part)をスイッチングしてもよいし、アンテナをスイッチングしてもよい。また、UEは、スロット内ホッピング及びスロット間ホッピングの少なくとも一方をSRS送信に適用してもよい。
 ところで、Rel.15、16では、全てのSRSリソースセットの用途にわたって、DCIによって動的にトリガ可能なA-SRSリソースセットは、最大3であると規定されている。将来的には、より多くの数のA-SRSリソースセットが利用できることが好ましい。
 また、CSIのフィードバック方法としては、(1)周期的なCSI(Periodic CSI(P-CSI))報告、(2)非周期的なCSI(Aperiodic CSI(A-CSI))報告、(3)半永続的(半持続的、セミパーシステント(Semi-Persistent))なCSI(Semi-Persistent CSI(SP-CSI))報告などが検討されている。
 Rel.15/16ではDCI format 0_1/1_1/2_3でA-SRSをトリガすることが可能である。しかし、DCI format 0_1でA-SRSをトリガする場合、DCI(PDCCH)の巡回冗長検査(Cyclic Redundancy Check(CRC))がSP-CSI報告用の無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))(SP-CSI-RNTI)によりスクランブリングされている場合を除き、PUSCHでUL-SCH(ULデータ)又はA-CSI報告も送信しなくてはならない。SP-CSI-RNTIは、DCIによりSP-CSI報告をアクティブ化/非アクティブ化するために使用される。
 例えば、DCI format 0_1において、上りリンク共有チャネル(Uplink Shared Channel(UL-SCH))識別子(indicator)が0である場合、UEは、当該DCI format 0_1によってスケジュールされるPUSCHにおいて、ULデータを送信しない。また、UL-SCH識別子が1である場合、UEは、PUSCHにおいてULデータを送信する。そして、UEは、DCI format 0_1のCRCがSP-CSI-RNTIによりスクランブリングされている場合を除き、UL-SCH識別子が0、及びCSIリクエストフィールドが全て0であることを想定しない(すなわち、UEは、PUSCHでULデータ又はA-CSI報告を送信する)。
 図1は、DCI format 0_1の設定パターンの例を示す図である。図1に示すように、Cell RNTI(C-RNTI)/Configured Scheduling RNTI(CS-RNTI)/Modulation Coding Scheme Cell RNTI(MCS-C-RNTI)によりCRCがスクランブルされる場合(ケース1)、UL-SCH、A-CSI報告の少なくとも一方を含むPUSCHを送信し、さらにA-SRSがトリガされることがRel.15/16において設定可能である(ケース1-1)。しかし、ケース1において、UL-SCH、A-CSI報告の少なくとも一方を含むPUSCHを送信せず、さらにA-SRSがトリガされることがRel.15/16において設定不可能である(ケース1-2)。
 一方、SP-CSI-RNTIによりCRCがスクランブルされる場合(ケース2)、UL-SCH、A-CSI報告の少なくとも一方を含むPUSCHを送信し(又は送信せず)、さらにSP-CSI報告(アクティブ化/非アクティブ化)を送信し、A-SRSがトリガされることがRel.15/16において設定可能である。
 以上説明したように、DCIを用いた既存のA-SRS送信の制御は、柔軟でない点がある。例えば、図1のケース1-2のような設定が許容されない。SRSが適切に制御されない場合、スループットの低下又は通信品質が劣化するおそれがある。
 そこで、本発明者らは、DCIを受信し、特定のRNTIによりDCIのCRCがスクランブリングされた場合、UL-SCH及びA-CSI報告の送信を想定せず、かつ、A-SRSがトリガされることを想定する方法を着想した。これにより、A-SRSのトリガを適切に設定(又は指定)することができる。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 なお、本開示において、アクティベート、ディアクティベート、指示、選択、更新、決定などは、互いに読み替えられてもよい。また、本開示において、シーケンス、リスト、セット、グループなどは、互いに読み替えられてもよい。また、本開示において、UL-SCH、上りトランスポートチャネル、上りデータ、ULデータ、トランスポートブロック(Transport Block(TB))は、互いに読み替えられてもよい。
 以下の実施形態において、UEは、1つより多くの同じ用途(例えば、用途=コードブック、用途=ノンコードブック、など)のSRSリソースセットを設定されてもよい。
 本開示において、A-SRSリソーストリガは、単にリソーストリガと呼ばれてもよい。また、本開示において、「(A-SRS)リソーストリガ=iのSRSリソースセット」(iは整数)は、上位レイヤパラメータのA-SRSリソーストリガ(aperiodicSRS-ResourceTrigger)がiに設定されるSRSリソースセット、及び、上位レイヤパラメータのA-SRSリソーストリガリスト(aperiodicSRS-ResourceTriggerList)のエントリがiに設定されるSRSリソースセット、の少なくとも一方で読み替えられてもよい。
 なお、Rel.15 NRではリソーストリガの取り得る値は1、2、3であったが、本開示においては、リソーストリガの取り得る値はこれらに限られない。なお、本開示において、「A/B」は、「A及びBの少なくとも一方」で読み替えられてもよい。
(無線通信方法)
<第1の実施形態>
 UEは、DCI(例えば、DCI format 0_1)を受信し、特定のRNTI(SP-CSI-RNTI以外のRNTI)により当該DCIのCRCがスクランブリングされ、かつ、UL-SCHを送信しない設定/指示(UL-SCH識別子が0)がされ、かつ、CSIリクエストがトリガされていない(CSIリクエストフィールドが全て0又はCSIリクエストフィールドが0bit)(A-CSI報告を送信しない)場合、SRSリクエストによってA-SRSがトリガされることを想定してもよい。本開示において「トリガされる」は、「トリガが設定/指示される」に読み替えられてもよい。
 本開示において、特定のRNTI(SP-CSI-RNTI以外のRNTI)は、C-RNTI、CS-RNTI、MCS-C-RNTIのいずれか、又は仕様で規定された特定のRNTIであってもよい。本開示において、DCI format 0_1は、DCI format 1_1、DCI format 2_3、その他のDCI formtなどに読み替えられてもよい。
 上記の場合において用いられる、SRSリクエストフィールドの値とトリガされるA-SRSリソースセットとの対応関係(例えば、テーブル)が規定されてもよい。そして、UEは、上記の場合において、当該対応関係と、SRSリクエストフィールドの値と、に基づいて、トリガされるA-SRSリソースセットを決定してもよい。
 以下、上記対応関係について具体的に説明する。なお、本開示において、対応関係、テーブル、リスト、対応関係に基づく数式、対応関係に基づく配列などは、互いに読み替えられてもよい。
[オプション1-1]
 UEは、上記対応関係として、SRSリクエストフィールドが特定のビット数(Xビット)であり、UL-SCH識別子が1である(又はCSIリクエストがトリガされる)場合の対応関係を用いると想定してもよい。XはRRCで設定されてもよいし、MACでアクティブ化されてもよいし、仕様で規定されてもよい。
 なお、例えば、Y(>X)ビットのSRSリクエストフィールドのテーブルが規定され、UEにXビットのSRSリクエストフィールドが指示された場合、UEは、Yビットの下位(又は上位)からXビットを、SRSリクエストの値として想定してもよい。言い換えると、UEは、Yビットの下位(又は上位)からXビットをSRSリクエストフィールドの値とし、Yビットの残りのビットを特定の値(例えば、0、1)として解釈したYビットを、上記YビットのSRSリクエストフィールドのテーブルの参照に用いてもよい。
 図2A、図2B及び図2Cは、UL-SCH識別子が1である場合(又はCSIリクエストがトリガされる場合)のSRSリクエストフィールドの値と、トリガされるA-SRSリソースセットとの対応関係の例を示す図である。図2A-図2Cにおいて、"set to X"は、A-SRSリソースセット#X(又は、リソーストリガ=XのSRSリソースセット)がトリガされることを示してもよい(他の図も同様)。図2Aは、SRSリクエストフィールドが2ビットである例を示している。図2Bは、SRSリクエストフィールドが3ビットである例を示している。
 図2Cは、Y=3、X=2である例を示している。すなわち、UEは、3ビットのSRSリクエストフィールドの値の下位(又は上位)2ビットがDCIにより通知される。例えば、UEは、DCI format 0_1によって通知されたSRSリクエストフィールドの値が"01"である場合、図2CのテーブルのSRSリクエストフィールドの値が"001"(又は"010")が通知されたと想定してもよい。
[オプション1-2]
 UEは、UL-SCH識別子が1である場合(又はCSIリクエストがトリガされる場合)と、UL-SCH識別子が0である場合(又はCSIリクエストがトリガされない場合)とにおいて、SRSリクエストフィールドの値とトリガされるA-SRSリソースセットとの対応関係(テーブル)が異なることを想定してもよい。
 図3A及び図3Bは、UL-SCH識別子が0である場合(又はCSIリクエストがトリガされない場合)のSRSリクエストフィールドの値とトリガされるA-SRSリソースセットとの対応関係の別の例を示す図である。本例において、UL-SCH識別子が1である場合(又はCSIリクエストがトリガされる場合)のSRSリクエストフィールドの値とトリガされるA-SRSリソースセットとの対応関係は、図2Aであると想定する。
 図3Aは、UL-SCH識別子が0である場合(又はCSIリクエストがトリガされない場合)のSRSリクエストフィールドの値とトリガされるA-SRSリソースセットとの対応関係の例を示す図である。図3Aに示すように、一部の設定(例えば、"set to 1"、"set to 2"、"set to 3")がUL-SCH識別子が1である場合(又はCSIリクエストがトリガされる場合)の設定(図2A)と同じであってもよい。図3Bは、UL-SCH識別子が0である場合(又はCSIリクエストがトリガされない場合)のSRSリクエストフィールドの値とトリガされるA-SRSリソースセットとの対応関係の別の例を示す図である。
 例えば、SRSリクエストフィールドの値が"00"である場合に、トリガされるA-SRSリソースセットは、図3Aでは1であり、図3Bでは4である。なお、図3Bには、トリガされるA-SRSリソースセット1~3が存在しない。よって、A-SRSリソースセット1~3をトリガする場合、UL-SCH識別子に1を設定するか、CSIリクエストをトリガする必要がある。なお、図3A及び図3Bにおいて「A-SRSリソースセットがトリガされない」というケースが存在しないが、存在していてもよい。
[オプション1-3]
 UEは、DCIのCRCをスクランブリングするRNTI毎に、SRSリクエストフィールドの値とトリガされるA-SRSリソースセットとの対応関係(テーブル)が設定されることを想定してもよい。
 図4は、DCIのCRCをスクランブリングするRNTI毎の、SRSリクエストフィールドの値とトリガされるA-SRSリソースセットとの対応関係の例を示す図である。図4に示すように、DCIのCRCをスクランブリングするRNTIに応じて、SRSリクエストフィールドの値とトリガされるA-SRSリソースセットとの関係が異なっていてもよいし、少なくとも一部が一致していてもよい。
 図4に示す例では、C-RNTIによりCRCがスクランブリングされる場合と、CS-RNTIによりCRCがスクランブリングされる場合とにおいて、トリガされるA-SRSリソースセットは同じである。一方、C-RNTI又はCS-RNTIによりCRCがスクランブリングされる場合と、MCS-C-RNTI又はSP-CSI-RNTIによりCRCがスクランブリングされる場合とにおいて、トリガされるA-SRSリソースセットは異なっている。
 UEが参照するテーブル(例えば、図2A~図2C、図3A、図3B、又は図4)は、上位レイヤシグナリング(例えば、RRC又はMAC CE)により切り替えられてもよい。SRSリクエストフィールドのビット数X及びYは、RRCで設定されてもよいし、MACでアクティブ化されてもよいし、仕様で規定されてもよい。
 第1の実施形態によれば、UEは、UL-SCHを送信しない設定がされ、かつ、CSIリクエストがトリガされていない(A-CSI報告を送信しない)場合であっても、A-SRSがトリガされることができる。すなわち、現状の端末動作は設定可能なまま、A-SRSのみトリガできる。したがって、A-SRSのトリガを適切に設定(又は指定)することができる。
<第2の実施形態>
 UEは、DCI(例えば、format 0_1)を受信し、特定のRNTI(SP-CSI-RNTI以外のRNTI)により当該DCIのCRCがスクランブリングされ、かつ、UL-SCHを送信する設定/指示(UL-SCH識別子=1)がされ、かつ、SRSリクエストによってA-SRSがトリガされる場合、UL-SCHの送信を想定しなくてもよい(UL-SCHを送信しなくてもよい)。すなわち、UEは、UL-SCH識別子を無視してもよい。この場合、UEは、以下のオプション2-1から2-3の少なくとも1つに従って動作してもよい。
[オプション2-1]
 UEは、PUSCHにおいてUL-SCHを送信しなくてもよい(PUSCHにおけるUL-SCHの送信を想定しなくてもよい)。すなわち、UEは、UL-SCH識別子を0に読み替えてもよい。
[オプション2-2]
 UEは、PUSCHにおいてUL-SCH及びA-CSI報告を送信しなくてもよい(UL-SCH及びA-CSI報告の送信を想定しなくてもよい)。すなわち、UEは、UL-SCH識別子を0に読み替え、CSIリクエストを全て0に読み替えてもよい。
[オプション2-3]
 UEは、オプション2-1、オプション2-2、又はRel.15/16の動作のうちのどれを適用するかを上位レイヤシグナリング(例えば、RRC又はMAC CE)に基づいて切り替えてもよい。ここでの「Rel.15/16の動作」は、「SRSリクエストフィールドの値によってUL-SCH識別子フィールド及びCSIリクエストフィールドを読み替えることはしない動作」で読み替えられてもよい。 
 第2の実施形態によれば、UEは、UL-SCHを送信せずに、A-SRSがトリガされることができる。
<第3の実施形態>
 UEは、DCI(例えば、format 0_1)を受信し、SP-CSI-RNTI以外のRNTIにより当該DCIのCRCがスクランブリングされ、かつ、CSIリクエストがトリガされ(CSIリクエストが全て0でない)、かつ、SRSリクエストによってA-SRSがトリガされる場合、A-CSI報告の送信を想定しなくてもよい(A-CSI報告を送信しなくてもよい)。すなわち、UEは、CSIリクエストを無視してもよい。この場合、UEは、以下のオプション3-1から3-3の少なくとも1つに従って動作してもよい。
[オプション3-1]
 UEは、PUSCHにおいてA-CSI報告を送信しなくてもよい(PUSCHにおけるA-CSI報告を想定しなくてもよい)。すなわち、UEは、CSIリクエストを全て0に読み替えてもよい。
[オプション3-2]
 UEは、PUSCHにおいてUL-SCH及びA-CSI報告を送信しなくてもよい(UL-SCH及びA-CSI報告の送信を想定しなくてもよい)。すなわち、UEは、UL-SCH識別子を0に読み替え、CSIリクエストを全て0に読み替えてもよい。
[オプション3-3]
 UEは、オプション3-1、オプション3-2、又はRel.15/16の動作のうちのどれを適用するかを上位レイヤシグナリング(例えば、RRC又はMAC CE)に基づいて切り替えてもよい。ここでの「Rel.15/16の動作」は、「SRSリクエストフィールドの値によってUL-SCH識別子フィールド及びCSIリクエストフィールドを読み替えることはしない動作」で読み替えられてもよい。
 第3の実施形態によれば、UEは、A-CSI報告を送信せずに、A-SRSがトリガされることができる。
<変形例1>
 第1の実施形態/第2の実施形態において(UL-SCHを送信しない場合)、UEは、PUSCHにおけるUL-SCH送信に使用するDCIフィールド(例えば、プリコーディング情報及びレイヤ数(Precoding information and number of layers)フィールド、変調・符号化方式(Modulation and Coding Scheme(MCS))フィールドなど)とSRSリクエストフィールドとの組に応じて、トリガされるA-SRSリソースセットが設定されることを想定してもよい。言い換えると、第1の実施形態/第2の実施形態におけるSRSリクエストフィールドは、SRSリクエストフィールド及び他のDCIフィールドの組で読み替えられてもよい。
 図5は、SRSリクエストフィールドの値及びプリコーディング情報及びレイヤ数フィールドの値と、トリガされるA-SRSリソースセットとの対応関係の例を示す図である。UEは、RSリクエストフィールドの値及びプリコーディング情報及びレイヤ数フィールドの値に基づいて、A-SRSリソースセットを決定してもよい。なお、図5におけるプリコーディング情報及びレイヤ数フィールドの値は、変調・符号化方式(MCS)の値に読み替えられてもよい。
 変形例1によれば、SRSリクエストフィールドのみを用いた場合と比べて、A-SRSリソースセットのトリガ候補を増加させることができる。
<変形例2>
 第3の実施形態において(A-CSI報告を送信しない場合)、UEは、PUSCHにおけるA-CSI報告に使用するDCIフィールド(例えば、CSIリクエストフィールド)とSRSリクエストフィールドとの組に応じて、トリガされるA-SRSリソースセットが設定されることを想定してもよい。
 図6は、SRSリクエストフィールドの値及びCSIリクエストフィールドの値と、トリガされるA-SRSリソースセットとの対応関係の例を示す図である。UEは、SRSリクエストフィールドの値及びCSIリクエストフィールドの値に基づいて、A-SRSリソースセットを決定してもよい。
 変形例2によれば、SRSリクエストフィールドのみを用いた場合と比べて、A-SRSリソースセットのトリガ候補を増加させることができる。
<変形例3>
 第1の実施形態/第2の実施形態/第3の実施形態に示す処理が上位レイヤシグナリング(例えば、RRC)により設定された場合(又は特定の設定がされた場合)、PUSCHにおけるUL-SCH送信に使用するDCIフィールド(例えば、変調・符号化方式(MCS)フィールド/プリコーディング情報及びレイヤ数フィールド)、A-CSI報告に使用するDCIフィールド(例えば、CSIリクエスト)がゼロパディングされる(又は全てビット値0である)ことを想定してもよい。
 上記「特定の設定がされた場合」は、UEが、SP-CSI-RNTI以外のRNTIでCRCスクランブリングされたDCIを受信し、UL-SCH識別子が0かつCSIリクエストフィールドに全て0(又はCSIリクエストフィールドが0ビット)が指示された場合であってもよい。
 変形例3によれば、UEは、ゼロパディングされたDCIフィールドを参照して、UL-SCH及びA-CSI報告の送信しないことを決定することができる。
<その他>
 UEは、A-SRSをトリガするためのRNTI(例えば、A-SRS-RNTI)によってCRCがスクランブリングされたDCIを受信した場合に、第1の実施形態/第2の実施形態/第3の実施形態の処理を行ってもよい。
[DCI format0_1の規定例]
 第1の実施形態/第2の実施形態/第3の実施形態に示す処理が上位レイヤシグナリング(例えば、RRC)により設定された(例えば、上位レイヤパラメータ"aperiodicSrsConfig"が設定された)場合、DCI format0_1が、以下のように規定されてもよい。
 UL-SCHインディケーターフィールドとして1ビットが設定される。UL-SCHインディケーターは、値が「1」である場合、UL-SCHがPUSCHで送信されることを示し、値が「0」である場合、UL-SCHがPUSCHで送信されないことを示す。
 上位レイヤパラメータ"aperiodicSrsConfig"が設定されている場合、UEは、UL-SCH識別子に0が設定され、CSIリクエストに全てゼロが設定されたDCIフォーマット0_1を受信することを予想してもよい。上位レイヤパラメータ"aperiodicSrsConfig"が設定されていない場合、SP-CSI-RNTIによりDCI format0_1においてCRCがスクランブリングされる場合を除き、UEは、UL-SCH識別子に0が設定され、CSIリクエストに全てゼロが設定されたDCIフォーマット0_1を受信することを予想しなくてもよい。
[新たなDCI formatの規定例]
 UEは、A-SRSトリガに必要なフィールドのみ有するDCI format(例えば、DCI format 2_4,DCI format 0_2,DCI format 3_0などと呼ばれてもよい)(A-SRSトリガ専用DCI format)が指示されることを想定してもよい。
 以上説明した各実施形態によれば、UEは、A-SRSのトリガを適切に設定(又は指定)することができる。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図7は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図8は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、DCIを送信してもよい。
 制御部110は、特定の無線ネットワーク一時識別子(RNTI)により巡回冗長検査(CRC)がスクランブリングされる下り制御情報(DCI)であって、非周期的な測定用参照信号(A-SRS)を受信するための前記DCIを生成し、上りリンク共有チャネル(UL-SCH)及び非周期的なチャネル状態情報(A-CSI)報告は前記DCIに基づいて送信されないと想定してもよい。
(ユーザ端末)
 図9は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 なお、送受信部220は、下り制御情報(DCI)を受信してもよい。
 制御部210は、特定の無線ネットワーク一時識別子(RNTI)により前記DCIの巡回冗長検査(CRC)がスクランブリングされた場合、上りリンク共有チャネル(UL-SCH)及び非周期的なチャネル状態情報(A-CSI)報告の送信を想定せず、かつ、非周期的な測定用参照信号(A-SRS)がトリガされることを想定してもよい。
 制御部210は、特定のRNTIにより前記DCIのCRCがスクランブリングされ、かつ、UL-SCHを送信しない設定がされ、かつ、CSIリクエストがトリガされていない場合、A-SRSがトリガされることを想定してもよい。
 制御部210は、特定のRNTIにより前記DCIのCRCがスクランブリングされ、かつ、前記UL-SCHを送信する設定がされ、かつ、A-SRSがトリガされる場合、前記UL-SCHの送信を想定しなくてもよい。
 制御部210は、特定のRNTIにより前記DCIのCRCがスクランブリングされ、かつ、CSIリクエストがトリガされ、かつ、A-SRSがトリガされる場合、A-CSI報告の送信を想定しなくてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  下り制御情報(DCI)を受信する受信部と、
     特定の無線ネットワーク一時識別子(RNTI)により前記DCIの巡回冗長検査(CRC)がスクランブリングされた場合、上りリンク共有チャネル(UL-SCH)及び非周期的なチャネル状態情報(A-CSI)報告の送信を想定せず、かつ、非周期的な測定用参照信号(A-SRS)がトリガされることを想定する制御部と、
     を有する端末。
  2.  前記制御部は、特定のRNTIにより前記DCIのCRCがスクランブリングされ、かつ、UL-SCHを送信しない設定がされ、かつ、CSIリクエストがトリガされていない場合、A-SRSがトリガされることを想定する
     ことを特徴とする請求項1に記載の端末。
  3.  前記制御部は、特定のRNTIにより前記DCIのCRCがスクランブリングされ、かつ、前記UL-SCHを送信する設定がされ、かつ、A-SRSがトリガされる場合、前記UL-SCHの送信を想定しない
     ことを特徴とする請求項1に記載の端末。
  4.  前記制御部は、特定のRNTIにより前記DCIのCRCがスクランブリングされ、かつ、CSIリクエストがトリガされ、かつ、A-SRSがトリガされる場合、A-CSI報告の送信を想定しない
     ことを特徴とする請求項1に記載の端末。
  5.  下り制御情報(DCI)を受信する工程と、
     特定の無線ネットワーク一時識別子(RNTI)により前記DCIの巡回冗長検査(CRC)がスクランブリングされ、かつ、上りリンク共有チャネル(UL-SCH)及び非周期的なチャネル状態情報(A-CSI)報告の送信を想定せず、かつ、非周期的な測定用参照信号(A-SRS)がトリガされることを想定する工程と、
     を有する、端末の無線通信方法。
  6.  特定の無線ネットワーク一時識別子(RNTI)により巡回冗長検査(CRC)がスクランブリングされる下り制御情報(DCI)であって、非周期的な測定用参照信号(A-SRS)を受信するための前記DCIを生成し、上りリンク共有チャネル(UL-SCH)及び非周期的なチャネル状態情報(A-CSI)報告は前記DCIに基づいて送信されないと想定する制御部と、
     前記DCIを送信する送信部と、
     を有する基地局。
PCT/JP2020/013731 2020-03-26 2020-03-26 端末、無線通信方法及び基地局 WO2021192160A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022510273A JP7467602B2 (ja) 2020-03-26 2020-03-26 端末、及び無線通信方法
US17/914,083 US20230155774A1 (en) 2020-03-26 2020-03-26 Terminal, radio communication method, and base station
CN202080101486.1A CN115669029A (zh) 2020-03-26 2020-03-26 终端、无线通信方法以及基站
PCT/JP2020/013731 WO2021192160A1 (ja) 2020-03-26 2020-03-26 端末、無線通信方法及び基地局
EP20927129.5A EP4132146A4 (en) 2020-03-26 2020-03-26 TERMINAL, RADIO COMMUNICATION METHOD AND BASE STATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/013731 WO2021192160A1 (ja) 2020-03-26 2020-03-26 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2021192160A1 true WO2021192160A1 (ja) 2021-09-30

Family

ID=77891013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013731 WO2021192160A1 (ja) 2020-03-26 2020-03-26 端末、無線通信方法及び基地局

Country Status (5)

Country Link
US (1) US20230155774A1 (ja)
EP (1) EP4132146A4 (ja)
JP (1) JP7467602B2 (ja)
CN (1) CN115669029A (ja)
WO (1) WO2021192160A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210511A1 (en) * 2021-03-29 2022-10-06 Sharp Kabushiki Kaisha User equipments, base stations, and methods for multi-beam srs transmission

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4287729A3 (en) * 2020-10-12 2024-02-21 Apple Inc. Flexible aperiodic srs triggering in cellular communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9717079B2 (en) * 2015-07-14 2017-07-25 Motorola Mobility Llc Method and apparatus for selecting a resource assignment
CN110832815A (zh) * 2017-05-02 2020-02-21 株式会社Ntt都科摩 用户终端以及无线通信方法
WO2020031392A1 (ja) * 2018-08-10 2020-02-13 株式会社Nttドコモ ユーザ端末及び無線通信方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Multiplexing and channel coding (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.212, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V16.0.0, December 2019 (2019-12-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 145, XP051860645 *
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
See also references of EP4132146A4
ZTE, SANECHIPS, CMCC, OPPO: "TEI proposal on aperiodic SRS triggering", 3GPP DRAFT; R1-1911935, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823116 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210511A1 (en) * 2021-03-29 2022-10-06 Sharp Kabushiki Kaisha User equipments, base stations, and methods for multi-beam srs transmission

Also Published As

Publication number Publication date
US20230155774A1 (en) 2023-05-18
JPWO2021192160A1 (ja) 2021-09-30
EP4132146A4 (en) 2023-12-27
CN115669029A (zh) 2023-01-31
JP7467602B2 (ja) 2024-04-15
EP4132146A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
WO2021024494A1 (ja) 端末及び無線通信方法
JPWO2020090059A1 (ja) ユーザ端末及び無線通信方法
JPWO2020090060A1 (ja) ユーザ端末及び無線通信方法
WO2020209281A1 (ja) ユーザ端末及び無線通信方法
JP7413414B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020217514A1 (ja) ユーザ端末及び無線通信方法
WO2021215379A1 (ja) 端末、無線通信方法及び基地局
WO2021192160A1 (ja) 端末、無線通信方法及び基地局
JPWO2020144869A1 (ja) ユーザ端末及び無線通信方法
WO2022029899A1 (ja) 端末、無線通信方法及び基地局
WO2021220411A1 (ja) 端末、無線通信方法及び基地局
WO2021166036A1 (ja) 端末、無線通信方法及び基地局
WO2021192302A1 (ja) 端末、無線通信方法及び基地局
WO2021149263A1 (ja) 端末、無線通信方法及び基地局
WO2020255395A1 (ja) 端末及び無線通信方法
WO2020144871A1 (ja) ユーザ端末及び無線通信方法
WO2022039154A1 (ja) 端末、無線通信方法及び基地局
WO2021241211A1 (ja) 端末、無線通信方法及び基地局
WO2022029900A1 (ja) 端末、無線通信方法及び基地局
WO2022014055A1 (ja) 端末、無線通信方法及び基地局
WO2022044290A1 (ja) 端末、無線通信方法及び基地局
WO2021186727A1 (ja) 端末、無線通信方法及び基地局
WO2022009417A1 (ja) 端末、無線通信方法及び基地局
WO2021205604A1 (ja) 端末、無線通信方法及び基地局
WO2021192303A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020927129

Country of ref document: EP

Effective date: 20221026