WO2021203154A1 - Kraftfahrzeug mit einem abgasnachbehandlungssystem mit wenigstens zwei scr-katalysatoren und verfahren zum betreiben eines solchen kraftfahrezeuges - Google Patents

Kraftfahrzeug mit einem abgasnachbehandlungssystem mit wenigstens zwei scr-katalysatoren und verfahren zum betreiben eines solchen kraftfahrezeuges Download PDF

Info

Publication number
WO2021203154A1
WO2021203154A1 PCT/AT2021/060115 AT2021060115W WO2021203154A1 WO 2021203154 A1 WO2021203154 A1 WO 2021203154A1 AT 2021060115 W AT2021060115 W AT 2021060115W WO 2021203154 A1 WO2021203154 A1 WO 2021203154A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
motor vehicle
catalytic converter
scr catalytic
scr
Prior art date
Application number
PCT/AT2021/060115
Other languages
English (en)
French (fr)
Inventor
Thomas SACHER
Josef König
Klaus HADL
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to DE112021000188.4T priority Critical patent/DE112021000188A5/de
Publication of WO2021203154A1 publication Critical patent/WO2021203154A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/04Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric, e.g. electrostatic, device other than a heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/22Water or humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Motor vehicle with an exhaust gas aftertreatment system with at least two SCR catalytic converters and a method for operating such a motor vehicle
  • the invention relates to a motor vehicle with an exhaust gas aftertreatment system with the features of the preamble of claim 1 and a method for operating such a motor vehicle with the features of the preamble of claim 9.
  • a motor vehicle of the generic type is known from DE 102018102490 A1.
  • one of the SCR catalytic converters provided can be arranged upstream of an exhaust gas turbine.
  • an upstream heating element can also be provided.
  • the object of the invention is to provide a motor vehicle with an alternative exhaust gas aftertreatment system that is highly effective, in particular with regard to reducing nitrogen oxide, and a method for operating such a motor vehicle.
  • the motor vehicle according to the invention has an exhaust gas aftertreatment system with a particle filter and at least two separately arranged SCR catalytic converters, each with a urea addition device connected upstream.
  • the motor vehicle according to the invention is characterized in particular by an electrical heating element which is assigned to the SCR catalytic converter which is arranged furthest downstream in the exhaust gas flow direction. This enables this SCR catalytic converter, which is typically located remotely from the engine, to be brought up to operating temperature quickly. In particular, it may be possible to bring this catalyst at least approximately to operating temperature before nitrogen oxides reach it to a significant extent. This enables effective nitrogen oxide removal even at low temperatures, in particular in connection with a cold start or warm-up of the internal combustion engine.
  • the electric heating element ment is arranged upstream of the SCR catalytic converter and preferably at a short distance from it.
  • the internal combustion engine is preferably a diesel engine.
  • the particle filter is preferably designed as a wall-flow filter in a honeycomb structure (so-called wall-flow filter) with channels alternately closed on the inlet side and outlet side.
  • raw gas sides and / or clean gas sides of the filter-effective channel walls can have a coating. This can be applied to the surface or partially infiltrated in the canal walls.
  • the coating can be an SCR-catalytically active coating.
  • An SCR-catalytically active coating is to be understood as a coating which can catalyze a reduction of nitrogen oxides even in the presence of an excess of oxygen in the exhaust gas with a stored and / or supplied ammonia-based reducing agent.
  • the SCR-catalytic coating preferably comprises an iron- or copper-containing zeolite.
  • a coating that is free from noble metals, in particular from the platinum group, is also preferred. It is also advantageously possible to provide non-SCR-catalytic coatings which also contain noble metals, in particular of the platinum group.
  • the SCR catalytic converters are preferably designed as ceramic honeycomb bodies with a multiplicity of parallel ducts through which exhaust gas can flow and on the walls of which an SCR catalytically active coating, as described above, is applied.
  • a section, in particular at the end, with an oxidation-catalytically active coating can be provided, which can catalyze an oxidation of oxidizable components in the exhaust gas, such as ammonia in particular.
  • the at least two SCR catalytic converters are spatially separated from one another, in particular arranged in different housings that are separate from one another.
  • One of the SCR catalytic converters can be arranged close to the engine, in particular in an engine compartment of the motor vehicle, the other remote from the engine, in particular in an underbody area of the motor vehicle.
  • the at least two SCR catalytic converters can also be installed in a housing that completely or partially encloses the exhaust gas aftertreatment system, for example in a so-called exhaust box. be in order.
  • a respective SCR catalytic converter can also be formed from two individual monolithic honeycomb bodies
  • a urea-containing reducing agent for nitrogen oxides can be added to the exhaust gas through the urea-adding devices, in particular in a dosed quantity according to need.
  • An aqueous urea solution is preferably used.
  • Urea supplied in the exhaust gas is converted into ammonia, which is ultimately effective for the SCR reaction, by hydrolysis and / or thermolysis.
  • the adding devices are preferably designed as metering valves which can deliver the reducing agent or the urea solution in finely divided form into the exhaust gas. Ammonia released from added urea has a decisive effect as a reducing agent in the catalytic reduction of nitrogen oxides known as the SCR reaction.
  • the electrical heating element is preferably designed as a compact, separate structural unit. It preferably has heated components designed as resistance heating, which exhaust gas can flow against or around, so that an effective heat transfer to the exhaust gas and thus to the SCR catalytic converter arranged downstream is made possible. In principle, all common types of heating elements can be used.
  • An advantageous embodiment is a metal foil carrier body. Surfaces through which exhaust gas can flow can have a catalytically active coating. The coating can be an oxidation-catalytically active coating. If the coating is an SCR catalytically active coating, this is preferably carried out as described above.
  • the electrical heating element assigned to the SCR catalytic converter located furthest downstream in the exhaust gas flow direction is preferably the only electrical heating element of the exhaust gas aftertreatment system.
  • an oxidation catalytic converter is preferably provided downstream of the first SCR catalytic converter and upstream of the particle filter.
  • an oxidation catalytic converter in particular arranged close to the engine, can be provided upstream of the first SCR catalytic converter.
  • a separate oxidation catalytic converter can be provided as a so-called blocking catalytic converter downstream of the SCR catalytic converter which is arranged furthest downstream in the exhaust gas flow direction.
  • the exhaust gas aftertreatment system comprises a third SCR catalytic converter, which is arranged downstream of the particle filter and upstream of the electrical heating element, as seen in the exhaust gas flow direction.
  • a third SCR catalytic converter which is arranged downstream of the particle filter and upstream of the electrical heating element, as seen in the exhaust gas flow direction.
  • the first SCR catalytic converter and / or the particle filter and / or the third SCR catalytic converter are provided with a sorption coating that can remove water and nitrogen oxides from the exhaust gas by absorption.
  • gaseous water and nitrogen oxide can be adsorbed and / or absorbed, in particular at low temperatures.
  • low temperatures are understood to mean temperatures of less than 150 ° C., less than 120 ° C., less than 100 ° C. or less than 80 ° C.
  • Adsorption of water and nitrogen oxide is characteristic of the sorbent material.
  • the sorption Layering can be or contain a preferably inorganic sorbent material with large internal / and or external porosity or large internal and / or external specific surface.
  • the adsorption or absorption of water and nitrogen oxide is typically reversible.
  • Materials can be used in which water and / or nitrogen oxide are bound by physisorption. It is also possible to use materials which have hygroscopic properties at least at low temperatures.
  • Zeolites are preferably used. The zeolites can have a transition metal of atomic number 21 to 30, in particular introduced by ion exchange. If, in addition to the sorption property, a catalytic property is also desired, a zeolite containing copper or iron is preferred. However, it is also possible to use a zeolite with sorption properties with regard to water and nitrogen oxide, which has no catalytic effectiveness.
  • the total amount of material for adsorption coatings provided on one or more exhaust gas cleaning components preferably has a capacity of at least 0.4 g of water per kW of nominal power of the internal combustion engine used.
  • the total water absorption capacity can be about 1 g to 0.4 g, 0.8 g to 0.4 g or also 0.6 g to 0.4 g per kW.
  • first SCR catalytic converter and / or the particle filter and / or the third SCR catalytic converter are provided with a sorption coating of the type described above, water and in particular nitrogen oxide contained in the exhaust gas can pass through the sorption coating through the sorption coating during a cold start or warm-up of the internal combustion engine components mentioned at least for the most part for one be removed from the exhaust gas for a certain period of time. Since the first and the third SCR catalytic converter and the particle filter are installed upstream of the second, most downstream SCR catalytic converter, nitrogen oxide can initially be largely eliminated by providing the sorption coating on the particle filter and / or the first or third SCR catalytic converter be kept away from the second SCR catalytic converter and therefore does not get into the environment.
  • the second SCR catalytic converter can be heated to at least approximately the operating temperature by means of the electrical heating element. If there is a release of previously absorbed nitrogen oxide, the second SCR catalytic converter is active as a result of the heating and can catalytically reduce inflowing nitrogen oxides with the aid of urea solution added upstream of the exhaust gas. Effective removal of nitrogen oxides from the exhaust gas is thus made possible even with a cold start or warm-up of the internal combustion engine.
  • the sorption coating is designed to release adsorbed and / or absorbed nitrogen oxide by non-thermal desorption.
  • a non-thermal desorption is to be understood as a desorptive release of previously stored nitrogen oxide, which takes place below a temperature at which a purely thermally induced desorption would take place. Typically this is a relatively low temperature of less than 150 ° C, less than 120 ° C or less than 100 ° C.
  • the nonthermal desorption of nitrogen oxide is preferably induced by exposure of the sorbent material to gaseous water.
  • the particle filter is coated with an SCR-catalytically active coating and / or with the sorption coating.
  • the sorption coating can at the same time be designed as an SCR catalytic coating.
  • the coating of the particle filter can have both SCR-catalytic properties and the described sorption properties with regard to water and nitrogen oxide.
  • the particle filter is provided with two different coating materials, one of which has an SCR-catalytic effect and the other has a sorption effect of the type described with regard to water and nitrogen oxide.
  • the SCR-catalytically active coating is only provided on the walls of the inlet channels and the sorption coating is only provided on the walls of the outlet channels.
  • the particle filter has the sorption coating in an end region on the outlet side. It can be provided that less than 50%, 30%, 20% or 10% of its length is provided with the sorption coating on the outlet side.
  • the area on the inlet side can be free of a coating or provided in some other way, for example with an SCR-catalytic coating.
  • the sorption coating can be provided both on the walls of inlet channels and on those of outlet channels. However, the sorption coating can also be provided only on the inlet channel walls or only on the outlet channel walls.
  • the particle filter is free from an SCR-catalytic coating.
  • an in particular non-catalytic sorption coating ie a sorption coating without catalytic properties, can be provided.
  • the sorption coating can be provided over the entire length of the particle filter.
  • it can also be be seen to provide the sorption coating only in an exit-side end area of less than 50%, 30%, 20% or 10% of its length.
  • the motor vehicle is designed in particular as a commercial vehicle, the arrangement of the components of the exhaust gas aftertreatment system in the direction of flow as follows: Vanadium-based SCR catalytic converter in the locking catalytic converter at the end, oxidation catalytic converter (DOC), diesel particulate filter (DPF), with an inlet of the DPF with platinum and or Palladium (to support the soot burn-off with NO2) and an outlet is coated with water and NOx storage, heating element with an SCR coating or without coating, SCR (zeolite based) locking catalytic converter at the end.
  • DOC oxidation catalytic converter
  • DPF diesel particulate filter
  • SCR zeolite based
  • the SCR can advantageously be coated with vanadium or designed as a full extrudate, this being formed in particular from zeolite.
  • the inlet channels of the DPF are preferably coated by oxidation.
  • the method according to the invention for operating a motor vehicle has the following method steps: i) Carrying out a cold start of the internal combustion engine of the motor vehicle and passing exhaust gas from the internal combustion engine through the exhaust gas aftertreatment system, ii) adsorbing and / or absorbing water and nitrogen oxide contained in the exhaust gas in a sorption coating of one of the As seen in the exhaust gas flow direction, the most downstream SCR catalytic converter upstream of the exhaust gas cleaning component, iii) heating of the SCR catalytic converter, which is furthest downstream in the exhaust gas flow direction, by an upstream electrical heating element, iv) the release of adsorbed and / or absorbed nitrogen oxide from the sorption coating of the exhaust gas cleaning component by non-thermal means Desorption, v) reducing released nitrogen oxide at the SCR catalytic converter, which is arranged furthest downstream in the exhaust gas flow direction, with reducing agent supplied upstream of the exhaust gas.
  • a cold start is to be understood as starting the internal combustion engine during which the catalytic components of the exhaust gas aftertreatment system are not yet active due to a temperature that is too low. This is particularly the case when the internal combustion engine and / or the exhaust gas aftertreatment system have a temperature of below 180 ° C. or below 150 ° C. or below 100 ° C. or an even lower temperature. Under these conditions, gaseous water and nitrogen oxide contained in the exhaust gas are adsorbed and / or absorbed in a sorption coating of an exhaust gas cleaning component connected upstream of the second SCR catalytic converter. In particular, it can be a particle filter or an SCR catalytic converter.
  • the electrical heating element is energized a few seconds or immediately before or after the cold start.
  • the second SCR catalytic converter as the SCR catalytic converter which is arranged furthest downstream in the exhaust gas flow direction, is heated. It typically reaches its light-off temperature or its operating temperature of typically around 190 ° C. within less than 120 s, less than 100 s or in an even shorter period of time.
  • exhaust gas cleaning components arranged upstream heat up significantly more slowly.
  • nitrogen oxides adsorbed and / or absorbed in the sorption coating of a corresponding exhaust gas purification component are released by non-thermal desorption and transported with the exhaust gas to the second SCR catalytic converter, then these can be removed with the help of urea solution supplied upstream of the exhaust gas or previously stored reducing agent in the second SCR catalytic converter be reduced.
  • the sorption coating can be applied to a particle filter and / or an upstream SCR catalyst connected upstream of the second SCR catalyst.
  • the aforementioned method steps ii) and iv) take place in an embodiment of the invention on one of the abovementioned exhaust gas cleaning components or on both.
  • two or more exhaust gas purification components nents to be provided with the sorption coating and connected upstream of the second SCR catalytic converter. If nitrogen oxides desorb from the exhaust gas purification component with a sorbent coating arranged furthest upstream in the exhaust gas purification system, they are initially stored at least partially in the further exhaust gas purification component with a sorbent coating arranged behind it before they also desorb from it again. In this way, desorbed nitrogen oxides reach the second SCR catalytic converter with an even greater delay. This makes it possible to ensure, even at very low cold start temperatures, that the second SCR catalytic converter is heated to operating temperature before any significant exposure to nitrogen oxide.
  • method step ii) takes place at a temperature of the exhaust gas or the corresponding exhaust gas cleaning component of less than 150 ° C, preferably less than 120 ° C or less than 100 ° C, ie at temperatures which are lower than a temperature, in which thermal desorption would take place.
  • the reducing agent is supplied upstream of the electrical heating element.
  • the latter is arranged a short distance upstream of the second SCR catalytic converter.
  • the second SCR catalytic converter is heated by means of the heating element in such a way that it at least approximately reaches its operating temperature before method step iv).
  • the electrical heating element is operated in such a way that the second SCR catalytic converter reaches its operating temperature before nitrogen oxides released from an upstream exhaust gas cleaning component reach it through non-thermal desorption. In this way, a highly effective removal of nitrogen oxide from the internal combustion engine exhaust gas is made possible.
  • FIG. 1 shows a schematic system sketch of the internal combustion engine and the exhaust gas aftertreatment system of the motor vehicle according to the invention connected to it, and FIG.
  • FIG. 1 an exemplary system of internal combustion engine 2 and exhaust gas aftertreatment system 1 connected to it is shown only schematically and in a greatly simplified manner.
  • Combustion exhaust gas emitted by the internal combustion engine 2 is passed through the exhaust gas aftertreatment system 1 via an exhaust gas line 12 in accordance with the exhaust gas flow direction indicated by open arrows.
  • the exhaust gas aftertreatment system 1 comprises several exhaust gas cleaning components that are effective for cleaning. In the present case, these are arranged one behind the other as seen in the exhaust gas flow direction: a first oxidation catalytic converter 3, a first SCR catalytic converter 4, a second oxidation catalytic converter 5, a particle filter 6, a third SCR catalytic converter 7, a second SCR catalytic converter 9 and a third oxidation catalytic converter 10.
  • the first oxidation catalytic converter 3 and the second oxidation catalytic converter 5 are preferably designed as so-called diesel oxidation catalytic converters (DOC).
  • DOC diesel oxidation catalytic converters
  • the first oxidation catalytic converter 3 enables an oxidative removal of any unburned constituents such as hydrocarbons and carbon monoxide that may be present in the exhaust gas.
  • the third oxidation catalytic converter 10 is preferably designed as an ammonia barrier catalytic converter or clean-up catalytic converter (CUC).
  • a fuel addition device 15 is provided upstream of the second oxidation catalytic converter 5 and downstream of the first SCR catalytic converter 4.
  • a fuel can be added to the exhaust gas to support a soot regeneration of the particle filter 6. With such a soot regeneration, soot particles deposited in the particle filter 6 are burned off. If the required soot burn-off temperature of typically more than 550 ° C. is not already available for operational reasons, the particle filter 6 can be heated to the soot burn-off temperature by adding fuel through the Fuel adding device 15 can be achieved. Alternatively, fuel can also be added without a fuel adding device by changing the mode of operation of the internal combustion engine 2.
  • Admitted fuel is oxidized with the release of heat in the second oxidation catalytic converter 5 and in this way the particle filter 6 is heated.
  • the second oxidation catalytic converter 5 is therefore preferably arranged in close proximity in front of the particle filter 5 in order to improve the heat transfer.
  • the fuel used by the internal combustion engine 2, in particular diesel fuel, is preferably used as the fuel.
  • a high soot load and thus a need for such a forced soot regeneration of the particle filter 6 can be detected by differential pressure sensors or load sensors not shown separately here.
  • the first oxidation catalytic converter 3, the third SCR catalytic converter 7 and the second oxidation catalytic converter 10 are optional, which is symbolized by hatching the corresponding functional blocks.
  • an end section of the second SCR catalytic converter 9 can be provided with a coating which can fulfill a clean-up function or catalyze an ammonia oxidation. In this way, a slip of ammonia can be avoided.
  • a coating which can fulfill a clean-up function or catalyze an ammonia oxidation. In this way, a slip of ammonia can be avoided.
  • Such an end coating can also be provided for the first SCR catalytic converter 4.
  • the second SCR catalytic converter 9 is the SCR catalytic converter which is arranged furthest downstream in the exhaust gas flow direction.
  • an electrical heating element 8 for heating the exhaust gas and thus for indirectly heating the second SCR catalytic converter 9 is arranged directly in front of it.
  • Electrical heating energy or heating power can be supplied to the heating element 8 from an energy source 11.
  • the energy source 11 can be, for example, a generator or an electrical energy store of the motor vehicle, which is not shown separately.
  • a first urea addition device 13 is located upstream of the first SCR catalytic converter 4 and downstream of an optionally present first oxidation catalytic converter 3 provided, with which aqueous urea solution can be fed to the exhaust gas.
  • a second urea adding device 14 is provided downstream of the particulate filter 6 and upstream of the second SCR catalytic converter 9. If the optional third SCR catalytic converter 7 is provided, the second urea adding device 14 is arranged in front of it, ie between the particle filter 6 and the third SCR catalytic converter 7.
  • the exhaust gas aftertreatment system 1 includes sensors, not shown separately, for temperature and exhaust gas components, which are necessary to detect the operating state of the exhaust gas aftertreatment system 1 or its components and to generate corresponding control signals for controlling the operation of the exhaust gas aftertreatment system 1.
  • At least one of the exhaust gas purification components, first SCR catalytic converter 4, particle filter 6 and, if present, third SCR catalytic converter 7 is provided with a sorption coating that can remove water and nitrogen oxides from the exhaust gas at low temperatures, in particular by adsorption and / or absorption.
  • a sorption coating that can remove water and nitrogen oxides from the exhaust gas at low temperatures, in particular by adsorption and / or absorption.
  • water can also be absorbed by condensation in parallel with adsorption and / or absorption of gaseous water.
  • the sorption coating is also designed in such a way that it can release adsorbed and / or absorbed nitrogen oxide by non-thermal desorption.
  • the exhaust gas cleaning components of the exhaust gas aftertreatment system 1 are not yet sufficiently warmed up to be able to develop catalytic activity.
  • a catalytic reduction of nitrogen oxide in the first SCR catalytic converter 4 and in the second SCR catalytic converter 9 and, if present, in the third SCR catalytic converter 7 is not yet possible.
  • the electrical heating element 8 is supplied with electrical energy from the energy source 11 immediately after the internal combustion engine 2 has been cold-started.
  • Discharge of nitrogen oxide from the exhaust gas aftertreatment system 1 is nevertheless prevented by first removing nitrogen oxide contained in the exhaust gas from the exhaust gas cleaning component with sorption coating arranged furthest upstream by adsorption and / or absorption in the sorption coating.
  • gaseous water and nitrogen oxide are preferably adsorbed.
  • the absorption capacity of the sorbent coating is limited. This is not only expressed by the fact that after a certain storage amount of water in particular is reached, no more nitrogen oxides are absorbed, but also primarily by the fact that previously adsorbed and / or absorbed nitrogen oxide is not thermally desorbed and released into the exhaust gas. The reason for this is to be seen in an increasing exhaustion of the absorption capacity of water. As a result of continued exposure to water contained in the exhaust gas, adsorbed and / or absorbed nitrogen oxides are displaced and released. The water contained in the exhaust gas, in particular gaseous water, accordingly results in a non-thermal desorption of nitrogen oxide previously adsorbed and / or absorbed in the sorption coating. This nonthermal nitrogen oxide desorption can be interpreted as a water-induced displacing desorption.
  • the second SCR catalytic converter 9 it is preferably provided that two or more exhaust gas cleaning components are included to provide a sorption coating. If nitrogen oxide is released from the exhaust gas cleaning component with a sorption coating, which is arranged furthest upstream, this released nitrogen oxide can at least partially by a downstream exhaust gas cleaning components with sorption coating are included. For example, it can be provided that both the first SCR catalytic converter 4 and the particle filter 6 are provided with a sorption coating.
  • Any existing third SCR catalytic converter 7 can also be provided with a sorption coating instead of or in addition to the particle filter 6.
  • the second SCR catalytic converter 9 has reached its start-up or operating temperature as a result of the actuation of the electrical heating element 8, the second urea addition device 14 is actuated to add urea solution to the exhaust gas as required, or a release signal for actuation is generated. As a result, the second SCR catalytic converter 9 is able to catalytically reduce inflowing nitrogen oxide. Likewise, when the operating temperature of the second SCR catalytic converter 9 is reached, nitrogen oxides can be converted without direct addition of urea solution with reducing agent stored in the previous operation.
  • the first SCR catalytic converter 4 reaches its operating temperature as a result of further operation of the internal combustion engine 2, provision is made for the first urea addition device 13 to be actuated in addition or as an alternative to the second urea addition device 14. Nitrogen oxide contained in the exhaust gas can then be catalytically reduced by the first SCR catalytic converter 4 in addition or as an alternative to the second SCR catalytic converter 9. After the warm-up has taken place, the first SCR catalytic converter 4 and the second SCR catalytic converter 9 are preferably supplied with urea or ammonia from the first urea addition device 13 and the second urea addition device 14 according to their temperature-dependent nitrogen oxide conversion capacity.
  • a dashed line indicates a constant inlet concentration of water 20 in a gas stream entering the exhaust gas cleaning component.
  • a solid line indicates the course of an initial concentration of water 21 in the exhaust gas exiting the exhaust gas cleaning component.
  • a dashed line denotes a constant nitrogen oxide inlet concentration 22 present in the incoming gas stream and a solid line denotes the course of a nitrogen oxide outlet concentration 23 in the exhaust gas exiting the exhaust gas cleaning component.
  • the capacity for water to be absorbed increasingly decreases, which is noticeable in an increase in the water concentration 21 on the outlet side.
  • a desorption of previously adsorbed and / or absorbed nitrogen oxide takes place, which is noticeable in a steep increase in the nitrogen oxide concentration 23 on the outlet side.
  • the nitrogen oxide exit concentration 23 tends towards the nitrogen oxide entry concentration 22, since the sorption coating can no longer absorb nitrogen oxide.
  • the outlet water concentration 21 tends towards the inlet water concentration 20, since the water absorption capacity is increasingly decreasing.
  • concentration curves shown only schematically in the diagrams can be determined in similar experiments at temperatures of up to about 80 ° C, 120 ° C, 150 ° C.
  • concentration courses can have different characteristics depending on the test conditions, but show the same basic characteristics. In this respect, the concentration curves shown in the diagrams of FIG. 2 are to be understood as merely exemplary.

Abstract

Die Erfindung betrifft ein Kraftfahrzeug mit einem Abgasnachbehandlungssystem (1) mit wenigstens zwei getrennt voneinander angeordneten SCR-Katalysatoren (4,9) sowie ein Verfahren zum Betreiben eines solchen Kraftfahrzeugs. Das erfindungsgemäße Kraftfahrzeug weist zusätzlich einen Partikelfilter (6) und ein elektrisches Heizelement (8) auf, welches dem in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysator (9) zugeordnet ist. Das erfindungsgemäße Verfahren ist gekennzeichnet durch die Verfahrensschritte: i) Durchführen eines Kaltstarts der Brennkraftmaschine (2) des Kraftfahrzeugs und Durchleiten von Abgas der Brennkraftmaschine (2) durch das Abgasnachbehandlungssystem (1), ii) Adsorbieren und/oder Absorbieren von im Abgas enthaltenem Wasser und Stickoxid in einer Sorptionsbeschichtung einer dem in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysator (9) vorgeschalteten Abgasreinigungskomponente, iii) Aufheizen des in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysators (9) durch ein vorgeschaltetes elektrisches Heizelement (8), iv) Freisetzen von adsorbiertem und/oder absorbiertem Stickoxid aus der Sorptionsbeschichtung der Abgasreinigungskomponente durch nichtthermische Desorption, v) Reduzieren von freigesetztem Stickoxid an dem in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysator (9) mit stromauf dem Abgas zugeführtem Reduktionsmittel.

Description

Kraftfahrzeug mit einem Abgasnachbehandlungssystem mit wenigstens zwei SCR-Katalysatoren und Verfahren zum Betreiben eines solchen Kraftfahrzeugs
Die Erfindung betrifft ein Kraftfahrzeug mit einem Abgasnachbehandlungssystem mit den Merkmalen des Oberbegriffs des Anspruchs 1 sowie ein Verfahren zum Betreiben eines solchen Kraftfahrzeugs mit den Merkmalen des Oberbegriffs des Anspruchs 9.
Aus der DE 102018102490 A1 ist ein gattungsgemäßes Kraftfahrzeug bekannt. Zur Verbesserung der Abgasreinigung insbesondere bei einem Kaltstart der Brennkraftmaschine des Kraftfahrzeugs kann einer der vorgesehenen SCR-Katalysatoren stromauf einer Abgasturbine angeordnet sein. Um diesen motornah angeordnetem SCR-Katalysator noch rascher auf Betriebstemperatur zu bringen, kann zusätzlich ein vorgeschaltetes Heizelement vorgesehen sein.
Aufgabe der Erfindung ist es, ein Kraftfahrzeug mit einem alternativen, insbesondere in Bezug auf eine Stickoxidreduzierung hochwirksamen Abgasnachbehandlungssystem und ein Verfahren zum Betreiben eines solchen Kraftfahrzeugs anzugeben.
Diese Aufgabe wird durch ein Kraftfahrzeug mit den Merkmalen des Anspruchs 1 und durch ein Verfahren mit den Merkmalen des Anspruchs 8 gelöst.
Das erfindungsgemäße Kraftfahrzeug weist ein Abgasnachbehandlungssystem mit einem Partikelfilter und wenigstens zwei getrennt voneinander angeordneten SCR- Katalysatoren mit jeweils vorangeschalteter Harnstoff-Zugabevorrichtung auf. Das erfindungsgemäße Kraftfahrzeug zeichnet sich insbesondere durch ein elektrisches Heizelement auf, welches dem in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysator zugeordnet ist. Dadurch kann erreicht werden diesen typischerweise motorfern angeordneten SCR-Katalysator rasch auf Betriebstemperatur zu bringen. Insbesondere kann es möglich sein, diesen Katalysator wenigstens annähernd auf Betriebstemperatur zu bringen, bevor Stickoxide ihn in nennenswertem Umfang erreichen. Dadurch ist eine effektive Stickoxidentfernung bereits bei niedrigen Temperaturen, insbesondere in Verbindung mit einem Kaltstart bzw. einem Warmlauf der Brennkraftmaschine ermöglicht. Das elektrische Heizele- ment ist dabei stromauf des SCR-Katalysators und bevorzugt in kurzer Entfernung zu diesem angeordnet. Bei der Brennkraftmaschine handelt es sich bevorzugt um einen Dieselmotor.
Der Partikelfilter ist bevorzugt als wanddurchströmter Filter in Wabenkörperbauweise (sog. wall-flow Filter) mit eingangsseitig und ausgangsseitig wechselweise verschlossenen Kanälen ausgebildet. Dabei können Rohgasseiten und/oder Reingasseiten der filterwirksamen Kanalwände eine Beschichtung aufweisen. Diese kann oberflächlich aufgetragen oder auch teilweise infiltriert in den Kanalwänden vorhanden sein. Bei der Beschichtung kann es sich um eine SCR-katalytisch wirksame Beschichtung handeln. Unter einer SCR-katalytisch wirksamen Beschichtung ist dabei eine Beschichtung zu verstehen, die eine Reduktion von Stickoxiden auch bei Anwesenheit eines Sauerstoffüberschusses im Abgas mit einem eingespeicherten und/oder zugeführten ammoniakbasierten Reduktionsmittel katalysieren kann. Bevorzugt umfasst die SCR-katalytische Beschichtung einen eisen- oder kupferhaltigen Zeolithen. Bevorzugt ist auch eine Beschichtung, die frei von Edelmetallen insbesondere der Platingruppe ist. Es können vorteilhafterweise auch nicht SCR-katalytische Beschichtungen vorgesehen sein, welche auch Edelmetalle insbesondere der Platingruppe enthalten.
Die SCR-Katalysatoren sind bevorzugt als keramische Wabenkörper mit einer Vielzahl von parallelen, von Abgas durchströmbaren Kanälen ausgeführt, auf deren Wänden eine SCR-katalytisch wirksame Beschichtung, wie vorstehend beschrieben, aufgebracht ist. Zusätzlich kann für einen oder für mehrere der vorhandenen SCR- Katalysatoren ein insbesondere endseitiger Abschnitt mit einer oxidationskatalytisch wirksamen Beschichtung vorgesehen sein, welche eine Oxidation von oxidierbaren Bestandteilen im Abgas, wie insbesondere Ammoniak, katalysieren kann. Die wenigstens zwei SCR-Katalysatoren sind räumlich getrennt voneinander, insbesondere in unterschiedlichen, voneinander getrennten Gehäusen angeordnet. Dabei kann einer der SCR-Katalysatoren motornah, insbesondere in einem Motorraum des Kraftfahrzeugs, der andere motorfern, insbesondere in einem Unterbodenbereich des Kraftfahrzeugs angeordnet sein. Die wenigstens zwei SCR-Katalysatoren können jedoch auch in einem das Abgasnachbehandlungssystem ganz oder teilweise umschließenden Gehäuse, beispielsweise in einer so genannten Abgasbox ange- ordnet sein. Ein jeweiliger SCR-Katalysator kann auch aus zwei einzelnen monolithischen Wabenkörpern gebildet sein
Entsprechend der katalytisch wirksamen Beschichtung der SCR-Katalysatoren kann durch die Harnstoff-Zugabevorrichtungen ein Harnstoff enthaltendes Reduktionsmittel für Stickoxide dem Abgas insbesondere mengenmäßig bedarfsgerecht dosiert zugegeben werden. Vorzugsweise wird eine wässrige Harnstofflösung eingesetzt. Im Abgas wird zugeführter Harnstoff durch Hydrolyse und/oder Thermolyse in letztlich für die SCR-Reaktion wirksamen Ammoniak umgesetzt. Dementsprechend sind die Zugabevorrichtungen bevorzugt als Dosierventile ausgebildet, die das Reduktionsmittel bzw. die Harnstofflösung fein verteilt ins Abgas abgeben können. Aus zugegebenem Harnstoff freigesetztes Ammoniak wirkt maßgeblich als Reduktionsmittel in der als SCR-Reaktion bekannten katalytischen Reduktion der Stickoxide.
Das elektrische Heizelement ist bevorzugt als kompakte separate Baueinheit ausgeführt. Es weist bevorzugt als Widerstandsheizung ausgebildete beheizte Bestandteile auf, die von Abgas angeströmt bzw. umströmt werden können, so dass eine effektive Wärmeübertragung auf das Abgas und damit auf den stromab angeordneten SCR- Katalysator ermöglicht ist. Prinzipiell können alle gebräuchlichen Arten von Heizelementen eingesetzt werden. Eine vorteilhafte Ausführungsform ist ein Metallfolien- Trägerkörper. Von Abgas an- bzw. umströmbare Flächen können eine katalytisch wirksame Beschichtung aufweisen. Bei der Beschichtung kann es sich um eine oxidationskatalytisch wirksame Beschichtung handeln. Handelt es sich um eine SCR- katalytisch wirksame Beschichtung, so ist diese vorzugsweise wie weiter oben beschrieben ausgeführt. Das dem in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysator zugeordnete elektrische Heizelement ist vorzugsweise das einzige elektrische Heizelement des Abgasnachbehandlungssystems. Bevorzugt ist es unmittelbar dem in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysator vorgeschaltet. Das heißt, es befindet sich kein weiteres Bauteil zwischen dem elektrischen Heizelement und dem in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR- Katalysator. Die dem letzteren zugeordnete Harnstoff-Zugabevorrichtung ist somit stromauf des elektrischen Heizelements angeordnet. In Ausgestaltung der Erfindung sind ein erster SCR-Katalysator, der Partikelfilter, das elektrische Heizelement und ein zweiter SCR-Katalysator in Abgasströmungsrichtung gesehen hintereinander angeordnet. Diese erfindungsgemäße Anordnung hat sich als besonders effektiv in Bezug auf eine umfassende Abgasreinigung erwiesen. Die vorgesehene Anordnung in dieser Reihenfolge schließt nicht aus, dass weitere zusätzliche reinigungswirksame Abgasnachbehandlungskomponenten vorgesehen sein können, von denen eine oder mehrere zwischen zwei der oben genannten Komponenten angeordnet sein können. Beispielsweise ist bevorzugt ein Oxidationskatalysator stromab des ersten SCR-Katalysators und stromauf des Partikelfilters vorgesehen. Zur weiteren Verbesserung der Abgasreinigung kann stromauf des ersten SCR-Katalysators ein Oxidationskatalysator, insbesondere motornah angeordnet vorgesehen sein. Zur Verhinderung von Ammoniakschlupf kann stromab des in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR- Katalysators ein separater Oxidationskatalysator als so genannter Sperrkatalysator vorgesehen sein.
In weiterer Ausgestaltung der Erfindung umfasst das Abgasnachbehandlungssystem einen dritten SCR-Katalysator, der in Abgasströmungsrichtung gesehen stromab des Partikelfilters und stromauf des elektrischen Heizelements angeordnet ist. Auf diese Weise ist auch bei einer ungleichmäßigen Temperaturverteilung im Abgasnachbehandlungssystem eine wirksame Entfernung von Schadstoffen, insbesondere von Stickoxid, aus dem Abgas ermöglicht. Eine indirekte Aufheizung des am weitesten stromab angeordneten SCR-Katalysators durch das elektrische Heizelement ermöglicht dabei eine Verringerung eines typischerweise auftretenden Temperaturabfalls längs des Abgasströmungswegs.
In weiterer Ausgestaltung der Erfindung sind der erste SCR-Katalysator und/oder der Partikelfilter und/oder der dritte SCR-Katalysator mit einer Sorptionsbeschichtung versehen, die Wasser und Stickoxide aus dem Abgas durch Aufnahme entfernen kann. Vorzugsweise können gasförmiges Wasser und Stickoxid insbesondere bei niedrigen Temperaturen adsorbiert und/oder absorbiert werden. Unter niedrigen Temperaturen sind dabei Temperaturen von weniger als 150 °C, weniger als 120 °C, weniger als 100°C oder weniger als 80 °C zu verstehen. Für das Sorptionsmaterial ist eine Adsorption von Wasser und Stickoxid charakteristisch. Die Sorptionsbe- Schichtung kann ein vorzugsweise anorganisches Sorptionsmaterial mit großer innerer/und oder äußerer Porosität bzw. großer innerer und/oder äußerer spezifischer Oberfläche sein oder enthalten. Die Adsorption bzw. Absorption von Wasser und Stickoxid ist dabei typischerweise reversibel. Es können Materialien eingesetzt werden, bei denen Wasser und/oder Stickoxid durch Physisorption gebunden werden. Ebenso können Materialien eingesetzt werden, die zumindest bei niedrigen Temperaturen hygroskopische Eigenschaften aufweisen. Vorzugsweise werden Zeolithe eingesetzt. Die Zeolithe können ein insbesondere durch lonenaustausch eingebrachtes Übergangsmetall der Ordnungszahl 21 bis 30 aufweisen. Ist neben der Sorptionseigenschaft zusätzlich eine katalytische Eigenschaft erwünscht, so ist ein Kupfer oder Eisen enthaltender Zeolith bevorzugt. Es kann jedoch auch ein Zeolith mit Sorptionseigenschaften in Bezug auf Wasser und Stickoxid eingesetzt werden, der keine katalytische Wirksamkeit aufweist. Vorzugsweise weist die auf einer oder auf mehreren Abgasreinigungskomponente insgesamt vorgesehene Materialmenge für Adsorptionsbeschichtungen eine Aufnahmekapazität von wenigstens 0,4 g Wasser je kW Nennleistung der eingesetzten Brennkraftmaschine auf. Die gesamte Wasseraufnahmekapazität kann etwa 1 g bis 0,4 g, 0,8 g bis 0,4 g oder auch 0,6 g bis 0,4 g je kW betragen.
Im Rahmen der Erfindung hat sich herausgestellt, dass Stickoxide auch ohne ein Vorhandensein von Wasser zu beträchtlichen Teilen an einer SCR-Beschichtung adsorbieren. Weiter wurde festgestellt, dass Stickoxide zum Großteil wieder ausgelagert werden, sobald Wasser auf die jeweilige Beschichtung gelangt. Folglich kann die gleichzeitige Einlagerung von Stickoxiden und Wasser als eine Konsequenz von einer axialen Verteilung gesehen werden: Während z. B. das hintere Drittel des Katalysators nur trockenes Gas sieht und daher noch Stickoxide einlagert, befinden sich in den vorderen zwei Dritteln nur noch sehr wenig Stickoxide da diese von Wasser verdrängt wurden.
Sind der erste SCR-Katalysator und/oder der Partikelfilter und/oder der dritte SCR- Katalysator mit einer Sorptionsbeschichtung der vorstehend beschriebenen Art versehen, so kann im Abgas enthaltenes Wasser und insbesondere Stickoxid bei einem Kaltstart bzw. Warmlauf der Brennkraftmaschine durch die Sorptionsbeschichtung einer der genannten Komponenten zumindest großteils für eine gewisse Zeit aus dem Abgas entfernt werden. Da der erste und der dritte SCR-Kata- lysator sowie der Partikelfilter stromauf des zweiten, am weitesten stromab angeordneten SCR-Katalysators verbaut sind, kann durch Vorsehen der Sorptionsbeschichtung auf dem Partikelfilter und/oder dem ersten oder dem dritten SCR-Katalysator Stickoxid zunächst großteils vom zweiten SCR-Katalysator ferngehalten werden und gelangt daher nicht in die Umgebung. Während der adsorptiven und/oder absorpti- ven Entfernung von Stickoxid aus dem Abgas kann der zweite SCR-Katalysator mittels des elektrischen Heizelements zumindest annähernd auf Betriebstemperatur aufgeheizt werden. Kommt es dann zu einer Freisetzung von zuvor aufgenommenem Stickoxid, ist der zweite SCR-Katalysator infolge der Aufheizung aktiv und kann einströmende Stickoxide mit Hilfe von dem Abgas stromauf zugegebener Harnstofflösung katalytisch reduzieren. Somit ist auch bei einem Kaltstart bzw. Warmlauf der Brennkraftmaschine eine effektive Stickoxidentfernung aus dem Abgas ermöglicht.
In einerweiteren vorteilhaften Ausgestaltung der Erfindung ist die Sorptionsbeschichtung ausgebildet, durch nichtthermische Desorption adsorbiertes und/oder absorbiertes Stickoxid freizusetzen. Unter einer nichtthermischen Desorption ist dabei eine desorptive Freisetzung von zuvor eingelagertem Stickoxid zu verstehen, welche unterhalb einer Temperatur erfolgt, bei welcher eine rein thermisch induzierte Desorption erfolgen würde. Typischerweise ist dies eine relativ niedrige Temperatur von weniger als 150 °C, weniger als 120 °C oder weniger als 100 °C. Die nichtthermische Desorption von Stickoxid ist vorzugsweise durch Exposition des Sorptionsmaterials mit gasförmigem Wasser induziert. Es wird davon ausgegangen, dass es sich dabei um eine durch gasförmiges Wasser induzierte verdrängende Desorption handelt, bei welcher im Sorptionsmaterial eingespeichertes Stickoxid dann freigesetzt wird, wenn die Wasseraufnahme des Sorptionsmaterials eine materialspezifische Grenze erreicht hat und das Sorptionsmaterial weiterhin mit wasserhaltigem Abgas beaufschlagt wird. Dadurch wird adsorbiertes und/oder absorbiertes Stickoxid von seinen Sorptionsplätzen im Sorptionsmaterial verdrängt und freigesetzt. Da dies jedoch erst nach Ablauf einer prozessbedingten und materialspezifischen Zeitspanne erfolgt, welche ausreichend ist um den zweiten SCR-Katalysator auf Aktivitätstemperatur aufzuheizen, kann eine Abgabe von Stickoxid an die Umgebung wirksam verhindert werden. In weiterer Ausgestaltung der Erfindung ist es vorgesehen, dass der Partikelfilter mit einer SCR-katalytisch wirksamen Beschichtung und/oder mit der Sorptionsbeschichtung beschichtet ist. Die Sorptionsbeschichtung kann dabei gleichzeitig als SCR- katalytische Beschichtung ausgebildet sein. Das heißt die Beschichtung des Partikelfilters kann sowohl SCR-katalytische Eigenschaften, als auch die beschriebenen Sorptionseigenschaften in Bezug auf Wasser und Stickoxid aufweisen. Es kann auch vorgesehen sein, dass der Partikelfilter mit zwei unterschiedlichen Beschichtungsmaterialien versehen ist, von denen eine eine SCR-katalytische Wirkung, die andere eine Sorptionswirkung der beschriebenen Art in Bezug auf Wasser und Stickoxid aufweist. Es kann dabei vorgesehen sein, die SCR-katalytisch wirksame Beschichtung nur auf den Wänden der Einlasskanäle und die Sorptionsbeschichtung nur auf den Wänden der Auslasskanäle vorzusehen.
Es kann dabei vorgesehen sein, eine oxidative wirksame Beschichtung z. B. mit Platin- und/oder Palladiumgehalt insbesondere nur auf den Wänden der Einlasskanäle und die Sorptionsbeschichtung insbesondere nur auf den Wänden der Auslasskanäle vorzusehen.
In einerweiteren vorteilhaften Ausgestaltung der Erfindung weist der Partikelfilter die Sorptionsbeschichtung in einem austrittseitigen Endbereich auf. Es kann vorgesehen sein, weniger als 50 %, 30 %, 20 % oder 10 % seiner Länge austrittsseitig mit der Sorptionsbeschichtung zu versehen. Der eintrittsseitige Bereich kann dabei frei von einer Beschichtung sein oder anderweitig, beispielsweise mit einer SCR-katalyti- schen Beschichtung versehen sein. Die Sorptionsbeschichtung kann sowohl auf Wänden von Einlasskanälen als auch auf den von Auslasskanälen vorgesehen sein. Die Sorptionsbeschichtung kann jedoch auch nur auf den Einlasskanalwänden oder nur auf den Auslasskanalwänden vorgesehen sein.
In einerweiteren vorteilhaften Ausgestaltung der Erfindung ist der Partikelfilter frei von einer SCR-katalytischen Beschichtung. Es kann jedoch eine insbesondere nichtkatalytische Sorptionsbeschichtung, d.h. eine Sorptionsbeschichtung ohne katalytische Eigenschaften vorgesehen sein. Generell kann die Sorptionsbeschichtung über die gesamte Länge des Partikelfilters vorgesehen sein. Es kann jedoch auch vorge- sehen sein, die Sorptionsbeschichtung lediglich in einem austrittsseitigen Endbereich von weniger als 50 %, 30 %, 20 % oder 10 % seiner Länge vorzusehen.
Das Kraftfahrzeug ist insbesondere als Nutzfahrzeug ausgebildet, wobei die Anordnung der Komponenten der Abgasnachbehandlungsanlage in Strömungsrichtung wie folgt aussieht: Vanadium basierter SCR-Katalysator im Sperrkatzonierung am Ende, Oxidationskatalysator (DOC), Dieselpartikelfilter (DPF), wobei ein Einlass des DPFs mit Platin und oder Palladium (um den Rußabbrand mit NO2 zu unterstützen) und ein Auslass mit Wasser und NOx-Speicherung beschichtet ist, Heizelement mit einer SCR-Beschichtung oder ohne Beschichtung, SCR (Zeolith basiert) Sperrkatzonierung am Ende.
Dabei sowie auch bei allen anderen Ausführungsbeispielen kann der SCR vorteilhaft mit Vanadium beschichtet oder als Vollextrudat gestaltet sein, wobei dieser insbesondere aus Zeolith gebildet ist. Die Einlasskanäle des DPF sind bevorzugt oxidativ beschichtet.
Das erfindungsgemäße Verfahren zum Betreiben eines Kraftfahrzeugs weist folgende Verfahrensschritte auf: i) Durchführen eines Kaltstarts der Brennkraftmaschine des Kraftfahrzeugs und Durchleiten von Abgas der Brennkraftmaschine durch das Abgasnachbehandlungssystem, ii) Adsorbieren und/oder Absorbieren von im Abgas enthaltenem Wasser und Stickoxid in einer Sorptionsbeschichtung einer dem in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysator vorgeschalteten Abgasreinigungskomponente, iii) Aufheizen des in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysators durch ein vorgeschaltetes elektrisches Heizelement, iv) Freisetzen von adsorbiertem und/oder absorbiertem Stickoxid aus der Sorptionsbeschichtung der Abgasreinigungskomponente durch nichtthermische Desorption, v) Reduzieren von freigesetztem Stickoxid an dem in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysator mit stromauf dem Abgas zugeführtem Reduktionsmittel.
Unter einem Kaltstart ist dabei ein Starten der Brennkraftmaschine zu verstehen, bei welchem die katalytischen Komponenten des Abgasnachbehandlungssystems aufgrund einer zu niedrigen Temperatur noch nicht aktiv sind. Dies ist insbesondere der Fall, wenn die Brennkraftmaschine und/oder das Abgasnachbehandlungssystem eine Temperatur von unter 180 °C, bzw. unter 150 °C, bzw. unter 100 °C oder eine noch niedrigere Temperatur aufweisen. Unter diesen Bedingungen erfolgt ein Adsorbieren und/oder Absorbieren von im Abgas enthaltenen gasförmigem Wasser und Stickoxid in einer Sorptionsbeschichtung einer dem zweiten SCR-Katalysator vorgeschalteten Abgasreinigungskomponente. Es kann sich dabei insbesondere um einen Partikelfilter oder einen SCR-Katalysator handeln.
Wenigen Sekunden oder unmittelbar vor oder nach dem erfolgten Kaltstart wird das elektrische Heizelement bestromt. Dadurch wird der zweite SCR-Katalysator, als der in Abgasströmungsrichtung gesehen am weitesten stromab angeordnete SCR- Katalysator aufgeheizt. Typischerweise erreicht dieser innerhalb von weniger als 120 s, weniger als 100 s oder in einer noch kürzeren Zeitspanne seine Anspringtemperatur bzw. seine Betriebstemperatur von typischerweise etwa 190 °C. Demgegenüber erwärmen sich stromauf angeordnete Abgasreinigungskomponenten deutlich langsamer. Werden nun in der Sorptionsbeschichtung einer entsprechenden Abgasreinigungskomponente adsorbierte und/oder absorbierte Stickoxide durch nichtthermische Desorption freigesetzt und mit dem Abgas bis zum zweiten SCR- Katalysator transportiert, so können diese mit Hilfe von stromauf dem Abgas zugeführter Harnstofflösung oder zuvor eingespeichertem Reduktionsmittel im zweiten SCR-Katalysator reduziert werden.
Die Sorptionsbeschichtung kann auf einem dem zweiten SCR-Katalysator vorgeschalteten Partikelfilter und/oder einem vorgeschalteten SCR-Katalysator aufgebracht sein. Infolgedessen erfolgen die vorgenannten Verfahrensschritte ii) und iv) in Ausgestaltung der Erfindung an einer der genannten Abgasreinigungskomponente oder an beiden. Es kann vorgesehen sein, zwei oder mehr Abgasreinigungskompo- nenten mit der Sorptionsbeschichtung zu versehen und dem zweiten SCR-Katalysa- tor vorzuschalten. Desorbieren Stickoxide aus der am weitesten stromauf im Abgasreinigungssystem angeordneten Abgasreinigungskomponente mit Sorptionsbeschichtung, so werden sie zumindest teilweise in der dahinter angeordneten weiteren Abgasreinigungskomponente mit Sorptionsbeschichtung zunächst eingelagert bevor sie auch von dieser wieder desorbieren. Auf diese Weise erreichen desor- bierte Stickoxide den zweiten SCR-Katalysator noch stärker verzögert. Dadurch kann auch bei sehr niedrigen Kaltstarttemperaturen sichergestellt werden, dass der zweite SCR-Katalysator vor einer nennenswerten Exposition mit Stickoxid auf Betriebstemperatur aufgeheizt ist.
In weiterer Ausgestaltung der Erfindung erfolgt Verfahrensschritt ii) bei einer Temperatur des Abgases oder der entsprechenden Abgasreinigungskomponente von weniger als 150 °C, bevorzugt von weniger als 120 °C oder weniger als 100 °C, d.h. bei Temperaturen, welche niedriger als eine Temperatur sind, bei der eine thermische Desorption erfolgen würde.
In weiterer Ausgestaltung der Erfindung erfolgt die Zufuhr von Reduktionsmittel stromauf des elektrischen Heizelements. Letzteres ist in kurzem Abstand stromauf des zweiten SCR-Katalysators angeordnet. Dabei erfolgt in weiterer Ausgestaltung der Erfindung die Aufheizung des zweiten SCR-Katalysators mittels des Heizelements derart, dass dieser seine Betriebstemperatur vor dem Verfahrensschritt iv) wenigstens annähernd erreicht. Mit anderen Worten wird das elektrische Heizelement derart betrieben, dass der zweite SCR-Katalysator seine Betriebstemperatur erreicht, bevor durch nichtthermische Desorption aus einer vorgeschalteten Abgasreinigungskomponente freigesetzte Stickoxide ihn erreichen. Auf diese Weise ist eine hocheffektive Entfernung von Stickoxid aus dem Brennkraftmaschinenabgas ermöglicht.
Obige sowie weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter, nichteinschränkender Ausführungsbeispiele der Erfindung unter Bezugnahme auf die beiliegenden Zeichnungen. Darin zeigen: Fig. 1 eine schematische Systemskizze von Brennkraftmaschine und daran angeschlossenem Abgasnachbehandlungssystem des erfindungsgemäßen Kraftfahrzeugs, und
Fig. 2 Konzentrations-Zeitdiagramme mit schematisch dargestellten Zeitverläufen von Adsorption und Desorption von Wasser und Stickoxid eines entsprechenden Sorptionsmaterials.
In Fig. 1 ist lediglich schematisch und stark vereinfacht ein beispielhaftes System von Brennkraftmaschine 2 und daran angeschlossenem Abgasnachbehandlungssystem 1 dargestellt. Von der Brennkraftmaschine 2 abgegebenes Verbrennungsabgas wird über eine Abgasleitung 12 entsprechend der durch offene Pfeile gekennzeichneten Abgasströmungsrichtung durch das Abgasnachbehandlungssystem 1 geleitet. Dabei umfasst das Abgasnachbehandlungssystem 1 mehrere reinigungswirksame Abgasreinigungskomponenten. Vorliegend sind dies in Abgasströmungsrichtung gesehen in dieser Reihenfolge hintereinander angeordnet: ein erster Oxidationskatalysator 3, ein erster SCR-Katalysator 4, ein zweiter Oxidationskatalysator 5, ein Partikelfilter 6, ein dritter SCR-Katalysator 7, ein zweiter SCR-Katalysator 9 sowie ein dritter Oxidationskatalysator 10. Der erste Oxidationskatalysator 3 und der zweite Oxidationskatalysator 5 sind dabei vorzugsweise als sogenannter Dieseloxidationskatalysatoren (DOC) ausgelegt. Der erste Oxidationskatalysator 3 ermöglicht eine oxidative Entfernung von gegebenenfalls im Abgas vorhandenen unverbrannten Bestandteilen wie Kohlenwasserstoffen und Kohlenmonoxid. Der dritte Oxidationskatalysator 10 ist vorzugsweise als Ammoniak-Sperrkatalysator bzw. Clean-up-Katalysator (CUC) ausgelegt.
Stromauf des zweiten Oxidationskatalysators 5 und stromab des ersten SCR-Kataly- sators 4 ist eine Brennstoff-Zugabevorrichtung 15 vorgesehen. Mittels dieser Brennstoff-Zugabevorrichtung 15 kann dem Abgas ein Brennstoff zur Unterstützung einer Rußregeneration des Partikelfilters 6 zugegeben werden. Bei einer solchen Rußregeneration werden im Partikelfilter 6 abgelagerte Rußpartikel abgebrannt. Falls nicht betriebsbedingt die hierzu notwendige Rußabbrenn-Temperatur von typischerweise mehr als 550 °C ohnehin vorhanden ist, kann eine Aufheizung des Partikelfilters 6 auf die Rußabbrenn-Temperatur durch Zugabe von Brennstoff durch die Brennstoff-Zugabevorrichtung 15 erreicht werden. Alternativ kann die Zugabe von Brennstoff auch ohne Brennstoff-Zugabevorrichtung durch eine veränderte Betriebsweise der Brennkraftmaschine 2 erfolgen. Zugegebener Brennstoff wird unter Wärmefreisetzung im zweiten Oxidationskatalysator 5 oxidiert und auf diese Weise der Partikelfilter 6 aufgeheizt. Bevorzugt ist deshalb der zweite Oxidationskatalysator 5 eng benachbart vor dem Partikelfilter 5 angeordnet, um den Wärmeübergang zu verbessern. Als Brennstoff wird vorzugsweise der von der Brennkraftmaschine 2 verwendete Brennstoff, insbesondere Dieselkraftstoff eingesetzt. Eine hohe Rußbeladung und damit eine Notwendigkeit für eine solche erzwungene Rußregeneration des Partikelfilters 6 kann durch hier nicht gesondert dargestellte Differenzdrucksensoren oder Beladungssensoren erkannt werden.
Der erste Oxidationskatalysator 3, der dritte SCR-Katalysator 7 und der zweite Oxidationskatalysator 10 sind optional, was durch Schraffierung der entsprechenden Funktionsblöcke symbolisiert ist. Eine, zwei oder alle drei der durch schraffierte Funktionsblöcke gekennzeichneten optionalen Abgasreinigungskomponenten 3, 7,
10 können somit entfallen. Insbesondere wenn der dritte Oxidationskatalysator 10 entfällt, ist es vorzugsweise vorgesehen, einen endseitigen Abschnitt des zweiten SCR-Katalysators 9 mit einer Beschichtung zu versehen, welche eine clean-up- Funktion erfüllen, bzw. eine Ammoniak-Oxidation katalysieren kann. Auf diese Weise kann ein Schlupf von Ammoniak vermieden werden. Eine solche endseitige Beschichtung kann auch für den ersten SCR-Katalysator 4 vorgesehen sein.
Wie ersichtlich, ist der zweite SCR-Katalysator 9 der in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysator. In Abgasströmungsrichtung direkt vor diesem ist ein elektrisches Heizelement 8 zum Aufheizen des Abgases und damit zum indirekten Erwärmen des zweiten SCR-Katalysators 9 angeordnet. Elektrische Heizenergie bzw. Heizleistung kann dem Heizelement 8 von einer Energiequelle 11 zugeführt werden. Bei der Energiequelle 11 kann es sich beispielsweise um einen Generator oder um einen elektrischen Energiespeicher des nicht gesondert dargestellten Kraftfahrzeugs handeln.
Stromauf des ersten SCR-Katalysators 4 und stromab eines gegebenenfalls vorhandenen ersten Oxidationskatalysators 3 ist eine erste Harnstoff-Zugabevorrichtung 13 vorgesehen, mit welcher wässrige Harnstofflösung dem Abgas zugeführt werden kann. Eine zweite Harnstoff-Zugabevorrichtung 14 ist stromab des Partikelfilters 6 und stromauf des zweiten SCR-Katalysators 9 vorgesehen. Falls der optionale dritte SCR-Katalysator 7 vorgesehen ist, so ist die zweite Harnstoff-Zugabevorrichtung 14 davor, d.h. zwischen dem Partikelfilter 6 und dem dritten SCR-Katalysator 7 angeordnet. Es versteht sich, dass das Abgasnachbehandlungssystem 1 hier nicht gesondert dargestellte Sensoren für Temperatur und Abgaskomponenten umfasst, die notwendig sind, um den Betriebszustand des Abgasnachbehandlungssystems 1 bzw. seiner Komponenten zu erfassen und entsprechende Steuersignale zur Steuerung des Betriebs des Abgasnachbehandlungssystems 1 zu erzeugen.
Vorliegend ist wenigstens eine der Abgasreinigungskomponenten erster SCR-Katalysator 4, Partikelfilter 6 und, falls vorhanden, dritter SCR-Katalysator 7 mit einer Sorptionsbeschichtung versehen, die bei niedrigen Temperaturen Wasser und Stickoxide aus dem Abgas durch insbesondere Adsorption und/oder Absorption entfernen kann. Insbesondere bei niedrigen Temperaturen von beispielsweise weniger als 50 °C kann parallel zu einer Adsorption und/oder Absorption von gasförmigem Wasser auch eine Aufnahme von Wasser durch Kondensation erfolgen. Die Sorptionsbeschichtung ist außerdem so ausgebildet, dass sie durch nichtthermische Desorption adsorbiertes und/oder absorbiertes Stickoxid freisetzen kann.
Nachfolgend wird auf den Betrieb des in Fig. 1 dargestellten Systems eingegangen. Dabei erfolgt eine Beschränkung auf eine Betriebsphase mit einem Kaltstart und anschließendem Warmlauf der Brennkraftmaschine 2 bzw. des Abgasnachbehandlungssystems 1.
Zum Zeitpunkt des durchgeführten Kaltstarts der Brennkraftmaschine 2 sind die Abgasreinigungskomponenten des Abgasnachbehandlungssystems 1 noch nicht ausreichend aufgewärmt, um eine katalytische Aktivität entfalten zu können. Insbesondere ist eine katalytische Reduktion von Stickoxid im ersten SCR-Katalysator 4 und im zweiten SCR-Katalysator 9 sowie, falls vorhanden, im dritten SCR-Katalysator 7 noch nicht möglich. Um den zweiten SCR-Katalysator 9 rasch auf Betriebstemperatur zu bringen, wird direkt nach erfolgtem Kaltstart der Brennkraftmaschine 2 das elektrische Heizelement 8 von der Energiequelle 11 mit elektrischer Energie versorgt. Allerdings vergeht entsprechend der vorhandenen thermischen Trägheit eine gewisse Zeitspanne, bis infolge des Betriebs des elektrischen Heizelements 8 der zweite SCR-Katalysator 9 seine Anspringtemperatur bzw. Betriebstemperatur erreicht. Somit können innerhalb dieser Zeitspanne vom zweiten SCR-Katalysator 9 Stickoxide nicht katalytisch reduziert werden.
Ein Austrag von Stickoxid aus dem Abgasnachbehandlungssystem 1 wird jedoch trotzdem verhindert, indem im Abgas enthaltenes Stickoxid zunächst von der am weitesten stromauf angeordneten Abgasreinigungskomponente mit Sorptionsbeschichtung durch Adsorption und/oder Absorption in der Sorptionsbeschichtung entfernt wird. Dabei erfolgt bevorzugt eine Adsorption von gasförmigem Wasser und Stickoxid.
Die Aufnahmefähigkeit der Sorptionsbeschichtung ist jedoch begrenzt. Dies äußert sich nicht nur dadurch, dass nach Erreichen einer bestimmten Speichermenge von insbesondere Wasser keine Stickoxide mehr aufgenommen werden, sondern vor allem auch dadurch, dass zuvor adsorbiertes und/oder absorbiertes Stickoxid nichtthermisch desorbiert und ins Abgas abgegeben wird. Ursache hierfür ist in einer zunehmenden Erschöpfung der Aufnahmekapazität von Wasser zu sehen. Infolge weiter anhaltender Exposition mit im Abgas enthaltenem Wasser werden adsorbierte und/oder absorbierte Stickoxide verdrängt und freigesetzt. Durch im Abgas enthaltenes insbesondere gasförmiges Wasser erfolgt demnach eine nichtthermische Desorption von zuvor in der Sorptionsbeschichtung adsorbiertem und/oder absorbiertem Stickoxid. Diese nichtthermische Stickoxid-Desorption kann als eine von Wasser induzierte verdrängende Desorption interpretiert werden.
Falls es beispielsweise infolge von Auslegungsbeschränkungen nicht möglich ist, den zweiten SCR-Katalysator 9 mittels des elektrischen Heizelements 8 vor Eintreten der nichtthermischen Stickoxid-Desorption aus nur einer verbauten Abgasreinigungskomponente mit Sorptionsbeschichtung auf Betriebstemperatur aufzuheizen, so ist es vorzugsweise vorgesehen, zwei oder mehr Abgasreinigungskomponenten mit einer Sorptionsbeschichtung zu versehen. Wird aus der am weitesten stromauf angeordneten Abgasreinigungskomponente mit Sorptionsbeschichtung Stickoxid freigesetzt, so kann dieses freigesetzte Stickoxid wenigstens teilweise durch eine nachgeschaltete Abgasreinigungskomponente mit Sorptionsbeschichtung aufgenommen werden. Beispielsweise kann es vorgesehen sein, sowohl den ersten SCR- Katalysator 4, als auch den Partikelfilter 6 mit einer Sorptionsbeschichtung zu versehen. Auch ein ev. vorhandener dritter SCR-Katalysator 7 kann anstelle oder zusätzlich zum Partikelfilter 6 mit einer Sorptionsbeschichtung versehen sein. Es ist jedenfalls vorzugsweise vorgesehen, das Abgasnachbehandlungssystem 1 in Bezug auf mit einer Sorptionsbeschichtung versehenen Abgasreinigungskomponenten und das Aufheizverhalten des zweiten SCR-Katalysators 9 so auszulegen, dass der zweite SCR-Katalysator 9 seine Betriebstemperatur wenigstens annähernd erreicht, bevor desobiertes Stickoxid in nennenswertem Umfang zu ihm gelangen kann.
Hat der zweite SCR-Katalysator 9 infolge der Betätigung des elektrischen Heizelements 8 seine Anspring- bzw. Betriebstemperatur erreicht, so wird die zweite Harnstoff-Zugabevorrichtung 14 zur bedarfsgerechten Zugabe von Harnstofflösung zum Abgas betätigt, bzw. ein Freigabesignal zur Betätigung generiert. Dadurch ist der zweite SCR-Katalysator 9 in der Lage einströmendes Stickoxid katalytisch zu reduzieren. Ebenso können bei erreichen der Betriebstemperatur des zweiten SCR- Katalysators 9 Stickoxide ohne direkte Zugabe von Harnstofflösung mit im vorhergehenden Betrieb eingespeichertem Reduktionsmittel umgesetzt werden.
Erreicht infolge eines weiteren Betriebs der Brennkraftmaschine 2 der erste SCR- Katalysator 4 seine Betriebstemperatur, so ist es vorgesehen, die erste Harnstoff- Zugabevorrichtung 13 zusätzlich oder alternativ zur zweiten Harnstoff-Zugabevorrichtung 14 zu betätigen. Im Abgas enthaltenes Stickoxid kann dann vom ersten SCR-Katalysator 4 zusätzlich oder alternativ zum zweiten SCR-Katalysator 9 katalytisch reduziert werden. Vorzugsweise werden nach erfolgtem Warmlauf der erste SCR-Katalysator 4 und der zweite SCR-Katalysator 9 entsprechend ihres temperaturabhängigen Stickoxidumsatzvermögens mit Harnstoff bzw. Ammoniak aus der ersten Harnstoff-Zugabevorrichtung 13 bzw. der zweiten Harnstoff-Zugabevorrichtung 14 versorgt.
Zur weiteren Erläuterung des erfindungsgemäßen Verfahrens wird nachfolgend unter Bezug auf Fig. 2 auf die weiter oben schon angesprochene Aufnahme von Wasser (H20) und Stickoxid (NOx) mit einem entsprechenden Sorptionsmaterial eingegan- gen. Dabei sind in zwei Konzentrations-Zeitdiagrammen lediglich schematisch und nicht maßstäblich parallele zeitliche Verläufe von Konzentrationen von Wasser (oberes Diagramm) und Stickoxid (unteres Diagramm) vor und hinter einer Abgasreinigungskomponente mit Sorptionsbeschichtung dargestellt.
Dabei kennzeichnet im oberen Diagramm eine gestrichelte Linie eine konstante Eintrittskonzentration von Wasser 20 in einem in die Abgasreinigungskomponente eintretenden Gasstrom. Eine durchgezogene Line kennzeichnet den Verlauf einer Ausgangskonzentration von Wasser 21 in dem aus der Abgasreinigungskomponente wieder austretenden Abgas.
Entsprechend kennzeichnet im unteren Diagramm eine gestrichelte Linie eine gleichzeitig vorhandene konstante Stickoxid-Eintrittskonzentration 22 in dem eintretenden Gasstrom und eine durchgezogene Linie den Verlauf einer Stickoxid-Austrittskonzentration 23 in dem aus der Abgasreinigungskomponente wieder austretenden Abgas.
Wie ersichtlich, wird bis zu einem durch eine punktierte Linie gekennzeichneten Zeitpunkt t zugeführtes Wasser und zugeführtes Stickoxid von der Sorptionsbeschichtung annähernd quantitativ aufgenommen. Diese Aufnahme ist insbesondere auf eine Adsorption von Wasser und Stickoxid zurückzuführen.
Ab dem Zeitpunkt t nimmt die Aufnahmefähigkeit von Wasser zunehmend ab, was sich in einem Anstieg der austrittsseitigen Wasserkonzentration 21 bemerkbar macht. Gleichzeitig erfolgt eine Desorption von zuvor adsorbiertem und/oder absorbiertem Stickoxid, was sich in einem steilen Anstieg der austrittsseitigen Stickoxidkonzentration 23 bemerkbar macht. Nach Abklingen eines die Eintrittskonzentration übersteigenden Desorptionspeaks strebt die Stickoxid-Austrittskonzentration 23 der Stickoxid-Eintrittskonzentration 22 zu, da die Sorptionsbeschichtung kein Stickoxid mehr aufnehmen kann. Gleichzeitig strebt die Wasser-Austrittskonzentration 21 der Wasser-Eintrittskonzentration 20 zu, da die Aufnahmefähigkeit von Wasser zunehmend abnimmt. Die dargestellten Konzentrationsverläufe, insbesondere nach dem Zeitpunkt t charakterisieren eine verdrängende, von Wasser induzierte Desorption von Stickoxid. Diese Desorption ist nichtthermisch, da die Beaufschlagung der Abgasreinigungskomponente mit dem wasser- und stickoxidhaltigen Gas bei einer Temperatur erfolgt, welche deutlich unter der Temperatur liegt, bei welcher eine thermisch induzierte Desorption von Stickoxid aus der Sorptionsbeschichtung erfolgen kann. Die in den Diagrammen lediglich schematisch dargestellten Konzentrationsverläufe können in entsprechenden Versuchen in ähnlicher Form bei Temperaturen bis zu etwa 80 °C, 120°C, 150 °C festgestellt werden. Dabei können die Konzentrationsverläufe je nach Versuchsbedingungen unterschiedliche Ausprägungen aufweisen, zeigen jedoch dieselben prinzipiellen Charakteristika. Insofern sind die in den Diagrammen von Fig. 2 dargestellten Konzentrationsverläufe als lediglich beispielhaft zu verstehen.
Bezugszeichenliste
Abgasnachbehandlungssystem Brennkraftmaschine Erster Oxidationskatalysator Erster SCR-Katalysator Zweiter Oxidationskatalysator Partikelfilter
Dritter SCR-Katalysator Elektrisches Heizelement Zweiter SCR-Katalysator Dritter Oxidationskatalysator Energiequelle Abgasleitung
Erste Harnstoff-Zugabevorrichtung
Zweite Harnstoff-Zugabevorrichtung
Brennstoff-Zugabevorrichtung
Wasser-Eintrittskonzentration
Wasser-Austrittskonzentration
Stickoxid-Eintrittskonzentration
Stickoxid-Austrittskonzentration

Claims

Patentansprüche
1. Kraftfahrzeug mit einem Abgasnachbehandlungssystem (1 ) zur Nachbehandlung von Abgas einer Brennkraftmaschine (2) des Kraftfahrzeugs, wobei das Abgasnachbehandlungssystem (1) einen Partikelfilter (6) und wenigstens zwei getrennt voneinander angeordnete SCR-Katalysatoren (4, 9) mit jeweils vorangeschalteter Harnstoff-Zugabevorrichtung (13, 14) aufweist, dadurch gekennzeichnet, dass dem in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysator (9) ein elektrisches Heizelement (8) zugeordnet ist.
2. Kraftfahrzeug nach Anspruch 1 , dadurch gekennzeichnet, dass ein erster SCR-Katalysator (4), der Partikelfilter (6), das elektrische Heizelement (8) und ein zweiter SCR-Katalysator (9) in Abgasströmungsrichtung gesehen hintereinander angeordnet sind.
3. Kraftfahrzeug nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in Abgasströmungsrichtung gesehen stromab des Partikelfilters (6) und stromauf des elektrischen Heizelements (8) ein dritter SCR-Katalysator (7) angeordnet ist.
4. Kraftfahrzeug nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass dass der erste SCR-Katalysator (4) und/oder der Partikelfilter (6) und/oder der dritte SCR-Katalysator (7) mit einer Sorptionsbeschichtung versehen sind, die Wasser und Stickoxide aus dem Abgas durch Aufnahme entfernen kann.
5. Kraftfahrzeug nach Anspruch 4, dadurch gekennzeichnet, dass die Sorptionsbeschichtung ausgebildet ist, aufgenommenes Stickoxid durch nichtthermische Desorption freizusetzen.
6. Kraftfahrzeug nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Partikelfilter (6) mit einer SCR-katalytisch wirksamen Beschichtung und/oder mit der Sorptionsbeschichtung beschichtet ist.
7. Kraftfahrzeug nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass der Partikelfilter (6) die Sorptionsbeschichtung in einem austrittseitigen Endbereich aufweist.
8. Kraftfahrzeug nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass der Partikelfilter frei (6) von einer SCR- katalytischen Beschichtung ist.
9. Verfahren zum Betreiben eines Kraftfahrzeugs mit einem Abgasnachbehandlungssystem (1) zur Nachbehandlung von Abgas einer Brennkraftmaschine (2) des Kraftfahrzeugs, wobei das Abgasnachbehandlungssystem (1) einen Partikelfilter (6) und wenigstens zwei voneinander getrennt angeordnete SCR-Katalysatoren (4, 9) mit jeweils vorangeschalteter Harnstoff-Zugabevorrichtung (13, 14) aufweist, gekennzeichnet durch die Verfahrensschritte i) Durchführen eines Kaltstarts der Brennkraftmaschine (2) des Kraftfahrzeugs und Durchleiten von Abgas der Brennkraftmaschine (2) durch das Abgasnachbehandlungssystem (1), ii) Adsorbieren und/oder Absorbieren von im Abgas enthaltenem Wasser und Stickoxid in einer Sorptionsbeschichtung einer dem in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysator (9) vorgeschalteten Abgasreinigungskomponente, iii) Aufheizen des in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysators (9) durch ein vorgeschaltetes elektrisches Heizelement (8), iv) Freisetzen von adsorbiertem und/oder absorbiertem Stickoxid aus der Sorptionsbeschichtung der Abgasreinigungskomponente durch nichtthermische Desorption, v) Reduzieren von freigesetztem Stickoxid an dem in
Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysator (9) mit stromauf dem Abgas zugeführtem Reduktionsmittel.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Verfahrensschritte ii) und/oder iv) an einem dem am weitesten stromab angeordneten SCR-Katalysator (9) vorgeschalteten SCR-Katalysator erfolgen.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Verfahrensschritte ii) und/oder iv) an einem dem am weitesten stromab angeordneten SCR-Katalysator (9) vorgeschalteten Partikelfilter (6) erfolgen.
12. Verfahren nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, dass
Verfahrensschritt ii) bei einer Temperatur von weniger als 200 ° C erfolgt.
13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die Zufuhr von Reduktionsmittel stromauf des elektrischen Heizelements (8) erfolgt.
14. Verfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass die Aufheizung des in Abgasströmungsrichtung gesehen am weitesten stromab angeordneten SCR-Katalysators (9) durch das elektrische Heizelement (8) derart erfolgt, dass der in Abgasströmungsrichtung gesehen am weitesten stromab angeordnete SCR- Katalysator (9) seine Betriebstemperatur vor dem Verfahrensschritt iv) wenigstens annähernd erreicht.
PCT/AT2021/060115 2020-04-08 2021-04-06 Kraftfahrzeug mit einem abgasnachbehandlungssystem mit wenigstens zwei scr-katalysatoren und verfahren zum betreiben eines solchen kraftfahrezeuges WO2021203154A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021000188.4T DE112021000188A5 (de) 2020-04-08 2021-04-06 Kraftfahrzeug mit einem Abgasnachbehandlungssystem mit wenigstens zwei SCR-Katalysatoren und Verfahren zum Betreiben eines solchen Kraftfahrzeugs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50300/2020A AT523689B1 (de) 2020-04-08 2020-04-08 Kraftfahrzeug mit einem Abgasnachbehandlungssystem mit wenigstens zwei SCR-Katalysatoren und Verfahren zum Betreiben eines solchen Kraftfahrzeugs
ATA50300/2020 2020-04-08

Publications (1)

Publication Number Publication Date
WO2021203154A1 true WO2021203154A1 (de) 2021-10-14

Family

ID=75625267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2021/060115 WO2021203154A1 (de) 2020-04-08 2021-04-06 Kraftfahrzeug mit einem abgasnachbehandlungssystem mit wenigstens zwei scr-katalysatoren und verfahren zum betreiben eines solchen kraftfahrezeuges

Country Status (3)

Country Link
AT (1) AT523689B1 (de)
DE (1) DE112021000188A5 (de)
WO (1) WO2021203154A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012220016A1 (de) * 2011-11-07 2013-05-08 GM Global Technology Operations LLC (n.d. Ges. d. Staates Delaware) Elektrisch beheizter NOx-Adsorber-Katalysator
WO2016168106A1 (en) * 2015-04-13 2016-10-20 Illinois Valley Holding Company Engine exhaust emissions treatment system
DE102018102490A1 (de) 2017-03-08 2018-09-13 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102018102111A1 (de) * 2018-01-31 2019-08-01 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102018122875A1 (de) * 2018-09-18 2020-03-19 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015048099A1 (en) * 2013-09-25 2015-04-02 Cummins Inc. Scr aftertreatment management to mitigate slip events
GB201322842D0 (en) * 2013-12-23 2014-02-12 Johnson Matthey Plc Exhaust system for a compression ingition engine comprising a water absorbent material
DE102017106766A1 (de) * 2016-03-31 2017-10-05 Johnson Matthey Public Limited Company Im Abgas vorhandenes elektrisches Element für NOx-Speicherkatalysator- und SCR-Systeme

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012220016A1 (de) * 2011-11-07 2013-05-08 GM Global Technology Operations LLC (n.d. Ges. d. Staates Delaware) Elektrisch beheizter NOx-Adsorber-Katalysator
WO2016168106A1 (en) * 2015-04-13 2016-10-20 Illinois Valley Holding Company Engine exhaust emissions treatment system
DE102018102490A1 (de) 2017-03-08 2018-09-13 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102018102111A1 (de) * 2018-01-31 2019-08-01 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102018122875A1 (de) * 2018-09-18 2020-03-19 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors

Also Published As

Publication number Publication date
DE112021000188A5 (de) 2022-11-10
AT523689B1 (de) 2023-02-15
AT523689A1 (de) 2021-10-15

Similar Documents

Publication Publication Date Title
EP1025346B1 (de) VERFAHREN UND VORRICHTUNG ZUR REGELUNG DES TEMPERATURBEREICHES EINES NOx-SPEICHERS IN EINER ABGASANLAGE EINES VERBRENNUNGSMOTORS
DE10308287B4 (de) Verfahren zur Abgasreinigung
DE102017106766A1 (de) Im Abgas vorhandenes elektrisches Element für NOx-Speicherkatalysator- und SCR-Systeme
DE102008026191B4 (de) Kraftfahrzeug mit Brennkraftmaschine und einer Abgasnachbehandlungseinrichtung sowie Verfahren zur Partikel- und Stickoxidverminderung
DE102013200361B4 (de) Abgasnachbehandlungssystem, Kraftfahrzeug und Verfahren zur Abgasnachbehandlung
DE102012002995B4 (de) Abgasbehandlungssystem zum Behandeln eines strömenden NOx-haltigen und wasserhaltigen Abgasstroms von einem mit Kohlenwasserstoffkraftstoff betriebenen Magergemischmotor
DE102005025045A1 (de) Abgasanlage
EP1771644A1 (de) Abgassystem, insbesondere für eine brennkraftmaschine eines kraftfahrzeugs
DE202016102586U1 (de) Emissionsreduzierungssystem
DE102007060623A1 (de) Entstickung von Dieselmotorenabgasen unter Verwendung eines temperierten Vorkatalysators zur bedarfsgerechten NO2-Bereitstellung
DE102005005663A1 (de) Abgasnachbehandlungseinrichtung mit Partikelfilter
DE102016101094A1 (de) Synergistische Kombinationen von Niedertemperatur-NOx-Adsorbern
DE102012023049A1 (de) SCR-Abgasnachbehandlungseinrichtung sowie Kraftfahrzeug mit einer solchen
EP2310113A1 (de) Abgasreinigungssystem für dieselmotoren von nutzkraftfahrzeugen
EP1837497A1 (de) Abgasnachbehandlungssystem umfassend einen Speicherkatalysator und einen Partikelfilter und Verfahren zur Herstellung eines derartigen Systems
DE10048511A1 (de) Verfahren zur Verminderung von Kohlenmonoxid, Kohlenwasserstoffen und Partikel im mageren Abgas von Verbrennungsmotoren
DE102010033689A1 (de) Abgasnachbehandlungssystem mit katalytisch aktivem Wall-Flow-Filter mit NOx-Speicherfunktion vor Katalysator mit gleicher Speicherfunktion
EP2166203B1 (de) Vorrichtung zur Reinigung eines Abgasstroms einer Brennkraftmaschine eines Kraftfahrzeuges, insbesondere eines Nutzfahrzeuges
DE102010033688A1 (de) Abgasnachbehandlungssystem mit katalytisch aktivem Wall-Flow-Filter mit Speicherfunktion vor Katalysator mit gleicher Speicherfunktion
DE10242303A1 (de) Abgasreinigungsanlage und Verfahren zur Reinigung von Absagen
DE202016103189U1 (de) Abgasnachbehandlungseinrichtung mit NOx-Speicherung und SCR
DE102012008539A1 (de) Abgasanlage für ein Fahrzeug und Verfahren zum Betreiben einer solchen Abgasanlage
AT523689B1 (de) Kraftfahrzeug mit einem Abgasnachbehandlungssystem mit wenigstens zwei SCR-Katalysatoren und Verfahren zum Betreiben eines solchen Kraftfahrzeugs
DE102016210539B3 (de) Abgasnachbehandlungseinrichtung mit NOx-Speicherung und SCR
DE102007035937A1 (de) Abgasnachbehandlungsanlage und Verfahren zum Behandeln von Abgas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21720385

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112021000188

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21720385

Country of ref document: EP

Kind code of ref document: A1