WO2021203533A1 - 一种心脏内能量采集装置及植入式电子医疗器 - Google Patents

一种心脏内能量采集装置及植入式电子医疗器 Download PDF

Info

Publication number
WO2021203533A1
WO2021203533A1 PCT/CN2020/092367 CN2020092367W WO2021203533A1 WO 2021203533 A1 WO2021203533 A1 WO 2021203533A1 CN 2020092367 W CN2020092367 W CN 2020092367W WO 2021203533 A1 WO2021203533 A1 WO 2021203533A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heart
friction layer
electrode layer
friction
Prior art date
Application number
PCT/CN2020/092367
Other languages
English (en)
French (fr)
Inventor
华伟
刘卓
胡奕然
赵超超
Original Assignee
赵超超
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赵超超 filed Critical 赵超超
Priority to US17/917,925 priority Critical patent/US11992688B2/en
Priority to EP20930123.3A priority patent/EP4134129A4/en
Publication of WO2021203533A1 publication Critical patent/WO2021203533A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3756Casings with electrodes thereon, e.g. leadless stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37205Microstimulators, e.g. implantable through a cannula
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3785Electrical supply generated by biological activity or substance, e.g. body movement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Definitions

  • the present invention relates to the field of medical equipment, in particular to an energy harvesting device in the heart and an implantable electronic medical device.
  • Implantable pulse generators such as cardiac pacemakers and brain pacemakers are widely used in the field of medical diagnosis and treatment.
  • energy storage media such as batteries.
  • Lithium batteries have been used in clinics as the most mature power source, but they still have an unavoidable shortcoming-limited battery capacity.
  • the working life of the implanted electronic medical device is affected.
  • the power of the storage medium decreases and is exhausted, the implanted medical device cannot work normally or stops working, which seriously endangers the life and health of the patient.
  • this type of problem is mainly solved through periodic device replacement surgery, which not only requires the payment of expensive medical expenses, but also requires a greater risk of surgery.
  • the prior art proposes some methods for collecting biomechanical energy on the surface of biological organs through energy harvesting technology and converting it into electrical energy to realize the self-supplying of electronic devices.
  • the use of piezoelectric nano-generators with nano-piezoelectric materials or the use of sliding friction nano-generators attached to the surface of biological organs such as the diaphragm and the heart and the mechanical energy generated by breathing or the contraction and relaxation of the surface of the heart makes the nano-piezoelectric materials generate Deformation, or cause the two friction layers of the sliding friction nanogenerator to slide relative to each other, thereby converting it into electrical energy.
  • Piezoelectric nanogenerators or sliding friction nanogenerators are used to collect biomechanical energy on the surface of biological organs. They use a large-area thin film structure and all need to be arranged on the surface of the heart. In clinical practice, piezoelectric nano Power generation components such as generators or sliding friction nano generators need to be sutured and attached to the epipericardium. They are implanted in large wounds. The destruction of the epicardium will affect the normal physiological functions of the heart. Piezoelectric nano generators or sliding friction nano generators generate electricity. Power generation components such as machines need to be connected to external electronic medical devices such as pulse transmitters through wires, which increases the risk of infection. Therefore, this method of collecting biomechanical energy on the surface of biological organs requires surgical implantation through a large incision, which has great difficulties in clinical application, and causes great harm to the organism, and does not have practical application prospects.
  • the cardiac pacemaker commonly used in clinical practice is composed of a pacing wire implanted in the heart and a pulse generator buried under the skin of the chest.
  • the pulse current is generated by the pulse generator, which is conducted to the heart through the pacing wire, and is buried in the heart.
  • the pulse generator under the skin of the chest is the energy-consuming part that needs electric energy supply. Therefore, in order to supply energy to the energy-consuming part, when people study biomechanical energy collection technology, they drive or guide it to the heart, diaphragm, lungs and other organs or To collect biomechanical energy on the surface of the tissue, that is, the collection site is relatively fixed, and the focus is on improving the structure or material of the power generation component, but this cannot avoid the above problems.
  • the main purpose of the embodiments of the present invention is to provide an intracardiac energy harvesting device and an implantable electronic medical device, so as to solve the need to use a major invasive surgery to implant the heart surface in order to realize the self-supply of the implantable electronic medical device in the prior art.
  • the heart is damaged and the organism is susceptible to infection.
  • an intracardiac energy harvesting device comprising: a housing; a fixing mechanism arranged on the housing, the fixing mechanism configured to fix the housing Inside the heart cavity so that the housing can move with the beating of the heart; a nano generator module is packaged in the housing, and the nano generator module is configured to output in response to the movement of the housing when the heart beats Electric energy; and a power management module, encapsulated in the housing, the power management module is used to manage the electric energy output by the nano generator module.
  • the intracardiac energy harvesting device is the above-mentioned intracardiac energy harvesting device.
  • the implanting method includes: The intracardiac energy harvesting device is implanted in the heart cavity; the intracardiac energy harvesting device is fixed on the heart tissue through its fixing mechanism.
  • an implantable electronic medical device comprising: the above-mentioned intracardiac energy harvesting device; a load function unit, and a power supply of the intracardiac energy harvesting device
  • the output end of the management module is electrically connected, and the intra-heart energy collection device is used to provide electrical energy for the load function unit.
  • the intracardiac energy harvesting device provided by the present application, by encapsulating the nano generator module and the power management module in a housing, and setting a fixing mechanism on the housing to form an intracardiac energy harvesting device, the device can enter the heart cavity
  • the internal size and shape are suitable for implantation into the heart cavity through interventional surgery. Therefore, the heart energy harvesting device can be implanted into the heart through minimally invasive interventional surgery to collect the biomechanical energy generated by the beating of the heart.
  • the surgical trauma is small. , And will not cause damage to the heart, can effectively avoid infection.
  • the heart's energy harvesting device is driven to move as a whole through the contraction and relaxation of the heart, so that the internal nanogenerator module can convert it into electrical energy and output it in response to the movement.
  • the nano generator module and the power management module are packaged in a housing, and a fixing mechanism is arranged on the housing to form an energy harvesting device in the heart.
  • a fixing mechanism is arranged on the housing to form an energy harvesting device in the heart.
  • Figure 1 is a perspective view of an intracardiac energy harvesting device according to some embodiments.
  • FIG 2 is a perspective view of a heart energy harvesting device with a spiral fixing mechanism modified from Figure 1;
  • Fig. 3 is a working schematic diagram of the intracardiac energy harvesting device in Fig. 1 being fixed inside the heart cavity;
  • Figure 4 is a schematic diagram of functional modules of an intracardiac energy harvesting device according to some embodiments.
  • Fig. 5 is a schematic structural diagram of an intracardiac energy harvesting device according to some embodiments.
  • Fig. 6 is a schematic structural diagram of the power generating unit in Fig. 5;
  • Fig. 7 is a first structural schematic diagram of an intracardiac energy harvesting device with multiple power generating units modified from Fig. 1;
  • Fig. 8 is a second structural schematic diagram of an intra-cardiac energy harvesting device with multiple power generating units modified from Fig. 1;
  • Fig. 9 is a schematic structural diagram of an intracardiac energy harvesting device according to some embodiments.
  • Fig. 10 is a schematic structural diagram of the power generating unit in Fig. 9;
  • Fig. 11 is a schematic structural diagram of an intracardiac energy harvesting device according to some embodiments.
  • Fig. 12 is a first structural diagram of a heart energy harvesting device modified from Fig. 11;
  • Fig. 13 is a second structural diagram of the intra-heart energy harvesting device modified from Fig. 11;
  • FIG. 14 is a schematic diagram of the structure of the intracardiac energy harvesting device modified from FIG. 11 (Part 3);
  • Fig. 15 is a schematic structural diagram of an intracardiac energy harvesting device according to some embodiments.
  • Fig. 16 is a first structural diagram of a heart energy harvesting device modified from Fig. 15;
  • Figure 17 is a second structural diagram of the intra-heart energy harvesting device modified from Figure 15;
  • Fig. 18 is a schematic structural diagram of an intra-heart energy harvesting device according to some embodiments.
  • Figure 19 is a schematic structural diagram of an intra-heart energy harvesting device according to some embodiments.
  • FIG. 20 is a schematic structural diagram of an intracardiac energy harvesting device according to some embodiments.
  • Figure 21 is a schematic structural diagram of an intra-heart energy harvesting device according to some embodiments.
  • FIG. 22 is a schematic structural diagram of an intracardiac energy harvesting device according to some embodiments.
  • FIG. 23 is a schematic structural diagram of an intracardiac energy harvesting device according to some embodiments.
  • FIG. 24 is a schematic structural diagram of an intracardiac energy harvesting device according to some embodiments.
  • 25 is a schematic diagram of the structure of the movable body, the sixth electrode layer and the sixth friction layer in FIG. 24;
  • Figure 26 is a schematic structural diagram of an intra-heart energy harvesting device according to some embodiments.
  • FIG. 27 is a schematic diagram of the structure of the movable body, the sixth electrode layer, and the sixth friction layer in FIG. 26;
  • Fig. 28 is a schematic structural diagram of an implantable electronic medical device according to some embodiments.
  • Fig. 29 is a schematic structural diagram of an implantable electronic medical device according to some embodiments.
  • Fig. 30 is a schematic diagram of functional modules of the implantable electronic medical device in Fig. 29.
  • orientation words used such as “up and down” are usually for the direction shown in the drawings, or for the vertical, vertical or gravitational direction.
  • left and right usually refers to the left and right shown in the drawings;
  • inner and outer refers to the inner and outer relative to the contour of each component itself, but the above-mentioned orientation The words are not used to limit the invention.
  • the term "and/or” includes any and all combinations of one or more of the related listed items. Expressions such as "at least one of” when preceding a list of elements modify the entire list of elements rather than the individual elements in the list.
  • this application provides a heart Internal energy harvesting device and implantable electronic medical device.
  • the cardiac energy harvesting device 100 has a size and shape suitable for implantation into a heart cavity through interventional surgery.
  • the intracardiac energy harvesting device 100 is applied to implantation through interventional surgery. It enters the heart cavity and collects the biomechanical energy generated by the beating of the heart. Interventional surgery refers to interventional surgery in medicine. It is a minimally invasive treatment performed by modern technology. Under the guidance of medical imaging equipment, special catheters, guide wires and other precision instruments can be introduced into the human body. Perform diagnosis and local treatment.
  • the intracardiac energy harvesting device 100 can be implanted into the heart cavity through a catheter through femoral vein puncture.
  • Figure 1 is a perspective view of an intracardiac energy harvesting device 100 according to some embodiments.
  • Fig. 2 is a perspective view of an intracardiac energy harvesting device with a spiral fixing mechanism modified from Fig. 1.
  • Fig. 3 is a working schematic diagram of the intracardiac energy harvesting device in Fig. 1 being fixed inside the heart cavity.
  • the intracardiac energy harvesting device 100 includes a housing 10, a fixing mechanism 20, a nano generator module 30 and a power management module 40.
  • the housing 10 is a hollow encapsulation shell used to encapsulate the nano-generator module 30 (or the nano-generator module 30 and the power management module 40) inside to prevent the nano-generator module 30 (or nano-generator The module 30 and the power management module 40) cause an impact and provide a placement environment for the nano generator module 30 (or the nano generator module 30 and the power management module 40).
  • the housing 10 can be exposed to the heart cavity as the housing 10 in contact with blood. Therefore, the housing 10 may include insulating materials with good biocompatibility and blood compatibility.
  • the housing 10 may It includes at least one of polylactic acid, polyvinyl alcohol, polytetrafluoroethylene, rubber, and composite materials.
  • the shell can be processed and formed by 3D printing or infusion with a mold.
  • the outer diameter of the housing 10 is 5mm-15mm, and the length of the housing 10 is 1cm-5cm. Within this size range, it is suitable for implantation into the heart cavity through interventional surgery, and can be appropriately moved inside the heart cavity, so that the housing 10 can move in the heart cavity with the beating of the heart.
  • the outer diameter of the housing 10 is 7-10 mm, and the length of the housing 10 is 2 cm-3 cm. Under this size, the intracardiac energy harvesting device 100 can have a smaller volume.
  • the housing 10 has a cylindrical shape, and the cylindrical shape includes a cylindrical shape, a prismatic shape, and an irregular cylindrical or prismatic shape (for example, a cylindrical or prismatic shape with an arc at one end and a plane at the end, for example, an arc at both ends Cylindrical or prismatic), but not limited to this. Because the cylindrical housing 10 is used, it can have a smaller size in the radial direction (width direction) and a longer size in the axial direction (length direction), which is beneficial for nano-generators.
  • the module 30 and the power management module 40 are arranged in sequence along the length direction of the housing 10, so that the housing 10 can be adapted to be implanted into the heart cavity through interventional surgery because of its small radial (width direction) size, and because of its axial direction. (Long direction) It has a longer size and a certain volume to encapsulate the nano-generator module 30 and the power management module 40 without affecting the output of the nano-generator module 30.
  • the housing 10 is cylindrical. If the housing 10 is spherical, the outer diameter of the spherical housing can only be less than 7 mm due to the interventional implantation method, resulting in a small volume, which is not conducive to the output of the nano generator module 30.
  • the housing 10 may also have other shapes other than the columnar shape.
  • the fixing mechanism 20 is arranged on the housing 10, and the fixing mechanism 20 can be fixed to the outside of the housing 10.
  • the fixing mechanism 20 is configured to fix the housing 10 inside the heart cavity so that the housing 10 can move with the beating of the heart.
  • the housing 10 is fixed inside the heart cavity by the fixing mechanism 20, for example, it can be fixed on the endocardium and/or myocardium of the heart.
  • the energy harvesting device 100 in the heart can be driven to move, so that the nano generator module 30 can convert it into electrical energy and deliver it to the power management module 40 in response to the movement.
  • the fixing mechanism 20 may be provided at the end or the side of the housing 10.
  • the fixing mechanism 20 is arranged at the end of the housing 10, so that one end of the housing 10 along its length can be connected to the inner wall of the heart. 10 moves along the length direction of the housing 10 with the contraction and relaxation of the heart, thereby facilitating the output of the nano generator module 30.
  • the intracardiac energy harvesting device 100 can be fixed on the left ventricular wall of the heart, near the apex of the heart, by the fixing mechanism 20. When fixed at this position, the relative fluctuation range and intensity of the heart are greater, and the movement range and intensity of the intracardiac energy harvesting device 100 are also greater. It is then larger, thereby facilitating the output of the nano generator module 30.
  • the fixed position of the intracardiac energy harvesting device 100 in the heart cavity is not limited to this.
  • the fixing mechanism 20 may include at least one of a claw fixing mechanism, a hook fixing mechanism, a spiral fixing mechanism, and a screw fixing mechanism, but is not limited thereto. Based on this revelation, those skilled in the art can also adopt fixing mechanisms of other structures.
  • FIG. 1 shows an example in which the fixing mechanism 20 adopts a claw-shaped fixing mechanism
  • FIG. 2 shows an example in which the fixing mechanism 20 adopts a spiral fixing mechanism.
  • the nano-generator module 30 is packaged in the housing 10.
  • the nano-generator module 30 is configured to output electrical energy in response to the movement of the housing 10 when the heart beats. That is, the nano-generator module 30 can convert the movement of the housing 10 when the heart beats into Electrical energy.
  • the length of the nano generator module 30 is 0.5 cm-4.5 cm. Preferably, the length of the nano generator module 30 is 1.5 cm.
  • the power management module 40 may be packaged in the housing 10, but is not limited thereto. Optionally, the power management module 40 may be separately packaged on the outside of the housing 10 through packaging materials.
  • the power management module 40 is used to manage the electrical energy output by the nano generator module 30. When the power management module 40 and the nano generator module 30 are both packaged in the housing 10, the overall integration degree of the energy harvesting device 100 in the heart can be improved.
  • the power management module 40 may include a rectification module 41 and an energy storage module 42.
  • the rectifier module 41 is used for converting the AC current output by the nano generator module 30 into a DC current, and the energy storage module 42 is used for storing the DC current output by the rectifier module 41.
  • the rectifier module 41 may include a rectifier unit and a filter unit.
  • the rectifier unit converts the alternating current output by the nano generator module 30 into a direct current.
  • a rectifier bridge may be used; the filter unit converts the pulsating direct current output by the rectifier unit into a relatively stable
  • the direct current is supplied to the energy storage module 42 for storage.
  • the energy storage module 42 may be a rechargeable lithium battery or an energy storage capacitor.
  • the energy storage module 42 can provide electrical energy to loads such as the load function unit of the implanted electronic medical device for its operation.
  • the power management module 40 and the nano generator module 30 can be separated by a hard layer, and the output electrode of the nano generator module 30 can be connected to the rectifier unit of the power management module 40 through a flexible circuit board or a wire.
  • the input electrode is electrically connected.
  • the power output electrode 401 of the power management module 40 can be extended to the outside of the housing 10 through a wire to provide power to the load.
  • the length of the power management module 40 is 0.5 cm-4.5 cm.
  • the length of the power management module 40 is 1 cm.
  • the relative positions of the nano generator module 30 and the power management module 40 in the housing 10 are not limited.
  • the nano generator module 30 may be located at the end of the housing 10 away from the fixing mechanism 20, and the nano generator module 30 may also be located in the housing 10. Close to one end of the fixing mechanism 20.
  • Fig. 4 shows a schematic diagram of the functional modules of the energy harvesting device in the heart.
  • Fig. 5 is a schematic structural diagram of an intracardiac energy harvesting device according to some embodiments.
  • the nano generator module 30 includes a first cavity 31, at least one power generating unit 32, and at least one first jumping body 33.
  • the first cavity 31 is a cavity inside the housing 10.
  • At least one power generation unit 32 is all disposed in the first cavity 31, and the power generation unit 32 can be disposed on at least one of the top wall, the bottom wall, and the side wall of the first cavity 31.
  • the at least one power generation unit 32 may include at least one of a friction nano power generation unit and a piezoelectric nano power generation unit.
  • At least one first beating body 33 is freely movably arranged in the first cavity 31, that is, when the heart beats and the housing 10 is driven to move by the fixing mechanism 20, the housing 10 drives the first beating body 33 in the first cavity. 31 in sports.
  • the first beating body 33 is configured to move in the first cavity 31 and contact and/or impact the power generation unit 32 in response to the beating of the heart (ie, the contraction and relaxation of the heart), so that the power generation unit 32 outputs to the power management module 40 electric signal.
  • the first jumping body 33 may be an integrally formed body, or may be a jumping body formed by a combination of multiple layers.
  • FIG. 6 is a schematic diagram of the structure of the power generating unit 32 in FIG. 5.
  • the power generation unit 32 is a friction nano power generation unit.
  • the power generation unit 32 includes a first electrode layer 321, a first friction layer 322 arranged in contact with the first electrode layer 321, and a second electrode layer. 323, and a second friction layer 324 disposed in contact with the second electrode layer 323.
  • the first friction layer 322 and the second friction layer 324 are arranged face to face and are separated by a space where at least one first beating body 33 can move freely.
  • the first beating body 33 is configured to be on the first friction layer 322 in response to the beating of the heart.
  • the second friction layer 324 so that the first jumping body 33 and the first friction layer 322 contact and separate, the first jumping body 33 and the second friction layer 324 contact and separate, so that the first electrode layer 321 and the first
  • the two electrode layer 323 outputs electrical signals to the power management module 40.
  • the first electrode layer 321 and the second electrode layer 323 may be electrically connected to the input electrode of the rectifier unit of the power management module 40 through the first wire 01 respectively.
  • the first friction layer 322 and the second friction layer 324 are arranged facing each other, which means that both the first friction layer 322 and the second friction layer 324 are located between the first electrode layer 321 and the second electrode layer 323.
  • first friction layer 322 There is a difference between the material of the first friction layer 322 and the material of the outer surface of the first beating body 33, so that the first beating body 33 and the first friction layer 322 can be in contact or rubbing on the surface of both. Both generate contact charges, and of the two, the surface of one is positively charged, and the surface of the other is negatively charged; there are gain and loss electrons between the material of the second friction layer 324 and the material of the outer surface of the first beating body 33
  • the difference in ability enables the first jumping body 33 and the second friction layer 324 to generate contact charges on the surfaces of both during the contact or rubbing process, and of the two, one of the surfaces is positively charged, and the other one’s surface is positively charged. Negatively charged.
  • Each of the first friction layer 322, the second friction layer 324, and the first jumping body 33 includes at least one of an insulator material, a semiconductor material, and a conductive material.
  • Conventional insulating materials have triboelectric characteristics, and can be used as materials for preparing the first friction layer 322, the second friction layer 324, and the first beating body 33.
  • semiconductors and metals Compared with insulators, both semiconductors and metals have triboelectric characteristics that easily lose electrons. Therefore, semiconductors and metals can also be used as materials for preparing the first friction layer 322, the second friction layer 324, and the first beating body 33.
  • each of the first friction layer 322, the second friction layer 324, and the first beating body 33 may include polyethylene, polypropylene, polystyrene, silica gel, polydimethylsiloxane, polyester, At least among polyurethane, polymethacrylate, polytetrafluoroethylene and nylon, polyimide, nitrile rubber, fluororubber, latex, chitin, cellulose, gold, silver, copper, aluminum, iron, and alloy materials One, but not limited to this.
  • the first friction layer 322 and the second friction layer 324 are both polytetrafluoroethylene
  • the first jumping body 33 is polypropylene.
  • Each of the material of the first electrode layer 321 and the material of the second electrode layer 323 may include at least one of a metal and a conductive polymer material, where the metal includes gold, silver, copper, aluminum, iron, and alloys. At least one, the conductive polymer material includes at least one of carbon nanotubes, graphene, and carbon black, but is not limited thereto. Preferably, the material of the first electrode layer 321 and the material of the second electrode layer 323 are both gold.
  • the first electrode layer 321 and the second electrode layer 323 can be coated on the surface of the corresponding friction layer by magnetron sputtering, but it is not limited to this, and the first electrode layer 321 and the second electrode layer 323 can also be prepared by other methods.
  • the first beating body 33 moves relative to the housing 10 in the first cavity 31, and the first beating body 33 is in the first friction layer. 322 and the second friction layer 324 reciprocate, thereby repeatedly contacting the upper and lower first friction layer 322 and the second friction layer 324.
  • the first electrode layer 321 and the second electrode layer 323 There will be a potential difference between them, and an alternating electrical signal will be generated in the external circuit.
  • the alternating current signal will continue to be generated, causing the first electrode layer 321 and the second electrode layer 323 to continue to the power source
  • the management module 40 outputs electrical signals.
  • the power generation layer formed by the first electrode layer 321 and the first friction layer 322 is symmetrically arranged with the power generation layer formed by the second electrode layer 323 and the second friction layer 324, and the materials of the first friction layer 322 and the second friction layer 324 are the same.
  • the first friction layer 322 or the second friction layer 324 can be prepared by using a conductive material instead of an insulating material or a semiconductor material. That is, the first friction layer 322 can be a conductive material instead of the first electrode layer 321 in contact with it, and the second friction layer 324 may be a conductive material and replace the second electrode layer 323 in contact therewith. This arrangement can simplify the structure of the power generating unit 32 and reduce the manufacturing cost.
  • the conductive material may be selected from at least one of metals, conductive oxides, and conductive polymer materials.
  • At least one of the contact surface of the first friction layer 322, the contact surface of the second friction layer 324, and the outer surface of the first jumping body 33 includes at least one of a micro-nano structure, an embellishment of nanomaterials, and a coating of nanomaterials .
  • Micro-nano structures include micro- or sub-micron microstructures.
  • the microstructure may include at least one of nanowires, nanotubes, nanoparticles, nanogrooves, microgrooves, nanocones, microcones, nanospheres, and microsphere structures, but is not limited thereto.
  • the contact surface of the first friction layer 322 is a surface facing the second friction layer 324
  • the contact surface of the second friction layer 324 is a surface facing the first friction layer 322.
  • the contact area between the contact surface of the first friction layer 322 and the outer surface of the first jumping body 33 can be increased, thereby increasing the amount of contact charge, and increasing the contact surface of the second friction layer 324 and the first jumping
  • the contact area between the outer surfaces of the body 33 increases the amount of contact charges, thereby facilitating the output of electrical signals between the first electrode layer 321 and the first electrode layer 321.
  • the first electrode layer 321 and the second electrode layer 323 of the power generating unit 32 are sequentially arranged along the length direction of the housing 10. It is so arranged that when the shell 10 is fixed to the inner wall of the heart along its length direction and moves along the length direction of the shell 10, the first beating body 33 moves in the first cavity 31 along the length direction of the shell 10, and the first friction layer 322 and The second friction layer 324 bounces back and forth, thereby facilitating the first electrode layer 321 and the first electrode layer 321 to output electrical signals.
  • the fixing mechanism 20 may be provided at the end of the housing 10 along the length direction of the housing 10. When there is only one power generation unit 32 in the first cavity 31, the first electrode layer 321 and the second electrode layer 323 can be respectively fixed to the top wall and the bottom wall of the first cavity 31 along the length direction of the housing 10.
  • the position setting of the first electrode layer 321 and the second electrode layer 323 of the power generation unit 32 in the housing 10 is not limited to this.
  • the first electrode layer 321 and the second electrode layer 323 of the power generation unit 32 are sequentially arranged along the width direction of the housing 10.
  • the fixing mechanism 20 may be provided on the side of the housing 10 along the width direction of the housing 10.
  • the outer diameter of the first jumping body 33 may be 100 ⁇ m-5 mm, but is not limited to this, and this size is conducive to the free movement of the first jumping body 33 in the first cavity 31.
  • the outer diameter of the first jumping body 33 is 2 mm.
  • Two or more first jumping bodies 33 may be arranged in the space formed between the first friction layer 322 and the second friction layer 324, for example, 2-100 first jumping bodies 33 may be arranged. Under the condition that the overall quality of the energy harvesting device 100 in the heart does not affect the normal operation of the heart, providing multiple first beating bodies 33 can improve the output performance of the power generating unit 32.
  • the first jumping body 33 may be any one of a polyhedron, a cylinder, a sphere, and an ellipsoid, but is not limited thereto.
  • Fig. 7 is a first structural schematic diagram of an intracardiac energy harvesting device with multiple power generating units modified from Fig. 1.
  • Fig. 8 is a second structural schematic diagram of an intracardiac energy harvesting device with multiple power generating units modified from Fig. 1.
  • the number of power generation units 32 may be multiple, multiple power generation units 32 are stacked, and the space formed between the first friction layer 322 and the second friction layer 324 of each power generation unit 32 is uniform. At least one first jumping body 33 is provided.
  • the first beating bodies 33 in the plurality of power generating units 32 all move in their corresponding spaces, thereby interacting with the first friction layer 322 and the second friction layer 324 of the respective power generating units 32.
  • the contact and separation enable the first electrode layer 321 and the second electrode layer 323 of each power generation unit 32 to output electrical signals to the power management module 40.
  • the number of power generation units 32 may be 2-10, preferably, the number of power generation units 32 is three. With the above arrangement, the current output performance of the nano generator module 30 can be effectively improved.
  • a plurality of power generation units 32 are stacked in sequence along the length direction of the casing 10, and the first electrode layer 321 and the second electrode layer 323 of each power generation unit 32 are sequentially disposed along the length direction of the casing 10.
  • the above arrangement is beneficial to the placement of the multiple power generating units 32 in the housing 10.
  • the power management module 40 may include at least one rectification unit corresponding to the number of the power generation units 32, each power generation unit 32 is connected to a rectification unit, and the output ends of all the rectification units are connected in parallel. With the above arrangement, the overall current output of the nano generator module 30 can be improved.
  • Two adjacent power generation units 32 can be separated by a partition layer, so that after each power generation unit 32 generates power in its own region, it is rectified and connected in parallel.
  • the electrode layer of the power generating unit 32 is arranged on the inner wall of the first cavity 31 or the separation layer.
  • FIG. 7 shows an example in which two adjacent power generation units 32 are separated by a separation layer with a plurality of power generation units 32. It should be noted that two adjacent power generating units 32 can also share the same electrode layer, and each electrode layer is coupled together by a diode, so that when the potential distribution between any two electrode layers changes, a current output can be formed in the external circuit.
  • FIG. 8 shows an example of a plurality of power generating units 32 sharing the same electrode layer between two adjacent power generating units 32.
  • This embodiment provides an intracardiac energy harvesting device 100, which has a size and shape suitable for implantation into a heart cavity through interventional surgery.
  • the intracardiac energy harvesting device 100 includes a housing 10, a fixing mechanism 20, a nano generator module 30 and a power management module 40.
  • the nano generator module 30 includes a first cavity 31, at least one power generating unit 32, and at least one first jumping body 33.
  • the first cavity 31 is a cavity inside the housing 10.
  • At least one power generation unit 32 is all disposed in the first cavity 31, and the power generation unit 32 can be disposed on at least one of the top wall, the bottom wall, and the side wall of the first cavity 31.
  • the at least one power generation unit 32 may include at least one of a friction nano power generation unit and a piezoelectric nano power generation unit.
  • At least one first beating body 33 is freely movably disposed in the first cavity 31, that is, when the heart beats and the housing 10 is driven to move by the fixing mechanism 20, the housing 10 drives the first beating body 33 in the first cavity. 31 in sports.
  • the first beating body 33 is configured to move in the first cavity 31 and contact and/or impact the power generation unit 32 in response to the beating of the heart (ie, the contraction and relaxation of the heart), so that the power generation unit 32 outputs to the power management module 40 electric signal.
  • the first jumping body 33 may be an integrally formed body, or may be a jumping body formed by a combination of multiple layers.
  • the power generation unit 32 includes a first electrode layer 321, a first friction layer 322 arranged in contact with the first electrode layer 321, a second electrode layer 323, and a second friction layer arranged in contact with the second electrode layer 323 324.
  • the first beating body 33 moves between the first friction layer 322 and the second friction layer 324 in response to the beating of the heart, so that the first beating body 33 is in contact with and separated from the first friction layer 322, and the first beating body 33 is in contact with and separated from the second friction layer 324, so that the first electrode layer 321 and the second electrode layer 323 output electrical signals to the power management module 40.
  • Fig. 9 is a schematic structural diagram of an intracardiac energy harvesting device according to some embodiments.
  • Fig. 11 is a schematic structural diagram of an intracardiac energy harvesting device according to some embodiments.
  • Embodiment 2 The difference between Embodiment 2 and Embodiment 1 is:
  • the power generation unit 32 is a friction nano power generation unit.
  • the power generation unit 32 includes a third electrode layer 325, a third friction layer 326 arranged in contact with the third electrode layer 325, a fourth electrode layer 327, and a fourth electrode layer.
  • the electrode layer 327 is in contact with the fourth friction layer 328 provided.
  • the third friction layer 326 and the fourth friction layer 328 are arranged face-to-face and spaced apart from each other, and the first beating body 33 is configured to move in the first cavity 31 in response to the beating of the heart and align the third friction layer 326 and/or the third friction layer 326 and/or the third friction layer 326.
  • the fourth friction layer 328 applies force to make the third friction layer 326 and the fourth friction layer 328 contact and separate, so that the third electrode layer 325 and the fourth electrode layer 327 output electrical signals to the power management module 40.
  • the third electrode layer 325 and the fourth electrode layer 327 may be electrically connected to the input electrode of the rectifier unit of the power management module 40 through the second wire 02 respectively.
  • the third friction layer 326 and the fourth friction layer 328 are arranged facing each other, which means that the third friction layer 326 and the fourth friction layer 328 are both located between the third electrode layer 325 and the fourth electrode layer 327.
  • Each of the third friction layer 326 and the fourth friction layer 328 includes at least one of an insulator material, a semiconductor material, and a conductive material. Conventional insulating materials have triboelectric properties, and can be used as materials for preparing the third friction layer 326 and the fourth friction layer 328.
  • each of the third friction layer 326 and the fourth friction layer 328 may include polyethylene, polypropylene, polystyrene, silica gel, polydimethylsiloxane, polyester, polyurethane, and polymethacrylic acid. At least one of ester, polytetrafluoroethylene and nylon, polyimide, nitrile rubber, fluororubber, latex, chitin, cellulose, gold, silver, copper, aluminum, iron, alloy materials, but not limited to this.
  • Each of the material of the third electrode layer 325 and the material of the fourth electrode layer 327 may include at least one of a metal and a conductive polymer material, where the metal includes gold, silver, copper, aluminum, iron, and alloys. At least one, but not limited thereto, the conductive polymer material includes at least one of carbon nanotubes, graphene, and carbon black, but is not limited thereto.
  • the third friction layer 326 or the fourth friction layer 328 can be prepared by using a conductive material instead of an insulating material or a semiconductor material. That is, the third friction layer 326 can be a conductive material instead of the third electrode layer 325 provided in contact with it.
  • the layer 328 may be a conductive material and replace the fourth electrode layer 327 provided in contact therewith. This arrangement can simplify the structure of the power generating unit 32 and reduce the manufacturing cost.
  • the conductive material may be selected from at least one of metals, conductive oxides, and conductive polymer materials.
  • At least one of the contact surface of the third friction layer 326 and the contact surface of the fourth friction layer 328 includes at least one of a micro-nano structure, an embellishment of nanomaterials, and a coating of nanomaterials.
  • Micro-nano structures include micro- or sub-micron microstructures.
  • the microstructure may include at least one of nanowires, nanotubes, nanoparticles, nanogrooves, microgrooves, nanocones, microcones, nanospheres, and microsphere structures, but is not limited thereto.
  • the contact surface of the third friction layer 326 is a surface facing the fourth friction layer 328
  • the contact surface of the fourth friction layer 328 is a surface facing the third friction layer 326.
  • the contact area between the contact surface of the third friction layer 326 and the contact surface of the fourth friction layer 328 can be increased, thereby increasing the amount of contact charge, which is beneficial to the third electrode layer 325 and the fourth electrode layer 327. Electric signal output.
  • a surface of the third electrode layer 325 away from the third friction layer 326 may be provided with a third substrate 3250, and/or a surface of the fourth electrode layer 327 away from the fourth friction layer 328 may be provided with a fourth substrate 3270, and the first When the jumping body 33 moves in the first cavity 31, by hitting the third substrate 3250 and/or the fourth substrate 3270, the third friction layer 326 and the fourth friction layer 328 are brought into contact and separated, so that the third electrode layer The 325 and the fourth electrode layer 327 output electrical signals to the power management module 40.
  • the third electrode layer 325 can be directly fixed on the inner wall of the first cavity 31 or fixed on the inner wall of the first cavity 31 through the third substrate 3250.
  • the inner wall of the first cavity 31 includes at least one of the top wall, the bottom wall, and the side wall of the first cavity 31.
  • At least one support 320 may be provided between at least one of the friction layers 328, between the third friction layer 326 and the fourth substrate 3270, and between the third friction layer 326 and the fourth friction layer 328, through the support 320. Supported so that the third friction layer 326 and the fourth friction layer 328 are spaced apart from each other by a certain space.
  • the support 320 may be an elastic support or an inelastic support. When the support 320 is an elastic support, it may be a spring.
  • the support 320 is not limited thereto, and may include various other elastic members.
  • the support 320 is forced to compress by hitting the fourth substrate 3270, so that the third friction layer 326 and the fourth friction layer 328 are in contact and separated.
  • At least one of the third substrate 3250 and the fourth substrate 3270 may have flexibility to deform due to the impact force of the first jumping body 33 and have a restoring force to return to its original state when the impact force of the first jumping body 33 is removed
  • at least one of the third substrate 3250 and the fourth substrate 3270 may include a material that has flexibility to deform due to external force and has stretchability to extend or contract.
  • the third substrate 3250 and the fourth substrate 3270 may include polyester (PE), polyethersulfone (PES), polyethylene naphthalate (PEN), or polyimide (PI), But it is not limited to this.
  • the third electrode layer 325 and the third friction layer 326 may have flexibility and extensibility corresponding to the third substrate 3250, and the fourth electrode layer 327 and the fourth friction layer 328 may have flexibility and extensibility corresponding to the fourth substrate 3270.
  • the fourth electrode layer 327 can be directly fixed on the inner wall of the first cavity 31 or fixed on the inner wall of the first cavity 31 through the fourth substrate 3270.
  • the inner wall of the first cavity 31 includes at least one of the top wall, the bottom wall, and the side wall of the first cavity 31.
  • At least one support 320 may be provided between the friction layers 326, between the fourth friction layer 328 and the third substrate 3250, and between the fourth friction layer 328 and the third friction layer 326. Supported so that the third friction layer 326 and the fourth friction layer 328 are spaced apart from each other by a certain space.
  • the support 320 is forced to compress by hitting the third substrate 3250, so that the third friction layer 326 and the fourth friction layer 328 are in contact and separated.
  • At least one of the third substrate 3250 and the fourth substrate 3270 may have flexibility to deform due to the impact force of the first jumping body 33 and have a restoring force to return to its original state when the impact force of the first jumping body 33 is removed
  • at least one of the third substrate 3250 and the fourth substrate 3270 may include a material that has flexibility to deform due to external force and has stretchability to extend or contract.
  • Fig. 12 is a schematic structural diagram of an intra-heart energy harvesting device modified from Fig. 11.
  • the outer edge of the third substrate 3250 and the outer edge of the fourth substrate 3270 may both be fixed on the side wall of the first cavity 31, so that both sides of the power generating unit 32 form a space, located on the third substrate 3250
  • the first jumping body 33 on one side hits the third substrate 3250 when moving
  • the first jumping body 33 on the side of the fourth substrate 3270 hits the fourth substrate 3270 when moving, so that the third friction layer 326 and the fourth friction
  • the layer 328 contacts and separates.
  • each of the third substrate 3250 and the fourth substrate 3270 may have flexibility to deform due to the impact force of the first jumping body 33 and have a restoring force to return to when the impact force of the first jumping body 33 is removed.
  • each of the third substrate 3250 and the fourth substrate 3270 may include a material that has flexibility to deform due to the impact force of the first jumping body 33 and has stretchability to extend or contract.
  • the third electrode layer 325 and the third friction layer 326 may have flexibility and extensibility corresponding to the third substrate 3250
  • the fourth electrode layer 327 and the fourth friction layer 328 may have flexibility and extensibility corresponding to the fourth substrate 3270.
  • the third substrate 3250 and the fourth substrate 3270 may have an arc shape or an arch shape in a natural state.
  • the number of power generating units 32 is multiple, and two adjacent power generating units 32 are separated by a space where at least one first jumping body 33 can move freely, and at least a freely movable space is provided in the space.
  • a first jumping body 33 When the housing 10 moves with the heartbeat, the first beating body 33 strikes the third substrate 3250 and/or the fourth substrate 3270 of each power generation unit 32, so that the third electrode layer 325 and the fourth electrode layer of each power generation unit 32 327 outputs an electrical signal to the rectifier unit of the power management module 40.
  • the power management module 40 may include at least one rectification unit corresponding to the number of the power generation units 32, each power generation unit 32 is connected to a rectification unit, and the output ends of all the rectification units are connected in parallel. With the above arrangement, the overall current output of the nano generator module 30 can be improved.
  • Fig. 13 is a schematic diagram of the structure of an intra-heart energy harvesting device modified from Fig. 11.
  • a plurality of power generation units 32 can be stacked, and two adjacent power generation units 32 can be separated by a third substrate 3250 and/or a fourth substrate 3270, so that each power generation unit 32 is separately connected to a rectifier unit. , The output terminals of all rectifier units are connected in parallel.
  • Fig. 14 is a schematic structural diagram of an intra-heart energy harvesting device modified from Fig. 11.
  • the third substrate 3250 and/or the fourth substrate 3270 may not be provided between two adjacent power generating units 32 for separation, and the same electrode layer may be shared between two adjacent power generating units 32.
  • This embodiment provides an intracardiac energy harvesting device 100, which has a size and shape suitable for implantation into a heart cavity through interventional surgery.
  • the intracardiac energy harvesting device 100 includes a housing 10, a fixing mechanism 20, a nano generator module 30 and a power management module 40.
  • the nano generator module 30 includes a first cavity 31, at least one power generating unit 32 and at least one first jumping body 33.
  • the first cavity 31 is a cavity inside the housing 10.
  • At least one power generation unit 32 is all disposed in the first cavity 31, and the power generation unit 32 can be disposed on at least one of the top wall, the bottom wall, and the side wall of the first cavity 31.
  • the at least one power generation unit 32 may include at least one of a friction nano power generation unit and a piezoelectric nano power generation unit.
  • At least one first beating body 33 is freely movably arranged in the first cavity 31, that is, when the heart beats and the housing 10 is driven to move by the fixing mechanism 20, the housing 10 drives the first beating body 33 in the first cavity. 31 in sports.
  • the first beating body 33 is configured to move in the first cavity 31 and contact and/or impact the power generation unit 32 in response to the beating of the heart (ie, the contraction and relaxation of the heart), so that the power generation unit 32 outputs to the power management module 40 electric signal.
  • the first jumping body 33 may be an integrally formed body, or may be a jumping body formed by a combination of multiple layers.
  • the power generation unit 32 includes a first electrode layer 321, a first friction layer 322 arranged in contact with the first electrode layer 321, a second electrode layer 323, and a second friction layer arranged in contact with the second electrode layer 323 324.
  • the first beating body 33 moves between the first friction layer 322 and the second friction layer 324 in response to the beating of the heart, so that the first beating body 33 is in contact with and separated from the first friction layer 322, and the first beating body 33 is in contact with and separated from the second friction layer 324, so that the first electrode layer 321 and the second electrode layer 323 output electrical signals to the power management module 40.
  • Fig. 15 is a schematic structural diagram of an intracardiac energy harvesting device according to some embodiments.
  • Embodiment 3 The difference between Embodiment 3 and Embodiment 1 is:
  • the power generation unit 32 is a piezoelectric nano power generation unit.
  • the power generation unit 32 includes a piezoelectric material layer 3201 and a first piezoelectric electrode layer 3202 arranged in contact with the piezoelectric material layer 3201 and located on the side of the piezoelectric material layer 3201. And the second piezoelectric electrode layer 3203 disposed in contact with the piezoelectric material layer 3201 and located on the other side of the piezoelectric material layer 3201.
  • the first beating body 33 is configured to move in the first cavity 31 in response to the beating of the heart and apply a force to the piezoelectric material layer 3201, so that the first piezoelectric electrode layer 3202 and the second piezoelectric electrode layer 3203 are connected to the power source.
  • the module 40 outputs electrical signals.
  • the first piezoelectric electrode layer 3202 and the second piezoelectric electrode layer 3203 may be electrically connected to the input electrode of the rectifier unit of the power management module 40 through a third wire, respectively.
  • Each of the first piezoelectric electrode layer 3202 and the second piezoelectric electrode layer 3203 may include at least one of a metal conductor material, a metal alloy conductor material, and a metal oxide conductor material (for example, indium oxide), but is not limited thereto.
  • the piezoelectric material layer 3201 may include at least one of piezoelectric ceramics, oxides, and polymers.
  • the piezoelectric material layer 3201 may include lead zirconate titanate (PZT), zinc oxide, and polyvinylidene fluoride (PVDF). At least one of, but not limited to.
  • the piezoelectric polarization direction of the piezoelectric nano power generation unit can be up or down, which is not limited.
  • a surface of the first piezoelectric electrode layer 3202 away from the piezoelectric material layer 3201 may be provided with a first substrate 3204, and a surface of the second piezoelectric electrode layer 3203 away from the piezoelectric material layer 3201 may be provided with a second substrate 3205.
  • the first piezoelectric electrode layer 3202 can be directly fixed on the inner wall of the first cavity 31 or fixed on the inner wall of the first cavity 31 through the first substrate 3204.
  • the piezoelectric material layer 3201 is forced to deform by hitting the second substrate 3205, thereby generating a potential difference on the upper and lower surfaces of the piezoelectric material layer 3201, and making Opposite charges are induced on the surfaces of the first piezoelectric electrode layer 3202 and the second piezoelectric electrode layer 3203.
  • the external circuit is turned on, the charge will move in a directional direction and form a current, which will then transfer to the rectifier unit of the power management module 40. Output electrical energy.
  • the second piezoelectric electrode layer 3203 can be directly fixed on the inner wall of the first cavity 31 or fixed on the inner wall of the first cavity 31 through the second substrate 3205.
  • the piezoelectric material layer 3201 is forced to deform by hitting the first substrate 3204, thereby generating a potential difference on the upper and lower surfaces of the piezoelectric material layer 3201, and making Opposite charges are induced on the surfaces of the first piezoelectric electrode layer 3202 and the second piezoelectric electrode layer 3203.
  • the external circuit is turned on, the charge will move in a directional direction and form a current, so as to transfer to the rectifier unit of the power management module 40. Output electrical energy.
  • Fig. 16 is a first structural diagram of the intra-heart energy harvesting device modified from Fig. 15.
  • the outer edge of the first substrate 3204 and the outer edge of the second substrate 3205 may both be fixed on the side wall of the first cavity 31, so that both sides of the power generating unit 32 form a space, which is located on the first substrate 3204.
  • the first jumping body 33 on the side hits the first substrate 3204 when moving
  • the first jumping body 33 on the side of the second substrate 3205 hits the second substrate 3205 when moving, both of which can cause the piezoelectric material layer 3201 to be deformed by force.
  • the first piezoelectric electrode layer 3202 and the second piezoelectric electrode layer 3203 output electrical energy to the rectifier unit of the power management module 40.
  • Each of the first substrate 3204 and the second substrate 3205 may be a flexible material or an inflexible material. At least one of the first substrate 3204 and the second substrate 3205 may include a material that has flexibility to deform due to the impact force of the first jumping body 33 and has stretchability to extend or contract.
  • the structure of the piezoelectric nano-power generation unit is only an example. In fact, the specific structure of the piezoelectric nano-power generation unit is not limited in this embodiment, that is, any structure of the piezoelectric nano-power generation unit can be applied to In the structure of the intracardiac energy harvesting device 100 according to this embodiment.
  • the number of power generation units 32 is multiple, and two adjacent power generation units 32 are separated by a space where at least one first jumping body 33 can move freely, and a freely movable space is provided in the space. ⁇ At least one of the first jumping body 33.
  • the first beating body 33 hits the first substrate 3204 and/or the second substrate 3205 of each power generation unit 32, so that the piezoelectric material layer 3201 of each power generation unit 32 is deformed under force.
  • the first piezoelectric electrode layer 3202 and the second piezoelectric electrode layer 3203 of each power generation unit 32 output electric energy to the rectification unit of the power management module 40.
  • the power management module 40 may include at least one rectification unit corresponding to the number of the power generation units 32, each power generation unit 32 is connected to a rectification unit, and the output ends of all the rectification units are connected in parallel. With the above arrangement, the overall current output of the nano generator module 30 can be improved.
  • a plurality of power generation units 32 can be stacked, and two adjacent power generation units 32 can be separated by the first substrate 3204 and/or the second substrate 3205, so that each power generation unit 32 is separately connected to a rectification unit, and all rectification units The output terminals are connected in parallel. It should be noted that the first substrate 3204 and/or the second substrate 3205 may not be provided for separation between two adjacent power generating units 32, and the same piezoelectric electrode layer may be shared. FIG. 17 shows an example in which two adjacent power generating units 32 share the same piezoelectric electrode layer.
  • This embodiment provides an intracardiac energy harvesting device 100, which has a size and shape suitable for implantation into a heart cavity through interventional surgery.
  • the intracardiac energy harvesting device 100 includes a housing 10, a fixing mechanism 20, a nano generator module 30 and a power management module 40.
  • the nano generator module 30 includes a first cavity 31, at least one power generating unit 32 and at least one first jumping body 33.
  • the first cavity 31 is a cavity inside the housing 10.
  • At least one power generation unit 32 is all disposed in the first cavity 31, and the power generation unit 32 can be disposed on at least one of the top wall, the bottom wall, and the side wall of the first cavity 31.
  • the at least one power generation unit 32 may include at least one of a friction nano power generation unit and a piezoelectric nano power generation unit.
  • At least one first beating body 33 is freely movably arranged in the first cavity 31, that is, when the heart beats and the housing 10 is driven to move by the fixing mechanism 20, the housing 10 drives the first beating body 33 in the first cavity. 31 in sports.
  • the first beating body 33 is configured to move in the first cavity 31 and contact and/or impact the power generation unit 32 in response to the beating of the heart (ie, the contraction and relaxation of the heart), so that the power generation unit 32 outputs to the power management module 40 electric signal.
  • the first jumping body 33 may be an integrally formed body, or may be a jumping body formed by a combination of multiple layers.
  • the power generation unit 32 includes a first electrode layer 321, a first friction layer 322 arranged in contact with the first electrode layer 321, a second electrode layer 323, and a second friction layer arranged in contact with the second electrode layer 323 324.
  • the first beating body 33 moves between the first friction layer 322 and the second friction layer 324 in response to the beating of the heart, so that the first beating body 33 is in contact with and separated from the first friction layer 322, and the first beating body 33 is in contact with and separated from the second friction layer 324, so that the first electrode layer 321 and the second electrode layer 323 output electrical signals to the power management module 40.
  • Figures 18-20 are schematic structural diagrams of an intracardiac energy harvesting device according to some embodiments.
  • At least two power generating units 32 are provided in the first cavity 31, and the at least two power generating units 32 include at least one friction nano power unit and at least one piezoelectric nano power unit.
  • the first beating body 33 is configured to contact and/or impact the friction nano power generation unit and/or the piezoelectric nano power generation unit in response to the beating of the heart, thereby causing the friction nano power generation unit and/or the piezoelectric nano power generation unit to report to the power management module respectively 40 output electrical signals.
  • the at least one friction nanopower generation unit may include at least one of the friction nanopower generation unit in Embodiment 1 and the friction nanopower generation unit in Embodiment 2.
  • FIG. 18 shows an example in which the friction nano power generation unit in Embodiment 1 is used.
  • 19 and FIG. 20 show an example of using the triboelectric nanopower unit in Embodiment 2.
  • FIG. The at least one piezoelectric nano power generation unit may be the piezoelectric nano power generation unit in Embodiment 3.
  • a space where the at least one first jumping body 33 can move freely can be separated between the at least one friction nano power generation unit and the at least one piezoelectric nano power generation unit, and the first jumping body 33 moves in the space to repeatedly contact. And/or hit the friction nano power unit and the piezoelectric nano power unit, so that the friction nano power unit and the piezoelectric nano power unit output electrical signals to the power management module 40 respectively.
  • At least one friction nano power generation unit and at least one piezoelectric nano power generation unit can be stacked, and adjacent friction nano power generation units and piezoelectric nano power generation units can be separated by a substrate, so that each friction nano power generation unit and Each piezoelectric nano power generation unit is separately connected to a rectification unit, and the output ends of all the rectification units are connected in parallel.
  • FIG. 18 shows an example in which adjacent friction nano power generation units and piezoelectric nano power generation units are separated by a substrate. It should be noted that the adjacent friction nano power unit and the piezoelectric nano power unit may not be separated by a substrate, and the adjacent friction nano power unit and the piezoelectric nano power unit may share the same electrode layer.
  • This embodiment provides an intracardiac energy harvesting device 100, which has a size and shape suitable for implantation into a heart cavity through interventional surgery.
  • the intracardiac energy harvesting device 100 includes a housing 10, a fixing mechanism 20, a nano generator module 30 and a power management module 40.
  • the nano generator module 30 includes a first cavity 31, at least one power generation unit 32, and at least one first beating body 33.
  • the first beating body 33 is configured to be in the first beating body in response to the beating of the heart.
  • the cavity 31 moves in the cavity 31 and contacts and/or impacts the power generation unit 32, so that the power generation unit 32 outputs electrical signals to the power management module 40.
  • Figures 21 to 23 are schematic diagrams of the structure of an intracardiac energy harvesting device according to some embodiments.
  • the nano generator module 30 includes a second cavity 34, at least one friction nano power generation unit and/or at least one piezoelectric nano power generation unit, at least one second bounce body 35 and at least one ⁇ 36 ⁇ Coil 36.
  • the second cavity 34 is a cavity inside the housing 10.
  • At least one tribo nano power unit and/or at least one piezoelectric nano power unit are both arranged in the second cavity 34.
  • the at least one tribo nano power unit may include the tribo nano power unit and the implementation in Embodiment 1.
  • FIG. 21 shows an example in which the friction nano power generation unit in Embodiment 1 is used.
  • FIG. 22 shows an example in which the triboelectric nanopower unit in Embodiment 2 is used.
  • the at least one piezoelectric nano power generation unit may be the piezoelectric nano power generation unit in Embodiment 3.
  • FIG. 22 shows an example in which the piezoelectric nano-power generation unit in Embodiment 3 is used.
  • At least one second beating body 35 is freely movably arranged in the second cavity 34, that is, when the heart beats and the housing 10 is driven to move by the fixing mechanism 20, the housing 10 drives the second beating body 35 in the second cavity.
  • the second jumping body 35 includes a magnet, so that the second jumping body 35 generates an alternating magnetic field when the second jumping body 35 moves in the second cavity 34.
  • the second jumping body 35 may be a magnet as a whole.
  • the second jumping body 35 may include a magnet and a friction material disposed on the outer surface of the magnet, and the friction material may be the first jumping body in Embodiment 1. 33 materials.
  • the magnet may include at least one of neodymium iron boron, aluminum nickel cobalt, samarium cobalt, and ferrite.
  • At least one coil 36 is fixed in the second cavity 34, and at least one coil 36 can be fixed on the inner wall of the second cavity 34.
  • the inner wall of the second cavity 34 includes the top wall of the first cavity 31, At least one of the bottom wall and the side wall.
  • the coil 36 is used to relatively cut the magnetic lines of induction in the alternating magnetic field generated during the movement of the second jumping body 35 in the second cavity 34 to generate an alternating current in the coil 36 to form a magnetoelectric potential difference. Both ends of the coil 36 can be electrically connected to the input electrode of the rectifier unit of the power management module 40 through a fourth wire, respectively.
  • the coil 36 may be a planar coil, and the coil 36 may be a single-phase or concentric winding toroidal coil.
  • the second beating body 35 is configured to move in the second cavity 34 in response to the beating of the heart to contact and/or impact the triboelectric nanopower unit 32 and/or the piezoelectric nanopower unit 32 and generate an alternating magnetic field to make the friction nano
  • the power generation unit 32 and/or the piezoelectric nano power generation unit 32 outputs electrical signals to the power management module 40, and causes the coil 36 to relatively cut the magnetic lines of induction in the alternating magnetic field to output magnetoelectric signals to the power management module 40.
  • the housing 10 moves with the beating of the heart, thereby driving the second beating body 35 to move in the second cavity 34, so that the triboelectric nanopower unit 32 and/or the piezoelectric nanopower unit 32 can respond to the first
  • the contact and/or impact of the two jumping bodies 35 output current and make the coil 36 output current, which effectively improves the output performance and energy conversion efficiency of the nano generator module 30.
  • This embodiment provides an intracardiac energy harvesting device 100, which has a size and shape suitable for implantation into a heart cavity through interventional surgery.
  • the intracardiac energy harvesting device 100 includes a housing 10, a fixing mechanism 20, a nano generator module 30, and a power management module 40.
  • the nano generator module 30 includes a first cavity 31, at least one power generation unit 32, and at least one first beating body 33.
  • the first beating body 33 is configured to be in the first beating body in response to the beating of the heart.
  • the cavity 31 moves in the cavity 31 and contacts and/or impacts the power generation unit 32, so that the power generation unit 32 outputs electrical signals to the power management module 40.
  • Figures 24 and 26 are schematic diagrams of the structure of an intracardiac energy harvesting device according to some embodiments.
  • Embodiment 6 The difference between Embodiment 6 and Embodiment 1 is:
  • the nano generator module 30 includes a third cavity 301, a movable body 302, a sixth electrode layer 303 and a sixth friction layer 304.
  • the third cavity 301 is a cavity inside the housing 10.
  • the movable body 302 is movably arranged in the third cavity 301, that is, when the heart beats and the housing 10 is driven to move by the fixing mechanism 20, the housing 10 drives the movable body 302 to move in the third cavity 301.
  • the movable body 302 includes a fifth electrode layer 3021, and a fifth friction layer 3022 disposed in contact with the fifth electrode layer 3021.
  • the fifth friction layer 3022 is disposed on a surface of the fifth electrode layer 3021 close to the sixth friction layer 304.
  • the movable body 302 may further include a core 3023, so that the fifth electrode layer 3021 is disposed on the core 3023, and the fifth friction layer 3022 is disposed on the fifth electrode layer 3021.
  • the sixth electrode layer 303 is disposed in the third cavity 301, and the sixth electrode layer 303 and the fifth electrode layer 3021 are spaced apart from each other.
  • the sixth electrode layer 303 may be disposed on at least one of the top wall, the bottom wall, and the side wall of the third cavity 301.
  • FIG. 24 shows an example in which the sixth electrode layer 303 is provided on the top wall and the bottom wall of the third cavity 301.
  • FIG. 26 shows an example in which the sixth electrode layer 303 is provided on the sidewall of the third cavity 301.
  • the fifth electrode layer 3021 and the sixth electrode layer 303 may be electrically connected to the input electrode of the rectifier unit of the power management module 40 through a fifth wire, respectively. It should be noted that the length of the wire connected to the fifth electrode layer 3021 needs to be appropriate, and the free movement of the movable body 302 in the third cavity 301 should not be restricted.
  • the sixth friction layer 304 is arranged in contact with the sixth electrode layer 303, and the sixth friction layer 304 is arranged on a surface of the sixth electrode layer 303 close to the fifth friction layer 3022.
  • the movable body 302 is configured to contact and separate the fifth friction layer 3022 and the sixth friction layer 304 in response to the beating of the heart, so that the fifth electrode layer 3021 and the sixth electrode layer 303 output electrical signals to the power management module 40.
  • Each of the material of the fifth friction layer 3022 and the material of the sixth friction layer 304 includes at least one of an insulator material, a semiconductor material, and a conductive material.
  • Conventional insulating materials have triboelectric characteristics, and can be used as materials for preparing the fifth friction layer 3022 and the sixth friction layer 304.
  • semiconductors and metals Compared with insulators, both semiconductors and metals have triboelectric characteristics that easily lose electrons. Therefore, semiconductors and metals can also be used as materials for preparing the fifth friction layer 3022 and the sixth friction layer 304.
  • each of the fifth friction layer 3022 and the sixth friction layer 304 may include polyethylene, polypropylene, polystyrene, silica gel, polydimethylsiloxane, polyester, polyurethane, and polymethacrylic acid. At least one of ester, polytetrafluoroethylene and nylon, polyimide, nitrile rubber, fluororubber, latex, chitin, cellulose, gold, silver, copper, aluminum, iron, alloy materials, but not limited to this.
  • Each of the material of the fifth electrode layer 3021 and the material of the sixth electrode layer 303 may include at least one of a metal and a conductive polymer material, where the metal includes gold, silver, copper, aluminum, iron, and alloys. At least one, the conductive polymer material includes at least one of carbon nanotubes, graphene, and carbon black, but is not limited thereto.
  • the heart beats and drives the housing 10 to move through the fixing mechanism 20, and the housing 10 drives the movable body 302 to move in the third cavity 301 (when the sixth friction layer 304 is arranged along the side wall of the third cavity 301, Relative sliding or contact and separation may occur between the fifth friction layer 3022 and the sixth friction layer 304.
  • the sixth friction layer 304 is disposed on the top or bottom wall of the third cavity 301, the fifth friction layer 3022 and Contact and separation occurs between the sixth friction layer 304), so that relative sliding or contact and separation occur between the fifth friction layer 3022 and the sixth friction layer 304.
  • the fifth electrode There will be a potential difference between the layer 3021 and the sixth electrode layer 303, and an alternating electrical signal will be generated in the external circuit. As the heart continues to contract and relax, the alternating current signal will continue to be generated, making the fifth electrode layer 3021 and the first The six-electrode layer 303 continuously outputs electrical signals to the power management module 40.
  • the shape of the movable body 302 is not limited.
  • the fifth friction layer 3022 and the fifth electrode layer 3021 may be enclosed cylindrical or spherical, or may be non-closed curved surfaces or planes, but are not limited thereto.
  • the shapes of the sixth friction layer 304 and the sixth electrode layer 303 are not limited.
  • the sixth friction layer 304 and the sixth electrode layer 303 can be cylindrical or non-closed along the inner wall of the third cavity 301 Curved or flat, but not limited to this.
  • FIG. 26 shows an example in which the sixth friction layer 304 and the sixth electrode layer 303 are enclosed in a cylindrical shape along the inner side wall of the third cavity 301.
  • the fifth friction layer 3022 and the sixth friction layer 304 can be prepared by using a conductive material instead of an insulating material or a semiconductor material. That is, the fifth friction layer 3022 can be a conductive material instead of the fifth electrode layer 3021 provided in contact with it.
  • the layer 304 may be a conductive material and replace the sixth electrode layer 303 provided in contact therewith.
  • the conductive material may be selected from at least one of metals, conductive oxides, and conductive polymer materials.
  • At least one of the contact surface of the fifth friction layer 3022 and the contact surface of the sixth friction layer 304 includes at least one of a micro-nano structure, an embellishment of nanomaterials, and a coating of nanomaterials.
  • Micro-nano structures include micro- or sub-micron microstructures.
  • the microstructure may include at least one of nanowires, nanotubes, nanoparticles, nanogrooves, microgrooves, nanocones, microcones, nanospheres, and microsphere structures, but is not limited thereto.
  • the contact surface of the fifth friction layer 3022 is a surface facing the sixth friction layer 304
  • the contact surface of the sixth friction layer 304 is a surface facing the fifth friction layer 3022.
  • This embodiment provides a method for implanting an intracardiac energy harvesting device.
  • the intracardiac energy harvesting device is any intracardiac energy harvesting device 100 in any of the above embodiments.
  • the implanting method for the intracardiac energy harvesting device includes:
  • the intracardiac energy harvesting device 100 is implanted into the heart cavity through interventional surgery.
  • the intracardiac energy harvesting device 100 can be implanted into the heart cavity through a catheter through femoral vein puncture.
  • the puncture site and delivery components are not limited to this. ;
  • the intracardiac energy harvesting device 100 is fixed on the heart tissue through its fixing mechanism 20.
  • Fig. 28 is a schematic structural diagram of an implantable electronic medical device according to some embodiments.
  • the implantable electronic medical device includes an intracardiac energy harvesting device 100 and a load function unit 200.
  • the intracardiac energy harvesting device 100 can be any of the intracardiac energy harvesting devices 100 in the foregoing embodiments 1-6.
  • the intracardiac energy harvesting device 100 has a size and shape suitable for implantation into the heart cavity through interventional surgery.
  • the biomechanical energy generated by the contraction and relaxation of the heart is collected inside the heart cavity and converted into electrical energy, thereby providing electrical energy for the load function unit 200.
  • the load function unit 200 is a set function unit of an implantable electronic medical device to perform the functions of treating and/or detecting a living body, but the function is not limited to this.
  • the load function unit is electrically connected to the output end of the power management module 40 of the intracardiac energy harvesting device, and the intracardiac energy harvesting device 100 is used to provide electrical energy for the load function unit.
  • the load function unit 200 may include at least one of a function unit of a leadless cardiac pacemaker, a function unit of a heart monitoring hemodynamic sensor, and a function unit of a vascular robot, but it is not limited thereto, as long as it is implanted in a living body to Electronic medical devices that consume electrical energy for treatment, diagnosis or testing of biological organisms should be included.
  • Fig. 29 is a schematic structural diagram of an implantable electronic medical device according to some embodiments.
  • the load function unit 200 may be integrated with the intracardiac energy harvesting device 100 as a whole. In order to improve the integration of the implantable electronic medical device, reduce the volume.
  • Fig. 30 is a schematic diagram of functional modules of the implantable electronic medical device in Fig. 29.
  • the implantable electronic medical device may be a leadless cardiac pacemaker.
  • the load function unit 200 includes a heart rate sensing unit 210, a pulse transmitting unit 220 and an electrode unit 230.
  • Fig. 29 shows an example in which the implantable electronic medical device is a leadless cardiac pacemaker.
  • the heart rate sensing unit 210 is configured to sense the heart rate of the heart, and the heart rate sensing unit 210 can detect the beating state of the heart through the electrode unit 230.
  • the heart rate sensing unit 210 may be electrically connected to the output end of the power management module 40 of the heart energy harvesting device 100.
  • the heart rate sensing unit 210 may be disposed inside the housing 10.
  • the pulse transmitting section 220 is configured to transmit electrical pulses in response to the heart rate sensed by the heart rate sensing section.
  • the pulse transmitter 220 can be electrically connected to the heart rate sensing unit 210, and when the heart rate sensing unit 210 senses that the heart rate is low (for example, the heart rate sensing unit 210 senses that the heart rate is lower than a preset threshold), the pulse transmitter 220 can generate pulses The electric current is conducted to the heart tissue through the electrode part 230 to stimulate the heart beating.
  • the pulse emitting part 220 may be disposed inside the housing 10.
  • the electrode part 230 is configured to contact the heart tissue to conduct the heart rate sensing signal to the heart rate sensing part and to conduct the electrical pulse generated by the pulse transmitting part to the heart.
  • the electrode part 230 may be electrically connected to the heart rate sensing part 210 and/or the pulse transmitting part 220.
  • the electrode part 230 may include two or more electrodes disposed in, on, or near the housing.
  • the electrode part 230 may include a first electrode and a second electrode, and the first electrode and the second electrode may be exposed to the housing 10.
  • the metal conductor on the side wall, and the first electrode and the second electrode are insulated from each other on the housing 10.
  • At least one electrode of the electrode part 230 may be arranged on the housing 10 close to the fixing mechanism 20, so that when the fixing mechanism 20 fixes the housing 10 on the heart tissue, at least one electrode of the electrode part 230 contacts the heart tissue.
  • the power management module 40, the heart rate sensing unit 210, the pulse emitting unit 220, and the electrode unit 230 may be connected in sequence via a wire or a flexible circuit board, and each part may be isolated from each other except that the wire or the flexible circuit passes through.
  • the nano generator module 30, the power management module 40, the heart rate sensing unit 210, the pulse emitting unit 220, and the electrode unit 230 can be arranged in sequence along the length of the housing 10, and the electrode unit 230 can be located at one end close to the fixing mechanism 20, but is not limited to Therefore, the placement positions of the nano generator module 30, the power management module 40, the heart rate sensing unit 210, and the pulse emitting unit 220 in the housing 10 can be adjusted.
  • the volume of the nano generator module 30 may account for 1/3, the power management module 40 may account for 1/6, and the heart rate sensing unit 210 and the pulse transmitter 220 may account for 1/2.
  • the diameter of the electrode part 230 may be 0.5 mm-2 mm, preferably, the diameter of the electrode part 230 is 0.8 mm.
  • the implantable electronic medical device collects biomechanical energy generated by the systolic and diastolic heart in the heart cavity through the intracardiac energy harvesting device 100, and converts it into electrical energy to provide the load function unit 200 Electric energy to ensure its normal operation, thereby realizing a self-powered implantable electronic medical device, and solving the technical bottleneck of the current implantable electronic medical device energy supply technology-the technical problem of limited battery life; and the intracardiac energy harvesting device 100 passes
  • the minimally invasive interventional surgical method can be implanted into the heart, the surgical trauma is small, and it will not cause damage to the heart, can effectively avoid infection, and can provide long-term stable power supply to the load function unit of the implantable electronic medical device, and is beneficial Form a self-powered leadless cardiac pacemaker, thereby simultaneously solving the technical bottleneck of the current implantable electronic medical device energy supply technology-the technical problem of limited battery life, and the large integration of the pacemaker with electrode lead and capsular bag Low technical problems, long-

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本发明公开了一种心脏内能量采集装置及植入式电子医疗器,属于医疗器械领域,心脏内能量采集装置包括:外壳;固定机构,设置在外壳上,固定机构配置为将外壳固定于心腔内部而使外壳可随心脏的跳动而运动;纳米发电机模块,封装在外壳中,纳米发电机模块配置为响应于外壳随心脏跳动时的运动而输出电能;电源管理模块,封装在外壳中,电源管理模块用于管理纳米发电机模块输出的电能。本发明公开的心脏内能量采集装置,可通过微创介入的手术方式将其植入心脏内部采集心脏跳动产生的生物机械能,手术创伤小,且不会对心脏造成损伤,可有效避免感染。

Description

一种心脏内能量采集装置及植入式电子医疗器 技术领域
本发明涉及医疗器械领域,尤其涉及一种心脏内能量采集装置及植入式电子医疗器。
背景技术
随着医疗技术的不断发展,满足各类疾病诊断与检测的微型植入式电子医疗器件日益增多。如心脏起搏器、脑起搏器等植入式脉冲发生器被广泛应用于医学诊断和治疗领域。然而几乎所有的植入式医疗器件均采用电池等能量存储介质进行供能,锂电池作为目前最为成熟的一种电源已经应用到了临床当中,但它依然有一个不可回避的缺点-电池容量有限,因而影响植入式电子医疗器件工作寿命,当存储介质电量的下降以及耗尽时植入的医疗器件不能正常工作或是停止工作,严重危害患者生命健康。目前主要是通过周期性的器件替换手术来解决这类问题,这不仅需要支付昂贵的医疗费用,而且需要承担较大的手术风险。
为了解决上述问题,现有技术中提出了一些通过能量采集技术采集生物器官表面的生物机械能并将其转化为电能而实现电子器件自供能的方式。例如,采用具有纳米压电材料的压电纳米发电机或采用滑动摩擦纳米发电机贴覆于膈肌、心脏等生物器官的表面,通过呼吸或心脏表面收缩舒张产生的机械能而使纳米压电材料发生变形,或使滑动摩擦纳米发电机的两摩擦层发生相对滑动,从而转化为电能。
发明人在实现本发明实施例的过程中,发现背景技术中至少存在以下缺陷:
采用压电纳米发电机或滑动式摩擦纳米发电机等在生物器官表面采集生物机械能的采集方式,其采用面积较大的薄膜结构,且均需布置于心脏表面,在临床实践中,压电纳米发电机或滑动摩擦纳米发电机等发电部件需缝合贴附于心包外膜,为大创口植入,心外膜的破坏会影响心脏的正常生理功能,且压电纳米发电机或滑动摩擦纳米发电机等发电部件均需通过导线与脉冲发射器等外部电子医疗器件相连接,导致感染几率增加。因而该种在生物器官表面采集生物机械能的方式,均需要通过大切口手术植入,临床应用具有较大困难,对生物体伤害较大,不具有实际应用前景。
且目前临床通常应用的心脏起博器由植入心脏内的起搏导线和埋在胸前皮肤下的脉冲发生器组成,通过脉冲发生器发生脉冲电流,经起搏导线传导至心脏,埋在胸前皮肤下的脉冲发生器即为需要电能供应的耗能件,因此,为了给该耗能件供能,人们研究生物机械能采集技术时,驱使或引导其对心脏、膈肌、肺等器官或组织的表面去采集生物机械能,即采集部位相对固定,而着重于对发电部件的结构或材料做出改进,但这均避免不了上述问题。
发明内容
本发明实施例的主要目的在于提供一种心脏内能量采集装置及植入式电子医疗器,以解决现有技术中为实现植入式电子医疗器自供能而需采用大创口手术在心脏表面植入发电单元而导致心脏受损及生物体易感染的技术问题。
为了实现上述目的,根据本发明的一个方面,提供了一种心脏内能量采集装置,所述装置包括:外壳;固定机构,设置在所述外壳上,所述固定机构配置为将所述外壳固定于心腔内部而使所述外壳可随心脏的跳动而运动;纳米发电机模块,封装在所述外壳中,所述纳米发电机模块配置为响应于所述外壳随心脏跳动时的运动而输出电能;以及电源管理模块,封装在所述外壳中,所述电源管理模块用于管理所述纳米发电机模块输出的电能。
根据本发明的另一个方面,提供了一种心脏内能量采集装置植入方法,所述心脏内能量采集装置为上述的心脏内能量采集装置,所述植入方法包括:通过介入手术将所述心脏内能量采集装置植入心腔内部;使所述心脏内能量采集装置通过其固定机构固定于心脏组织上。
根据本发明的又一方面,提供了一种植入式电子医疗器,所述植入式电子医疗器包括:上述的心脏内能量采集装置;负载功能单元,与所述心脏内能量采集装置的电源管理模块的输出端电连接,所述心脏内能量采集装置用于为所述负载功能单元提供电能。
本发明实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
1、本申请提供的心脏内能量采集装置,通过将纳米发电机模块及电源管理模块封装于外壳中,并在外壳上设置固定机构,形成心脏内能量采集装置,该装置即具有可进入心腔内部的尺寸和形状,适于通过介入手术植入心腔内部,所以,通过微创介入的手术方式即可将心脏内能量采集装置植入心脏内部而采集心脏跳动产生的生物机械能,手术创伤小,且不会对心脏造成损伤,可有效避免感染。从而有效解决了现有技术中为实现植入式电子医疗器自供能而需采用大创口手术在心脏表面植入发电单元而导致心脏受损及生物体易感染的技术问题。
2、由于采用固定机构将外壳固定于心腔内部,通过心脏的收缩和舒张而带动心脏内能量采集装置整体运动,使内部的纳米发电机模块可响应于该运动而将其转换为电能并输出至电源管理模块进行管理,实现了在心脏心腔中采集心脏跳动产生的生物机械能,可对植入式电子医疗器的负载功能单元进行长期稳定供电,且利于形成自供能的无导线心脏起搏器,从而同时解决了目前植入式电子医疗器能源供给技术瓶颈-电池寿命有限的技术问题以及现有具有电极导线和囊袋的心脏起搏器体积大集成度低的技术问题,可实现长期稳定的、通过微创手术植入即可实现的持续性诊疗。
3、本申请提供的心脏内能量采集装置,通过将纳米发电机模块及电源管理模块封装于外壳中,并在外壳上设置固定机构,形成心脏内能量采集装置,且该装置采用了具有适于通过介入手术植入心腔内部的尺寸和形状,整体质量轻便,结构集中,可实现能量采集的同时不影响心脏的正常生理功能,对心脏负担小。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
在附图中:
图1是根据一些实施例的心脏内能量采集装置的透视图;
图2是从图1修改的具有螺旋状固定机构的心脏内能量采集装置的透视图;
图3是图1中的心脏内能量采集装置固定于心腔内部的工作示意图;
图4是根据一些实施例的心脏内能量采集装置的功能模块示意图;
图5是根据一些实施例的心脏内能量采集装置的结构示意图;
图6是图5中的发电单元的结构示意图;
图7是从图1修改的具有多个发电单元的心脏内能量采集装置的结构示意图其一;
图8是从图1修改的具有多个发电单元的心脏内能量采集装置的结构示意图其二;
图9是根据一些实施例的心脏内能量采集装置的结构示意图;
图10是图9中的发电单元的结构示意图;
图11是根据一些实施例的心脏内能量采集装置的结构示意图;
图12是从图11修改的心脏内能量采集装置的结构示意图其一;
图13是从图11修改的心脏内能量采集装置的结构示意图其二;
图14是从图11修改的心脏内能量采集装置的结构示意图其三;
图15是根据一些实施例的心脏内能量采集装置的结构示意图;
图16是从图15修改的心脏内能量采集装置的结构示意图其一;
图17是从图15修改的心脏内能量采集装置的结构示意图其二;
图18是根据一些实施例的心脏内能量采集装置的结构示意图;
图19是根据一些实施例的心脏内能量采集装置的结构示意图;
图20是根据一些实施例的心脏内能量采集装置的结构示意图;
图21是根据一些实施例的心脏内能量采集装置的结构示意图;
图22是根据一些实施例的心脏内能量采集装置的结构示意图;
图23是根据一些实施例的心脏内能量采集装置的结构示意图;
图24是根据一些实施例的心脏内能量采集装置的结构示意图;
图25是图24中的活动体、第六电极层以及第六摩擦层的结构示意图;
图26是根据一些实施例的心脏内能量采集装置的结构示意图;
图27是图26中的活动体、第六电极层以及第六摩擦层的结构示意图;
图28是根据一些实施例的植入式电子医疗器的结构示意图;
图29是根据一些实施例的植入式电子医疗器的结构示意图;
图30是图29中的植入式电子医疗器的功能模块示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下”通常是针对附图所示的方向而言的,或者是针对竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“左、右”通常是针对附图所示的左、右;“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本发明。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
当在这里使用时,术语“和/或”包括一个或更多个相关列举项目的任意和所有组合。表述诸如“...中的至少一个”当在一列元件之前时修饰整列元件而不是修饰该列中的个别元件。
为了解决现有技术中为实现植入式电子医疗器自供能而需采用大创口手术在心脏表面植入发电单元而导致心脏受损及生物体易感染的技术问题,本申请提供了一种心脏内能量采集装置及植入式电子医疗器。
下面结合附图对本发明进一步说明。
实施例1
本实施例提供了一种心脏内能量采集装置100,该心脏内能量采集装置100具有适于通过介入手术植入心腔内部的尺寸和形状,该心脏内能量采集装置100应用于通过介入手术植入心腔内部而采集心脏跳动产生的生物机械能。介入手术即为医学中所指介入手术,是利用现代科技手段进行的一种微创性治疗,可在医学影像设备的引导下,将特制的导管、导丝等精密器械引入人体,对体内病态进行诊断和局部治疗。例如,可通过股静脉穿刺,将心脏内能量采集装置100通过导管植入到心腔内部。
图1是根据一些实施例的心脏内能量采集装置100的透视图。图2是从图1修改的具有螺旋状固定机构的心脏内能量采集装置的透视图。图3是图1中的心脏内能量采集装置固定于心腔内部的工作示意图。
参照图1至图3,心脏内能量采集装置100包括外壳10、固定机构20、纳米发电机模块30以及电源管理模块40。
外壳10为内部中空的封装壳体,用于将纳米发电机模块30(或者纳米发电机模块30和电源管理模块40)封装于其内部,以防止外部对纳米发电机模块30(或者纳米发电机模块30和电源管理模块40)造成影响,并为纳米发电机模块30(或者纳米发电机模块30和电源管理模块40)提供一安置环境。
外壳10在心脏内能量采集装置100中可以作为与血液接触的外壳10而暴露于心腔内部,因而外壳10可以包括生物相容性良好、血液相容性良好的绝缘材料,例如,外壳10可以包括聚乳酸、聚乙烯醇、聚四氟乙烯、橡胶、复合材料中的至少一种。外壳可以通过3D打印或者使用模具灌注而实现加工成型。
外壳10的外直径为5mm-15mm,外壳10的长度为1cm-5cm。在该尺寸范围内,即可适用于通过介入手术植入心腔内部,且可在心腔内部适当活动,以使外壳10可随心脏跳动而在心腔中运动。优选地,外壳10的外直径为7-10mm,外壳10的长度为2cm-3cm,该尺寸下,可使心脏内能量采集装置100具有较小的体积。
外壳10呈柱状,所指柱状包括圆柱状、棱柱状、以及不规整的圆柱状或棱柱状(例如一端为弧面、而一端为平面的圆柱状或棱柱状,例如两端均为弧面的圆柱状或棱柱状),但不限于此,由于采用柱状的外壳10,使其可在径向(宽度方向)具有较小尺寸而在轴向(长度方向)具有较长尺寸,利于纳米发电机模块30和电源管理模块40沿外壳10的长度方向依次设置,以使得外壳10既可因其径向(宽度方向)具有较小尺寸适应于通过介入手术植入心腔内部,又因其轴向(长度方向)具有较长尺寸而具有一定的容积以封装纳米发电机模块30和电源管理模块40,不影响纳米发电机模块30的输出。优选地,外壳10为圆柱状。若外壳10采用球状,则由于介入手术植入的方式使球状外壳外直径仅可在7mm以下,导致其体积较小,不利于纳米发电机模块30的输出。当然,外壳10亦可为柱状以外的其他形状。
固定机构20设置在外壳10上,固定机构20可固定于外壳10的外部,固定机构20配置为将外壳10固定于心腔内部而使外壳10可随心脏的跳动而运动。在心脏内能量采集装置100通过介入手术植入心腔内部后,通过固定机构20将外壳10固定于心腔内部,例如可固定于心脏的心内膜和/或心肌层上。在心脏跳动时,即可带动心脏内能量采集装置100运动,从而使纳米发电机模块30可响应于该运动而将其转换为电能并输送至电源管理模块40。
固定机构20可设置在外壳10的端部或侧部。优选地,固定机构20设置在外壳10的端部,可使外壳10沿其长度方向的一端与心脏内壁相连接,既适应于心腔内部空间形状而不影响心脏的收缩和舒张,又利于外壳10随心脏的收缩和舒张而沿外壳10长度方向运动,从而利于纳米发电机模块30的输出。
可通过固定机构20将心脏内能量采集装置100固定于心脏的左心室内壁、靠近心尖的位置,固定于该位置,心脏相对波动幅度与强度更大,心脏内能量采集装置100运动幅度与强度亦随之更大,从而利于纳米发电机模块30的输出。当然,心脏内能量采集装置100在心腔中的固定位置不限于此。
固定机构20可包括爪状固定机构、钩状固定机构、螺旋状固定机构、螺钉固定机构中的至少一种,但是不限于此。基于该启示,本领域的技术人员还可采用其他结构的固定机构。图1示出了固定机构20采用爪状固定机构的示例,图2示出了固定机构20采用螺旋状固定机构的示例。
纳米发电机模块30封装在外壳10中,纳米发电机模块30配置为响应于外壳10随心脏跳动时的运动而输出电能,即纳米发电机模块30可将外壳10随心脏跳动时的运动转化为电能。纳米发电机模块30的长度为0.5cm-4.5cm。优选地,纳米发电机模块30的长度为1.5cm。
电源管理模块40可以封装在外壳10中,但不限于此,可选地,电源管理模块40可通过封装材料单独封装于外壳10的外部。电源管理模块40用于管理纳米发电机模块30输出 的电能。当电源管理模块40及纳米发电机模块30均封装在外壳10中时,可提高心脏内能量采集装置100整体集成度。电源管理模块40可以包括整流模块41和储能模块42。整流模块41用于将纳米发电机模块30输出的交流电流转换为直流电流,储能模块42用于存储整流模块41输出的直流电流。整流模块41可包括整流单元和滤波单元,整流单元将纳米发电机模块30输出的交流电流转换为直流电流,例如,可采用整流桥;滤波单元将整流单元输出的脉动直流电转变为相对比较稳定的直流电,并提供给储能模块42进行存储,例如,储能模块42可以为可充电锂电池或储能电容。储能模块42可将电能提供给植入式电子医疗器的负载功能单元等负载,以供其工作。在外壳10的内部,电源管理模块40和纳米发电机模块30之间可通过硬质层间隔开,纳米发电机模块30的输出电极可通过柔性电路板或导线与电源管理模块40的整流单元的输入电极电性连接。电源管理模块40的电源输出电极401可通过导线延伸至外壳10的外部,以为负载提供电能。电源管理模块40的长度为0.5cm-4.5cm。优选地,电源管理模块40的长度为1cm。纳米发电机模块30和电源管理模块40在外壳10中的相对位置不作限制,例如,纳米发电机模块30可位于外壳10中远离固定机构20的一端,纳米发电机模块30也可位于外壳10中靠近固定机构20的一端。图4示出了心脏内能量采集装置的功能模块示意图。
图5是根据一些实施例的心脏内能量采集装置的结构示意图。
参照图5,在本实施例中,纳米发电机模块30包括第一空腔31、至少一个的发电单元32、以及至少一个的第一跳动体33。
第一空腔31为外壳10内部的腔体。
至少一个的发电单元32均设置于第一空腔31中,发电单元32可设置于第一空腔31的顶壁、底壁、侧壁中的至少一处上。至少一个的发电单元32可包括摩擦纳米发电单元、压电纳米发电单元中的至少一种。
至少一个的第一跳动体33可自由运动地设置于第一空腔31中,即在心脏跳动而通过固定机构20带动外壳10运动时,外壳10即驱使第一跳动体33在第一空腔31中运动。第一跳动体33配置为响应于心脏的跳动(即心脏的收缩与舒张)而在第一空腔31中运动并接触和/或撞击发电单元32,从而使发电单元32向电源管理模块40输出电信号。第一跳动体33可为一体成型的整体,也可为多层结合形成的跳动体。
图6是图5中的发电单元32的结构示意图。
参照图5和图6,本实施例中,发电单元32为摩擦纳米发电单元,发电单元32包括第一电极层321、与第一电极层321接触设置的第一摩擦层322、第二电极层323、以及与第二电极层323接触设置的第二摩擦层324。
第一摩擦层322和第二摩擦层324面对面设置并间隔开一可供至少一个第一跳动体33自由运动的空间,第一跳动体33配置为响应于心脏的跳动而在第一摩擦层322和第二摩擦层324之间运动,使第一跳动体33与第一摩擦层322接触和分离、第一跳动体33与第二摩擦层324接触和分离,从而使第一电极层321和第二电极层323向电源管理模块40输出电信号。第一电极层321和第二电极层323可分别通过第一导线01与电源管理模块40的整流单元的输入电极电性连接。所述第一摩擦层322和第二摩擦层324面对面设置,是指第一摩擦层322和第二摩擦层324均位于第一电极层321和第二电极层323之间。
第一摩擦层322的材料与第一跳动体33的外表面的材料之间存在得失电子能力差异,使得第一跳动体33与第一摩擦层322接触或摩擦的过程中能够在两者的表面均产生接触电荷,且两者中,其中一个的表面带正电荷,而另外一个的表面带负电荷;第二摩擦层324的材料与第一跳动体33的外表面的材料之间存在得失电子能力差异,使得第一跳动体33与第二摩擦层324接触或摩擦的过程中能够在两者的表面均产生接触电荷,且两者中,其中一个的表面带正电荷,而另外一个的表面带负电荷。
第一摩擦层322、第二摩擦层324、第一跳动体33中的每个包括绝缘体材料、半导体材料、导体材料中的至少一种。常规的绝缘材料都具有摩擦电特性,均可以作为制备第一摩擦层322、第二摩擦层324、第一跳动体33的材料。相对于绝缘体,半导体和金属均具有容易失去电子的摩擦电特性,因此,半导体和金属也可以作为制备第一摩擦层322、第二摩擦层324、第一跳动体33的材料。本实施例中,第一摩擦层322、第二摩擦层324、第一跳动体33中的每个可以包括聚乙烯、聚丙烯、聚苯乙烯、硅胶、聚二甲基硅氧烷、涤纶、聚氨酯、聚甲基丙烯酸酯、聚四氟乙烯和尼龙、聚酰亚胺、丁腈橡胶、氟橡胶、乳胶、甲壳素、纤维素、金、银、铜、铝、铁、合金材料中的至少一种,但不限于此。优选地,第一摩擦层322和第二摩擦层324均为聚四氟乙烯,第一跳动体33为聚丙烯。
第一电极层321的材料和第二电极层323的材料中的每个可以包括金属和导电聚合物材料中的至少一种,其中,金属包括金、银、铜、铝、铁、合金中的至少一种,导电聚合物材料包括碳纳米管、石墨烯、炭黑中的至少一种,但不限于此。优选地,第一电极层321的材料和第二电极层323的材料均为金。第一电极层321和第二电极层323可以通过磁控溅射镀膜在对应的摩擦层表面,但不限于此,亦可采用其他方式制备第一电极层321和第二电极层323。
采用该种结构的发电单元32,可使心脏跳动而带动外壳10运动时,第一跳动体33在第一空腔31中与外壳10产生相对运动,第一跳动体33即在第一摩擦层322和第二摩擦层324之间往复运动,从而反复接触上下的第一摩擦层322和第二摩擦层324,在摩擦电和静电感应效应的耦合下,第一电极层321和第二电极层323之间会产生电势差,在外电路中就会产生交变的电信号,随着心脏持续的收缩与舒张,交流电信号将持续产生,使第一电极层321和第二电极层323持续地向电源管理模块40输出电信号。
第一电极层321和第一摩擦层322形成的发电层与第二电极层323和第二摩擦层324形成的发电层对称设置,并且第一摩擦层322和第二摩擦层324的材料相同。
可以采用导体材料替换绝缘材料或半导体材料而制备第一摩擦层322或第二摩擦层324,即第一摩擦层322可为导体材料,并代替与其接触的第一电极层321,第二摩擦层324可为导体材料,并代替与其接触的第二电极层323。如此设置,可以简化发电单元32的结构,降低制作成本。导体材料可以选自金属、导电氧化物、导电高分子材料中的至少一种。
第一摩擦层322的接触表面、第二摩擦层324的接触表面、第一跳动体33的外表面中的至少一个包括微纳结构、纳米材料的点缀、纳米材料的涂层中的至少一种。微纳结构包括微米或亚微米量级的微结构。所述微结构可以包括纳米线、纳米管、纳米颗粒、纳米沟槽、微米沟槽、纳米锥、微米锥、纳米球、微米球状结构中的至少一种,但不限于此。第一摩擦层322的接触表面即面对第二摩擦层324的一表面,第二摩擦层324的接触表面即面对第一摩擦层322的一表面。采用以上设置,可增加第一摩擦层322的接触表面与第一跳动体33的外表面之间的接触面积,从而增大接触电荷量,可增加第二摩擦层324的接触表面与第一跳动体33的外表面之间的接触面积,从而增大接触电荷量,进而利于第一电极层321与第一电极层321的电信号输出。
发电单元32的第一电极层321和第二电极层323沿外壳10的长度方向依次设置。如此设置,使得外壳10沿其长度方向固定于心脏内壁而沿外壳10长度方向运动时,第一跳动体33沿外壳10长度方向在第一空腔31中运动,而在第一摩擦层322和第二摩擦层324之间往复弹跳,从而利于第一电极层321与第一电极层321输出电信号。此时,固定机构20可沿外壳10的长度方向设置于外壳10的端部。在第一空腔31中仅有一个发电单元32时,其第一电极层321和第二电极层323可分别固定于第一空腔31沿外壳10长度方向的顶壁和底壁。
需要说明的是,发电单元32的第一电极层321和第二电极层323在外壳10中的位置设 置不限于此。可选地,发电单元32的第一电极层321和第二电极层323沿外壳10的宽度方向依次设置。此时,固定机构20可沿外壳10的宽度方向设置于外壳10的侧部。在第一空腔31中仅有一个发电单元32时,其第一电极层321和第二电极层323可分别固定于第一空腔31沿外壳10长度方向的侧壁上。
第一跳动体33的外直径可以为100μm-5mm,但不限于此,该尺寸下利于第一跳动体33在第一空腔31中的自由运动。优选地,第一跳动体33的外直径为为2mm。
在第一摩擦层322和第二摩擦层324之间形成的空间中可设置两个或两个以上的第一跳动体33,例如,可设置2-100个第一跳动体33。在心脏内能量采集装置100整体质量不影响心脏正常工作的条件下,设置多个第一跳动体33能够提升发电单元32的输出性能。
第一跳动体33可以为多面体、柱体、球体、椭球体中的任一种,但不限于此。
图7是从图1修改的具有多个发电单元的心脏内能量采集装置的结构示意图其一。图8是从图1修改的具有多个发电单元的心脏内能量采集装置的结构示意图其二。
参照图7和图8,发电单元32的数量可以为多个,多个发电单元32堆叠设置,并且每一发电单元32的第一摩擦层322和第二摩擦层324之间形成的空间中均设置有至少一个的第一跳动体33。在外壳10随心脏跳动而运动时,多个发电单元32中的第一跳动体33均在各自对应的空间中运动,从而与各自发电单元32的第一摩擦层322和第二摩擦层324发生接触和分离,进而使各发电单元32的第一电极层321和第二电极层323向电源管理模块40输出电信号。发电单元32的数量可以为2-10个,优选地,发电单元32的数量为3个。采用以上设置,可有效提高纳米发电机模块30的电流输出性能。
多个发电单元32沿外壳10的长度方向依次堆叠设置,且每一发电单元32的第一电极层321和第二电极层323均沿外壳10的长度方向依次设置。采用以上设置,利于多个发电单元32在外壳10中的安置。
电源管理模块40可包括与发电单元32的数量相对应的至少一个的整流单元,每一发电单元32连接一整流单元,全部整流单元的输出端并联。采用以上设置,可提高纳米发电机模块30的整体电流输出。
相邻两发电单元32之间可通过分隔层隔开,使各发电单元32在各自区域发电后,经过各自整流后并联。发电单元32的电极层即设置于第一空腔31的内壁或所述分隔层上。图7示出了相邻两发电单元32之间通过分隔层隔开的具有多个发电单元32的示例。需要说明的是,相邻两发电单元32亦可共用同一电极层,各电极层通过二极管耦合在一起,使任意两电极层之间的电势分布发生变化时,均可在外部电路中形成电流输出。图8示出了相邻两发电单元32之间共用同一电极层的具有多个发电单元32的示例。
实施例2
本实施例提供了一种心脏内能量采集装置100,该心脏内能量采集装置100具有适于通过介入手术植入心腔内部的尺寸和形状。心脏内能量采集装置100包括外壳10、固定机构20、纳米发电机模块30以及电源管理模块40。
纳米发电机模块30包括第一空腔31、至少一个的发电单元32、以及至少一个的第一跳动体33。
第一空腔31为外壳10内部的腔体。
至少一个的发电单元32均设置于第一空腔31中,发电单元32可设置于第一空腔31的顶壁、底壁、侧壁中的至少一处上。至少一个的发电单元32可包括摩擦纳米发电单元、压电纳米发电单元中的至少一种。
至少一个的第一跳动体33可自由运动地设置于第一空腔31中,即在心脏跳动而通过固定机构20带动外壳10运动时,外壳10即驱使第一跳动体33在第一空腔31中运动。第一跳动体33配置为响应于心脏的跳动(即心脏的收缩与舒张)而在第一空腔31中运动并接触 和/或撞击发电单元32,从而使发电单元32向电源管理模块40输出电信号。第一跳动体33可为一体成型的整体,也可为多层结合形成的跳动体。
实施例1中,发电单元32包括第一电极层321、与第一电极层321接触设置的第一摩擦层322、第二电极层323、以及与第二电极层323接触设置的第二摩擦层324,通过第一跳动体33响应于心脏的跳动而在第一摩擦层322和第二摩擦层324之间运动,使第一跳动体33与第一摩擦层322接触和分离、第一跳动体33与第二摩擦层324接触和分离,从而使第一电极层321和第二电极层323向电源管理模块40输出电信号。
图9是根据一些实施例的心脏内能量采集装置的结构示意图。图11是根据一些实施例的心脏内能量采集装置的结构示意图。
实施例2与实施例1的区别在于:
参照图9和图11,发电单元32为摩擦纳米发电单元,发电单元32包括第三电极层325、与第三电极层325接触设置的第三摩擦层326、第四电极层327以及与第四电极层327接触设置的第四摩擦层328。
第三摩擦层326和第四摩擦层328面对面设置并彼此间隔开,第一跳动体33配置为响应于心脏的跳动而在第一空腔31中运动并对第三摩擦层326和/或第四摩擦层328施加力,使第三摩擦层326和第四摩擦层328发生接触和分离,从而使第三电极层325和第四电极层327向电源管理模块40输出电信号。第三电极层325和第四电极层327可分别通过第二导线02与电源管理模块40的整流单元的输入电极电性连接。所述第三摩擦层326和第四摩擦层328面对面设置,是指第三摩擦层326和第四摩擦层328均位于第三电极层325和第四电极层327之间。
第三摩擦层326的材料和第四摩擦层328的材料之间存在得失电子能力差异,使得第三摩擦层326和第四摩擦层328接触或摩擦的过程中能够在两者的接触表面均产生接触电荷,且两者中,其中一个的接触表面带正电荷,而另外一个的接触表面带负电荷。第三摩擦层326和第四摩擦层328的每个包括绝缘体材料、半导体材料、导体材料中的至少一种。常规的绝缘材料都具有摩擦电特性,均可以作为制备第三摩擦层326和第四摩擦层328的材料。相对于绝缘体,半导体和金属均具有容易失去电子的摩擦电特性,因此,半导体和金属也可以作为制备第三摩擦层326和第四摩擦层328的材料。本实施例中,第三摩擦层326和第四摩擦层328中的每个可以包括聚乙烯、聚丙烯、聚苯乙烯、硅胶、聚二甲基硅氧烷、涤纶、聚氨酯、聚甲基丙烯酸酯、聚四氟乙烯和尼龙、聚酰亚胺、丁腈橡胶、氟橡胶、乳胶、甲壳素、纤维素、金、银、铜、铝、铁、合金材料中的至少一种,但不限于此。
第三电极层325的材料和第四电极层327的材料中的每个可以包括金属和导电聚合物材料中的至少一种,其中,金属包括金、银、铜、铝、铁、合金中的至少一种,但不限于此,导电聚合物材料包括碳纳米管、石墨烯、炭黑中的至少一种,但不限于此。
可以采用导体材料替换绝缘材料或半导体材料而制备第三摩擦层326或第四摩擦层328,即第三摩擦层326可为导体材料,并代替与其接触设置的第三电极层325,第四摩擦层328可为导体材料,并代替与其接触设置的第四电极层327。如此设置,可以简化发电单元32的结构,降低制作成本。导体材料可以选自金属、导电氧化物、导电高分子材料中的至少一种。
第三摩擦层326的接触表面和第四摩擦层328的接触表面中的至少一个包括微纳结构、纳米材料的点缀、纳米材料的涂层中的至少一种。微纳结构包括微米或亚微米量级的微结构。所述微结构可以包括纳米线、纳米管、纳米颗粒、纳米沟槽、微米沟槽、纳米锥、微米锥、纳米球、微米球状结构中的至少一种,但不限于此。第三摩擦层326的接触表面即面对第四摩擦层328的一表面,第四摩擦层328的接触表面即面对第三摩擦层326的一表面。采用以上设置,可增加第三摩擦层326的接触表面和第四摩擦层328的接触表面之间的接触面积, 从而增大接触电荷量,进而利于第三电极层325和第四电极层327的电信号输出。
第三电极层325上远离第三摩擦层326的一表面可设置第三基板3250,和/或第四电极层327上远离第四摩擦层328的一表面可设置第四基板3270,且第一跳动体33在第一空腔31中运动时,通过撞击第三基板3250和/或第四基板3270,使得第三摩擦层326和第四摩擦层328发生接触和分离,从而使第三电极层325和第四电极层327向电源管理模块40输出电信号。
第三电极层325可直接固定于第一空腔31的内壁上或通过第三基板3250固定于第一空腔31的内壁上。所指第一空腔31的内壁包括第一空腔31的顶壁、底壁、侧壁中的至少一个。此时,第一跳动体33在第一空腔31中运动时,即通过撞击第四基板3270,使得第三摩擦层326和第四摩擦层328发生接触和分离。第一空腔31的内壁与第四基板3270之间、第一空腔31的内壁与第四摩擦层328之间、第三基板3250与第四基板3270之间、第三基板3250与第四摩擦层328之间、第三摩擦层326与第四基板3270之间、第三摩擦层326与第四摩擦层328之间中的至少一个可以设置至少一个的支撑件320,通过支撑件320进行支撑而使第三摩擦层326和第四摩擦层328彼此间隔开一定空间。支撑件320可为弹性支撑件或非弹性支撑件。支撑件320为弹性支撑件时,可为弹簧。然而,支撑件320不限于此,并可以包括各种其它的弹性构件。第一跳动体33在第一空腔31中运动时,通过撞击第四基板3270而使得支撑件320受力压缩,从而使第三摩擦层326和第四摩擦层328发生接触和分离。第三基板3250和第四基板3270中的至少一个可以具有柔性以由于第一跳动体33的撞击力而变形并具有恢复力以在第一跳动体33的撞击力被去除时返回到其初始状态的材料,或者,第三基板3250和第四基板3270中的至少一个可包括具有柔性以由于外力而变形并具有伸展性以延伸或收缩的材料。例如,第三基板3250和第四基板3270中的至少一个可以包括聚酯(PE)、聚醚砜(PES)、聚萘二甲酸乙二醇酯(PEN)或聚酰亚胺(PI),但不限于此。第三电极层325和第三摩擦层326可以具有与第三基板3250对应的柔性和伸展性,第四电极层327和第四摩擦层328可以具有与第四基板3270对应的柔性和伸展性。
第四电极层327可直接固定于第一空腔31的内壁上或通过第四基板3270固定于第一空腔31的内壁上。所指第一空腔31的内壁包括第一空腔31的顶壁、底壁、侧壁中的至少一个。此时,第一跳动体33在第一空腔31中运动时,即通过撞击第三基板3250,使得第三摩擦层326和第四摩擦层328发生接触和分离。第一空腔31的内壁与第三基板3250之间、第一空腔31的内壁与第三摩擦层326之间、第四基板3270与第三基板3250之间、第四基板3270与第三摩擦层326之间、第四摩擦层328与第三基板3250之间、第四摩擦层328与第三摩擦层326之间中的至少一个可以设置至少一个的支撑件320,通过支撑件320进行支撑而使第三摩擦层326和第四摩擦层328彼此间隔开一定空间。第一跳动体33在第一空腔31中运动时,通过撞击第三基板3250而使得支撑件320受力压缩,从而使第三摩擦层326和第四摩擦层328发生接触和分离。第三基板3250和第四基板3270中的至少一个可以具有柔性以由于第一跳动体33的撞击力而变形并具有恢复力以在第一跳动体33的撞击力被去除时返回到其初始状态的材料,或者,第三基板3250和第四基板3270中的至少一个可包括具有柔性以由于外力而变形并具有伸展性以延伸或收缩的材料。
图12是从图11修改的心脏内能量采集装置的结构示意图。
参照图12,第三基板3250的外缘和第四基板3270的外缘可以均固定于第一空腔31的侧壁上,使发电单元32的两侧均形成空间,位于第三基板3250的一侧的第一跳动体33在运动时撞击第三基板3250,位于第四基板3270一侧的第一跳动体33在运动时撞击第四基板3270,从而使第三摩擦层326和第四摩擦层328发生接触和分离。此时,第三基板3250和第四基板3270的每个可包括具有柔性以由于第一跳动体33的撞击力而变形并具有恢复力以在第一跳动体33的撞击力被去除时返回到其初始状态的材料,或者,第三基板3250和第 四基板3270中的每个可包括具有柔性以由于第一跳动体33的撞击力而变形并具有伸展性以延伸或收缩的材料。第三电极层325和第三摩擦层326可以具有与第三基板3250对应的柔性和伸展性,第四电极层327和第四摩擦层328可以具有与第四基板3270对应的柔性和伸展性。第三基板3250和第四基板3270在自然状态时可呈弧形或拱形。
参照图9和图11,发电单元32的数量为多个,相邻两发电单元32间隔开一可供至少一个第一跳动体33自由运动的空间,并且该空间中设置有可自由运动的至少一个的第一跳动体33。在外壳10随心脏跳动而运动时,通过第一跳动体33撞击各发电单元32的第三基板3250和/或第四基板3270,使得各发电单元32的第三电极层325和第四电极层327向电源管理模块40的整流单元输出电信号。
电源管理模块40可包括与发电单元32的数量相对应的至少一个的整流单元,每一发电单元32连接一整流单元,全部整流单元的输出端并联。采用以上设置,可提高纳米发电机模块30的整体电流输出。
图13是从图11修改的心脏内能量采集装置的结构示意图。
参照图13,多个发电单元32可堆叠设置,相邻两发电单元32之间可通过第三基板3250和/或第四基板3270分隔开,使每一发电单元32分别单独连接一整流单元,全部整流单元的输出端并联。
图14是从图11修改的心脏内能量采集装置的结构示意图。
参照图14,需要说明的是,相邻两发电单元32之间亦可不设置第三基板3250和/或第四基板3270进行分隔,相邻两发电单元32之间可共用同一电极层。
实施例3
本实施例提供了一种心脏内能量采集装置100,该心脏内能量采集装置100具有适于通过介入手术植入心腔内部的尺寸和形状。心脏内能量采集装置100包括外壳10、固定机构20、纳米发电机模块30以及电源管理模块40。
纳米发电机模块30包括第一空腔31、至少一个的发电单元32以及至少一个的第一跳动体33。
第一空腔31为外壳10内部的腔体。
至少一个的发电单元32均设置于第一空腔31中,发电单元32可设置于第一空腔31的顶壁、底壁、侧壁中的至少一处上。至少一个的发电单元32可包括摩擦纳米发电单元和压电纳米发电单元中的至少一种。
至少一个的第一跳动体33可自由运动地设置于第一空腔31中,即在心脏跳动而通过固定机构20带动外壳10运动时,外壳10即驱使第一跳动体33在第一空腔31中运动。第一跳动体33配置为响应于心脏的跳动(即心脏的收缩与舒张)而在第一空腔31中运动并接触和/或撞击发电单元32,从而使发电单元32向电源管理模块40输出电信号。第一跳动体33可为一体成型的整体,也可为多层结合形成的跳动体。
实施例1中,发电单元32包括第一电极层321、与第一电极层321接触设置的第一摩擦层322、第二电极层323、以及与第二电极层323接触设置的第二摩擦层324,通过第一跳动体33响应于心脏的跳动而在第一摩擦层322和第二摩擦层324之间运动,使第一跳动体33与第一摩擦层322接触和分离、第一跳动体33与第二摩擦层324接触和分离,从而使第一电极层321和第二电极层323向电源管理模块40输出电信号。
图15是根据一些实施例的心脏内能量采集装置的结构示意图。
实施例3与实施例1的区别在于:
参照图15,发电单元32为压电纳米发电单元,发电单元32包括压电材料层3201、与压电材料层3201接触设置并位于压电材料层3201一侧的第一压电电极层3202、以及与压电材料层3201接触设置并位于压电材料层3201另一侧的第二压电电极层3203。
第一跳动体33配置为响应于心脏的跳动而在第一空腔31中运动并对压电材料层3201施加力,使第一压电电极层3202和第二压电电极层3203向电源管理模块40输出电信号。第一压电电极层3202和第二压电电极层3203可分别通过第三导线与电源管理模块40的整流单元的输入电极电性连接。
第一压电电极层3202和第二压电电极层3203的每个可包括金属导体材料、金属合金导体材料、金属氧化物导体材料(例如氧化铟)中的至少一种,但不限于此。
压电材料层3201可以包括压电陶瓷、氧化物、聚合物中的至少一种,例如,压电材料层3201可以包括锆钛酸铅(PZT)、氧化锌、聚偏氟乙烯(PVDF)中的至少一种,但不限于此。压电纳米发电单元的压电极化方向可上可下,对此不进行限制。
第一压电电极层3202远离压电材料层3201的一表面可以设置第一基板3204,第二压电电极层3203远离压电材料层3201的一表面可以设置第二基板3205。
第一压电电极层3202可直接固定于第一空腔31的内壁上或通过第一基板3204固定于第一空腔31的内壁上。第一跳动体33在第一空腔31中运动时,通过撞击第二基板3205而使压电材料层3201受力发生形变,从而在该压电材料层3201的上下表面上产生电势差,并使得第一压电电极层3202和第二压电电极层3203的表面上感应出相反的电荷,在外电路接通的情况下就会发生电荷定向移动并形成电流,从而向电源管理模块40的整流单元输出电能。
第二压电电极层3203可直接固定于第一空腔31的内壁上或通过第二基板3205固定于第一空腔31的内壁上。第一跳动体33在第一空腔31中运动时,通过撞击第一基板3204而使压电材料层3201受力发生形变,从而在该压电材料层3201的上下表面上产生电势差,并使得第一压电电极层3202和第二压电电极层3203的表面上感应出相反的电荷,在外电路接通的情况下就会发生电荷定向移动并形成电流,从而向电源管理模块40的整流单元输出电能。
图16是从图15修改的心脏内能量采集装置的结构示意图其一。
参照图16,第一基板3204的外缘和第二基板3205的外缘可以均固定于第一空腔31的侧壁上,使发电单元32的两侧均形成空间,位于第一基板3204一侧的第一跳动体33在运动时撞击第一基板3204,位于第二基板3205一侧的第一跳动体33在运动时撞击第二基板3205,均可使压电材料层3201受力发生形变,从而使第一压电电极层3202和第二压电电极层3203向电源管理模块40的整流单元输出电能。
第一基板3204和第二基板3205中的每个可以为柔性材料或非柔性材料。第一基板3204和第二基板3205中的至少一个可以包括具有柔性以由于第一跳动体33的撞击力而变形并具有伸展性以延伸或收缩的材料。
需要说明的是,上述压电纳米发电单元的结构仅是示例,实际上,本实施例对压电纳米发电单元的具体结构不进行限制,也即任何结构的压电纳米发电单元均可应用于根据本实施例的心脏内能量采集装置100的结构中。
参照图15和图16所示,发电单元32的数量为多个,相邻两发电单元32间隔开一可供至少一个第一跳动体33自由运动的空间,并且该空间中设置有可自由运动的至少一个的第一跳动体33。在外壳10随心脏跳动而运动时,通过第一跳动体33撞击各发电单元32的第一基板3204和/或第二基板3205,使各发电单元32的压电材料层3201受力发生形变,并使各发电单元32的第一压电电极层3202和第二压电电极层3203向电源管理模块40的整流单元输出电能。
电源管理模块40可包括与发电单元32的数量相对应的至少一个的整流单元,每一发电单元32连接一整流单元,全部整流单元的输出端并联。采用以上设置,可提高纳米发电机模块30的整体电流输出。
多个发电单元32可堆叠设置,相邻两发电单元32之间可通过第一基板3204和/或第二基板3205分隔开,使每一发电单元32分别单独连接一整流单元,全部整流单元的输出端并联。需要说明的是,相邻两发电单元32之间亦可不设置第一基板3204和/或第二基板3205进行分隔,而可共用同一压电电极层。图17示出了相邻两发电单元32之间共用同一压电电极层的示例。
实施例4
本实施例提供了一种心脏内能量采集装置100,该心脏内能量采集装置100具有适于通过介入手术植入心腔内部的尺寸和形状。心脏内能量采集装置100包括外壳10、固定机构20、纳米发电机模块30以及电源管理模块40。
纳米发电机模块30包括第一空腔31、至少一个的发电单元32以及至少一个的第一跳动体33。
第一空腔31为外壳10内部的腔体。
至少一个的发电单元32均设置于第一空腔31中,发电单元32可设置于第一空腔31的顶壁、底壁、侧壁中的至少一处上。至少一个的发电单元32可包括摩擦纳米发电单元和压电纳米发电单元中的至少一种。
至少一个的第一跳动体33可自由运动地设置于第一空腔31中,即在心脏跳动而通过固定机构20带动外壳10运动时,外壳10即驱使第一跳动体33在第一空腔31中运动。第一跳动体33配置为响应于心脏的跳动(即心脏的收缩与舒张)而在第一空腔31中运动并接触和/或撞击发电单元32,从而使发电单元32向电源管理模块40输出电信号。第一跳动体33可为一体成型的整体,也可为多层结合形成的跳动体。
实施例1中,发电单元32包括第一电极层321、与第一电极层321接触设置的第一摩擦层322、第二电极层323、以及与第二电极层323接触设置的第二摩擦层324,通过第一跳动体33响应于心脏的跳动而在第一摩擦层322和第二摩擦层324之间运动,使第一跳动体33与第一摩擦层322接触和分离、第一跳动体33与第二摩擦层324接触和分离,从而使第一电极层321和第二电极层323向电源管理模块40输出电信号。
图18-20是根据一些实施例的心脏内能量采集装置的结构示意图。
实施例4与实施例1的区别在于:
参照图18至图20,第一空腔31中设置有至少两个的发电单元32,至少两个的发电单元32包括至少一个的摩擦纳米发电单元和至少一个的压电纳米发电单元。
第一跳动体33配置为响应于心脏的跳动而接触和/或撞击摩擦纳米发电单元和/或压电纳米发电单元,从而使摩擦纳米发电单元和/或压电纳米发电单元分别向电源管理模块40输出电信号。
所述至少一个的摩擦纳米发电单元可以包括实施例1中的摩擦纳米发电单元和实施例2中的摩擦纳米发电单元中的至少一个。图18示出了采用实施例1中的摩擦纳米发电单元的示例。图19和图20示出了采用实施例2中的摩擦纳米发电单元的示例。所述至少一个的压电纳米发电单元可以为实施例3中的压电纳米发电单元。
至少一个的摩擦纳米发电单元和至少一个的压电纳米发电单元之间可间隔开一可供至少一个第一跳动体33自由运动的空间,通过第一跳动体33在该空间中运动而反复接触和/或撞击摩擦纳米发电单元和压电纳米发电单元,从而使摩擦纳米发电单元和压电纳米发电单元分别向电源管理模块40输出电信号。
至少一个的摩擦纳米发电单元和至少一个的压电纳米发电单元可堆叠设置,相邻的摩擦纳米发电单元和压电纳米发电单元之间可通过基板分隔开,使每一摩擦纳米发电单元和每一压电纳米发电单元分别单独连接一整流单元,全部整流单元的输出端并联。图18示出了相邻的摩擦纳米发电单元和压电纳米发电单元之间通过基板分隔开的示例。需要说明的是,相 邻的摩擦纳米发电单元和压电纳米发电单元之间亦可不设置基板分隔开,相邻的摩擦纳米发电单元和压电纳米发电单元可共用同一电极层。
实施例5
本实施例提供了一种心脏内能量采集装置100,该心脏内能量采集装置100具有适于通过介入手术植入心腔内部的尺寸和形状。心脏内能量采集装置100包括外壳10、固定机构20、纳米发电机模块30以及电源管理模块40。
实施例1中,纳米发电机模块30包括第一空腔31、至少一个的发电单元32、以及至少一个的第一跳动体33,第一跳动体33配置为响应于心脏的跳动而在第一空腔31中运动并接触和/或撞击发电单元32,从而使发电单元32向电源管理模块40输出电信号。
图21至图23均是根据一些实施例的心脏内能量采集装置的结构示意图。
实施例5与实施例1的区别在于:
参照图21至图23,纳米发电机模块30包括第二空腔34、至少一个的摩擦纳米发电单元和/或至少一个的压电纳米发电单元、至少一个的第二跳动体35以及至少一个的线圈36。
第二空腔34为外壳10内部的腔体。
至少一个的摩擦纳米发电单元和/或至少一个的压电纳米发电单元均设置于第二空腔34中,所述至少一个的摩擦纳米发电单元可以包括实施例1中的摩擦纳米发电单元和实施例2中的摩擦纳米发电单元中的至少一个。图21示出了采用实施例1中的摩擦纳米发电单元的示例。图22示出了采用实施例2中的摩擦纳米发电单元的示例。所述至少一个的压电纳米发电单元可以为实施例3中的压电纳米发电单元。图22示出了采用实施例3中的压电纳米发电单元的示例。
至少一个的第二跳动体35可自由运动地设置于第二空腔34中,即在心脏跳动而通过固定机构20带动外壳10运动时,外壳10即驱使第二跳动体35在第二空腔34中运动。并且,第二跳动体35包括磁铁,以使第二跳动体35在第二空腔34中运动的过程中产生交变磁场。第二跳动体35可以整体为磁铁。在至少一个的摩擦纳米发电单元包括实施例1中的摩擦纳米发电单元时,第二跳动体35可以包括磁铁以及设置于磁铁外表面的摩擦材料,摩擦材料可以为实施例1中第一跳动体33的材料。所述磁体可以包括钕铁硼、铝镍钴、钐钴、铁氧体中的至少一种。
至少一个的线圈36固定于第二空腔34中,至少一个的线圈36可固定于第二空腔34的内壁上,所指第二空腔34的内壁包括第一空腔31的顶壁、底壁、侧壁中的至少一个。线圈36用于相对切割由于第二跳动体35在第二空腔34中运动的过程中产生的交变磁场中的磁感线,使线圈36中产生交变电流,形成磁电电势差。线圈36的两端可分别通过第四导线与电源管理模块40的整流单元的输入电极电性连接。线圈36可以为平面线圈,线圈36可以为单相或同心式绕组环形线圈。
第二跳动体35配置为响应于心脏的跳动而在第二空腔34中运动以接触和/或撞击摩擦纳米发电单元32和/或压电纳米发电单元32以及产生交变磁场,使摩擦纳米发电单元32和/或压电纳米发电单元32向电源管理模块40输出电信号,以及使线圈36相对切割交变磁场中的磁感线而向电源管理模块40输出磁电信号。
采用以上设置,通过外壳10随心脏的跳动而运动,从而驱使第二跳动体35在第二空腔34中运动,即可使摩擦纳米发电单元32和/或压电纳米发电单元32响应于第二跳动体35的接触和/或撞击而输出电流,并使线圈36输出电流,有效提高了纳米发电机模块30的输出性能和能量转化效率。
实施例6
本实施例提供了一种心脏内能量采集装置100,该心脏内能量采集装置100具有适于通过介入手术植入心腔内部的尺寸和形状。心脏内能量采集装置100包括外壳10、固定机构 20、纳米发电机模块30以及电源管理模块40。
实施例1中,纳米发电机模块30包括第一空腔31、至少一个的发电单元32、以及至少一个的第一跳动体33,第一跳动体33配置为响应于心脏的跳动而在第一空腔31中运动并接触和/或撞击发电单元32,从而使发电单元32向电源管理模块40输出电信号。
图24和图26是根据一些实施例的心脏内能量采集装置的结构示意图。
实施例6与实施例1的区别在于:
参照图24和图26,纳米发电机模块30包括第三空腔301、活动体302、第六电极层303以及第六摩擦层304。
第三空腔301为外壳10内部的腔体。
活动体302活动设置于第三空腔301中,即在心脏跳动而通过固定机构20带动外壳10运动时,外壳10即驱使活动体302在第三空腔301中运动。活动体302包括第五电极层3021、以及与第五电极层3021接触设置的第五摩擦层3022。第五摩擦层3022设置于第五电极层3021上靠近第六摩擦层304的一表面。活动体302还可以包括芯体3023,以使第五电极层3021设置于芯体3023上,且第五摩擦层3022设置于第五电极层3021上。
第六电极层303设置于第三空腔301中,第六电极层303与第五电极层3021彼此间隔开。第六电极层303可设置于第三空腔301的顶壁、底壁、侧壁中的至少一处上。图24示出了第六电极层303设置于第三空腔301的顶壁和底壁上的示例。图26示出了第六电极层303设置于第三空腔301的侧壁上的示例。第五电极层3021和第六电极层303可分别通过第五导线与电源管理模块40的整流单元的输入电极电性连接。需要说明的是,与第五电极层3021连接的导线的长度需适当,不应该限制活动体302在第三空腔301中的自由运动。
第六摩擦层304与第六电极层303接触设置,第六摩擦层304设置于第六电极层303上靠近第五摩擦层3022的一表面。
活动体302配置为响应于心脏的跳动而使第五摩擦层3022和第六摩擦层304发生接触和分离,从而使第五电极层3021和第六电极层303向电源管理模块40输出电信号。
第五摩擦层3022的材料和第六摩擦层304的材料之间存在得失电子能力差异,使得第五摩擦层3022和第六摩擦层304接触或摩擦的过程中能够在两者的表面均产生接触电荷,且两者中,其中一个的接触表面带正电荷,而另外一个的接触表面带负电荷。
第五摩擦层3022的材料和第六摩擦层304的材料中的每个包括绝缘体材料、半导体材料、导体材料中的至少一种。常规的绝缘材料都具有摩擦电特性,均可以作为制备第五摩擦层3022和第六摩擦层304的材料。相对于绝缘体,半导体和金属均具有容易失去电子的摩擦电特性,因此,半导体和金属也可以作为制备第五摩擦层3022和第六摩擦层304的材料。本实施例中,第五摩擦层3022和第六摩擦层304中的每个可以包括聚乙烯、聚丙烯、聚苯乙烯、硅胶、聚二甲基硅氧烷、涤纶、聚氨酯、聚甲基丙烯酸酯、聚四氟乙烯和尼龙、聚酰亚胺、丁腈橡胶、氟橡胶、乳胶、甲壳素、纤维素、金、银、铜、铝、铁、合金材料中的至少一种,但不限于此。
第五电极层3021的材料和第六电极层303的材料中的每个可以包括金属和导电聚合物材料中的至少一种,其中,金属包括金、银、铜、铝、铁、合金中的至少一种,导电聚合物材料包括碳纳米管、石墨烯、炭黑中的至少一种,但不限于此。
采用以上设置,心脏跳动而通过固定机构20带动外壳10运动,外壳10即驱使活动体302在第三空腔301中运动(在第六摩擦层304沿第三空腔301的侧壁设置时,第五摩擦层3022和第六摩擦层304之间可发生相对滑动或发生接触和分离,在第六摩擦层304设置于第三空腔301的顶壁或底壁时,第五摩擦层3022和第六摩擦层304之间发生接触和分离),从而使第五摩擦层3022和第六摩擦层304之间发生相对滑动或发生接触和分离,在摩擦电和静电感应效应的耦合下,第五电极层3021和第六电极层303之间会产生电势差,在外电 路中就会产生交变的电信号,随着心脏持续的收缩与舒张,交流电信号将持续产生,使第五电极层3021和第六电极层303持续地向电源管理模块40输出电信号。
活动体302的形状不受限制,例如,第五摩擦层3022和第五电极层3021可为围成的筒状或球状,亦可为非封闭的曲面或平面,但不限于此。第六摩擦层304与第六电极层303的形状不受限制,第六摩擦层304与第六电极层303可为沿第三空腔301的内侧壁围成的筒状,亦可非封闭的曲面或平面,但不限于此。图26示出了第六摩擦层304与第六电极层303沿第三空腔301的内侧壁围成筒状的示例。
可以采用导体材料替换绝缘材料或半导体材料而制备第五摩擦层3022和第六摩擦层304,即第五摩擦层3022可为导体材料,并代替与其接触设置的第五电极层3021,第六摩擦层304可为导体材料,并代替与其接触设置的第六电极层303。导体材料可以选自金属、导电氧化物、导电高分子材料中的至少一种。
第五摩擦层3022的接触表面和第六摩擦层304的接触表面中的至少一个包括微纳结构、纳米材料的点缀、纳米材料的涂层中的至少一种。微纳结构包括微米或亚微米量级的微结构。所述微结构可以包括纳米线、纳米管、纳米颗粒、纳米沟槽、微米沟槽、纳米锥、微米锥、纳米球、微米球状结构中的至少一种,但不限于此。第五摩擦层3022的接触表面即面对第六摩擦层304的一表面,第六摩擦层304的接触表面即面对第五摩擦层3022的一表面。
实施例7
本实施例提供了一种心脏内能量采集装置植入方法,所述心脏内能量采集装置为上述任意一实施例中的任意一心脏内能量采集装置100,心脏内能量采集装置植入方法包括:
通过介入手术将心脏内能量采集装置100植入心腔内部,例如,可通过股静脉穿刺,将心脏内能量采集装置100通过导管植入到心腔内部,当然,穿刺部位及递送部件不限于此;
使心脏内能量采集装置100通过其固定机构20固定于心脏组织上。
实施例8
图28是根据一些实施例的植入式电子医疗器的结构示意图。
参照图28,本实施例提供了一种植入式电子医疗器,植入式电子医疗器包括心脏内能量采集装置100和负载功能单元200。
心脏内能量采集装置100可以为上述实施例1-6中的任一心脏内能量采集装置100,该心脏内能量采集装置100具有适于通过介入手术植入心腔内部的尺寸和形状,通过固定于心腔内部而采集心脏收缩和舒张产生的生物机械能,并将之转换为电能,从而为负载功能单元200提供电能。
负载功能单元200为植入式电子医疗器的设定的功能单元,以起到对生物体进行治疗和/或检测等作用,但作用不限于此。负载功能单元与心脏内能量采集装置的电源管理模块40的输出端电连接,心脏内能量采集装置100用于为负载功能单元提供电能。负载功能单元200可以包括无导线心脏起搏器的功能单元、心脏监测血流动力学传感器的功能单元、血管机器人的功能单元中的至少一种,但不限于此,只要植入生物体内以对生物体进行治疗、诊断或检测的需要消耗电能的电子医疗器件均应包括在内。
图29是根据一些实施例的植入式电子医疗器的结构示意图。
参照图29,负载功能单元200可以与心脏内能量采集装置100集成为一体。以提高植入式电子医疗器的集成度,减小体积。
图30是图29中的植入式电子医疗器的功能模块示意图。
参照图30,植入式电子医疗器可以为无导线心脏起搏器,此时,负载功能单元200包括心率感知部210、脉冲发射部220以及电极部230。图29示出了植入式电子医疗器为无导线心脏起搏器的示例。
心率感知部210配置为感知心脏心率,心率感知部210可通过电极部230检测心脏的跳 动状态。心率感知部210可与心脏内能量采集装置100的电源管理模块40的输出端电性连接。心率感知部210可设置于外壳10的内部。
脉冲发射部220配置为响应于心率感知部感知的心脏心率而发射电脉冲。脉冲发射部220可与心率感知部210电性连接,在心率感知部210感知到心脏心率较低时(例如心率感知部210感知到心脏心率低于预设阈值),脉冲发射部220可产生脉冲电流,并通过电极部230传导至心脏组织,以刺激心脏跳动。脉冲发射部220可设置于外壳10的内部。
电极部230配置为接触心脏组织以将心脏心率感知信号传导至心率感知部以及将脉冲发射部发生的电脉冲传导至心脏。电极部230可以与心率感知部210和/或脉冲发射部220电性连接。电极部230可以包括两个或多个设置在外壳内、上或附近的电极,例如,电极部230可以包括第一电极和第二电极,第一电极和第二电极可以是暴露于外壳10的侧壁上的金属导体,且第一电极和第二电极在外壳10上彼此绝缘隔离。电极部230的至少一个电极可以设置于外壳10上靠近固定机构20的部位,以便于固定机构20将外壳10固定于心脏组织上时,电极部230的至少一个电极接触心脏组织。
电源管理模块40、心率感知部210、脉冲发射部220、电极部230可以通过导线或者柔性电路板依次连接,各个部分可以除导线或者柔性电路经过之外都相互隔绝。
纳米发电机模块30、电源管理模块40、心率感知部210、脉冲发射部220、电极部230可以沿外壳10的长度方向依次设置,且电极部230可以位于靠近固定机构20的一端,但不限于此,纳米发电机模块30、电源管理模块40、心率感知部210、脉冲发射部220在外壳10中的安置位置可以进行调整。
在外壳10的整体体积中,纳米发电机模块30的体积可以占比1/3,电源管理模块40可以占比1/6,心率感知部210和脉冲发射部220可以占比1/2。电极部230的直径可以为0.5mm-2mm,优选地,电极部230的直径0.8mm。
由以上可知,本实施例提供的植入式电子医疗器,通过心脏内能量采集装置100在心腔内部采集心脏收缩和舒张产生的生物机械能,并将之转换为电能,以向负载功能单元200提供电能,保证其正常工作,从而实现了自供能的植入式电子医疗器,解决了目前植入式电子医疗器能源供给技术瓶颈-电池寿命有限的技术问题;且该心脏内能量采集装置100通过微创介入的手术方式即可植入心脏内部,手术创伤小,且不会对心脏造成损伤,可有效避免感染,并可对植入式电子医疗器的负载功能单元进行长期稳定供电,且利于形成自供能的无导线心脏起搏器,从而同时解决了目前植入式电子医疗器能源供给技术瓶颈-电池寿命有限的技术问题、以及具有电极导线和囊袋的心脏起搏器体积大集成度低的技术问题,可实现长期稳定的、通过微创手术植入即可实现的持续性诊疗。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (10)

  1. 一种心脏内能量采集装置,其特征在于,所述装置包括:
    外壳;
    固定机构,设置在所述外壳上,所述固定机构配置为将所述外壳固定于心腔内部而使所述外壳可随心脏的跳动而运动;
    纳米发电机模块,封装在所述外壳中,所述纳米发电机模块配置为响应于所述外壳随心脏跳动时的运动而输出电能;以及
    电源管理模块,封装在所述外壳中,所述电源管理模块用于管理所述纳米发电机模块输出的电能;
    优选地,所述外壳包括具有生物相容性的绝缘材料;
    优选地,所述外壳的外直径为5mm-15mm,所述外壳的长度为1cm-5cm;
    优选地,所述外壳呈柱状;
    优选地,所述固定机构设置在所述外壳的端部或侧部;
    优选地,所述固定机构包括爪状固定机构、钩状固定机构、螺旋状固定机构、螺钉固定机构中的至少一种;
    优选地,所述纳米发电机模块的长度为0.5cm-4.5cm;
    优选地,所述电源管理模块的长度为0.5cm-4.5cm;
    优选地,所述装置具有适于通过介入手术植入心腔内部的尺寸和形状;
    优选地,所述装置应用于通过介入手术植入心腔内部而采集心脏跳动产生的生物机械能;
    优选地,所述电源管理模块包括:
    整流模块,用于将所述纳米发电机模块输出的交流电流转换为直流电流;
    储能模块,用于存储所述整流模块输出的直流电流。
  2. 根据权利要求1所述的装置,其特征在于,所述纳米发电机模块包括:
    第一空腔;
    至少一个的发电单元,设置于所述第一空腔中;以及
    至少一个的第一跳动体,可自由运动地设置于所述第一空腔中;
    其中,所述第一跳动体配置为响应于心脏的跳动而接触和/或撞击所述发电单元,从而使所述发电单元向所述电源管理模块输出电信号;
    优选地,所述第一跳动体为多面体、柱体、球体、椭球体中的任一种;
    优选地,所述电源管理模块包括与所述发电单元的数量相对应的至少一个的整流单元;每一所述发电单元连接一所述整流单元,全部所述整流单元的输出端并联。
  3. 根据权利要求2所述的装置,其特征在于,所述发电单元为摩擦纳米发电单元,所述发电单元包括:
    第一电极层、与所述第一电极层接触设置的第一摩擦层;
    第二电极层、与所述第二电极层接触设置的第二摩擦层;
    其中,所述第一摩擦层和所述第二摩擦层面对面设置并间隔开一可供至少一个所述第一跳动体自由运动的空间,所述第一跳动体配置为响应于心脏的跳动而在所述第一摩擦层和所述第二摩擦层之间运动,使所述第一跳动体与所述第一摩擦层接触和分离、与所述第二摩擦层接触和分离,从而使所述第一电极层和所述第二电极层向所述电源管理模块输出电信号;
    优选地,所述发电单元的数量为多个,多个所述发电单元堆叠设置;并且每一所述发电单元的第一摩擦层和第二摩擦层之间形成的空间中均设置有至少一个的所述第一跳动体;
    优选地,所述发电单元的第一电极层和第二电极层沿所述外壳的长度方向依次设置,或者所述发电单元的第一电极层和第二电极层沿所述外壳的宽度方向依次设置;
    优选地,所述第一摩擦层的材料与所述第一跳动体的外表面的材料之间存在得失电子能 力差异;所述第二摩擦层的材料与所述第一跳动体的外表面的材料之间存在得失电子能力差异;
    优选地,所述第一摩擦层、所述第二摩擦层、所述第一跳动体中的每个包括绝缘体材料、半导体材料、导体材料中的至少一种;
    优选地,所述第一摩擦层和/或所述第二摩擦层为导体材料,并且所述导体材料的摩擦层代替与其接触设置的电极层;
    优选地,所述第一跳动体的外直径为100μm-5mm;
    优选地,所述第一电极层和所述第一摩擦层形成的发电层与所述第二电极层和所述第二摩擦层形成的发电层对称设置,并且所述第一摩擦层和所述第二摩擦层的材料相同;
    优选地,所述第一摩擦层的接触表面、所述第二摩擦层的接触表面、所述第一跳动体的外表面中的至少一个包括微纳结构、纳米材料的点缀、纳米材料的涂层中的至少一种。
  4. 根据权利要求2所述的装置,其特征在于,所述发电单元为摩擦纳米发电单元,所述发电单元包括:
    第三电极层、与所述第三电极层接触设置的第三摩擦层;
    第四电极层、与所述第四电极层接触设置的第四摩擦层;
    其中,所述第三摩擦层和所述第四摩擦层面对面设置并彼此间隔开,所述第一跳动体配置为响应于心脏的跳动而在所述第一空腔中运动并对所述第三摩擦层和/或所述第四摩擦层施加力,使所述第三摩擦层和所述第四摩擦层发生接触和分离,从而使所述第三电极层和所述第四电极层向所述电源管理模块输出电信号;
    优选地,所述发电单元的数量为多个,相邻两所述发电单元间隔开一可供至少一个所述第一跳动体自由运动的空间,并且该空间中设置有可自由运动的至少一个的所述第一跳动体;
    优选地,所述第三摩擦层的材料和所述第四摩擦层的材料之间存在得失电子能力差异;所述第三摩擦层和所述第四摩擦层的每个包括绝缘体材料、半导体材料、导体材料中的至少一种;
    优选地,所述第三摩擦层或所述第四摩擦层为导体材料,并且所述导体材料的摩擦层代替与其接触设置的电极层;
    优选地,所述第三摩擦层的接触表面和所述第四摩擦层的接触表面中的至少一个包括微纳结构、纳米材料的点缀、纳米材料的涂层中的至少一种。
  5. 根据权利要求2所述的装置,其特征在于,所述发电单元为压电纳米发电单元,所述发电单元包括:
    压电材料层;
    与所述压电材料层接触设置并位于所述压电材料层一侧的第一压电电极层;以及
    与所述压电材料层接触设置并位于所述压电材料层另一侧的第二压电电极层;
    其中,所述第一跳动体配置为响应于心脏的跳动而在所述第一空腔中运动并对所述压电材料层施加力,使所述第一压电电极层和所述第二压电电极层向所述电源管理模块输出电信号;
    优选地,所述发电单元的数量为多个,相邻两所述发电单元间隔开一可供至少一个所述第一跳动体自由运动的空间,并且该空间中设置有可自由运动的至少一个的所述第一跳动体。
  6. 根据权利要求2-5任一项所述的装置,其特征在于:
    所述第一空腔中设置有至少两个的所述发电单元,至少两个的所述发电单元包括至少一个的摩擦纳米发电单元和至少一个的压电纳米发电单元;
    所述第一跳动体配置为响应于心脏的跳动而接触和/或撞击所述摩擦纳米发电单元和/ 或所述压电纳米发电单元,从而使所述摩擦纳米发电单元和/或所述压电纳米发电单元分别向所述电源管理模块输出电信号。
  7. 根据权利要求1-6任一项所述的装置,其特征在于,所述纳米发电机模块包括:
    第二空腔;
    至少一个的摩擦纳米发电单元和/或至少一个的压电纳米发电单元,均设置于所述第二空腔中;
    至少一个的第二跳动体,可自由运动地设置于所述第二空腔中,并且所述第二跳动体包括磁铁;以及
    至少一个的线圈,固定于所述第二空腔中;
    其中,所述第二跳动体配置为响应于心脏的跳动而在所述第二空腔中运动以接触和/或撞击所述摩擦纳米发电单元和/或压电纳米发电单元以及产生交变磁场,使所述摩擦纳米发电单元和/或所述压电纳米发电单元向所述电源管理模块输出电信号,以及使所述线圈相对切割交变磁场中的磁感线而向所述电源管理模块输出磁电信号。
  8. 根据权利要求1-7任一项所述的装置,其特征在于,所述纳米发电机模块包括:
    第三空腔;
    活动体,活动设置于所述第三空腔中,所述活动体包括第五电极层、以及与所述第五电极层接触设置的第五摩擦层;
    第六电极层,设置于所述第三空腔中;
    第六摩擦层,与所述第六电极层接触设置;
    其中,所述活动体配置为响应于心脏的跳动而使所述第五摩擦层和所述第六摩擦层发生接触和分离,从而使所述第五电极层和所述第六电极层向所述电源管理模块输出电信号。
  9. 一种心脏内能量采集装置植入方法,其特征在于,所述心脏内能量采集装置为权利要求1-8任一项所述的心脏内能量采集装置,所述植入方法包括:
    通过介入手术将所述心脏内能量采集装置植入心腔内部;
    使所述心脏内能量采集装置通过其固定机构固定于心脏组织上。
  10. 一种植入式电子医疗器,其特征在于,所述植入式电子医疗器包括:
    权利要求1-8任一项所述的心脏内能量采集装置;
    负载功能单元,与所述心脏内能量采集装置的电源管理模块的输出端电连接,所述心脏内能量采集装置用于为所述负载功能单元提供电能;
    优选地,所述负载功能单元与所述心脏内能量采集装置集成为一体;
    优选地,所述植入式电子医疗器为无导线心脏起搏器,所述负载功能单元包括:
    心率感知部,配置为感知心脏心率;
    脉冲发射部,配置为响应于所述心率感知部感知的心脏心率而发射电脉冲;
    电极部,配置为接触心脏组织以将心脏心率感知信号传导至所述心率感知部以及将所述脉冲发射部发生的电脉冲传导至心脏。
PCT/CN2020/092367 2020-04-09 2020-05-26 一种心脏内能量采集装置及植入式电子医疗器 WO2021203533A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/917,925 US11992688B2 (en) 2020-04-09 2020-05-26 Intracardiac energy harvesting device and implantable electronic medical device
EP20930123.3A EP4134129A4 (en) 2020-04-09 2020-05-26 INTRACARDIAC ENERGY HARVESTING DEVICE AND IMPLANTABLE ELECTRONIC MEDICAL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010274659.1A CN111282154B (zh) 2020-04-09 2020-04-09 一种心脏内能量采集装置及植入式电子医疗器
CN202010274659.1 2020-04-09

Publications (1)

Publication Number Publication Date
WO2021203533A1 true WO2021203533A1 (zh) 2021-10-14

Family

ID=71025923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092367 WO2021203533A1 (zh) 2020-04-09 2020-05-26 一种心脏内能量采集装置及植入式电子医疗器

Country Status (3)

Country Link
EP (1) EP4134129A4 (zh)
CN (1) CN111282154B (zh)
WO (1) WO2021203533A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023138743A1 (en) * 2022-01-24 2023-07-27 Aalborg Universitet Energy harvester based on piezoelectric impact compartment
CN116943035A (zh) * 2023-06-29 2023-10-27 江苏省人民医院(南京医科大学第一附属医院) 一种无导线自驱动心脏起搏辅助装置及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111953226B (zh) * 2020-08-10 2021-08-27 中山大学 一种可植入摩擦纳米发电机及其制备方法与应用
CN113101522A (zh) * 2021-04-26 2021-07-13 上海联心医疗科技有限公司 一种植入式心脏起搏装置
WO2022241478A1 (en) * 2021-05-14 2022-11-17 Piezocap, Inc. Piezoelectrically-powered pacemaker using respiratory motion
CN113729712A (zh) * 2021-08-27 2021-12-03 北京纳米能源与系统研究所 一种传感器
CN115869531B (zh) * 2023-03-08 2023-05-26 中国医学科学院阜外医院 一种植入式心室辅助机械收缩装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104740772A (zh) * 2013-12-26 2015-07-01 中国人民解放军第二军医大学 生物能心脏起搏器
CN104740773A (zh) * 2013-12-26 2015-07-01 中国人民解放军第二军医大学 心脏发电系统
CN107961441A (zh) * 2016-11-04 2018-04-27 北京纳米能源与系统研究所 一种植入式柔性脉冲发生器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2478996A1 (fr) * 1980-03-28 1981-10-02 Guerin Jean Generateur de courant electrique pour protheses implantees
CA2689413A1 (en) * 2006-03-17 2007-09-27 Endurance Rhythm, Inc. Energy generating systems for implanted medical devices
US9026212B2 (en) * 2008-09-23 2015-05-05 Incube Labs, Llc Energy harvesting mechanism for medical devices
US9579434B2 (en) * 2010-03-03 2017-02-28 The Secretary Of Atomic Energy, Govt. Of India Flexible magnetic membrane based actuation system and devices involving the same
FR2987747A1 (fr) * 2012-03-12 2013-09-13 Sorin Crm Sas Capsule intracorporelle autonome a double recuperation d'energie
CN103780127B (zh) * 2013-04-15 2015-11-25 北京纳米能源与系统研究所 一种摩擦纳米发电机
CN203663246U (zh) * 2014-01-16 2014-06-25 国家纳米科学中心 一种心脏起搏器
CN105490578B (zh) * 2014-09-16 2018-01-02 北京纳米能源与系统研究所 一种接触分离式复合纳米发电机
CN105071685A (zh) * 2015-08-31 2015-11-18 大连理工大学 具有独立摩擦结构的三维摩擦纳米发电机
EP3190421B1 (en) * 2016-01-07 2019-05-22 Analog Devices, Inc. Two- or three-axis angular accelerometer
CN205901628U (zh) * 2016-08-24 2017-01-18 合肥乔茵特智能技术有限公司 一种振动发电装置
CN115800801A (zh) * 2016-11-04 2023-03-14 北京纳米能源与系统研究所 一种植入式柔性脉冲发生器
CN108123642B (zh) * 2016-11-30 2020-08-18 北京纳米能源与系统研究所 摩擦纳米发电机及其制备方法
CN108199606A (zh) * 2018-01-22 2018-06-22 王珏 运动能量收集球
CN108310649B (zh) * 2018-01-24 2022-07-05 张海军 一种具有充电管理技术的自供能无线起搏器
CN109546885B (zh) * 2018-12-28 2020-06-30 大连民族大学 水面浮动摩擦发电、电能存储、存电供应水面信号源电量的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104740772A (zh) * 2013-12-26 2015-07-01 中国人民解放军第二军医大学 生物能心脏起搏器
CN104740773A (zh) * 2013-12-26 2015-07-01 中国人民解放军第二军医大学 心脏发电系统
CN107961441A (zh) * 2016-11-04 2018-04-27 北京纳米能源与系统研究所 一种植入式柔性脉冲发生器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023138743A1 (en) * 2022-01-24 2023-07-27 Aalborg Universitet Energy harvester based on piezoelectric impact compartment
CN116943035A (zh) * 2023-06-29 2023-10-27 江苏省人民医院(南京医科大学第一附属医院) 一种无导线自驱动心脏起搏辅助装置及其制备方法
CN116943035B (zh) * 2023-06-29 2024-02-23 江苏省人民医院(南京医科大学第一附属医院) 一种无导线自驱动心脏起搏辅助装置及其制备方法

Also Published As

Publication number Publication date
CN111282154B (zh) 2022-05-06
EP4134129A4 (en) 2023-09-13
EP4134129A1 (en) 2023-02-15
US20230149720A1 (en) 2023-05-18
CN111282154A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2021203533A1 (zh) 一种心脏内能量采集装置及植入式电子医疗器
US10398904B2 (en) Energy harvesting mechanism for medical devices
US20090171404A1 (en) Energy generating systems for implanted medical devices
US20050055061A1 (en) Cardiac implant device
Zhao et al. Triboelectric nanogenerators and piezoelectric nanogenerators for preventing and treating heart diseases
CN104740714B (zh) 植入式自供能胰岛素泵
CN104740768B (zh) 自供能心脏起搏器
US11992688B2 (en) Intracardiac energy harvesting device and implantable electronic medical device
CN115800801A (zh) 一种植入式柔性脉冲发生器
CN104740774B (zh) 植入式自供能心脏复律除颤器
Xu et al. Minimally invasive power sources for implantable electronics
CN104740776B (zh) 自供能心室再同步复律除颤器
CN104740759B (zh) 心脏纳米发电系统
CN204073100U (zh) 自供能脑起搏器
CN104739426B (zh) 植入式自供能血糖监测仪
CN204073105U (zh) 植入式自供能心脏复律除颤器
AU2015202355B2 (en) Energy harvesting-mechanism for medical devices
Li Triboelectric Nanogenerators for Implantable Medical Science
Gupta et al. Design and simulation of Triboelectric Nanogenerator for empowering Pacemaker
WO2023111603A1 (en) Converter for power supply of medical devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020930123

Country of ref document: EP

Effective date: 20221109