WO2021203421A1 - 马达系统及其倾斜校正方法、装置、摄像模组及电子设备 - Google Patents

马达系统及其倾斜校正方法、装置、摄像模组及电子设备 Download PDF

Info

Publication number
WO2021203421A1
WO2021203421A1 PCT/CN2020/084233 CN2020084233W WO2021203421A1 WO 2021203421 A1 WO2021203421 A1 WO 2021203421A1 CN 2020084233 W CN2020084233 W CN 2020084233W WO 2021203421 A1 WO2021203421 A1 WO 2021203421A1
Authority
WO
WIPO (PCT)
Prior art keywords
tilt
lens
motor system
housing
compensation amount
Prior art date
Application number
PCT/CN2020/084233
Other languages
English (en)
French (fr)
Inventor
江传东
Original Assignee
南昌欧菲光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲光电技术有限公司 filed Critical 南昌欧菲光电技术有限公司
Priority to PCT/CN2020/084233 priority Critical patent/WO2021203421A1/zh
Publication of WO2021203421A1 publication Critical patent/WO2021203421A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • This application relates to the field of imaging technology, and in particular to a motor system and its tilt correction method, device, camera module and electronic equipment.
  • VCM AA Active Alignment
  • a motor system and its tilt correction method, device, camera module, and electronic equipment are provided.
  • a method for tilt correction of a motor system includes: acquiring lens tilt information of a motor system based on actual images; performing algorithm correction based on the lens tilt information to obtain the tilt compensation amount of the motor system; and controlling the motor system based on the tilt compensation amount.
  • the tilt correction device of the motor system performs tilt correction to obtain corrected lens tilt information so that the lens optical axis of the lens carrier carried on the motor system is perpendicular to the external photosensitive chip.
  • a tilt correction device for a motor system includes: a lens tilt information acquisition module for acquiring lens tilt information of the motor system based on actual images; a tilt compensation amount analysis module for performing algorithmic correction based on the lens tilt information to obtain The tilt compensation amount of the motor system; a tilt correction module for controlling the tilt correction device of the motor system to perform tilt correction according to the tilt compensation amount to obtain corrected lens tilt information, so that the load carried on the motor system
  • the lens optical axis of the lens carrier is perpendicular to the external photosensitive chip.
  • a motor system comprising: a housing; a lens carrier movably accommodated in the housing for carrying a lens; a tilt correction device arranged between the inner wall of the housing and the outer wall of the lens carrier; An auto-focusing device is arranged between the inner wall of the housing and the outer wall of the lens carrier, and is used to drive the lens to move for focusing; and a processing device that connects the tilt correction device, the auto-focus device and the outside
  • the photosensitive chip is used to obtain the lens tilt information of the motor system according to the actual image; perform algorithmic correction according to the lens tilt information to obtain the tilt compensation amount of the motor system; and control the motor system according to the tilt compensation amount
  • the tilt correction device performs tilt correction to obtain corrected lens tilt information so that the lens optical axis of the lens carrier carried on the motor system is perpendicular to the external photosensitive chip.
  • a camera module includes a photosensitive chip, a data processing substrate and a motor system, the photosensitive chip is arranged on the data processing substrate, the motor system is arranged opposite to the data processing substrate, and the motor system includes: a housing
  • the lens carrier can be movably accommodated in the housing for carrying the lens; the tilt correction device is arranged between the inner wall of the housing and the outer wall of the lens carrier; the auto-focusing device is arranged in the housing Between the inner wall of the body and the outer wall of the lens carrier, for driving the lens to move for focusing; and a processing device, which is connected to the tilt correction device, the autofocus device, and an external photosensitive chip, for capturing actual images
  • the lens tilt information of the motor system and perform algorithmic correction according to the lens tilt information to obtain the tilt compensation amount of the motor system; and control the tilt correction device of the motor system to perform tilt correction according to the tilt compensation amount to obtain the correction
  • the rear lens tilt information so that the lens optical axis of the lens carrier carried on the motor system is perpendicular to
  • An electronic device including a camera module, the camera module comprising: a photosensitive chip, a data processing substrate and a motor system, the photosensitive chip is arranged on the data processing substrate, the motor system is opposite to the data processing substrate
  • the motor system includes: a housing; a lens carrier movably accommodated in the housing for carrying a lens; a tilt correction device arranged between the inner wall of the housing and the outer wall of the lens carrier
  • An automatic focusing device arranged between the inner wall of the housing and the outer wall of the lens carrier, for driving the lens to move for focusing; and a processing device connected to the tilt correction device, the automatic focusing device and
  • the external photosensitive chip is used to obtain the lens tilt information of the motor system according to the actual image; perform algorithmic correction according to the lens tilt information to obtain the tilt compensation amount of the motor system; and control the motor system according to the tilt compensation amount
  • the tilt correction device performs tilt correction to obtain corrected lens tilt information so that the lens optical axis of the lens carrier carried on the motor system is perpendicular
  • FIG. 1 is a schematic flow chart of a method for inclination correction of a motor system in an embodiment
  • Figure 2 is a schematic diagram of actual image collection in an embodiment
  • Fig. 3 is a schematic diagram of a focus curve in an embodiment
  • FIG. 4 is a schematic diagram of a focus curve in another embodiment
  • FIG. 5 is a schematic flowchart of a method for correcting a tilt of a motor system in another embodiment
  • Fig. 6 is a schematic structural diagram of a tilt correction device of a motor system in an embodiment
  • Fig. 7 is a schematic structural diagram of a tilt correction device of a motor system in another embodiment
  • Fig. 8 is a schematic diagram of the structure of a motor system in an embodiment
  • FIG. 9 is a schematic diagram of the structure of the motor system in another embodiment.
  • FIG. 10 is a schematic diagram of the structure of a camera module in an embodiment.
  • a method for correcting a tilt of a motor system includes step S100, step S200, and step S300.
  • step S100 the lens tilt information of the motor system is obtained according to the actual image.
  • the motor system is provided with an autofocus device, a tilt correction device, and a lens carrier.
  • the lens carrier is used to carry the lens, that is, the lens is fixedly arranged on the lens carrier and can move with the movement of the lens carrier.
  • the auto-focusing device controls the lens to move in the direction where the light enters, so that the light passes through the lens to irradiate the external photosensitive chip, and is finally processed by the external photosensitive chip to obtain the corresponding actual image and transmit it to the processing device. That is, the actual image is obtained by focusing by the auto-focus device of the motor system and sent to the processing device for analysis to obtain lens tilt information related to the lens. It should be pointed out that the type of lens tilt information is not unique.
  • the lens tilt information is the focus that characterizes the correspondence between the lens movement in the motor system and the spatial frequency response value at each feature point in the actual image. curve.
  • the actual image is taken as a rectangle, and five feature points are selected for analysis. The five feature points are the diagonal intersection of the actual image and the actual The four corners of the image.
  • Step S200 Perform algorithmic correction according to the lens tilt information to obtain the tilt compensation amount of the motor system.
  • Z1, Z2, Z3, and Z4 are the actual image's upper left corner, lower left corner, upper right corner, and lower right corner offset from the center point, that is, the lens is in the motor system
  • the amount of medium movement the larger the value of Z1, Z2, Z3, and Z4, the greater the tilt of the lens relative to the external sensor chip.
  • the processing device will analyze and calculate based on Z1, Z2, Z3, and Z4, and obtain that the lens needs to be moved in the horizontal and vertical directions by Tx and Ty (that is, the amount of tilt compensation) to make Z1, Z2, and Z2.
  • Z3 and Z4 are small enough so that the lens is not significantly tilted relative to the photosensitive chip, that is, it is considered that the optical axis of the lens is perpendicular to the photosensitive chip, and the corresponding focus curve will be adjusted as shown in Figure 4.
  • step S300 the tilt correction device of the motor system is controlled to perform tilt correction according to the tilt compensation amount to obtain corrected lens tilt information so that the lens optical axis of the lens carrier carried on the motor system is perpendicular to the external photosensitive chip.
  • the processing device analyzes and obtains the tilt compensation amount corresponding to the motor system, it will send a control signal to the tilt correction device according to the tilt compensation amount, so that the tilt correction device controls the lens to shift, that is, shift Tx in the horizontal direction. Size, offset by Ty size perpendicular to the horizontal direction.
  • the values of Z1, Z2, Z3, and Z4 in the focus curve are sufficiently small, that is, the optical axis of the lens of the motor system is perpendicular to the external photosensitive chip.
  • the above-mentioned tilt correction method of the motor system is equipped with a lens carrier, a tilt correction device and an auto focus device in the motor system.
  • the tilt correction can be performed adaptively according to the actual image to ensure the lens light
  • the axis is perpendicular to the external photosensitive chip, which effectively guarantees the imaging quality of the camera module.
  • the method for correcting the inclination of the motor system further includes step S400 and step S500.
  • step S400 it is determined whether the motor system meets the specifications according to the corrected lens tilt information. If the motor system meets the specifications, step S500 is executed to program and store the tilt compensation amount.
  • a movement threshold may be preset in the processing device. When Z1, Z2, Z3, and Z4 are all less than or equal to the preset movement threshold, it indicates that the lens has been corrected at this time. The degree of inclination meets the requirements, that is, the motor system meets the specifications. It should be noted that the size of the preset movement threshold is not unique, and can be set to 5 microns in one embodiment.
  • the preset movement threshold can also be set to other sizes, as long as it can ensure that the values of Z1, Z2, Z3, and Z4 are less than or equal to the preset movement threshold, the lens carrier carried by the motor system
  • the optical axis of the lens can be perpendicular to the external photosensitive chip.
  • the corresponding Tx and Ty values at this time can be used as the initial state parameters of the lens in the motor system to burn and store.
  • the motor system is applied to the camera module for shooting, it is directly based on the Tx and Ty values.
  • the tilt correction of the lens can ensure that the imaging of the camera module meets the user's high-quality imaging needs.
  • step S300 if the motor system does not meet the specifications, return to continue the operation of obtaining lens tilt information of the motor system.
  • the tilt correction operation when the motor system does not meet the specifications, the tilt correction operation will be performed again. Only when the motor system meets the specifications, the tilt correction operation will be stopped.
  • a tilt correction device of a motor system includes: a lens tilt information acquisition module 100, a tilt compensation amount analysis module 200 and a tilt correction module 300.
  • the lens tilt information acquisition module 100 is used to acquire the lens tilt information of the motor system according to the actual image;
  • the tilt compensation amount analysis module 200 is used to perform algorithm correction according to the lens tilt information to obtain the tilt compensation amount of the motor system;
  • the tilt correction module 300 is used to obtain the tilt compensation amount of the motor system according to The tilt compensation amount controls the tilt correction device of the motor system to perform tilt correction to obtain corrected lens tilt information so that the lens optical axis of the lens carrier carried on the motor system is perpendicular to the external photosensitive chip.
  • the tilt correction device of the motor system further includes a correction check module 400.
  • the calibration verification module 400 is used to determine whether the motor system meets the specifications according to the corrected lens tilt information; if so, the tilt compensation amount is burned and stored; if not, the operation of obtaining the lens tilt information of the motor system is returned.
  • each module in the tilt correction device of the above-mentioned motor system can be implemented in whole or in part by software, hardware and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the operations corresponding to the above-mentioned modules.
  • the tilt correction device of the above motor system is equipped with a tilt correction device in the motor system.
  • the tilt correction can be adaptively performed according to the actual image to ensure that the optical axis of the lens is perpendicular to the external photosensitive chip. So as to effectively ensure the imaging quality of the camera module.
  • a motor system includes: a housing 10; a lens carrier 20 movably accommodated in the housing 10 for carrying a lens; a tilt correction device 30 disposed on the inner wall of the housing 10 and the lens carrier 20
  • the auto-focusing device 40 is arranged between the inner wall of the housing 10 and the outer wall of the lens carrier 20 for driving the lens carrier 20 to move for focusing; the processing device is connected to the tilt correction device 30, the auto-focusing device 40 and An external photosensitive chip (not shown in the figure) is used for tilt correction of the lens according to the above method.
  • the motor is a Voice Coil Motor (VCM), and its main principle is to control the movement of the lens carrier 20 associated with it by changing the DC current of the coil in the motor in a permanent magnetic field.
  • VCM Voice Coil Motor
  • the lens carrier 20 is generally a hollow sleeve structure, and the lens is fixed in the hollow inner cavity of the sleeve.
  • An auto-focusing device 40 is provided in the motor system housing 10, and when the processing device in the motor system sends a control signal to the auto-focusing device 40 so that the auto-focusing device 40 is connected to a corresponding current, the auto-focusing device 40 is driven ,
  • the lens carrier 20 contained in the housing 10 of the motor system will move under the magnetic force of the autofocus device 40, and the lens will also move with the movement of the lens carrier to realize the focusing operation. It will be sensed by the external photosensitive chip through the lens. After the focus is completed, the processing device will obtain the actual image in the current state analyzed by the external photosensitive chip.
  • the processing device analyzes the actual image to obtain the tilt compensation amount corresponding to the lens carrier 20 in the current state, and according to the tilt compensation amount Obtain a control signal to control the tilt correction device 30 to access a corresponding current, under the action of the current, the tilt correction device 30 will move the lens carrier 20 (even if the lens moves) for tilt correction, and finally make the optical axis of the lens carrier 20 It is perpendicular to the external photosensitive chip, effectively ensuring that the motor system meets the needs of users for high-quality imaging.
  • a tilt correction device 30 is installed between the inner wall of the housing 10 and the outer wall of the lens carrier 20.
  • the tilt correction can be performed adaptively according to the actual image to ensure The optical axis of the lens carrier 20 is perpendicular to the external photosensitive chip, thereby effectively ensuring the imaging quality of the camera module.
  • the processing device obtains the tilt compensation amount of the lens carrier 20 according to the actual image is not the only way.
  • the processing device first obtains the lens tilt information of the motor system according to the actual image; then according to the lens tilt The information is corrected by algorithm to obtain the tilt compensation amount of the motor system.
  • the tilt compensation amount is used to control the tilt correction device 30 of the motor system to perform tilt correction and obtain the corrected lens tilt information; finally, determine whether the motor system is based on the corrected lens tilt information Meet the specifications; if so, program the tilt compensation amount and store it.
  • the lens tilt information is a focus curve
  • the focus curve represents the correspondence between the amount of movement of the lens carrier 20 in the motor system and the spatial frequency response value at each feature point in the actual image. It should be pointed out that the number of feature points in the actual image and the selected location are not unique. In order to obtain a more accurate tilt compensation amount, a larger number of feature points can be selected for analysis. In order to understand the technical solution of the present application, please refer to FIG. 2. In this embodiment, the actual image is taken as a rectangle, and five feature points are selected for analysis. Corners.
  • the focus curve as shown in Figure 3 is obtained, where Z1, Z2, Z3, and Z4 are the offset of the center point of the upper left, lower left, upper right, and lower right corners of the actual image, respectively.
  • the size that is, the amount of movement of the lens carrier 20 in the motor system.
  • the processing device will analyze and calculate according to Z1, Z2, Z3, and Z4, and obtain that the lens carrier 20 needs to be moved in the horizontal and vertical directions by Tx and Ty (that is, the tilt compensation amount), so that Z1,
  • the values of Z2, Z3, and Z4 are small enough so that the lens carrier 20 is not significantly tilted relative to the photosensitive chip, that is, the optical axis of the lens carrier 20 is considered to be perpendicular to the photosensitive chip, and the corresponding focus curve will be transformed as shown in FIG. 4 at this time.
  • a movement threshold can be preset in the processing device, when Z1, Z2, Z3 and When Z4 is less than or equal to the preset moving amount threshold, it means that the inclination degree of the lens carrier 20 after correction at this time meets the requirements, that is, the motor system meets the specifications. It should be noted that the size of the preset movement threshold is not unique, and can be set to 5 microns in one embodiment.
  • the corresponding Tx and Ty values at this time can be used as the initial state parameters of the lens carrier 20 in the motor system to be burned and stored. When the motor system is applied to the camera module for shooting, it is directly based on the Tx Performing the tilt correction of the lens carrier 20 with the Ty value can ensure that the imaging of the camera module meets the high-quality imaging requirements of the user.
  • the lens tilt correction operation of the motor system can be performed once after the camera module is assembled. After the corresponding tilt compensation amount is obtained, the follow-up operation can be directly based on the tilt compensation amount to meet the user's needs.
  • this method has the advantage of simple operation.
  • the motor system further includes a first elastic piece 50 and a second elastic piece 60.
  • One end of the first elastic piece 50 is fixedly connected to the housing 10, and the other end is fixedly connected to the lens carrier 20;
  • One end of 60 is fixedly connected to the housing 10 and the other end is fixedly connected to the lens carrier 20.
  • the lens carrier 20 and the housing 10 are movably connected, and the tilt correction device 30 is energized to perform the tilt correction of the lens in the lens carrier 20 or automatically
  • the focusing device 40 is energized to drive the focus of the lens in the lens carrier 20
  • the lens carrier 20 and the corresponding lens are moved by the first elastic piece 50 or the second elastic piece 60
  • the tilt correction device 30 or the auto focus device 40 is turned off.
  • the lens carrier 20 and the lens are reset by resetting the first elastic piece 50 or the second elastic piece 60.
  • the tilt correction device 30 includes a tilt magnet 31 and a tilt coil 32.
  • the tilt magnet 31 is fixedly disposed on the inner wall of the housing 10, and the tilt coil 32 is disposed on the lens carrier 20 opposite to the tilt magnet 31. Position, the tilt coil 32 is connected to the processing device (not shown).
  • the arrangement of the tilt magnet 31 and the tilt coil 32 inside the housing 10 is not unique. As long as the tilt coil 32 is energized to generate a magnetic field, the interaction between the magnetic field of the tilt coil 32 and the magnetic field of the tilt magnet 31 Next, the lens carrier 20 can move to a corresponding size.
  • the tilt magnet 31 is fixed to the inner wall of the housing 10, and the tilt coil 32 is arranged around the lens carrier 20. After the coil on the lens carrier 20 is energized, the Lorentz force is generated, so that the forced movement of the coil drives the lens carrier 20 and The movement of the lens.
  • the coil By energizing the tilt coil 32, the coil generates a magnetic force, and the force generated between the tilt magnet 31 causes the lens carrier 20 to move to realize the tilt correction operation, and the lens carrier 20 is driven to move the corresponding distance by controlling the current flowing into the coil.
  • the auto-focusing device 40 includes an auto-focusing magnet 41 and an auto-focusing coil 42.
  • the auto-focusing magnet 41 is fixedly disposed on the inner wall of the housing 10, and the auto-focusing coil 42 is disposed on the lens carrier 20 and the auto-focusing coil.
  • the auto focusing coil 42 is connected to a processing device (not shown in the figure).
  • the auto-focusing device 40 includes magnets and coils arranged oppositely.
  • the auto-focusing magnet 41 is fixed to the inner wall of the housing 10, and the auto-focusing coil 42 is arranged around the lens carrier 20. Energization makes the coil generate magnetic force, and the force generated between it and the autofocus magnet 41 makes the lens carrier 20 and the lens move to achieve focusing operation.
  • the motor system further includes a magnetic field detector 70, the magnetic field detector 70 is disposed on the tilt correction device 30, and the magnetic field detector 70 is connected to a processing device (not shown).
  • a magnetic field detector 70 is provided in the tilt correction device 30 to detect the condition of the magnetic field in real time, and sends the detection result to the processing device for analysis, so as to effectively implement the tilt correction operation of the lens.
  • the magnetic field detector 70 is a Hall sensor.
  • a Hall sensor is used as a device for magnetic field detection, which effectively feeds back the magnetic field in the tilt correction device 30 to the processing device for analysis, and has the advantage of strong reliability in detecting the magnetic field.
  • the processing device is arranged inside the housing 10 or arranged outside the housing 10. It can be understood that the location of the processing device is not unique.
  • the processing device can be installed inside the housing 10 to ensure timely signal transmission between the processing device and the tilt correction device 30 or the autofocus device 40. It may be installed outside the housing 10 to prevent the processing device from affecting the magnetic field of the tilt correction device 30 or the auto-focus device 40.
  • the processing device is arranged inside the casing 10 or outside the casing 10, and different choices can be made according to actual needs, and the corresponding lens tilt correction operation can be realized.
  • a camera module includes a photosensitive chip 80, a data processing substrate 90, and the above-mentioned motor system.
  • the photosensitive chip 80 is disposed on the data processing substrate 90, and the motor system is disposed opposite to the data processing substrate 90.
  • an auto-focusing device 40 is provided in the housing 10 of the motor system.
  • the processing device in the motor system sends a control signal to the auto-focusing device 40
  • the lens carrier 20 and the lens contained in the housing 10 of the motor system will be generated under the magnetic force of the auto-focusing device 40 under the driving of the auto-focusing device 40. Move to achieve focus operation. After the focus is completed, the processing device will obtain the actual image in the current state.
  • the processing device analyzes the actual image to obtain the tilt compensation amount corresponding to the lens in the lens carrier 20 in the current state, and obtain a control signal according to the tilt compensation amount
  • the tilt correction device 30 is controlled to be connected to a current of a corresponding size. Under the action of the current, the tilt correction device 30 will move the lens carrier 20 and the lens for tilt correction, and finally make the optical axis of the lens 20 perpendicular to the photosensitive chip 80, effectively Ensure that the motor system meets the needs of users for high-quality imaging.
  • the data processing substrate 90 may specifically be a PCB circuit board, and other processing devices such as the photosensitive chip 80 are all connected to the PCB circuit board, thereby realizing a complete camera operation.
  • the processing device first obtains the lens tilt information of the motor system based on the actual image; then performs algorithmic correction based on the lens tilt information , Obtain the tilt compensation amount of the motor system, the tilt compensation amount is used to control the tilt correction device 30 of the motor system to perform tilt correction and obtain the corrected lens tilt information; finally, determine whether the motor system meets the specifications according to the corrected lens tilt information; if so; , The tilt compensation amount will be programmed and stored. If not, return to the operation of obtaining the lens tilt information of the motor system according to the actual image until the motor system meets the specifications, that is, the optical axis of the lens in the motor system is perpendicular to the photosensitive chip 80.
  • a tilt correction device 30 is installed between the inner wall of the housing 10 and the outer wall of the lens carrier 20.
  • the tilt correction can be adaptively performed according to the actual image to ensure the lens
  • the optical axis is perpendicular to the photosensitive chip 80, thereby effectively ensuring the imaging quality of the camera module.
  • VCM AA equipment to assemble the camera module
  • general LHA equipment can also ensure that the image quality of the final camera module meets the user's high-quality requirements, which can effectively simplify the camera module Assembly process;
  • VCM AA equipment is not used, special AA glue will not be used, thereby effectively increasing production capacity, saving equipment, glue and labor costs, and avoiding the increase in module thickness due to the use of AA glue.
  • Tilt realize the shift of light to offset or compensate the image shift caused by jitter, and realize the anti-shake of the lens.
  • the camera module of this embodiment has the advantage of strong assembly reliability.
  • An electronic device includes the above-mentioned camera module.
  • the specific structure of the camera module is shown in the respective embodiments corresponding to the above-mentioned camera module.
  • the motor system is provided with an auto-focusing device 40 in the housing 10 of the motor system.
  • the processing device in the motor system sends a control signal to the auto-focusing device 40 so that the auto-focusing device 40 is connected with a corresponding current
  • the lens carrier 20 is housed in the housing 10 of the motor system under the drive of the auto-focusing device 40 And the lens will move under the magnetic force of the auto-focusing device 40 to realize the focusing operation.
  • the processing device will obtain the actual image in the current state.
  • the processing device analyzes the actual image to obtain the tilt compensation amount corresponding to the lens in the current state, and obtains a control signal according to the tilt compensation amount to control the tilt correction device 30 is connected to a current of a corresponding size. Under the action of the current, the tilt correction device 30 will make the lens carrier 20 and the lens move for tilt correction, and finally make the lens optical axis perpendicular to the photosensitive chip 80, effectively ensuring that the motor system meets the user’s requirements. The need for high-quality imaging.
  • the data processing substrate 90 may specifically be a PCB circuit board, and other processing devices such as the photosensitive chip 80 are all connected to the PCB circuit board, thereby realizing a complete camera operation.
  • the processing device first obtains the lens tilt information of the motor system based on the actual image; then performs algorithmic correction based on the lens tilt information , Obtain the tilt compensation amount of the motor system, the tilt compensation amount is used to control the tilt correction device 30 of the motor system to perform tilt correction and obtain the corrected lens tilt information; finally, determine whether the motor system meets the specifications according to the corrected lens tilt information; if so; , The tilt compensation amount will be programmed and stored. If not, return to the operation of obtaining the lens tilt information of the motor system according to the actual image until the motor system meets the specifications, that is, the optical axis of the lens in the motor system is perpendicular to the photosensitive chip 80.
  • the camera module of the camera module is equipped with a tilt correction device 30 between the inner wall of the housing 10 and the outer wall of the lens carrier 20.
  • the tilt correction can be adaptively performed according to the actual image. , To ensure that the optical axis of the lens is perpendicular to the photosensitive chip 80, thereby effectively ensuring the imaging quality of the camera module.
  • the type of electronic device is not unique, as long as it is a device with a camera function, such as a mobile phone, a computer, or a tablet.

Abstract

本申请涉及一种马达系统及其倾斜校正方法、装置、摄像模组及电子设备,包括:根据实际影像获取马达系统的镜头倾斜信息;根据镜头倾斜信息进行算法校正得到马达系统的倾斜补偿量;根据倾斜补偿量控制马达系统的倾斜校正装置进行倾斜校正得到校正后的镜头倾斜信息,以使马达系统的镜头光轴与外部感光芯片垂直。

Description

马达系统及其倾斜校正方法、装置、摄像模组及电子设备 技术领域
本申请涉及成像技术领域,特别是涉及一种马达系统及其倾斜校正方法、装置、摄像模组及电子设备。
背景技术
随着科学技术的飞速发展,高精度的摄像头在手机等电子设备中越来越普及,它的出现给人们日常生活中拍照和摄影带来了极大的便利。在摄像模组的组装过程中,各部件之间的组装均存在累计公差,这些公差将会直接影响到摄像头模组的成像质量。随着摄像传感器的高像素、镜头大光圈等的推广与普及,传统的组装方式越来越无法满足制程需求以及用户对高品质的要求,严重影响影响摄像模组的成像品质即良品率。
基于此,在摄像模组的组装过程中引入了较为昂贵的VCM AA(Active Alignment,主动对准)设备,该设备在组装过程中还需要采用专用的AA胶水,虽然AA设备能够提高摄像模组的成像品质以及良品率,但受结构、算法等的影响,其制程中需要增加拨单、转盘等额外流程,严重影响摄像模组的产能。因此,传统的摄像模组具有组装可靠性差的缺点。
申请内容
根据本申请的各种实施例,提供一种马达系统及其倾斜校正方法、装置、摄像模组及电子设备。
一种马达系统的倾斜校正方法,包括:根据实际影像获取马达系统的镜头倾斜信息;根据所述镜头倾斜信息进行算法校正,得到所述马达系统的倾斜补偿量;根据所述倾斜补偿量控制所述马达系统的倾斜校正装置进行倾斜校正,得到校正后的镜头倾斜信息,以使承载于所述马达系统的镜头载体的镜头光轴与外部感光芯片垂直。
一种马达系统的倾斜校正装置,包括:镜头倾斜信息获取模块,用于根据实际影像获取马达系统的镜头倾斜信息;倾斜补偿量分析模块,用于根据所述镜头倾斜信息进行算法校正,得到所述马达系统的倾斜补偿量;倾斜校正模块,用于根据所述倾斜补偿量控制所述马达系统的倾斜校正装置进行倾斜校正,得到校正后的镜头倾斜信息,以使承载于所述马达系统的镜头载体的镜头光轴与外部感光芯片垂直。
一种马达系统,包括:壳体;镜头载体,可活动容置于所述壳体,用于承载镜头;倾斜校正装置,设置于所述壳体的内壁与所述镜头载体的外壁之间;自动对焦装置,设置于所述壳体的内壁与所述镜头载体的外壁之间,用于驱动所述镜头移动进行对焦;以及处理装置,连接所述倾斜校正装置、所述自动对焦装置和外部感光芯片,用于根据实际影像获取马达系统的镜头倾斜信息;并根据所述镜头倾斜信息进行算法校正,得到所述马达系统的倾斜补偿量;以及根据所述倾斜补偿量控制所述马达系统的倾斜校正装置进行倾斜校正,得到校正后的镜头倾斜信息,以使承载于所述马达系统的镜头载体的镜头光轴与外部感光芯片垂直。
一种摄像模组,包括感光芯片、数据处理基板和马达系统,所述感光芯片设置于所述 数据处理基板,所述马达系统与所述数据处理基板相对设置,所述马达系统包括:壳体;镜头载体,可活动容置于所述壳体,用于承载镜头;倾斜校正装置,设置于所述壳体的内壁与所述镜头载体的外壁之间;自动对焦装置,设置于所述壳体的内壁与所述镜头载体的外壁之间,用于驱动所述镜头移动进行对焦;以及处理装置,连接所述倾斜校正装置、所述自动对焦装置和外部感光芯片,用于根据实际影像获取马达系统的镜头倾斜信息;并根据所述镜头倾斜信息进行算法校正,得到所述马达系统的倾斜补偿量;以及根据所述倾斜补偿量控制所述马达系统的倾斜校正装置进行倾斜校正,得到校正后的镜头倾斜信息,以使承载于所述马达系统的镜头载体的镜头光轴与外部感光芯片垂直。
一种电子设备,包摄像模组,所述摄像模组包括:感光芯片、数据处理基板和马达系统,所述感光芯片设置于所述数据处理基板,所述马达系统与所述数据处理基板相对设置,所述马达系统包括:壳体;镜头载体,可活动容置于所述壳体,用于承载镜头;倾斜校正装置,设置于所述壳体的内壁与所述镜头载体的外壁之间;自动对焦装置,设置于所述壳体的内壁与所述镜头载体的外壁之间,用于驱动所述镜头移动进行对焦;以及处理装置,连接所述倾斜校正装置、所述自动对焦装置和外部感光芯片,用于根据实际影像获取马达系统的镜头倾斜信息;并根据所述镜头倾斜信息进行算法校正,得到所述马达系统的倾斜补偿量;以及根据所述倾斜补偿量控制所述马达系统的倾斜校正装置进行倾斜校正,得到校正后的镜头倾斜信息,以使承载于所述马达系统的镜头载体的镜头光轴与外部感光芯片垂直。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为一实施例中马达系统的倾斜校正方法流程示意图;
图2为一实施例中实际影像采集示意图;
图3为一实施例中对焦曲线示意图;
图4为另一实施例中对焦曲线示意图;
图5为另一实施例中马达系统的倾斜校正方法流程示意图;
图6为一实施例中马达系统的倾斜校正装置结构示意图;
图7为另一实施例中马达系统的倾斜校正装置结构示意图;
图8为一实施例中马达系统结构示意图;
图9为另一实施例中马达系统结构示意图;
图10为一实施例中摄像模组结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,一种马达系统的倾斜校正方法,包括步骤S100、步骤S200和步骤S300。
步骤S100,据实际影像获取马达系统的镜头倾斜信息。
具体地,马达系统中设置有自动对焦装置、倾斜校正装置以及镜头载体,其中镜头载体用于承载镜头,即镜头固定设置于镜头载体,能够随着镜头载体的运动而运动。在处理装置的作用下自动对焦装置会控制镜头在光线射入的方向上移动,以使光线透过镜头照射至外部感光芯片,最终被外部感光芯片处理得到对应的实际影像并传输至处理装置。即通过马达系统的自动对焦装置进行对焦得到实际影像并发送至处理装置进行分析,得到与镜头相关的镜头倾斜信息。应当指出的是,镜头倾斜信息的类型并不是唯一的,在一个实施例中,镜头倾斜信息为表征实际影像中的各个特征点下镜头在马达系统中移动量与空间频率响应值的对应关系的对焦曲线。为了理解本申请的技术方案,请参阅图2-图3,本实施例以实际影像为矩形,选取五个特征点进行分析,其中,五个特征点分别是实际影像的对角线交点以及实际影像的四个角。
步骤S200,根据镜头倾斜信息进行算法校正,得到马达系统的倾斜补偿量。
具体地,如图3所示的对焦曲线,其中,Z1、Z2、Z3和Z4分别为实际影像的左上角、左下角、右上角和右下角偏移中心点的大小,也即镜头在马达系统中移动量,Z1、Z2、Z3和Z4的值越大,表示镜头相对于外部感光芯片的倾斜程度越大。此时处理装置将会根据Z1、Z2、Z3和Z4进行分析计算,得到需要将镜头在水平方向和竖直方向上分别移动Tx和Ty大小(即为倾斜补偿量),才能使得Z1、Z2、Z3和Z4的值足够小,使得镜头相对感光芯片无明显倾斜,即认为镜头光轴与感光芯片垂直,此时对应的对焦曲线将会调整为如图4所示。
步骤S300,根据倾斜补偿量控制马达系统的倾斜校正装置进行倾斜校正,得到校正后的镜头倾斜信息,以使承载于马达系统的镜头载体的镜头光轴与外部感光芯片垂直。
具体的,当处理装置进行分析得到马达系统对应的倾斜补偿量之后,将会根据倾斜补偿量向倾斜校正装置发送控制信号,使得倾斜校正装置控制镜头进行偏移,即在水平方向上偏移Tx大小,在垂直于水平方向上偏移Ty大小。从而使对焦曲线中Z1、Z2、Z3和Z4的值足够小,也就是马达系统的镜头光轴与外部感光芯片垂直。
上述马达系统的倾斜校正方法,在马达系统中设置有镜头载体、倾斜校正装置和自动对焦装置,在镜头与外部感光芯片之间倾斜时,能够根据实际影像自适应的进行倾斜校正,保证镜头光轴与外部感光芯片垂直,从而有效的保证摄像模组的成像质量。通过上述方案,不需要采用VCM AA设备进行摄像模组的组装,采用一般的LHA设备也能够保证最终得到的摄像模组成像质量满足用户对高品质的要求,从而可以有效的简化摄像模组的组装工艺;同时不采用VCM AA设备也就不会使用专用的AA胶水,从而有效地提高产能,节约设备、胶水和人力成本,避免由于AA胶水的使用导致模组厚度增加,同时通过摆动镜头的倾斜,实现光线的偏移来抵消或补偿抖动带来的影像偏移,可实现镜头倾斜防抖。将上述马达系统运用到摄像模组时具有组装可靠性强的优点。
在一个实施例中,请参阅图5,马达系统的倾斜校正方法还包括步骤S400和步骤S500。
步骤S400,根据校正后的镜头倾斜信息判断马达系统是否满足规格。若马达系统满足规格,则执行步骤S500,将倾斜补偿量烧录存储。
可以理解,根据马达系统的不同规格,Z1、Z2、Z3和Z4的值足够小并不是唯一的。在一个实施例中,根据实际成像品质要求,可以在处理装置中预设一个移动量阈值,当Z1、Z2、Z3和Z4均小于或等于预设移动量阈值时,表示此时校正之后的镜头倾斜程度满足要求,即为马达系统满足规格。应当指出的是,预设移动量阈值的大小并不是唯一的,在一个实施例中可以设置为5微米。在其它实施例中,还可以将预设移动量阈值设置为其它大小,只要能够保证Z1、Z2、Z3和Z4的值小于或等于该预设移动量阈值时,承载于马达系统的镜头载体的镜头光轴与外部感光芯片垂直均可。当镜头校正完成之后,可以将此时对应的Tx和Ty值作为镜头在马达系统中的初始状态参数烧录存储,当马达系统应用到摄像模组中进行拍摄时,直接根据Tx和Ty值进行镜头的倾斜校正,即可以保证摄像模组 的成像满足用户的高品质成像需求。
步骤S300之后,若马达系统不满足规格,则返回继续执行获取马达系统的镜头倾斜信息的操作。本实施例中,在马达系统不满足规格的情况下会再次进行倾斜校正操作,只有在马达系统满足规格的情况下,才会停止倾斜校正操作,将上述马达系统应用到摄像模组时,能够有效地保证摄像模组满足用户对高品质的需求。
请参参阅图6,一种马达系统的倾斜校正装置,包括:镜头倾斜信息获取模块100、倾斜补偿量分析模块200和倾斜校正模块300。
镜头倾斜信息获取模块100用于根据实际影像获取马达系统的镜头倾斜信息;倾斜补偿量分析模块200用于根据镜头倾斜信息进行算法校正,得到马达系统的倾斜补偿量;倾斜校正模块300用于根据倾斜补偿量控制马达系统的倾斜校正装置进行倾斜校正,得到校正后的镜头倾斜信息,以使承载于马达系统的镜头载体的镜头光轴与外部感光芯片垂直。
请参阅图7,在一个实施例中,马达系统的倾斜校正装置还包括校正检验模块400。校正检验模块400用于根据校正后的镜头倾斜信息判断马达系统是否满足规格;若是,则将倾斜补偿量烧录存储;若否,则返回获取马达系统的镜头倾斜信息的操作。
关于马达系统的倾斜校正装置的具体限定可以参见上文中对于马达系统的倾斜校正方法的限定,在此不再赘述。上述马达系统的倾斜校正装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
上述马达系统的倾斜校正装置,在马达系统中设置有倾斜校正装置,在镜头与外部感光芯片之间倾斜时,能够根据实际影像自适应的进行倾斜校正,保证镜头光轴与外部感光芯片垂直,从而有效的保证摄像模组的成像质量。通过上述方案,不需要采用VCM AA设备进行摄像模组的组装,采用一般的LHA设备也能够保证最终得到的摄像模组成像质量满足用户对高品质的要求,从而可以有效的简化摄像模组的组装工艺;同时不采用VCM AA设备也就不会使用专用的AA胶水,从而有效地提高产能,节约设备、胶水和人力成本,避免由于AA胶水的使用导致模组厚度增加,同时通过摆动镜头的倾斜,实现光线的偏移来抵消或补偿抖动带来的影像偏移,可实现镜头倾斜防抖,将上述马达系统运用到摄像模组时具有组装可靠性强的优点。
请参阅图8,一种马达系统,包括:壳体10;镜头载体20,可活动容置于壳体10,用于承载镜头;倾斜校正装置30,设置于壳体10的内壁与镜头载体20的外壁之间;自动对焦装置40,设置于壳体10的内壁与镜头载体20的外壁之间,用于驱动镜头载体20移动进行对焦;处理装置,连接倾斜校正装置30、自动对焦装置40和外部感光芯片(图未示),用于根据上述方法对镜头进行倾斜校正。
具体地,马达即为音圈电机(Voice Coil Motor,VCM),其主要原理是在一个永久磁场内,通过改变马达内线圈的直流电流大小,来控制与之相关联的镜头载体20发生运动。镜头载体20一般为中空的套筒结构,镜头则固定在套筒的中空的内腔中。在马达系统壳体10内设置有自动对焦装置40,当马达系统中的处理装置向自动对焦装置40发送控制信号使得自动对焦装置40接入对应大小的电流时,在自动对焦装置40的驱动下,容置于马达系统的壳体10内部的镜头载体20将会在自动对焦装置40的磁力作用下发生移动,镜头也会随着镜头载体的移动而移动,进而实现对焦操作,此时光线将会通过镜头被外部感光芯片感知。当对焦完成之后,处理装置将会得到外部感光芯片分析得到的当前状态下的实际影像,处理装置根据实际影像进行分析,得到当状态下的镜头载体20对应的倾斜补偿量,并根据倾斜补偿量得到一个控制信号控制倾斜校正装置30接入相应大小的电流, 在该电流的作用下倾斜校正装置30将会使镜头载体20移动(也即使镜头移动)进行倾斜校正,最终使得镜头载体20光轴与外部感光芯片垂直,有效地保证马达系统满足用户对高品质成像的需求。
上述马达系统,在壳体10的内壁与镜头载体20的外壁之间安装有倾斜校正装置30,在镜头载体20与外部感光芯片之间倾斜时,能够根据实际影像自适应的进行倾斜校正,保证镜头载体20光轴与外部感光芯片垂直,从而有效的保证摄像模组的成像质量。通过上述方案,不需要采用VCM AA设备进行摄像模组的组装,采用一般的LHA设备也能够保证最终得到的摄像模组成像质量满足用户对高品质的要求,从而可以有效的简化摄像模组的组装工艺;同时不采用VCM AA设备也就不会使用专用的AA胶水,从而有效地提高产能,节约设备、胶水和人力成本,避免由于AA胶水的使用导致模组厚度增加,同时通过摆动镜头载体20的倾斜,实现光线的偏移来抵消或补偿抖动带来的影像偏移,可实现镜头倾斜防抖。将上述马达系统运用到摄像模组时具有组装可靠性强的优点。
应当指出的是,处理装置在根据实际影像得到镜头载体20的倾斜补偿量的方式并不是唯一的,在一个实施例中,处理装置首先根据实际影像获取马达系统的镜头倾斜信息;然后根据镜头倾斜信息进行算法校正,得到马达系统的倾斜补偿量,倾斜补偿量用于控制马达系统的倾斜校正装置30进行倾斜校正并得到校正后的镜头倾斜信息;最后根据校正后的镜头倾斜信息判断马达系统是否满足规格;若是,则将倾斜补偿量烧录存储。
进一步地,在一个实施例中,镜头倾斜信息为对焦曲线,对焦曲线表征实际影像中的各个特征点下镜头载体20在马达系统中移动量与空间频率响应值的对应关系。应当指出的是,实际影像中特征点的数量以及选取位置均并不是唯一的,为了得到较为精确地倾斜补偿量,可以选取较多数量的特征点进行分析。为了理解本申请的技术方案,请参阅图2,本实施例以实际影像为矩形,选取五个特征点进行分析,其中,五个特征点分别是实际影像的对角线交点以及实际影像的四个角。
处理装置对实际影像进行分析处理之后,得到如图3所示的对焦曲线,其中,Z1、Z2、Z3和Z4分别为实际影像的左上角、左下角、右上角和右下角偏移中心点的大小,也即镜头载体20在马达系统中移动量。Z1、Z2、Z3和Z4的值越大,表示镜头载体20相对于外部感光芯片的倾斜程度越大。可以理解,为了得到较为准确的对焦曲线,应当在对焦清晰状态下获取对应的空间频率响应值。此时处理装置将会根据Z1、Z2、Z3和Z4进行分析计算,得到需要将镜头载体20在水平方向和竖直方向上分别移动Tx和Ty大小(即为倾斜补偿量),才能使得Z1、Z2、Z3和Z4的值足够小,使得镜头载体20相对感光芯片无明显倾斜,即认为镜头载体20光轴与感光芯片垂直,此时对应的对焦曲线将会变换为如图4所示。
可以理解,Z1、Z2、Z3和Z4的值足够小并不是唯一的,在一个实施例中,根据实际成像品质要求,可以在处理装置中预设一个移动量阈值,当Z1、Z2、Z3和Z4均小于或等于预设移动量阈值时,表示此时校正之后的镜头载体20倾斜程度满足要求,即为马达系统满足规格。应当指出的是,预设移动量阈值的大小并不是唯一的,在一个实施例中可以设置为5微米。当镜头载体20校正完成之后,可以将此时对应的Tx和Ty值作为镜头载体20在马达系统中的初始状态参数烧录存储,当马达系统应用到摄像模组中进行拍摄时,直接根据Tx和Ty值进行镜头载体20的倾斜校正,即可以保证摄像模组的成像满足用户的高品质成像需求。
应当指出的是,马达系统的镜头倾斜校正操作可以是在摄像模组组装完成之后进行一次即可,在得到对应的倾斜补偿量之后,后续操作中直接根据倾斜补偿量即可以得到满足用户需求的高品质成像,该种方式具有操作简单的优点。在另一个实施例中,还可以是每当进行摄像时,均进行一次倾斜校正操作,从而得到更高成像品质的影像。
请参阅图9,在一个实施例中,马达系统还包括第一弹片50和第二弹片60,第一弹 片50的一端固定连接于壳体10,另一端固定连接于镜头载体20;第二弹片60的一端固定连接于壳体10,另一端固定连接于镜头载体20。
具体地,本实施例通过第一弹片50和第二弹片60的设置,将镜头载体20与壳体10之间可活动连接,在倾斜校正装置30通电进行镜头载体20中镜头的倾斜校正或者自动对焦装置40通电进行镜头载体20中镜头的对焦驱动时,通过第一弹片50或者第二弹片60的拉升,使镜头载体20以及对应镜头移动,而在倾斜校正装置30或者自动对焦装置40断电的情况下,通过第一弹片50或者第二弹片60的复位,使得镜头载体20以及镜头复位。
请参阅图9,在一个实施例中,倾斜校正装置30包括倾斜磁铁31和倾斜线圈32,倾斜磁铁31固定设置于壳体10的内壁,倾斜线圈32设置于镜头载体20与倾斜磁铁31相对的位置,倾斜线圈32连接处理装置(图未示)。
具体地,倾斜磁铁31和倾斜线圈32在壳体10内部的设置方式并不是唯一的,只要当倾斜线圈32通电产生磁场时,在倾斜线圈32的磁场与倾斜磁铁31的磁场之间的相互作用下,镜头载体20能够发生对应大小的移动即可。本实施例中将倾斜磁体31固定于壳体10的内壁,将倾斜线圈32围绕镜头载体20设置,镜头载体20上的线圈通电后产生洛伦兹力,从而线圈受力运动带动镜头载体20及镜头的运动。通过对倾斜线圈32通电使线圈产生磁力,从而与倾斜磁铁31之间产生力的作用使得镜头载体20移动实现倾斜校正操作,通过控制流入线圈的电流大小驱动镜头载体20移动对应距离大小,具有驱动可靠性强的优点。
请参阅图9,在一个实施例中,自动对焦装置40包括自动对焦磁铁41和自动对焦线圈42,自动对焦磁铁41固定设置于壳体10的内壁,自动对焦线圈42设置于镜头载体20与自动对焦磁铁41相对的位置,自动对焦线圈42连接处理装置(图未示)。
自动对焦磁铁41和自动对焦线圈42在壳体10内部的设置方式也并不是唯一的,只要当自动对焦线圈42通电产生磁场时,在自动对焦线圈42的磁场与自动对焦磁铁41的磁场之间的相互作用下,镜头载体20以及能够发生对应大小的移动即可。同样的,本实施例中,自动对焦装置40包括相对设置的磁铁和线圈,其中自动对焦磁体41固定于壳体10的内壁,将自动对焦线圈42围绕镜头载体20设置,通过对自动对焦线圈42通电使线圈产生磁力,从而与自动对焦磁铁41之间产生力的作用使得镜头载体20以及镜头移动实现对焦操作,通过控制流入线圈的电流大小驱动镜头载体20以及镜头移动对应距离大小,具有驱动可靠性强的优点。
请参阅图9,在一个实施例中,马达系统还包括磁场检测器70,磁场检测器70设置于倾斜校正装置30,磁场检测器70连接处理装置(图未示)。
具体地,本实施例中,在倾斜校正装置30中设置有磁场检测器70实时检测磁场的情况,并将检测结果发送至处理装置进行分析,从而有效地实现镜头的倾斜校正操作。
进一步地,在一个实施例中,磁场检测器70为霍尔传感器。本实施例中采用霍尔传感器作为磁场检测的器件,有效地将倾斜校正装置30中的磁场情况反馈至处理装置进行分析,具有检测磁场检测可靠性强的优点。
在一个实施例中,处理装置设置于壳体10的内部或设置于壳体10的外部。可以理解,处理装置的设置位置并不是唯一的,本实施例中,可以将处理装置设置于壳体10的内部,从而保证处理装置与倾斜校正装置30或者自动对焦装置40之间的信号传输及时性,或者设置于壳体10的外部,避免处理装置对倾斜校正装置30或自动对焦装置40的磁场产生影响。也就是说,将处理装置设置于壳体10内部或壳体10外部,可以根据实际需求进行不同选择,均能够实现对应的镜头倾斜校正操作。
请参阅图10,一种摄像模组,包括感光芯片80、数据处理基板90和上述的马达系统, 感光芯片80设置于数据处理基板90,马达系统与数据处理基板90相对设置。
具体地,马达系统的具体结构如上述马达系统对应的各个实施例所示,在马达系统的壳体10内设置有自动对焦装置40,当马达系统中的处理装置向自动对焦装置40发送控制信号使得自动对焦装置40接入对应大小的电流时,在自动对焦装置40的驱动下,容置于马达系统的壳体10内部的镜头载体20以及镜头将会在自动对焦装置40的磁力作用下发生移动,实现对焦操作。当对焦完成之后,处理装置将会得到当前状态下的实际影像,处理装置根据实际影像进行分析,得到当状态下的镜头载体20中镜头对应的倾斜补偿量,并根据倾斜补偿量得到一个控制信号控制倾斜校正装置30接入相应大小的电流,在该电流的作用下倾斜校正装置30将会使镜头载体20以及镜头移动进行倾斜校正,最终使得镜头20的光轴与感光芯片80垂直,有效地保证马达系统满足用户对高品质成像的需求。应当指出的是,在一个实施例中,数据处理基板90具体可以是PCB电路板,感光芯片80等其他处理装置件均连接至PCB电路板,从而实现完整的摄像操作。
可以理解,处理装置在根据实际影像得到镜头的倾斜补偿量的方式并不是唯一的,在一个实施例中,处理装置首先根据实际影像获取马达系统的镜头倾斜信息;然后根据镜头倾斜信息进行算法校正,得到马达系统的倾斜补偿量,倾斜补偿量用于控制马达系统的倾斜校正装置30进行倾斜校正并得到校正后的镜头倾斜信息;最后根据校正后的镜头倾斜信息判断马达系统是否满足规格;若是,则将倾斜补偿量烧录存储。若否,则返回根据实际影像获取马达系统的镜头倾斜信息的操作,直至马达系统满足规格,即为马达系统中的镜头的光轴与感光芯片80垂直。
上述摄像模组,在壳体10的内壁与镜头载体20的外壁之间安装有倾斜校正装置30,在镜头与感光芯片80之间倾斜时,能够根据实际影像自适应的进行倾斜校正,保证镜头光轴与感光芯片80垂直,从而有效的保证摄像模组的成像质量。通过上述方案,不需要采用VCM AA设备进行摄像模组的组装,采用一般的LHA设备也能够保证最终得到的摄像模组成像质量满足用户对高品质的要求,从而可以有效的简化摄像模组的组装工艺;同时不采用VCM AA设备也就不会使用专用的AA胶水,从而有效地提高产能,节约设备、胶水和人力成本,避免由于AA胶水的使用导致模组厚度增加,同时通过摆动镜头的倾斜,实现光线的偏移来抵消或补偿抖动带来的影像偏移,可实现镜头倾斜防抖。本实施例的摄像模组具有组装可靠性强的优点。
一种电子设备,包括上述的摄像模组。
具体地,摄像模组的具体结构如上述摄像模组对应的各个实施例所示,电子设备所采用的摄像模组中,马达系统在马达系统的壳体10内设置有自动对焦装置40,当马达系统中的处理装置向自动对焦装置40发送控制信号使得自动对焦装置40接入对应大小的电流时,在自动对焦装置40的驱动下,容置于马达系统的壳体10内部的镜头载体20以及镜头将会在自动对焦装置40的磁力作用下发生移动,实现对焦操作。当对焦完成之后,处理装置将会得到当前状态下的实际影像,处理装置根据实际影像进行分析,得到当状态下的镜头对应的倾斜补偿量,并根据倾斜补偿量得到一个控制信号控制倾斜校正装置30接入相应大小的电流,在该电流的作用下倾斜校正装置30将会使镜头载体20以及镜头移动进行倾斜校正,最终使得镜头光轴与感光芯片80垂直,有效地保证马达系统满足用户对高品质成像的需求。应当指出的是,在一个实施例中,数据处理基板90具体可以是PCB电路板,感光芯片80等其他处理装置件均连接至PCB电路板,从而实现完整的摄像操作。
可以理解,处理装置在根据实际影像得到镜头的倾斜补偿量的方式并不是唯一的,在一个实施例中,处理装置首先根据实际影像获取马达系统的镜头倾斜信息;然后根据镜头倾斜信息进行算法校正,得到马达系统的倾斜补偿量,倾斜补偿量用于控制马达系统的倾斜校正装置30进行倾斜校正并得到校正后的镜头倾斜信息;最后根据校正后的镜头倾斜信息判断马达系统是否满足规格;若是,则将倾斜补偿量烧录存储。若否,则返回根据实 际影像获取马达系统的镜头倾斜信息的操作,直至马达系统满足规格,即为马达系统中的镜头的光轴与感光芯片80垂直。
上述电子设备,其摄像模组在壳体10的内壁与镜头载体20的外壁之间安装有倾斜校正装置30,在镜头与感光芯片80之间倾斜时,能够根据实际影像自适应的进行倾斜校正,保证镜头光轴与感光芯片80垂直,从而有效的保证摄像模组的成像质量。通过上述方案,不需要采用VCM AA设备进行摄像模组的组装,采用一般的LHA设备也能够保证最终得到的摄像模组成像质量满足用户对高品质的要求,从而可以有效的简化摄像模组的组装工艺;同时不采用VCM AA设备也就不会使用专用的AA胶水,从而有效地提高产能,节约设备、胶水和人力成本,避免由于AA胶水的使用导致模组厚度增加,同时通过摆动镜头的倾斜,实现光线的偏移来抵消或补偿抖动带来的影像偏移,可实现镜头倾斜防抖,其摄像模组具有组装可靠性强的优点。
应当指出的是,电子设备的类型并不是唯一的,只要是具有摄像功能的设备均可,例如手机、电脑或平板等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种马达系统的倾斜校正方法,包括:
    根据实际影像获取马达系统的镜头倾斜信息;
    根据所述镜头倾斜信息进行算法校正,得到所述马达系统的倾斜补偿量;
    根据所述倾斜补偿量控制所述马达系统的倾斜校正装置进行倾斜校正,得到校正后的镜头倾斜信息,以使承载于所述马达系统的镜头载体的镜头光轴与外部感光芯片垂直。
  2. 根据权利要求1所述的倾斜校正方法,其特征在于,所述根据所述倾斜补偿量控制所述马达系统的倾斜校正装置进行倾斜校正,得到校正后的镜头倾斜信息,以使承载于所述马达系统的镜头载体的镜头光轴与外部感光芯片垂直的步骤之后,还包括:
    根据所述校正后的镜头倾斜信息判断所述马达系统是否满足规格;
    若是,则将所述倾斜补偿量烧录存储;
    若否,则返回所述获取马达系统的镜头倾斜信息的步骤。
  3. 根据权利要求1所述的倾斜校正方法,其特征在于,所述镜头倾斜信息为对焦曲线,所述对焦曲线表征实际影像中的各个特征点下镜头在马达系统中移动量与空间频率响应值的对应关系。
  4. 一种马达系统的倾斜校正装置,包括:
    镜头倾斜信息获取模块,用于根据实际影像获取马达系统的镜头倾斜信息;
    倾斜补偿量分析模块,用于根据所述镜头倾斜信息进行算法校正,得到所述马达系统的倾斜补偿量;
    倾斜校正模块,用于根据所述倾斜补偿量控制所述马达系统的倾斜校正装置进行倾斜校正,得到校正后的镜头倾斜信息,以使承载于所述马达系统的镜头载体的镜头光轴与外部感光芯片垂直。
  5. 根据权利要求4所述的倾斜校正装置,其特征在于,还包括:
    校正检验模块,用于根据所述校正后的镜头倾斜信息判断所述马达系统是否满足规格;
    若是,则将所述倾斜补偿量烧录存储;
    若否,则返回所述获取马达系统的镜头倾斜信息的步骤。
  6. 一种马达系统,包括:
    壳体;
    镜头载体,可活动容置于所述壳体,用于承载镜头;
    倾斜校正装置,设置于所述壳体的内壁与所述镜头载体的外壁之间;
    自动对焦装置,设置于所述壳体的内壁与所述镜头载体的外壁之间,用于驱动所述镜头移动进行对焦;以及
    处理装置,连接所述倾斜校正装置、所述自动对焦装置和外部感光芯片,用于根据实际影像获取马达系统的镜头倾斜信息;并根据所述镜头倾斜信息进行算法校正,得到所述马达系统的倾斜补偿量;以及根据所述倾斜补偿量控制所述马达系统的倾斜校正装置进行倾斜校正,得到校正后的镜头倾斜信息,以使承载于所述马达系统的镜头载体的镜头光轴与外部感光芯片垂直。
  7. 根据权利要求6所述的马达系统,其特征在于,所述马达系统还包括第一弹片和第二弹片,所述第一弹片的一端固定连接于所述壳体,所述第一弹片的另一端固定连接于所述镜头载体,所述第二弹片的一端固定连接于所述壳体,所述第二弹片的另一端固定连接于所述镜头载体。
  8. 根据权利要求6所述的马达系统,其特征在于,所述倾斜校正装置包括倾斜磁铁和倾斜线圈,所述倾斜磁铁固定设置于所述壳体的内壁,所述倾斜线圈设置于所述镜头载体与所述倾斜磁铁相对的位置,所述倾斜线圈连接所述处理装置。
  9. 根据权利要求6所述的马达系统,其特征在于,所述自动对焦装置包括自动对焦磁铁和自动对焦线圈,所述自动对焦磁铁固定设置于所述壳体的内壁,所述自动对焦线圈设置于所述镜头载体与所述自动对焦磁铁相对的位置,所述自动对焦线圈连接所述处理装置。
  10. 根据权利要求6所述的马达系统,其特征在于,所述马达系统还包括磁场检测器,所述磁场检测器设置于所述倾斜校正装置,所述磁场检测器连接所述处理装置。
  11. 根据权利要求10所述的马达系统,其特征在于,所述磁场检测器为霍尔传感器。
  12. 根据权利要求6所述的马达系统,其特征在于,所述处理装置设置于所述壳体的内部。
  13. 根据权利要求6所述的马达系统,其特征在于,所述处理装置设置于所述壳体的外壁。
  14. 根据权利要求6所述的马达系统,其特征在于,所述处理装置还用于根据所述校正后的镜头倾斜信息判断所述马达系统是否满足规格;若是,则将所述倾斜补偿量烧录存储;若否,则返回所述获取马达系统的镜头倾斜信息的操作。
  15. 一种摄像模组,包括感光芯片、数据处理基板和马达系统,所述感光芯片设置于所述数据处理基板,所述马达系统与所述数据处理基板相对设置,所述马达系统包括:
    壳体;
    镜头载体,可活动容置于所述壳体,用于承载镜头;
    倾斜校正装置,设置于所述壳体的内壁与所述镜头载体的外壁之间;
    自动对焦装置,设置于所述壳体的内壁与所述镜头载体的外壁之间,用于驱动所述镜头移动进行对焦;以及
    处理装置,连接所述倾斜校正装置、所述自动对焦装置和外部感光芯片,用于根据实际影像获取马达系统的镜头倾斜信息;并根据所述镜头倾斜信息进行算法校正,得到所述马达系统的倾斜补偿量;以及根据所述倾斜补偿量控制所述马达系统的倾斜校正装置进行倾斜校正,得到校正后的镜头倾斜信息,以使承载于所述马达系统的镜头载体的镜头光轴与外部感光芯片垂直。
  16. 根据权利要求15所述的摄像模组,其特征在于,所述马达系统还包括第一弹片和第二弹片,所述第一弹片的一端固定连接于所述壳体,所述第一弹片的另一端固定连接于所述镜头载体,所述第二弹片的一端固定连接于所述壳体,所述第二弹片的另一端固定连接于所述镜头载体。
  17. 根据权利要求15所述的摄像模组,其特征在于,所述马达系统还包括磁场检测器,所述磁场检测器设置于所述倾斜校正装置,所述磁场检测器连接所述处理装置。
  18. 根据权利要求15所述的摄像模组,其特征在于,所述数据处理基板为印制电路板。
  19. 一种电子设备,包摄像模组,所述摄像模组包括:感光芯片、数据处理基板和马达系统,所述感光芯片设置于所述数据处理基板,所述马达系统与所述数据处理基板相对设置,所述马达系统包括:
    壳体;
    镜头载体,可活动容置于所述壳体,用于承载镜头;
    倾斜校正装置,设置于所述壳体的内壁与所述镜头载体的外壁之间;
    自动对焦装置,设置于所述壳体的内壁与所述镜头载体的外壁之间,用于驱动所述镜头移动进行对焦;以及
    处理装置,连接所述倾斜校正装置、所述自动对焦装置和外部感光芯片,用于根据实际影像获取马达系统的镜头倾斜信息;并根据所述镜头倾斜信息进行算法校正,得到所述马达系统的倾斜补偿量;以及根据所述倾斜补偿量控制所述马达系统的倾斜校正装置进行 倾斜校正,得到校正后的镜头倾斜信息,以使承载于所述马达系统的镜头载体的镜头光轴与外部感光芯片垂直。
  20. 根据权利要求19所述的电子设备,其特征在于,所述电子设备为手机、平板或电脑。
PCT/CN2020/084233 2020-04-10 2020-04-10 马达系统及其倾斜校正方法、装置、摄像模组及电子设备 WO2021203421A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084233 WO2021203421A1 (zh) 2020-04-10 2020-04-10 马达系统及其倾斜校正方法、装置、摄像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084233 WO2021203421A1 (zh) 2020-04-10 2020-04-10 马达系统及其倾斜校正方法、装置、摄像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2021203421A1 true WO2021203421A1 (zh) 2021-10-14

Family

ID=78023180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084233 WO2021203421A1 (zh) 2020-04-10 2020-04-10 马达系统及其倾斜校正方法、装置、摄像模组及电子设备

Country Status (1)

Country Link
WO (1) WO2021203421A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104570551A (zh) * 2013-10-16 2015-04-29 三星电机株式会社 相机模块、对准相机模块的光轴的方法及便携式电子设备
CN106550176A (zh) * 2015-09-22 2017-03-29 群光电子股份有限公司 镜头调焦方法与光学模块
CN106813635A (zh) * 2015-12-02 2017-06-09 南宁富桂精密工业有限公司 一种镜头马达对焦曲线的校正方法及装置
CN108259889A (zh) * 2016-12-27 2018-07-06 瑞萨电子株式会社 相机控制器和校正透镜的校准方法
US20200026095A1 (en) * 2016-03-16 2020-01-23 Apple Inc. Camera actuator with magnet holder having magnetic field
CN110753172A (zh) * 2019-10-22 2020-02-04 Oppo广东移动通信有限公司 校正方法、装置、电子设备和音圈马达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104570551A (zh) * 2013-10-16 2015-04-29 三星电机株式会社 相机模块、对准相机模块的光轴的方法及便携式电子设备
CN106550176A (zh) * 2015-09-22 2017-03-29 群光电子股份有限公司 镜头调焦方法与光学模块
CN106813635A (zh) * 2015-12-02 2017-06-09 南宁富桂精密工业有限公司 一种镜头马达对焦曲线的校正方法及装置
US20200026095A1 (en) * 2016-03-16 2020-01-23 Apple Inc. Camera actuator with magnet holder having magnetic field
CN108259889A (zh) * 2016-12-27 2018-07-06 瑞萨电子株式会社 相机控制器和校正透镜的校准方法
CN110753172A (zh) * 2019-10-22 2020-02-04 Oppo广东移动通信有限公司 校正方法、装置、电子设备和音圈马达

Similar Documents

Publication Publication Date Title
EP3614661B1 (en) Image processing method, image processing apparatus, electronic device and storage medium
CN101414094B (zh) 包括图像模糊校正装置的光学设备
CN101782710B (zh) 抖动校正单元和摄像设备
US8786722B2 (en) Composition control device, imaging system, composition control method, and program
JP2011211541A (ja) 撮像装置、その制御方法、プログラム及び記録媒体
CN1652009A (zh) 成像设备
JP2007028512A (ja) 表示装置及び撮像装置
JP2007043584A (ja) 撮像装置およびその制御方法
WO2018051629A1 (ja) 撮像装置及び撮像制御方法
US11153486B2 (en) Imaging apparatus and camera system
JP2008145662A (ja) 撮影装置及びその調整方法
US8660418B2 (en) Apparatus and method of adjusting automatic focus
US8970772B2 (en) Digital photographing apparatus
US8947582B2 (en) Digital photographing apparatus and method of controlling the same
JPH1123949A (ja) 撮影レンズの画角補正装置
WO2021203421A1 (zh) 马达系统及其倾斜校正方法、装置、摄像模组及电子设备
CN211791756U (zh) 马达系统、摄像模组及电子设备
JP2021002010A (ja) 防振制御装置、撮像装置及び防振制御方法
CN110418053A (zh) 镜头设备及其控制方法和摄像设备及其控制方法
KR20160087682A (ko) 손떨림 보정 장치 및 손떨림 보정 장치의 제어 방법
US8022998B2 (en) Imaging apparatus and imaging method
CN113518176A (zh) 马达系统及其倾斜校正方法、装置、摄像模组及电子设备
CN109981869B (zh) 基于图像技术测量透镜致动器振荡周期的方法及测试设备
JP2007140314A (ja) デジタルカメラ用自動合焦装置
US11368622B2 (en) Photographing method, photographing device and mobile terminal for shifting a lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930350

Country of ref document: EP

Kind code of ref document: A1