WO2021204297A1 - 资源确定方法、装置、节点和存储介质 - Google Patents

资源确定方法、装置、节点和存储介质 Download PDF

Info

Publication number
WO2021204297A1
WO2021204297A1 PCT/CN2021/086702 CN2021086702W WO2021204297A1 WO 2021204297 A1 WO2021204297 A1 WO 2021204297A1 CN 2021086702 W CN2021086702 W CN 2021086702W WO 2021204297 A1 WO2021204297 A1 WO 2021204297A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
communication node
resources
node
indication
Prior art date
Application number
PCT/CN2021/086702
Other languages
English (en)
French (fr)
Inventor
牛丽
戴博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21784696.3A priority Critical patent/EP4135447A1/en
Priority to US17/783,421 priority patent/US20230011377A1/en
Priority to KR1020227019599A priority patent/KR20220093226A/ko
Publication of WO2021204297A1 publication Critical patent/WO2021204297A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/115Grant-free or autonomous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • This application relates to the field of communication technology, and in particular to a method, device, node, and storage medium for determining resources.
  • Unlicensed spectrum belongs to shared spectrum. Terminals need to obtain channel access rights through a competition mechanism in order to use the spectrum. When there are many terminals, the terminal may not be able to seize the channel, making it uncertain to send data on the unlicensed spectrum. , Or the terminal may delay to seize the channel, causing data transmission delay. In order to ensure that some services that require high latency (for example, Ultra Reliable Low Latency Communications (URLLC)) and reduce the scheduling time, the base station can adopt a pre-configuration method to assign fixed terminals to the terminals. Time-frequency domain. As shown in Figure 1, the base station allocates resources with a certain period and occupying a certain bandwidth for the terminal.
  • URLLC Ultra Reliable Low Latency Communications
  • the terminal When the terminal has uplink data arriving, it can directly use the configured resources to send the uplink data.
  • the unlicensed spectrum is used to transmit services with high delay requirements, even if the pre-configuration method is adopted, there will still be a problem of increasing service delay due to the existence of a competition mechanism.
  • the base station pre-configures multiple frequency domain resources.
  • the terminal competes in multiple frequency domains at the same time, which frequency domain competes If it succeeds, it will be transmitted in which frequency domain, but this requires multiple spectrum resources to be occupied, resulting in a waste of spectrum resources.
  • the embodiment of the present application provides a method for determining a resource, including:
  • the first communication node obtains configuration information configured by the second communication node
  • the first communication node selects a target resource from a plurality of pre-configured resources according to the configuration information
  • the pre-configured resource is a time-frequency domain resource configured by the second communication node.
  • the embodiment of the present application provides a method for determining a resource, including:
  • the first communication node monitors the signaling sent by the second communication node under the first condition
  • the first communication node deactivates the designated resource according to the signaling, and/or activates the designated resource.
  • the embodiment of the present application provides a method for determining a resource, including:
  • the first communication node obtains the indication information of the configuration of the second communication node
  • the first communication node competes for the pre-configured resource according to the instruction information.
  • the embodiment of the present application provides a method for determining a resource, including:
  • the second communication node configures multiple pre-configured resources, and the pre-configured resources are configured time-frequency domain resources;
  • the second communication node sends the configuration information to the first communication node
  • the configuration information is used to instruct the first communication node to select the target resource from the multiple pre-configured resources according to the configuration information.
  • the embodiment of the present application provides a method for determining a resource, including:
  • the second communication node configures multiple pre-configured resources
  • the second communication node sends signaling to the first communication node
  • the first communication node is a node configured on a pre-configured resource, and the signaling is used to instruct the first communication node to deactivate the designated resource, and/or activate the designated resource.
  • the embodiment of the present application provides a method for determining a resource, including:
  • the second communication node configures multiple pre-configured resources
  • the second communication node sends the instruction information to the first communication node
  • the indication information is used to instruct the first communication node to compete for frequency domain resources among multiple pre-configured resources according to the indication information.
  • the embodiment of the present application provides a method for determining a resource, including:
  • the second communication node divides the resources
  • the second communication node sends the resource indication and the corresponding level to the neighboring node through an interface message
  • the neighboring node is a node of the same type as the second communication node.
  • the embodiment of the present application provides a method for determining a resource, including:
  • the node receives the resource indication and the corresponding level sent by the second communication node through an interface message
  • the node is the same type of node as the second communication node;
  • the node divides its own resources according to the resource indication and the corresponding level.
  • the embodiment of the present application provides a resource determination device, including:
  • the selection module is used to select a target resource from a plurality of pre-configured resources according to the configuration information
  • the pre-configured resource is a time-frequency domain resource configured by the second communication node.
  • the embodiment of the present application provides a resource determination device, including:
  • the configuration module is used to configure multiple pre-configured resources, and the pre-configured resources are time-frequency domain resources;
  • Configuration module used to configure configuration information
  • a communication module for sending configuration information to the first communication node
  • the configuration information is used to instruct the first communication node to select the target resource from the multiple pre-configured resources according to the configuration information.
  • the embodiment of the present application provides a resource determination device, including:
  • Configuration module used to configure multiple pre-configured resources
  • the communication module is used to send signaling to the first communication node
  • the first communication node is a node configured on a pre-configured resource, and the signaling is used to instruct the first communication node to deactivate the designated resource, and/or activate the designated resource.
  • the embodiment of the present application provides a resource determining device, including:
  • Configuration module used to configure multiple pre-configured resources
  • Configuration module used to configure instruction information
  • the communication module is used to send the instruction information to the first communication node
  • the indication information is used to instruct the first communication node to compete for frequency domain resources among multiple pre-configured resources according to the indication information.
  • the embodiment of the present application provides a resource determination device, including:
  • Dividing module used to divide resources
  • the communication module is used to send resource indications and corresponding levels to neighboring nodes through interface messages
  • the neighboring nodes are nodes of the same type as the resource determining device.
  • the embodiment of the present application provides a resource determination device, including:
  • the communication module is configured to receive the resource indication and the corresponding level sent by the second communication node through an interface message
  • the second communication node is a node of the same type as the resource determining device
  • the dividing module is used to divide its own resources according to resource indications and corresponding levels.
  • the embodiment of the present application provides a node, including: a memory, a processor, and a computer program stored on the memory and capable of running on the processor.
  • the processor executes the computer program, the method for determining a resource as provided in the embodiment of the present application is implemented .
  • the embodiment of the present application provides a node, including: a memory, a processor, and a computer program stored on the memory and running on the processor.
  • the processor executes the computer program, the method for determining resources as provided in the embodiment of the present application is implemented .
  • the embodiment of the present application provides a storage medium, including: a computer-readable storage medium stores a computer program, and the computer program is executed by a processor to implement the resource determination method provided in the embodiment of the present application.
  • the embodiment of the present application provides a storage medium, including: a computer-readable storage medium stores a computer program, and the computer program is executed by a processor to implement the resource determination method provided in the embodiment of the present application.
  • Figure 1 is a schematic diagram of pre-configured resources in related technologies
  • Figure 2 is a schematic diagram of multiple frequency domain resources pre-configured in the related art
  • Figure 3 is a schematic diagram of the network side architecture
  • FIG. 4 is a flowchart of a method for determining resources according to an embodiment
  • FIG. 5 is a schematic diagram of nodes configuring resources in multiple subbands in related technologies
  • Figure 6 is a schematic diagram of various competition mechanisms
  • FIG. 7 is a flowchart of a method for determining a resource according to an embodiment
  • FIG. 8 is a schematic diagram of multiple first communication nodes configured in the same frequency domain and the same or different time domains
  • FIG. 9 is a flowchart of a method for determining a resource according to an embodiment
  • FIG. 10 is a schematic diagram of multiple first communication nodes configured in the same frequency domain and time domain;
  • FIG. 11 is a flowchart of a method for determining resources according to an embodiment
  • FIG. 12 is a flowchart of a method for determining resources according to an embodiment
  • FIG. 13 is a flowchart of a method for determining resources according to an embodiment
  • FIG. 14 is a flowchart of a method for determining resources according to an embodiment
  • FIG. 15 is a schematic diagram of interaction between nodes provided by an embodiment
  • FIG. 16 is a flowchart of a method for determining resources according to an embodiment
  • FIG. 17 is a schematic diagram of interaction between nodes provided by an embodiment
  • FIG. 18 is a schematic structural diagram of a resource determining apparatus provided by an embodiment
  • FIG. 19 is a schematic structural diagram of a device for determining a resource according to an embodiment
  • FIG. 20 is a schematic structural diagram of a resource determining apparatus provided by an embodiment
  • FIG. 21 is a schematic structural diagram of a device for determining a resource according to an embodiment
  • FIG. 22 is a schematic structural diagram of a device for determining a resource according to an embodiment
  • FIG. 23 is a schematic structural diagram of a device for determining a resource according to an embodiment
  • FIG. 24 is a schematic diagram of a node structure provided by an embodiment
  • FIG. 25 is a schematic diagram of a node structure provided by an embodiment
  • FIG. 26 is a schematic diagram of a node structure provided by an embodiment.
  • words such as “optionally” or “exemplarily” are used to represent examples, illustrations, or illustrations. Any embodiment or design solution described as “optional” or “exemplary” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “optionally” or “exemplary” are used to present related concepts in a specific manner.
  • Unlicensed spectrum is used in the networking of cellular networks. It can be used as a secondary spectrum of licensed spectrum for networking, used for dual-link secondary node (Secondary Node, SN) spectrum resources or carrier aggregation secondary cells
  • the spectrum resource can also be used in independent networking for the spectrum resource of a standalone cell.
  • nodes for example, base stations
  • LBT Listen Before Talk
  • 3rd Generation Partnership Project 3GPP
  • ETSI European Telecommunications Standards Institute
  • the sender needs to monitor whether the channel is free, if it is free, the sender uses the channel to send data, otherwise it needs to continue to monitor until the channel is free. For example, if two nodes share a 100MHz bandwidth, if a node needs to send data, it needs to compete within the bandwidth that it plans to occupy. If two nodes are preparing to send data in the same bandwidth at the same time, then the two nodes need to compete, and the node that successfully competes can send data.
  • Competition mechanism ETSI and 3GPP define a variety of competition mechanisms.
  • CAT4/Type1 is a competition mechanism in which the terminal determines the duration of the channel monitoring by generating a random number;
  • CAT 2 25us/Type2A is a terminal monitoring the channel within 25us.
  • the competition mechanism is generally that after the base station successfully seizes the channel, the channel is shared to the terminal to send uplink data, and the gap between the uplink and the downlink is guaranteed to be 25us;
  • CAT 2 16us/Type2B is a competition for the terminal to monitor the channel within 16us
  • the mechanism is generally that after the base station successfully seizes the channel, the shared channel sends the uplink data to the terminal, and the gap between the uplink and the downlink is guaranteed to be 16us;
  • CAT 1/Type2C is a mechanism for the terminal to send data immediately without monitoring the channel.
  • the shared channel sends uplink data to the terminal, and the gap between the uplink and the downlink is guaranteed to be less than or equal to 16 us.
  • These competition mechanisms need to monitor the channel for different durations, which are sorted from largest to smallest, or the order of obtaining channel access rights from difficult to easy is CAT4>CAT2 25us>CAT2 16us>CAT1.
  • the second communication node can configure and activate multiple configured grants in multiple subbands (20M LBT bandwidth), CG#1, CG#2, and CG#3.
  • the first communication node fails the competition in the subband where CG#2 is located, but the competition succeeds in the subband where CG#1 and CG#3 are located, that is, at time n, the first communication node has CG#1, CG #3 Multiple resources are available, so there is a problem of resource occupation and waste.
  • FIG. 4 is a flowchart of a resource determination method provided by an embodiment of the application. As shown in FIG. 4, the method may include:
  • S401 The first communication node obtains configuration information configured by the second communication node.
  • the configuration information in the embodiment of the present application may include initial transmission configuration information and/or retransmission configuration information.
  • the second communication node and the first communication node may be two different types of communication nodes.
  • the first communication node may be a terminal
  • the second communication node may be a base station.
  • the first communication node selects a target resource from a plurality of pre-configured resources according to the configuration information.
  • the pre-configured resource is the time-frequency domain resource configured by the second communication node.
  • the second communication node can configure multiple configuration grants for the first communication node.
  • SPS Semi-Persistent Scheduling
  • the first communication node may select the target resource from the plurality of pre-configured time-frequency resources configured by the second communication node according to the configuration information. In this way, when the first communication node has multiple available spectrum resources, the corresponding target time-frequency domain resource can be selected according to the configuration information, thereby ensuring the reliability of data transmission on the first communication node.
  • the initial configuration information configured by the second communication node may include any one of the following types of information:
  • the first type of information indicates whether to enable the first communication node to select the target resource.
  • the second communication node may indicate whether to use radio resource control (Radio Resource Control, RRC) messages, physical address control elements (Media Access Control Control Element, MAC CE), or downlink control information (Down Control Information, DCI).
  • RRC Radio Resource Control
  • MAC CE Media Access Control Control Element
  • DCI Down Control Information
  • the first communication node can select the target resource.
  • an RRC message (such as an RRC reconfiguration message) may carry an information element indicating whether to enable the function of the first communication node to select resources; or the MAC CE or DCI indication carries a bit indicating whether to enable The function of enabling the first communication node to select the resource, for example, 1 means enabling and 0 means disabling.
  • the second type of information enables the first communication node to select the target resource and select the frequency domain resource with the least interference.
  • the first communication node can only select one of the resources to send data. Then, the second communication node can configure the first communication node to perform measurements on multiple resources, and the first communication node can obtain the interference measurement results of each frequency domain (for example, interference intensity, interference frequency, or preemption success probability, etc.).
  • a communication node selects a resource with the least interference (for example, a small interference intensity value, a small interference frequency value, or a large success probability value, etc.) according to the measured value in each frequency domain, so as to ensure the delay and reliability of service transmission.
  • the specific example provided by the embodiment of the present application may be that the first communication node performs measurement in each subband separately, and obtains the interference strength (received signal strength) and channel occupancy rate (above a certain threshold) of each subband.
  • the value is the percentage of the received signal strength, which reflects the interference frequency).
  • the first communication node When the interference intensity of a certain subband is less than the corresponding threshold, and/or the channel occupancy rate is lower than the corresponding threshold, the first communication node confirms that the interference of the subband is low, and selects the resource on the subband; or, When the interference intensity of a certain subband is less than the corresponding threshold value, and/or the channel occupancy rate is lower than the corresponding threshold value, and the interference intensity value is the smallest or the channel occupancy rate value is the smallest, the first communication node confirms that the subband interference is relatively low. Small, select the resource on the subband.
  • the third type of information is to select target resources based on a competitive mechanism.
  • the second communication node is pre-configured with multiple frequency domain resources, for example, multiple configured grants and SPS configurations.
  • multiple frequency domain resources configured by the second communication node, and each resource corresponds to a different type of competition.
  • the second communication node is in multiple subbands (20M LBT). Bandwidth) Configure and activate multiple configured grants, CG#1, CG#2, CG#3.
  • the first communication node competes for Cat1 in the subband where CG#1 is located, competes for Cat4 in the subband where CG#2 is located, and competes for Cat4 in the subband where CG#3 is located.
  • the subband where CG#4 is located requires the competition type of Cat2 16us. And because in each competition mechanism, the success probability of the first communication node to obtain the channel access right is Cat1 ⁇ Cat2 16us ⁇ Cat2 25us ⁇ Cat4, the first communication node can choose a configured grant with a higher probability of acquiring the channel access right, That is the resource of CG#1.
  • the first communication node when the first communication node has multiple uplink resource configurations at the same time, and each resource corresponds to a different competition mechanism that needs to be executed to obtain frequency domain resources, the first communication node selects resources according to the competition mechanism. It is ensured that the first communication node obtains the channel access right and obtains the available target resources, thereby ensuring the service data delay.
  • the fourth type of information instructs the first communication node to select the target resource according to the parameter information, where the parameter information includes any one of the first communication node identification, cell identification, random number, and frequency band information.
  • the initial transmission of the configuration information is to enable the first communication node to select the target resource according to the parameter information.
  • the first communication node may select the frequency domain resource according to the first communication node identifier in the following manner: the first communication node identifier (which may be assigned to the second communication node)
  • the association relationship may be to associate the value calculated from the first communication node identifier to the configuration resource.
  • the method for the first communication node to select the target resource according to the cell identity may be that there is an association relationship between the cell identity (for example, the physical cell identity of the cell or the global unified identity or other cell-level identity) and each configuration resource, and the association relationship
  • the calculated value of the cell identity can be associated with the configured resource.
  • the three first communication nodes share CG#1, CG#2, and CG#3, the identity of the cell 1 where the first communication node 1 is located is 1, and the identity of the cell 2 where the first communication node 2 is located is 2.
  • the identity of the cell 3 where a communication node 3 is located is 3.
  • the implementation manner for the first communication node to select the target resource according to the random number may be that the first communication node generates a random number, and different random numbers are associated with different configuration resources. For example, three first communication nodes share CG#1, CG#2, CG#3, and each first communication node generates a random integer between 1 and 3. When the random integer generated by the first communication node is 1, Select CG#1; when the random integer generated by the first communication node is 2, select CG#2; when the random integer generated by the first communication node is 3, select CG#3.
  • the method for the first communication node to select the target resource based on the frequency band information can be implemented as follows: the second communication node informs the first communication node of the frequency band information of the frequency band through system information or RRC messages, such as the competition type, competition priority, and service of each frequency band. Information, resource types, avoidance types, reserved resources, etc.
  • the first communication node preferably selects the frequency domain resources with a short time or high priority corresponding to the frequency band competition mechanism, or selects the resources with a long time or low priority corresponding to the frequency band competition mechanism, or avoids, silences or abandons the corresponding frequency domain resources.
  • the frequency band needs to avoid resources.
  • the second communication node carries an information element in an RRC message (for example, an RRC reconfiguration message), and the information element indicates that the contention priority of a certain frequency band is low, and the contention priority of a certain frequency band is high, then the first communication node may Preferentially compete for resources on a frequency band with a high priority.
  • RRC message for example, an RRC reconfiguration message
  • the first communication node can select the corresponding target resource, which can reduce competition among the first communication nodes, thereby ensuring the delay and reliability of data transmission on the first communication node.
  • the retransmission configuration information configured by the second communication node may include any one of the following types of information:
  • the first type of information enables the first communication node to select the target resource, and select the target resource with the least interference based on the Transport Block Size (TBS) of the retransmitted data packet.
  • TBS Transport Block Size
  • the first communication node selects the target resource with the least interference according to the retransmission data packet TBS in a scenario where there are multiple available frequency domain resources. For example, the first communication node selects more than and The frequency domain resource closest to the retransmitted data packet TBS, and then the frequency domain resource with the least interference is selected to improve resource utilization.
  • the second type of information is to select the target resource for retransmission based on the timer and the retransmission data packet TBS.
  • each pre-configured resource may have a different time (period, starting time, etc.), frequency domain location, transmission block size, and so on.
  • the first communication node transmits a data packet on a certain pre-configured resource at that moment, or generates a data packet according to the TBS of the pre-configured resource at that moment, and the first communication node starts a timer at the same time, if the transmission is If the data packet fails, the data packet needs to be retransmitted.
  • the first communication node can select the same pre-configured resource as the data packet TBS for data retransmission; after the timer expires, the first communication node can select TBS greater than or equal to retransmit the data packet and the time is closest Pre-configured resources for data retransmission.
  • the first communication node selects CG#2 at time a and generates data packet 1 based on CG#2's TBS.
  • the first communication node starts a timer at time a, but at time a, the first communication node The competition fails, and data packet 1 needs to be retransmitted. Then, before the timer expires, the first communication node does not find the same pre-configured resource as the retransmitted data packet TBS, such as CG#1, CG#3.
  • the first communication node selects the CG1 resource at time b to retransmit data packet 1.
  • the first communication node selects CG#2 at time d and generates a data packet 2 based on the TBS of CG#2, and the first communication node starts a timer at time d. However, at time d, the first communication node fails the competition and needs to retransmit the data packet 2. If the first communication node finds the same pre-configured resource as the retransmission data packet TBS before the timer expires, such as CG#3, the first communication node selects the CG3 resource at time d to retransmit the data packet.
  • duration of the timer in the foregoing process may be configured by the second communication node for the pre-configured resource.
  • the third type of information is to select the target resource for retransmission according to the attribute of the pre-configured resource.
  • the attribute of the pre-configured resource is the preemption priority or whether it is allowed to be occupied.
  • the second communication node configures different attributes for different pre-configured resources, for example, configures different preemption priorities.
  • the second communication node may configure a cell for each pre-configured resource through RRC signaling or DCI.
  • the cell may have several bits.
  • the bit value identifies the pre-configured resource preemption priority. For example, 11 indicates the preemption priority. 3, 10 indicates that the preemption priority is 2 and so on. Then, when the first communication node transmits a data packet on a pre-configured resource with a high preemption priority, if a retransmission occurs, it may occupy a resource with the same preemption priority or a low pre-configured resource priority for retransmission.
  • the first communication node When the first communication node transmits a data packet on the pre-configured resource with a low preemption priority, if a retransmission occurs, the first communication node cannot occupy the pre-configured resource with a high preemption priority for retransmission.
  • the first communication node has multiple pre-configured resources, namely CG#1, CG#2, and CG#3.
  • the second communication node configures the preemption priority of CG#1 to be 11, and preemption of CG#2 The priority is 10, and the preemption priority of CG#3 is 10.
  • the first communication node transmits a data packet on CG#1
  • the data packet needs to be retransmitted due to the unsuccessful channel preemption on CG#1, so the first communication node can choose CG#1, CG#2 and CG#
  • the resource on 3 retransmits the packet.
  • the first communication node When the first communication node transmits a data packet on CG#2, the data packet needs to be retransmitted due to the unsuccessful channel preemption on CG#2, so the first communication node can select the resources on CG#2, CG#3 Retransmit the packet.
  • the second communication node configures one cell for each pre-configured resource through RRC signaling or DCI, and the cell can have 1 bit, 1 It can mean that it is allowed to be occupied, and 0 can mean that it is not allowed to be occupied. If a certain pre-configured resource is configured as not allowed to be occupied, the pre-configured resource cannot be used to retransmit data packets that have not been successfully transmitted on other pre-configured resources. If a certain pre-configured resource is configured to allow occupation, the pre-configured resource can be used to transmit data packets that have not been successfully transmitted on other pre-configured resources.
  • the first communication node has multiple pre-configured resources, namely CG#1, CG#2, and CG#3.
  • the second communication node is configured with CG#1 not allowed to be occupied, and CG#2 is configured to be allowed to be occupied. Occupied, CG#3 is configured to allow to be occupied.
  • the first communication node transmits a data packet on CG#1, the data packet needs to be retransmitted due to the unsuccessful channel preemption on CG#1, so the first communication node can choose between CG#1, CG#2 and CG# Retransmit the data packet on the resource of 3.
  • the first communication node If the first communication node transmits a data packet on CG#2, and the data packet needs to be retransmitted due to unsuccessful channel preemption on CG#2, the first communication node can choose to use the resources of CG#2 and CG#3 Retransmit the packet.
  • Fig. 7 is a flowchart of a method for determining a resource provided by an embodiment of the application. As shown in Fig. 7, the method includes:
  • S701 The first communication node monitors the signaling sent by the second communication node under the first condition.
  • the first communication node may be at least two communication nodes, the first communication node may be a terminal, and the second communication node may be a base station, that is, the first communication node and the second communication node are two different types of communication. node. Then, in this step, multiple terminals can monitor the signaling sent by the base station under the first condition.
  • the pre-configured resources of the multiple first communication nodes in this step may be in the same frequency domain and the same or different time domains.
  • the first communication node 1 and the first communication node 2 are in subband 1.
  • the first communication node deactivates the designated resource according to the signaling, and/or activates the designated resource.
  • the multiple first communication nodes listen to the instruction of the second communication node under the first condition, they can deactivate the designated resource according to the signaling, and/or activate the designated resource.
  • the configured grant or SPS of a certain subband can be deactivated through a deactivation signaling, or the configured grant or SPS of a certain subband can be activated through an activation signaling.
  • multiple first communication nodes can be selected to other frequency domains (for example, frequency domains with less interference) through a single signaling, which reduces signaling overhead and signaling delay. Ensure the reliability and delay requirements of data services transmitted on multiple first communication nodes.
  • the signaling sent by the second communication node may be a public physical downlink control channel (Physical Downlink Control Channel, PDCCH), and the public PDCCH may carry different information, as follows:
  • PDCCH Physical Downlink Control Channel
  • the public PDCCH carries configuration information for activation and/or configuration information for deactivation.
  • Multiple first communication nodes monitor a common PDCCH, and the common PDCCH can notify multiple first communication nodes to deactivate resources in a certain frequency domain and activate resources in other frequency domains.
  • the resource in the frequency domain may be the resource of the entire frequency domain, or may be a pre-configured resource.
  • the public PDCCH may carry a pre-configuration index indicating activation and/or a pre-configuration index indicating deactivation.
  • the common PDCCH instructs multiple first communication nodes to deactivate pre-configured resources in a certain frequency domain and activate other frequencies. Pre-configured resources on the domain. After the multiple first communication nodes successfully monitor the public PDCCH, they can activate corresponding pre-configured resources according to the instruction.
  • the GC-PDCCH may carry the activated configured grant or SPS index, and the configured scheduling information for activated configured grant or SPS (Such as frequency domain position, time position, Modulation and Coding Scheme (MCS), etc.), and/or configured deactivation information, deactivated configured grant or SPS index.
  • the configured scheduling information for activated configured grant or SPS Such as frequency domain position, time position, Modulation and Coding Scheme (MCS), etc.
  • MCS Modulation and Coding Scheme
  • the public PDCCH may carry frequency domain information indicating activation, and/or frequency domain information indicating deactivation.
  • the public PDCCH instructs multiple first communication nodes to deactivate the entire resource in a certain frequency domain, and activate other frequencies. The entire resource on the domain.
  • the GC-PDCCH may carry activation information indicating activation, an activated frequency domain index (such as a Bandwidth Part (BWP) index), and/or configuration Deactivation information, frequency domain index of deactivation (such as BWP index).
  • BWP Bandwidth Part
  • the public PDCCH carries user identification, activated pre-configured index and/or deactivated pre-configured index.
  • Multiple first communication nodes monitor the common PDCCH.
  • the common PDCCH can issue corresponding instructions to each first communication node to notify it to deactivate a certain frequency.
  • Resources on the domain activate resources on other frequency domains.
  • the resource in the frequency domain may be the resource of the entire frequency domain, or may be a pre-configured resource.
  • the common PDCCH may notify different first communication nodes to deactivate pre-configured resources on different frequency domains, and/or activate pre-configured resources on different frequency domains.
  • the common PDCCH indicates the activated pre-configured index of each first communication node, and/or the deactivated pre-configured index. After each first communication node successfully monitors the public PDCCH, it can be deactivated according to the instruction and/or activated corresponding pre-configured resources.
  • the GC-PDCCH carries the first communication node identifier, the activated configured grant or SPS index, and the configured activated configured grant or SPS scheduling information (such as frequency domain location) , Time location, MCS, etc.), and/or, deactivation information and the first communication node identifier, and the configured grant or SPS index of deactivation.
  • the first communication node monitors the GC-PDCCH and successfully decodes it, it can activate or deactivate the corresponding configured grant or SPS according to the instruction.
  • the common PDCCH notifies different first communication nodes to deactivate the entire resources on different frequency domains, and activate the entire resources on different other frequency domains.
  • the public PDCCH may indicate frequency domain information of activation of each first communication node, and/or frequency domain information of deactivation of each first communication node. After each first communication node successfully monitors the public PDCCH, it can activate the corresponding frequency domain resource according to the instruction.
  • the GC-PDCCH carries the first communication node identifier, activation information corresponding to each first communication node identifier, and the activated frequency domain index (such as the BWP index), And/or, the first communication node identifier, the deactivation information corresponding to each communication node identifier, and the frequency domain index of deactivation (such as the BWP index).
  • the first communication node monitors the GC-PDCCH and successfully decodes it, it can activate and deactivate the corresponding frequency domain (such as BWP) and the configured grant or SPS on the frequency domain according to the instruction.
  • the public PDCCH monitored by multiple first communication nodes can be determined by the configured scheduling-radio network temporary identity (CS-RNTI), system information RNTI (RNTI), SI-RNTI), paging RNTI (Paging RNTI, P-RNTI), interrupt RNTI (Interruption RNTI, INT-RNTI), slot format indication RNTI (Slot Format Indication RNTI, SFI-RNTI), transmit power control-uplink physics Shared channel-RNTI (Transmit Power Control-Physical Uplink Shared Channel-RNTI, TPC-PUSCH-RNTI), TPC-Physical Uplink Control Channel-RNTI (TPC-Physical Uplink Control Channel-RNTI, TPC-PUCCH-RNTI), Or TPC-Sounding Reference Symbols-RNTI (TPC-Sounding Reference Symbols-RNTI, TPC-SRS-RNTI), other RNTI scrambled or new RNTI (such as NR-U-RNTI, etc.) scram
  • step S701 of this embodiment multiple first communication nodes need to monitor the signaling sent by the second communication node under the first condition.
  • the first condition may include any one of the following: the first communication node transmits the first service, or the first communication node transmits data on the first spectrum, or the first communication node receives the indication message sent by the second communication node The indication message is used to instruct the first communication node to monitor the signaling sent by the second communication node.
  • the first service may be a service with high latency requirements, such as URLLC.
  • the first communication node may consider that the public PDCCH has the function of instructing activation and/or deactivation of designated frequency domain resources, and then monitors the public PDCCH.
  • the first frequency spectrum may be a characteristic frequency spectrum such as an unlicensed frequency spectrum.
  • the first communication node confirms that the public PDCCH has the function of instructing activation and/or deactivation of designated frequency domain resources, Then monitor the public PDCCH.
  • the first communication node when the second communication node indicates to the first communication node that the public PDCCH has the function of instructing activation and/or deactivation of designated frequency domain resources through system information or an RRC message, the first communication node confirms that the public PDCCH has the above function, and performs monitor.
  • system information or an RRC message (such as an RRC reconfiguration message) carries an information element, which indicates that a certain public PDCCH is enabled to activate or deactivate a pre-configured function.
  • Fig. 9 is a flowchart of a method for determining a resource provided by an embodiment of the application. As shown in Fig. 9, the method includes:
  • the first communication node obtains indication information of the configuration of the second communication node.
  • the first communication node may be at least two (or more) communication nodes, the first communication node may be a terminal, and the second communication node may be a base station, that is, the first communication node communicates with the second communication node.
  • Nodes are two different types of communication nodes.
  • the indication information in this embodiment includes: competition priority, or whether to lower the competition level, or whether to delay the competition, or whether to cancel the transmission or silence, or whether to generate a random number.
  • S902 The first communication node competes for pre-configured resources according to the instruction information.
  • the pre-configured resource in this step may be a frequency domain resource configured by the second communication node for multiple first communication nodes.
  • the pre-configured resources of multiple first communication nodes may be in the same frequency domain and at the same time, that is, in a certain frequency domain, there may be resources of multiple first communication nodes.
  • the first communication node 1 and the first communication node 2 are overlapped on the subband 2 at time n.
  • the multiple first communication nodes may compete for the pre-configured resource according to the obtained instruction information.
  • a plurality of first communication nodes may compete for a channel according to the competition priority.
  • the second communication node can pre-configure a contention priority for each first communication node, for example, if one of the first communication nodes requires high delay and reliability
  • the second communication node can configure the first communication node with a high competition priority; if one of the first communication nodes does not have a service with high delay requirements and high reliability, the second communication node The node configures the first communication node with a low competition priority.
  • the competition will be delayed when competing for the channel.
  • the delay time can be generated immediately or specified by the second communication node; or, the competition time is limited when competing for the channel, that is, low
  • the first communication node of the competition priority can only compete for the channel within a certain competition time. If it is not successful, it will give up the competition.
  • the time of the competition can be specified by the second communication node.
  • the method for the second communication node to configure or indicate the contention priority can be RRC signaling, DCI indication or MAC CE.
  • an RRC message (such as an RRC reconfiguration message) carries an information element that indicates a certain pre-configured The contention priority is high priority or low priority; or the MAC CE or DCI indication carries a bit that indicates a certain pre-configured contention priority, such as 1 for low priority and 0 for high priority.
  • the indication information is whether to reduce the contention level
  • multiple first communication nodes can compete for the channel by whether to reduce the contention level.
  • the first communication node may adopt a competition mechanism with a lower competition level or a longer competition time.
  • the competition mechanism may be CAT2 25us, CAT2 16us, CAT4, CAT1, and the ranking result according to the competition duration from long to short is CAT4>CAT2 25us>CAT2 16us>CAT1.
  • the second communication node configures the indication information in the form of RRC signaling, DCI indication or MAC CE.
  • an RRC message (such as an RRC reconfiguration message) carries a cell that enables a certain pre-configuration to reduce the contention level ,
  • the competition mechanism with longer competition duration is adopted; or, the MAC CE or DCI indication carries a bit indicating that a certain pre-configuration reduces the competition level, 1 is to reduce the competition level, and the competition mechanism with longer competition duration is adopted.
  • the first communication node may lower the competition level for a certain pre-configured resource, and use a competition mechanism with a longer competition duration to obtain the channel access right.
  • both the first communication node 1 and the second communication node 2 can use the CAT2 25us competition mechanism to compete for the channel.
  • the first communication node 1 has services with high delay requirements and high reliability (such as URLLC), and the first communication node 2 does not have services with high delay requirements and high reliability, so the first communication node 1 uses CAT2 25us
  • the first communication node 2 uses a competition mechanism that is 25us longer than CAT2, such as CAT4.
  • the indication information is whether to delay contention
  • multiple first communication nodes can compete for the channel in a manner of whether to delay contention.
  • the second communication node may indicate one of the first communication nodes to delay competition in the form of indication information.
  • the indication mode may be RRC message configuration or DCI indication or MAC CE.
  • an RRC message (such as an RRC reconfiguration message) carries a cell that enables a certain pre-configuration for delayed contention
  • the MAC CE or DCI indication carries a bit that indicates whether a certain pre-configuration is delayed for contention. 1 indicates that the competition needs to be delayed.
  • the indication information may carry information about delaying contention, for example, delay time. After obtaining the indication information, the first communication node delays for a certain time according to the indication information before competing for the channel. The delay time can be generated at random or specified by the second communication node.
  • the first communication node Node 2 competes after a period of time extension after time n, or competes after a period of extension at a time that originally needs to compete, where the extension period of time is determined based on the delay time.
  • the indication information is whether to cancel transmission or silence
  • multiple first communication nodes can compete for the channel through the indication information.
  • the second communication node may instruct one of the first communication nodes to cancel transmission or silence in a certain frequency domain or time in the form of indication information
  • the indication method may be RRC Message configuration or DCI indication or MAC CE.
  • the indication information may carry the start time of canceling the sending information, and the duration of canceling the sending (eg, time slot, subframe, symbol).
  • an RRC message (such as an RRC reconfiguration message) carries a cell that enables a certain pre-configured data to be cancelled or silent, or it can also carry the time to cancel the sending; MAC CE or DCI
  • the indication carries a bit that indicates whether the data on a certain pre-configuration is to be cancelled or silenced. 1 means that the sending is cancelled or silenced. Further, it can also carry the start time of cancellation of sending and the duration of cancellation of sending.
  • the first communication node After the first communication node obtains the instruction information, it can immediately cancel the transmission according to the instruction, or cancel the transmission at a certain time after a certain time (determined by the start time of the cancellation of the transmission), or cancel a certain time after a certain time (by the The starting time of canceling the sending and the duration of canceling the sending are determined by the sending.
  • the method is also suitable for notifying the competition priority of multiple users through a piece of information or instruction (such as RRC signaling, DCI indication or MAC CE).
  • a piece of information or instruction such as RRC signaling, DCI indication or MAC CE.
  • a common PDCCH GC-PDCCH
  • the common PDCCH can carry a configured grant index, and whether to use the corresponding cancel or mute.
  • the indication information is whether to generate a random number
  • multiple first communication nodes can compete for the channel according to the random number. For example, when the first communication node has pre-configured resources in a certain frequency domain at a certain time, and the instruction information indicates that the first communication node can generate a random number, the first communication node determines whether to compete for the random number by generating a random number.
  • the channel where the pre-configured resource is located For example, suppose that the first communication node generates a random number of 0 and 1. When the random number is 1, it means that it competes for the channel where the pre-configured resource is located; otherwise, it does not compete.
  • the indication mode of the indication information may be RRC signaling, DCI indication or MAC CE.
  • an RRC message (such as an RRC reconfiguration message) carries a cell that enables a pre-configured first communication node to use a random number to determine whether to compete, and further, use a random number to determine whether to compete.
  • the size of the random number can also be carried;
  • the MAC CE or DCI indication carries a bit indicating whether the first communication node on a certain pre-configuration uses a random number to determine whether to compete. For example, 1 means that a random number is used to determine whether or not to compete. Competition, further, in the case of using a random number to determine whether to compete, several bits can also be carried to indicate the size of the random number.
  • the above-mentioned indication information may be notified to multiple first communication nodes through a piece of information or instruction (such as RRC signaling, DCI indication, or MAC CE).
  • a common PDCCH (GC-PDCCH) indicates the pre-configured contention priority of multiple first communication nodes.
  • the public PDCCH may carry a configured grant index and the corresponding contention priority, or whether to reduce the contention level, or , Whether to delay the competition, or whether to cancel the transmission or silence.
  • FIG. 11 is a flowchart of a method for determining a resource provided by an embodiment of the application. As shown in FIG. 11, the method includes:
  • the second communication node configures multiple pre-configured resources.
  • the pre-configured resource in this step may be the time-frequency domain resource configured by the second communication node for the first communication node.
  • the second communication node may configure multiple configured grants for the first communication node, semi-persistent scheduling ( Semi-Persistent Scheduling, SPS).
  • SPS Semi-Persistent Scheduling
  • the second communication node and the first communication node are two different types of communication nodes.
  • the first communication node is a terminal
  • the second communication node is a base station.
  • the configuration information configured by the second communication node may include initial transmission configuration information and/or retransmission configuration information, and the configuration information is used to instruct the first communication node to select among the multiple pre-configured resources configured by the second communication node according to the configuration information. Target resources.
  • the second communication node sends the configuration information to the first communication node.
  • the second communication node may send configuration information to the first communication node through an RRC message, MAC CE or DCI.
  • the configured initial transmission configuration information includes any one of the following: indicating whether to enable the first communication node to select the target resource; or, enable the first communication node to select the target resource, and select the frequency domain resource with the least interference; or, based on The contention mechanism selects the target resource; or, instructs the first communication node to select the target resource according to parameter information, where the parameter information includes any one of the first communication node ID, cell ID, random number, and frequency band information.
  • the second communication node carries an information element in an RRC message (such as an RRC reconfiguration message), which indicates whether to enable the function of the first communication node to select resources; or the MAC CE or DCI indication carries a bit, and the information element
  • RRC message such as an RRC reconfiguration message
  • the MAC CE or DCI indication carries a bit, and the information element
  • the meta indicates whether to enable the resource selection function of the first communication node, for example, 1 is enabled, and 0 is disabled.
  • the configured retransmission configuration information includes any one of the following: enable the first communication node to select the target resource, and select the target resource with the least interference based on the retransmitted data packet TBS; or, select the target resource for retransmission based on the timer and the retransmitted data packet TBS. Or, select a target resource for retransmission according to a pre-configured resource attribute, where the second communication node is a different pre-configured resource attribute for preemption priority or whether to allow occupation.
  • the second communication node may configure the duration of the aforementioned timer for the pre-configured resource.
  • the second communication node may configure a cell for each pre-configured resource through RRC signaling or DCI.
  • the cell may have several bits, and the bit value identifies the level of preemption priority, for example, 11 represents The preemption priority is 3, 10 means the preemption priority is 2, etc., among which, when the transmission of the data packet transmitted on the pre-configured resource with the high preemption priority fails, the resource with the same preemption priority or the low pre-configured resource priority can be occupied for reconfiguration. pass.
  • the second communication node configures a cell for each pre-configured resource through RRC signaling or DCI, and the cell may have 1 bit. For example, 1 indicates that it is allowed to be occupied, and 0 may indicate that it is not allowed to be occupied.
  • a certain pre-configured resource is configured as not allowed to be occupied, the pre-configured resource cannot be used to retransmit data packets that have not been successfully transmitted on other pre-configured resources. If a certain pre-configured resource is configured to allow occupation, the pre-configured resource can be used to transmit data packets that have not been successfully transmitted on other pre-configured resources.
  • FIG. 12 is a flowchart of a method for determining a resource according to an embodiment of the application. As shown in FIG. 12, the method includes:
  • the second communication node configures multiple pre-configured resources.
  • the multiple first communication nodes may be configured in the same frequency domain and the same or different time domains.
  • the second communication node sends signaling to the first communication node.
  • the above-mentioned signaling is used to instruct the first communication node configured on the pre-configured resource to deactivate the designated resource, and/or to activate the designated resource.
  • the above-mentioned signaling may be a public PDCCH, and the public PDCCH carries configuration information for activation, and/or configuration information for deactivation;
  • the public PDCCH carries the identification of the first communication node, the configuration information for activation, and/or the configuration information for deactivation.
  • the second communication node may also instruct the first communication node to monitor the above-mentioned public PDCCH through system information or an RRC message.
  • an information element is carried in system information or an RRC message (such as an RRC reconfiguration message), and the information element may indicate that a certain public PDCCH has a function of indicating activation and/or deactivation of designated frequency domain resources.
  • FIG. 13 is a flowchart of a method for determining a resource according to an embodiment of the application. As shown in FIG. 13, the method includes:
  • the second communication node configures multiple pre-configured resources.
  • some first communication nodes may be configured in the same frequency domain and at the same time.
  • the first communication node and the second communication node are nodes of different types.
  • the first communication node is a terminal
  • the second communication node is a base station.
  • the instruction information in this step is used to instruct the first communication node to compete for frequency domain resources among the multiple pre-configured resources configured by the second communication node according to the instruction information.
  • the second communication node sends the instruction information to the first communication node.
  • the first communication node in this embodiment may be multiple first communication nodes, that is, the second communication node may send indication information through a piece of information or instruction (such as RRC signaling, DCI indication, or MAC CE) To multiple first communication nodes.
  • a piece of information or instruction such as RRC signaling, DCI indication, or MAC CE
  • GC-PDCCH common PDCCH
  • the common PDCCH may carry a configured grant index.
  • the indication information may include: competition priority, or whether to lower the competition level, or whether to delay the competition, or whether to cancel the transmission or silence, or whether to generate a random number.
  • the second communication node sends the instruction information to the first communication node, so that multiple first communication nodes can compete for frequency domain resources among multiple pre-configured resources according to the instruction information, thereby avoiding multiple first communication nodes from pre-configured resources
  • the problem of resource conflicts appears on the Internet.
  • FIG. 14 is a flowchart of a method for determining a resource according to an embodiment of the application. As shown in FIG. 14, the method includes:
  • the second communication node divides resources.
  • the second communication node may divide resources in a time domain and/or frequency domain. For example, divide the frequency band into multiple parts, or divide the time within a certain time into multiple parts in a time-division manner, or divide the bandwidth within each time for a list of time within a certain time, or, The bandwidth is divided and the time of the bandwidth part is indicated, and the corresponding time is divided for each bandwidth part.
  • the second communication node sends the resource indication and the corresponding level to the neighboring node through an interface message.
  • the second communication node divides the resources according to the corresponding division method, through the interface message, for example, the Xn, X2 interface between the second communication node and the neighboring node, the divided resources are indicated and the resources corresponding to each part of the divided resources are indicated.
  • the rank is sent to neighboring nodes, and the process is shown in Figure 15.
  • the neighboring node is a node of the same type as the second communication node. For example, suppose that the neighboring node and the second communication node are both base stations.
  • the second communication node may also notify or configure the resource indication and the corresponding level to the first communication node in the form of system information or RRC messages.
  • the first communication node may be a node of a different type from the second communication node. , For example, terminal.
  • neighboring nodes can avoid frequency bands with high interference or fierce competition according to received resource indications and corresponding levels, thereby reducing resource competition between nodes.
  • the level corresponding to the divided resource indication may include competition type, competition priority, service information, resource type, avoidance type, and reserved resources.
  • the second communication node divides it into N parts.
  • the level may indicate the priority of the N parts of resources after the division, for example, high, medium, and low, or high and low. If a certain part of the resource has a high competition priority, it means that this part of the resource can carry service data with high competition priority or high latency requirements (such as URLLC); if a certain part of the resource has a medium competition priority, it means that this part can carry Business data with higher competition priority or higher delay requirements; if a certain part of the resource has a low competition priority, it means that this part can carry service data with low competition priority or low delay requirements.
  • CAPC Channel Access Priority Classes
  • the level corresponds to service information
  • service information for example, suppose that two levels of services with different bearer delay requirements are assumed. If the level is a service with high latency requirement, it means that this part of the resource can carry service data with high latency requirement (such as URLLC); if the level is a service with low latency requirement, it means that this part of the resource can carry low latency requirement.
  • service data such as URLLC
  • the level may indicate the resource type of the N parts of the resources after the division, for example, high, medium, and low, or high and low. If the level is a high resource type, it means that this part of the resource can carry high priority, requires high service delay, and is sensitive to competition delay or interference-sensitive business data; if the level is a medium resource type, it means that this part of the resource can carry priority Moderate, the service delay requirement is medium, the competition delay is more sensitive, or the interference is more sensitive to the service data; if the level is a low resource type, it means that this part of the resource can carry a low priority, the service delay requirement is low, and the competition delay is not sensitive , Or interfere with insensitive business data.
  • the level may indicate whether each part of the divided N resources is an avoidance or reserved resource, for example, yes or no. If it is to avoid or reserve resources, it means that this part of the resources can carry high priority, high service delay requirements, competition delay-sensitive, or interference-sensitive service data; otherwise, it cannot carry high priority and service delay requirements High, competition delay sensitive, or interference sensitive business data.
  • the second communication node when the second communication node sends data, it can send the data to different parts of resources according to the priority of the data, the type of LBT, or the quality of service (Quality of Service, Qos) parameter.
  • the resource indication divided by the second communication node in step S1402 may include the following content:
  • the first type is that the resource indication includes the start position, bandwidth, and/or end position of each part of the resource, and the level corresponding to each part of the resource.
  • each part can be expressed at the granularity of X Hz bandwidth, and each part can be a discontinuous frequency band or a continuous frequency band.
  • the second communication node has a bandwidth of 100 Hz, and the second communication node divides the bandwidth into 3 parts, which correspond to three levels of a, b, and c, respectively.
  • the divided part 1 may have a starting position of 0, a bandwidth of 100RB, and an end position of 99RB, corresponding to the frequency domain resources of level a; and the part 2 may have a starting position of 100RB and bandwidth
  • the end position is 200 RB and the end position is 299 RB, corresponding to the frequency domain resource of level b; part 3 can be that the start position is 300 RB, the bandwidth is 200 RB, and the end position is 499 RB, which corresponds to the frequency domain resource of level c.
  • the divided part 1 can be the starting position of 0, the bandwidth of 20MHz, the ending position of 19MHz, the starting position of 80MHz, the bandwidth of 20MHz, and the ending position of 99MHz, corresponding to level 1.
  • Frequency domain resources; Part 2 can be that the start position is 20MHz, the bandwidth is 60MHz, and the end position is 79MHz, corresponding to the frequency domain resources of level 0. Or, divide with 100RB as the granularity, then the divided part 1 can have a start position of 0, a bandwidth of 100RB (Subcarrier Spacing (SCS) is 15KHz), an end position of 99RB, and a start position of 300RB. , The bandwidth is 100RB (SCS is 15KHz), the end position is 499RB, corresponding to level 1 frequency domain resources; part 2 can be the start position of 100RB, the bandwidth is 300RB, and the end position is 299RB, corresponding to level 0 frequency domain resources.
  • SCS Subcarrier Spacing
  • the second type is that the resource indication is represented by a character string, and each character in the character string corresponds to the level of a resource part.
  • Each character in the string represents a level and corresponds to a bandwidth of X MHz.
  • the second communication node has a bandwidth of 100MHz, it is divided into 3 parts, which correspond to three levels of a, b, and c respectively.
  • the divided character string is abbca
  • the divided resources are 0-19MHz
  • 80-99MHz corresponds to class a
  • 20-59MHz corresponds to class b
  • 60-79MHz corresponds to class c.
  • the foregoing resources may also be divided at a granularity of 100 RB.
  • resources are divided at a granularity of 20 MHz, the divided bit string is 10001, the divided resources are 0-19 MHz, 80-99 MHz corresponds to level 1, and 20-79 MHz corresponds to level 0.
  • the above resources can also be divided with a granularity of 100 RB.
  • the number of levels and the granularity of the division involved in the above division process can be configured, and can also be indicated through an interface message.
  • the third type, the resource indication is the part of the resource and the corresponding level at each time within the first time.
  • the first time may be a certain time, that is, the second communication node divides the time within a certain time into N parts, and each part corresponds to a level.
  • the above-mentioned time within a certain period of time is divided into N parts, and each part may include the start time, duration, end position, or period of each time part, and the level corresponding to each part, and each part may A number of sub-frames, time slots, ms, and symbols are used as granularity for mutual powdering, and each part can be a discontinuous time or a continuous time.
  • the above-mentioned certain time may be a fixed time length or a configured time length, and it periodically appears in time according to a certain time.
  • the second communication node divides the 10ms time into 3 parts, and the 3 parts correspond to the three levels of a, b, and c.
  • the divided time part 1 can be the starting time of 0, the duration of 2ms, and the period of 4ms, corresponding to resources of level a, for example, the time is 0 ⁇ 1ms, 4 ⁇ 5ms , 8-9ms;
  • time part 2 can be the starting time of 2, the duration is 2ms, the period is 10ms, corresponding to the resource of level b, for example, the time is 2 to 3ms;
  • the part 3 can be the starting time of 6, and the duration It is 2ms, the period is 10ms, and the resource of the corresponding level c, for example, the time is 6-7ms.
  • the divided time part 1 can be the starting time of 0, the duration of 2ms, and the period of 4ms, corresponding to resources of level 1, for example, the time is 0 ⁇ 1ms, 4 ⁇ 5ms, 8-9ms;
  • the time part 2 can be the starting time of 2, the duration of 2ms, the period of 4ms, and the corresponding level 0 resources, for example, the time is 2 to 3ms, 6 to 7ms.
  • a character string may be used to represent the division instruction, and each character represents a level and corresponds to a certain duration.
  • each character represents a level and corresponds to a certain duration.
  • Each part lasts 2ms. Assuming the character string is abacc, it can indicate that 0 ⁇ 1ms, 4 ⁇ 5ms correspond to level a, 2 ⁇ 3ms correspond to level b, and 6 ⁇ 9ms correspond to level c.
  • the second communication node divides the 10ms time into 2 parts, corresponding to two levels of 1 and 0 respectively.
  • Each part lasts 2ms. Assuming the character string is 10100, it can indicate that 0 ⁇ 1ms, 4 ⁇ 5ms correspond to level 1, 2 ⁇ 3ms, and 6 ⁇ 9ms correspond to level 0.
  • the above-mentioned certain time may occur periodically, for example, if the certain time is 10 ms, then the information divided by time will appear periodically within each 10 ms, and an interface message is used to indicate.
  • the number and granularity of the above levels can be configured, and can also be indicated through interface messages.
  • the fourth resource indication is to divide the bandwidth at each moment in the first time.
  • Each part after the division includes the starting position, bandwidth, and ending position of the resource, and the level corresponding to each part of the resource.
  • the bandwidth division can be different at each moment.
  • the second communication node may indicate a list of moments within a certain period of time, and then divide the bandwidth within each moment, and the divided resources correspond to corresponding levels.
  • the bandwidth division method at each time can adopt the first or second method described above. For example, assuming that a certain period of time is 10 ms and the second communication node is divided at a granularity of 2 ms, a list of size 5 is required, and bandwidth is divided for each item in the list.
  • the fifth type, resource indication is to divide the time corresponding to each part of the frequency band resource, and each part after division includes the start time, duration, end time or period, and the level corresponding to each part of the resource.
  • the second communication node divides the bandwidth into multiple parts, and divides the time corresponding to each bandwidth part, and each divided resource corresponds to a corresponding level.
  • the time corresponding to each bandwidth part can be divided using the above-mentioned third division method.
  • the divided part 1 may have a starting position of 0, a bandwidth of 20MHz, and an ending position of 19MHz, corresponding to resources of level a, and occupying 0 ⁇ 1ms, 4 ⁇ 5ms, 8 ⁇ 9ms within 10ms.
  • FIG. 16 is a flowchart of a method for determining a resource according to an embodiment of the application. As shown in FIG. 16, the method includes:
  • the node receives the resource indication and the corresponding level sent by the second communication node through an interface message.
  • the node in this step is the same type of node as the second communication node.
  • the node and the second communication node are both base stations.
  • the resource indication and the corresponding level received by the node are the indication and level after the resource is divided by the second communication node in the frequency domain and/or time domain.
  • the node divides its own resources according to the resource indication and the corresponding level.
  • the resource indication and the corresponding level received by the node are the resource indication and the corresponding level after the frequency domain division, so that the node can be based on the received resource indication and corresponding level.
  • the resource indication sent by the second communication node divides its own frequency band to schedule the highest service to avoid the highest priority or the time delay requirement to the same frequency band as the second communication node. For example, for the high-priority resource part of the second communication node, the node may not schedule services with higher delay requirements at the corresponding frequency band location. For the low-priority resource part of the second communication node, the node can schedule services with higher delay requirements in the corresponding frequency band location.
  • the node may be planned as a frequency band with low priority or corresponding to a low level.
  • the node may be planned as the part of the frequency band with the highest priority or corresponding to the highest level.
  • the node and the second communication node can avoid frequency bands with high interference or intense competition, thereby reducing mutual competition between nodes.
  • the node may reply to a response message and feed back its own resource division information to the second communication node to achieve both Negotiations between two nodes.
  • the node may not feedback information.
  • the resource indication received by the node may include the start position, bandwidth, and end position of each part of the resource, and the level corresponding to each part of the resource;
  • the resource indication is represented by a character string, and each character in the character string corresponds to a level of a resource part;
  • the resource indication is the part of the resource and the corresponding level at each time within the first time.
  • the level corresponding to the resource indication may include competition type, competition priority, service information, resource type, avoidance type, and reserved resources.
  • FIG. 18 is a resource determination device provided by an embodiment of the application. As shown in FIG. 18, the device includes: an acquisition module 1801 and a selection module 1802;
  • the obtaining module is used to obtain configuration information configured by the second communication node
  • the selection module is configured to select a target resource from a plurality of pre-configured resources according to the configuration information, and the pre-configured resource is a time-frequency domain resource configured by the second communication node.
  • the foregoing configuration information may include initial transmission configuration information, and/or retransmission configuration information.
  • the initial configuration information includes any of the following:
  • the device for enabling resource determination selects the target resource and selects the frequency domain resource with the least interference
  • the resource determining device is instructed to select the target resource according to parameter information, and the parameter information includes any one of the resource determining device identifier, cell identifier, random number, and frequency band information.
  • the retransmission configuration information includes: enabling the resource determining device to select the target resource, and selecting the target resource with the least interference based on the retransmitted data packet TBS;
  • the target resource for retransmission is selected according to the attribute of the pre-configured resource, and the attribute of the pre-configured resource is the preemption priority or whether it is allowed to be occupied.
  • FIG. 19 is a resource determination device provided by an embodiment of the application. As shown in FIG. 19, the device includes: a configuration module 1901 and a communication module 1902;
  • the configuration module is used to configure multiple pre-configured resources and configuration information, where the pre-configured resources are configured time-frequency domain resources;
  • a communication module for sending configuration information to the first communication node
  • the configuration information is used to instruct the first communication node to select the target resource from the multiple pre-configured resources according to the configuration information.
  • the configuration information includes initial transmission configuration information, and/or retransmission configuration information.
  • the initial configuration information includes any of the following:
  • the first communication node is instructed to select the target resource according to parameter information, where the parameter information includes any one of the first communication node identifier, cell identifier, random number, and frequency band information.
  • the retransmission configuration information includes any of the following:
  • the target resource for retransmission is selected according to the attribute of the pre-configured resource, and the attribute of the pre-configured resource is the preemption priority or whether it is allowed to be occupied.
  • FIG. 20 is a resource determination device provided by an embodiment of the application. As shown in FIG. 20, the device includes: a configuration module 2001 and a communication module 2002;
  • Configuration module used to configure multiple pre-configured resources
  • the communication module is used to send signaling to the first communication node
  • the above-mentioned first communication node is a plurality of nodes configured on a pre-configured resource, and the signaling is used to instruct the plurality of first communication nodes to deactivate the designated resource, and/or activate the designated resource.
  • the signaling may be a public PDCCH, and the public PDCCH carries configuration information for activation, and/or configuration information for deactivation;
  • the public PDCCH carries the identification of the first communication node, the configuration information for activation, and/or the configuration information for deactivation.
  • FIG. 21 is a resource determination device provided by an embodiment of the application. As shown in FIG. 21, the device includes: a configuration module 2101, a communication module 2102;
  • the configuration module is used to configure multiple pre-configured resources and indication information
  • the communication module is used to send the instruction information to the first communication node
  • the number of the first communication nodes may be multiple, that is, the indication information may be used to instruct the multiple first communication nodes to compete for frequency domain resources in multiple pre-configured resources according to the indication information.
  • the indication information may include: competition priority, or whether to reduce the competition level, or whether to delay the competition, or whether to cancel the transmission or silence, or whether to generate a random number.
  • FIG. 22 is a resource determination device provided by an embodiment of this application. As shown in FIG. 22, the device includes: a dividing module 2201 and a communication module 2202;
  • Dividing module used to divide resources
  • the communication module is used to send resource indications and corresponding levels to neighboring nodes through interface messages
  • the neighboring nodes are nodes of the same type as the resource determining device.
  • the resource indication may include the start position, bandwidth, and/or end position of each part of the resource, and the level corresponding to each part of the resource;
  • the resource indication is represented by a character string, and each character in the character string corresponds to a level of a resource part;
  • the resource indication is the part of the resource and the corresponding level at each time within the first time.
  • the level corresponding to the resource indication includes competition type, competition priority, service information, resource type, avoidance type, and reserved resources.
  • FIG. 23 is a resource determination device provided by an embodiment of the application. As shown in FIG. 23, the device includes: a communication module 2301 and a division module 2302;
  • the communication module is configured to receive the resource indication and the corresponding level sent by the second communication node through an interface message
  • the second communication node is a node of the same type as the foregoing resource determining apparatus
  • the dividing module is used to divide its own resources according to resource indications and corresponding levels.
  • the resource indication includes the start position, bandwidth, and/or end position of each part of the resource, and the level corresponding to each part of the resource;
  • the resource indication is represented by a character string, and each character in the character string corresponds to a level of a resource part;
  • the resource indication is the part of the resource and the corresponding level at each time within the first time.
  • the level corresponding to the resource indication includes competition type, competition priority, service information, resource type, avoidance type, and reserved resources.
  • FIG. 24 is a schematic structural diagram of a node provided by an embodiment.
  • the node includes a processor 2401 and a memory 2402; the number of processors 2401 in the node may be one or more.
  • one The processor 2401 is taken as an example; the processor 2401 and the memory 2402 in the node may be connected through a bus or other methods. In FIG. 24, the connection through a bus is taken as an example.
  • the memory 2402 can be used to store software programs, computer-executable programs, and modules, such as the program instructions/modules corresponding to the resource determination method in the embodiments of FIG. 4, FIG. 7, and FIG. ,
  • the processor 2401 implements the foregoing resource determination method by running software programs, instructions, and modules stored in the memory 2402.
  • the memory 2402 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of nodes, and the like.
  • the memory 2402 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • FIG. 25 is a schematic structural diagram of a node provided by an embodiment.
  • the node includes a processor 2501 and a memory 2502; the number of processors 2501 in the node may be one or more.
  • the processor 2501 is taken as an example; the processor 2501 and the memory 2502 in the node may be connected through a bus or other methods. In FIG. 25, the connection through a bus is taken as an example.
  • the memory 2502 can be used to store software programs, computer-executable programs, and modules, such as the program instructions/program instructions corresponding to the resource determination method in the embodiments of Figure 11, Figure 12, Figure 13, and Figure 14 of this application. Modules (for example, the configuration module 1901 and the communication module 1902 in FIG. 19).
  • the processor 2501 implements the foregoing resource determination method by running software programs, instructions, and modules stored in the memory 2502.
  • the memory 2502 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of nodes, and the like.
  • the memory 2502 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • Figure 26 is a schematic structural diagram of a node provided by an embodiment.
  • the node includes a processor 2601 and a memory 2602; the number of processors 2601 in the node can be one or more.
  • the processor 2601 is taken as an example; the processor 2601 and the memory 2602 in the node may be connected through a bus or other methods. In FIG. 26, the connection through a bus is taken as an example.
  • the memory 2602 can be used to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the resource determination method in the embodiment of FIG. 16 of this application (for example, the communication in FIG. 23).
  • the processor 2601 implements the foregoing resource determination method by running software programs, instructions, and modules stored in the memory 2602.
  • the memory 2602 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of nodes, and the like.
  • the memory 2602 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are executed by a computer processor, they are used to perform a resource determination method in any embodiment of the present application.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • the embodiments of the present application may be implemented by executing computer program instructions by a data processor of the resource determining apparatus, for example, in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Versatile Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic device (Field Programmable Gate Array, FPGA) core processor architecture processor.
  • DSP Digital Signal Processors
  • ASICs application specific integrated circuits
  • FPGA programmable logic device

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出了一种资源确定方法、装置、节点和存储介质,其中,该方法包括:第一通信节点获取第二通信节点配置的配置信息,第一通信节点根据配置信息在多个预配置资源中选择目标资源,其中,预配置资源为第二通信节点配置的频域资源。这样,当第一通信节点有多个可用的频谱资源时,可以根据配置信息选择对应的目标资源,从而保证第一通信节点上传输数据的可靠性。

Description

资源确定方法、装置、节点和存储介质 技术领域
本申请涉及通信技术领域,具体涉及一种资源确定方法、装置、节点和存储介质。
背景技术
非授权频谱属于共享频谱,终端需要以竞争机制的方式获得信道接入权,以使用频谱,那么当终端较多时,导致终端可能抢占不到信道,使得在非授权频谱上发送数据存在不确定性,或者终端可能延时抢占到信道,导致数据发送延迟。为了保证一些对时延要求较高的业务(例如,超高可靠与低时延通信(Ultra Reliable Low Latency Communications,URLLC)),减少调度的时间,基站可以采用预配置的方法,为终端分配固定的时频域。如图1所示,基站为终端分配一定周期、占用一定带宽的资源,当终端有上行数据到达时,可以直接利用配置的资源发送上行数据。但是,当采用非授权频谱传输时延要求较高的业务时,即使采用了预配置的方法,由于存在竞争机制,还是会存在增加业务时延的问题。
目前的解决方式是提高节点抢占信道的成功概率,如图2所示,基站预配置多个频域的资源,当有数据发送时,终端在多个频域上同时竞争,哪个频域上竞争成功,就在哪个频域上发送,但这样需要占用多个频谱资源,导致浪费频谱资源。
发明内容
本申请实施例提供了一种资源确定方法,包括:
第一通信节点获取第二通信节点配置的配置信息;
第一通信节点根据配置信息在多个预配置资源中选择目标资源;
其中,预配置资源为第二通信节点配置的时频域资源。
本申请实施例提供了一种资源确定方法,包括:
第一通信节点在第一条件下监听第二通信节点发送的信令;
第一通信节点根据信令去激活指定资源,和/或,激活指定资源。
本申请实施例提供了一种资源确定方法,包括:
第一通信节点获取第二通信节点配置的指示信息;
第一通信节点根据指示信息竞争预配置资源。
本申请实施例提供了一种资源确定方法,包括:
第二通信节点配置多个预配置资源,预配置资源为配置的时频域资源;
第二通信节点配置配置信息;
第二通信节点将配置信息发送至第一通信节点;
其中,配置信息用于指示第一通信节点根据配置信息在多个预配置资源中选择目标资源。
本申请实施例提供了一种资源确定方法,包括:
第二通信节点配置多个预配置资源;
第二通信节点发送信令至第一通信节点;
其中,第一通信节点为配置在预配置资源上的节点,信令用于指示第一通信节点去激活指定资源,和/或,激活指定资源。
本申请实施例提供了一种资源确定方法,包括:
第二通信节点配置多个预配置资源;
第二通信节点配置指示信息;
第二通信节点将指示信息发送至第一通信节点;
其中,指示信息用于指示第一通信节点根据指示信息在多个预配置资源中竞争频域资源。
本申请实施例提供了一种资源确定方法,包括:
第二通信节点对资源进行划分;
第二通信节点通过接口消息将资源指示和对应的等级发送至相邻节点;
其中,相邻节点为与第二通信节点相同类型的节点。
本申请实施例提供了一种资源确定方法,包括:
节点通过接口消息接收第二通信节点发送的资源指示和对应的等级;
其中,节点为与所述第二通信节点相同类型的节点;
节点根据所述资源指示和对应的等级对自身的资源进行划分。
本申请实施例提供了一种资源确定装置,包括:
获取模块,用于获取第二通信节点配置的配置信息;
选择模块,用于根据配置信息在多个预配置资源中选择目标资源;
其中,预配置资源为第二通信节点配置的时频域资源。
本申请实施例提供了一种资源确定装置,包括:
配置模块,用于配置多个预配置资源,预配置资源为时频域资源;
配置模块,用于配置配置信息;
通信模块,用于将配置信息发送至第一通信节点;
其中,配置信息用于指示第一通信节点根据配置信息在多个预配置资源中选择目标资源。
本申请实施例提供了一种资源确定装置,包括:
配置模块,用于配置多个预配置资源;
通信模块,用于发送信令至第一通信节点;
其中,第一通信节点为配置在预配置资源上的节点,信令用于指示第一通信节点去激活指定资源,和/或,激活指定资源。
本申请实施例提供了一种资源确定装置,包括:
配置模块,用于配置多个预配置资源;
配置模块,用于配置指示信息;
通信模块,用于将指示信息发送至第一通信节点;
其中,指示信息用于指示第一通信节点根据指示信息在多个预配置资源中竞争频域资源。
本申请实施例提供了一种资源确定装置,包括:
划分模块,用于对资源进行划分;
通信模块,用于通过接口消息将资源指示和对应的等级发送至相邻节点;
其中,相邻节点为与资源确定装置相同类型的节点。
本申请实施例提供了一种资源确定装置,包括:
通信模块,用于通过接口消息接收第二通信节点发送的资源指示和对应的等级;
其中,第二通信节点为与资源确定装置相同类型的节点;
划分模块,用于根据资源指示和对应的等级对自身的资源进行划分。
本申请实施例提供了一种节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时,实现如本申请实施例提供的资源确定方法。
本申请实施例提供了一种节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时,实现如本申请实施例提供的资源确定方法。
本申请实施例提供了一种存储介质,包括:计算机可读存储介质存储有计算机程序,计算机程序被处理器执行,实现如本申请实施例提供的资源确定方法。
本申请实施例提供了一种存储介质,包括:计算机可读存储介质存储有计算机程序,计算机程序被处理器执行,实现如本申请实施例提供的资源确定方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1为相关技术中预配置资源的示意图;
图2为相关技术中预配置多个频域资源的示意图;
图3为网络侧架构示意图;
图4为一实施例提供的一种资源确定方法流程图;
图5为相关技术中节点在多个子带配置资源示意图;
图6为各竞争机制的示意图;
图7为一实施例提供的一种资源确定方法流程图;
图8为多个第一通信节点配置在相同的频域和相同或不同的时域的示意图;
图9为一实施例提供的一种资源确定方法流程图;
图10为多个第一通信节点配置在相同的频域和时域的示意图;
图11为一实施例提供的一种资源确定方法流程图;
图12为一实施例提供的一种资源确定方法流程图;
图13为一实施例提供的一种资源确定方法流程图;
图14为一实施例提供的一种资源确定方法流程图;
图15为一实施例提供的节点之间的交互示意图;
图16为一实施例提供的一种资源确定方法流程图;
图17为一实施例提供的节点之间的交互示意图;
图18为一实施例提供的一种资源确定装置结构示意图;
图19为一实施例提供的一种资源确定装置结构示意图;
图20为一实施例提供的一种资源确定装置结构示意图;
图21为一实施例提供的一种资源确定装置结构示意图;
图22为一实施例提供的一种资源确定装置结构示意图;
图23为一实施例提供的一种资源确定装置结构示意图;
图24为一实施例提供的一种节点结构示意图;
图25为一实施例提供的一种节点结构示意图;
图26为一实施例提供的一种节点结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
另外,在本申请实施例中,“可选地”或者“示例性地”等词用于表示作例子、例证或说明。本申请实施例中被描述为“可选地”或者“示例性地”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“可选地”或者“示例性地”等词旨在以具体方式呈现相关概念。
为了便于理解本申请实施例的方案,示例性地给出了部分与本申请相关概念的说明以供参考。如下所示:
非授权频谱:非授权频谱用于蜂窝网络的组网中,既可以作为授权频谱的辅助频谱进行组网,用于双链接的辅助节点(Secondary Node,SN)的频谱资源或者载波聚合的辅助小区频谱资源,也可以独立组网用于单独(standalone)小区的频谱资源。如图3所示,为利用非授权频谱进行4G/5G组网时的网络侧架构,节点(例如,基站)采用非授权频谱提供无线服务,并通过NG/SI接口连接核心网设备,节点之间通过Xn/X2接口连接。
先听后说(Listen Before Talk,LBT)机制:第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)和欧洲电信标准协会(European Telecommunications Standards Institute,ETSI)标准组织制定了LBT机制。在发送数据之前,发送方需要监听信道是否空闲,如果空闲,发送方使用信道发送数据,否则需要继续监听直至信道空闲。例如,两个节点共享100MHz带宽,若节点需要发送数据,则需要在准备占用的带宽内进行竞争。如果两个节点同时准备在相同的带宽内发送数据,那么这两个节点就需要竞争,竞争成功的节点才可以发送数据。
竞争机制:ETSI和3GPP定义了多种竞争机制,CAT4/Type1是一种终端通 过产生随机数来决定监听信道的时长的竞争机制;CAT 2 25us/Type2A是一种终端在25us时长内监听信道的竞争机制,一般是在基站成功抢占到信道后,共享信道给终端以发送上行数据,并且保证上下行之间的空白为25us;CAT 2 16us/Type2B是一种终端在16us时长内监听信道的竞争机制,一般是在基站成功抢占到信道后,共享信道给终端发送上行数据,并且保证上下行之间的空白为16us;CAT 1/Type2C是一种终端不需要监听信道就立即发送数据的机制,一般是在基站成功抢占到信道后,共享信道给终端发送上行数据,并且保证上下行之间的空白小于等于16us。这些竞争机制需要监听信道的时长不同,按照时长从大到小排序,或者获取信道接入权从难到易排序的顺序是CAT4>CAT 2 25us>CAT 2 16us>CAT1。
本申请实施例可以应用于如下场景,在一段频域内,第二通信节点可以在多个子带(20M LBT带宽)配置、激活多个configured grant,CG#1,CG#2,CG#3。在时刻n,第一通信节点在CG#2所在的子带竞争失败,但是在CG#1、CG#3所在的子带竞争成功,即第一通信节点在时刻n,有CG#1,CG#3多个资源可用,这样存在资源占用浪费的问题。
基于上述概念和上述场景中存在的问题,图4为本申请实施例提供的一种资源确定方法的流程图,如图4所示,该方法可以包括:
S401、第一通信节点获取第二通信节点配置的配置信息。
示例性地,本申请实施例中的配置信息可以包括初传配置信息和/或重传配置信息。第二通信节点与第一通信节点可以为两种不同类型的通信节点。例如,第一通信节点可以为终端,第二通信节点可以为基站。
S402、第一通信节点根据配置信息在多个预配置资源中选择目标资源。
本步骤中,预配置资源为第二通信节点配置的时频域资源,例如,第二通信节点可以为第一通信节点配置多个配置授权configured grant,半持续性调度(Semi-Persistent Scheduling,SPS)。
第一通信节点获取到第二通信节点配置的配置信息后,可以根据该配置信 息在第二通信节点配置的多个预配置的时频资源中选择目标资源。这样,当第一通信节点有多个可用的频谱资源时,可以根据配置信息选择对应的目标时频域资源,从而保证第一通信节点上传输数据的可靠性。
在本申请实施例中,第二通信节点配置的初传配置信息可以包括以下多种信息中的任意一项:
第一种信息,指示是否使能第一通信节点选择目标资源。
示例性地,第二通信节点可以通过无线资源控制(Radio Resource Control,RRC)消息、物理地址控制单元(Media Access Control Control Element,MAC CE)或者下行控制信息(Down Control Information,DCI)指示是否使能第一通信节点选择目标资源。例如,RRC消息(如,RRC重配消息)中可以携带一个信元,该信元指示是否使能第一通信节点选择资源的功能;或者MAC CE或者DCI指示携带一个比特,该比特指示是否使能第一通信节点选择资源的功能,比如,1为使能,0为不使能。
第二种信息,使能第一通信节点选择目标资源,并选择干扰最小的频域资源。
若第二通信节点为第一通信节点配置有多个可用的时频域资源,第一通信节点只能选择其中一个资源发送数据。那么,第二通信节点可以配置第一通信节点在多个资源上进行测量,第一通信节点可以得到每个频域的干扰测量结果(例如,干扰强度、干扰频率或者抢占成功概率等),第一通信节点根据每个频域上测量值选择一个干扰最小(例如,干扰强度值小、干扰频率值小或者抢占成功概率值大等)的资源,从而保障业务传输的时延以及可靠性。
进一步地,本申请实施例提供的具体示例可以为,第一通信节点在每个子带分别进行测量,并得到每个子带的干扰强度(接收信号的强度)和信道占用率(高于一定门限值的接收信号强度的百分比,体现干扰频率)。当某个子带的干扰强度小于对应门限值,和/或,信道占用率低于对应门限值,则第一通信节点确认该子带干扰较小,选择该子带上的资源;或者,当某个子带的干扰强度 小于对应门限值,和/或,信道占用率低于对应门限值,并且干扰强度值最小或信道占用率值最小,则第一通信节点确认该子带干扰较小,选择该子带上的资源。
第三种信息,基于竞争机制选择目标资源。
第二通信节点预配置了多个频域资源,例如,多个configured grantration,SPS配置。在某个时刻,当第一通信节点需要发送数据时,存在第二通信节点配置的多个频域资源,而且各资源对应的竞争类型不同,比如,第二通信节点在多个子带(20M LBT带宽)配置、激活多个configured grant,CG#1,CG#2,CG#3。如图5所示,在时刻n,第一通信节点在CG#1所在的子带进行Cat1的竞争,在CG#2所在的子带进行Cat4的竞争类型,在CG#3所在的子带进行Cat225us的竞争类型,在CG#4所在的子带需要进行Cat2 16us的竞争类型。而由于在各个竞争机制中,第一通信节点获取信道接入权的成功概率是Cat1≥Cat2 16us≥Cat2 25us≥Cat4,则第一通信节点可以选择获取信道接入权概率较高的configured grantration,也就是CG#1的资源。
这样,在第一通信节点同时有多个上行资源配置,而且每个资源对应的获取频域资源所需要执行的竞争机制不同的情况下,第一通信节点根据竞争机制选择资源,可以尽可能的保证第一通信节点获取信道接入权,并获得可用的目标资源,从而保证业务数据时延。
第四种信息,指示第一通信节点根据参数信息选择目标资源,其中,参数信息包括第一通信节点标识、小区标识、随机数、频带信息中的任意一种。
示例性地,假设初传配置信息为使能第一通信节点根据参数信息选择目标资源。那么在第一通信节点配置有多个预配置资源的情况下,第一通信节点根据第一通信节点标识选择频域资源的实现方式可以为,第一通信节点标识(可以为第二通信节点分配的节点标识或其他标识,如s-tmsi)与每个配置资源之间存在关联关系,该关联关系可以是将第一通信节点标识计算得到的值关联至配置资源。例如,三个第一通信节点共享CG#1,CG#2,CG#3,第一通信节点1 的标识为1,第一通信节点2的标识为2,第一通信节点3的标识为3,若第一通信节点标识mod 3=0,则该第一通信节点选择CG#1;若第一通信节点标识mod 3=1,则该第一通信节点选择CG#2;若第一通信节点标识mod 3=2,则该第一通信节点选择CG#3。
第一通信节点根据小区标识选择目标资源的实现方式可以为,小区标识(例如,小区的物理小区标识或者全球统一标识或者其他小区级标识)与每个配置资源之间存在关联关系,该关联关系可以将小区标识计算得到的值关联至配置资源。例如,三个第一通信节点共享CG#1,CG#2,CG#3,第一通信节点1所在的小区1的标识为1,第一通信节点2所在的小区2的标识为2,第一通信节点3所在的小区3的标识为3,若小区标识mod 3=0,则该小区的第一通信节点选择CG#1;若小区标识mod 3=1,则该小区的第一通信节点选择CG#2;若小区标识mod 3=2,则该小区的第一通信节点选择CG#3。
第一通信节点根据随机数选择目标资源的实现方式可以为,第一通信节点产生随机数,不同随机数关联至不同配置资源。例如,三个第一通信节点共享CG#1,CG#2,CG#3,每个第一通信节点产生1~3之间的随机整数,当第一通信节点产生的随机整数为1时,选择CG#1;当第一通信节点产生的随机整数为2时,选择CG#2;当第一通信节点产生的随机整数为3时,选择CG#3。
第一通信节点根据频带信息选择目标资源的实现方式可以为,第二通信节点通过系统信息或者RRC消息,通知第一通信节点频带的频带信息,如每个频带的竞争类型,竞争优先级,业务信息,资源类型、规避类型、预留资源等。第一通信节点根据这些频带信息,优选对应频带竞争机制用时短或者优先级高的频域资源,或者,次选对应频带竞争机制用时长或者优先级低的资源,或者,规避、静默或者放弃对应频带需要规避的资源。例如,第二通信节点在RRC消息(如,RRC重配消息)中携带一个信元,信元指示某个频带的竞争优先级低,某个频带的竞争优先级高,则第一通信节点可以优选竞争优先级高的频带上的资源。
通过上述几种不同的方式可以使第一通信节点选择对应的目标资源,可以减少各第一通信节点之间的竞争,从而保证第一通信节点上数据传输的时延和可靠性。
在一种示例中,第二通信节点配置的重传配置信息可以包括以下多种信息中的任意一项:
第一种信息,使能第一通信节点选择目标资源,并基于重传数据包传输块大小(Transport Block Size,TBS)选择干扰最小的目标资源。
若第一通信节点支持自动重传,则第一通信节点在有多个可用的频域资源的场景下,根据重传数据包TBS选择干扰最小的目标资源,例如,第一通信节点选择大于且最接近重传数据包TBS的频域资源,而后选择干扰最小的频域资源,以提高资源利用率。
第二种信息,根据定时器和重传数据包TBS选择用于重传的目标资源。
示例性地,假设第二通信节点为第一通信节点配置了多个预配置资源,每个预配置资源可以具有不同的时刻(周期,起始时刻等),频域位置,传输块大小等。在某个时刻,若第一通信节点在该时刻的某个预配置资源上传输数据包,或者,根据该时刻的预配置资源的TBS产生数据包,同时第一通信节点启动定时器,若传输数据包失败,则需要重传该数据包。那么在定时器超时之前,第一通信节点可以选择与数据包TBS相同的预配置资源进行数据重传;在定时器超时之后,第一通信节点可以选择TBS大于等于重传数据包且时间最邻近的预配置资源进行数据重传。
例如,如图6所示,第一通信节点有多个预配置的资源,CG#1,CG#2,CG#3,且CG#1 TBS>CG#2 TBS=CG#3 TBS。第一通信节点选择了在时刻a的CG#2,并产生了基于CG#2的TBS的数据包1,同时第一通信节点在时刻a启动一个定时器,但是在时刻a,第一通信节点竞争失败,需要重传数据包1。那么如果在定时器超时之前,第一通信节点没有找到与重传数据包TBS相同的预配置资源,如CG#1,CG#3。但是在定时器超时之后,时刻b,CG#1的资源最 邻近且CG#1 TBS>CG#2 TBS,则第一通信节点选择时刻b的CG1资源重传数据包1。
同样地,假设第一通信节点选择了在时刻d的CG#2,并产生了基于CG#2的TBS的数据包2,同时第一通信节点在时刻d启动一个定时器。但是在时刻d,第一通信节点竞争失败,需要重传数据包2。如果在定时器超时之前,第一通信节点找到与重传数据包TBS相同的预配置资源,如CG#3,则第一通信节点选择时刻d的CG3资源重传数据包。
需要说明的是,上述过程中的定时器的时长可以为第二通信节点为预配置资源配置的。
第三种信息,根据预配置资源属性选择用于重传的目标资源,预配置资源属性为抢占优先级或是否允许占用。
第二通信节点为不同的预配置资源配置不同的属性,例如,配置不同的抢占优先级。第二通信节点可以通过RRC信令或者DCI为每个预配置资源配置一个信元,该信元可以有几个比特,比特值标识预配置资源抢占优先级的高低,例如,11表示抢占优先级3,10表示抢占优先级为2等。那么第一通信节点在抢占优先级高的预配置资源上传输数据包时,如果发生重传,则可以占用抢占优先级相等或者预配置资源优先级低的资源进行重传。而第一通信节点在抢占优先级低的预配置资源上传输数据包时,如果发生重传,则第一通信节点不能占用抢占优先级高的预配置资源进行重传。
示例性地,假设第一通信节点有多个预配置资源,分别为CG#1,CG#2,CG#3,第二通信节点配置CG#1的抢占优先级为11,CG#2的抢占优先级为10,CG#3的抢占优先级为10。当第一通信节点在CG#1上传输数据包时,由于在CG#1上信道抢占不成功,数据包需要重传,那么第一通信节点可以选择在CG#1,CG#2和CG#3上的资源重传数据包。当第一通信节点在CG#2上传输数据包时,由于在CG#2上信道抢占不成功,数据包需要重传,那么第一通信节点可以选择在CG#2,CG#3上的资源重传数据包。
若第二通信节点为预配置资源配置的属性为是否允许占用,例如,第二通信节点通过RRC信令或者DCI为每个预配置资源配置一个信元,该信元可以有1个比特,1可以表示允许被占用,0可以表示不允许被占用。如果某预配置资源被配置为不允许占用,则该预配置资源不能被用来重传在其他预配置资源上未传输成功的数据包。如果某个预配置资源被配置为允许占用,则该预配置资源可以用来传输在其他预配置资源上未传输成功的数据包。
示例性地,假设第一通信节点有多个预配置资源,分别为CG#1,CG#2,CG#3,第二通信节点配置CG#1不允许被占用,CG#2配置为允许被占用,CG#3配置为允许被占用。那么第一通信节点在CG#1上传输数据包时,由于在CG#1上信道抢占不成功,数据包需要重传,则第一通信节点可以选择在CG#1,CG#2和CG#3的资源上重传数据包。若第一通信节点在CG#2上传输数据包,由于在CG#2上信道抢占不成功,数据包需要重传时,则第一通信节点可以选择在CG#2,CG#3的资源上重传数据包。
图7为本申请实施例提供的一种资源确定方法的流程图,如图7所示,该方法包括:
S701、第一通信节点在第一条件下监听第二通信节点发送的信令。
上述步骤中的第一通信节点可以为至少两个通信节点,该第一通信节点可以为终端,第二通信节点可以为基站,即第一通信节点与第二通信节点是两种不同类型的通信节点。那么本步骤可以为多个终端在第一条件下监听基站发送的信令。
示例性地,本步骤中的多个第一通信节点的预配置资源可以在相同的频域,以及相同或不相同的时域,如图8所示,第一通信节点1和第一通信节点2都在子带1。
S702、第一通信节点根据信令去激活指定资源,和/或,激活指定资源。
多个第一通信节点在第一条件下监听到第二通信节点的指令后,可以根据该信令去激活指定资源,和/或,激活指定资源。
例如,假设第一通信节点1和2都在子带1,WiFi节点占用子带1的频域持续一段时间发送数据,那么子带1上的所有通信节点(包括第一通信节点1和2)都可能会持续受到干扰。因此,可以通过一条去激活信令将某个子带的configured grant或者SPS去激活,或通过一条激活信令将某个子带的configured grant或者SPS激活。
这样可以在节约空口资源的情况下,通过一条信令将多个第一通信节点选择到其他频域(比如,干扰较小的频域)上,减少信令开销,降低信令时延,从而保证多个第一通信节点上传输的数据业务的可靠性和时延要求。
示例性地,在本申请实施例中,第二通信节点发送的信令可以为公共物理下行控制信道(Physical Downlink Control Channel,PDCCH),该公共PDCCH中可以携带不同的信息,如下:
第一种,公共PDCCH携带激活的配置信息,和/或,去激活的配置信息。
多个第一通信节点监听公共PDCCH,该公共的PDCCH可以通知多个第一通信节点去激活某个频域上的资源,激活其他频域上的资源。其中,该频域上的资源可以是整个频域的资源,也可以是预配置资源。
例如,公共PDCCH可以携带指示激活的预配置索引,和/或,指示去激活的预配置索引,该公共PDCCH指示多个第一通信节点去激活某个频域上的预配置资源,激活其他频域上的预配置资源。多个第一通信节点成功监听到公共PDCCH后,可以根据指令,激活对应的预配置的资源。示例性地,假设多个第一通信节点成功监听公共PDCCH(Group Common-PDCCH,GC-PDCCH),GC-PDCCH中可以携带激活的configured grant或者SPS索引,配置的激活configured grant或者SPS的调度信息(如频域位置,时间位置,调制与编码策略(Modulation and Coding Scheme,MCS)等),和/或,配置的去激活信息,去激活的configured grant或者SPS索引。多个第一通信节点监听到该GC-PDCCH并解码成功后,可以根据指令,激活、去激活对应的configured grant或者SPS。
或者,公共PDCCH中可以携带指示激活的频域信息,和/或,指示去激活 的频域信息,该公共PDCCH指示多个第一通信节点去激活某个频域上的整个资源,激活其他频域上的整个资源。多个第一通信节点成功监听到公共PDCCH后,可以根据指令,激活对应的频域资源。示例性地,假设多个第一通信节点成功监听GC-PDCCH,GC-PDCCH中可以携带指示激活信息,激活的频域索引(如部分带宽(Bandwidth Part,BWP)索引),和/或,配置的去激活信息,去激活的频域索引(如BWP索引)。多个第一通信节点监听到GC-PDCCH并解码成功后,可以根据指令,激活、去激活对应的频域(如BWP),以及该频域上的configured grant或者SPS。
第二种,公共PDCCH携带用户标识、激活的预配置索引和/或去激活的预配置索引。
多个第一通信节点监听公共PDCCH,在多个第一通信节点的配置不相同的情况下,该公共的PDCCH可以针对每个第一通信节点进行相应的指令,以通知其去激活某个频域上的资源,激活其他频域上的资源。其中,该频域上的资源可以是整个频域的资源,也可以是预配置资源。
例如,公共PDCCH可以通知不同的第一通信节点去激活不同频域上的预配置资源,和/或,激活不同频域上的预配置资源。比如,该公共PDCCH指示各第一通信节点的激活预配置索引,和/或,去激活的预配置索引。各第一通信节点成功监听到公共PDCCH后,可以根据指令去激活,和/或,激活对应的预配置的资源。示例性地,假设多个第一通信节点监听GC-PDCCH,GC-PDCCH中携带第一通信节点标识,激活的configured grant或者SPS索引,配置的激活configured grant或者SPS的调度信息(如频域位置,时间位置,MCS等),和/或,去激活信息和第一通信节点标识以及去激活的configured grant或者SPS索引。第一通信节点监听到GC-PDCCH并解码成功后,可以根据指令,激活、去激活对应的configured grant或者SPS。
或者,公共PDCCH通知不同第一通信节点去激活不同的频域上的整个资源,激活不同的其他频域上的整个资源。比如,公共PDCCH可以指示各第一通信节 点激活的频域信息,和/或,各第一通信节点去激活的频域信息。各第一通信节点成功监听到公共PDCCH后,可以根据指令,激活对应的频域资源。示例性地,假设多个第一通信节点监听GC-PDCCH,GC-PDCCH中携带第一通信节点标识,各第一通信节点标识对应的激活信息,以及激活的频域索引(如BWP索引),和/或,第一通信节点标识和各通信节点标识对应的去激活信息以及去激活的频域索引(如BWP索引)。各第一通信节点监听到GC-PDCCH并解码成功后,可以根据指令,激活、去激活对应的频域(如BWP),以及该频域上的configured grant或者SPS。
需要说明的是,上述由多个第一通信节点监听的公共PDCCH,可以由配置的计划-无线网络临时标识(Configured Scheduling-Radio Network Tempory Identity,CS-RNTI),系统信息RNTI(System Information RNTI,SI-RNTI),寻呼RNTI(Paging RNTI,P-RNTI),中断RNTI(Interruption RNTI,INT-RNTI),插槽格式指示RNTI(Slot Format Indication RNTI,SFI-RNTI),发射功率控制-上行物理共享信道-RNTI(Transmit Power Control-Physical Uplink Shared Channel-RNTI,TPC-PUSCH-RNTI),TPC-物理上行链路控制信道-RNTI(TPC-Physical Uplink Control Channel-RNTI,TPC-PUCCH-RNTI),或者TPC-探测参考符号-RNTI(TPC-Sounding Reference Symbols-RNTI,TPC-SRS-RNTI),其它RNTI加扰或者新的RNTI(例如NR-U-RNTI等)加扰。
进一步地,在本实施例步骤S701中,多个第一通信节点需要在第一条件下监听第二通信节点发送的信令。该第一条件可以包括以下任意一项:第一通信节点上传输第一业务,或者,第一通信节点在第一频谱上传输数据,或者,第一通信节点接收第二通信节点发送的指示消息,所述指示消息用于指示第一通信节点监听第二通信节点发送的信令。
例如,第一业务可以为时延要求高的业务,比如URLLC。当第一通信节点上传输这类时延要求高的业务时,第一通信节点可以认为上述公共PDCCH具有指示激活和/或去激活指定频域资源的功能,进而监听公共PDCCH。
第一频谱可以为非授权频谱等特点频谱,当第一通信节点在这类特点频谱上传输数据时,第一通信节点确认上述公共PDCCH具有指示激活和/或去激活指定频域资源的功能,进而监听公共PDCCH。
或者,第二通信节点通过系统信息或者RRC消息指示第一通信节点上述公共PDCCH具有指示激活和/或去激活指定频域资源的功能时,第一通信节点确认上述公共PDCCH具有上述功能,并进行监听。例如,系统信息或者RRC消息(如RRC重配消息)中携带一个信元,该信元指示某个公共PDCCH使能激活或去激活预配置的功能。
图9为本申请实施例提供的一种资源确定方法的流程图,如图9所示,该方法包括:
S901、第一通信节点获取第二通信节点配置的指示信息。
在本申请实施例中,第一通信节点可以为至少两个(或多个)通信节点,该第一通信节点可以为终端,第二通信节点可以为基站,即第一通信节点与第二通信节点是两种不同类型的通信节点。
示例性地,本实施例中的指示信息包括:竞争优先级,或者,是否降低竞争级别,或者,是否延迟竞争,或者,是否取消发送或者静默,或者,是否产生随机数。
S902、第一通信节点根据指示信息竞争预配置资源。
本步骤中的预配置资源可以为第二通信节点为多个第一通信节点配置的频域资源。例如,多个第一通信节点的预配置资源可以在相同的频域和相同的时刻,即在某个频域,可能会有多个第一通信节点的资源。如图10所示,第一通信节点1和第一通信节点2在时刻n都重叠在子带2。
在多个第一通信节点共享相同的频域资源的情况下,多个第一通信节点可以根据获取到的指示信息竞争预配置资源。
示例性地,假设步骤S902中的指示信息为竞争优先级,那么多个第一通信节点可以根据该竞争优先级竞争信道。例如,当两个第一通信节点的预配置产 生冲突时,第二通信节点可以为每个第一通信节点预配置一个竞争优先级,比如,若其中一个第一通信节点有时延要求高、可靠性高的业务(如URLLC),则第二通信节点可以给该第一通信节点配置竞争高优先级;若其中一个第一通信节点没有时延要求高、可靠性高的业务,则第二通信节点给该第一通信节点配置竞争低优先级。
对于配置了低竞争优先级的第一通信节点,在竞争信道时将延迟竞争,延迟时间可以是随即产生,也可以由第二通信节点指定;或者,在竞争信道时限制竞争的时间,即低竞争优先级的第一通信节点只能在一定的竞争时间内竞争信道,如果没有成功就放弃竞争,竞争的时间可以由第二通信节点指定。第二通信节点配置或者指示竞争优先级的方法可以为RRC信令,DCI指示或者MAC CE,例如,RRC消息(如RRC重配消息)中携带一个信元,该信元指示某个预配置的竞争优先级为高优先级或者低优先级;或者MAC CE或者DCI指示携带一个比特,该比特指示某个预配置的竞争优先级,比如1为低优先级,0为高优先级。
若指示信息为是否降低竞争级别,则多个第一通信节点可以通过是否降低竞争级别的方式竞争信道。例如,第一通信节点可以采用竞争级别更低或者竞争时间更长的竞争机制。示例性地,该竞争机制可以为CAT2 25us,CAT2 16us,CAT4,CAT1,按照竞争时长从长到短的排序结果为CAT4>CAT 2 25us>CAT 2 16us>CAT1。假设第二通信节点以RRC信令,DCI指示或者MAC CE的方式配置指示信息,例如,RRC消息(如RRC重配消息)中携带一个信元,该信元使能某个预配置降低竞争级别,采用竞争时长更长的竞争机制;或者,MAC CE或DCI指示携带一个比特,该比特指示某个预配置降低竞争级别,1是降低竞争级别,采用竞争时长更长的竞争机制。第一通信节点接收到指示信息后,可以对某个预配置资源降低竞争级别,采用竞争时长更长的竞争机制获取信道接入权。
下面以具体示例对上述过程做进一步地详细描述,假设第一通信节点1和 第二通信节点2都可以采用CAT2 25us的竞争机制竞争信道。但第一通信节点1上具有时延要求高、可靠性高的业务(如URLLC),第一通信节点上2没有时延要求高、可靠性高的业务,则第一通信节点1使用CAT2 25us的竞争机制,第一通信节点2使用比CAT2 25us更长竞争时长的竞争机制,例如CAT4。
若指示信息为是否延迟竞争,则多个第一通信节点可以通过是否延迟竞争的方式竞争信道。例如,当两个第一通信节点的预配置降低竞争级别冲突时,第二通信节点可以以指示信息的方式指示其中一个第一通信节点延迟竞争,指示方式可以是RRC消息配置或者DCI指示或MAC CE。例如,RRC消息(如RRC重配消息)中携带一个信元,该信元使能某个预配置进行延迟竞争,MAC CE或者DCI指示携带一个比特,该比特指示某个预配置是否延迟竞争,1表示需要延迟竞争。进一步地,该指示信息中可以携带延迟竞争的信息,例如,延迟时间。第一通信节点获取到指示信息后,根据指示信息延迟一定时间再竞争信道。该延迟时间可以是随即产生,也可以由第二通信节点指定。
示例性地,假设第一通信节点2上没有时延要求高、可靠性高的业务(如URLLC),第一通信节点2获取到第二通信节点通过指示信息指示的延迟竞争,那么第一通信节点2在时刻n后延长一段时间后再竞争,或者在原本需要竞争的时刻再延长一段时间后再竞争,其中,延长一段时间基于延迟时间确定。
若指示信息为是否取消发送或者静默,则多个第一通信节点可以通过该指示信息竞争信道。例如,当多个第一通信节点的预配置冲突时,第二通信节点可以以指示信息的方式指示其中某个第一通信节点在某个频域或者时刻取消发送或者静默,指示方式可以是RRC消息配置或者DCI指示或MAC CE。进一步地,指示信息中可以携带取消发送信息的起始时刻,取消发送的时长(如,时隙,子帧,符号)。示例性地,RRC消息(如RRC重配消息)中携带一个信元,该信元使能某个预配置上的数据取消发送或者静默,或者,也可以携带取消发送的时间;MAC CE或者DCI指示携带一个比特,该比特指示某个预配置上的数据是否取消发送或者静默,1表示取消发送或者静默,进一步地,也可以携带 取消发送的起始时刻,取消发送的时长。第一通信节点获取到指示信息后,根据指示可以立刻执行取消发送,或者在一定时间后取消某个时刻(由取消发送的起始时刻决定)的发送,或者在一定时间后取消一段时间(由取消发送的起始时刻和取消发送的时长决定)的发送。
而且,该方法同样适用于通过一条信息或者指令(如RRC信令,DCI指示或者MAC CE),通知多个用户的竞争优先级。例如,通过一个公共的PDCCH(GC-PDCCH)指示多个用户的预配置的取消发送或者静默,公共的PDCCH可以携带configured grant index,以及对应的是否采用取消发送或者静默。
若指示信息为是否产生随机数,则多个第一通信节点可以根据随机数竞争信道。例如,在第一通信节点在某个时刻某个频域上有预配置资源,且指示信息指示第一通信节点可以产生随机数的情况下,第一通信节点通过产生随机的大小决定是否竞争该预配置资源所在的信道。例如,假设第一通信节点产生0、1的随机数,当随机数为1时,表示竞争该预配置资源所在的信道,否则不竞争。该指示信息的指示方式可以是RRC信令,DCI指示或MAC CE。例如,RRC消息(如RRC重配消息)中携带一个信元,该信元使能某个预配置上的第一通信节点是否采用随机数决定是否竞争,进一步地,在采用随机数决定是否竞争的情况下,也可以携带随机数大小;MAC CE或者DCI指示携带一个比特,该比特指示某个预配置上的第一通信节点是否采用随机数决定是否竞争,比如,1为采用随机数决定是否竞争,进一步地,在采用随机数决定是否竞争的情况下,也可以携带几个比特以指示随机数的大小。
需要说明的是,上述指示信息可以通过一条信息或者指令(如RRC信令,DCI指示或者MAC CE),通知多个第一通信节点。例如,通过一个公共PDCCH(GC-PDCCH)指示多个第一通信节点的预配置的竞争优先级,公共的PDCCH可以携带configured grant index,以及对应的竞争优先级,或者,是否降低竞争级别,或者,是否延迟竞争,或者,是否取消发送或者静默。
这样,在提高资源利用率,又避免了第一通信节点之间的竞争的情况,可 以有效保证第一通信节点上的业务的时延要求。
图11为本申请实施例提供的一种资源确定方法的流程图,如图11所示,该方法包括:
S1101、第二通信节点配置多个预配置资源。
本步骤中的预配置资源可以为第二通信节点为第一通信节点配置的时频域资源,例如,第二通信节点可以为第一通信节点配置多个配置授权configured grant,半持续性调度(Semi-Persistent Scheduling,SPS)。其中,第二通信节点与第一通信节点为两种不同类型的通信节点。例如,第一通信节点为终端,第二通信节点为基站。
S1102、第二通信节点配置配置信息。
上述第二通信节点配置的配置信息可以包括初传配置信息和/或重传配置信息,该配置信息用于指示第一通信节点根据配置信息在第二通信节点配置的多个预配置资源中选择目标资源。
S1103、第二通信节点将配置信息发送至第一通信节点。
示例性地,第二通信节点可以通过RRC消息,MAC CE或者DCI向第一通信节点发送配置信息。
其中,配置的初传配置信息包括以下任意一项:指示是否使能第一通信节点选择目标资源;或者,使能第一通信节点选择目标资源,并选择干扰最小的频域资源;或者,基于竞争机制选择目标资源;或者,指示第一通信节点根据参数信息选择目标资源,其中,参数信息包括第一通信节点标识、小区标识、随机数、频带信息中的任意一种。
例如,第二通信节点在RRC消息(如RRC重配消息)中携带一个信元,该信元指示是否使能第一通信节点选择资源的功能;或者MAC CE或者DCI指示携带一个比特,该信元指示是否使能第一通信节点选择资源的功能,比如,1为使能,0为不使能。
配置的重传配置信息包括以下任意一项:使能第一通信节点选择目标资源, 并基于重传数据包TBS选择干扰最小目标资源;或者,根据定时器和重传数据包TBS选择用于重传的目标资源;或者,根据预配置资源属性选择用于重传的目标资源,其中,第二通信节点为不同的预配置资源属性为抢占优先级或是否允许占用。
在一种示例中,第二通信节点可以给预配置资源配置上述定时器的时长。
在一种示例中,第二通信节点可以通过RRC信令或者DCI为每个预配置资源配置一个信元,该信元可以有几个比特,比特值标识抢占优先级的高低,例如,11表示抢占优先级3,10表示抢占优先级为2等,其中,抢占优先级高的预配置资源上传输的数据包传输失败时,可以占用抢占优先级相等或者预配置资源优先级低的资源进行重传。或者,第二通信节点通过RRC信令或者DCI为每个预配置资源配置一个信元,该信元可以有1个比特,例如,1表示允许被占用,0可以表示不允许被占用。如果某预配置资源被配置为不允许占用,则该预配置资源不能被用来重传在其他预配置资源上未传输成功的数据包。如果某个预配置资源被配置为允许占用,则该预配置资源可以用来传输在其他预配置资源上未传输成功的数据包。
图12为本申请实施例提供的一种资源确定方法的流程图,如图12所示,该方法包括:
S1201、第二通信节点配置多个预配置资源。
示例性地,第二通信节点配置多个预配置资源时,可以将多个第一通信节点配置在相同的频域,以及相同或不同的时域上。
S1202、第二通信节点发送信令至第一通信节点。
上述信令用于指示配置在预配置资源上的第一通信节点去激活指定资源,和/或,激活指定资源。
示例性地,上述信令可以为公共PDCCH,该公共PDCCH携带激活的配置信息,和/或,去激活的配置信息;
或者,公共PDCCH携带第一通信节点标识、激活的配置信息和/或去激活 的配置信息。
在一种示例中,第二通信节点还可以通过系统信息或者RRC消息指示第一通信节点监听上述公共PDCCH。例如,在系统信息或者RRC消息(如RRC重配消息)中携带一个信元,该信元可以指示某个公共PDCCH具有指示激活和/或去激活指定频域资源的功能。
图13为本申请实施例提供的一种资源确定方法的流程图,如图13所示,该方法包括:
S1301、第二通信节点配置多个预配置资源。
在本实施例中,第二通信节点配置多个预配置资源时,可以将一些第一通信节点配置在相同的频域和相同的时刻。其中,第一通信节点与第二通信节点是不同类型的节点。例如,第一通信节点为终端,第二通信节点为基站。
S1302、第二通信节点配置指示信息。
本步骤中的指示信息用于指示第一通信节点根据指示信息在第二通信节点配置的多个预配置资源中竞争频域资源。
S1303、第二通信节点将指示信息发送至第一通信节点。
示例性地,本实施例中的第一通信节点可以为多个第一通信节点,即第二通信节点可以通过一条信息或者指令(如RRC信令,DCI指示或者MAC CE),将指示信息发送至多个第一通信节点。例如,通过一个公共PDCCH(GC-PDCCH)指示多个第一通信节点的预配置的指示信息,公共PDCCH可以携带configured grant index。
可选地,指示信息可以包括:竞争优先级,或者,是否降低竞争级别,或者,是否延迟竞争,或者,是否取消发送或者静默,或者,是否产生随机数。
第二通信节点将指示信息发送至第一通信节点,这样多个第一通信节点可以根据指示信息在多个预配置资源中竞争频域资源,从而避免多个第一通信节点在预配置的资源上出现资源冲突的问题。
图14为本申请实施例提供的一种资源确定方法的流程图,如图14所示, 该方法包括:
S1401、第二通信节点对资源进行划分。
在本申请实施例中,第二通信节点可以按照时域,和/或,频域的方式对资源进行划分。例如,将频带划分为多个部分,或者,按照时分的方式,将一定时间内的时刻划分为多个部分,或者,针对一定时间内时刻列表,对每个时刻内的带宽进行划分,或者,对带宽进行划分并指示带宽部分的时间,对每个带宽部分进行对应的时间划分。
S1402、第二通信节点通过接口消息将资源指示和对应的等级发送至相邻节点。
第二通信节点按照相应的划分方式对资源划分后,通过接口消息,例如,第二通信节点与相邻节点之间的Xn,X2接口,将划分后的资源指示和划分后每部分资源对应的等级发送至相邻节点,该过程如图15所示。该相邻节点为与第二通信节点同类型的节点。例如,假设相邻节点与第二通信节点均为基站。
可选地,第二通信节点也可以以系统信息或RRC消息的方式,将资源指示和对应的等级通知或配置至第一通信节点,第一通信节点可以是与第二通信节点不同类型的节点,例如,终端。
这样,通过接口消息与相邻节点交互频带划分信息,可以使相邻节点根据接收到的资源指示和对应的等级规避干扰大或者竞争激烈的频带,从而减少节点之间的资源竞争。
在本申请实施中,划分后的资源指示对应的等级可以包括竞争类型、竞争优先级、业务信息、资源类型、规避类型、预留资源。
示例性地,假设第二通信节点具有M Hz带宽,第二通信节点将其划分为N个部分。当等级对应竞争优先级时,该等级可以表示划分后N部分资源的优先级,比如,高、中、低,或者,高、低。如果某部分的资源为高竞争优先级,表示该部分资源可以承载竞争优先级高或时延要求高(如URLLC)的业务数据;如果某部分的资源为中竞争优先级,表示该部分可以承载竞争优先级较高或时 延要求较高的业务数据;如果某部分的资源为低竞争优先级,表示该部分可以承载竞争优先级低或时延要求低的业务数据。
当等级对应竞争类型时,例如,信道接入优先级(Channel Access Priority Classes,CAPC)=1,CAPC=2,CAPC=3,CAPC=4,表示划分后N个部分可以承载对应竞争类型的业务数据。
当等级对应业务信息时,例如,假设为承载时延要求不同的两种等级的业务。若等级为时延要求高的业务,则表示该部分资源可以承载时延要求高(如URLLC)的业务数据;若等级为时延要求低的业务,则表示该部分资源可以承载时延要求低的业务数据。
当等级对应资源类型时,该等级可以表示划分后N部分资源的资源类型,例如,高、中、低,或者,高、低。如果等级为高资源类型,表示该部分资源可以承载优先级高,业务时延要求高,竞争时延敏感,或干扰敏感的业务数据;如果等级为中资源类型,表示该部分资源可以承载优先级中等,业务时延要求中等,竞争时延较敏感,或干扰较敏感的业务数据;如果等级为低资源类型,表示该部分资源可以承载优先级低,业务时延要求低,竞争时延不敏感,或干扰不敏感的业务数据。
当等级对应规避类型或预留资源时,等级可以表示划分后N部分资源的每个部分是否为规避或预留资源,例如,是或否。如果是规避或预留资源,表示该部分资源可以承载优先级高,业务时延要求高,竞争时延敏感,或干扰敏感的业务数据;否则,则不可以承载优先级高,业务时延要求高,竞争时延敏感,或干扰敏感的业务数据。
这样,第二通信节点在发送数据时,可以根据数据的优先级、LBT的类型或服务质量(Quality of Service,Qos)参数等,将数据发送到不同部分的资源上。
在一种示例中,步骤S1402中第二通信节点划分后的资源指示可以包括以下内容:
第一种、资源指示包括每部分资源的起始位置、带宽和/终止位置,以及每部分资源对应的等级。
每部分带宽可以以X Hz带宽为粒度表示,而且,每部分可以是不连续的频带,也可以是连续的频带。例如,第二通信节点具有100Hz带宽,第二通信节点将带宽划分为3个部分,该3个部分分别对应a、b、c三个等级。其中,a可以对应用于最高优先级或时延要求最高或CAPC=1的业务以及信令的传输,b可以对应用于较高优先级或时延要求较高或CAPC=2,3的业务传输,c可以对应用于最低优先级或时延要求最低或CAPC=4的业务传输。
假设以20MHz为粒度进行划分,那么部分1可以为起始位置为0,带宽为20MHz,终止位置为19MHz,对应等级a的频域资源,用于最高优先级或时延要求最高或CAPC=1的业务以及信令的传输;部分2可以为起始位置为20MHz,带宽为40MHz,终止位置为59MHz,对应等级b的频域资源,可用于较高优先级或时延要求较高或CAPC=2,3的业务传输;部分3可以为起始位置为60MHz,带宽为40MHz,终止位置为99MHz,对应等级c的频域资源,可用于最低优先级或时延要求最低或CAPC=4的业务传输。
或者,以100RB为粒度进行划分,划分后的部分1可以为起始位置为0,带宽为100RB,终止位置为99RB,对应等级a的频域资源;部分2可以为起始位置为100RB,带宽为200RB,终止位置为299RB,对应等级b的频域资源;部分3可以为起始位置为300RB,带宽为200RB,终止位置为499RB,对应等级c的频域资源。
下面以具体示例对上述划分过程做进一步详细描述,假设第二通信节点具有100MHz带宽,将其划分为2个部分,分别对应1、0两个不同的等级,1可以对应用于最高优先级或时延要求最高或CAPC=1的业务以及信令的传输,0可以对应用于低优先级或时延要求低或除CAPC=1以外的业务的传输。假设以20MHz为粒度进行划分,那么划分后的部分1可以为起始位置为0,带宽为20MHz,终止位置为19MHz,起始位置为80MHz,带宽为20MHz,终止位置 为99MHz,对应等级1的频域资源;部分2可以为起始位置为20MHz,带宽为60MHz,终止位置为79MHz,对应等级0的频域资源。或者,以100RB为粒度进行划分,则划分后的部分1可以为起始位置为0,带宽为100RB(子载波间隔(Subcarrier Spacing,SCS)为15KHz),终止位置为99RB,起始位置为300RB,带宽为100RB(SCS为15KHz),终止位置499RB,对应等级1的频域资源;部分2可以为起始位置为100RB,带宽为300RB,终止位置为299RB,对应等级0的频域资源。
第二种、资源指示用字符串表示,字符串中的每个字符对应一个资源部分的等级。
字符串中的每个字符表示一个等级,并对应X MHz的带宽。例如,假设第二通信节点具有100MHz带宽,将其划分为3个部分,该3个部分分别对应a、b、c三个等级,a可以对应用于最高优先级或时延要求最高或CAPC=1的业务以及信令的传输,b可以对应用于较高优先级或时延要求较高或CAPC=2,3的业务传输,c可以对应用于最低优先级或时延要求最低或CAPC=4的业务传输。
假设以20MHz为粒度进行资源划分,划分后的字符串为abbca,划分后的资源0~19MHz,80~99MHz对应等级a,20~59MHz对应等级b,60~79MHz对应等级c。相应地,也可以100RB为粒度对上述资源进行划分。
或者,第二通信节点可以100MHz将带宽划分为2个部分,2个部分分别对应1、0两个等级,1可以对应用于最高优先级或时延要求最高或CAPC=1的业务以及信令的传输,0可以对应用于低优先级或时延要求低或除CAPC=1以外的业务的传输。假设以20MHz为粒度进行资源划分,划分后的比特串为10001,划分后的资源0~19MHz,80~99MHz对应等级1,20~79MHz对应等级0。同样地,也可以100RB为粒度对上述资源进行划分。
需要说明的是,上述划分过程中所涉及的等级个数、划分粒度等可以配置,也可以通过接口消息进行指示。
第三种、资源指示为第一时间内,每个时刻部分的资源以及对应的等级。 其中,该第一时间可以为一定时间,即第二通信节点将一定时间内的时刻划分为N个部分,每部分对应一种等级。
示例性地,上述将一定时间内的时刻划分为N个部分,每部分可以包括每个时刻部分的起始时间,持续时间,终止位置,或者周期,以及每个部分对应的等级,每部分可以以多个子帧、时隙、ms、符号为粒度进行互粉,而且每个部分可以是不连续的时间,也可以是连续的时间。上述一定时间可以为固定的时长,也可以为配置的时长,并按照一定时间周期性在时间上出现。
下面以举例示例对上述的划分方式做进一步的详细描述,假设第二通信节点将10ms的时间划分为3个部分,该3个部分分别对应a、b、c三个等级,其中,a可以对应用于最高优先级或时延要求最高或CAPC=1的业务以及信令的传输,b可以对应用于较高优先级或时延要求较高或CAPC=2,3的业务传输,c可以对应可用于最低优先级或时延要求最低或CAPC=4的业务传输。假设以2ms为粒度进行划分,那么划分后的时刻部分1可以为起始时刻为0,持续时间为2ms,周期为4ms,对应等级为a的资源,例如,时刻为0~1ms、4~5ms、8~9ms;时刻部分2可以为起始时刻为2,持续时间为2ms,周期为10ms,对应等级b的资源,例如时刻为2~3ms;部分3可以为起始时刻为6,持续时间为2ms,周期为10ms,对应等级c的资源,例如时刻为6~7ms。
或者,第二通信节点将上述10ms时间划分为2个部分,每部分分别对应1、0两个等级,其中,1可以对应用于最高优先级或时延要求最高或CAPC=1的业务以及信令的传输,0可以对应用于低优先级或时延要求低或除CAPC=1以外的业务的传输。假设以2ms为粒度进行划分,则划分后的时刻部分1可以为起始时刻为0,持续时间为2ms,周期为4ms,对应等级1的资源,例如,时刻为0~1ms、4~5ms、8~9ms;时刻部分2可以为起始时刻为2,持续时间为2ms,周期为4ms,对应等级0的资源,例如时刻为2~3ms,6~7ms。
或者,将一定时间内的时刻划分为N个部分后,可以用字符串表示划分指示,每个字符表示一个等级,并对应一定的持续时间。例如,假设第二通信节 点将10ms时间划分为多个部分,每个部分分别对应a、b、c三个等级中的一个,其中,a可对应用于最高优先级或时延要求最高或CAPC=1的业务以及信令的传输,b可对应用于较高优先级或时延要求较高或CAPC=2,3的业务传输,c可对应用于最低优先级或时延要求最低或CAPC=4的业务传输。每个部分持续2ms。假设字符串为abacc,可以表示0~1ms、4~5ms对应等级a,2~3ms对应等级b,6~9ms对应等级c。
或者,第二通信节点将10ms时间划分为2个部分,分别对应1、0两个等级,其中,1可对应用于最高优先级或时延要求最高或CAPC=1的业务以及信令的传输,0可对应用于低优先级或时延要求低或除CAPC=1以外的业务的传输。每个部分持续2ms。假设字符串为10100,可以表示0~1ms、4~5ms对应等级1,2~3ms,6~9ms对应等级0。
需要说明的是,上述一定时间可以周期性出现,例如,一定时间为10ms,那么每个10ms内都会按照时刻划分信息周期性出现,并通过接口消息进行指示。另外,上述等级个数、粒度等可以配置,也可通过接口消息进行指示。
第四种、资源指示为对第一时间内每个时刻的带宽进行划分,换分后的每部分包括资源的起始位置、带宽、终止位置、以及每部分资源对应的等级。
在一定时间内,每个时刻内带宽划分可以不同。第二通信节点可以指示一个一定时间内的时刻列表,并对每个时刻内的带宽再进行划分,划分后的资源对应相应的等级。每个时刻内的带宽划分方法可以采用上述第一种或第二种方式。例如,假设一定时间为10ms,第二通信节点以2ms为粒度进行划分,那么需要一个大小为5的列表,并对列表中的每一项再进行带宽划分。
第五种、资源指示为对每部分频带资源对应的时间进行划分,划分后的每部分包括起始时间、持续时间、终止时间或周期,以及每部分资源对应的等级。
第二通信节点将带宽划分成多个部分,并对每个带宽部分对应的时间进行划分,划分后的每部分资源对应相应的等级。其中,对每个带宽部分对应的时间进行划分可以采用上述第三种划分方式。例如,划分后的部分1可以为起始 位置为0,带宽为20MHz,终止位置为19MHz,对应等级a的资源,并在10ms内占用0~1ms、4~5ms、8~9ms。
图16为本申请实施例提供的一种资源确定方法的流程图,如图16所示,该方法包括:
S1601、节点通过接口消息接收第二通信节点发送的资源指示和对应的等级。
本步骤中的节点为与第二通信节点相同类型的节点。例如,节点与第二通信节点均为基站。节点接收的资源指示和对应的等级为第二通信节点按照频域和/或时域的方式对资源进行划分后的指示和等级。
S1602、节点根据资源指示和对应的等级对自身的资源进行划分。
示例性地,假设第二通信节点按照频域的方式对资源进行划分,那么节点接收到的资源指示和对应的等级即为频域划分后的资源指示和对应等级,这样节点可以根据收到的第二通信节点发送的资源指示,划分自己的频带,以将避免最高优先级或时延要求最高业务调度到与第二通信节点相同的频带上。例如,对于第二通信节点高优先级的资源部分,节点可以不在相应的频带位置调度时延要求较高的业务。对于第二通信节点低优先级的资源部分,节点可以在相应的频带位置调度时延要求较高的业务。举例,对于第二通信节点的最高优先级的频带或者对应等级最高的频带(例如,对应等级a),则节点可以规划为低优先级或者对应低等级的频带。对于第二通信节点最低优先级的频带或者对应等级最低的频带(例如,对应等级c),则节点可以规划为最高优先级或者对应最高等级的频带的部分。
这样,通过对资源划分指示以及对应等级的交互,节点与第二通信节点可以规避干扰大或竞争激烈的频带,从而减少节点之间的相互竞争。
可选地,如图17所示,节点在接收到第二通信节点发送的资源指示和对应等级的信息后,可以回复响应消息,并将自己的资源划分信息反馈给第二通信节点,实现两个节点之间的协商。或者,节点也可以不反馈信息。
示例性地,节点接收到的资源指示可以包括每部分资源的起始位置、带宽、 终止位置,以及每部分资源对应的等级;
或者,资源指示用字符串表示,字符串中的每个字符对应一个资源部分的等级;
或者,资源指示为第一时间内,每个时刻部分的资源以及对应的等级。
资源指示对应的等级可以包括竞争类型、竞争优先级、业务信息、资源类型、规避类型、预留资源。
图18为本申请实施例提供的一种资源确定装置,如图18所示,该装置包括:获取模块1801、选择模块1802;
其中,获取模块,用于获取第二通信节点配置的配置信息;
选择模块,用于根据配置信息在多个预配置资源中选择目标资源,预配置资源为第二通信节点配置的时频域资源。
可选地,上述配置信息可以包括初传配置信息,和/或,重传配置信息。
在一种示例中,初传配置信息包括以下任意一项:
指示是否使能资源确定装置选择目标资源;
或者,使能资源确定装置选择目标资源,并选择干扰最小的频域资源;
或者,基于竞争机制选择目标资源;
或者,指示资源确定装置根据参数信息选择目标资源,参数信息包括资源确定装置标识、小区标识、随机数、频带信息中的任意一种。
在一种示例中,重传配置信息,包括:使能资源确定装置选择目标资源,并基于重传数据包TBS选择干扰最小目标资源;
或者,根据定时器和重传数据包TBS选择用于重传的目标资源;
或者,根据预配置资源属性选择用于重传的目标资源,预配置资源属性为抢占优先级或是否允许占用。
图19为本申请实施例提供的一种资源确定装置,如图19所示,该装置包括:配置模块1901、通信模块1902;
配置模块,用于配置多个预配置资源以及配置信息,该预配置资源为配置 的时频域资源;
通信模块,用于将配置信息发送至第一通信节点;
其中,配置信息用于指示第一通信节点根据配置信息在多个预配置资源中选择目标资源。
可选地,配置信息包括初传配置信息,和/或,重传配置信息。
在一种示例中,初传配置信息包括以下任意一项:
指示是否使能第一通信节点选择目标资源;
或者,使能第一通信节点选择目标资源,并选择干扰最小的频域资源;
或者,基于竞争机制选择目标资源;
或者,指示第一通信节点根据参数信息选择目标资源,参数信息包括第一通信节点标识、小区标识、随机数、频带信息中的任意一种。
在一种是里中,重传配置信息包括以下任意一项:
使能第一通信节点选择目标资源,并基于重传数据包TBS选择干扰最小目标资源;
或者,根据定时器和重传数据包TBS选择用于重传的目标资源;
或者,根据预配置资源属性选择用于重传的目标资源,预配置资源属性为抢占优先级或是否允许占用。
图20为本申请实施例提供的一种资源确定装置,如图20所示,该装置包括:配置模块2001、通信模块2002;
配置模块,用于配置多个预配置资源;
通信模块,用于发送信令至第一通信节点;
其中,上述第一通信节点为配置在预配置资源上的多个节点,信令用于指示多个第一通信节点去激活指定资源,和/或,激活指定资源。
可选地,信令可以为公共PDCCH,该公共PDCCH携带激活的配置信息,和/或,去激活的配置信息;
或者,公共PDCCH携带第一通信节点标识、激活的配置信息和/或去激活 的配置信息。
图21为本申请实施例提供的一种资源确定装置,如图21所示,该装置包括:配置模块2101、通信模块2102;
配置模块,用于配置多个预配置资源和指示信息;
通信模块,用于将指示信息发送至第一通信节点;
其中,该第一通信节点的数量可以为多个,即指示信息可用于指示多个第一通信节点根据指示信息在多个预配置资源中竞争频域资源。
示例性地,指示信息可以包括:竞争优先级,或者,是否降低竞争级别,或者,是否延迟竞争,或者,是否取消发送或者静默,或者,是否产生随机数。
图22为本申请实施例提供的一种资源确定装置,如图22所示,该装置包括:划分模块2201、通信模块2202;
划分模块,用于对资源进行划分;
通信模块,用于通过接口消息将资源指示和对应的等级发送至相邻节点;
其中,相邻节点为与资源确定装置相同类型的节点。
在一种示例中,资源指示可以包括每部分资源的起始位置、带宽和/或终止位置,以及每部分资源对应的等级;
或者,资源指示用字符串表示,字符串中的每个字符对应一个资源部分的等级;
或者,资源指示为第一时间内,每个时刻部分的资源以及对应的等级。
其中,与资源指示对应的等级包括竞争类型、竞争优先级、业务信息、资源类型、规避类型、预留资源。
图23为本申请实施例提供的一种资源确定装置,如图23所示,该装置包括:通信模块2301、划分模块2302;
通信模块,用于通过接口消息接收第二通信节点发送的资源指示和对应的等级;
其中,第二通信节点为与上述资源确定装置相同类型的节点;
划分模块,用于根据资源指示和对应的等级对自身的资源进行划分。
在一种示例中,资源指示包括每部分资源的起始位置、带宽和/或终止位置,以及每部分资源对应的等级;
或者,资源指示用字符串表示,所述字符串中的每个字符对应一个资源部分的等级;
或者,资源指示为第一时间内,每个时刻部分的资源以及对应的等级。
其中,与资源指示对应的等级包括竞争类型、竞争优先级、业务信息、资源类型、规避类型、预留资源。
图24为一实施例提供的一种节点的结构示意图,如图24所示,该节点包括处理器2401和存储器2402;节点中处理器2401的数量可以是一个或多个,图24中以一个处理器2401为例;节点中的处理器2401和存储器2402可以通过总线或其他方式连接,图24中以通过总线连接为例。
存储器2402作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请图4、图7、图9实施例中的资源确定方法对应的程序指令/模块(例如,资源确定装置中的获取模块1801、选择模块1802等)。处理器2401通过运行存储在存储器2402中的软件程序、指令以及模块实现上述的资源确定方法。
存储器2402可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据节点的使用所创建的数据等。此外,存储器2402可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
图25为一实施例提供的一种节点的结构示意图,如图25所示,该节点包括处理器2501和存储器2502;节点中处理器2501的数量可以是一个或多个,图25中以一个处理器2501为例;节点中的处理器2501和存储器2502可以通过总线或其他方式连接,图25中以通过总线连接为例。
存储器2502作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请图11、图12、图13、图14实施例中的资源确定方法对应的程序指令/模块(例如,图19中的配置模块1901、通信模块1902)。处理器2501通过运行存储在存储器2502中的软件程序、指令以及模块实现上述的资源确定方法。
存储器2502可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据节点的使用所创建的数据等。此外,存储器2502可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
图26为一实施例提供的一种节点的结构示意图,如图26所示,该节点包括处理器2601和存储器2602;节点中处理器2601的数量可以是一个或多个,图26中以一个处理器2601为例;节点中的处理器2601和存储器2602可以通过总线或其他方式连接,图26中以通过总线连接为例。
存储器2602作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请图16实施例中的资源确定方法对应的程序指令/模块(例如,图23中的通信模块2301、划分模块2302)。处理器2601通过运行存储在存储器2602中的软件程序、指令以及模块实现上述的资源确定方法。
存储器2602可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据节点的使用所创建的数据等。此外,存储器2602可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行本申请任一实施例中的一种资源确定方法,
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过资源确定装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Versatile Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field Programmable Gate Array,FPGA)核处理器架构的处理器。

Claims (27)

  1. 一种资源确定方法,包括:
    第一通信节点获取第二通信节点配置的配置信息;
    所述第一通信节点根据所述配置信息在多个预配置资源中选择目标资源;
    其中,所述预配置资源为第二通信节点配置的时频域资源。
  2. 根据权利要求1所述的方法,其中,所述配置信息包括初传配置信息和重传配置信息中的至少之一。
  3. 根据权利要求2所述的方法,其中,所述初传配置信息包括以下任意一项:
    指示是否使能所述第一通信节点选择目标资源;
    使能所述第一通信节点选择目标资源,并选择干扰最小的资源。
  4. 根据权利要求2所述的方法,其中,所述重传配置信息,包括:
    使能所述第一通信节点选择目标资源,并基于重传数据包传输块大小TBS选择干扰最小目标资源;
    或者,根据预配置资源属性选择用于重传的目标资源,所述预配置资源属性为抢占优先级或是否允许占用。
  5. 一种资源确定方法,包括:
    第一通信节点获取第二通信节点配置的指示信息;
    所述第一通信节点根据所述指示信息竞争预配置资源。
  6. 根据权利要求5所述的方法,其中,所述指示信息包括:竞争优先级,或者,是否延迟竞争,或者,是否取消发送或者静默。
  7. 一种资源确定方法,包括:
    第二通信节点配置多个预配置资源,所述预配置资源为配置的时频域资源;
    所述第二通信节点配置配置信息;
    所述第二通信节点将所述配置信息发送至第一通信节点;
    其中,所述配置信息用于指示所述第一通信节点根据配置信息在多个预配置资源中选择目标资源。
  8. 根据权利要求7所述的方法,其中,所述配置信息包括初传配置信息和重传配置信息中的至少之一。
  9. 根据权利要求8所述的方法,其中,所述初传配置信息包括以下任意一项:
    指示是否使能所述第一通信节点选择目标资源;
    使能所述第一通信节点选择目标资源,并选择干扰最小的频域资源。
  10. 根据权利要求8所述的方法,其中,所述重传配置信息包括以下任意一项:
    使能所述第一通信节点选择目标资源,并基于重传数据包传输块大小TBS选择干扰最小目标资源;
    或者,根据预配置资源属性选择用于重传的目标资源,所述预配置资源属性为抢占优先级或是否允许占用。
  11. 一种资源确定方法,包括:
    第二通信节点配置多个预配置资源;
    所述第二通信节点配置指示信息;
    所述第二通信节点将所述指示信息发送至第一通信节点;
    其中,所述指示信息用于指示所述第一通信节点根据指示信息在多个预配置资源中竞争频域资源。
  12. 根据权利要求11所述的方法,其中,所述指示信息包括:竞争优先级,或者,是否延迟竞争,或者,是否取消发送或者静默。
  13. 一种资源确定方法,包括:
    第二通信节点对资源进行划分;
    所述第二通信节点通过接口消息将资源指示和每部分资源对应的等级发送至相邻节点;
    其中,所述相邻节点为与所述第二通信节点相同类型的节点。
  14. 根据权利要求13所述的方法,其中,所述资源指示包括每部分资源的 起始位置和带宽,或者,所述资源指示包括每部分资源的起始位置和终止位置,或者,所述资源指示包括每部分资源的起始位置、带宽和终止位置;
    或者,所述资源指示用字符串表示,所述字符串中的每个字符对应一个资源部分的等级;
    或者,所述资源指示为第一时间内,每个时刻部分的资源。
  15. 根据权利要求13或14所述的方法,其中,所述等级包括竞争类型、竞争优先级、业务信息、资源类型、规避类型、预留资源。
  16. 一种资源确定方法,包括:
    节点通过接口消息接收第二通信节点发送的资源指示和每部分资源对应的等级;
    其中,所述节点为与所述第二通信节点相同类型的节点;
    所述节点根据所述资源指示和每部分资源对应的等级对自身的资源进行划分。
  17. 根据权利要求16所述的方法,其中,所述资源指示包括每部分资源的起始位置和带宽,或者,所述资源指示包括每部分资源的起始位置和终止位置,或者,所述资源指示包括每部分资源的起始位置、带宽和终止位置;
    或者,所述资源指示用字符串表示,所述字符串中的每个字符对应一个资源部分的等级;
    或者,所述资源指示为第一时间内,每个时刻部分的资源。
  18. 根据权利要求16或17所述的方法,其中,所述等级包括竞争类型、竞争优先级、业务信息、资源类型、规避类型、预留资源。
  19. 一种资源确定装置,包括:
    获取模块,设置为获取第二通信节点配置的配置信息;
    选择模块,设置为根据所述配置信息在多个预配置资源中选择目标资源;
    其中,所述预配置资源为第二通信节点配置的时频域资源。
  20. 一种资源确定装置,包括:
    配置模块,设置为配置多个预配置资源,所述预配置资源为配置的时频域资源;
    所述配置模块,还设置为配置配置信息;
    通信模块,设置为将所述配置信息发送至第一通信节点;
    其中,所述配置信息用于指示所述第一通信节点根据配置信息在多个预配置资源中选择目标资源。
  21. 一种资源确定装置,包括:
    配置模块,设置为配置多个预配置资源;
    所述配置模块,还设置为配置指示信息;
    通信模块,设置为将所述指示信息发送至第一通信节点;
    其中,所述指示信息用于指示所述第一通信节点根据指示信息在多个预配置资源中竞争频域资源。
  22. 一种资源确定装置,包括:
    划分模块,设置为对资源进行划分;
    通信模块,设置为通过接口消息将资源指示和每部分资源对应的等级发送至相邻节点;
    其中,所述相邻节点为与所述资源确定装置相同类型的节点。
  23. 一种资源确定装置,包括:
    通信模块,设置为通过接口消息接收第二通信节点发送的资源指示和每部分资源对应的等级;
    其中,所述第二通信节点为与所述资源确定装置相同类型的节点;
    划分模块,设置为根据所述资源指示和每部分资源对应的等级对自身的资源进行划分。
  24. 一种节点,包括:
    存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求1-4任一项所述的资源确定方 法,或者,权利要求5-6任一项所述的资源确定方法。
  25. 一种节点,包括:
    存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求7-10任一项所述的资源确定方法,或者,权利要求11-12任一项所述的资源确定方法,或者,权利要求13-15任一项所述的资源确定方法。
  26. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时,实现如权利要求1-4任一项所述的资源确定方法,或者,权利要求5-6任一项所述的资源确定方法。
  27. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时,实现如权利要求7-10任一项所述的资源确定方法,或者,权利要求11-12任一项所述的资源确定方法,或者,或者,权利要求13-15任一项所述的资源确定方法。
PCT/CN2021/086702 2020-04-10 2021-04-12 资源确定方法、装置、节点和存储介质 WO2021204297A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21784696.3A EP4135447A1 (en) 2020-04-10 2021-04-12 Resource determination method and apparatus, node and storage medium
US17/783,421 US20230011377A1 (en) 2020-04-10 2021-04-12 Resource determination method and apparatus, node and storage medium
KR1020227019599A KR20220093226A (ko) 2020-04-10 2021-04-12 자원 결정 방법, 장치, 노드 및 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010280195.5A CN111901872A (zh) 2020-04-10 2020-04-10 资源确定方法、装置、节点和存储介质
CN202010280195.5 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021204297A1 true WO2021204297A1 (zh) 2021-10-14

Family

ID=73206212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086702 WO2021204297A1 (zh) 2020-04-10 2021-04-12 资源确定方法、装置、节点和存储介质

Country Status (5)

Country Link
US (1) US20230011377A1 (zh)
EP (1) EP4135447A1 (zh)
KR (1) KR20220093226A (zh)
CN (1) CN111901872A (zh)
WO (1) WO2021204297A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901872A (zh) * 2020-04-10 2020-11-06 中兴通讯股份有限公司 资源确定方法、装置、节点和存储介质
US11936566B2 (en) * 2020-12-18 2024-03-19 Dish Wireless L.L.C. Intelligent router bonding 5G telephony and digital subscriber line services
CN113395742B (zh) * 2021-06-10 2022-04-29 中国人民解放军国防科技大学 一种接入控制方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488565A (zh) * 2015-09-02 2017-03-08 中兴通讯股份有限公司 一种基于竞争的资源共享方法、网元与系统
CN109496400A (zh) * 2018-10-16 2019-03-19 北京小米移动软件有限公司 重传信息的方法、装置、基站及终端
US20200068546A1 (en) * 2017-05-04 2020-02-27 Huawei Technologies Co., Ltd. Uplink channel transmission method and apparatus, and downlink channel transmission method and apparatus
CN111901872A (zh) * 2020-04-10 2020-11-06 中兴通讯股份有限公司 资源确定方法、装置、节点和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488565A (zh) * 2015-09-02 2017-03-08 中兴通讯股份有限公司 一种基于竞争的资源共享方法、网元与系统
US20200068546A1 (en) * 2017-05-04 2020-02-27 Huawei Technologies Co., Ltd. Uplink channel transmission method and apparatus, and downlink channel transmission method and apparatus
CN109496400A (zh) * 2018-10-16 2019-03-19 北京小米移动软件有限公司 重传信息的方法、装置、基站及终端
CN111901872A (zh) * 2020-04-10 2020-11-06 中兴通讯股份有限公司 资源确定方法、装置、节点和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC: "Discussion on Configured Grants in NR-Unlicensed", 3GPP DRAFT; R1-1807039 DISCUSSION ON CONFIGURED GRANTS IN NR-UNLICENSED, vol. RAN WG1, 12 May 2018 (2018-05-12), Busan, Korea, pages 1 - 4, XP051462865 *

Also Published As

Publication number Publication date
US20230011377A1 (en) 2023-01-12
EP4135447A1 (en) 2023-02-15
KR20220093226A (ko) 2022-07-05
CN111901872A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
US10764914B2 (en) Uplink information processing method and apparatus
JP7435689B2 (ja) 無線端末、基地局、無線端末における方法及び基地局における方法
WO2021204297A1 (zh) 资源确定方法、装置、节点和存储介质
KR102293031B1 (ko) 통신 디바이스
WO2017128878A1 (zh) 一种资源配置方法、网络侧设备、终端及计算机存储介质
CN110225547B (zh) 一种调度请求发送、接收方法、终端及网络侧设备
CN111316737B (zh) 数据传输方法、终端设备和网络设备
WO2018076565A1 (zh) 资源配置方法及资源配置装置
US11950301B2 (en) Telecommunications apparatus and methods
WO2019185008A1 (en) Multiplexing ul transmissions with different reliabilities
JP7411026B2 (ja) 移動通信システムにおけるulデータスケジューリング方法及び装置
WO2013026414A1 (zh) 接入通信系统的方法、下行信息发送方法、终端及基站
JP7401523B2 (ja) ワイヤレス通信におけるクリティカル通信通知が改善されたユーザ機器および方法
WO2019056370A1 (zh) 一种通信方法和装置
WO2017132964A1 (zh) 一种上行数据传输方法及相关设备
WO2021018171A1 (zh) 上行传输方法、资源指示方法、装置、服务节点及介质
WO2024036671A1 (zh) 侧行通信的方法及装置
CN112787794B (zh) 一种基于sul的urllc业务上行传输方法
KR20220100961A (ko) 취소를 표시하는 정보를 결정하기 위한 시스템들 및 방법들
WO2020147814A1 (zh) 资源分配的方法和设备
US20230217493A1 (en) Systems and techniques for sidelink communication
KR102509359B1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 자원 할당 방법 및 장치
US20230413320A1 (en) On ue's transmission configured with multiple channel occupancy time access
WO2019157998A1 (zh) 一种传输信息的方法和装置
WO2024095791A1 (ja) 端末装置及び基地局装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227019599

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021784696

Country of ref document: EP

Effective date: 20221110

NENP Non-entry into the national phase

Ref country code: DE