WO2022029899A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2022029899A1
WO2022029899A1 PCT/JP2020/029870 JP2020029870W WO2022029899A1 WO 2022029899 A1 WO2022029899 A1 WO 2022029899A1 JP 2020029870 W JP2020029870 W JP 2020029870W WO 2022029899 A1 WO2022029899 A1 WO 2022029899A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
mac
srs resource
transmission
field
Prior art date
Application number
PCT/JP2020/029870
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2022541385A priority Critical patent/JPWO2022029899A1/ja
Priority to PCT/JP2020/029870 priority patent/WO2022029899A1/ja
Priority to CN202080105882.1A priority patent/CN116235590A/zh
Priority to US18/040,213 priority patent/US20230269043A1/en
Publication of WO2022029899A1 publication Critical patent/WO2022029899A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel.15 or later, etc.
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • the sounding reference signal has a wide range of uses.
  • the NR SRS is used not only for uplink (Uplink (UL)) CSI measurement, but also for downlink (Downlink (DL)) CSI measurement, beam management, and the like.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that flexibly control SRS parameters.
  • the terminal transmits SRS transmission based on the receiving unit that receives the medium access control-control element (MAC CE) related to the sounding reference signal (SRS) resource set or the parameter for the SRS resource, and the parameter. It has a control unit for controlling.
  • MAC CE medium access control-control element
  • the parameters of SRS can be flexibly controlled.
  • FIG. 1 is a diagram showing an example of associating a 2-bit SRS request field value with an SRS resource set.
  • FIG. 2 is a diagram showing an example of the association between the value of the 1-bit SRS request field and the SRS resource set.
  • FIG. 3 is a diagram showing an example of MAC CE1 of the first embodiment.
  • 4A and 4B are diagrams showing an example of variations of MAC CE1 of the first embodiment.
  • 5A and 5B are diagrams showing an example of MAC CE2 of the first embodiment.
  • 6A and 6B are diagrams showing an example of MAC CE for activation / deactivation of the SRS resource set of the third embodiment.
  • FIG. 7A and 7B are diagrams showing an example of MAC CE for mapping the value of the SRS request field and the specific parameter of the third embodiment.
  • 8A and 8B are diagrams showing an example of variation 1 of MAC CE for mapping the value of the SRS request field and the specific parameter of the third embodiment.
  • 9A and 9B are diagrams showing an example of variation 2 of MAC CE for mapping the value of the SRS request field and the specific parameter of the third embodiment.
  • FIG. 10 is a diagram showing an example of MAC CE showing the A-SRS resource trigger of the third embodiment.
  • FIG. 11 is a diagram showing an example of option 1 of variation 3 of the fourth embodiment.
  • FIG. 12 is a diagram showing an example of option 2 of variation 3 of the fourth embodiment.
  • FIG. 13 is a diagram showing an example of option 3 of variation 3 of the fourth embodiment.
  • FIG. 14 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 15 is a diagram showing an example of the configuration of a base station according to an embodiment.
  • FIG. 16 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
  • FIG. 17 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • SRS Signal for measurement
  • DL Downlink
  • SRS of NR is not only for uplink (Uplink (UL)) CSI measurement used in existing LTE (LTE Rel.8-14), but also for downlink (Downlink (DL)) CSI measurement, beam. It is also used for management (beam management).
  • the UE may be configured with one or more SRS resources.
  • the SRS resource may be specified by the SRS resource index (SRS Resource Index (SRI)).
  • SRS Resource Index SRI
  • Each SRS resource may have one or more SRS ports (may correspond to one or more SRS ports).
  • the number of ports for each SRS may be 1, 2, 4, or the like.
  • the UE may be set with one or more SRS resource sets (SRS resource set).
  • SRS resource set may be associated with a predetermined number of SRS resources.
  • the UE may commonly use higher layer parameters for SRS resources included in one SRS resource set.
  • the resource set in the present disclosure may be read as a set, a resource group, a group, or the like.
  • Information about SRS resources or resource sets may be set in the UE using higher layer signaling, physical layer signaling, or a combination thereof.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • the SRS setting information (for example, "SRS-Config" of the RRC information element) may include SRS resource set setting information, SRS resource setting information, and the like.
  • the SRS resource set setting information (for example, the RRC parameter "SRS-ResourceSet”) includes an SRS resource set ID (Identifier) (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, and SRS.
  • SRS-ResourceSetId SRS resource set ID
  • SRS-ResourceId SRS resource set IDs
  • SRS-ResourceId SRS resource set setting information
  • the SRS resource type may indicate the behavior of the time domain (same time domain behavior) of the SRS resource setting, and is a periodic SRS (Periodic SRS (P-SRS)) or a semi-persistent SRS (Semi-Persistent SRS). (SP-SRS)) or aperiodic SRS (Aperiodic SRS (A-SRS)) may be indicated.
  • P-SRS Period SRS
  • SP-SRS semi-persistent SRS
  • A-SRS aperiodic SRS
  • the UE may transmit P-SRS and SP-SRS periodically (or periodically after activation).
  • the UE may transmit A-SRS based on DCI's SRS request.
  • SRS RRC parameter "usage", L1 (Layer-1) parameter "SRS-SetUse"
  • RRC parameter "usage", L1 (Layer-1) parameter "SRS-SetUse” are, for example, beam management (beamManagement), codebook (codebook (CB)), non-codebook (non-codebook (CB)). It may be non-codebook (NCB)), antenna switching (antennaSwitcing), or the like.
  • an SRS for codebook or non-codebook use may be used to determine a precoder for codebook-based or non-codebook-based uplink shared channel (PUSCH) transmission based on SRI.
  • PUSCH uplink shared channel
  • the SRS for beam management may be assumed that only one SRS resource for each SRS resource set can be transmitted in a predetermined time instant. If a plurality of SRS resources corresponding to the behavior of the same time domain belong to different SRS resource sets in the same Bandwidth Part (BWP), these SRS resources may be transmitted at the same time.
  • BWP Bandwidth Part
  • the SRS resource setting information (for example, the RRC parameter "SRS-Resource”) includes the SRS resource ID (SRS-ResourceId), the number of SRS ports, the SRS port number, the transmission comb, and the SRS resource mapping (for example, time and / or frequency resource). It may include position, resource offset, resource cycle, number of iterations, number of SRS symbols, SRS bandwidth, etc.), hopping-related information, SRS resource type, sequence ID, spatial-related information, and the like.
  • SRS resource ID SRS-ResourceId
  • the SRS resource setting information includes the SRS resource ID (SRS-ResourceId), the number of SRS ports, the SRS port number, the transmission comb, and the SRS resource mapping (for example, time and / or frequency resource). It may include position, resource offset, resource cycle, number of iterations, number of SRS symbols, SRS bandwidth, etc.), hopping-related information, SRS resource type, sequence ID, spatial-related information, and the like.
  • the UE may switch the Bandwidth Part (BWP) that transmits SRS for each slot, or may switch the antenna. Further, the UE may apply at least one of in-slot hopping and inter-slot hopping to SRS transmission.
  • BWP Bandwidth Part
  • A-SRS trigger ring The SRS request field that triggers A-SRS is included, for example, in the DCI formats 0_1, 0_1, 1_1, 1_2, 2_3.
  • the size of the SRS request field in the DCI format 0_2, 1_2 may be 0, 1, 2, or 3 bits.
  • the value 1 is associated (mapped) with one or more SRS resource sets.
  • the time between the A-SRS trigger and the SRS transmission is the value k (slot offset) set by the RRC.
  • the SRS resource set information element includes a slot offset and an A-SRS resource trigger list (aperiodicSRS-ResourceTriggerList) for A-SRS. That is, the slot offset and the A-SRS resource trigger list are set for each SRS resource set. If no slot offset is set, the UE applies no offset (value 0).
  • the A-SRS resource trigger list contains one or more A-SRS resource trigger (aperiodicSRS-ResourceTrigger) information elements (states, IDs).
  • the A-SRS resource trigger indicates a DCI code point that sends an SRS according to the SRS resource set settings it is included in.
  • SRS parameters For example, many UEs can send SRS in the same UL slot, and triggering grants (DCI, PDCCH including SRS request fields) to these UEs are sent in multiple DL slots to distribute the PDCCH load. As such, it is preferable to improve the flexibility of the A-SRS triggering.
  • the present inventors have conceived a method for flexibly controlling the parameters of SRS.
  • a / B and “at least one of A and B” may be read as each other.
  • the cell, serving cell, CC, carrier, BWP, DL BWP, UL BWP, active DL BWP, active UL BWP, and band may be read as each other.
  • the index, the ID, the indicator, and the resource ID may be read as each other.
  • RRC, RRC parameter, RRC message, upper layer parameter, information element (IE), and setting may be read as each other.
  • support, control, controllable, working, working may be read interchangeably.
  • sequences, lists, sets, and groups may be read interchangeably.
  • mappings, associations, relationships, tables may be read interchangeably.
  • activate, update, indicate, enable, and specify may be read as interchangeable with each other.
  • MAC CE update command
  • activation / deactivation command may be read as each other.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the SRS resource set / SRS resource is an SRS resource set / SRS resource for a specific use (for example, codebook, non-codebook, beam management), an SRS resource set / SRS resource for the same use, and the like. They may be read as each other.
  • Specific parameters set (on a case-by-case) for the SRS resource set or SRS resource set may be controlled by the MAC CE.
  • the specific parameter may be a parameter set for each SRS resource set by the RRC, or may be a parameter set for each SRS resource by the RRC.
  • the value of one of the specific parameters may be notified by RRC and MAC CE. DCI may not be used for notification of specific parameters.
  • the specific parameter may be a resource parameter (for example, slot offset) in the time domain / frequency domain of SRS.
  • the value of the specific parameter may follow any of the following notification methods 1 to 3.
  • the value of a particular parameter may be set by the RRC and overwritten by the MAC CE.
  • the RRC parameters for setting specific parameters are described in Rel. It may be the same as the RRC parameter of 15/16.
  • a new MAC CE may be introduced to update the value of a particular parameter.
  • a list of multiple values (candidates) for a particular parameter may be set by the RRC and the values (indexes) in the list may be specified by the MAC CE.
  • the RRC parameters for setting specific parameters are described in Rel. It may be different from the RRC parameter of 15/16.
  • a new MAC CE may be introduced to specify the value of a particular parameter.
  • the value of a particular parameter does not have to be set by RRC.
  • the value of a particular parameter may be specified (directly) by MAC CE.
  • the RRC parameters for setting specific parameters are described in Rel. It may be an optional field of 15/16.
  • a new MAC CE may be introduced to specify the value of a particular parameter. If the RRC parameter that sets the specific parameter is not set, the value of the specific parameter may be 0 (may be considered 0 (no offset)).
  • the new MAC CE may be either of the following MAC CEs 1 and 2.
  • the new MAC CE may update / instruct / notify specific parameters in the SRS resource set.
  • the new MAC CE may follow the above-mentioned notification method 1 or 3.
  • the new MAC CE includes at least one of a reserved bit, a serving cell ID field, a BWP ID field, an SRS resource set ID field, and a slot offset field. But it may be. If the slot offset value is 0 to 32, the size of the slot offset field may be 6 bits. Rel. At 15, if the slot offset is not set, the value of the slot offset is 0. In this example, if slot non-set is not set, the slot offset value may be the value notified by MAC CE.
  • the new MAC CE may follow at least one of the following variations 1 and 2.
  • the size of the slot offset field may be smaller than 6 bits.
  • the size of the slot offset field may be 4 bits and the slot offset value notified by the MAC CE may be 0 to 15. As a result, the number of MAC CE octets (overhead) can be reduced.
  • the size of the slot offset field may be variable.
  • the size of the slot offset field may be based on RRC parameters.
  • the number of bits used for the slot offset field in octet 3 is variable.
  • RRC parameters may be set to determine the size (number of bits) of the slot offset field.
  • the RRC parameter may indicate the maximum value of the slot format specified by MAC CE. For example, when the RRC parameter indicates 15, a value from 0 to 15 is specified by MAC CE, and the size of the slot offset field may be 4 bits.
  • the RRC parameter may indicate the minimum value of the slot format specified by MAC CE.
  • the maximum value of the slot format specified by MAC CE may be specified in the specifications. For example, when the RRC parameter indicates 15 and the maximum value is 32, the MAC CE indicates a value from 15 to 32, and the size of the slot offset field may be 5 bits.
  • the RRC parameter may indicate the size of the slot format specified by MAC CE. For example, if the RRC parameter indicates 3, the size of the slot offset field may be 3 bits.
  • the new MAC CE may update / instruct / notify specific parameters in the SRS resource set.
  • One or more candidates for a particular parameter notified by MAC CE may be set by RRC parameters.
  • the RRC parameter may be a bitmap.
  • the position of the bit set to 1 in the bitmap may correspond to the candidate of a specific parameter.
  • the slot offset values range from 0 to 32 and the bitmap size may be 33 bits.
  • the MAC CE may specify the value of a specific parameter by an index (list index) corresponding to the position of the bit set to 1.
  • the number of candidates set by the RRC parameter may be 16 or less.
  • the list index specified by the slot offset field may be from 1 to 16 (or 0 to 15), and the size of the slot offset field is 4 bits. May be good. As a result, the number of MAC CE octets (overhead) can be reduced.
  • the RRC parameter may be a sequence (list) of candidates for a specific parameter. One value in the list may be notified by MAC CE.
  • the maximum number of candidates may be specified in the specifications or may be set by higher layer signaling.
  • the SRS resource set or the SRS resource can be instructed by MAC CE.
  • the specific parameters set for the SRS resource set or SRS resource may be controlled by at least one of MAC CE and DCI.
  • the value of one of the specific parameters may be notified by RRC and MAC CE. DCI may not be used for notification of specific parameters.
  • the specific parameter may be a resource parameter (for example, slot offset) in the time domain / frequency domain of SRS.
  • the value of the specific parameter may follow either the above-mentioned notification methods 1 to 3 or the following notification method 4.
  • a new field (DCI field) in DCI for specifying a specific parameter may be specified / added.
  • a new RRC parameter for example, Rel.17 RRC parameter
  • a new DCI field may exist in the DCI. Otherwise, the new DCI field may not exist in the DCI.
  • the value of the new parameter may be notified of the specific parameter by the existing DCI field (Rel.15 / 16). This minimizes changes in specifications.
  • the existing DCI field may be an SRS request field.
  • the specification change may be to increase the number of SRS resource sets for a particular use.
  • the existing DCI field may be a time domain resource assignment (TDRA) field or a CSI request field in the UL grant (DCI for scheduling PUSCH), or a TDRA field in the DL assignment (DCI for scheduling PDSCH). There may be.
  • TDRA time domain resource assignment
  • DCI for scheduling PUSCH CSI request field in the UL grant
  • DCI for scheduling PDSCH CSI request field in the DL assignment
  • the slot offset may be the slot + K slot specified by the UL grant's TDRA field, or the slot-K slot specified.
  • the slot offset may be the slot + K slot designated by the UL Grant's CSI request field, or the slot-K slot designated.
  • the slot offset may be the slot + K slot designated by the TDRA field of the DL assignment, or the slot-K slot designated.
  • K may be specified in the specification or may be set by higher layer signaling. K may be 0 or any other value.
  • ⁇ Number of SRS resource sets that can be set >> Rel.
  • codebook codebook
  • nonCodebook non-codebook transmission
  • the number (maximum number) of SRS resource sets that can be set is determined according to the UE capability reported by the UE for the SRS resource set having the use of antenna switching. For example, each of a plurality of SRS resource sets corresponds to a different slot, and SRS antenna switching is performed across the plurality of slots.
  • At least one of 1T (transmitting antenna), 6R (receiving antenna), 1T8R, 2T6R, 2T8R, 4T6R, and 4T8R may be added to the UE capability of 17.
  • the number of SRS resource sets that can be set is Rel. It may be larger than the number (maximum number) of SRS resource sets that can be set in 15/16.
  • the maximum number of SRS resource sets corresponding to one code point in the SRS request field in DCI is Rel. It may be the number (maximum number) of SRS resource sets that can be set in 15/16.
  • One code point of the SRS request field may be one value (ID) of the A-SRS resource trigger (aperiodicSRSResourceTrigger) set by the upper layer signaling.
  • the slot offset can be controlled by DCI (SRS request field), and SRS antenna switching across a plurality of slots can be performed by one DCI code point.
  • DCI SRS request field
  • the SRS resource set or the SRS resource can be designated by DCI.
  • the specific parameter may be an SRS resource set or an A-SRS resource trigger.
  • Multiple SRS resource sets may be set by RRC and some of the multiple SRS resource sets may be activated / deactivated by MAC CE.
  • the above-mentioned constraint on the number of SRS resource sets may be applied to the number of active SRS resource sets.
  • the MAC CE may include a field indicating the SRS resource set ID to be activated.
  • the MAC CE may include at least one of an R field, a serving cell ID field, a BWP ID field, and an active SRS resource set ID field.
  • the MAC CE may include a plurality of active SRS resource set ID fields. Multiple SRS resource sets may be activated at the same time.
  • Each of the plurality of octets in the MAC CE may include one active SRS resource set ID field.
  • the MAC CE may include at least one of an R field, a serving cell ID field, a BWP ID field, and a Bx field.
  • the Bx field may be a bitmap. Multiple SRS resource sets may be activated at the same time. The association between the value of x and the SRS resource set ID may be set by higher layer signaling. The value of x may be associated with the ascending order of the SRS resource set ID. Depending on the number of SRS resource sets set by higher layer signaling, the Bx field may span multiple octets. The number of octets may be variable depending on the number of SRS resource sets set by higher layer signaling. The order of the B x fields may be ascending order of x or descending order of x.
  • SRS resource set ID or A-SRS resource trigger value The correspondence between the code point of the SRS request field and the value of the SRS resource set ID (or A-SRS resource trigger) may be notified / updated by the new MAC CE.
  • the mapping between DCI code points and one or more SRS resource sets may be notified / updated by MAC CE.
  • the relationship between the code point of the SRS request field and the contents of the MAC CE may be specified in the specifications.
  • a value of 00 in the SRS request field may indicate that no A-SRS resource set is triggered.
  • the values 01, 10 and 11 of the SRS request field may indicate that the SRS resource set indicated by the first, second and third SRS resource set IDs notified by MAC CE is triggered, respectively. ..
  • the UE that received this MAC CE is Rel.
  • the value of the SRS resource set or A-SRS resource trigger corresponding to the value of the SRS request field may be determined based on the correspondence shown by this MAC CE instead of the table specified in 15/16.
  • the new MAC CE may include at least one of an R field, a serving cell ID field, a BWP ID field, and a Byx field.
  • the Byx field may be a bitmap. Multiple SRS resource sets may be activated at the same time. The association between the values of y and x and the SRS resource set ID may be set by higher layer signaling.
  • the B yx field may be associated with the yth SRS resource set ID. The value of x may be associated in ascending order of the SRS resource set ID. The value of y may be associated in ascending order of the SRS resource set ID.
  • the Byx field may span multiple octets.
  • the number of octets may be variable depending on the number of SRS resource sets set by higher layer signaling.
  • the order of the B yx fields may be ascending order of x, descending order of x, ascending order of y, or descending order of y.
  • the position of one bit set to 1 in octet 2 indicates the first SRS resource set ID (corresponding to the value 01 of the SRS request field) and 1 set to 1 in octet 3.
  • the position of one bit indicates the second SRS resource set ID (corresponding to the value 10 of the SRS request field), and the position of one bit set to 1 in octet 4 is the third SRS resource set ID (corresponding to the value 10 of the SRS request field). (Corresponding to the value 11 of the SRS request field) may be shown.
  • the new MAC CE may include a field indicating whether each SRS resource set ID is associated with a value in the SRS request field.
  • the new MAC CE may include at least one of an R field, a serving cell ID field, a BWP ID field, a Ti field, and a Bx field.
  • One Ti field may be associated with a plurality of B x fields. If the Ti field is set to 1, there may be seven subsequent Bx fields . If the Ti field is set to 0 , then the seven Bx fields may not exist.
  • the SRS resource set ID specified by MAC CE may be associated in ascending or descending order of the values in the SRS request field. For example, when two Ti fields are set to 1 as in the example of FIG. 8A, the value of the SRS request field is packed from the maximum value 11 (from the bottom row of the table) as in the example of FIG. 8B. The two values of the SRS request field may be associated with the SRS resource set ID indicated by the MAC CE. The remaining values in the SRS request field can be found in Rel. You may follow the association (table) of 15/16.
  • One or more SRS resource set ID lists may be set by RRC.
  • the SRS resource set ID list may include one or more groups of SRS resource sets.
  • the group may include one or more SRS resources.
  • An index (list index, group index) may be associated with each group.
  • the list index may be notified by MAC CE.
  • the SRS resource set ID list RRC including four groups. Each of the four groups corresponds to a list index of 0 to 3.
  • the new MAC CE may include at least one of an R field, a serving cell ID field, a BWP ID field, a Ti field, and a list index field.
  • One Ti field may be associated with one list index field. If the Ti field is set to 1, then one list index field may be present. If the Ti field is set to 0 , then one list index field may not exist.
  • the list index field may indicate a list index.
  • the list index field in octet 2 indicates the first group of SRS resource set IDs (corresponding to the value 01 of the SRS request field), and the list index field in octet 3 is 2 of the SRS resource set ID.
  • the third group (corresponding to the value 10 of the SRS request field) may be indicated and the list index field in octet 4 may indicate the third group of SRS resource set IDs (corresponding to the value 11 of the SRS request field).
  • the number of list index fields in the MAC CE may be 2 ⁇ N-1 or less than 2 ⁇ N-1.
  • the maximum value of the SRS request field is 11 (from the bottom row of the table), and it is indicated by the list index field.
  • the group may be associated with the value of the SRS request field. The remaining values in the SRS request field can be found in Rel. You may follow the association (table) of 15/16.
  • A-SRS resource trigger value The value of the A-SRS resource trigger of the SRS resource set (A-SRS resource trigger ID, for example, 1, 2, or 3) may be notified by MAC CE.
  • the relationship (table) between the value of the SRS request field and the SRS resource set ID does not have to be specified in the specifications.
  • the existing relationship (table) between the value of the SRS request field and the SRS resource set may be applied.
  • the same A-SRS resource trigger value may be set for multiple SRS resource sets (especially when the application is antenna switching).
  • the value of the A-SRS resource trigger may follow at least one of the following operations 1 and 2.
  • the value of the A-SRS resource trigger may be updated only for the SRS resource set notified by MAC CE. As a result, the value of the A-SRS resource trigger can be flexibly instructed by the MAC CE.
  • the combination of SRS resource sets updated by one MAC CE may be set by higher layer parameters (eg, applicable SRS resource set list). Operation 2 may be performed only when this upper layer parameter is set.
  • Operation 2 is not limited to the notification of the A-SRS resource trigger ID. Operation 2 may be applied to the parameters updated by MAC CE for each SRS resource set.
  • the new MAC CE may include at least one of an R field, a serving cell ID field, a BWP ID field, an SRS resource set ID, and an A-SRS resource trigger ID field.
  • the A-SRS resource trigger ID field may overwrite the value set by RRC.
  • the A-SRS resource trigger ID list may be set by RRC, and the index (position) in the list may be specified by the A-SRS resource trigger ID field of MAC CE. If one A-SRS resource trigger ID is not notified by RRC, the notification of A-SRS resource trigger ID using MAC CE may be applied.
  • the SRS request field that triggers A-SRS may be included in the UL Grant (UL DCI) / DL Assignment (DL DCI).
  • the existing UL / DL DCI cannot trigger A-SRS without scheduling PUSCH / PDSCH.
  • the SRS request field included in the UL / DL DCI may be used to select the parameters of the SRS resource set / SRS resource.
  • the condition may be that a particular RRC parameter is received. This makes it possible to control the A-SRS more flexibly without changing the field size of the existing DCI.
  • a new radio network temporarily identifier (RNTI) for triggering A-SRS may be specified (eg, SRS-RNTI).
  • RNTI radio network temporarily identifier
  • a DCI with a cyclic redundancy check (CRC) scrambled by SRS-RNTI may be used only for triggering A-SRS (no scheduling required).
  • CRC cyclic redundancy check
  • a new DCI format for triggering A-SRS may be specified.
  • the DCI format used to trigger the A-SRS may be a specific DCI format.
  • the specific DCI format may be a DCI format that can trigger A-SRS among the existing DCI formats.
  • the parameters of the SRS resource set / SRS resource may be selected by replacing the fields other than the SRS request field and using the mechanism that triggers SRS by the SRS request field.
  • An existing SRS request field value of 00 indicates that it will not trigger SRS.
  • a DCI with a CRC scrambled by SRS-RNTI does not require a state that does not trigger SRS.
  • the value 00 of the SRS request field in the DCI with the CRC scrambled by SRS-RNTI may be associated with the SRS resource set.
  • the size of the SRS request field in the DCI having the CRC scrambled by SRS-RNTI is not limited to 2 bits and 3 bits, but may be 4 bits or more.
  • the SRS resource set may be associated with the value 00 of the SRS request field.
  • the SRS resource set may be associated with the value 00 of the SRS request field.
  • the SRS resource set may be associated with the value 00 of the SRS request field.
  • the SRS resource set may be associated with the value 00 of the SRS request field.
  • the upper layer parameter SRS-TPCPDCCH group (srs-TPC-PDCCH-Group) set in type B is set for the value 00 of the SRS request field.
  • the triggered A-SRS resource set is an SRS set with the upper layer parameter A-SRS resource trigger set to 1 or one entry set to 1 in the upper layer parameter A-SRS resource trigger list. It may be a resource set.
  • the resource type (in the set) may be an SRS resource set configured with, or "aperiodic" with respect to the first set of serving cells configured by the positioning SRS resource set and configured by the upper layer. It may be an SRS resource set in which the resource type (in the SRS resource set for positioning) set in "" is set.
  • Multiple values (candidates) of the slot offset are notified by RRC / MAC CE, there is a DCI field indicating one of those multiple values, and the UE uses the slot offset specified by that field. You may send A-SRS.
  • the SRS resource set can be notified by MAC CE / DCI.
  • ⁇ Fourth Embodiment> ⁇ Variation 1 When a specific parameter set (on a case-by-case) for an SRS resource set or SRS resource set is indicated by DCI, the field of at least one MAC CE of the first to third embodiments is expanded and that field. May activate multiple candidates for the SRS resource set / SRS resource / SRS parameter and the DCI may point to one of the multiple candidates.
  • At least one of the first to third embodiments may be applied only if the corresponding UE capability is reported by the UE.
  • the UE capability may indicate whether at least one of the first to third embodiments is supported.
  • the UE capability may indicate the number (maximum number) of SRS resource sets / SRS resources supported in at least one of the first to third embodiments.
  • the UE capability may indicate the number (maximum number) of SRS resource sets / SRS resources that can be controlled by at least one MAC CE / DCI of the first to third embodiments.
  • At least one of the first to third embodiments may be applied only when the UE sets the corresponding upper layer parameter. Otherwise, the UE will send Rel. The operation of 15/16 may be applied.
  • MAC CE may activate one or more SRS resource sets. Only the active SRS resource set may be triggered by the DCI's SRS request field.
  • the SRS resource set # 1 having the purpose of the codebook is set.
  • SRS resource sets # 1 and # 2 having a codebook use may be set, and SRS resource set # 2 may be activated by MAC CE.
  • the MAC CE may update the mapping between DCI code points and A-SRS resource triggers.
  • the A-SRS resource trigger is associated with a value other than 00 in the 2-bit SRS request field.
  • a value other than 00 in the 2-bit SRS request field may be associated with one or more SRS resource set IDs specified by MAC CE.
  • MAC CE may update specific parameters of SRS.
  • the particular parameter may be a slot offset.
  • the slot offset of the SRS resource set # 1 may be updated by MAC CE.
  • the number of bits in the SRS request field may be increased.
  • a new DCI field may be added in addition to the SRS request field.
  • a new RNTI for example, SRS-RNTI
  • SRS-RNTI for creating a DCI dedicated to A-SRS triggering
  • a new DCI format may be introduced to create a DCI dedicated to A-SRS triggering.
  • the existing DCI field for controlling SRS triggering may be reused.
  • a MAC CE activation time may be required to apply at least one MAC CE of the first to third embodiments.
  • the UE may follow at least one of the following operations 1 and 2.
  • the UE uses SRS resources (parameters) updated by MAC CE for DCI-triggered SRS transmissions received after the MAC CE activation time has elapsed since the reception of MAC CE.
  • the UE uses the SRS resource (parameter) updated by the MAC CE for the SRS transmission after the MAC CE activation time has elapsed from the reception of the MAC CE.
  • the MAC CE activation time may differ among A-SRS, SP-SRS, and P-SRS.
  • the MAC CE activation time for S-SRS may be 3 subframe times (3 msec)
  • the MAC CE activation time for SP / P-SRS may be 3 subframe times (3 msec). It may be + T. T may be specified in the specification, may be notified by a higher layer, or may be reported by the UE capability.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 14 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
  • MR-DC is a dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and a dual connectivity (NR-E) between NR and LTE.
  • E-UTRA-NR Dual Connectivity Evolved Universal Terrestrial Radio Access (E-UTRA)
  • NR-E dual connectivity
  • NE-DC -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macrocell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macrocell C1 and forms a small cell C2 that is narrower than the macrocell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of a plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macrocell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR 2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • a broadcast channel Physical Broadcast Channel (PBCH)
  • a downlink control channel Physical Downlink Control
  • PDSCH Physical Downlink Control
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, or the like, and the DCI that schedules PUSCH may be called UL grant, UL DCI, or the like.
  • the PDSCH may be read as DL data, and the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request for example.
  • Uplink Control Information (UCI) including at least one of SR) may be transmitted.
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" to the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 15 is a diagram showing an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional block of the characteristic portion in the present embodiment is mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, status management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. Processing (if necessary), inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-analog transformation may be performed, and the baseband signal may be output.
  • channel coding may include error correction coding
  • modulation modulation
  • mapping mapping, filtering
  • DFT discrete Fourier Transform
  • IFFT inverse Fast Fourier Transform
  • precoding coding
  • transmission processing such as digital-analog transformation
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) for the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10, etc., and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140.
  • the transmission / reception unit 120 may transmit a medium access control-control element (MAC CE) related to the sounding reference signal (SRS) resource set or the parameters for the SRS resource.
  • MAC CE medium access control-control element
  • the control unit 110 may control SRS reception based on the parameters.
  • the transmitter / receiver 120 indicates medium access control-control indicating a mapping between one or more values of parameters for a sounding reference signal (SRS) resource set or SRS resource and one or more values of a field in downlink control information.
  • the element may be transmitted and the downlink control information may be transmitted.
  • the control unit 110 may control SRS reception based on the parameters.
  • FIG. 16 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • the functional block of the feature portion in the present embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitting unit and the receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting / receiving unit 220 and the transmitting / receiving antenna 230.
  • the transmission / reception unit 220 may receive a medium access control-control element (MAC CE) related to the sounding reference signal (SRS) resource set or the parameters for the SRS resource.
  • the control unit 210 may control the SRS transmission based on the parameters.
  • the transmission / reception unit 220 may receive a radio resource control information element indicating a plurality of SRS resource sets.
  • the MAC CE may activate one or more SRS resource sets among a plurality of SRS resource sets.
  • the transmission / reception unit 220 may receive the radio resource control information element indicating the parameter.
  • the MAC CE may update the parameters.
  • the parameter may be a slot offset with respect to the SRS resource set.
  • the transmitter / receiver 220 indicates a medium access control-control that indicates a mapping between one or more values of a parameter for a sounding reference signal (SRS) resource set or an SRS resource and one or more values of a field in the downlink control information.
  • the element may be received and the downlink control information may be received.
  • the control unit 210 may determine the value of the parameter based on the MAC CE and the downlink control information.
  • the parameter may be at least one of an aperiodic SRS resource trigger and an SRS resource set.
  • the MAC CE may indicate a plurality of SRS resource sets.
  • the plurality of values in the field may be mapped to the plurality of SRS resource sets.
  • the downlink control information may be transmitted using at least one of the SRS wireless network provisional identifier and the SRS downlink control information format.
  • each functional block is realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 17 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy disk (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, etc.). At least one of Blu-ray® discs), removable discs, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers and other suitable storage media. May be configured by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 has, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated by the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier CC may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the wireless frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology is, for example, subcarrier interval (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot.
  • the PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • the time units such as frames, subframes, slots, mini-slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTI shorter than normal TTI may be referred to as shortened TTI, short TTI, partial TTI (partial or fractional TTI), shortened subframe, short subframe, minislot, subslot, slot and the like.
  • the long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI eg, shortened TTI, etc.
  • TTI having the above TTI length may be read as TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB. It may be called a pair or the like.
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active and the UE may not expect to send or receive a given channel / signal outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini-slots, and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals or combinations thereof. May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • Reception point Reception Point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (eg, 3) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a portion or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • the words such as "up” and “down” may be read as words corresponding to the communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are a base station, one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a fraction)
  • Future Radio Access FAA
  • RAT New -Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • LTE 802.11 Wi-Fi®
  • LTE 802.16 WiMAX®
  • LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios.
  • UMB Ultra Mobile Broadband
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “determining” such as accessing) (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “bonded” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the region, light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、サウンディング参照信号(SRS)リソースセット又はSRSリソースに対するパラメータに関するmedium access control-control element(MAC CE)を受信する受信部と、前記パラメータに基づいて、SRS送信を制御する制御部と、を有する。本開示の一態様によれば、SRSのパラメータを柔軟に制御できる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 NRにおいては、サウンディング参照信号(Sounding Reference Signal(SRS))の用途が多岐にわたっている。NRのSRSは、上りリンク(Uplink(UL))のCSI測定のためだけでなく、下りリンク(Downlink(DL))のCSI測定、ビーム管理(beam management)などにも利用される。
 しかしながら、SRSのパラメータを柔軟に制御することについて、検討が進んでいない。SRSのパラメータが柔軟に設定されなければ、リソースの利用効率、通信スループット、通信品質などが劣化するおそれがある。
 そこで、本開示は、SRSのパラメータを柔軟に制御する端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、サウンディング参照信号(SRS)リソースセット又はSRSリソースに対するパラメータに関するmedium access control-control element(MAC CE)を受信する受信部と、前記パラメータに基づいて、SRS送信を制御する制御部と、を有する。
 本開示の一態様によれば、SRSのパラメータを柔軟に制御できる。
図1は、2ビットのSRSリクエストフィールドの値とSRSリソースセットとの関連付けの一例を示す図である。 図2は、1ビットのSRSリクエストフィールドの値とSRSリソースセットとの関連付けの一例を示す図である。 図3は、第1の実施形態のMAC CE1の一例を示す図である。 図4A及び4Bは、第1の実施形態のMAC CE1のバリエーションの一例を示す図である。 図5A及び5Bは、第1の実施形態のMAC CE2の一例を示す図である。 図6A及び6Bは、第3の実施形態のSRSリソースセットのアクティベーション/ディアクティベーションのためのMAC CEの一例を示す図である。 図7A及び7Bは、第3の実施形態のSRSリクエストフィールドの値と特定パラメータとのマッピングのためのMAC CEの一例を示す図である。 図8A及び8Bは、第3の実施形態のSRSリクエストフィールドの値と特定パラメータとのマッピングのためのMAC CEのバリエーション1の一例を示す図である。 図9A及び9Bは、第3の実施形態のSRSリクエストフィールドの値と特定パラメータとのマッピングのためのMAC CEのバリエーション2の一例を示す図である。 図10は、第3の実施形態のA-SRSリソーストリガを示すMAC CEの一例を示す図である。 図11は、第4の実施形態のバリエーション3の選択肢1の一例を示す図である。 図12は、第4の実施形態のバリエーション3の選択肢2の一例を示す図である。 図13は、第4の実施形態のバリエーション3の選択肢3の一例を示す図である。 図14は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図15は、一実施形態に係る基地局の構成の一例を示す図である。 図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(SRS)
 NRにおいては、測定用参照信号(Sounding Reference Signal(SRS))の用途が多岐にわたっている。NRのSRSは、既存のLTE(LTE Rel.8-14)でも利用された上りリンク(Uplink(UL))のCSI測定のためだけでなく、下りリンク(Downlink(DL))のCSI測定、ビーム管理(beam management)などにも利用される。
 UEは、1つ又は複数のSRSリソースを設定(configure)されてもよい。SRSリソースは、SRSリソースインデックス(SRS Resource Index(SRI))によって特定されてもよい。
 各SRSリソースは、1つ又は複数のSRSポートを有してもよい(1つ又は複数のSRSポートに対応してもよい)。例えば、SRSごとのポート数は、1、2、4などであってもよい。
 UEは、1つ又は複数のSRSリソースセット(SRS resource set)を設定されてもよい。1つのSRSリソースセットは、所定数のSRSリソースに関連してもよい。UEは、1つのSRSリソースセットに含まれるSRSリソースに関して、上位レイヤパラメータを共通で用いてもよい。なお、本開示におけるリソースセットは、セット、リソースグループ、グループなどで読み替えられてもよい。
 SRSリソース又はリソースセットに関する情報は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いてUEに設定されてもよい。
 なお、本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 SRS設定情報(例えば、RRC情報要素の「SRS-Config」)は、SRSリソースセット設定情報、SRSリソース設定情報などを含んでもよい。
 SRSリソースセット設定情報(例えば、RRCパラメータの「SRS-ResourceSet」)は、SRSリソースセットID(Identifier)(SRS-ResourceSetId)、当該リソースセットにおいて用いられるSRSリソースID(SRS-ResourceId)のリスト、SRSリソースタイプ(resourceType)、SRSの用途(usage)の情報を含んでもよい。
 ここで、SRSリソースタイプは、SRSリソース設定の時間ドメインのふるまい(same time domain behavior)を示してもよく、周期的SRS(Periodic SRS(P-SRS))、セミパーシステントSRS(Semi-Persistent SRS(SP-SRS))、非周期的SRS(Aperiodic SRS(A-SRS))のいずれかを示してもよい。なお、UEは、P-SRS及びSP-SRSを周期的(又はアクティベート後、周期的)に送信してもよい。UEは、A-SRSをDCIのSRSリクエストに基づいて送信してもよい。
 また、SRSの用途(RRCパラメータの「usage」、L1(Layer-1)パラメータの「SRS-SetUse」)は、例えば、ビーム管理(beamManagement)、コードブック(codebook(CB))、ノンコードブック(non-codebook(NCB))、アンテナスイッチング(antennaSwitcing)などであってもよい。例えば、コードブック又はノンコードブック用途のSRSは、SRIに基づくコードブックベース又はノンコードブックベースの上り共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のプリコーダの決定に用いられてもよい。
 ビーム管理用途のSRSは、各SRSリソースセットについて1つのSRSリソースだけが、所定の時間インスタント(given time instant)において送信可能であると想定されてもよい。なお、同じBandwidth Part(BWP)において、同じ時間ドメインのふるまいに該当する複数のSRSリソースがそれぞれ異なるSRSリソースセットに属する場合、これらのSRSリソースは同時に送信されてもよい。
 SRSリソース設定情報(例えば、RRCパラメータの「SRS-Resource」)は、SRSリソースID(SRS-ResourceId)、SRSポート数、SRSポート番号、送信Comb、SRSリソースマッピング(例えば、時間及び/又は周波数リソース位置、リソースオフセット、リソースの周期、繰り返し数、SRSシンボル数、SRS帯域幅など)、ホッピング関連情報、SRSリソースタイプ、系列ID、空間関係情報などを含んでもよい。
 UEは、スロットごとにSRSを送信するBandwidth Part(BWP)をスイッチングしてもよいし、アンテナをスイッチングしてもよい。また、UEは、スロット内ホッピング及びスロット間ホッピングの少なくとも一方をSRS送信に適用してもよい。
(A-SRSトリガリング)
 A-SRSをトリガするSRSリクエストフィールドは、例えば、DCIフォーマット0_1、0_2、1_1、1_2、2_3に含まれる。
 図1の例のように、2ビットのSRSリクエストフィールドの値(コードポイント)のうち、値00以外の3つの値01、10、11は、1以上のSRSリソースセットに関連付けられる(マップされる)。
 DCIフォーマット0_2、1_2におけるSRSリクエストフィールドのサイズは、0、1、2、又は3ビットであってもよい。図2の例のように、1ビットのSRSリクエストフィールドの値(コードポイント)のうち、値1は、1以上のSRSリソースセットに関連付けられる(マップされる)。
 A-SRSのトリガとSRS送信との間の時間は、RRCによって設定される値k(スロットオフセット)である。
 SRSリソースセット情報要素(SRS-ResourceSet)は、A-SRSに対して、スロットオフセット(slotoffset)及びA-SRSリソーストリガリスト(aperiodicSRS-ResourceTriggerList)を含む。つまり、スロットオフセット及びA-SRSリソーストリガリストは、SRSリソースセット毎に設定される。スロットオフセットが設定されない場合、UEはオフセットなし(値0)を適用する。A-SRSリソーストリガリストは、1以上のA-SRSリソーストリガ(aperiodicSRS-ResourceTrigger)情報要素(状態、ID)を含む。A-SRSリソーストリガは、それが含まれるSRSリソースセット設定に従ってSRSを送信するDCIコードポイントを示す。
 SRSのパラメータの柔軟性を改善することが好ましい。例えば、多くのUEが同じULスロットにおいてSRSを送信でき、PDCCH負荷を分散するために、これらのUEへのトリガリンググラント(SRSリクエストフィールドを含むDCI、PDCCH)が、複数のDLスロットにおいて送信されるように、A-SRSトリガリングの柔軟性を改善することが好ましい。
 SRSのパラメータの柔軟性が改善されなければ、リソースの利用効率、通信スループット、通信品質などが劣化するおそれがある。
 そこで、本発明者らは、SRSのパラメータの柔軟に制御する方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」、「A及びBの少なくとも一方」、は互いに読み替えられてもよい。本開示において、セル、サービングセル、CC、キャリア、BWP、DL BWP、UL BWP、アクティブDL BWP、アクティブUL BWP、バンド、は互いに読み替えられてもよい。本開示において、インデックス、ID、インジケータ、リソースID、は互いに読み替えられてもよい。本開示において、RRC、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、情報要素(IE)、設定、は互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できる、は互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、は互いに読み替えられてもよい。本開示において、マッピング、関連付け、関係、テーブル、は互いに読み替えられてもよい。
 本開示において、アクティベート(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、は互いに読み替えられてもよい。
 本開示において、MAC CE、更新コマンド、アクティベーション/ディアクティベーションコマンド、は互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 以下の実施形態において、SRSリソースセット/SRSリソースは、特定の用途(例えば、コードブック、ノンコードブック、ビームマネジメント)のSRSリソースセット/SRSリソース、同じ用途のSRSリソースセット/SRSリソース、などと互いに読み替えられてもよい。
(無線通信方法)
<第1の実施形態>
 SRSリソースセット又はSRSリソースセットに対して(毎に)設定される特定パラメータが、MAC CEによって制御されてもよい。特定パラメータは、RRCによってSRSリソースセット毎に設定されるパラメータであってもよいし、RRCによってSRSリソース毎に設定されるパラメータであってもよい。
 RRC及びMAC CEによって特定パラメータの1つの値が通知されてもよい。特定パラメータの通知にDCIが用いられなくてもよい。
 特定パラメータは、SRSの時間ドメイン/周波数ドメインにおけるリソースのパラメータ(例えば、スロットオフセット)であってもよい。
 特定パラメータの値は、次の通知方法1から3のいずれかに従ってもよい。
[通知方法1]
 特定パラメータの値がRRCによって設定され、MAC CEによって上書き(overwrite)されてもよい。特定パラメータを設定するRRCパラメータは、Rel.15/16のRRCパラメータと同じであってもよい。特定パラメータの値を更新するための新規MAC CEが導入されてもよい。
[通知方法2]
 特定パラメータの複数の値(候補)から成るリストがRRCによって設定され、そのリスト内の値(インデックス)がMAC CEによって指定されてもよい。特定パラメータを設定するRRCパラメータは、Rel.15/16のRRCパラメータと異なってもよい。特定パラメータの値を指定するための新規MAC CEが導入されてもよい。
[通知方法3]
 特定パラメータの値がRRCによって設定されなくてもよい。特定パラメータの値がMAC CEによって(直接)指定されてもよい。特定パラメータを設定するRRCパラメータは、Rel.15/16のオプショナルフィールドであってもよい。特定パラメータの値を指定するための新規MAC CEが導入されてもよい。特定パラメータを設定するRRCパラメータが設定されない場合、特定パラメータの値が0であってもよい(0(オフセット無し)とみなされてもよい)。
 新規MAC CEは、次のMAC CE1及び2のいずれかであってもよい。
《MAC CE1》
 新規MAC CEは、SRSリソースセット内の特定パラメータを更新/指示/通知してもよい。
 新規MAC CEは、前述の通知方法1又は3に従ってもよい。
 図3の例において、新規MAC CEは、予約(R)フィールド(reserved bit)と、サービングセルIDフィールドと、BWP IDフィールドと、SRSリソースセットIDフィールドと、スロットオフセットフィールドと、の少なくとも1つを含んでもよい。スロットオフセットの値が0から32である場合、スロットオフセットフィールドのサイズは6ビットであってもよい。Rel.15において、スロットオフセットが設定されない場合、スロットオフセットの値は0である。この例において、スロット不セットが設定されない場合、スロットオフセットの値はMAC CEによって通知された値であってもよい。
 新規MAC CEは、次のバリエーション1及び2の少なくとも1つに従ってもよい。
[バリエーション1]
 スロットオフセットフィールドのサイズが6ビットより小さくてもよい。図4Aの例のように、スロットオフセットフィールドのサイズが4ビットであり、MAC CEによって通知されるスロットオフセットの値が0から15であってもよい。これによって、MAC CEのオクテット数(オーバーヘッド)を削減できる。
[バリエーション2]
 スロットオフセットフィールドのサイズが可変であってもよい。スロットオフセットフィールドのサイズは、RRCパラメータに基づいてもよい。図4Bの例において、オクテット3におけるスロットオフセットフィールドに用いられるビット数は可変である。
 スロットオフセットフィールドのサイズ(ビット数)を決定するためのRRCパラメータが設定されてもよい。RRCパラメータは、MAC CEによって指示されるスロットフォーマットの値の最大値を示してもよい。例えば、RRCパラメータが15を示す場合、MAC CEによって0から15までの値が指示され、スロットオフセットフィールドのサイズが4ビットであってもよい。
 RRCパラメータは、MAC CEによって指示されるスロットフォーマットの値の最小値を示してもよい。MAC CEによって指示されるスロットフォーマットの値の最大値が仕様に規定されてもよい。例えば、RRCパラメータが15を示し、最大値が32である場合、MAC CEによって15から32までの値が指示され、スロットオフセットフィールドのサイズが5ビットであってもよい。
 RRCパラメータは、MAC CEによって指示されるスロットフォーマットのサイズを示してもよい。例えば、RRCパラメータが3を示す場合、スロットオフセットフィールドのサイズが3ビットであってもよい。
《MAC CE2》
 新規MAC CEは、SRSリソースセット内の特定パラメータを更新/指示/通知してもよい。MAC CEによって通知される特定パラメータの1つ又は複数の候補が、RRCパラメータによって設定されてもよい。
 RRCパラメータは、ビットマップであってもよい。ビットマップのうち、1にセットされたビットの位置が、特定パラメータの候補に対応してもよい。例えば、スロットオフセットの値の範囲が0から32まであり、ビットマップのサイズは33ビットであってもよい。MAC CEは、1にセットされたビットの位置に対応するインデックス(リストインデックス)によって、特定パラメータの値を指示してもよい。
 図5Aの例のように、スロットオフセットの0から32までの値のうち、RRCパラメータによって設定される候補の数が16個以下であってもよい。この場合、図5Bの例のように、スロットオフセットフィールドによって指定されるリストインデックスは、1から16まで(又は0から15まで)であってもよく、スロットオフセットフィールドのサイズは4ビットであってもよい。これによって、MAC CEのオクテット数(オーバーヘッド)を削減できる。
 RRCパラメータは、特定パラメータの候補のシーケンス(リスト)であってもよい。リスト内の1つの値がMAC CEによって通知されてもよい。
 候補の最大数は、仕様に規定されてもよいし、上位レイヤシグナリングによって設定されてもよい。
 以上の第1の実施形態によれば、SRSリソースセット又はSRSリソースを、MAC CEによって指示することができる。
<第2の実施形態>
 SRSリソースセット又はSRSリソースに対して(毎に)設定される特定パラメータが、MAC CE及びDCIの少なくとも1つによって制御されてもよい。
 RRC及びMAC CEによって特定パラメータの1つの値が通知されてもよい。特定パラメータの通知にDCIが用いられなくてもよい。
 特定パラメータは、SRSの時間ドメイン/周波数ドメインにおけるリソースのパラメータ(例えば、スロットオフセット)であってもよい。
 特定パラメータの値は、前述の通知方法1から3と、次の通知方法4のいずれかに従ってもよい。
[通知方法4]
 特定パラメータの複数の値(複数の候補、リスト)が、RRC及びMAC CEの少なくとも1つによって通知/アクティベートされてもよい。複数の値の1つが、DCIによって指示されてもよい。
 特定パラメータを指示するためのDCI内の新規フィールド(DCIフィールド)が規定/追加されてもよい。新規RRCパラメータ(例えば、Rel.17 RRCパラメータ)が設定される場合、DCI内に新規DCIフィールドが存在してもよい。そうでない場合、DCI内に新規DCIフィールドが存在しなくてもよい。
 特定パラメータが、(Rel.15/16の)既存DCIフィールドによって新規パラメータの値が通知されてもよい。これによって、仕様の変更を最小限に抑えることができる。
 既存DCIフィールドは、SRSリクエストフィールドであってもよい。仕様の変更は、特定用途(usage)のSRSリソースセットの数を増やすことであってもよい。
 既存DCIフィールドは、ULグラント(PUSCHのスケジューリング用DCI)内time domain resource assignment(TDRA)フィールド又はCSIリクエストフィールドであってもよいし、DLアサインメント(PDSCHのスケジューリング用のDCI)内のTDRAフィールドであってもよい。
 スロットオフセットは、ULグラントのTDRAフィールドによって指示されるスロット+Kスロット、又は指示されるスロット-Kスロットであってもよい。スロットオフセットは、ULグラントのCSIリクエストフィールドによって指示されるスロット+Kスロット、又は指示されるスロット-Kスロットであってもよい。スロットオフセットは、DLアサインメントのTDRAフィールドによって指示されるスロット+Kスロット、又は指示されるスロット-Kスロットであってもよい。Kは、仕様に規定されてもよいし、上位レイヤシグナリングによって設定されてもよい。Kは0であってもよいし、他の値であってもよい。
《設定可能なSRSリソースセットの数》
 Rel.15/16において、コードブック送信(codebook)又はノンコードブック送信(nonCodebook)の用途(usage)を有するSRSリソースセットに対し、上位レイヤパラメータによって1つのみのSRSリソースセットが設定される。Rel.15/16において、アンテナスイッチング(antennaSwitching)の用途を有するSRSリソースセットに対し、UEによって報告されたUE能力に応じて、設定可能なSRSリソースセットの数(最大数)が決定される。例えば、複数のSRSリソースセットのそれぞれが異なるスロットに対応し、複数のスロットに跨ってSRSのアンテナスイッチングを行う。Rel.17のUE能力において、1T(送信アンテナ)6R(受信アンテナ)、1T8R、2T6R、2T8R、4T6R、4T8R、の少なくとも1つが追加されてもよい。
 コードブック送信、ノンコードブック送信、又はアンテナスイッチングの用途を有するSRSリソースセットに対し、新規RRCパラメータが設定されない場合、Rel.15/16における設定可能なSRSリソースセットの数(最大数)の制約が適用されてもよい。
 新規RRCパラメータが設定された場合、設定可能なSRSリソースセットの数は、Rel.15/16における設定可能なSRSリソースセットの数(最大数)より多くてもよい。コードブック送信、ノンコードブック送信、又はアンテナスイッチングのそれぞれに対し、DCI内のSRSリクエストフィールドの1つのコードポイントに対応するSRSリソースセットの最大数は、Rel.15/16における設定可能なSRSリソースセットの数(最大数)であってもよい。SRSリクエストフィールドの1つのコードポイントは、上位レイヤシグナリングによって設定されるA-SRSリソーストリガ(aperiodicSRSResourceTrigger)の1つの値(ID)であってもよい。
 例えば、スロットオフセットをDCI(SRSリクエストフィールド)によって制御可能にすると共に、1つのDCIコードポイントによって複数スロットに跨るSRSアンテナスイッチングを行うことができる。
 以上の第2の実施形態によれば、SRSリソースセット又はSRSリソースを、DCIによって指示することができる。
<第3の実施形態>
 特定パラメータは、SRSリソースセット又はA-SRSリソーストリガであってもよい。
《SRSリソースセットのアクティベーション/ディアクティベーション》
 複数のSRSリソースセットがRRCによって設定され、複数のSRSリソースセットのうちの幾つかがMAC CEによってアクティベート/ディアクティベートされてもよい。アクティブなSRSリソースセットの数に対し、前述のSRSリソースセットの数の制約が適用されてもよい。
 MAC CEは、アクティベートされるSRSリソースセットIDを示すフィールドを含んでもよい。
 図6Aの例のように、MAC CEは、Rフィールドと、サービングセルIDフィールドと、BWP IDフィールドと、アクティブSRSリソースセットIDフィールドと、の少なくとも1つを含んでもよい。MAC CEは、複数のアクティブSRSリソースセットIDフィールドを含んでもよい。複数のSRSリソースセットが同時にアクティベートされてもよい。MAC CE内の複数のオクテットのそれぞれが、1つのアクティブSRSリソースセットIDフィールドを含んでもよい。
 図6Bの例のように、MAC CEは、Rフィールドと、サービングセルIDフィールドと、BWP IDフィールドと、Bフィールドと、の少なくとも1つを含んでもよい。Bフィールドがビットマップであってもよい。複数のSRSリソースセットが同時にアクティベートされてもよい。xの値とSRSリソースセットIDとの対応付けが、上位レイヤシグナリングによって設定されてもよい。xの値は、SRSリソースセットIDの昇順に対応付けられてもよい。上位レイヤシグナリングによって設定されたSRSリソースセットの数に応じて、Bフィールドは、複数のオクテットにわたってもよい。オクテット数は、上位レイヤシグナリングによって設定されたSRSリソースセットの数に応じて可変であってもよい。Bフィールドの順序は、xの昇順であってもよいし、xの降順であってもよい。
《SRSリソースセットID又はA-SRSリソーストリガの値》
 SRSリクエストフィールドのコードポイントと、SRSリソースセットID(又はA-SRSリソーストリガ)の値との間の対応関係が、新規MAC CEによって通知/更新されてもよい。DCIコードポイントと1つ又は複数のSRSリソースセットとの間のマッピングが、MAC CEによって通知/更新されてもよい。
 図7Aの例のように、SRSリクエストフィールドのコードポイントと、MAC CEの内容との関係(例えば、テーブル)が仕様に規定されてもよい。SRSリクエストフィールドの値00は、いかなるA-SRSリソースセットもトリガされないことを示してもよい。SRSリクエストフィールドの値01、10、11は、それぞれ、MAC CEによって通知される1番目、2番目、3番目のSRSリソースセットIDに示されたSRSリソースセットがトリガされることを示してもよい。
 このMAC CEを受信したUEは、Rel.15/16に規定されたテーブルではなく、このMAC CEによって示された対応関係に基づいて、SRSリクエストフィールドの値に対応するSRSリソースセット又はA-SRSリソーストリガの値を決定してもよい。
 図7Bの例のように、新規MAC CEは、Rフィールドと、サービングセルIDフィールドと、BWP IDフィールドと、Byxフィールドと、の少なくとも1つを含んでもよい。Byxフィールドがビットマップであってもよい。複数のSRSリソースセットが同時にアクティベートされてもよい。y及びxの値とSRSリソースセットIDとの対応付けが、上位レイヤシグナリングによって設定されてもよい。Byxフィールドは、y番目のSRSリソースセットIDに関連付けられてもよい。xの値は、SRSリソースセットIDの昇順に関連付けられてもよい。yの値は、SRSリソースセットIDの昇順に関連付けられてもよい。上位レイヤシグナリングによって設定されたSRSリソースセットの数に応じて、Byxフィールドは、複数のオクテットにわたってもよい。オクテット数は、上位レイヤシグナリングによって設定されたSRSリソースセットの数に応じて可変であってもよい。Byxフィールドの順序は、xの昇順であってもよいし、xの降順であってもよいし、yの昇順であってもよいし、yの降順であってもよい。
 この例において、オクテット2内の1にセットされた1つのビットの位置は、1番目のSRSリソースセットID(SRSリクエストフィールドの値01に対応)を示し、オクテット3内の1にセットされた1つのビットの位置は、2番目のSRSリソースセットID(SRSリクエストフィールドの値10に対応)を示し、オクテット4内の1にセットされた1つのビットの位置は、3番目のSRSリソースセットID(SRSリクエストフィールドの値11に対応)を示してもよい。
[バリエーション1]
 新規MAC CEは、各SRSリソースセットIDがSRSリクエストフィールドの値に関連付けられるか否かを示すフィールドを含んでもよい。
 図8Aの例のように、新規MAC CEは、Rフィールドと、サービングセルIDフィールドと、BWP IDフィールドと、Tフィールドと、Bフィールドと、の少なくとも1つを含んでもよい。1つのTフィールドが、複数のBフィールドに関連付けられてもよい。Tフィールドが1にセットされる場合、その後の7つのBフィールドが存在してもよい。Tフィールドが0にセットされる場合、その後の7つのBフィールドが存在しなくてもよい。
 少なくとも1つのTフィールドが0である場合、SRSリクエストフィールドの値の昇順又は降順に、MAC CEによって指定されたSRSリソースセットIDが関連付けられてもよい。例えば、図8Aの例のように、2個のTフィールドが1にセットされる場合、図8Bの例のように、SRSリクエストフィールドの値の最大値11から(テーブルの最下行から)詰めて、SRSリクエストフィールドの2個の値が、MAC CEによって示されたSRSリソースセットIDに関連付けられてもよい。SRSリクエストフィールドの残りの値は、Rel.15/16の関連付け(テーブル)に従ってもよい。
[バリエーション2]
 1以上のSRSリソースセットIDリストがRRCによって設定されてもよい。SRSリソースセットIDリストは、SRSリソースセットの1以上のグループを含んでもよい。グループは、1以上のSRSリソースを含んでもよい。各グループに対してインデックス(リストインデックス、グループインデックス)が関連付けられてもよい。リストインデックスが、MAC CEによって通知されてもよい。
 図9Aの例のように、4つのグループを含むSRSリソースセットIDリストRRCによって設定される。4つにグループは、それぞれ、リストインデックス0から3に対応する。
 図9Bの例のように、新規MAC CEは、Rフィールドと、サービングセルIDフィールドと、BWP IDフィールドと、Tフィールドと、リストインデックスフィールドと、の少なくとも1つを含んでもよい。1つのTフィールドが、1つのリストインデックスフィールドに関連付けられてもよい。Tフィールドが1にセットされる場合、その後の1つのリストインデックスフィールドが存在してもよい。Tフィールドが0にセットされる場合、その後の1つのリストインデックスフィールドが存在しなくてもよい。
 リストインデックスフィールドは、リストインデックスを示してもよい。この例において、オクテット2内のリストインデックスフィールドは、SRSリソースセットIDの1番目のグループ(SRSリクエストフィールドの値01に対応)を示し、オクテット3内のリストインデックスフィールドは、SRSリソースセットIDの2番目のグループ(SRSリクエストフィールドの値10に対応)を示し、オクテット4内のリストインデックスフィールドは、SRSリソースセットIDの3番目のグループ(SRSリクエストフィールドの値11に対応)を示してもよい。
 SRSリクエストフィールドのサイズがNビットである場合、MAC CE内のリストインデックスフィールドの数は、2^N-1個であってもよいし、2^N-1個より少なくてもよい。MAC CE内のリストインデックスフィールドの数が2^N-1個より少ない場合、図8と同様、SRSリクエストフィールドの値の最大値11から(テーブルの最下行から)詰めて、リストインデックスフィールドによって示されたグループが、SRSリクエストフィールドの値に関連付けられてもよい。SRSリクエストフィールドの残りの値は、Rel.15/16の関連付け(テーブル)に従ってもよい。
《A-SRSリソーストリガの値》
 SRSリソースセットのA-SRSリソーストリガの値(A-SRSリソーストリガID、例えば、1、2、3のいずれか)が、MAC CEによって通知されてもよい。
 SRSリクエストフィールドの値とSRSリソースセットIDとの関係(テーブル)が仕様に規定されなくてもよい。SRSリクエストフィールドの値と、SRSリソースセットと、の間の既存の関係(テーブル)が適用されてもよい。
 複数のSRSリソースセットに対して、同じA-SRSリソーストリガの値が設定されてもよい(特に用途がアンテナスイッチングである場合)。
 A-SRSリソーストリガの値は、次の動作1及び2の少なくとも1つに従ってもよい。
[動作1]
 MAC CEによって通知されたSRSリソースセットのみに対して、A-SRSリソーストリガの値が更新されてもよい。これによってA-SRSリソーストリガの値が、MAC CEによって柔軟に指示できる。
[動作2]
 MAC CEによってA-SRSリソーストリガの値が通知された場合、通知される前のA-SRSリソーストリガと同じ値を設定された全てのSRSリソースセットのA-SRSリソーストリガの値を更新してもよい。これによってMAC CEのオーバーヘッドを抑えることができる。
 1つのMAC CEによって更新されるSRSリソースセットの組み合わせが、上位レイヤパラメータ(例えば、適用可能(applicable)SRSリソースセットリスト)によって設定されてもよい。この上位レイヤパラメータが設定された場合のみにおいて、動作2が行われてもよい。
 動作2は、A-SRSリソーストリガIDの通知に限られない。SRSリソースセット毎にMAC CEによって更新されるパラメータに、動作2が適用されてもよい。
 図10のように、新規MAC CEは、Rフィールドと、サービングセルIDフィールドと、BWP IDフィールドと、SRSリソースセットIDと、A-SRSリソーストリガIDフィールドと、の少なくとも1つを含んでもよい。
 A-SRSリソーストリガIDフィールドは、RRCによって設定された値を上書きしてもよい。RRCによってA-SRSリソーストリガIDリストが設定され、そのリスト内のインデックス(位置)が、MAC CEのA-SRSリソーストリガIDフィールドによって指定されてもよい。RRCによって1つのA-SRSリソーストリガIDが通知されない場合、MAC CEを用いるA-SRSリソーストリガIDの通知が適用されてもよい。
《トリガリングDCI》
 A-SRSをトリガするSRSリクエストフィールドが、ULグラント(UL DCI)/DLアサインメント(DL DCI)に含まれてもよい。
 既存のUL/DL DCIは、PUSCH/PDSCHのスケジューリングなしにA-SRSをトリガできない。
 条件が満たされる場合、UL/DL DCIに含まれるSRSリクエストフィールドを、SRSリソースセット/SRSリソースのパラメータの選択に使用してもよい。条件は、特定RRCパラメータが受信されることであってもよい。これによって、既存のDCIのフィールドサイズを変更することなく、より柔軟にA-SRSを制御できる。
 A-SRSのトリガのための新規radio network temporally identifier(RNTI)が規定されてもよい(例えば、SRS-RNTI)。SRS-RNTIによってスクランブルされたcyclic redundancy check(CRC)を有するDCIは、A-SRSのトリガのみに用いられてもよい(スケジューリングしなくてもよい)。新規RNTIが規定される場合、新規DCIフォーマットを規定する場合に比べ、ブラインド検出回数の増大を防ぐことができる。
 A-SRSのトリガのための新規DCIフォーマットが規定されてもよい。
 A-SRSのトリガに用いられるDCIフォーマットは特定DCIフォーマットであってもよい。特定DCIフォーマットは、既存DCIフォーマットのうち、A-SRSをトリガできるDCIフォーマットであってもよい。
 SRSリクエストフィールド以外のフィールドを読み替え、SRSリクエストフィールドによってSRSをトリガする仕組みを用いて、SRSリソースセット/SRSリソースのパラメータの選択が行われてもよい。既存のSRSリクエストフィールドの値00は、SRSをトリガしないことを示す。SRS-RNTIによってスクランブルされたCRCを有するDCIは、SRSをトリガしない状態を必要としない。SRS-RNTIによってスクランブルされたCRCを有するDCI内のSRSリクエストフィールドの値00は、SRSリソースセットに関連付けられてもよい。
 SRS-RNTIによってスクランブルされたCRCを有するDCI内のSRSリクエストフィールドのサイズは、2ビット、3ビットに限られず、4ビット以上であってもよい。
 Rel.15/16におけるSRSリクエストフィールドと、SRSリソースセット(又はA-SRSリソーストリガ)と、の関連付け(テーブル)において、SRSリクエストフィールドの値00に対してSRSリソースセットが関連付けられてもよい。SRSリクエストフィールドの値00に対し、タイプBにセットされた上位レイヤパラメータSRS-TPCPDCCHグループ(srs-TPC-PDCCH-Group)を設定されたDCIフォーマット0_1、0_2、1_1、1_2、及び2_3に対してトリガされるA-SRSリソースセットは、1にセットされた上位レイヤパラメータA-SRSリソーストリガ、又は上位レイヤパラメータA-SRSリソーストリガリスト内の1にセットされた1つのエントリ、を設定されたSRSリソースセットであってもよい。SRSリクエストフィールドの値00に対し、タイプAにセットされた上位レイヤパラメータSRS-TPCPDCCHグループ(srs-TPC-PDCCH-Group)を設定されたDCIフォーマット2_3に対してトリガされるA-SRSリソースセットは、アンテナスイッチングにセットされた(SRSリソースセット内の)用途(上位レイヤパラメータusage)と、上位レイヤによって設定されたサービングセルの1番目のセットに対して「非周期的」にセットされた(SRSリソースセット内の)リソースタイプと、を設定されたSRSリソースセットであってもよいし、ポジショニング用SRSリソースセットによって設定され、上位レイヤによって設定されたサービングセルの1番目のセットに対して「非周期的」にセットされた(ポジショニング用SRSリソースセット内の)リソースタイプを設定されたSRSリソースセットであってもよい。
 この場合、トリガされる1つ又は複数のSRSリソースセットを指示するDCIフィールドが存在し、UEは、そのフィールドによって指示される1つ又は複数のSRSリソースセットに対応するA-SRSを送信してもよい。
 スロットオフセットの複数の値(候補)がRRC/MAC CEによって通知され、それらの複数の値の中から1つを指示するDCIフィールドが存在し、UEは、そのフィールドによって指示されるスロットオフセットを用いてA-SRSを送信してもよい。
 以上の第3の実施形態によれば、SRSリソースセットをMAC CE/DCIによって通知できる。
<第4の実施形態>
《バリエーション1》
 SRSリソースセット又はSRSリソースセットに対して(毎に)設定される特定パラメータが、DCIによって指示される場合、第1から第3の実施形態の少なくとも1つのMAC CEのフィールドが拡張され、そのフィールドによってSRSリソースセット/SRSリソース/SRSパラメータの複数の候補がアクティベートされ、DCIが複数の候補の1つを指示してもよい。
《バリエーション2》
 第1から第3の実施形態の少なくとも1つは、対応するUE能力がUEによって報告された場合にのみ、適用されてもよい。
 UE能力は、第1から第3の実施形態の少なくとも1つがサポートされるか否かを示してもよい。
 UE能力は、第1から第3の実施形態の少なくとも1つにおいてサポートされるSRSリソースセット/SRSリソースの数(最大数)を示していてもよい。
 UE能力は、第1から第3の実施形態の少なくとも1つのMAC CE/DCIによって制御可能なSRSリソースセット/SRSリソースの数(最大数)を示していてもよい。
 第1から第3の実施形態の少なくとも1つは、UEが対応する上位レイヤパラメータを設定された場合にのみ、適用されてもよい。そうでない場合、UEは、Rel.15/16の動作を適用してもよい。
《バリエーション3》
 A-SRSの柔軟性を高めるために、次の拡張1及び2の少なくとも1つが考慮されてもよい。
[拡張1]
 MAC CEを導入する拡張。この拡張は、次の選択肢1から3の少なくとも1つに従ってもよい。
[[選択肢1]]
 MAC CEは、1つ又は複数のSRSリソースセットをアクティベートしてもよい。アクティブSRSリソースセットのみが、DCIのSRSリクエストフィールドによってトリガされてもよい。
 図11の例のように、Rel.15/16においては、コードブックの用途を有するSRSリソースセット#1が設定される。選択肢1においては、コードブックの用途を有するSRSリソースセット#1、#2が設定され、MAC CEによってSRSリソースセット#2がアクティベートされてもよい。
[[選択肢2]]
 MAC CEは、DCIコードポイントとA-SRSリソーストリガとの間のマッピングを更新してもよい。
 図12の例のように、Rel.15/16においては、2ビットのSRSリクエストフィールドの00以外の値に、A-SRSリソーストリガが関連付けられる。選択肢2においては、2ビットのSRSリクエストフィールドの00以外の値に、MAC CEによって指示される1以上のSRSリソースセットIDが関連付けられてもよい。
[[選択肢3]]
 MAC CEは、SRSの特定パラメータを更新してもよい。例えば、特定パラメータは、スロットオフセットであってもよい。
 図13の例のように、Rel.15/16においては、コードブックの用途と、スロットオフセット=1を有するSRSリソースセット#1が設定される。選択肢3においては、SRSリソースセット#1のスロットオフセットがMAC CEによって更新されてもよい。
 選択肢1/2において、与えられた用途に対して設定可能なSRSリソースセットの数(最大数)が増加する。
[拡張2]
 トリガリングDCIの拡張。
 SRSリクエストフィールドのビット数が増やされてもよい。
 SRSリクエストフィールドに加えて新規DCIフィールドが追加されてもよい。
 A-SRSトリガリング専用のDCIを作るための新規RNTI(例えば、SRS-RNTI)が導入されてもよい。
 A-SRSトリガリング専用のDCIを作るための新規DCIフォーマットが導入されてもよい。
 SRSリクエストフィールドに加えて、SRSトリガリングを制御するための既存のDCIフィールドが再利用されてもよい。
《バリエーション4》
 第1から第3の実施形態の少なくとも1つのMAC CEを適用するための、MAC CEアクティベーション時間が必要とされてもよい。
 UEは、次の動作1及び2の少なくとも1つに従ってもよい。
[動作1]
 UEは、MAC CEの受信からMAC CEアクティベーション時間の経過以後に受信されたDCIによってトリガされたSRS送信に対して、MAC CEによって更新されたSRSリソース(パラメータ)を用いる。
[動作2]
 UEは、MAC CEの受信からMAC CEアクティベーション時間の経過以後のSRS送信に対して、MAC CEによって更新されたSRSリソース(パラメータ)を用いる。
 MAC CEアクティベーション時間は、A-SRS、SP-SRS、P-SRSの間で異なってもよい。例えば、動作1において、S-SRSに対するMAC CEアクティベーション時間は、3サブフレーム時間(3msec)であってもよく、SP/P-SRSに対するMAC CEアクティベーション時間は、3サブフレーム時間(3msec)+Tであってもよい。Tは、仕様に規定されてもよいし、上位レイヤによって通知されてもよいし、UE能力によって報告されてもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図14は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図15は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、サウンディング参照信号(SRS)リソースセット又はSRSリソースに対するパラメータに関するmedium access control-control element(MAC CE)を送信してもよい。制御部110は、前記パラメータに基づいて、SRS受信を制御してもよい。
 送受信部120は、サウンディング参照信号(SRS)リソースセット又はSRSリソースに対するパラメータの1以上の値と、下りリンク制御情報内のフィールドの1以上の値と、の間のマッピングを示すmedium access control-control element(MAC CE)を送信し、前記下りリンク制御情報を送信してもよい。制御部110は、前記パラメータに基づいて、SRS受信を制御してもよい。
(ユーザ端末)
 図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、サウンディング参照信号(SRS)リソースセット又はSRSリソースに対するパラメータに関するmedium access control-control element(MAC CE)を受信してもよい。制御部210は、前記パラメータに基づいて、SRS送信を制御してもよい。
 送受信部220は、複数のSRSリソースセットを示す無線リソース制御情報要素を受信してもよい。前記MAC CEは、複数のSRSリソースセットのうちの、1以上のSRSリソースセットをアクティベートしてもよい。
 送受信部220は、前記パラメータを示す無線リソース制御情報要素を受信してもよい。前記MAC CEは、前記パラメータを更新してもよい。
 前記パラメータは、前記SRSリソースセットに対するスロットオフセットであってもよい。
 送受信部220は、サウンディング参照信号(SRS)リソースセット又はSRSリソースに対するパラメータの1以上の値と、下りリンク制御情報内のフィールドの1以上の値と、の間のマッピングを示すmedium access control-control element(MAC CE)を受信し、前記下りリンク制御情報を受信してもよい。制御部210は、前記MAC CEと前記下りリンク制御情報とに基づいて、前記パラメータの値を決定してもよい。
 前記パラメータは、非周期的SRSリソーストリガ及びSRSリソースセットの少なくとも1つであってもよい。
 前記MAC CEは、複数のSRSリソースセットを示してもよい。前記フィールドの複数の値は、前記複数のSRSリソースセットにマップされてもよい。
 前記下りリンク制御情報は、SRS用無線ネットワーク暫定識別子と、SRS用下りリンク制御情報フォーマットと、の少なくとも1つを用いて送信されてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定のチャネル/信号を送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  サウンディング参照信号(SRS)リソースセット又はSRSリソースに対するパラメータに関するmedium access control-control element(MAC CE)を受信する受信部と、
     前記パラメータに基づいて、SRS送信を制御する制御部と、を有する端末。
  2.  前記受信部は、複数のSRSリソースセットを示す無線リソース制御情報要素を受信し、
     前記MAC CEは、複数のSRSリソースセットのうちの、1以上のSRSリソースセットをアクティベートする、請求項1に記載の端末。
  3.  前記受信部は、前記パラメータを示す無線リソース制御情報要素を受信し、
     前記MAC CEは、前記パラメータを更新する、請求項1に記載の端末。
  4.  前記パラメータは、前記SRSリソースセットに対するスロットオフセットである、請求項1から請求項3のいずれかに記載の端末。
  5.  サウンディング参照信号(SRS)リソースセット又はSRSリソースに対するパラメータに関するmedium access control-control element(MAC CE)を受信するステップと、
     前記MAC CEに基づいて、SRS送信を制御するステップと、を有する、端末の無線通信方法。
  6.  サウンディング参照信号(SRS)リソースセット又はSRSリソースに対するパラメータに関するmedium access control-control element(MAC CE)を送信する送信部と、
     前記パラメータに基づいて、SRS受信を制御する制御部と、を有する基地局。
PCT/JP2020/029870 2020-08-04 2020-08-04 端末、無線通信方法及び基地局 WO2022029899A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022541385A JPWO2022029899A1 (ja) 2020-08-04 2020-08-04
PCT/JP2020/029870 WO2022029899A1 (ja) 2020-08-04 2020-08-04 端末、無線通信方法及び基地局
CN202080105882.1A CN116235590A (zh) 2020-08-04 2020-08-04 终端、无线通信方法以及基站
US18/040,213 US20230269043A1 (en) 2020-08-04 2020-08-04 Terminal, radio communication method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029870 WO2022029899A1 (ja) 2020-08-04 2020-08-04 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2022029899A1 true WO2022029899A1 (ja) 2022-02-10

Family

ID=80117891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029870 WO2022029899A1 (ja) 2020-08-04 2020-08-04 端末、無線通信方法及び基地局

Country Status (4)

Country Link
US (1) US20230269043A1 (ja)
JP (1) JPWO2022029899A1 (ja)
CN (1) CN116235590A (ja)
WO (1) WO2022029899A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111201760A (zh) * 2017-08-10 2020-05-26 株式会社Ntt都科摩 用户终端以及无线通信方法
WO2023249790A1 (en) * 2022-06-22 2023-12-28 Qualcomm Incorporated Techniques for dynamic adaptation of sounding reference signal time domain parameters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189751A1 (ja) * 2018-03-30 2019-10-03 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189751A1 (ja) * 2018-03-30 2019-10-03 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "[Offline-611][POS] Summary on support of non-periodic SRS cases", 3GPP DRAFT; R2-2001935, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20200224 - 20200306, 11 March 2020 (2020-03-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051864574 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111201760A (zh) * 2017-08-10 2020-05-26 株式会社Ntt都科摩 用户终端以及无线通信方法
WO2023249790A1 (en) * 2022-06-22 2023-12-28 Qualcomm Incorporated Techniques for dynamic adaptation of sounding reference signal time domain parameters

Also Published As

Publication number Publication date
JPWO2022029899A1 (ja) 2022-02-10
US20230269043A1 (en) 2023-08-24
CN116235590A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2021149265A1 (ja) 端末、無線通信方法及び基地局
JPWO2020090060A1 (ja) ユーザ端末及び無線通信方法
WO2020209281A1 (ja) ユーザ端末及び無線通信方法
WO2022029933A1 (ja) 端末、無線通信方法及び基地局
WO2022024378A1 (ja) 端末、無線通信方法及び基地局
WO2022085155A1 (ja) 端末、無線通信方法及び基地局
WO2021186700A1 (ja) 端末、無線通信方法及び基地局
WO2021152702A1 (ja) 端末、無線通信方法及び基地局
WO2022102605A1 (ja) 端末、無線通信方法及び基地局
WO2020217514A1 (ja) ユーザ端末及び無線通信方法
WO2022029899A1 (ja) 端末、無線通信方法及び基地局
JPWO2020144869A1 (ja) ユーザ端末及び無線通信方法
WO2022029979A1 (ja) 端末、無線通信方法及び基地局
WO2022024395A1 (ja) 端末、無線通信方法及び基地局
WO2022024377A1 (ja) 端末、無線通信方法及び基地局
WO2022030011A1 (ja) 端末、無線通信方法及び基地局
WO2021220411A1 (ja) 端末、無線通信方法及び基地局
WO2021192160A1 (ja) 端末、無線通信方法及び基地局
WO2021166036A1 (ja) 端末、無線通信方法及び基地局
WO2020255395A1 (ja) 端末及び無線通信方法
WO2022039154A1 (ja) 端末、無線通信方法及び基地局
WO2022029900A1 (ja) 端末、無線通信方法及び基地局
WO2021241210A1 (ja) 端末、無線通信方法及び基地局
WO2021241211A1 (ja) 端末、無線通信方法及び基地局
WO2022029934A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541385

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948498

Country of ref document: EP

Kind code of ref document: A1