WO2021203538A1 - 光纤安装座、pcr光模块和pcr仪 - Google Patents

光纤安装座、pcr光模块和pcr仪 Download PDF

Info

Publication number
WO2021203538A1
WO2021203538A1 PCT/CN2020/092542 CN2020092542W WO2021203538A1 WO 2021203538 A1 WO2021203538 A1 WO 2021203538A1 CN 2020092542 W CN2020092542 W CN 2020092542W WO 2021203538 A1 WO2021203538 A1 WO 2021203538A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
distance
area
length
light source
Prior art date
Application number
PCT/CN2020/092542
Other languages
English (en)
French (fr)
Inventor
曹进涛
李冬
贺贤汉
Original Assignee
杭州博日科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州博日科技有限公司 filed Critical 杭州博日科技有限公司
Publication of WO2021203538A1 publication Critical patent/WO2021203538A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors

Definitions

  • the invention relates to the technical field of PCR instruments, in particular to an optical fiber mounting seat, a PCR optical module and a PCR instrument.
  • PCR Polymerase Chain Reaction
  • many PCR (Polymerase Chain Reaction) gene amplification instruments use optical fibers to guide light, and usually single or multiple particle LEDs are used as light sources. Due to the irregularities in the diffraction or emission of the particle LED light source, the emitted light tends to be spatially non-uniform.
  • the optical fibers in different areas receive uneven light beams due to the difference in position. This phenomenon is detected in multiple sample holes. It is more obvious when a large number of optical fibers are used for high-throughput detection.
  • the purpose of the present invention is to provide an optical fiber mounting seat, a PCR optical module and a PCR machine to alleviate the problems of poor stability and low detection accuracy of the existing PCR device.
  • an embodiment of the present invention provides an optical fiber mount.
  • the center of the fiber mount is on the same horizontal line as the center of the light source.
  • the light source is used to provide light for the fiber bundle;
  • the cross section of the fiber mount includes a first area and a second In the second area, the distance between any point in the second area and the center of the section of the fiber mount is greater than the distance between any point in the first area and the center of the section of the fiber mount; there are several mounting holes on the fiber mount, and the mounting holes are evenly distributed In the first area and the second area, the mounting holes are used to connect fiber bundles, and each fiber bundle includes at least one optical fiber; the distance between the end face of the fiber bundle and the light source that is connected to the mounting hole in the first area is the first distance , The distance between the end face of the optical fiber bundle accessed by the installation hole in the second area and the light source is the second distance, and the first distance is greater than the second distance.
  • the cross-section of the optical fiber mount further includes a third region; the distance between any point in the third region and the center of the cross-section of the fiber mount is greater than the cross-sectional center of any point in the second region and the fiber mount
  • the distance between the end face of the optical fiber bundle connected to the installation hole in the third area and the light source is the third distance, and the second distance is greater than the third distance.
  • the mounting hole is a stepped hole, and the stepped hole includes a first step and a second step; the first step is disposed in the mounting hole in the first area, and the second step is disposed in the mounting hole in the second area ;
  • the length difference between the first step and the second step is in the range of 0.5-5mm, and the first step and the second step are used to make the first distance greater than the second distance.
  • the step hole further includes a third step, the third step is arranged in the mounting hole in the third area; the length difference between the second step and the third step is in the range of 0.5-5mm, and the third step is used for To make the second distance greater than the third distance.
  • the optical fiber bundle extends a first length from the installation hole in the first area, the optical fiber bundle extends a second length from the installation hole in the second area, and the optical fiber bundle extends from the installation hole in the third area. Extend a third length; the first length is less than the second length, and the second length is less than the third length.
  • the difference between the third length and the second length is in the range of 0.5-5 mm, and the difference between the second length and the first length is in the range of 0.5-5 mm.
  • a number of screws are provided on the side of the optical fiber mounting seat, and each screw corresponds to each mounting hole one-to-one, and the end of the screw contacting the optical fiber bundle is an arc-shaped surface.
  • a protrusion is provided on one side of the end face of the optical fiber mounting seat carrying the optical fiber bundle, and the protrusion is used for fixed connection with the filter unit.
  • an embodiment of the present invention provides a PCR optical module, including: a light source and the optical fiber mount of any one of the first aspect; the center of the fiber mount and the center of the light source are on the same horizontal line.
  • an embodiment of the present invention provides a PCR machine including the PCR optical module of any one of the second aspect.
  • the embodiment of the present invention provides an optical fiber mounting seat, a PCR optical module and a PCR machine.
  • the cross section of the optical fiber mounting seat includes a first region and a second region.
  • the distance between any point in the second region and the center of the cross section of the optical fiber mounting seat Are greater than the distance between any point in the first area and the center of the cross-section of the fiber mount; since the light intensity at the center of the light source is greater than the light intensity at the edge, the fiber mount is farther away from the light source by setting the first area and setting the second area Close to the light source, the light emitted by the light source has a greater attenuation before entering the first area, and less attenuation before entering the second area, so that all fiber bundles connected to the optical fiber mount receive uniform light. It can alleviate the problem of low detection accuracy caused by uneven illumination, and improve detection performance.
  • the optical fiber mounting seat provided by the embodiment of the present invention can also use the screws on the side to fix the optical fiber bundle.
  • the position of the optical fiber bundle is installed incorrectly, or the distance difference of the installed optical fiber does not meet the foregoing range, the difference between different optical fibers may be caused.
  • the light intensity is uneven, it can be easily adjusted.
  • the light source adopts a surface light source to make light emission more even;
  • the distance between the upper filter and the optical fiber is closer and is installed coaxially, which reduces the light loss.
  • FIG. 1 is a schematic diagram of the principle of a PCR optical module provided by an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of an optical fiber mounting seat provided by an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a light source provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an optical fiber mounting seat provided by an embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of another optical fiber mounting seat provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another optical fiber mounting seat provided by an embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of another optical fiber mounting seat provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a side structure of an optical fiber mounting seat provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an installation structure of a PCR optical module provided by an embodiment of the present invention.
  • Icon 110-fiber mount; 210-light source; 310-lens; 410-filter unit; 111-the center of the section of the fiber mount; 112-first area; 113-second area; 114-mounting hole; 115- The third area; 1124-inner mounting hole; 1134-outer mounting hole; 1154-middle mounting hole; 121-outer fiber bundle; 122-inner fiber bundle; 152-middle fiber bundle; 123-outer step hole 124-inner step hole; 130-screw; 140-protrusion; 501-motor; 502-filter wheel; 503-lens mounting piece; 504-connecting piece; 505-heat sink; 506-fan.
  • PCR gene amplification instruments use optical fibers to guide light, and usually single or multiple particle LEDs are used as light sources. Due to the irregularities in the diffraction or emission of the particle LED light source, the emitted light tends to be spatially non-uniform.
  • the optical fibers in different areas receive uneven light beams due to the difference in position. This phenomenon is detected in multiple sample holes. It is more obvious when a large number of optical fibers are used for high-throughput detection.
  • the light received by different optical fibers and the light intensity finally irradiated into each sample hole are different, so that the detection results of samples with the same volume and the same concentration in different sample holes are different, resulting in The accuracy of detection results is low.
  • the embodiment of the present invention provides an optical fiber mount, a PCR optical module, and a PCR machine to alleviate the problem of low detection accuracy caused by uneven illumination.
  • a detailed description of the optical fiber mounting seat provided by the present invention is given, and the optical fiber mounting seat is applied to the PCR optical module shown in FIG. 1.
  • the center of the fiber mount 110 is on the same horizontal line as the center of the light source 210, and the light source 210 is used to provide light for the fiber bundle;
  • the cross section of the fiber mount 110 includes a first area and a second area, combined with an optical fiber shown in FIG. 2
  • a schematic cross-sectional view of the mounting base, the distance between any point in the second region 113 and the cross-sectional center 111 of the fiber mounting base is greater than the distance between any point in the first region 112 and the cross-sectional center 111 of the fiber mounting base.
  • the light source may be a planar light source, and the light spot of the planar light source gradually weakens from the center to the edge.
  • the light source shown in Fig. 3 is an approximate surface light source composed of an array of LEDs, and the emitted light of multiple LEDs together constitutes the emitted light of the array light source, so that the emitted light from the light source to the fiber bundle is more uniform.
  • the cross-section of the optical fiber mount may be circular as shown in FIG. 2, and the cross-section may be divided into a first area 112 and a second area 113.
  • the first area can be the inner layer of the cross-section, and the second area can be the outer layer of the cross-section.
  • the distance between any point in the outer layer and the cross-sectional center 111 of the fiber mount is greater than any point in the inner layer and the cross-sectional center of the fiber mount 111 distance.
  • the optical fiber mounting base 110 is provided with a number of installation holes 114, the installation holes 114 are evenly distributed in the first area and the second area, and the installation holes 114 are used to access optical fiber bundles, and each optical fiber bundle includes at least one optical fiber;
  • the distance between the end face of the optical fiber bundle connected to the installation hole and the light source 210 is the first distance
  • the distance between the end face of the optical fiber bundle connected to the installation hole in the second area and the light source 210 is the second distance
  • the first distance is greater than The second distance.
  • the optical fiber bundle includes at least one optical fiber, which may be a single optical fiber or an optical fiber bundle formed by combining multiple optical fibers.
  • the mounting hole can be a straight hole with the same diameter at both ends, which can directly access the optical fiber bundle, and its diameter is larger than the diameter of the optical fiber bundle, so that the optical fiber bundle can pass through the hole.
  • the number of holes can be 12, 24, 48, 96, 192, 384, etc.
  • the inner mounting hole 1124 is used to access the inner fiber bundle 122
  • the outer mounting hole 1134 is used to access the outer fiber bundle 121.
  • the end face of the inner fiber bundle coincides with the edge of the fiber mounting seat.
  • the distance between the end face of the inner fiber bundle and the light source is the first distance
  • the distance between the end face of the outer fiber bundle and the light source is the second distance.
  • the optical fiber bundle extends a first length from the mounting hole in the first region, and the optical fiber bundle extends a second length from the mounting hole in the second region.
  • the first length is less than the second length, and the second length is equal to The range of the difference in the first length is 0.5-5mm.
  • the outer fiber bundle can extend a distance (second length) from the surface of the fiber mounting seat to make the distance between the end face and the light source shorter.
  • the first length is 0, and the first length is less than the first length.
  • Two lengths, generally the difference between the second length and the first length is in the range of 0.5-5 mm, so that the first distance is greater than the second distance.
  • the optical fiber mount provided in this embodiment can make the distance between the end face of the outer fiber and the light source closer than the end face of the inner fiber and the light source.
  • the light at the circle corresponding to the light source attenuates before entering the fiber, and the light at the inner circle at the corresponding light source attenuates more before entering the fiber, so that all fiber bundles connected to the fiber mount receive uniform light, which can alleviate the detection caused by uneven illumination
  • the problem of low accuracy improves the detection performance.
  • the mounting hole is a stepped hole
  • the stepped hole includes a first step and a second step
  • the first step is disposed in the mounting hole in the first region
  • the second step is disposed in the mounting hole in the second region
  • the length difference between the first step and the second step ranges from 0.5 to 5 mm, and the first step and the second step are used to make the first distance greater than the second distance.
  • the stepped hole may be a structure with different diameters at both ends.
  • the diameter of the end carrying the optical fiber bundle is larger than the diameter of the optical fiber bundle, and the diameter of the end close to the light source is smaller than the diameter of the optical fiber bundle, that is, the mounting hole at the end close to the light source
  • a step with a diameter smaller than that of the fiber bundle is arranged inside.
  • the outer step hole 123 is used to access the outer fiber bundle 121
  • the inner step hole 124 is used to access the inner fiber bundle 122. Since the specific example shown in FIG. 5 only involves two layers of step holes, Therefore, the outer step hole is an ordinary mounting hole, and the end face of the outer fiber bundle is connected to the edge of the fiber mount, and the second step length is zero; the diameter of the inner step hole near the light source is smaller than the diameter of the fiber bundle. In order to keep the end face of the inner fiber bundle and the edge of the fiber mounting seat at the first step distance, the first distance between the end face of the inner fiber bundle and the light source is greater than the second distance between the end face of the outer fiber bundle and the light source.
  • the diameter of one end of the outer step hole can also be smaller than the diameter of the fiber bundle to keep the end face of the outer fiber bundle and the edge of the fiber mount at the distance of the second step (the length of the second step is not zero). It is necessary to keep a greater distance between the end face of the inner fiber bundle and the edge of the fiber mounting seat (increasing the length of the first step) to meet the requirement that the difference between the length of the first step and the length of the second step is 0.5-5mm, so as to achieve the first The distance is greater than the second distance.
  • the cross-section of the optical fiber mount further includes a third region; the distance between any point in the third region and the center of the cross-section of the fiber mount is greater than the distance between any point in the second region and the center of the cross-section of the fiber mount ; The distance between the end face of the optical fiber bundle accessed by the installation hole in the third area and the light source is the third distance, and the second distance is greater than the third distance.
  • the cross-section of the fiber mount can also be divided into a first area, a second area, and a third area 115 as shown in FIG. 6.
  • the first area can be the inner layer of the cross-section
  • the second area can be the middle layer of the cross-section
  • the third area It can be the outer layer of the cross section.
  • the distance between any point in the outer layer and the center of the section of the fiber mount is greater than the distance between any point in the middle layer and the center of the section of the fiber mount.
  • the inner mounting hole 1124 is used to access the inner fiber bundle 122
  • the middle mounting hole 1154 is used to access the middle fiber bundle 152
  • the outer mounting hole 1134 is used to access the outer fiber bundle 121.
  • the distance between the end face of the inner fiber bundle and the light source is the first distance
  • the distance between the end face of the middle fiber bundle and the light source is the second distance
  • the distance between the end face of the outer fiber bundle and the light source is the third distance.
  • the optical fiber bundle protrudes a third length from the mounting hole in the third region; the first length is less than the second length, and the second length is less than the third length.
  • the difference between the third length and the second length is in the range of 0.5-5 mm, and the difference between the second length and the first length is in the range of 0.5-5 mm.
  • the middle layer optical fiber bundle and the outer layer optical fiber bundle may protrude from the surface of the optical fiber mounting seat by one end distance, so that the distance from the light source is shorter.
  • the lengths of the middle fiber bundle and the outer fiber bundle protruding from the surface of the fiber mounting seat are the second length and the third length respectively. As shown in Figure 6, the first length is 0, the first length is less than the second length, and the second length Is less than the third length, so that the first distance is greater than the second distance, and the second distance is greater than the third distance.
  • the mounting hole can also be a stepped hole structure with different diameters at both ends.
  • the distance between the optical fiber and the light source is designed in a gradually decreasing form to form a gradient stepped hole to keep the fiber bundle at a certain distance from the edge of the optical fiber mounting seat. At this time, it needs to meet: the inner fiber bundle and the edge of the fiber mounting seat keep the first step distance, the middle fiber bundle and the edge of the fiber mounting seat keep the second step distance, the outer fiber bundle and the edge of the fiber mounting seat keep the third step distance.
  • the length relationship of the three steps is: the first step>the second step>the third step, and the length difference between the first step and the second step is in the range of 0.5-5mm, which is used to make the first distance greater than the second distance;
  • the length difference between the second step and the third step ranges from 0.5 to 5 mm, which is used to make the second distance greater than the third distance.
  • the optical fiber mounting base may include two types of mounting holes at the same time, that is, straight holes with the same diameter at both ends and stepped holes with different diameters at both ends, for example, in the first area (inner layer) A first step is provided, and straight holes are provided in the second area (middle layer) and the third area (outer layer).
  • the end face of the fiber bundle coincides with the edge of the straight hole in the second area, and the fiber bundle extends a certain length from the straight hole in the third area; the length of the first step is 0.5-5mm, which is used to make the inner fiber bundle.
  • the first distance between the end face of the optical fiber bundle and the light source is greater than the second distance between the end face of the intermediate fiber bundle and the light source;
  • the second distance is greater than the third distance between the end face of the outer fiber bundle and the light source.
  • a first step and a second step are respectively provided in the first area (inner layer) and the second area (middle layer), and the optical fiber bundle is protruded from the mounting hole by a certain length in the third area.
  • the mounting holes of the inner or middle layer are stepped holes, and the outer mounting holes are arranged in a way that the fiber bundle is extended. Since the mounting holes on the outer layer of the fiber mount are located on the outside, it is easy to extend the fiber bundle. The distance is set, and the extended distance can be easily adjusted to produce a more uniform beam effect.
  • the range of the difference between the first distance and the second distance is 0.5-5 mm
  • the range of the difference between the second distance and the third distance is 0.5-5 mm
  • the difference between the distances can be adjusted according to the light source.
  • the difference between the first distance and the second distance can be set to 3mm, and the second The difference between the distance and the third distance is 1mm; when the light intensity difference between the light source and the optical fiber of each layer of the fiber mount is small, the difference between the first distance and the second distance can be set to 3mm, and the difference between the second distance and the third distance is 3mm.
  • the difference is 2mm.
  • it can be dynamically adjusted according to the current illumination, so that the optical fibers in different areas can receive more uniform illumination.
  • the difference between the distances between the fiber bundles and the light source connected in different adjacent areas is not between 0.5-5mm, for example, when the difference between the first distance and the second distance is less than 0.5mm or greater than 5mm, it will usually cause light disturbances.
  • the poor attenuation performance causes uneven illumination of the fiber bundles in different areas, which affects the accuracy of detection.
  • a number of screws 130 are provided on the side of the optical fiber mounting seat, and each screw corresponds to each mounting hole 114 one by one.
  • the fiber optic bundle is installed on the fiber mounting base by using screws 130 on the side of the mounting base.
  • Each hole has a corresponding screw for mounting.
  • the screw of the inner hole passes through one of the outer holes. Part of the gap between.
  • screw fixing can conveniently adjust the installation position of the optical fiber bundle.
  • the position of the optical fiber is not installed accurately, or the height difference of the installed optical fiber does not meet the aforementioned
  • the range of 0.5-5mm leads to uneven light intensity between different fibers
  • the light intensity distribution of different fibers can be more evenly distributed through screw removal and reassembly.
  • the use of screws and adjusting screws can fix and compress cables of different diameters, improving the practicability of the equipment.
  • the end of the screw in contact with the optical fiber bundle is an arc-shaped surface, and the arc-shaped surface is used to increase the contact area with the optical fiber bundle. Because the fiber has a cylindrical surface, the fiber bundle is composed of multiple fibers to form a bundle. When the screw end is arc-shaped, the contact area with the fiber or the fiber bundle can be increased, which makes the fixation stronger and prevents the contact area from being too small. Damage to the optical fiber.
  • a protrusion 140 is provided on one side of the end face of the optical fiber mounting seat carrying the optical fiber bundle, and the protrusion is used for fixed connection with the filter unit.
  • the part of the fiber mounting seat that carries the end face of the fiber bundle is convex, and the convex part can be installed on the filter wheel, so that the distance between the filter on the filter wheel and the optical fiber is closer and is installed coaxially , In order to reduce the loss of light.
  • the embodiment of the present invention provides an optical fiber mounting seat, which can adjust the distance between the end face of each optical fiber bundle at different positions and the light source; the fiber bundle is fixed by the screw on the side of the optical fiber mounting seat, and when the position of the optical fiber bundle is installed It can be easily adjusted when the optical fiber is not uniform in intensity due to the error or the distance difference of the installed optical fiber does not meet the aforementioned range; the light source adopts the LED array surface light source to make the light more uniform; the optical fiber mounting seat carries The part of the fiber bundle is convex, and the convex part is finally installed on the filter wheel, so that the distance between the filter on the filter wheel and the optical fiber is closer and is installed coaxially, which reduces light loss. .
  • the light emitted by the light source is more uniform when multi-hole detection and a large number of optical fibers are used for high-throughput detection.
  • the light uniformity in the sample hole is good; the uniform light distribution can obtain a uniform sample yield, and can also ensure that there will be no obvious differences in the detection results between different sample holes, ensure the accuracy of the detection results, and improve the detection performance.
  • An embodiment of the present invention also provides a PCR optical module, which includes a light source and the optical fiber mounting seat provided in any of the above embodiments, and the center of the optical fiber mounting seat is on the same horizontal line as the center of the light source.
  • the above-mentioned optical module further includes: a lens and a filter unit, the structure of which can refer to FIG. Between the seats 110; the center of the lens 310, the center of the filter unit 410, and the center of the fiber mounting seat 110 are all on the same horizontal line.
  • a schematic diagram of a PCR optical module installation structure includes: a light source, a lens, a filter wheel 502, an optical fiber mount, and an optical fiber.
  • the PCR optical module may also include a motor 501, a lens mount 503, a connector 504, a heat sink 505, a fan 506, and a filter.
  • the light source is installed on the surface of the radiator to dissipate heat from the light source;
  • the lens mount is used to mount the lens, and the light emitted by the light source is collimated by the lens in the lens mount, and then irradiated on the filter wheel that can be rotated by a motor.
  • There are multiple filters on the filter wheel you can choose to filter out the light of the required wavelength.
  • An embodiment of the present invention also provides a PCR machine, which includes the PCR optical module provided in any of the above embodiments.
  • the PCR optical module and PCR instrument provided by the embodiment of the present invention have the same technical features as the optical fiber mounting seat provided in the foregoing embodiment, so the same technical problem can be solved and the same technical effect can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Clinical Laboratory Science (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光纤安装座、PCR光模块和PCR仪,该光纤安装座(110)的截面包括第一区域(112)和第二区域(113),第二区域(113)中任意一点与光纤安装座(110)的截面中心(111)的距离均大于第一区域(112)中任意一点与光纤安装座(110)的截面中心(111)的距离;由于光源(210)中心的光照强度大于边缘的光照强度,该光纤安装座(110)通过设置第一区域(112)与光源(210)距离较远、以及设置第二区域(113)与光源(210)距离较近,使得光源(210)发出的光在进入第一区域(112)前的衰减较大,而进入第二区域(113)前的衰减较少,从而使光纤安装座(110)接入的所有光纤束接收到均匀的光照,可以缓解因光照不均导致检测准确率低的问题,提高了检测性能。

Description

光纤安装座、PCR光模块和PCR仪
本申请要求于2020年04月10日提交中国专利局、申请号为202010283329.9、发明名称为“光纤安装座、PCR光模块和PCR仪”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及PCR仪技术领域,具体涉及一种光纤安装座、PCR光模块和PCR仪。
背景技术
目前,很多PCR(Polymerase Chain Reaction)基因扩增仪中使用光纤来引导光,并且通常采用单个或者多个颗粒LED作为光源。颗粒LED光源因被衍射或发射中的不规则性,往往会引起发出的光在空间上典型地呈现非均匀性。当上述光照射到光源端汇聚的多个光纤端面上时,由于光源的出光不均匀,导致不同区域的光纤因为位置的差异,接收到的光束不均匀,这种现象在在多样品孔检测、用到数量庞大的光纤进行高通量检测时更为明显。
从而在PCR基因扩增仪的检测期间,不同光纤接受到的光以及最终照射到每个样品孔中的光强不同,使得具备相同体积和相同浓度的样品在不同样品孔的检测结果存在差异,导致检测结果准确率低。
发明内容
有鉴于此,本发明的目的在于提供一种光纤安装座、PCR光模块和PCR仪,以缓解现有PCR装置的稳定性差、检测精度低问题。
为了实现上述目的,本发明实施例采用的技术方案如下
第一方面,本发明实施例提供了一种光纤安装座,光纤安装座的中心与光源的中心在同一水平线上,光源用于为光纤束提供光;光纤安装座的截面包括第一区域和第二区域,第二区域中任意一点与光纤安装座截面中心的距离,均大于第一区域中任意一点与光纤安装座截面中心的距离;光纤安装座上设有若干个安装孔,安装孔均匀分布在第一区域和第二区域,安装孔用于接入光纤束,每个光纤束包括至少一条光纤;第一区域的安装孔接入的光纤束的端面与光源之间的距离为第一距离,第二区域的安装孔接入的光纤束的端面与光源之间的 距离为第二距离,第一距离大于第二距离。
在一些可能的实施方式中,光纤安装座的截面还包括第三区域;第三区域中任意一点与光纤安装座的截面中心的距离,均大于第二区域中任意一点与光纤安装座的截面中心的距离,第三区域的安装孔接入的光纤束的端面与光源之间的距离为第三距离,第二距离大于第三距离。
在一些可能的实施方式中,安装孔为台阶孔,台阶孔包括第一台阶和第二台阶;第一台阶设置于第一区域的安装孔内,第二台阶设置于第二区域的安装孔内;第一台阶与第二台阶的长度差值范围为0.5-5mm,第一台阶和第二台阶用于使第一距离大于第二距离。
在一些可能的实施方式中,台阶孔还包括第三台阶,第三台阶设置于第三区域的安装孔内;第二台阶与第三台阶的长度差值范围为0.5-5mm,第三台阶用于使第二距离大于第三距离。
在一些可能的实施方式中,光纤束在第一区域的安装孔中伸出第一长度,光纤束在第二区域的安装孔中伸出第二长度,光纤束在第三区域的安装孔中伸出第三长度;第一长度小于第二长度,且第二长度小于第三长度。
在一些可能的实施方式中,第三长度与第二长度的差值范围为0.5-5mm,第二长度与第一长度的差值范围为0.5-5mm。
在一些可能的实施方式中,光纤安装座的侧面设有若干个螺钉,每个螺钉与每个安装孔一一对应,螺钉与光纤束接触的一端为弧形面。
在一些可能的实施方式中,光纤安装座承载光纤束的端面的一侧设有凸起,凸起用于与滤光单元固定连接。
第二方面,本发明实施例提供了一种PCR光模块,包括:光源和第一方面任意一项的光纤安装座;光纤安装座的中心与光源的中心在同一水平线上。
第三方面,本发明实施例提供了一种PCR仪,包括第二方面任意一项的PCR光模块。
本发明实施例提供了一种光纤安装座、PCR光模块和PCR仪,该光纤安装座的截面包括第一区域和第二区域,第二区域中任意一点与光纤安装座的截面中心的距离,均大于第一区域中任意一点与光纤安装座的截面中心的距离; 由于光源中心的光照强度大于边缘的光照强度,该光纤安装座通过设置第一区域与光源距离较远、以及设置第二区域与光源距离较近,使得光源发出的光在进入第一区域前的衰减较大,而进入第二区域前的衰减较少,从而使光纤安装座接入的所有光纤束接收到均匀的光照,可以缓解因光照不均导致检测准确率低的问题,提高了检测性能。
除此之外,本发明实施例提供的光纤安装座还能够利用侧面的螺钉固定光纤束,当光纤束的位置安装有误、或者安装后的光纤的距离差不符合前述的范围导致不同光纤间的光强还存在不均匀的情况时,可以方便调整。
本发明实施例提供的PCR光模块,其光源采用面光源,使发光更均匀;光纤安装座承载光纤束的部分成凸起状,凸起的部分最终安装在滤光轮上,使得滤光轮上的滤光片与光纤之间距离更接近且共轴安装,实现了减小光损失的效果。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种PCR光模块原理示意图;
图2为本发明实施例提供的一种光纤安装座截面示意图;
图3为本发明实施例提供的一种光源示意图;
图4为本发明实施例提供的一种光纤安装座结构示意图;
图5为本发明实施例提供的另一种光纤安装座结构示意图;
图6为本发明实施例提供的另一种光纤安装座结构示意图;
图7为本发明实施例提供的另一种光纤安装座截面示意图;
图8为本发明实施例提供的一种光纤安装座侧面结构示意图;
图9为本发明实施例提供的一种PCR光模块安装结构示意图。
图标:110-光纤安装座;210-光源;310-透镜;410-滤光单元;111-光纤安装座的截面中心;112-第一区域;113-第二区域;114-安装孔;115-第三区域;1124-内层安装孔;1134-外层安装孔;1154-中层安装孔;121-外层光纤束;122- 内层光纤束;152-中层光纤束;123-外层台阶孔;124-内层台阶孔;130-螺钉;140-凸起;501-电机;502-滤光轮;503-透镜安装件;504-连接件;505-散热器;506-风扇。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前,很多PCR基因扩增仪中使用光纤来引导光,并且通常采用单个或者多个颗粒LED作为光源。颗粒LED光源因被衍射或发射中的不规则性,往往会引起发出的光在空间上典型地呈现非均匀性。当上述光照射到光源端汇聚的多个光纤端面上时,由于光源的出光不均匀,导致不同区域的光纤因为位置的差异,接收到的光束不均匀,这种现象在在多样品孔检测、用到数量庞大的光纤进行高通量检测时更为明显。
在PCR基因扩增仪的检测期间,不同光纤接受到的光以及最终照射到每个样品孔中的光强不同,使得具备相同体积和相同浓度的样品在不同样品孔的检测结果存在差异,导致检测结果准确率低。
基于此,本发明实施例提供了一种光纤安装座、PCR光模块和PCR仪,以缓解光照不均匀导致检测准确率低的问题。为了便于理解,首先对本发明提供的一种光纤安装座进行详细介绍,该光纤安装座应用于图1所示的PCR光模块。
光纤安装座110的中心与光源210的中心在同一水平线上,光源210用于为光纤束提供光;光纤安装座110的截面包括第一区域和第二区域,结合图2所示的一种光纤安装座截面示意图,第二区域113中任意一点与光纤安装座的截面中心111的距离,均大于第一区域112中任意一点与光纤安装座的截面中心111的距离。
其中,光源可以是平面光源,平面光源的光斑从中心到边缘其光强逐渐减弱。例如图3所示的光源是采用阵列LED构成的近似面光源,多个led的出 射光共同构成了阵列光源的出射光,使得从光源向光纤束发射的出射光更加均匀。
光纤安装座的截面可以是如图2所示的圆形,该截面可以分为第一区域112和第二区域113。第一区域可以是截面的内层,第二区域可以是截面的外层,外层中任意一点与光纤安装座的截面中心111的距离,均大于内层中任意一点与光纤安装座的截面中心111的距离。
光纤安装座110上设有若干个安装孔114,安装孔114均匀分布在第一区域和第二区域,安装孔114用于接入光纤束,每个光纤束包括至少一条光纤;第一区域的安装孔接入的光纤束的端面与光源210之间的距离为第一距离,第二区域的安装孔接入的光纤束的端面与光源210之间的距离为第二距离,第一距离大于第二距离。
其中,光纤束包括至少一条光纤,可以是单根光纤,也可以是多根光纤组合成的光纤束。安装孔可以是两端直径一致的直孔,可直接接入光纤束,并且其直径大于光纤束的直径,能够使光纤束从孔中穿过。安装孔可以是多个,用于实现多孔检测或者通过数量庞大的光纤进行高通量检测,例如,孔的个数可以是12、24、48、96、192、384等。
如图4所示,内层安装孔1124用于接入内层光纤束122,外层安装孔1134用于接入外层光纤束121,内层光纤束的端面与光纤安装座的边缘重合,内层光纤束的端面与光源的距离为第一距离,外层光纤束的端面与光源的距离为第二距离。
在一些实施例中,光纤束在第一区域的安装孔中伸出第一长度,光纤束在第二区域的安装孔中伸出第二长度,第一长度小于第二长度,第二长度与第一长度的差值范围为0.5-5mm。
参见图4所示,外层光纤束可以从光纤安装座的表面伸出一段距离(第二长度),使其端面与光源的距离更短,此时第一长度为0,第一长度小于第二长度,一般第二长度与第一长度的差值范围为0.5-5mm,从而实现第一距离大于第二距离。
由于光源的边缘发出的光比其中心发出的光强度较弱,因此本实施例提供的光纤安装座能够使外圈光纤的端面与光源的距离比内圈光纤的端面与光源 的距离更近,外圈处对应光源的光进入光纤前衰减少,内圈处对应光源的光进入光纤前衰减多,从而使光纤安装座接入的所有光纤束接收到均匀的光照,可以缓解因光照不均导致检测准确率低的问题,提高了检测性能。
在一些实施例中,安装孔为台阶孔,台阶孔包括第一台阶和第二台阶,第一台阶设置于第一区域的安装孔内,第二台阶设置于第二区域的安装孔内;第一台阶与第二台阶的长度差值范围为0.5-5mm,第一台阶和第二台阶用于使第一距离大于第二距离。
具体的,台阶孔可以是两端直径不一致的结构,其承载光纤束的一端的直径大于光纤束的直径,靠近光源的一端的直径小于光纤束的直径,即,在靠近光源的一端的安装孔内设有直径小于光纤束的台阶。当光纤束由一端进入安装孔后,无法从另一端穿出。
参照图5,外层台阶孔123用于接入外层光纤束121,内层台阶孔124用于接入内层光纤束122,由于图5所示的具体实例只涉及到两层台阶孔,因此外层台阶孔为普通的安装孔,外层光纤束的端面接入至光纤安装座的边缘处,第二台阶长度为零;内层台阶孔靠近光源一端的直径小于光纤束的直径,用于使内层光纤束的端面与光纤安装座的边缘保持第一台阶的距离,从而实现内层光纤束的端面与光源的第一距离大于外层光纤束的端面与光源的第二距离。
此外,外层台阶孔的一端的直径也可以小于光纤束的直径,用于使外层光纤束的端面与光纤安装座的边缘保持第二台阶的距离(第二台阶长度不为零),此时需内层光纤束的端面与光纤安装座的边缘保持更大的距离(增加第一台阶长度),满足第一台阶长度与第二台阶长度的差值范围为0.5-5mm,从而实现第一距离大于第二距离。
在一些实施例中,光纤安装座的截面还包括第三区域;第三区域中任意一点与光纤安装座的截面中心的距离,均大于第二区域中任意一点与光纤安装座的截面中心的距离;第三区域的安装孔接入的光纤束的端面与光源之间的距离为第三距离,第二距离大于第三距离。
光纤安装座的截面还可以分为如图6所示的第一区域、第二区域和第三区域115,第一区域可以是截面的内层,第二区域可以是截面的中层,第三区域可以是截面的外层。外层中任意一点与光纤安装座的截面中心的距离,均大于 中层任意一点与光纤安装座的截面中心的距离。
进一步的,内层安装孔1124用于接入内层光纤束122,中层安装孔1154用于接入中层光纤束152,外层安装孔1134用于接入外层光纤束121。内层光纤束的端面与光源的距离为第一距离,中层光纤束的端面与光源的距离为第二距离,外层光纤束的端面与光源的距离为第三距离。
在一些实施例中,光纤束在第三区域的安装孔中伸出第三长度;第一长度小于第二长度,且第二长度小于第三长度。在可选的实施方式中,第三长度与第二长度的差值范围为0.5-5mm,第二长度与第一长度的差值范围为0.5-5mm。
具体的,中层光纤束和外层光纤束可以从光纤安装座的表面伸出一端距离,使其与光源的距离更短。中层光纤束和外层光纤束从光纤安装座的表面伸出的部分长度分别为第二长度和第三长度,图6所示第一长度为0,第一长度小于第二长度且第二长度小于第三长度,从而实现第一距离大于第二距离,且第二距离大于第三距离。
另外,安装孔也可以是两端直径不一致的台阶孔结构,将光纤与光源的距离设计为梯度递减的形式,形成梯度的台阶孔,使光纤束与光纤安装座的边缘保持一定的距离。此时需满足:内层光纤束与光纤安装座的边缘保持第一台阶距离,中层光纤束与光纤安装座的边缘保持第二台阶距离,外层光纤束与光纤安装座的边缘保持第三台阶距离。
其中,三个台阶的长度关系为:第一台阶>第二台阶>第三台阶,第一台阶与第二台阶的长度差值范围为0.5-5mm,用于使第一距离大于第二距离;第二台阶与第三台阶的长度差值范围为0.5-5mm,用于使第二距离大于第三距离。
另外,在一种可选的实施例中,光纤安装座可以同时包括两种安装孔,即两端直径一致的直孔和两端直径不一致的台阶孔,例如,在第一区域(内层)设置第一台阶,在第二区域(中层)和第三区域(外层)设置直孔。光纤束的端面与第二区域中的直孔的边缘重合,光纤束在第三区域的直孔中伸出一定长度;其中,第一台阶的长度为0.5-5mm,用于使内层光纤束的端面与光源的第一距离大于中层光纤束端面与光源的第二距离;光纤束在第三区域的直孔中伸出的长度为0.5-5mm,用于使中层光纤束的端面与光源的第二距离大于外层光 纤束端面与光源的第三距离。或者在第一区域(内层)和第二区域(中层)中分别设置第一台阶和第二台阶,在第三区域中使光纤束从安装孔中伸出一定长度。只要利用台阶孔或者从安装孔伸出的方式实现第一距离大于第二距离,第二距离大于第三距离即可,不以此为限。在这些实施方式中,将内层或中层的安装孔采用台阶孔,外侧的安装孔采用光纤束伸出的方式设置,由于光纤安装座外层的安装孔位于外侧,容易对光纤束伸出的距离进行设置,可以方便的对伸出的距离进行调整,从而产生更均匀光束的效果。
在一种可能的实施方式中,第一距离与第二距离的差值范围为0.5-5mm,第二距离与第三距离的差值范围为0.5-5mm。
其中,距离之间的差值可以根据光源进行调整,例如,当光源对于光纤安装座每层光纤的光照强度差别较大时,可以设置第一距离与第二距离的差值为3mm,第二距离与第三距离的差值为1mm;当光源对光纤安装座每层光纤的光照强度差别较小时,可以设置第一距离与第二距离的差值为3mm,第二距离与第三距离的差值为2mm。或者可以根据当前的光照进行动态调整,以达到不同区域的光纤能够接收到较为均匀的光照的目的。
当相邻的不同区域接入的光纤束与光源的距离的差值不在0.5-5mm之间时,例如第一距离与第二距离的差值小于0.5mm或大于5mm时,通常会导致光的衰减性能较差,使不同区域的光纤束光照不均,从而影响检测的准确性。
在一些如图7所示的实施例中,光纤安装座的侧面设有若干个螺钉130,每个螺钉与每个安装孔114一一对应。
具体参见图7所示,光纤安装座上安装光纤束的方式是利用安装座侧面的螺钉130进行固定,每个孔上都对应的有一个螺钉进行安装,内层孔的螺钉通过外层孔之间的间隙部分穿过。
螺钉固定与现有技术中粘接等只能一次安装的固定方式相比,可以方便的调整光纤束的安装位置,当光纤的位置安装不准确,或者安装后的光纤的高度差不符合前述的0.5-5mm范围导致不同光纤间的光强还存在不均匀的情况时,可以通过螺钉拆卸重装等方式实现不同光纤的光强分布更均匀。此外,螺钉配合调节螺杆的使用,能够对不同直径规格的线缆进行固定压紧,提高设备实用性。
在一种可能的实施方式中,螺钉与光纤束接触的一端为弧形面,弧形面用于增加与光纤束的接触面积。由于光纤具有圆柱表面,光纤束由多根光纤组合形成一束,当螺钉端部呈圆弧面时可以增加与光纤或光纤束的接触面积,使固定更加牢固,也能防止接触面积太小导致对光纤的破坏。
在一些实施例中,参见图8所示,光纤安装座承载光纤束的端面的一侧设有凸起140,凸起用于与滤光单元固定连接。具体的,光纤安装座上承载光纤束端面的部分呈凸起状,凸起的部分可以安装在滤光轮上,使得滤光轮上的滤光片与光纤之间距离更接近且共轴安装,以减小光的损失。
本发明实施例提供了一种光纤安装座,光纤安装座能够调整不同位置的各个光纤束的端面与光源之间的距离;利用光纤安装座侧面的螺钉固定光纤束,当光纤束的位置安装有误、或者安装后的光纤的距离差不符合前述的范围导致不同光纤间的光强还存在不均匀的情况时,可以方便调整;光源采用LED阵列面光源,使发光更均匀;光纤安装座承载光纤束的部分成凸起状,凸起的部分最终安装在滤光轮上,使得滤光轮上的滤光片与光纤之间距离更接近且共轴安装,实现了减小光损失的效果。
通过上述设计使得在多孔检测、使用数量庞大的光纤进行高通量检测时,光源出射的光更加均匀,光源端汇聚的光纤端面上位置不同的光纤接收的光更均匀,以及最终照射到每个样品孔中的光均匀性好;均匀的光分布能得到均匀的样品产率,也能保证不同样品孔之间检测结果不会出现明显差异,保证检测检测结果的准确性,提高检测的性能。
本发明实施例还提供了一种PCR光模块,该光模块包括:光源和以上任意一种实施例提供的光纤安装座,光纤安装座的中心与光源的中心在同一水平线上。
在一些实施例中,上述光模块还包括:透镜和滤光单元,其结构可参照图1,透镜310设置于光源210和光纤安装座110之间,滤光单元410设置于透镜310和光纤安装座110之间;透镜310的中心、滤光单元410的中心与光纤安装座110的中心均在同一水平线上。
具体的,如图9所示的一种PCR光模块安装结构示意图,该PCR光模块包括:光源、透镜、滤光轮502、光纤安装座和光纤。此外,该PCR光模块 还可以包括电机501、透镜安装件503、连接件504、散热器505、风扇506和滤光片。其中,光源安装在散热器的表面,用于为光源散热;透镜安装件用于安装透镜,光源发出的光经过透镜安装件中透镜的准直后,照射到可由电机驱动旋转的滤光轮上,滤光轮上有多个滤光片,可以选择滤出需要波长的光。
本发明实施例还提供了一种PCR仪,该PCR仪包括以上任意一种实施例提供的PCR光模块。
本发明实施例提供的PCR光模块和PCR仪,与上述实施例提供的光纤安装座具有相同的技术特征,所以也能解决相同的技术问题,达到同样的技术效果。
应注意到:相似的标号和字母在附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释,此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种光纤安装座,其特征在于,所述光纤安装座的中心与光源的中心在同一水平线上,所述光源用于为光纤束提供光;
    所述光纤安装座的截面包括第一区域和第二区域,所述第二区域中任意一点与所述光纤安装座的截面中心的距离,均大于所述第一区域中任意一点与所述光纤安装座的截面中心的距离;
    所述光纤安装座上设有若干个安装孔,所述安装孔均匀分布在所述第一区域和所述第二区域,所述安装孔用于接入所述光纤束,每个所述光纤束包括至少一条光纤;
    所述第一区域的安装孔接入的光纤束的端面与所述光源之间的距离为第一距离,所述第二区域的安装孔接入的光纤束的端面与所述光源之间的距离为第二距离,所述第一距离大于所述第二距离。
  2. 根据权利要求1所述的光纤安装座,其特征在于,所述光纤安装座的截面还包括第三区域;所述第三区域中任意一点与所述光纤安装座的截面中心的距离,均大于所述第二区域中任意一点与所述光纤安装座的截面中心的距离,所述第三区域的安装孔接入的光纤束的端面与所述光源之间的距离为第三距离,所述第二距离大于所述第三距离。
  3. 根据权利要求2所述的光纤安装座,其特征在于,所述安装孔为台阶孔,所述台阶孔包括第一台阶和第二台阶;所述第一台阶设置于所述第一区域的安装孔内,所述第二台阶设置于所述第二区域的安装孔内;
    所述第一台阶与所述第二台阶的长度差值范围为0.5-5mm,所述第一台阶和所述第二台阶用于使所述第一距离大于所述第二距离。
  4. 根据权利要求3所述的光纤安装座,其特征在于,所述台阶孔还包括第三台阶,所述第三台阶设置于所述第三区域的安装孔内;
    所述第二台阶与所述第三台阶的长度差值范围为0.5-5mm,所述第三台阶用于使所述第二距离大于所述第三距离。
  5. 根据权利要求2所述的光纤安装座,其特征在于,所述光纤束在所述第一区域的安装孔中伸出第一长度,所述光纤束在所述第二区域的安装孔中伸出第二长度,所述光纤束在所述第三区域的安装孔中伸出第三长度;所述第一 长度小于所述第二长度,且所述第二长度小于所述第三长度。
  6. 根据权利要求5所述的光纤安装座,其特征在于,所述第三长度与所述第二长度的差值范围为0.5-5mm,所述第二长度与所述第一长度的差值范围为0.5-5mm。
  7. 根据权利要求1所述的光纤安装座,其特征在于,所述光纤安装座的侧面设有若干个螺钉,每个所述螺钉与每个所述安装孔一一对应,所述螺钉与所述光纤束接触的一端为弧形面。
  8. 根据权利要求1所述的光纤安装座,其特征在于,所述光纤安装座承载所述光纤束的端面的一侧设有凸起,所述凸起用于与滤光单元固定连接。
  9. 一种PCR光模块,其特征在于,包括:光源和权利要求1-8任意一项所述的光纤安装座;所述光纤安装座的中心与光源的中心在同一水平线上。
  10. 一种PCR仪,其特征在于,包括权利要求9所述的PCR光模块。
PCT/CN2020/092542 2020-04-10 2020-05-27 光纤安装座、pcr光模块和pcr仪 WO2021203538A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010283329.9 2020-04-10
CN202010283329.9A CN111707613B (zh) 2020-04-10 2020-04-10 光纤安装座、pcr光模块和pcr仪

Publications (1)

Publication Number Publication Date
WO2021203538A1 true WO2021203538A1 (zh) 2021-10-14

Family

ID=72536396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092542 WO2021203538A1 (zh) 2020-04-10 2020-05-27 光纤安装座、pcr光模块和pcr仪

Country Status (2)

Country Link
CN (1) CN111707613B (zh)
WO (1) WO2021203538A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020074489A1 (en) * 2000-12-19 2002-06-20 Mullins Oliver C. Method of detecting carbon dioxide in a downhole environment
US20070146694A1 (en) * 2003-01-15 2007-06-28 Negevtech Ltd. Fiber optical illumination system
CN102329725A (zh) * 2010-06-16 2012-01-25 三星泰科威株式会社 光透射温度控制装置、生物诊断设备和方法
CN102887014A (zh) * 2012-07-06 2013-01-23 胡宵 一种书写装置
CN104614351A (zh) * 2015-01-21 2015-05-13 南京中科神光科技有限公司 一种快速、多通道实时荧光定量检测装置
CN107132225A (zh) * 2016-02-29 2017-09-05 希森美康株式会社 血液凝固分析装置及血液凝固分析方法
CN110161642A (zh) * 2019-06-03 2019-08-23 四川九洲线缆有限责任公司 一种内外两层光纤束同心布置用装配工装及使用方法
CN110218647A (zh) * 2019-06-27 2019-09-10 杭州安塔生物科技有限公司 一种pcr反应装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898081A (ja) * 1981-12-03 1983-06-10 Takashi Mori 光合成装置
JPS6080713A (ja) * 1983-10-07 1985-05-08 Sumitomo Electric Ind Ltd 光学的変位センサ
CA2129787A1 (en) * 1993-08-27 1995-02-28 Russell G. Higuchi Monitoring multiple amplification reactions simultaneously and analyzing same
JPH10253841A (ja) * 1997-03-07 1998-09-25 Rikagaku Kenkyusho 結像光学装置
US6982431B2 (en) * 1998-08-31 2006-01-03 Molecular Devices Corporation Sample analysis systems
US6453104B1 (en) * 1999-12-28 2002-09-17 Mitsubishi Rayon Co., Ltd. Optical fiber cable and optical fiber cable with plug
US6878254B2 (en) * 2001-03-02 2005-04-12 Iowa State University Research Foundation, Inc. Size separation of analytes using monomeric surfactants
JP2002365488A (ja) * 2001-06-04 2002-12-18 Kyoto Denkiki Kk 光源装置
DE102006036171B4 (de) * 2006-07-28 2008-10-09 Analytik Jena Ag Anordnung und Verfahren zur mehrkanaligen Fluoreszenzmessung in PCR-Proben
GB201005704D0 (en) * 2010-04-06 2010-05-19 It Is Internat Ltd Improvements in systems for chemical and/or biochemical reactions
CN104568875B (zh) * 2014-12-22 2017-02-22 北京工业大学 旋转扫描的实时荧光定量pcr检测系统
CN106047687B (zh) * 2016-04-08 2018-05-18 芜湖达辉生物科技有限公司 核糖核酸链式聚合扩增反应检测装置及其进行dna浓度检测的方法
CN208351038U (zh) * 2018-05-03 2019-01-08 苏州奥荣光电有限公司 一种一分多均匀分光器
CN209783771U (zh) * 2019-04-15 2019-12-13 广州大学 一种光纤传感器及制作模具
CN110724733B (zh) * 2019-10-30 2022-11-11 东南大学 一种用于高分辨空间转录组测序芯片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020074489A1 (en) * 2000-12-19 2002-06-20 Mullins Oliver C. Method of detecting carbon dioxide in a downhole environment
US20070146694A1 (en) * 2003-01-15 2007-06-28 Negevtech Ltd. Fiber optical illumination system
CN102329725A (zh) * 2010-06-16 2012-01-25 三星泰科威株式会社 光透射温度控制装置、生物诊断设备和方法
CN102887014A (zh) * 2012-07-06 2013-01-23 胡宵 一种书写装置
CN104614351A (zh) * 2015-01-21 2015-05-13 南京中科神光科技有限公司 一种快速、多通道实时荧光定量检测装置
CN107132225A (zh) * 2016-02-29 2017-09-05 希森美康株式会社 血液凝固分析装置及血液凝固分析方法
CN110161642A (zh) * 2019-06-03 2019-08-23 四川九洲线缆有限责任公司 一种内外两层光纤束同心布置用装配工装及使用方法
CN110218647A (zh) * 2019-06-27 2019-09-10 杭州安塔生物科技有限公司 一种pcr反应装置

Also Published As

Publication number Publication date
CN111707613B (zh) 2021-02-02
CN111707613A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
KR101359148B1 (ko) 광 검출 장치 및 시료 홀더용 지그
US20030113935A1 (en) Analytical device with lightguide illumination of capillary and microgrooves arrays
JP2006147581A (ja) バックライトユニット
US20080117355A1 (en) Surface light source device and liquid crystal display device
KR20040063385A (ko) 백라이트 유닛
CN107407784B (zh) 具有纹理化表面的光学块
JP2001351424A (ja) 平面発光装置
WO2021203538A1 (zh) 光纤安装座、pcr光模块和pcr仪
US7054004B2 (en) Capillary array and capillary array photodetector
CN1375690A (zh) 测量光透射率的方法及其设备
JP2016201360A (ja) 照明装置
US11493804B2 (en) Reflective diffusing lens and light emitting module comprising the same
CN211452649U (zh) 一种多路合一的光纤测温模块
CN112764233B (zh) 样本分析仪用光度计的光路系统
US20080315118A1 (en) Fluorescence measurement probe
CN212083230U (zh) 一种模块化深紫外多维激光共聚焦显微装置
JP2006202665A (ja) 光源装置
JP4044511B2 (ja) バックライトユニット
CN219348762U (zh) 一种用于液相色谱仪检测器的光室结构
CN111596424A (zh) 可调式低串扰同波长波分复用光收发一体单纤双向器件
KR101970690B1 (ko) 다중 형광 신호 측정을 위한 광수신장치
US20130279146A1 (en) Pseudo-sunlight irradiation apparatus
CN212159608U (zh) 一种检测光源和检测系统
CN216738354U (zh) 一种pcr荧光检测装置及多通道pcr荧光检测设备
CN218350157U (zh) X射线毛细管透镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929708

Country of ref document: EP

Kind code of ref document: A1