WO2021201030A1 - Solar cell and solar cell manufacturing method - Google Patents

Solar cell and solar cell manufacturing method Download PDF

Info

Publication number
WO2021201030A1
WO2021201030A1 PCT/JP2021/013687 JP2021013687W WO2021201030A1 WO 2021201030 A1 WO2021201030 A1 WO 2021201030A1 JP 2021013687 W JP2021013687 W JP 2021013687W WO 2021201030 A1 WO2021201030 A1 WO 2021201030A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor layer
slope
layer
mountain
Prior art date
Application number
PCT/JP2021/013687
Other languages
French (fr)
Japanese (ja)
Inventor
貴久 藤本
足立 大輔
山本 憲治
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2022512586A priority Critical patent/JPWO2021201030A1/ja
Publication of WO2021201030A1 publication Critical patent/WO2021201030A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a back electrode type (back contact type) solar cell and a method for manufacturing the solar cell.
  • Patent Document 1 discloses a back electrode type solar cell.
  • the solar cell described in Patent Document 1 includes a semiconductor substrate having a texture structure having a pyramid-shaped fine uneven structure formed on the light receiving surface side and the back surface side.
  • the slope of the pyramid on the back surface side has a first slope from the foot of the mountain to the middle slope and a second slope from the middle slope to the top of the mountain, which has a different inclination angle from the first slope.
  • An object of the present invention is to provide a solar cell having improved reliability and a method for manufacturing the solar cell.
  • the semiconductor substrate and the first semiconductor layer and the first electrode layer which are sequentially laminated in the first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate.
  • a back electrode type solar cell including a second semiconductor layer and a second electrode layer sequentially laminated in a second region which is another part of the other main surface side of the semiconductor substrate.
  • a texture structure having a pyramid-shaped fine concavo-convex structure is formed on at least the other main surface side of the substrate, and the boundary on the first region side in the second region on the other main surface side of the semiconductor substrate.
  • the slope of the pyramid has a first slope from the foot of the mountain to the middle of the mountain and a second slope from the middle of the mountain to the top of the mountain.
  • the slope of the second slope is gentler than the slope of the first slope.
  • the minimum angle ⁇ [°] to be formed is 8 ⁇ ⁇ 30.
  • the pyramid occupies 0.01% or more and 50% or less of the area of the other main surface.
  • the film thickness of the second semiconductor layer on the second slope is thicker than the film thickness of the second semiconductor layer on the first slope.
  • Another solar cell according to the present invention includes a semiconductor substrate, a first semiconductor layer and a first semiconductor layer sequentially laminated in a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate.
  • a back electrode type solar cell comprising an electrode layer and a second semiconductor layer and a second electrode layer sequentially laminated in a second region which is another part of the other main surface side of the semiconductor substrate.
  • a texture structure having a pyramid-shaped fine concavo-convex structure is formed at least on the other main surface side of the semiconductor substrate, and the first region side in the second region on the other main surface side of the semiconductor substrate.
  • the slope of the pyramid has a first slope from the foot of the mountain to the middle of the mountain and a second slope from the middle of the mountain to the top of the mountain.
  • the slope of the second slope is gentler than the slope of the first slope.
  • the first semiconductor layer and the second semiconductor layer are laminated in this order on at least a part of the first slope.
  • the film thickness of the second semiconductor layer on the second slope is thicker than the film thickness of the second semiconductor layer on the first slope.
  • the method for manufacturing a solar cell according to the present invention includes a semiconductor substrate, a first semiconductor layer laminated in order in a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate, and a first semiconductor layer.
  • a method for manufacturing a back electrode type solar cell comprising one electrode layer and a second semiconductor layer and a second electrode layer sequentially laminated in a second region which is another part of the other main surface side of the semiconductor substrate.
  • the resist is formed in the first region by printing and curing the printing material containing the resin material by using the pattern printing method, and the first region side in the second region is formed.
  • An exuding film formed by exuding the printing material is formed on the first slope from the mountain hem to the middle of the pyramid in the boundary region (exuding region of the printing resist).
  • the material film of the first semiconductor layer is etched with the resist and the exuding film on the periphery thereof as a mask, so that the boundary region on the first region side in the second region is formed.
  • the slope of the pyramid has a first slope from the foot of the mountain to the middle of the mountain and a second slope from the middle of the mountain to the top of the mountain. The slope of the second slope is gentler than the slope of the first slope.
  • the minimum angle ⁇ [°] to be formed is 8 ⁇ ⁇ 30.
  • the pyramid occupies 0.01% or more and 50% or less of the area of the other main surface. Form the pyramid.
  • the film thickness on the second slope is thicker than the film thickness on the first slope in the boundary region (print resist exuding region) on the first region side in the second region.
  • the second semiconductor layer is formed.
  • Another method for manufacturing a solar cell according to the present invention is a first semiconductor layer laminated in order on a semiconductor substrate and a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate.
  • a back electrode type solar cell comprising the first electrode layer and the second semiconductor layer and the second electrode layer sequentially laminated in the second region which is another part of the other main surface side of the semiconductor substrate.
  • the second region includes a second semiconductor layer forming step of forming the patterned second semiconductor layer.
  • the resist is formed in the first region by printing and curing the printing material containing the resin material by using the pattern printing method, and the first region side in the second region is formed.
  • An exudate film formed by exuding the printing material is formed on the first slope from the mountain hem to the middle of the pyramid in the boundary region of the above.
  • the material film of the first semiconductor layer is etched with the resist and the exuding film on the periphery thereof as a mask, so that the boundary region on the first region side in the second region is formed.
  • the slope of the pyramid has a first slope from the foot of the mountain to the middle of the mountain and a second slope from the middle of the mountain to the top of the mountain. The slope of the second slope is gentler than the slope of the first slope.
  • the first semiconductor layer is laminated on at least a part of the first slope. Form the pyramid.
  • the second semiconductor layer is formed on the first semiconductor layer on the first slope in the boundary region on the first region side in the second region, and the second slope is formed.
  • the second semiconductor layer is formed in which the film thickness is thicker than the film thickness on the first slope.
  • FIG. 2 is a sectional view taken along line II-II of the solar cell of FIG.
  • FIG. 3 is an enlarged cross-sectional view of a boundary region III between the first region and the second region shown in FIG. It is an enlarged cross-sectional view of the back surface of the semiconductor substrate in a part VA of the boundary region (exudation region of the pattern printing resist) on the 1st region side in the 2nd region shown in FIG. It is an enlarged cross-sectional view of the back surface of the semiconductor substrate in a part VB other than the boundary region in the 2nd region shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view of a semiconductor layer in a part of VB other than the boundary region in the second region shown in FIG. It is a figure which shows the 1st semiconductor layer material film formation process and the lift-off layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment.
  • FIG. 6 is an enlarged view of the boundary region VIA between the first region and the second region shown in FIG. 6B. It is an enlarged view of the boundary region VIIB between the first region and the second region shown in FIG. 6C.
  • FIG. 6 is an enlarged cross-sectional view of the boundary region VIIC between the first region and the second region shown in FIG. 6G.
  • FIG. 7B is an enlarged cross-sectional view of a part of IVA of the boundary region on the first region side in the second region shown in FIG. 7B.
  • FIG. 9 is an enlarged cross-sectional view of a boundary region X between the first region and the second region shown in FIG. It is the figure which looked at the solar cell which concerns on 2nd Embodiment from the back side.
  • FIG. 2 is a sectional view taken along line II-II of the solar cell of FIG. It is an enlarged cross-sectional view of the boundary region III between the 1st region and the 2nd region shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view of a semiconductor layer in a part VA of a boundary region (exudation region of a pattern print resist) on the first region side in the second region shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view of a semiconductor layer in a part of VB other than the boundary region in the second region shown in FIG.
  • FIG. 16B is an enlarged view of the boundary region VIA between the first region and the second region shown in FIG. 16B. It is an enlarged view of the boundary region VIIB between the first region and the second region shown in FIG. 16C. It is an enlarged cross-sectional view of the boundary region VIIC between the first region and the second region shown in FIG. 16G.
  • 17B is an enlarged cross-sectional view of a part of IVA of the boundary region on the first region side in the second region shown in FIG. 17B. It is sectional drawing of the solar cell which concerns on modification of 2nd Embodiment, and is the sectional view corresponding to line II-II in FIG. It is an enlarged cross-sectional view of the boundary region X between the 1st region and the 2nd region shown in FIG.
  • FIG. 1 is a view of the solar cell according to the first embodiment as viewed from the back surface side.
  • the solar cell 1 shown in FIG. 1 is a back electrode type (also referred to as a back contact type or back surface bonding type) solar cell.
  • the solar cell 1 includes a semiconductor substrate 11 having two main surfaces, and has a first region 7 and a second region 8 on the main surface of the semiconductor substrate 11.
  • the first region 7 has a so-called comb-shaped shape, and has a plurality of finger portions 7f corresponding to the comb teeth and a bus bar portion 7b corresponding to the support portion of the comb teeth.
  • the bus bar portion 7b extends in the first direction (X direction) along one side of the semiconductor substrate 11, and the finger portion 7f intersects the bus bar portion 7b in the first direction (X direction). It extends in the direction (Y direction).
  • the second region 8 has a so-called comb-shaped shape, and has a plurality of finger portions 8f corresponding to the comb teeth and a bus bar portion 8b corresponding to the support portion of the comb teeth.
  • the bus bar portion 8b extends in the first direction (X direction) along the other side portion facing one side portion of the semiconductor substrate 11, and the finger portion 8f extends from the bus bar portion 8b in the second direction (Y). Extends in the direction).
  • the finger portions 7f and the finger portions 8f are alternately provided in the first direction (X direction).
  • the first region 7 and the second region 8 may be formed in a striped shape.
  • FIG. 2 is a sectional view taken along line II-II of the solar cell of FIG.
  • the solar cell 1 is a heterojunction type solar cell.
  • the solar cell 1 includes a semiconductor substrate 11, an intrinsic semiconductor layer 13 and an optical adjustment layer 15 which are sequentially laminated on the light receiving surface side, which is one of the main surfaces of the semiconductor substrate 11 on the light receiving side. Further, the solar cell 1 has the intrinsic semiconductor layer 23, which is sequentially laminated on a part of the back surface side (first region 7) which is the other main surface of the main surface of the semiconductor substrate 11 opposite to the light receiving surface. 1
  • the conductive semiconductor layer 25 and the first electrode layer 27 are provided.
  • the solar cell 1 includes an intrinsic semiconductor layer 33, a second conductive semiconductor layer 35, and a second electrode layer 37, which are sequentially laminated on another part (second region 8) on the back surface side of the semiconductor substrate 11. .. Further, as will be described later, the region including both the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 in the vicinity of the boundary between the first region 7 and the second region 8 is referred to as the second region 8.
  • the intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 are also referred to as a first semiconductor layer
  • the intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 are also referred to as a second semiconductor layer.
  • the semiconductor substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon.
  • the semiconductor substrate 11 is, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant.
  • the semiconductor substrate 11 may be, for example, a p-type semiconductor substrate in which a crystalline silicon material is doped with a p-type dopant.
  • Examples of the n-type dopant include phosphorus (P).
  • Examples of the p-type dopant include boron (B).
  • the semiconductor substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes).
  • the semiconductor substrate 11 has a pyramid-shaped fine uneven structure called a texture structure on the back surface side. As a result, the recovery efficiency of light that has passed through without being absorbed by the semiconductor substrate 11 is increased.
  • the semiconductor substrate 11 may have a pyramid-shaped fine uneven structure called a texture structure on the light receiving surface side. As a result, the reflection of incident light on the light receiving surface is reduced, and the light confinement effect on the semiconductor substrate 11 is improved.
  • the intrinsic semiconductor layer 13 is formed on the light receiving surface side of the semiconductor substrate 11.
  • the intrinsic semiconductor layer 23 is formed in the first region 7 on the back surface side of the semiconductor substrate 11.
  • the intrinsic semiconductor layer 33 is formed in the second region 8 on the back surface side of the semiconductor substrate 11.
  • the intrinsic semiconductor layers 13, 23, 33 are formed of, for example, a material containing intrinsic (i-type) amorphous silicon as a main component.
  • the intrinsic semiconductor layers 13, 23, 33 function as so-called passivation layers, suppress the recombination of carriers generated in the semiconductor substrate 11, and increase the carrier recovery efficiency.
  • the optical adjustment layer 15 is formed on the intrinsic semiconductor layer 13 on the light receiving surface side of the semiconductor substrate 11.
  • the optical adjustment layer 15 functions as an antireflection layer that prevents reflection of incident light, and also functions as a protective layer that protects the light receiving surface side of the semiconductor substrate 11 and the intrinsic semiconductor layer 13.
  • the optical adjustment layer 15 is formed of an insulating material such as a composite thereof such as silicon oxide (SiO), silicon nitride (SiN), or silicon oxynitride (SiON).
  • the first conductive semiconductor layer 25 is formed on the intrinsic semiconductor layer 23, that is, in the first region 7 on the back surface side of the semiconductor substrate 11.
  • the first conductive semiconductor layer 25 is formed of, for example, an amorphous silicon material.
  • the first conductive semiconductor layer 25 is, for example, a p-type semiconductor layer in which an amorphous silicon material is doped with a p-type dopant (for example, the above-mentioned boron (B)).
  • the second conductive semiconductor layer 35 is formed on the intrinsic semiconductor layer 33, that is, in the second region 8 on the back surface side of the semiconductor substrate 11.
  • the second conductive semiconductor layer 35 is formed of, for example, an amorphous silicon material.
  • the second conductive semiconductor layer 35 is, for example, an n-type semiconductor layer in which an amorphous silicon material is doped with an n-type dopant (for example, phosphorus (P) described above).
  • the first conductive semiconductor layer 25 may be an n-type semiconductor layer, and the second conductive semiconductor layer 35 may be a p-type semiconductor layer.
  • the first electrode layer 27 is formed on the first conductive semiconductor layer 25, and the second electrode layer 37 is formed on the second conductive semiconductor layer 35.
  • the first electrode layer 27 has a transparent electrode layer 28 and a metal electrode layer 29, which are sequentially laminated on the first conductive semiconductor layer 25.
  • the second electrode layer 37 has a transparent electrode layer 38 and a metal electrode layer 39 which are sequentially laminated on the second conductive semiconductor layer 35.
  • the transparent electrode layers 28 and 38 are formed of a transparent conductive material.
  • the transparent conductive material include ITO (Indium Tin Oxide: a composite oxide of indium oxide and tin oxide) and ZnO (Zinc Oxide: zinc oxide).
  • the metal electrode layers 29 and 39 are formed of a conductive paste material or copper containing a metal powder such as silver.
  • FIG. 3 is an enlarged cross-sectional view of the boundary region III between the first region 7 and the second region 8 shown in FIG.
  • FIG. 4A is an enlarged cross-sectional view of the back surface of the semiconductor substrate 11 in a part VA of the boundary region 8A (exudation region of the pattern printing resist described later) on the side of the first region 7 in the second region 8 shown in FIG.
  • FIG. 5A is an enlarged cross-sectional view of the semiconductor layers 35 and 33 in a part VA of the boundary region 8A (exudation region of the pattern printing resist described later) on the side of the first region 7 in the second region 8 shown in FIG. Further, FIG.
  • FIG. 4B is an enlarged cross-sectional view of the back surface of the semiconductor substrate 11 in a part VB other than the boundary region 8A in the second region 8 shown in FIG. 3, and FIG. 5B is a boundary in the second region 8 shown in FIG.
  • FIG. 5 is an enlarged cross-sectional view of semiconductor layers 35 and 33 in a part of VB other than the region 8A.
  • the boundary region 8A (exudation region of the pattern print resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11 is composed of four slopes. A plurality of pyramids 11A are formed.
  • Each slope of the pyramid 11A has a first slope SF1 from the foot of the mountain 1A to the middle 2A and a second slope SF2 from the middle 2A to the summit 3A.
  • the first slope SF1 and the second slope SF2 have different inclination angles with the bending point of the middle slope 2A as a boundary.
  • the slope of the second slope SF2 is gentler than the slope of the first slope SF1.
  • Such a pyramid 11A occupies 0.01% or more and 50% or less with respect to the area of the back surface of the semiconductor substrate 11.
  • a plurality of pyramids 11B composed of four slopes are formed in a region other than the boundary region 8A in the second region 8 on the back surface side of the semiconductor substrate 11.
  • the first slope SF1 and the second slope SF2 of the pyramid 11A described above are shown by broken lines for comparison.
  • Each slope of the pyramid 11B has a third slope SF3 with no bending point from the foot of the mountain 1B to the top of the mountain 3B.
  • the slope of the third slope SF3 is gentler than the slope of the first slope SF1 described above.
  • the thickness of the semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) is the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the first slope SF1 of the pyramid 11A. Thicker than the film thickness of.
  • the thickness of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the second slope SF2 of the pyramid 11A is set to the thickness of the second intrinsic semiconductor layer 33 and the second conductive on the first slope SF1 of the pyramid 11A.
  • the value divided by the film thickness of the type semiconductor layer 35 (second semiconductor layer) is preferably 1.02 or more and 1.80 or less, more preferably 1.03 or more and 1.60 or less, still more preferably 1.05 or more. It is 1.40 or less.
  • the film thickness of the semiconductor layer is the film thickness in the direction orthogonal to the slope of the pyramid of the semiconductor substrate 11, and the film thickness on the first slope SF1 is the midpoint PA1 of the mountain hem 1A and the bending point (middle) 2A.
  • the film thickness on the second slope SF2 shall be measured at the positions of the peak 3A of the pyramid and the midpoint PA2 of the bending point (middle) 2A.
  • the bending point closest to the mountaintop shall be used for film thickness measurement.
  • the back electrode type solar cell has a first semiconductor region and a second semiconductor region on the back surface, and each has a structure adjacent to each other.
  • the existence of the boundary between the first semiconductor region and the second semiconductor region on the back surface is a structure peculiar to the back contact type solar cell, and the structure around the boundary region greatly affects the reliability of the solar cell, and the boundary region
  • the reliability can be improved by having the structure of the pyramid A even if the area is small and having the film thickness ratio of the first slope SF1 and the second slope SF2.
  • the third slope SF3 of the pyramid 11B does not have a bend like the pyramid 11A, so that the third Of the three points PB1, PB2, and PB3 that divide the mountain hem 1B and the mountaintop 3B into four equal parts on the slope SF3, the film thickness of the first point PB3 and the third point PB1 from the mountaintop 3B shall be measured.
  • the film thicknesses of the second semiconductor layers 35 and 33 on the first slope SF1 and the second slope SF2 of the pyramid 11A and the film thickness of the second semiconductor layer on the third slope SF3 of the pyramid 11B have the following relationship. It holds.
  • the boundary region 8A on the side of the first region 7 in the second region 8 is located between the transparent electrode layer 28 of the first electrode layer 27 and the transparent electrode layer 38 of the second electrode layer 37. At the same time, it may be located below the transparent electrode layer 28 side of the first electrode layer 27 in the transparent electrode layer 38 of the second electrode layer 37.
  • FIG. 6A is a diagram showing a first semiconductor layer material film forming step and a lift-off layer forming step in the method for manufacturing a solar cell according to the first embodiment
  • FIGS. 6B to 6D show the solar cell according to the first embodiment. It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of.
  • FIG. 6E is a diagram showing a second semiconductor layer material film forming step in the method for manufacturing a solar cell according to the first embodiment
  • FIG. 6F is a diagram showing a second in the method for manufacturing a solar cell according to the first embodiment. It is a figure which shows the semiconductor layer formation process.
  • FIG. 6G is a diagram showing an electrode layer forming step in the solar cell manufacturing method according to the first embodiment
  • FIG. 6H is a diagram showing an optical adjustment layer forming step in the solar cell manufacturing method according to the first embodiment. It is a figure which shows.
  • a texture structure having a pyramid-shaped fine uneven structure is formed.
  • the etching solution include an alkaline solution such as an aqueous solution of potassium hydroxide.
  • the intrinsic semiconductor layer material film 23Z and the first conductive semiconductor layer material film 25Z are applied to the entire back surface side of the semiconductor substrate 11. Are laminated (film-formed) in order (first semiconductor layer material film forming step).
  • the intrinsic semiconductor layer 13 is laminated (film-formed) on the entire surface of the semiconductor substrate 11 on the light receiving surface side.
  • the order of film formation of the intrinsic semiconductor layer material film 23Z, the first conductive semiconductor layer material film 25Z, and the intrinsic semiconductor layer 13 is not limited.
  • the intrinsic semiconductor layer 13 on the light receiving surface side may be formed in the subsequent second semiconductor layer material film forming step.
  • the intrinsic semiconductor layer on the light receiving surface side formed at this stage may be removed in a later first semiconductor layer forming step.
  • the intrinsic semiconductor layer may not be formed on the light receiving surface side at this stage, that is, there may be no intrinsic semiconductor layer forming step at this stage.
  • a lift-off layer (sacrificial layer) 41 is laminated (film formation) on the entire surface of the back surface side of the semiconductor substrate 11, specifically, on the entire surface of the first conductive semiconductor layer material film 25Z. ) (Lift-off layer forming process).
  • the lift-off layer 41 is formed of a material such as silicon oxide (SiO), silicon nitride (SiN), or a composite thereof such as silicon oxynitride (SiON).
  • the intrinsic semiconductor layer material film 23Z, the first conductive semiconductor layer material film 25Z, and the first conductive semiconductor layer material film 25Z in the second region 8 are used.
  • a patterned intrinsic semiconductor layer 23, a first conductive semiconductor layer 25, and a lift-off layer 41 are formed in the first region 7 (first semiconductor layer forming step).
  • a pattern printing resist 90 is formed on the first region 7 on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side of the semiconductor substrate 11 by using a pattern printing method (. Resist forming process).
  • Pattern printing is not printing that goes through processes such as exposure and development after forming a resist film (non-patterned resist film) before patterning, as in the photolithography method, but screen printing or gravure printing. It means a printing method in which a patterned resist (printing material) is directly adhered to a resist-adhering surface, such as press printing such as, or ejection printing such as inkjet printing.
  • the patterning of the first conductive semiconductor layer by using the pattern printing resist by the pattern printing method, it is compared with the case where the photoresist by the spin coating method (photolithography method) is used. As a result, the number of exposure and development steps can be reduced, and the solar cell manufacturing process can be simplified.
  • the pattern printing resist 90 is obtained by printing and curing a printing material containing a resin material and an inorganic material. At this time, a part of the printing material exudes from the printing material printed in the first region 7.
  • the printing material may contain a solvent component, and the curing process may be cured by light as well as by heating. Further, in the curing process, the resin component does not necessarily have to be cured by cross-linking or the like, and the shape is maintained at room temperature due to the increase in viscosity due to the volatilization of the solvent, and the resin component has solvent resistance, that is, it has a function as a resist. Point to that.
  • FIG. 7A is an enlarged view of the boundary region VIA between the first region 7 and the second region 8 shown in FIG. 6B.
  • the exuded resist material covers the valley portion of the pyramid 11A in the boundary region 8A (the exuded region of the pattern printing resist) on the first region 7 side in the second region 8.
  • the exuding film 90A formed by exuding the printing material is a pyramid 11A in the boundary region 8A (exuding region of the pattern printing resist) on the first region 7 side in the second region 8. It is formed so as to cover the first slope SF1 from the mountain hem 1A to the middle 2A.
  • the film thickness of the pattern printing resist 90 is 3 ⁇ m or more and 50 ⁇ m or less, while the height of the pyramid 11A is 0.1 ⁇ m or more and 15 ⁇ m or less.
  • the height of the pyramid is the height from the foot of the mountain to the top of the mountain, and the film thickness of the pattern printing resist 90 is the film thickness from the foot of the pyramid.
  • the lift-off layer 41, the first conductive semiconductor layer material film 25Z, and the intrinsic semiconductor layer material film 23Z in the second region 8 are used as a mask with the pattern printing resist 90 and the exuding film 90A around the pattern printing resist 90 as a mask.
  • the patterned intrinsic semiconductor layer 23, the first conductive semiconductor layer 25, and the lift-off layer 41 are formed in the first region 7 by etching.
  • Examples of the etching solution for the lift-off layer 41 include a mixed solution in which ozone is dissolved in hydrofluoric acid, or an acidic solution such as a mixed solution of hydrofluoric acid and nitric acid.
  • Examples of the etching solution for the p-type semiconductor layer material film include an acidic solution such as a mixed solution of ozone dissolved in hydrofluoric acid or a mixed solution of hydrofluoric acid and nitric acid, and an n-type semiconductor layer material.
  • Examples of the etching solution for the film include an alkaline solution such as an aqueous potassium hydroxide solution.
  • FIG. 7B is an enlarged view of the boundary region VIIB between the first region 7 and the second region 8 shown in FIG. 6C.
  • the boundary region 8A exuding region of the pattern printing resist
  • the lift-off layer 41 and the first Most of the conductive semiconductor layer material film 25Z and the intrinsic semiconductor layer material film 23Z are etched.
  • FIG. 4A and 8 described above correspond to an enlarged cross-sectional view of a part of IVA of the boundary region 8A on the side of the first region 7 in the second region 8 shown in FIG. 7B, and FIG. 4B described above is shown in FIG. 7B. It corresponds to an enlarged cross-sectional view of a part of IVB other than the boundary region 8A in the two regions 8.
  • the exuding film 90A in the pyramid 11A As shown in FIGS. 4A and 8, in the boundary region 8A (exuding region of the pattern printing resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11, the exuding film 90A in the pyramid 11A.
  • the hem side covered with is not etched, and the top side not covered with the exudate film 90A is etched.
  • each slope of the pyramid 11A has a first slope SF1 from the foot of the mountain 1A to the middle 2A and a second slope SF2 from the middle 2A to the summit 3A.
  • the first slope SF1 and the second slope SF2 have different inclination angles with the bending point of the middle slope 2A as a boundary.
  • the slope of the second slope SF2 is gentler than the slope of the first slope SF1.
  • the first virtual straight line L1 from the mountain hem 1A to the mountain top 3A and the mountain hem 1A to the middle 2A The minimum angle ⁇ [°] formed by the second virtual straight line L2 up to the bending point is 8 ⁇ ⁇ 30.
  • Such a pyramid 11A occupies 0.01% or more and 50% or less with respect to the area of the back surface of the semiconductor substrate 11.
  • the pyramid 11B is not covered with the exuding film 90A, so that the pyramid 11B is entirely etched. ..
  • each slope of the pyramid 11B has a third slope SF3 having no bending point from the foot of the mountain 1B to the top of the mountain 3B.
  • the slope of the third slope SF3 is steeper than the slope of the first slope SF1.
  • the pattern print resist 90 is removed.
  • the etching solution for the pattern printing resist 90 include an alkaline solution such as an aqueous potassium hydroxide solution.
  • the cost of the solar cell can be reduced by adopting an inexpensive alkaline solution as the solution for removing the pattern printing resist.
  • the first conductive semiconductor layer 25 may be patterned so as to leave a part or all of the intrinsic semiconductor layer material film 23Z in the second region 8 on the back surface side of the semiconductor substrate 11. good.
  • first cleaning step both sides of the semiconductor substrate 11 are cleaned.
  • first cleaning step for example, ozone treatment is followed by hydrofluoric acid treatment.
  • the hydrofluoric acid treatment includes not only hydrofluoric acid but also treatment with a mixture of hydrofluoric acid and another kind of acid (for example, hydrochloric acid in the first washing step).
  • the intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z are laminated in order on the entire surface of the back surface side of the semiconductor substrate 11 (film formation). (Second semiconductor layer material film forming step).
  • the intrinsic semiconductor layer material film 33Z and the second conductive type in the first region 7 on the back surface side of the semiconductor substrate 11 by using the lift-off method using the lift-off layer (sacrificial layer).
  • the semiconductor layer material film 35Z By removing the semiconductor layer material film 35Z, a patterned intrinsic semiconductor layer 33 and a second conductive semiconductor layer 35 are formed in the second region 8 (second semiconductor layer forming step).
  • the removal solution for the lift-off layer 41 for example, an acidic solution such as hydrofluoric acid is used.
  • the manufacturing process of the solar cell can be simplified. ..
  • FIG. 7C is an enlarged cross-sectional view of the boundary region VIIC between the first region 7 and the second region 8 shown in FIG. 6G.
  • FIG. 5A described above corresponds to an enlarged cross-sectional view of a part of VA of the boundary region 8A on the side of the first region 7 in the second region 8 shown in FIG. 7C
  • FIG. 5B described above corresponds to the second region 8 shown in FIG. 7C.
  • the second intrinsicity in the second slope SF2 is the thickness of the semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the first slope SF1. Is formed thicker than. It is presumed that this is because the gentler the inclination, the thicker the film thickness of the semiconductor layers to be laminated.
  • the second semiconductor layer material film forming step and the second semiconductor layer forming step may be patterned without laminating (forming) the intrinsic semiconductor layer material film. Further, in the first semiconductor layer forming step, when a part of the intrinsic semiconductor layer material film 23Z in the second region 8 on the back surface side of the semiconductor substrate 11 remains, the second semiconductor layer material film forming step and the second semiconductor layer forming step Then, the intrinsic semiconductor layer material film may be laminated (film-formed) by the amount removed, and the intrinsic semiconductor layer and the second conductive semiconductor layer 35 may be patterned.
  • the first electrode layer 27 and the second electrode layer 37 are formed on the back surface side of the semiconductor substrate 11 (electrode layer forming step).
  • a transparent electrode layer material film is laminated (film-formed) on the entire back surface side of the semiconductor substrate 11. Then, the patterned transparent electrode layers 28 and 38 are formed by removing a part of the transparent electrode layer material film by, for example, an etching method using an etching paste.
  • an etching solution for the transparent electrode layer material film for example, hydrochloric acid or an aqueous ferric chloride solution is used.
  • the first electrode layer 27 and The second electrode layer 37 is formed.
  • FIG. 3 described above corresponds to an enlarged cross-sectional view of the boundary region III between the first region 7 and the second region 8 shown in FIG. 6G.
  • the boundary region 8A on the side of the first region 7 in the second region 8 is located between the transparent electrode layer 28 of the first electrode layer 27 and the transparent electrode layer 38 of the second electrode layer 37. At the same time, it may be located below the transparent electrode layer 28 side of the first electrode layer 27 in the transparent electrode layer 38 of the second electrode layer 37.
  • the optical adjustment layer 15 is laminated (film-formed) on the entire surface of the semiconductor substrate 11 on the light receiving surface side.
  • the back electrode type solar cell 1 according to the first embodiment is completed.
  • the boundary region 8A on the first region 7 side in the second region 8, that is, the pyramid 11A between the transparent electrode layers 28 and 38 is large.
  • the reliability of the solar cell 1 can be improved.
  • the passivation performance is improved, and the performance of the solar cell 1 (for example, Voc) can be improved.
  • the boundary region 8A on the first region 7 side in the second region 8 is the transparent electrode layer 28 and the second electrode layer 37 of the first electrode layer 27. It is located between the transparent electrode layer 38 and the transparent electrode layer 28 of the first electrode layer 27 in the transparent electrode layer 38 of the second electrode layer 37.
  • the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the second slope SF2 are located in the second region 8 between the transparent electrode layers 28 and 38.
  • the pyramid 11A having a large film thickness is arranged, and the reliability and performance of the solar cell 1 can be improved.
  • a solar cell manufacturing process can be performed.
  • the reliability and performance of the solar cell 1 can be improved by utilizing the exuding film of the resin material in the pattern printing resist while simplifying the process.
  • the characteristics of the solar cell 1 of the first embodiment described above can be realized by combining the use of a semiconductor substrate having a pyramid-shaped fine uneven structure (texture structure) and the use of a pattern printing resist by a pattern printing method. ..
  • the exuding width of the resin material in the pattern printing resist can be adjusted by adjusting the size of the pyramid and / or the component / viscosity of the pattern printing resist. Can be adjusted. This facilitates an optimization design for the features of the solar cell 1 of the first embodiment described above.
  • FIG. 9 is a cross-sectional view of the solar cell according to the modified example of the first embodiment, and is a cross-sectional view corresponding to the line II-II in FIG. Further, FIG. 10 is an enlarged cross-sectional view of the boundary region X between the first region 7 and the second region 8 shown in FIG.
  • the boundary region 8A on the first region 7 side in the second region 8 is between the transparent electrode layer 28 of the first electrode layer 27 and the transparent electrode layer 38 of the second electrode layer 37. It does not have to be located below the transparent electrode layer 38 of the second electrode layer 37.
  • the thick pyramid 11A of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the second slope SF2 is positioned under the transparent electrode layer 38 of the second electrode layer 37. Therefore, an increase in resistance can be suppressed, and a decrease in carrier extraction efficiency can be suppressed.
  • the first intrinsic property is obtained by under-etching.
  • the form in which the semiconductor layer 23 and the first conductive type semiconductor layer 25 (first semiconductor layer) do not remain has been illustrated.
  • FIGS. 13 and 15A described later in the boundary region 8A (exudation region of the pattern printing resist) on the first region 7 side in the second region 8, depending on the degree of underetching. , The mode in which the first intrinsic semiconductor layer 23 and the first conductive type semiconductor layer 25 (first semiconductor layer) remain on the first slope SF1 of the pyramid 11A will be illustrated.
  • FIG. 11 is a view of the solar cell according to the second embodiment as viewed from the back surface side.
  • the solar cell 1 shown in FIG. 11 is a back electrode type (also referred to as a back contact type or back surface bonding type) solar cell.
  • the solar cell 1 includes a semiconductor substrate 11 having two main surfaces, and has a first region 7 and a second region 8 on the main surface of the semiconductor substrate 11.
  • the first region 7 has a so-called comb-shaped shape, and has a plurality of finger portions 7f corresponding to the comb teeth and a bus bar portion 7b corresponding to the support portion of the comb teeth.
  • the bus bar portion 7b extends in the first direction (X direction) along one side of the semiconductor substrate 11, and the finger portion 7f intersects the bus bar portion 7b in the first direction (X direction). It extends in the direction (Y direction).
  • the second region 8 has a so-called comb-shaped shape, and has a plurality of finger portions 8f corresponding to the comb teeth and a bus bar portion 8b corresponding to the support portion of the comb teeth.
  • the bus bar portion 8b extends in the first direction (X direction) along the other side portion facing one side portion of the semiconductor substrate 11, and the finger portion 8f extends from the bus bar portion 8b in the second direction (Y). Extends in the direction).
  • the finger portions 7f and the finger portions 8f are alternately provided in the first direction (X direction).
  • the first region 7 and the second region 8 may be formed in a striped shape.
  • FIG. 12 is a sectional view taken along line II-II of the solar cell of FIG.
  • the solar cell 1 is a heterojunction type solar cell.
  • the solar cell 1 includes a semiconductor substrate 11, an intrinsic semiconductor layer 13 and an optical adjustment layer 15 which are sequentially laminated on the light receiving surface side, which is one of the main surfaces of the semiconductor substrate 11 on the light receiving side. Further, the solar cell 1 has the intrinsic semiconductor layer 23, which is sequentially laminated on a part of the back surface side (first region 7) which is the other main surface of the main surface of the semiconductor substrate 11 opposite to the light receiving surface. 1
  • the conductive semiconductor layer 25 and the first electrode layer 27 are provided.
  • the solar cell 1 includes an intrinsic semiconductor layer 33, a second conductive semiconductor layer 35, and a second electrode layer 37, which are sequentially laminated on another part (second region 8) on the back surface side of the semiconductor substrate 11. .. Further, as will be described later, the region including both the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 in the vicinity of the boundary between the first region 7 and the second region 8 is referred to as the second region 8.
  • the intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 are also referred to as a first semiconductor layer
  • the intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 are also referred to as a second semiconductor layer.
  • the semiconductor substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon.
  • the semiconductor substrate 11 is, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant.
  • the semiconductor substrate 11 may be, for example, a p-type semiconductor substrate in which a crystalline silicon material is doped with a p-type dopant.
  • Examples of the n-type dopant include phosphorus (P).
  • Examples of the p-type dopant include boron (B).
  • the semiconductor substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes).
  • the semiconductor substrate 11 has a pyramid-shaped fine uneven structure called a texture structure on the back surface side. As a result, the recovery efficiency of light that has passed through without being absorbed by the semiconductor substrate 11 is increased.
  • the semiconductor substrate 11 may have a pyramid-shaped fine uneven structure called a texture structure on the light receiving surface side. As a result, the reflection of incident light on the light receiving surface is reduced, and the light confinement effect on the semiconductor substrate 11 is improved.
  • the intrinsic semiconductor layer 13 is formed on the light receiving surface side of the semiconductor substrate 11.
  • the intrinsic semiconductor layer 23 is formed in the first region 7 on the back surface side of the semiconductor substrate 11.
  • the intrinsic semiconductor layer 33 is formed in the second region 8 on the back surface side of the semiconductor substrate 11.
  • the intrinsic semiconductor layers 13, 23, 33 are formed of, for example, a material containing intrinsic (i-type) amorphous silicon as a main component.
  • the intrinsic semiconductor layers 13, 23, 33 function as so-called passivation layers, suppress the recombination of carriers generated in the semiconductor substrate 11, and increase the carrier recovery efficiency.
  • the optical adjustment layer 15 is formed on the intrinsic semiconductor layer 13 on the light receiving surface side of the semiconductor substrate 11.
  • the optical adjustment layer 15 functions as an antireflection layer that prevents reflection of incident light, and also functions as a protective layer that protects the light receiving surface side of the semiconductor substrate 11 and the intrinsic semiconductor layer 13.
  • the optical adjustment layer 15 is formed of an insulating material such as a composite thereof such as silicon oxide (SiO), silicon nitride (SiN), or silicon oxynitride (SiON).
  • the first conductive semiconductor layer 25 is formed on the intrinsic semiconductor layer 23, that is, in the first region 7 on the back surface side of the semiconductor substrate 11.
  • the first conductive semiconductor layer 25 is formed of, for example, an amorphous silicon material.
  • the first conductive semiconductor layer 25 is, for example, a p-type semiconductor layer in which an amorphous silicon material is doped with a p-type dopant (for example, the above-mentioned boron (B)).
  • the second conductive semiconductor layer 35 is formed on the intrinsic semiconductor layer 33, that is, in the second region 8 on the back surface side of the semiconductor substrate 11.
  • the second conductive semiconductor layer 35 is formed of, for example, an amorphous silicon material.
  • the second conductive semiconductor layer 35 is, for example, an n-type semiconductor layer in which an amorphous silicon material is doped with an n-type dopant (for example, phosphorus (P) described above).
  • the first conductive semiconductor layer 25 may be an n-type semiconductor layer, and the second conductive semiconductor layer 35 may be a p-type semiconductor layer.
  • the first electrode layer 27 is formed on the first conductive semiconductor layer 25, and the second electrode layer 37 is formed on the second conductive semiconductor layer 35.
  • the first electrode layer 27 has a transparent electrode layer 28 and a metal electrode layer 29, which are sequentially laminated on the first conductive semiconductor layer 25.
  • the second electrode layer 37 has a transparent electrode layer 38 and a metal electrode layer 39 which are sequentially laminated on the second conductive semiconductor layer 35.
  • the transparent electrode layers 28 and 38 are formed of a transparent conductive material.
  • the transparent conductive material include ITO (Indium Tin Oxide: a composite oxide of indium oxide and tin oxide) and ZnO (Zinc Oxide: zinc oxide).
  • the metal electrode layers 29 and 39 are formed of a conductive paste material or copper containing a metal powder such as silver.
  • FIG. 13 is an enlarged cross-sectional view of the boundary region III between the first region 7 and the second region 8 shown in FIG.
  • FIG. 14A is an enlarged cross-sectional view of the back surface of the semiconductor substrate 11 in a part VA of the boundary region 8A (exudation region of the pattern printing resist described later) on the first region 7 side in the second region 8 shown in FIG.
  • FIG. 15A is an enlarged cross-sectional view of a semiconductor layer in a part VA of a boundary region 8A (exudation region of a pattern printing resist described later) on the side of the first region 7 in the second region 8 shown in FIG.
  • FIG. 14B is an enlarged cross-sectional view of the back surface of the semiconductor substrate 11 in a part of VB other than the boundary region 8A in the second region 8 shown in FIG. 13, and FIG. 15B is a boundary in the second region 8 shown in FIG. It is an enlarged cross-sectional view of the semiconductor layer in a part VB other than a region 8A.
  • the boundary region 8A (exudation region of the pattern print resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11 is composed of four slopes. A plurality of pyramids 11A are formed.
  • Each slope of the pyramid 11A has a first slope SF1 from the foot of the mountain 1A to the middle 2A and a second slope SF2 from the middle 2A to the summit 3A.
  • the first slope SF1 and the second slope SF2 have different inclination angles with the bending point of the middle slope 2A as a boundary.
  • the slope of the second slope SF2 is gentler than the slope of the first slope SF1.
  • the first virtual straight line L1 from the mountain hem 1A to the mountain top 3A and the inflection point from the mountain hem 1A to the middle 2A The minimum angle ⁇ [°] formed by the second virtual straight line L2 up to that point is 8 ⁇ ⁇ 30.
  • Such a pyramid 11A occupies 0.01% or more and 50% or less with respect to the area of the back surface of the semiconductor substrate 11.
  • a plurality of pyramids 11B composed of four slopes are formed in a region other than the boundary region 8A in the second region 8 on the back surface side of the semiconductor substrate 11.
  • the first slope SF1 and the second slope SF2 of the pyramid 11A described above are shown by broken lines for comparison.
  • Each slope of the pyramid 11B has a third slope SF3 with no bending point from the foot of the mountain 1B to the top of the mountain 3B.
  • the slope of the third slope SF3 is gentler than the slope of the first slope SF1 described above.
  • the first slope SF1 of the pyramid 11A has a position on the first slope SF1.
  • the 1 intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 (first semiconductor layer), and the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) are laminated (formed) in this order. There is.
  • the first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 (first semiconductor layer) may be laminated on all of the first slope SF1 of the pyramid 11A, or at least a part (for example, the foot of the mountain 1A). It may be laminated on the side, that is, the valley side).
  • first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 are not laminated (formed) on the second slope SF2 of the pyramid 11A, and the second intrinsic semiconductor layer 33 and the second intrinsic semiconductor layer 33 and the second. Only the two conductive semiconductor layer 35 (second semiconductor layer) is laminated (formed).
  • the second intrinsic semiconductor layer 33 and the second intrinsic semiconductor layer 33 in the second slope SF2 of the pyramid 11A are larger than the thickness of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the first slope SF1 of the pyramid 11A. thick.
  • the thickness of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the second slope SF2 of the pyramid 11A is set to the thickness of the second intrinsic semiconductor layer 33 and the second conductive on the first slope SF1 of the pyramid 11A.
  • the value divided by the film thickness of the type semiconductor layer 35 (second semiconductor layer) is preferably 1.02 or more and 1.80 or less, more preferably 1.03 or more and 1.60 or less, still more preferably 1.05 or more. It is 1.40 or less.
  • the film thickness of the semiconductor layer is the film thickness in the direction orthogonal to the slope of the pyramid of the semiconductor substrate 11, and the film thickness on the first slope SF1 is the midpoint PA1 of the mountain hem 1A and the bending point (middle) 2A.
  • the film thickness on the second slope SF2 shall be measured at the positions of the peak 3A of the pyramid and the midpoint PA2 of the bending point (middle) 2A.
  • the bending point closest to the mountaintop shall be used for film thickness measurement.
  • the back electrode type solar cell has a first semiconductor region and a second semiconductor region on the back surface, and each has a structure adjacent to each other.
  • the existence of the boundary between the first semiconductor region and the second semiconductor region on the back surface is a structure peculiar to the back contact type solar cell, and the structure around the boundary region greatly affects the reliability of the solar cell, and the boundary region
  • the reliability can be improved by having the structure of the pyramid A even if the area is small and having the film thickness ratio of the first slope SF1 and the second slope SF2.
  • the third slope SF3 of the pyramid 11B does not have a bend like the pyramid 11A, so that the third Of the three points PB1, PB2, and PB3 that divide the mountain hem 1B and the mountaintop 3B into four equal parts on the slope SF3, the film thickness of the first point PB3 and the third point PB1 from the mountaintop 3B shall be measured.
  • the film thicknesses of the second semiconductor layers 35 and 33 on the first slope SF1 and the second slope SF2 of the pyramid 11A and the film thickness of the second semiconductor layer on the third slope SF3 of the pyramid 11B have the following relationship. It holds.
  • the boundary region 8A on the first region 7 side in the second region 8 is located between the transparent electrode layer 28 of the first electrode layer 27 and the transparent electrode layer 38 of the second electrode layer 37. At the same time, it may be located below the transparent electrode layer 28 side of the first electrode layer 27 in the transparent electrode layer 38 of the second electrode layer 37.
  • FIGS. 16A to 16H are views of the solar cell according to the second embodiment. It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of.
  • FIG. 16E is a diagram showing a second semiconductor layer material film forming step in the solar cell manufacturing method according to the second embodiment
  • FIG. 16F is a diagram showing a second semiconductor layer material film forming step in the solar cell manufacturing method according to the second embodiment. It is a figure which shows the semiconductor layer formation process.
  • FIG. 16G is a diagram showing an electrode layer forming step in the solar cell manufacturing method according to the second embodiment
  • FIG. 16H is a diagram showing an optical adjustment layer forming step in the solar cell manufacturing method according to the second embodiment. It is a figure which shows.
  • a texture structure having a pyramid-shaped fine uneven structure is formed.
  • the etching solution include an alkaline solution such as an aqueous solution of potassium hydroxide.
  • the intrinsic semiconductor layer material film 23Z and the first conductive semiconductor layer material film 25Z are applied to the entire back surface side of the semiconductor substrate 11. Are laminated (film-formed) in order (first semiconductor layer material film forming step).
  • the intrinsic semiconductor layer 13 is laminated (film-formed) on the entire surface of the semiconductor substrate 11 on the light receiving surface side.
  • the order of film formation of the intrinsic semiconductor layer material film 23Z, the first conductive semiconductor layer material film 25Z, and the intrinsic semiconductor layer 13 is not limited.
  • the intrinsic semiconductor layer 13 on the light receiving surface side may be formed in the subsequent second semiconductor layer material film forming step.
  • the intrinsic semiconductor layer on the light receiving surface side formed at this stage may be removed in a later first semiconductor layer forming step.
  • the intrinsic semiconductor layer may not be formed on the light receiving surface side at this stage, that is, there may be no intrinsic semiconductor layer forming step at this stage.
  • a lift-off layer (sacrificial layer) 41 is laminated (film formation) on the entire surface of the back surface side of the semiconductor substrate 11, specifically, on the entire surface of the first conductive semiconductor layer material film 25Z. ) (Lift-off layer forming process).
  • the lift-off layer 41 is formed of a material such as silicon oxide (SiO), silicon nitride (SiN), or a composite thereof such as silicon oxynitride (SiON).
  • the intrinsic semiconductor layer material film 23Z, the first conductive semiconductor layer material film 25Z, and the first conductive semiconductor layer material film 25Z in the second region 8 are used on the back surface side of the semiconductor substrate 11 using the pattern printing resist.
  • a patterned intrinsic semiconductor layer 23, a first conductive semiconductor layer 25, and a lift-off layer 41 are formed in the first region 7 (first semiconductor layer forming step).
  • a pattern printing resist 90 is formed on the first region 7 on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side of the semiconductor substrate 11 by using a pattern printing method (. Resist forming process).
  • Pattern printing is not printing that goes through processes such as exposure and development after forming a resist film (non-patterned resist film) before patterning, as in the photolithography method, but screen printing or gravure printing. It means a printing method in which a patterned resist (printing material) is directly adhered to a resist-adhering surface, such as press printing such as, or ejection printing such as inkjet printing.
  • the patterning of the first conductive semiconductor layer by using the pattern printing resist by the pattern printing method, it is compared with the case where the photoresist by the spin coating method (photolithography method) is used. As a result, the number of exposure and development steps can be reduced, and the solar cell manufacturing process can be simplified.
  • the pattern printing resist 90 is obtained by printing and curing a printing material containing a resin material and an inorganic material. At this time, a part of the printing material exudes from the printing material printed in the first region 7.
  • the printing material may contain a solvent component, and the curing process may be cured by light as well as by heating. Further, in the curing process, the resin component does not necessarily have to be cured by cross-linking or the like, and the shape is maintained at room temperature due to the increase in viscosity due to the volatilization of the solvent, and the resin component has solvent resistance, that is, it has a function as a resist. Point to that.
  • FIG. 17A is an enlarged view of the boundary region VIA between the first region 7 and the second region 8 shown in FIG. 16B.
  • the exuded resist material covers the valley portion of the pyramid 11A in the boundary region 8A (the exuded region of the pattern printing resist) on the first region 7 side in the second region 8.
  • the exuding film 90A formed by exuding the printing material is a pyramid 11A in the boundary region 8A (exuding region of the pattern printing resist) on the first region 7 side in the second region 8. It is formed so as to cover the first slope SF1 from the mountain hem 1A to the middle 2A.
  • the film thickness of the pattern printing resist 90 is 3 ⁇ m or more and 50 ⁇ m or less, while the height of the pyramid 11A is 0.1 ⁇ m or more and 15 ⁇ m or less.
  • the height of the pyramid is the height from the foot of the mountain to the top of the mountain, and the film thickness of the pattern printing resist 90 is the film thickness from the foot of the pyramid.
  • the lift-off layer 41, the first conductive semiconductor layer material film 25Z, and the intrinsic semiconductor layer material film 23Z in the second region 8 are used as a mask with the pattern printing resist 90 and the exuding film 90A around the pattern printing resist 90 as a mask.
  • the patterned intrinsic semiconductor layer 23, the first conductive semiconductor layer 25, and the lift-off layer 41 are formed in the first region 7 by etching.
  • Examples of the etching solution for the lift-off layer 41 include a mixed solution in which ozone is dissolved in hydrofluoric acid, or an acidic solution such as a mixed solution of hydrofluoric acid and nitric acid.
  • Examples of the etching solution for the p-type semiconductor layer material film include an acidic solution such as a mixed solution of ozone dissolved in hydrofluoric acid or a mixed solution of hydrofluoric acid and nitric acid, and an n-type semiconductor layer material.
  • Examples of the etching solution for the film include an alkaline solution such as an aqueous potassium hydroxide solution.
  • FIG. 17B is an enlarged view of the boundary region VIIB between the first region 7 and the second region 8 shown in FIG. 16C.
  • the first slope SF1 of the pyramid 11A coated with the exuding film 90A has a surface SF1.
  • the first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 (first semiconductor layer) remain.
  • FIG. 14A and 18 described above correspond to an enlarged cross-sectional view of a part of IVA of the boundary region 8A on the side of the first region 7 in the second region 8 shown in FIG. 17B, and FIG. 14B described above is shown in FIG. 17B. It corresponds to an enlarged cross-sectional view of a part of IVB other than the boundary region 8A in the two regions 8.
  • the exuding film 90A in the pyramid 11A As shown in FIGS. 14A and 18, in the boundary region 8A (exuding region of the pattern printing resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11, the exuding film 90A in the pyramid 11A.
  • the hem side covered with is not etched, and the top side not covered with the exudate film 90A is etched.
  • each slope of the pyramid 11A has a first slope SF1 from the foot of the mountain 1A to the middle 2A and a second slope SF2 from the middle 2A to the summit 3A.
  • the first slope SF1 and the second slope SF2 have different inclination angles with the bending point of the middle slope 2A as a boundary.
  • the slope of the second slope SF2 is gentler than the slope of the first slope SF1.
  • the first virtual straight line L1 from the mountain hem 1A to the mountain top 3A and the mountain hem 1A to the middle 2A The minimum angle ⁇ [°] formed by the second virtual straight line L2 up to the bending point is 8 ⁇ ⁇ 30.
  • Such a pyramid 11A occupies 0.01% or more and 50% or less with respect to the area of the back surface of the semiconductor substrate 11.
  • the pyramid 11B is not covered with the exuding film 90A, so that the pyramid 11B is entirely etched. ..
  • each slope of the pyramid 11B has a third slope SF3 having no bending point from the foot of the mountain 1B to the top of the mountain 3B.
  • the slope of the third slope SF3 is steeper than the slope of the second slope SF2.
  • the lift-off layer 41, the first intrinsic semiconductor layer 23, and the first conductive semiconductor layer 25 (first semiconductor layer) remain on the first slope SF1 of the pyramid 11A.
  • the lift-off layer 41, the first intrinsic semiconductor layer 23, and the first conductive semiconductor layer 25 (first semiconductor layer) may remain on all of the first slope SF1 of the pyramid 11A, or at least a part (for example, for example). It may remain on the mountain hem 1A side, that is, the valley side).
  • the pattern print resist 90 is removed.
  • the etching solution for the pattern printing resist 90 include an alkaline solution such as an aqueous potassium hydroxide solution.
  • the cost of the solar cell can be reduced by adopting an inexpensive alkaline solution as the solution for removing the pattern printing resist.
  • the first conductive semiconductor layer 25 may be patterned so as to leave a part or all of the intrinsic semiconductor layer material film 23Z in the second region 8 on the back surface side of the semiconductor substrate 11. good.
  • first cleaning step clean both sides of the semiconductor substrate 11X (first cleaning step).
  • ozone treatment is followed by hydrofluoric acid treatment.
  • the hydrofluoric acid treatment includes not only hydrofluoric acid but also treatment with a mixture of hydrofluoric acid and another kind of acid (for example, hydrochloric acid in the first washing step).
  • the intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z are laminated in order on the entire surface of the back surface side of the semiconductor substrate 11 (film formation). (Second semiconductor layer material film forming step).
  • the intrinsic semiconductor layer material film 33Z and the second conductive type in the first region 7 on the back surface side of the semiconductor substrate 11 by using the lift-off method using the lift-off layer (sacrificial layer).
  • the semiconductor layer material film 35Z By removing the semiconductor layer material film 35Z, a patterned intrinsic semiconductor layer 33 and a second conductive semiconductor layer 35 are formed in the second region 8 (second semiconductor layer forming step).
  • the removal solution for the lift-off layer 41 for example, an acidic solution such as hydrofluoric acid is used.
  • the manufacturing process of the solar cell can be simplified. ..
  • FIG. 17C is an enlarged cross-sectional view of the boundary region VIIC between the first region 7 and the second region 8 shown in FIG. 16G.
  • FIG. 15A described above corresponds to an enlarged cross-sectional view of a part of VA of the boundary region 8A on the side of the first region 7 in the second region 8 shown in FIG. 17C
  • FIG. 15B described above corresponds to the second region 8 shown in FIG. 17C.
  • the first slope SF1 of the pyramid 11A Is a stack (formation) of a first intrinsic semiconductor layer 23 and a first conductive semiconductor layer 25 (first semiconductor layer), and a second intrinsic semiconductor layer 33 and a second conductive semiconductor layer 35 (second semiconductor layer) in order. ).
  • the first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 (first semiconductor layer) may be laminated on all of the first slope SF1 of the pyramid 11A, or at least a part (for example, the foot of the mountain 1A). It may be laminated on the side, that is, the valley side).
  • first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 are not laminated (formed) on the second slope SF2 of the pyramid 11A, and the second intrinsic semiconductor layer 33 and the second intrinsic semiconductor layer 33 and the second. Only the two conductive semiconductor layer 35 (second semiconductor layer) is laminated (formed).
  • the second intrinsic semiconductor layer 33 and the second conductive type on the second slope SF2 The thickness of the semiconductor layer 35 (second semiconductor layer) is formed to be thicker than the thickness of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the first slope SF1. It is presumed that this is because the gentler the inclination, the thicker the film thickness of the semiconductor layers to be laminated.
  • the second semiconductor layer material film forming step and the second semiconductor layer forming step may be patterned without laminating (forming) the intrinsic semiconductor layer material film. Further, in the first semiconductor layer forming step, when a part of the intrinsic semiconductor layer material film 23Z in the second region 8 on the back surface side of the semiconductor substrate 11 remains, the second semiconductor layer material film forming step and the second semiconductor layer forming step Then, the intrinsic semiconductor layer material film may be laminated (film-formed) by the amount removed, and the intrinsic semiconductor layer and the second conductive semiconductor layer 35 may be patterned.
  • the first electrode layer 27 and the second electrode layer 37 are formed on the back surface side of the semiconductor substrate 11 (electrode layer forming step).
  • a transparent electrode layer material film is laminated (film-formed) on the entire back surface side of the semiconductor substrate 11. Then, the patterned transparent electrode layers 28 and 38 are formed by removing a part of the transparent electrode layer material film by, for example, an etching method using an etching paste.
  • an etching solution for the transparent electrode layer material film for example, hydrochloric acid or an aqueous ferric chloride solution is used.
  • the first electrode layer 27 and The second electrode layer 37 is formed.
  • FIG. 13 described above corresponds to an enlarged cross-sectional view of the boundary region III between the first region 7 and the second region 8 shown in FIG. 16G.
  • the boundary region 8A on the first region 7 side in the second region 8 is located between the transparent electrode layer 28 of the first electrode layer 27 and the transparent electrode layer 38 of the second electrode layer 37. At the same time, it may be located below the transparent electrode layer 28 side of the first electrode layer 27 in the transparent electrode layer 38 of the second electrode layer 37.
  • the optical adjustment layer 15 is laminated (film-formed) on the entire surface of the semiconductor substrate 11 on the light receiving surface side.
  • the back electrode type solar cell 1 according to the second embodiment is completed.
  • the boundary region 8A on the first region 7 side in the second region 8, that is, the pyramid 11A between the transparent electrode layers 28 and 38 is large.
  • the first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 Since the (first semiconductor layer) remains, the first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 (first semiconductor layer), the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor) The total film thickness with the layer) is thick. Thereby, the reliability of the solar cell 1 can be improved. Further, the passivation performance is improved, and the performance of the solar cell 1 (for example, Voc) can be improved.
  • the boundary region 8A on the first region 7 side in the second region 8 is the transparent electrode layer 28 and the second electrode layer 37 of the first electrode layer 27. It is located between the transparent electrode layer 38 and the transparent electrode layer 28 of the first electrode layer 27 in the transparent electrode layer 38 of the second electrode layer 37.
  • the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the second slope SF2 are located in the second region 8 between the transparent electrode layers 28 and 38.
  • the first intrinsic semiconductor layer 23, the first conductive semiconductor layer 25 (first semiconductor layer), the second intrinsic semiconductor layer 33, and the second conductive semiconductor layer 35 (the first) on the first slope SF1 are thick.
  • a pyramid 11A having a large total thickness with the two semiconductor layers) is arranged, and the reliability and performance of the solar cell 1 can be improved.
  • a solar cell manufacturing process can be performed.
  • the reliability and performance of the solar cell 1 can be improved by utilizing the exuding film of the resin material in the pattern printing resist while simplifying the process.
  • the characteristics of the solar cell 1 of the second embodiment described above can be realized by combining the use of a semiconductor substrate having a pyramid-shaped fine uneven structure (texture structure) and the use of a pattern printing resist by a pattern printing method. ..
  • the exuding width of the resin material in the pattern printing resist can be adjusted by adjusting the size of the pyramid and / or the component / viscosity of the pattern printing resist. Can be adjusted.
  • the semiconductor layer is formed even after the first semiconductor layer is patterned.
  • the thickness of the semiconductor layer at the foot of the mountain, which tends to be thin, is increased to improve reliability, and the first semiconductor layer laminated on the mountaintop is removed, resulting in a large resistance loss from the mountaintop.
  • the optimum structure can be used so that the current can be recovered without any trouble. This facilitates an optimization design for the features of the solar cell 1 of the second embodiment described above.
  • FIG. 19 is a cross-sectional view of the solar cell according to the modified example of the second embodiment, and is a cross-sectional view corresponding to the line II-II in FIG. Further, FIG. 20 is an enlarged cross-sectional view of the boundary region X between the first region 7 and the second region 8 shown in FIG.
  • the boundary region 8A on the first region 7 side in the second region 8 is between the transparent electrode layer 28 of the first electrode layer 27 and the transparent electrode layer 38 of the second electrode layer 37. It does not have to be located below the transparent electrode layer 38 of the second electrode layer 37.
  • the thickness of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the second slope SF2 is thick under the transparent electrode layer 38 of the second electrode layer 37, and the second is The total thickness of the first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 (first semiconductor layer) and the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the slope SF1. Since the thick pyramid 11A is not located, an increase in resistance can be suppressed, and a decrease in carrier extraction efficiency can be suppressed.
  • the present invention is not limited to the above-described embodiments, and various modifications and modifications can be made.
  • the boundary region 8A exudation region of the pattern printing resist
  • 2A a form having a pyramid 11A having one inflection point was illustrated.
  • the present invention is not limited to this, and in the boundary region (exudation region of the pattern printing resist) on the first region side in the second region on the back surface side of the semiconductor substrate, two or more from the foot of the mountain to the top of the mountain. It may be in the form of having a pyramid having an inflection point.
  • each slope of the pyramid has three or more slopes with different inclination angles from the foot of the mountain to the top of the mountain.
  • the boundary region 8A exudation region of the pattern printing resist
  • the second intrinsic semiconductor layer 33 and the second conductive semiconductor on each slope in the boundary region 8A (exudation region of the pattern printing resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11, the second intrinsic semiconductor layer 33 and the second conductive semiconductor on each slope.
  • the film thickness of the layer 35 (second semiconductor layer) is different.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a solar cell with improved reliability. In the solar cell, a textured structure having a pyramid-shaped microrelief structure is formed on the back surface side of a semiconductor substrate 11. In a first region-side boundary region of a second region on the back surface side of the semiconductor substrate 11, each slanting face of each pyramid 11A has a first slanting face SF1 from a pyramid foot 1A to a halfway point 2A, and a second slanting face SF2 from the halfway point 2A to a pyramid peak 3A. The slope of the second slanting face SF2 is gentler than the slope of the first slanting face SF1. The minimum angle θ formed by the straight line from the pyramid foot 1A to the pyramid peak 3A and the straight line from the pyramid foot 1A to the bending point of the halfway point 2A is 8 < θ ≤ 30. The pyramids 11A occupy 0.01-50% (inclusive) of the area of the back surface, and the thickness of a second semiconductor layer 35, 33 on the second slanting face SF2 is larger than the thickness of the second semiconductor layer 35, 33 on the first slanting face SF1.

Description

太陽電池および太陽電池の製造方法Solar cells and solar cell manufacturing methods
 本発明は、裏面電極型(バックコンタクト型)の太陽電池、およびその太陽電池の製造方法に関する。 The present invention relates to a back electrode type (back contact type) solar cell and a method for manufacturing the solar cell.
 半導体基板を用いた太陽電池として、受光面側および裏面側の両面に電極が形成された両面電極型の太陽電池と、裏面側のみに電極が形成された裏面電極型の太陽電池とがある。両面電極型の太陽電池では、受光面側に電極が形成されるため、この電極により太陽光が遮蔽されてしまう。一方、裏面電極型の太陽電池では、受光面側に電極が形成されないため、両面電極型の太陽電池と比較して太陽光の受光率が高い。特許文献1には、裏面電極型の太陽電池が開示されている。 As a solar cell using a semiconductor substrate, there are a double-sided electrode type solar cell in which electrodes are formed on both the light receiving surface side and the back surface side, and a back electrode type solar cell in which electrodes are formed only on the back surface side. In a double-sided electrode type solar cell, since an electrode is formed on the light receiving surface side, sunlight is shielded by this electrode. On the other hand, in the back electrode type solar cell, since the electrode is not formed on the light receiving surface side, the light receiving rate of sunlight is higher than that of the double-sided electrode type solar cell. Patent Document 1 discloses a back electrode type solar cell.
 特許文献1に記載の太陽電池は、受光面側および裏面側に、ピラミッド型の微細な凹凸構造を有するテクスチャ構造が形成された半導体基板を備える。裏面側のピラミッドの斜面は、山裾から中腹に至るまでの第1斜面と、中腹から山頂に至るまでの第2斜面であって第1斜面と傾斜角が異なる第2斜面とを有する。これにより、受光面側から半導体基板内部に進入した光において、例えば第1斜面で反射した光が外部に透過してしまう場合でも、第2斜面で反射した光は外部に透過し難くなる。そのため、太陽電池の光電変換効率を向上することができる。 The solar cell described in Patent Document 1 includes a semiconductor substrate having a texture structure having a pyramid-shaped fine uneven structure formed on the light receiving surface side and the back surface side. The slope of the pyramid on the back surface side has a first slope from the foot of the mountain to the middle slope and a second slope from the middle slope to the top of the mountain, which has a different inclination angle from the first slope. As a result, in the light that has entered the semiconductor substrate from the light receiving surface side, for example, even if the light reflected on the first slope is transmitted to the outside, the light reflected on the second slope is difficult to be transmitted to the outside. Therefore, the photoelectric conversion efficiency of the solar cell can be improved.
国際公開第2018/179656号International Publication No. 2018/179656
 ところで、裏面電極型の太陽電池では、極性が異なる電極間において半導体層が露出することに起因する信頼性を向上することが望まれている。 By the way, in the back electrode type solar cell, it is desired to improve the reliability due to the exposure of the semiconductor layer between the electrodes having different polarities.
 本発明は、信頼性が向上した太陽電池、およびその太陽電池の製造方法を提供することを目的とする。 An object of the present invention is to provide a solar cell having improved reliability and a method for manufacturing the solar cell.
 本発明に係る太陽電池は、半導体基板と、前記半導体基板の一方主面側と反対側の他方主面側の一部である第1領域に順に積層された第1半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部である第2領域に順に積層された第2半導体層および第2電極層とを備える裏面電極型の太陽電池であって、前記半導体基板の少なくとも前記他方主面側には、ピラミッド型の微細な凹凸構造を有するテクスチャ構造が形成されており、前記半導体基板の前記他方主面側の前記第2領域における前記第1領域側の境界領域において、
 前記ピラミッドの斜面は、山裾から中腹に至るまでの第1斜面と、前記中腹から山頂に至るまでの第2斜面とを有し、
 前記第2斜面の傾斜は、前記第1斜面の傾斜よりも緩やかであり、
 前記山頂を通り前記山裾に対して直交させた断面にあって、前記山裾から前記山頂に至るまでの第1仮想直線と、前記山裾から前記中腹の屈曲点に至るまでの第2仮想直線との成す最小角度θ[°]が、8<θ≦30になっており、
 前記ピラミッドが、前記他方主面の面積における0.01%以上50%以下を占めており、
 前記第2斜面における前記第2半導体層の膜厚は、前記第1斜面における前記第2半導体層の膜厚よりも厚い。
In the solar cell according to the present invention, the semiconductor substrate and the first semiconductor layer and the first electrode layer which are sequentially laminated in the first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate. A back electrode type solar cell including a second semiconductor layer and a second electrode layer sequentially laminated in a second region which is another part of the other main surface side of the semiconductor substrate. A texture structure having a pyramid-shaped fine concavo-convex structure is formed on at least the other main surface side of the substrate, and the boundary on the first region side in the second region on the other main surface side of the semiconductor substrate. In the area
The slope of the pyramid has a first slope from the foot of the mountain to the middle of the mountain and a second slope from the middle of the mountain to the top of the mountain.
The slope of the second slope is gentler than the slope of the first slope.
A first virtual straight line from the foot of the mountain to the top of the mountain and a second virtual straight line from the foot of the mountain to the inflection point of the middle of the mountain in a cross section orthogonal to the foot of the mountain. The minimum angle θ [°] to be formed is 8 <θ ≦ 30.
The pyramid occupies 0.01% or more and 50% or less of the area of the other main surface.
The film thickness of the second semiconductor layer on the second slope is thicker than the film thickness of the second semiconductor layer on the first slope.
 本発明に係る別の太陽電池は、半導体基板と、前記半導体基板の一方主面側と反対側の他方主面側の一部である第1領域に順に積層された第1半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部である第2領域に順に積層された第2半導体層および第2電極層とを備える裏面電極型の太陽電池であって、前記半導体基板の少なくとも前記他方主面側には、ピラミッド型の微細な凹凸構造を有するテクスチャ構造が形成されており、前記半導体基板の前記他方主面側の前記第2領域における前記第1領域側の境界領域において、
 前記ピラミッドの斜面は、山裾から中腹に至るまでの第1斜面と、前記中腹から山頂に至るまでの第2斜面とを有し、
 前記第2斜面の傾斜は、前記第1斜面の傾斜よりも緩やかであり、
 前記第1斜面の少なくとも一部には、前記第1半導体層と前記第2半導体層とが順に積層されており、
 前記第2斜面における前記第2半導体層の膜厚は、前記第1斜面における前記第2半導体層の膜厚よりも厚い。
Another solar cell according to the present invention includes a semiconductor substrate, a first semiconductor layer and a first semiconductor layer sequentially laminated in a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate. A back electrode type solar cell comprising an electrode layer and a second semiconductor layer and a second electrode layer sequentially laminated in a second region which is another part of the other main surface side of the semiconductor substrate. A texture structure having a pyramid-shaped fine concavo-convex structure is formed at least on the other main surface side of the semiconductor substrate, and the first region side in the second region on the other main surface side of the semiconductor substrate. In the boundary area of
The slope of the pyramid has a first slope from the foot of the mountain to the middle of the mountain and a second slope from the middle of the mountain to the top of the mountain.
The slope of the second slope is gentler than the slope of the first slope.
The first semiconductor layer and the second semiconductor layer are laminated in this order on at least a part of the first slope.
The film thickness of the second semiconductor layer on the second slope is thicker than the film thickness of the second semiconductor layer on the first slope.
 本発明に係る太陽電池の製造方法は、半導体基板と、前記半導体基板の一方主面側と反対側の他方主面側の一部である第1領域に順に積層された第1半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部である第2領域に順に積層された第2半導体層および第2電極層とを備える裏面電極型の太陽電池の製造方法であって、前記半導体基板の少なくとも前記他方主面側に、ピラミッド型の微細な凹凸構造を有するテクスチャ構造を形成する工程と、前記半導体基板の前記他方主面側に、前記第1半導体層の材料膜を形成する第1半導体層材料膜形成工程と、前記第1領域における前記第1半導体層の材料膜の上にレジストを形成するレジスト形成工程と、前記レジストをマスクとして、前記第2領域における前記第1半導体層の材料膜を除去することにより、前記第1領域に、パターン化された前記第1半導体層を形成し、前記レジストを除去する第1半導体層形成工程と、前記第2領域に、パターン化された前記第2半導体層を形成する第2半導体層形成工程と、を含む。前記レジスト形成工程では、パターン印刷法を用いて、樹脂材料を含む印刷材料を印刷して硬化させることにより、前記第1領域に前記レジストを形成するとともに、前記第2領域における前記第1領域側の境界領域(印刷レジストの染み出し領域)における前記ピラミッドの山裾から中腹に至るまでの第1斜面に、前記印刷材料が染み出してなる染み出し膜を形成する。前記第1半導体層形成工程では、前記レジストおよびその周縁の染み出し膜をマスクとして、前記第1半導体層の材料膜をエッチングすることにより、前記第2領域における前記第1領域側の境界領域において、
 前記ピラミッドの斜面は、山裾から中腹に至るまでの第1斜面と、前記中腹から山頂に至るまでの第2斜面とを有し、
 前記第2斜面の傾斜は、前記第1斜面の傾斜よりも緩やかであり、
 前記山頂を通り前記山裾に対して直交させた断面にあって、前記山裾から前記山頂に至るまでの第1仮想直線と、前記山裾から前記中腹の屈曲点に至るまでの第2仮想直線との成す最小角度θ[°]が、8<θ≦30になっており、
 前記ピラミッドが、前記他方主面の面積における0.01%以上50%以下を占めている、
前記ピラミッドを形成する。前記第2半導体層形成工程では、前記第2領域における前記第1領域側の境界領域(印刷レジストの染み出し領域)において、前記第2斜面における膜厚が前記第1斜面における膜厚よりも厚い前記第2半導体層を形成する。
The method for manufacturing a solar cell according to the present invention includes a semiconductor substrate, a first semiconductor layer laminated in order in a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate, and a first semiconductor layer. A method for manufacturing a back electrode type solar cell comprising one electrode layer and a second semiconductor layer and a second electrode layer sequentially laminated in a second region which is another part of the other main surface side of the semiconductor substrate. A step of forming a texture structure having a pyramid-shaped fine concavo-convex structure on at least the other main surface side of the semiconductor substrate, and a step of forming the first semiconductor layer on the other main surface side of the semiconductor substrate. A first semiconductor layer material film forming step of forming a material film, a resist forming step of forming a resist on the material film of the first semiconductor layer in the first region, and the second region using the resist as a mask. The first semiconductor layer forming step of forming the patterned first semiconductor layer in the first region by removing the material film of the first semiconductor layer and removing the resist, and the second The region includes a second semiconductor layer forming step of forming the patterned second semiconductor layer. In the resist forming step, the resist is formed in the first region by printing and curing the printing material containing the resin material by using the pattern printing method, and the first region side in the second region is formed. An exuding film formed by exuding the printing material is formed on the first slope from the mountain hem to the middle of the pyramid in the boundary region (exuding region of the printing resist). In the first semiconductor layer forming step, the material film of the first semiconductor layer is etched with the resist and the exuding film on the periphery thereof as a mask, so that the boundary region on the first region side in the second region is formed. ,
The slope of the pyramid has a first slope from the foot of the mountain to the middle of the mountain and a second slope from the middle of the mountain to the top of the mountain.
The slope of the second slope is gentler than the slope of the first slope.
A first virtual straight line from the foot of the mountain to the top of the mountain and a second virtual straight line from the foot of the mountain to the inflection point of the middle of the mountain in a cross section orthogonal to the foot of the mountain. The minimum angle θ [°] to be formed is 8 <θ ≦ 30.
The pyramid occupies 0.01% or more and 50% or less of the area of the other main surface.
Form the pyramid. In the second semiconductor layer forming step, the film thickness on the second slope is thicker than the film thickness on the first slope in the boundary region (print resist exuding region) on the first region side in the second region. The second semiconductor layer is formed.
 本発明に係る別の太陽電池の製造方法は、半導体基板と、前記半導体基板の一方主面側と反対側の他方主面側の一部である第1領域に順に積層された第1半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部である第2領域に順に積層された第2半導体層および第2電極層とを備える裏面電極型の太陽電池の製造方法であって、前記半導体基板の少なくとも前記他方主面側に、ピラミッド型の微細な凹凸構造を有するテクスチャ構造を形成する工程と、前記半導体基板の前記他方主面側に、前記第1半導体層の材料膜を形成する第1半導体層材料膜形成工程と、前記第1領域における前記第1半導体層の材料膜の上にレジストを形成するレジスト形成工程と、前記レジストをマスクとして、前記第2領域における前記第1半導体層の材料膜を除去することにより、前記第1領域に、パターン化された前記第1半導体層を形成し、前記レジストを除去する第1半導体層形成工程と、前記第2領域に、パターン化された前記第2半導体層を形成する第2半導体層形成工程と、を含む。前記レジスト形成工程では、パターン印刷法を用いて、樹脂材料を含む印刷材料を印刷して硬化させることにより、前記第1領域に前記レジストを形成するとともに、前記第2領域における前記第1領域側の境界領域における前記ピラミッドの山裾から中腹に至るまでの第1斜面に、前記印刷材料が染み出してなる染み出し膜を形成する。前記第1半導体層形成工程では、前記レジストおよびその周縁の染み出し膜をマスクとして、前記第1半導体層の材料膜をエッチングすることにより、前記第2領域における前記第1領域側の境界領域において、
 前記ピラミッドの斜面は、山裾から中腹に至るまでの第1斜面と、前記中腹から山頂に至るまでの第2斜面とを有し、
 前記第2斜面の傾斜は、前記第1斜面の傾斜よりも緩やかであり、
 前記第1斜面の少なくとも一部には、前記第1半導体層が積層されている、
前記ピラミッドを形成する。前記第2半導体層形成工程では、前記第2領域における前記第1領域側の境界領域において、前記第1斜面における前記第1半導体層上に前記第2半導体層を形成するとともに、前記第2斜面における膜厚が前記第1斜面における膜厚よりも厚い前記第2半導体層を形成する。
Another method for manufacturing a solar cell according to the present invention is a first semiconductor layer laminated in order on a semiconductor substrate and a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate. A back electrode type solar cell comprising the first electrode layer and the second semiconductor layer and the second electrode layer sequentially laminated in the second region which is another part of the other main surface side of the semiconductor substrate. In the manufacturing method, a step of forming a texture structure having a pyramid-shaped fine concavo-convex structure on at least the other main surface side of the semiconductor substrate, and the first semiconductor on the other main surface side of the semiconductor substrate. The first semiconductor layer material film forming step of forming the material film of the layer, the resist forming step of forming a resist on the material film of the first semiconductor layer in the first region, and the first step using the resist as a mask. The first semiconductor layer forming step of forming the patterned first semiconductor layer in the first region by removing the material film of the first semiconductor layer in the two regions and removing the resist, and the above-mentioned The second region includes a second semiconductor layer forming step of forming the patterned second semiconductor layer. In the resist forming step, the resist is formed in the first region by printing and curing the printing material containing the resin material by using the pattern printing method, and the first region side in the second region is formed. An exudate film formed by exuding the printing material is formed on the first slope from the mountain hem to the middle of the pyramid in the boundary region of the above. In the first semiconductor layer forming step, the material film of the first semiconductor layer is etched with the resist and the exuding film on the periphery thereof as a mask, so that the boundary region on the first region side in the second region is formed. ,
The slope of the pyramid has a first slope from the foot of the mountain to the middle of the mountain and a second slope from the middle of the mountain to the top of the mountain.
The slope of the second slope is gentler than the slope of the first slope.
The first semiconductor layer is laminated on at least a part of the first slope.
Form the pyramid. In the second semiconductor layer forming step, the second semiconductor layer is formed on the first semiconductor layer on the first slope in the boundary region on the first region side in the second region, and the second slope is formed. The second semiconductor layer is formed in which the film thickness is thicker than the film thickness on the first slope.
 本発明によれば、太陽電池の信頼性の向上が可能である。 According to the present invention, it is possible to improve the reliability of the solar cell.
第1実施形態に係る太陽電池を裏面側からみた図である。It is the figure which looked at the solar cell which concerns on 1st Embodiment from the back side. 図1の太陽電池におけるII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of the solar cell of FIG. 図2に示す第1領域と第2領域との境界領域IIIの拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a boundary region III between the first region and the second region shown in FIG. 図3に示す第2領域における第1領域側の境界領域(パターン印刷レジストの染み出し領域)の一部VAにおける半導体基板の裏面の拡大断面図である。It is an enlarged cross-sectional view of the back surface of the semiconductor substrate in a part VA of the boundary region (exudation region of the pattern printing resist) on the 1st region side in the 2nd region shown in FIG. 図3に示す第2領域における境界領域以外の一部VBにおける半導体基板の裏面の拡大断面図である。It is an enlarged cross-sectional view of the back surface of the semiconductor substrate in a part VB other than the boundary region in the 2nd region shown in FIG. 図3に示す第2領域における第1領域側の境界領域(パターン印刷レジストの染み出し領域)の一部VAにおける半導体層の拡大断面図である。It is an enlarged cross-sectional view of the semiconductor layer in a part VA of the boundary region (exudation region of the pattern printing resist) on the 1st region side in the 2nd region shown in FIG. 図3に示す第2領域における境界領域以外の一部VBにおける半導体層の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a semiconductor layer in a part of VB other than the boundary region in the second region shown in FIG. 第1実施形態に係る太陽電池の製造方法における第1半導体層材料膜形成工程およびリフトオフ層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer material film formation process and the lift-off layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における第2半導体層材料膜形成工程を示す図である。It is a figure which shows the 2nd semiconductor layer material film formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における第2半導体層形成工程を示す図である。It is a figure which shows the 2nd semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における電極層形成工程を示す図である。It is a figure which shows the electrode layer formation process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 第1実施形態に係る太陽電池の製造方法における光学調整層形成工程を示す図である。It is a figure which shows the optical adjustment layer forming process in the manufacturing method of the solar cell which concerns on 1st Embodiment. 図6Bに示す第1領域と第2領域との境界領域VIIAの拡大図である。It is an enlarged view of the boundary region VIA between the first region and the second region shown in FIG. 6B. 図6Cに示す第1領域と第2領域との境界領域VIIBの拡大図である。It is an enlarged view of the boundary region VIIB between the first region and the second region shown in FIG. 6C. 図6Gに示す第1領域と第2領域との境界領域VIICの拡大断面図である。FIG. 6 is an enlarged cross-sectional view of the boundary region VIIC between the first region and the second region shown in FIG. 6G. 図7Bに示す第2領域における第1領域側の境界領域の一部IVAの拡大断面図である。FIG. 7B is an enlarged cross-sectional view of a part of IVA of the boundary region on the first region side in the second region shown in FIG. 7B. 第1実施形態の変形例に係る太陽電池の断面図であって、図1におけるII-II線相当の断面図である。It is sectional drawing of the solar cell which concerns on the modification of 1st Embodiment, and is the sectional view corresponding to line II-II in FIG. 図9に示す第1領域と第2領域との境界領域Xの拡大断面図である。FIG. 9 is an enlarged cross-sectional view of a boundary region X between the first region and the second region shown in FIG. 第2実施形態に係る太陽電池を裏面側からみた図である。It is the figure which looked at the solar cell which concerns on 2nd Embodiment from the back side. 図11の太陽電池におけるII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of the solar cell of FIG. 図12に示す第1領域と第2領域との境界領域IIIの拡大断面図である。It is an enlarged cross-sectional view of the boundary region III between the 1st region and the 2nd region shown in FIG. 図13に示す第2領域における第1領域側の境界領域(パターン印刷レジストの染み出し領域)の一部VAにおける半導体基板の裏面の拡大断面図である。It is an enlarged cross-sectional view of the back surface of the semiconductor substrate in a part VA of the boundary region (exudation region of the pattern printing resist) on the 1st region side in the 2nd region shown in FIG. 図13に示す第2領域における境界領域以外の一部VBにおける半導体基板の裏面の拡大断面図である。It is an enlarged cross-sectional view of the back surface of the semiconductor substrate in a part VB other than the boundary region in the 2nd region shown in FIG. 図13に示す第2領域における第1領域側の境界領域(パターン印刷レジストの染み出し領域)の一部VAにおける半導体層の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a semiconductor layer in a part VA of a boundary region (exudation region of a pattern print resist) on the first region side in the second region shown in FIG. 図13に示す第2領域における境界領域以外の一部VBにおける半導体層の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a semiconductor layer in a part of VB other than the boundary region in the second region shown in FIG. 第2実施形態に係る太陽電池の製造方法における第1半導体層材料膜形成工程およびリフトオフ層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer material film formation process and the lift-off layer formation process in the manufacturing method of the solar cell which concerns on 2nd Embodiment. 第2実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 2nd Embodiment. 第2実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 2nd Embodiment. 第2実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 2nd Embodiment. 第2実施形態に係る太陽電池の製造方法における第2半導体層材料膜形成工程を示す図である。It is a figure which shows the 2nd semiconductor layer material film formation process in the manufacturing method of the solar cell which concerns on 2nd Embodiment. 第2実施形態に係る太陽電池の製造方法における第2半導体層形成工程を示す図である。It is a figure which shows the 2nd semiconductor layer formation process in the manufacturing method of the solar cell which concerns on 2nd Embodiment. 第2実施形態に係る太陽電池の製造方法における電極層形成工程を示す図である。It is a figure which shows the electrode layer formation process in the manufacturing method of the solar cell which concerns on 2nd Embodiment. 第2実施形態に係る太陽電池の製造方法における光学調整層形成工程を示す図である。It is a figure which shows the optical adjustment layer forming process in the manufacturing method of the solar cell which concerns on 2nd Embodiment. 図16Bに示す第1領域と第2領域との境界領域VIIAの拡大図である。FIG. 16B is an enlarged view of the boundary region VIA between the first region and the second region shown in FIG. 16B. 図16Cに示す第1領域と第2領域との境界領域VIIBの拡大図である。It is an enlarged view of the boundary region VIIB between the first region and the second region shown in FIG. 16C. 図16Gに示す第1領域と第2領域との境界領域VIICの拡大断面図である。It is an enlarged cross-sectional view of the boundary region VIIC between the first region and the second region shown in FIG. 16G. 図17Bに示す第2領域における第1領域側の境界領域の一部IVAの拡大断面図である。FIG. 17B is an enlarged cross-sectional view of a part of IVA of the boundary region on the first region side in the second region shown in FIG. 17B. 第2実施形態の変形例に係る太陽電池の断面図であって、図11におけるII-II線相当の断面図である。It is sectional drawing of the solar cell which concerns on modification of 2nd Embodiment, and is the sectional view corresponding to line II-II in FIG. 図19に示す第1領域と第2領域との境界領域Xの拡大断面図である。It is an enlarged cross-sectional view of the boundary region X between the 1st region and the 2nd region shown in FIG.
 以下、添付の図面を参照して本発明の実施形態の一例について説明する。なお、各図面において同一または相当の部分に対しては同一の符号を附すこととする。また、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。 Hereinafter, an example of the embodiment of the present invention will be described with reference to the accompanying drawings. In addition, the same reference numerals are given to the same or corresponding parts in each drawing. In addition, for convenience, hatching, member codes, and the like may be omitted, but in such cases, other drawings shall be referred to.
[第1実施形態]
(太陽電池)
 図1は、第1実施形態に係る太陽電池を裏面側からみた図である。図1に示す太陽電池1は、裏面電極型(バックコンタクト型、裏面接合型ともいう。)の太陽電池である。太陽電池1は、2つの主面を備える半導体基板11を備え、半導体基板11の主面において第1領域7と第2領域8とを有する。
[First Embodiment]
(Solar cell)
FIG. 1 is a view of the solar cell according to the first embodiment as viewed from the back surface side. The solar cell 1 shown in FIG. 1 is a back electrode type (also referred to as a back contact type or back surface bonding type) solar cell. The solar cell 1 includes a semiconductor substrate 11 having two main surfaces, and has a first region 7 and a second region 8 on the main surface of the semiconductor substrate 11.
 第1領域7は、いわゆる櫛型の形状をなし、櫛歯に相当する複数のフィンガー部7fと、櫛歯の支持部に相当するバスバー部7bとを有する。バスバー部7bは、半導体基板11の一方の辺部に沿って第1方向(X方向)に延在し、フィンガー部7fは、バスバー部7bから、第1方向(X方向)に交差する第2方向(Y方向)に延在する。 The first region 7 has a so-called comb-shaped shape, and has a plurality of finger portions 7f corresponding to the comb teeth and a bus bar portion 7b corresponding to the support portion of the comb teeth. The bus bar portion 7b extends in the first direction (X direction) along one side of the semiconductor substrate 11, and the finger portion 7f intersects the bus bar portion 7b in the first direction (X direction). It extends in the direction (Y direction).
 同様に、第2領域8は、いわゆる櫛型の形状であり、櫛歯に相当する複数のフィンガー部8fと、櫛歯の支持部に相当するバスバー部8bとを有する。バスバー部8bは、半導体基板11の一方の辺部に対向する他方の辺部に沿って第1方向(X方向)に延在し、フィンガー部8fは、バスバー部8bから、第2方向(Y方向)に延在する。 Similarly, the second region 8 has a so-called comb-shaped shape, and has a plurality of finger portions 8f corresponding to the comb teeth and a bus bar portion 8b corresponding to the support portion of the comb teeth. The bus bar portion 8b extends in the first direction (X direction) along the other side portion facing one side portion of the semiconductor substrate 11, and the finger portion 8f extends from the bus bar portion 8b in the second direction (Y). Extends in the direction).
 フィンガー部7fとフィンガー部8fとは、第1方向(X方向)に交互に設けられている。なお、第1領域7および第2領域8は、ストライプ状に形成されてもよい。 The finger portions 7f and the finger portions 8f are alternately provided in the first direction (X direction). The first region 7 and the second region 8 may be formed in a striped shape.
 図2は、図1の太陽電池におけるII-II線断面図である。図2に示すように、太陽電池1は、ヘテロ接合型の太陽電池である。太陽電池1は、半導体基板11と、半導体基板11の主面のうちの受光する側の一方の主面である受光面側に順に積層された真性半導体層13および光学調整層15を備える。また、太陽電池1は、半導体基板11の主面のうちの受光面の反対側の他方の主面である裏面側の一部(第1領域7)に順に積層された真性半導体層23、第1導電型半導体層25および第1電極層27を備える。また、太陽電池1は、半導体基板11の裏面側の他の一部(第2領域8)に順に積層された真性半導体層33、第2導電型半導体層35、および第2電極層37を備える。また、後述するように、第1領域7と第2領域8の境界付近において、第1導電型半導体層25と第2導電型半導体層35をともに備える領域は、第2領域8とする。
なお、以下では、真性半導体層23および第1導電型半導体層25を第1半導体層ともいい、真性半導体層33および第2導電型半導体層35を第2半導体層ともいう。
FIG. 2 is a sectional view taken along line II-II of the solar cell of FIG. As shown in FIG. 2, the solar cell 1 is a heterojunction type solar cell. The solar cell 1 includes a semiconductor substrate 11, an intrinsic semiconductor layer 13 and an optical adjustment layer 15 which are sequentially laminated on the light receiving surface side, which is one of the main surfaces of the semiconductor substrate 11 on the light receiving side. Further, the solar cell 1 has the intrinsic semiconductor layer 23, which is sequentially laminated on a part of the back surface side (first region 7) which is the other main surface of the main surface of the semiconductor substrate 11 opposite to the light receiving surface. 1 The conductive semiconductor layer 25 and the first electrode layer 27 are provided. Further, the solar cell 1 includes an intrinsic semiconductor layer 33, a second conductive semiconductor layer 35, and a second electrode layer 37, which are sequentially laminated on another part (second region 8) on the back surface side of the semiconductor substrate 11. .. Further, as will be described later, the region including both the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 in the vicinity of the boundary between the first region 7 and the second region 8 is referred to as the second region 8.
In the following, the intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 are also referred to as a first semiconductor layer, and the intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 are also referred to as a second semiconductor layer.
 半導体基板11は、単結晶シリコンまたは多結晶シリコン等の結晶シリコン材料で形成される。半導体基板11は、例えば結晶シリコン材料にn型ドーパントがドープされたn型の半導体基板である。なお、半導体基板11は、例えば結晶シリコン材料にp型ドーパントがドープされたp型の半導体基板であってもよい。n型ドーパントとしては、例えばリン(P)が挙げられる。p型ドーパントとしては、例えばホウ素(B)が挙げられる。半導体基板11は、受光面側からの入射光を吸収して光キャリア(電子および正孔)を生成する光電変換基板として機能する。 The semiconductor substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon. The semiconductor substrate 11 is, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant. The semiconductor substrate 11 may be, for example, a p-type semiconductor substrate in which a crystalline silicon material is doped with a p-type dopant. Examples of the n-type dopant include phosphorus (P). Examples of the p-type dopant include boron (B). The semiconductor substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes).
 半導体基板11の材料として結晶シリコンが用いられることにより、暗電流が比較的に小さく、入射光の強度が低い場合であっても比較的高出力(照度によらず安定した出力)が得られる。 By using crystalline silicon as the material of the semiconductor substrate 11, a relatively high output (stable output regardless of the illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.
 半導体基板11は、裏面側に、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有する。これにより、半導体基板11に吸収されず通過してしまった光の回収効率が高まる。 The semiconductor substrate 11 has a pyramid-shaped fine uneven structure called a texture structure on the back surface side. As a result, the recovery efficiency of light that has passed through without being absorbed by the semiconductor substrate 11 is increased.
 また、半導体基板11は、受光面側に、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有していてもよい。これにより、受光面において入射光の反射が低減し、半導体基板11における光閉じ込め効果が向上する。 Further, the semiconductor substrate 11 may have a pyramid-shaped fine uneven structure called a texture structure on the light receiving surface side. As a result, the reflection of incident light on the light receiving surface is reduced, and the light confinement effect on the semiconductor substrate 11 is improved.
 真性半導体層13は、半導体基板11の受光面側に形成されている。真性半導体層23は、半導体基板11の裏面側の第1領域7に形成されている。真性半導体層33は、半導体基板11の裏面側の第2領域8に形成されている。真性半導体層13,23,33は、例えば真性(i型)アモルファスシリコンを主成分とする材料で形成される。真性半導体層13,23,33は、いわゆるパッシベーション層として機能し、半導体基板11で生成されたキャリアの再結合を抑制し、キャリアの回収効率を高める。 The intrinsic semiconductor layer 13 is formed on the light receiving surface side of the semiconductor substrate 11. The intrinsic semiconductor layer 23 is formed in the first region 7 on the back surface side of the semiconductor substrate 11. The intrinsic semiconductor layer 33 is formed in the second region 8 on the back surface side of the semiconductor substrate 11. The intrinsic semiconductor layers 13, 23, 33 are formed of, for example, a material containing intrinsic (i-type) amorphous silicon as a main component. The intrinsic semiconductor layers 13, 23, 33 function as so-called passivation layers, suppress the recombination of carriers generated in the semiconductor substrate 11, and increase the carrier recovery efficiency.
 光学調整層15は、半導体基板11の受光面側の真性半導体層13上に形成されている。光学調整層15は、入射光の反射を防止する反射防止層として機能するとともに、半導体基板11の受光面側および真性半導体層13を保護する保護層として機能する。光学調整層15は、例えば酸化珪素(SiO)、窒化珪素(SiN)、または酸窒化珪素(SiON)のようなそれらの複合物等の絶縁体材料で形成される。 The optical adjustment layer 15 is formed on the intrinsic semiconductor layer 13 on the light receiving surface side of the semiconductor substrate 11. The optical adjustment layer 15 functions as an antireflection layer that prevents reflection of incident light, and also functions as a protective layer that protects the light receiving surface side of the semiconductor substrate 11 and the intrinsic semiconductor layer 13. The optical adjustment layer 15 is formed of an insulating material such as a composite thereof such as silicon oxide (SiO), silicon nitride (SiN), or silicon oxynitride (SiON).
 第1導電型半導体層25は、真性半導体層23上に、すなわち半導体基板11の裏面側の第1領域7に形成されている。第1導電型半導体層25は、例えばアモルファスシリコン材料で形成される。第1導電型半導体層25は、例えばアモルファスシリコン材料にp型ドーパント(例えば、上述したホウ素(B))がドープされたp型の半導体層である。 The first conductive semiconductor layer 25 is formed on the intrinsic semiconductor layer 23, that is, in the first region 7 on the back surface side of the semiconductor substrate 11. The first conductive semiconductor layer 25 is formed of, for example, an amorphous silicon material. The first conductive semiconductor layer 25 is, for example, a p-type semiconductor layer in which an amorphous silicon material is doped with a p-type dopant (for example, the above-mentioned boron (B)).
 第2導電型半導体層35は、真性半導体層33上に、すなわち半導体基板11の裏面側の第2領域8に形成されている。第2導電型半導体層35は、例えばアモルファスシリコン材料で形成される。第2導電型半導体層35は、例えばアモルファスシリコン材料にn型ドーパント(例えば、上述したリン(P))がドープされたn型の半導体層である。なお、第1導電型半導体層25がn型の半導体層であり、第2導電型半導体層35がp型の半導体層であってもよい。 The second conductive semiconductor layer 35 is formed on the intrinsic semiconductor layer 33, that is, in the second region 8 on the back surface side of the semiconductor substrate 11. The second conductive semiconductor layer 35 is formed of, for example, an amorphous silicon material. The second conductive semiconductor layer 35 is, for example, an n-type semiconductor layer in which an amorphous silicon material is doped with an n-type dopant (for example, phosphorus (P) described above). The first conductive semiconductor layer 25 may be an n-type semiconductor layer, and the second conductive semiconductor layer 35 may be a p-type semiconductor layer.
 第1電極層27は、第1導電型半導体層25上に形成されており、第2電極層37は、第2導電型半導体層35上に形成されている。第1電極層27は、第1導電型半導体層25上に順に積層された透明電極層28と金属電極層29とを有する。第2電極層37は、第2導電型半導体層35上に順に積層された透明電極層38と金属電極層39とを有する。 The first electrode layer 27 is formed on the first conductive semiconductor layer 25, and the second electrode layer 37 is formed on the second conductive semiconductor layer 35. The first electrode layer 27 has a transparent electrode layer 28 and a metal electrode layer 29, which are sequentially laminated on the first conductive semiconductor layer 25. The second electrode layer 37 has a transparent electrode layer 38 and a metal electrode layer 39 which are sequentially laminated on the second conductive semiconductor layer 35.
 透明電極層28,38は、透明な導電性材料で形成される。透明導電性材料としては、ITO(Indium Tin Oxide:酸化インジウムおよび酸化スズの複合酸化物)、ZnO(Zinc Oxide:酸化亜鉛)が挙げられる。金属電極層29,39は、銀等の金属粉末を含有する導電性ペースト材料または銅で形成される。 The transparent electrode layers 28 and 38 are formed of a transparent conductive material. Examples of the transparent conductive material include ITO (Indium Tin Oxide: a composite oxide of indium oxide and tin oxide) and ZnO (Zinc Oxide: zinc oxide). The metal electrode layers 29 and 39 are formed of a conductive paste material or copper containing a metal powder such as silver.
 図3は、図2に示す第1領域7と第2領域8との境界領域IIIの拡大断面図である。図4Aは、図3に示す第2領域8における第1領域7側の境界領域8A(後述するパターン印刷レジストの染み出し領域)の一部VAにおける半導体基板11の裏面の拡大断面図であり、図5Aは、図3に示す第2領域8における第1領域7側の境界領域8A(後述するパターン印刷レジストの染み出し領域)の一部VAにおける半導体層35,33の拡大断面図である。また、図4Bは、図3に示す第2領域8における境界領域8A以外の一部VBにおける半導体基板11の裏面の拡大断面図であり、図5Bは、図3に示す第2領域8における境界領域8A以外の一部VBにおける半導体層35,33の拡大断面図である。 FIG. 3 is an enlarged cross-sectional view of the boundary region III between the first region 7 and the second region 8 shown in FIG. FIG. 4A is an enlarged cross-sectional view of the back surface of the semiconductor substrate 11 in a part VA of the boundary region 8A (exudation region of the pattern printing resist described later) on the side of the first region 7 in the second region 8 shown in FIG. FIG. 5A is an enlarged cross-sectional view of the semiconductor layers 35 and 33 in a part VA of the boundary region 8A (exudation region of the pattern printing resist described later) on the side of the first region 7 in the second region 8 shown in FIG. Further, FIG. 4B is an enlarged cross-sectional view of the back surface of the semiconductor substrate 11 in a part VB other than the boundary region 8A in the second region 8 shown in FIG. 3, and FIG. 5B is a boundary in the second region 8 shown in FIG. FIG. 5 is an enlarged cross-sectional view of semiconductor layers 35 and 33 in a part of VB other than the region 8A.
 図3および図4Aに示すように、半導体基板11の裏面側の第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)には、4つの斜面で構成される複数のピラミッド11Aが形成されている。 As shown in FIGS. 3 and 4A, the boundary region 8A (exudation region of the pattern print resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11 is composed of four slopes. A plurality of pyramids 11A are formed.
 ピラミッド11Aの各斜面は、山裾1Aから中腹2Aに至るまでの第1斜面SF1と、中腹2Aから山頂3Aに至るまでの第2斜面SF2とを有する。第1斜面SF1と第2斜面SF2とは、中腹2Aの屈曲点を境界に、異なる傾斜角を有する。第2斜面SF2の傾斜は第1斜面SF1の傾斜よりも緩やかである。 Each slope of the pyramid 11A has a first slope SF1 from the foot of the mountain 1A to the middle 2A and a second slope SF2 from the middle 2A to the summit 3A. The first slope SF1 and the second slope SF2 have different inclination angles with the bending point of the middle slope 2A as a boundary. The slope of the second slope SF2 is gentler than the slope of the first slope SF1.
 山頂3Aを通り山裾1Aに対して直交させた断面(すなわち、図4Aに示される断面)において、山裾1Aから山頂3Aに至るまでの第1仮想直線L1と、山裾1Aから中腹2Aの屈曲点に至るまでの第2仮想直線L2との成す最小角度θ[°]は、8<θ≦30である。 In a cross section that passes through the mountaintop 3A and is orthogonal to the mountain hem 1A (that is, the cross section shown in FIG. The minimum angle θ [°] formed by the second virtual straight line L2 up to that point is 8 <θ ≦ 30.
 このようなピラミッド11Aは、半導体基板11の裏面の面積に対して0.01%以上50%以下を占める。 Such a pyramid 11A occupies 0.01% or more and 50% or less with respect to the area of the back surface of the semiconductor substrate 11.
 一方、図3および図4Bに示すように、半導体基板11の裏面側の第2領域8における境界領域8A以外の領域には、4つの斜面で構成される複数のピラミッド11Bが形成されている。なお、図4Bには、比較のために、上述したピラミッド11Aの第1斜面SF1および第2斜面SF2を破線で示す。 On the other hand, as shown in FIGS. 3 and 4B, a plurality of pyramids 11B composed of four slopes are formed in a region other than the boundary region 8A in the second region 8 on the back surface side of the semiconductor substrate 11. In FIG. 4B, the first slope SF1 and the second slope SF2 of the pyramid 11A described above are shown by broken lines for comparison.
 ピラミッド11Bの各斜面は、山裾1Bから山頂3Bに至るまで、屈曲点がない第3斜面SF3を有する。第3斜面SF3の傾斜は、上述した第1斜面SF1の傾斜より緩やかである。 Each slope of the pyramid 11B has a third slope SF3 with no bending point from the foot of the mountain 1B to the top of the mountain 3B. The slope of the third slope SF3 is gentler than the slope of the first slope SF1 described above.
 これにより、ピラミッド11Aの第1斜面SF1および第2斜面SF2の傾斜には、以下の関係が成り立つ。
第2斜面SF2の傾斜<第1斜面SF1の傾斜
As a result, the following relationship holds for the inclinations of the first slope SF1 and the second slope SF2 of the pyramid 11A.
Slope of the second slope SF2 <Slope of the first slope SF1
 図5Aに示すように、半導体基板11の裏面側の第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)では、ピラミッド11Aの第2斜面SF2における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚は、ピラミッド11Aの第1斜面SF1における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚よりも厚い。 As shown in FIG. 5A, in the boundary region 8A (exudation region of the pattern printing resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11, the second intrinsicity of the pyramid 11A on the second slope SF2. The thickness of the semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) is the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the first slope SF1 of the pyramid 11A. Thicker than the film thickness of.
 ピラミッド11Aの第2斜面SF2における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚をピラミッド11Aの第1斜面SF1における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚で除した値が、好ましくは1.02以上1.80以下、さらに好ましくは1.03以上1.60以下、さらに好ましくは、1.05以上1.40以下である。 The thickness of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the second slope SF2 of the pyramid 11A is set to the thickness of the second intrinsic semiconductor layer 33 and the second conductive on the first slope SF1 of the pyramid 11A. The value divided by the film thickness of the type semiconductor layer 35 (second semiconductor layer) is preferably 1.02 or more and 1.80 or less, more preferably 1.03 or more and 1.60 or less, still more preferably 1.05 or more. It is 1.40 or less.
 ここで、半導体層の膜厚とは、半導体基板11のピラミッドの斜面に直交する方向の膜厚であり、第1斜面SF1における膜厚は山裾1Aと屈曲点(中腹)2Aの中点PA1、第2斜面SF2における膜厚はピラミッドの山頂3Aと屈曲点(中腹)2Aの中点PA2の位置を測定するものとする。2つ以上の屈曲点を有する場合には、山頂に最も近い屈曲点を膜厚測定に使用するものとする。 Here, the film thickness of the semiconductor layer is the film thickness in the direction orthogonal to the slope of the pyramid of the semiconductor substrate 11, and the film thickness on the first slope SF1 is the midpoint PA1 of the mountain hem 1A and the bending point (middle) 2A. The film thickness on the second slope SF2 shall be measured at the positions of the peak 3A of the pyramid and the midpoint PA2 of the bending point (middle) 2A. When there are two or more bending points, the bending point closest to the mountaintop shall be used for film thickness measurement.
 裏面電極型の太陽電池では裏面に第1半導体領域と第2半導体領域が存在し、それぞれ隣り合った構造となっている。裏面に第1半導体領域と第2半導体領域の境界が存在するのは、バックコンタクト型太陽電池特有の構造であり、前記境界領域周辺の構造が太陽電池の信頼性に大きく影響し、前記境界領域において面積が小さくとも前記のピラミッドAの構造を有し、前記第1斜面SF1と第2斜面SF2の膜厚比を有することで信頼性向上が可能となる。 The back electrode type solar cell has a first semiconductor region and a second semiconductor region on the back surface, and each has a structure adjacent to each other. The existence of the boundary between the first semiconductor region and the second semiconductor region on the back surface is a structure peculiar to the back contact type solar cell, and the structure around the boundary region greatly affects the reliability of the solar cell, and the boundary region The reliability can be improved by having the structure of the pyramid A even if the area is small and having the film thickness ratio of the first slope SF1 and the second slope SF2.
 一方、図5Bに示すように、半導体基板11の裏面側の第2領域8における境界領域8A以外の領域では、ピラミッド11Bの第3斜面SF3にはピラミッド11Aのような屈曲がないため、第3斜面SF3において山裾1Bと山頂3Bを4等分する3つ点PB1,PB2,PB3の内、山頂3Bから1つ目の点PB3と3つ目の点PB1の膜厚を測定するものとする。 On the other hand, as shown in FIG. 5B, in the region other than the boundary region 8A in the second region 8 on the back surface side of the semiconductor substrate 11, the third slope SF3 of the pyramid 11B does not have a bend like the pyramid 11A, so that the third Of the three points PB1, PB2, and PB3 that divide the mountain hem 1B and the mountaintop 3B into four equal parts on the slope SF3, the film thickness of the first point PB3 and the third point PB1 from the mountaintop 3B shall be measured.
 これにより、ピラミッド11Aの第1斜面SF1および第2斜面SF2における第2半導体層35,33の膜厚、およびピラミッド11Bの第3斜面SF3における第2半導体層の膜厚には、以下の関係が成り立つ。
第2斜面SF2の第2半導体層35,33の膜厚/第1斜面SF1の第2半導体層35,33の膜厚>第3斜面SF3の山裾1Bおよび山頂3Bの中点PB2と山頂3Bとの中点PB3位置の第2半導体層35,33の膜厚/第3斜面SF3の山裾1Bおよび山頂3Bの中点PB2と山裾1Bとの中点PB1位置の第2半導体層35,33の膜厚
As a result, the film thicknesses of the second semiconductor layers 35 and 33 on the first slope SF1 and the second slope SF2 of the pyramid 11A and the film thickness of the second semiconductor layer on the third slope SF3 of the pyramid 11B have the following relationship. It holds.
The thickness of the second semiconductor layers 35 and 33 of the second slope SF2 / the thickness of the second semiconductor layers 35 and 33 of the first slope SF1> The thickness of the second semiconductor layers 35 and 33 at the midpoint PB3 position / the film of the second semiconductor layers 35 and 33 at the midpoint PB1 position between the midpoint PB2 and the midpoint 1B of the peak 1B and the peak 3B of the third slope SF3. Thick
 図3に示すように、第2領域8における第1領域7側の境界領域8Aは、第1電極層27の透明電極層28と第2電極層37の透明電極層38との間に位置するとともに、第2電極層37の透明電極層38における第1電極層27の透明電極層28側の下に位置していてもよい。 As shown in FIG. 3, the boundary region 8A on the side of the first region 7 in the second region 8 is located between the transparent electrode layer 28 of the first electrode layer 27 and the transparent electrode layer 38 of the second electrode layer 37. At the same time, it may be located below the transparent electrode layer 28 side of the first electrode layer 27 in the transparent electrode layer 38 of the second electrode layer 37.
(太陽電池の製造方法) (Solar cell manufacturing method)
 以下に、図6A~図6Hを参照して、第1実施形態に係る太陽電池1の製造方法について説明する。図6Aは、第1実施形態に係る太陽電池の製造方法における第1半導体層材料膜形成工程およびリフトオフ層形成工程を示す図であり、図6B~図6Dは、第1実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。また、図6Eは、第1実施形態に係る太陽電池の製造方法における第2半導体層材料膜形成工程を示す図であり、図6Fは、第1実施形態に係る太陽電池の製造方法における第2半導体層形成工程を示す図である。また、図6Gは、第1実施形態に係る太陽電池の製造方法における電極層形成工程を示す図であり、図6Hは、第1実施形態に係る太陽電池の製造方法における光学調整層形成工程を示す図である。 The manufacturing method of the solar cell 1 according to the first embodiment will be described below with reference to FIGS. 6A to 6H. FIG. 6A is a diagram showing a first semiconductor layer material film forming step and a lift-off layer forming step in the method for manufacturing a solar cell according to the first embodiment, and FIGS. 6B to 6D show the solar cell according to the first embodiment. It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of. Further, FIG. 6E is a diagram showing a second semiconductor layer material film forming step in the method for manufacturing a solar cell according to the first embodiment, and FIG. 6F is a diagram showing a second in the method for manufacturing a solar cell according to the first embodiment. It is a figure which shows the semiconductor layer formation process. Further, FIG. 6G is a diagram showing an electrode layer forming step in the solar cell manufacturing method according to the first embodiment, and FIG. 6H is a diagram showing an optical adjustment layer forming step in the solar cell manufacturing method according to the first embodiment. It is a figure which shows.
 まず、半導体基板11の少なくとも裏面側に、異方性エッチングを行うことにより、ピラミッド型の微細な凹凸構造を有するテクスチャ構造を形成する。エッチング溶液としては、例えば水酸化カリウム水溶液のようなアルカリ性溶液が挙げられる。 First, by performing anisotropic etching on at least the back surface side of the semiconductor substrate 11, a texture structure having a pyramid-shaped fine uneven structure is formed. Examples of the etching solution include an alkaline solution such as an aqueous solution of potassium hydroxide.
 次に、図6Aに示すように、例えばCVD法(化学気相堆積法)を用いて、半導体基板11の裏面側の全面に、真性半導体層材料膜23Zおよび第1導電型半導体層材料膜25Zを順に積層(製膜)する(第1半導体層材料膜形成工程)。 Next, as shown in FIG. 6A, for example, by using a CVD method (chemical vapor deposition method), the intrinsic semiconductor layer material film 23Z and the first conductive semiconductor layer material film 25Z are applied to the entire back surface side of the semiconductor substrate 11. Are laminated (film-formed) in order (first semiconductor layer material film forming step).
 また、例えばCVD法を用いて、半導体基板11の受光面側の全面に、真性半導体層13を積層(製膜)する。なお、真性半導体層材料膜23Zおよび第1導電型半導体層材料膜25Zと、真性半導体層13との製膜の順序は限定されない。 Further, for example, using the CVD method, the intrinsic semiconductor layer 13 is laminated (film-formed) on the entire surface of the semiconductor substrate 11 on the light receiving surface side. The order of film formation of the intrinsic semiconductor layer material film 23Z, the first conductive semiconductor layer material film 25Z, and the intrinsic semiconductor layer 13 is not limited.
 また、受光面側の真性半導体層13は、後の第2半導体層材料膜形成工程において製膜されてもよい。この場合、この段階で製膜された受光面側の真性半導体層は、後の第1半導体層形成工程において除去されてもよい。或いは、この段階で受光面側に真性半導体層が形成されなくてもよい、すなわちこの段階で真性半導体層形成工程がなくてもよい。 Further, the intrinsic semiconductor layer 13 on the light receiving surface side may be formed in the subsequent second semiconductor layer material film forming step. In this case, the intrinsic semiconductor layer on the light receiving surface side formed at this stage may be removed in a later first semiconductor layer forming step. Alternatively, the intrinsic semiconductor layer may not be formed on the light receiving surface side at this stage, that is, there may be no intrinsic semiconductor layer forming step at this stage.
 次に、例えばCVD法を用いて、半導体基板11の裏面側の全面に、具体的には第1導電型半導体層材料膜25Z上の全面に、リフトオフ層(犠牲層)41を積層(製膜)する(リフトオフ層形成工程)。リフトオフ層41は、酸化珪素(SiO)、窒化珪素(SiN)、または酸窒化珪素(SiON)のようなそれらの複合物等の材料で形成される。 Next, for example, by using a CVD method, a lift-off layer (sacrificial layer) 41 is laminated (film formation) on the entire surface of the back surface side of the semiconductor substrate 11, specifically, on the entire surface of the first conductive semiconductor layer material film 25Z. ) (Lift-off layer forming process). The lift-off layer 41 is formed of a material such as silicon oxide (SiO), silicon nitride (SiN), or a composite thereof such as silicon oxynitride (SiON).
 次に、図6B~図6Dに示すように、パターン印刷レジストを用いて、半導体基板11の裏面側において、第2領域8における真性半導体層材料膜23Z、第1導電型半導体層材料膜25Zおよびリフトオフ層41を除去することにより、第1領域7に、パターン化された真性半導体層23、第1導電型半導体層25およびリフトオフ層41を形成する(第1半導体層形成工程)。 Next, as shown in FIGS. 6B to 6D, on the back surface side of the semiconductor substrate 11, the intrinsic semiconductor layer material film 23Z, the first conductive semiconductor layer material film 25Z, and the first conductive semiconductor layer material film 25Z in the second region 8 are used. By removing the lift-off layer 41, a patterned intrinsic semiconductor layer 23, a first conductive semiconductor layer 25, and a lift-off layer 41 are formed in the first region 7 (first semiconductor layer forming step).
 具体的には、図6Bに示すように、半導体基板11の裏面側の第1領域7、および半導体基板11の受光面側の全面に、パターン印刷法を用いてパターン印刷レジスト90を形成する(レジスト形成工程)。 Specifically, as shown in FIG. 6B, a pattern printing resist 90 is formed on the first region 7 on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side of the semiconductor substrate 11 by using a pattern printing method (. Resist forming process).
 パターン印刷とは、フォトリソグラフィ法のように、一度、パターン化前のレジスト膜(非パターンレジスト膜)を形成した後に、露光・現像のような工程を経る印刷ではなく、スクリーン印刷若しくはグラビア印刷のようなプレス印刷、または、インクジェット印刷のような吐出印刷のような、レジスト付着面に対して、直接、パターン化したレジスト(印刷材料)を付着させる印刷法を意味する。 Pattern printing is not printing that goes through processes such as exposure and development after forming a resist film (non-patterned resist film) before patterning, as in the photolithography method, but screen printing or gravure printing. It means a printing method in which a patterned resist (printing material) is directly adhered to a resist-adhering surface, such as press printing such as, or ejection printing such as inkjet printing.
 このように、第1導電型半導体層のパターニング(1回目のパターニング)において、パターン印刷法によるパターン印刷レジストを用いることにより、スピンコート法によるフォトレジスト(フォトリソグラフィ法)を用いた場合と比較して、露光および現像の工程を削減することができ、太陽電池の製造プロセスの簡略化が可能となる。 As described above, in the patterning of the first conductive semiconductor layer (first patterning), by using the pattern printing resist by the pattern printing method, it is compared with the case where the photoresist by the spin coating method (photolithography method) is used. As a result, the number of exposure and development steps can be reduced, and the solar cell manufacturing process can be simplified.
 パターン印刷レジスト90は、樹脂材料および無機材料を含む印刷材料を印刷し硬化することにより得られる。このとき、第1領域7に印刷された印刷材料から印刷材料の一部が染み出す。印刷材料は溶剤成分を含有していてもよく、硬化プロセスは加熱によるものだけでなく光による硬化でもよい。また、硬化プロセスでは必ずしも樹脂成分が架橋等により硬化する必要はなく、溶媒の揮発に伴う粘度の上昇により室温においてその形状を維持し耐溶剤性を有する、つまりレジストとしての機能を有する状態となることを指す。 The pattern printing resist 90 is obtained by printing and curing a printing material containing a resin material and an inorganic material. At this time, a part of the printing material exudes from the printing material printed in the first region 7. The printing material may contain a solvent component, and the curing process may be cured by light as well as by heating. Further, in the curing process, the resin component does not necessarily have to be cured by cross-linking or the like, and the shape is maintained at room temperature due to the increase in viscosity due to the volatilization of the solvent, and the resin component has solvent resistance, that is, it has a function as a resist. Point to that.
 図7Aは、図6Bに示す第1領域7と第2領域8との境界領域VIIAの拡大図である。図7Aに示すように、染み出したレジスト材料は、第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)におけるピラミッド11Aの谷部を被覆する。 FIG. 7A is an enlarged view of the boundary region VIA between the first region 7 and the second region 8 shown in FIG. 6B. As shown in FIG. 7A, the exuded resist material covers the valley portion of the pyramid 11A in the boundary region 8A (the exuded region of the pattern printing resist) on the first region 7 side in the second region 8.
 詳説すれば、印刷材料が染み出してなる染み出し膜90Aは、図8に示すように、第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)におけるピラミッド11Aの山裾1Aから中腹2Aに至るまでの第1斜面SF1を被覆するように形成される。 More specifically, as shown in FIG. 8, the exuding film 90A formed by exuding the printing material is a pyramid 11A in the boundary region 8A (exuding region of the pattern printing resist) on the first region 7 side in the second region 8. It is formed so as to cover the first slope SF1 from the mountain hem 1A to the middle 2A.
 ここで、パターン印刷レジスト90の膜厚が3μm以上50μm以下であるのに対して、ピラミッド11Aの高さは0.1μm以上15μm以下である。ピラミッドの高さとは山裾から山頂までの高さであり、パターン印刷レジスト90の膜厚とはピラミッド山裾からの膜厚である。 Here, the film thickness of the pattern printing resist 90 is 3 μm or more and 50 μm or less, while the height of the pyramid 11A is 0.1 μm or more and 15 μm or less. The height of the pyramid is the height from the foot of the mountain to the top of the mountain, and the film thickness of the pattern printing resist 90 is the film thickness from the foot of the pyramid.
 その後、図6Cに示すように、パターン印刷レジスト90およびその周縁の染み出し膜90Aをマスクとして、第2領域8におけるリフトオフ層41、第1導電型半導体層材料膜25Zおよび真性半導体層材料膜23Zをエッチングすることにより、第1領域7に、パターン化された真性半導体層23、第1導電型半導体層25およびリフトオフ層41を形成する。 After that, as shown in FIG. 6C, the lift-off layer 41, the first conductive semiconductor layer material film 25Z, and the intrinsic semiconductor layer material film 23Z in the second region 8 are used as a mask with the pattern printing resist 90 and the exuding film 90A around the pattern printing resist 90 as a mask. The patterned intrinsic semiconductor layer 23, the first conductive semiconductor layer 25, and the lift-off layer 41 are formed in the first region 7 by etching.
 リフトオフ層41に対するエッチング溶液としては、例えばオゾンをフッ酸に溶解させた混合液、またはフッ酸と硝酸との混合液等の酸性溶液が挙げられる。また、p型の半導体層材料膜に対するエッチング溶液としては、例えばオゾンをフッ酸に溶解させた混合液、またはフッ酸と硝酸との混合液等の酸性溶液が挙げられ、n型の半導体層材料膜に対するエッチング溶液としては、例えば水酸化カリウム水溶液のようなアルカリ性溶液が挙げられる。 Examples of the etching solution for the lift-off layer 41 include a mixed solution in which ozone is dissolved in hydrofluoric acid, or an acidic solution such as a mixed solution of hydrofluoric acid and nitric acid. Examples of the etching solution for the p-type semiconductor layer material film include an acidic solution such as a mixed solution of ozone dissolved in hydrofluoric acid or a mixed solution of hydrofluoric acid and nitric acid, and an n-type semiconductor layer material. Examples of the etching solution for the film include an alkaline solution such as an aqueous potassium hydroxide solution.
 図7Bは、図6Cに示す第1領域7と第2領域8との境界領域VIIBの拡大図である。図7Bに示すように、染み出し膜90Aで被覆された第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)では、アンダーエッチングによって、リフトオフ層41、第1導電型半導体層材料膜25Zおよび真性半導体層材料膜23Zの大半がエッチングされる。 FIG. 7B is an enlarged view of the boundary region VIIB between the first region 7 and the second region 8 shown in FIG. 6C. As shown in FIG. 7B, in the boundary region 8A (exuding region of the pattern printing resist) on the first region 7 side in the second region 8 coated with the exuding film 90A, the lift-off layer 41 and the first Most of the conductive semiconductor layer material film 25Z and the intrinsic semiconductor layer material film 23Z are etched.
 上述した図4Aおよび図8は、図7Bに示す第2領域8における第1領域7側の境界領域8Aの一部IVAの拡大断面図に相当し、上述した図4Bは、図7Bに示す第2領域8における境界領域8A以外の一部IVBの拡大断面図に相当する。 4A and 8 described above correspond to an enlarged cross-sectional view of a part of IVA of the boundary region 8A on the side of the first region 7 in the second region 8 shown in FIG. 7B, and FIG. 4B described above is shown in FIG. 7B. It corresponds to an enlarged cross-sectional view of a part of IVB other than the boundary region 8A in the two regions 8.
 図4Aおよび図8に示すように、半導体基板11の裏面側の第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)では、ピラミッド11Aにおける、染み出し膜90Aによって被覆されている山裾側はエッチングされず、染み出し膜90Aによって被覆されていない山頂側はエッチングされる。 As shown in FIGS. 4A and 8, in the boundary region 8A (exuding region of the pattern printing resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11, the exuding film 90A in the pyramid 11A. The hem side covered with is not etched, and the top side not covered with the exudate film 90A is etched.
 これにより、ピラミッド11Aの各斜面は、山裾1Aから中腹2Aに至るまでの第1斜面SF1と、中腹2Aから山頂3Aに至るまでの第2斜面SF2とを有することとなる。第1斜面SF1と第2斜面SF2とは、中腹2Aの屈曲点を境界に、異なる傾斜角を有する。第2斜面SF2の傾斜は第1斜面SF1の傾斜よりも緩やかとなる。 As a result, each slope of the pyramid 11A has a first slope SF1 from the foot of the mountain 1A to the middle 2A and a second slope SF2 from the middle 2A to the summit 3A. The first slope SF1 and the second slope SF2 have different inclination angles with the bending point of the middle slope 2A as a boundary. The slope of the second slope SF2 is gentler than the slope of the first slope SF1.
 山頂3Aを通り山裾1Aに対して直交させた断面(すなわち、図4Aおよび図8に示される断面)において、山裾1Aから山頂3Aに至るまでの第1仮想直線L1と、山裾1Aから中腹2Aの屈曲点に至るまでの第2仮想直線L2との成す最小角度θ[°]は、8<θ≦30となる。 In a cross section that passes through the mountaintop 3A and is orthogonal to the mountain hem 1A (that is, the cross section shown in FIGS. 4A and 8), the first virtual straight line L1 from the mountain hem 1A to the mountain top 3A and the mountain hem 1A to the middle 2A The minimum angle θ [°] formed by the second virtual straight line L2 up to the bending point is 8 <θ ≦ 30.
 このようなピラミッド11Aは、半導体基板11の裏面の面積に対して0.01%以上50%以下を占めることとなる。 Such a pyramid 11A occupies 0.01% or more and 50% or less with respect to the area of the back surface of the semiconductor substrate 11.
 一方、図4Bに示すように、半導体基板11の裏面側の第2領域8における境界領域8A以外の領域では、ピラミッド11Bは、染み出し膜90Aによって被覆されていないので、全体的にエッチングされる。 On the other hand, as shown in FIG. 4B, in the region other than the boundary region 8A in the second region 8 on the back surface side of the semiconductor substrate 11, the pyramid 11B is not covered with the exuding film 90A, so that the pyramid 11B is entirely etched. ..
 これにより、ピラミッド11Bの各斜面は、山裾1Bから山頂3Bに至るまで、屈曲点がない第3斜面SF3を有することとなる。ピラミッド11Bでは、斜面が全体的にエッチングされるため、第3斜面SF3の傾斜は、第1斜面SF1の傾斜よりは急となる。 As a result, each slope of the pyramid 11B has a third slope SF3 having no bending point from the foot of the mountain 1B to the top of the mountain 3B. In the pyramid 11B, since the slope is entirely etched, the slope of the third slope SF3 is steeper than the slope of the first slope SF1.
 その後、図6Dに示すように、パターン印刷レジスト90を除去する。パターン印刷レジスト90に対するエッチング溶液としては、例えば水酸化カリウム水溶液のようなアルカリ性溶液が挙げられる。 After that, as shown in FIG. 6D, the pattern print resist 90 is removed. Examples of the etching solution for the pattern printing resist 90 include an alkaline solution such as an aqueous potassium hydroxide solution.
 このように、第1導電型半導体層25のパターニング(1回目のパターニング)において、パターン印刷レジストを除去する溶液として安価なアルカリ性溶液を採用することにより、太陽電池の低コスト化が可能となる。 As described above, in the patterning of the first conductive semiconductor layer 25 (first patterning), the cost of the solar cell can be reduced by adopting an inexpensive alkaline solution as the solution for removing the pattern printing resist.
 なお、第1半導体層形成工程では、半導体基板11の裏面側の第2領域8における真性半導体層材料膜23Zの一部または全部を残すように、第1導電型半導体層25のパターニングを行えばよい。 In the first semiconductor layer forming step, the first conductive semiconductor layer 25 may be patterned so as to leave a part or all of the intrinsic semiconductor layer material film 23Z in the second region 8 on the back surface side of the semiconductor substrate 11. good.
 次に、半導体基板11の両面側をクリーニングする(第1洗浄工程)。第1洗浄工程では、例えばオゾン処理を行った後、フッ酸処理が行われる。フッ酸処理とは、フッ酸のみならず、フッ酸に他の種類の酸(第1洗浄工程では、例えば塩酸)を含めた混合物での処理も含むものとする。 Next, both sides of the semiconductor substrate 11 are cleaned (first cleaning step). In the first cleaning step, for example, ozone treatment is followed by hydrofluoric acid treatment. The hydrofluoric acid treatment includes not only hydrofluoric acid but also treatment with a mixture of hydrofluoric acid and another kind of acid (for example, hydrochloric acid in the first washing step).
 次に、図6Eに示すように、例えばCVD法を用いて、半導体基板11の裏面側の全面に、真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zを順に積層(製膜)する(第2半導体層材料膜形成工程)。 Next, as shown in FIG. 6E, for example, by using the CVD method, the intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z are laminated in order on the entire surface of the back surface side of the semiconductor substrate 11 (film formation). (Second semiconductor layer material film forming step).
 次に、図6Fに示すように、リフトオフ層(犠牲層)を用いたリフトオフ法を利用して、半導体基板11の裏面側において、第1領域7における真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zを除去することにより、第2領域8に、パターン化された真性半導体層33および第2導電型半導体層35を形成する(第2半導体層形成工程)。 Next, as shown in FIG. 6F, the intrinsic semiconductor layer material film 33Z and the second conductive type in the first region 7 on the back surface side of the semiconductor substrate 11 by using the lift-off method using the lift-off layer (sacrificial layer). By removing the semiconductor layer material film 35Z, a patterned intrinsic semiconductor layer 33 and a second conductive semiconductor layer 35 are formed in the second region 8 (second semiconductor layer forming step).
 具体的には、リフトオフ層41を除去することにより、リフトオフ層41上の真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zを除去し、第2領域8に真性半導体層33および第2導電型半導体層35を形成する。リフトオフ層41の除去溶液としては、例えばフッ酸等の酸性溶液が用いられる。 Specifically, by removing the lift-off layer 41, the intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z on the lift-off layer 41 are removed, and the intrinsic semiconductor layer 33 and the second region 8 are removed. 2 Conductive semiconductor layer 35 is formed. As the removal solution for the lift-off layer 41, for example, an acidic solution such as hydrofluoric acid is used.
 このように、第2導電型半導体層35のパターニング(2回目のパターニング)において、リフトオフ層(犠牲層)を用いたリフトオフ法を採用することにより、太陽電池の製造プロセスの簡略化が可能となる。 As described above, by adopting the lift-off method using the lift-off layer (sacrificial layer) in the patterning (second patterning) of the second conductive semiconductor layer 35, the manufacturing process of the solar cell can be simplified. ..
 図7Cは、図6Gに示す第1領域7と第2領域8との境界領域VIICの拡大断面図である。上述した図5Aは、図7Cに示す第2領域8における第1領域7側の境界領域8Aの一部VAの拡大断面図に相当し、上述した図5Bは、図7Cに示す第2領域8における境界領域8A以外の一部VBの拡大断面図に相当する。 FIG. 7C is an enlarged cross-sectional view of the boundary region VIIC between the first region 7 and the second region 8 shown in FIG. 6G. FIG. 5A described above corresponds to an enlarged cross-sectional view of a part of VA of the boundary region 8A on the side of the first region 7 in the second region 8 shown in FIG. 7C, and FIG. 5B described above corresponds to the second region 8 shown in FIG. 7C. Corresponds to the enlarged cross-sectional view of a part of VB other than the boundary region 8A in.
 図7Cおよび図5Aに示すように、半導体基板11の裏面側の第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)では、第2斜面SF2における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚は、第1斜面SF1における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚よりも厚く形成される。これは、傾斜が緩やかであるほど、積層される半導体層の膜厚が厚くなることによるものと推測される。 As shown in FIGS. 7C and 5A, in the boundary region 8A (exudation region of the pattern printing resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11, the second intrinsicity in the second slope SF2 The thickness of the semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) is the thickness of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the first slope SF1. Is formed thicker than. It is presumed that this is because the gentler the inclination, the thicker the film thickness of the semiconductor layers to be laminated.
 なお、第1半導体層形成工程において、半導体基板11の裏面側の第2領域8における真性半導体層材料膜23Zの全部が残る場合、第2半導体層材料膜形成工程および第2半導体層形成工程では、真性半導体層材料膜の積層(製膜)を行わず、第2導電型半導体層35のパターニングを行えばよい。また、第1半導体層形成工程において、半導体基板11の裏面側の第2領域8における真性半導体層材料膜23Zの一部が残る場合、第2半導体層材料膜形成工程および第2半導体層形成工程では、除去された分だけ真性半導体層材料膜の積層(製膜)を行い、真性半導体層および第2導電型半導体層35のパターニングを行えばよい。 In the first semiconductor layer forming step, when all of the intrinsic semiconductor layer material film 23Z in the second region 8 on the back surface side of the semiconductor substrate 11 remains, in the second semiconductor layer material film forming step and the second semiconductor layer forming step. The second conductive semiconductor layer 35 may be patterned without laminating (forming) the intrinsic semiconductor layer material film. Further, in the first semiconductor layer forming step, when a part of the intrinsic semiconductor layer material film 23Z in the second region 8 on the back surface side of the semiconductor substrate 11 remains, the second semiconductor layer material film forming step and the second semiconductor layer forming step Then, the intrinsic semiconductor layer material film may be laminated (film-formed) by the amount removed, and the intrinsic semiconductor layer and the second conductive semiconductor layer 35 may be patterned.
 次に、図6Gに示すように、半導体基板11の裏面側に、第1電極層27および第2電極層37を形成する(電極層形成工程)。 Next, as shown in FIG. 6G, the first electrode layer 27 and the second electrode layer 37 are formed on the back surface side of the semiconductor substrate 11 (electrode layer forming step).
 具体的には、例えばスパッタリング法等のPVD法(物理気相成長法)を用いて、半導体基板11の裏面側の全面に、透明電極層材料膜を積層(製膜)する。その後、例えばエッチングペーストを用いたエッチング法を用いて、透明電極層材料膜の一部を除去することにより、パターン化された透明電極層28,38を形成する。透明電極層材料膜に対するエッチング溶液としては、例えば塩酸または塩化第二鉄水溶液が用いられる。 Specifically, for example, using a PVD method (physical vapor deposition method) such as a sputtering method, a transparent electrode layer material film is laminated (film-formed) on the entire back surface side of the semiconductor substrate 11. Then, the patterned transparent electrode layers 28 and 38 are formed by removing a part of the transparent electrode layer material film by, for example, an etching method using an etching paste. As the etching solution for the transparent electrode layer material film, for example, hydrochloric acid or an aqueous ferric chloride solution is used.
 その後、例えばパターン印刷法または塗布法を用いて、透明電極層28上に金属電極層29を形成し、透明電極層38の上に金属電極層39を形成することにより、第1電極層27および第2電極層37を形成する。 Then, for example, by forming a metal electrode layer 29 on the transparent electrode layer 28 and forming a metal electrode layer 39 on the transparent electrode layer 38 by using, for example, a pattern printing method or a coating method, the first electrode layer 27 and The second electrode layer 37 is formed.
 上述した図3は、図6Gに示す第1領域7と第2領域8との境界領域IIIの拡大断面図に相当する。図3に示すように、第2領域8における第1領域7側の境界領域8Aは、第1電極層27の透明電極層28と第2電極層37の透明電極層38との間に位置するとともに、第2電極層37の透明電極層38における第1電極層27の透明電極層28側の下に位置していてもよい。 FIG. 3 described above corresponds to an enlarged cross-sectional view of the boundary region III between the first region 7 and the second region 8 shown in FIG. 6G. As shown in FIG. 3, the boundary region 8A on the side of the first region 7 in the second region 8 is located between the transparent electrode layer 28 of the first electrode layer 27 and the transparent electrode layer 38 of the second electrode layer 37. At the same time, it may be located below the transparent electrode layer 28 side of the first electrode layer 27 in the transparent electrode layer 38 of the second electrode layer 37.
 次に、図6Hに示すように、半導体基板11の受光面側の全面に、光学調整層15を積層(製膜)する。
 以上の工程により、第1実施形態に係る裏面電極型の太陽電池1が完成する。
Next, as shown in FIG. 6H, the optical adjustment layer 15 is laminated (film-formed) on the entire surface of the semiconductor substrate 11 on the light receiving surface side.
Through the above steps, the back electrode type solar cell 1 according to the first embodiment is completed.
 以上説明したように、第1実施形態の太陽電池1およびその製造方法によれば、第2領域8における第1領域7側の境界領域8A、すなわち透明電極層28,38間、におけるピラミッド11Aの第2斜面SF2における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚が厚い。これにより、太陽電池1の信頼性を向上させることができる。また、パッシベーション性能が向上し、太陽電池1の性能(例えばVoc)を向上させることができる。 As described above, according to the solar cell 1 of the first embodiment and the method for manufacturing the solar cell 1, the boundary region 8A on the first region 7 side in the second region 8, that is, the pyramid 11A between the transparent electrode layers 28 and 38. The thickness of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the second slope SF2 is large. Thereby, the reliability of the solar cell 1 can be improved. Further, the passivation performance is improved, and the performance of the solar cell 1 (for example, Voc) can be improved.
 また、第1実施形態の太陽電池1およびその製造方法によれば、第2領域8における第1領域7側の境界領域8Aは、第1電極層27の透明電極層28と第2電極層37の透明電極層38との間に位置するとともに、第2電極層37の透明電極層38における第1電極層27の透明電極層28側の下に位置している。これにより、製造ばらつき等があっても、透明電極層28,38間における第2領域8に、第2斜面SF2における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚が厚いピラミッド11Aが配置され、太陽電池1の信頼性および性能を向上させることができる。 Further, according to the solar cell 1 of the first embodiment and the manufacturing method thereof, the boundary region 8A on the first region 7 side in the second region 8 is the transparent electrode layer 28 and the second electrode layer 37 of the first electrode layer 27. It is located between the transparent electrode layer 38 and the transparent electrode layer 28 of the first electrode layer 27 in the transparent electrode layer 38 of the second electrode layer 37. As a result, even if there are manufacturing variations, the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the second slope SF2 are located in the second region 8 between the transparent electrode layers 28 and 38. The pyramid 11A having a large film thickness is arranged, and the reliability and performance of the solar cell 1 can be improved.
 また、第1実施形態の太陽電池の製造方法によれば、第1導電型半導体層のパターニング(1回目のパターニング)において、パターン印刷法によるパターン印刷レジストを用いることにより、太陽電池の製造プロセスの簡略化を図りつつ、パターン印刷レジストにおける樹脂材料の染み出し膜を利用して、上述したように太陽電池1の信頼性の向上および性能の向上を実現させることができる。 Further, according to the method for manufacturing a solar cell of the first embodiment, in the patterning of the first conductive semiconductor layer (first patterning), by using a pattern printing resist by a pattern printing method, a solar cell manufacturing process can be performed. As described above, the reliability and performance of the solar cell 1 can be improved by utilizing the exuding film of the resin material in the pattern printing resist while simplifying the process.
 なお、ピラミッド型の微細な凹凸構造(テクスチャ構造)を有さないフラットな半導体基板では、パターン印刷法によるパターン印刷レジストを用いたとしても、パターン印刷レジストにおける樹脂材料の染み出しはほとんど発生しない。つまり、上述した第1実施形態の太陽電池1の特徴は、ピラミッド型の微細な凹凸構造(テクスチャ構造)を有する半導体基板の使用と、パターン印刷法によるパターン印刷レジストの使用との組み合わせにより実現できる。 In a flat semiconductor substrate that does not have a pyramid-shaped fine uneven structure (texture structure), even if a pattern printing resist by the pattern printing method is used, the resin material hardly exudes from the pattern printing resist. That is, the characteristics of the solar cell 1 of the first embodiment described above can be realized by combining the use of a semiconductor substrate having a pyramid-shaped fine uneven structure (texture structure) and the use of a pattern printing resist by a pattern printing method. ..
 また、第1実施形態の太陽電池1およびその製造方法によれば、ピラミッドのサイズ、および/または、パターン印刷レジストの成分・粘度を調整することにより、パターン印刷レジストにおける樹脂材料の染み出し幅を調整することができる。これにより、上述した第1実施形態の太陽電池1の特徴について、最適化の設計が容易となる。 Further, according to the solar cell 1 of the first embodiment and the manufacturing method thereof, the exuding width of the resin material in the pattern printing resist can be adjusted by adjusting the size of the pyramid and / or the component / viscosity of the pattern printing resist. Can be adjusted. This facilitates an optimization design for the features of the solar cell 1 of the first embodiment described above.
(変形例)
 図9は、第1実施形態の変形例に係る太陽電池の断面図であって、図1におけるII-II線相当の断面図である。また、図10は、図9に示す第1領域7と第2領域8との境界領域Xの拡大断面図である。
(Modification example)
FIG. 9 is a cross-sectional view of the solar cell according to the modified example of the first embodiment, and is a cross-sectional view corresponding to the line II-II in FIG. Further, FIG. 10 is an enlarged cross-sectional view of the boundary region X between the first region 7 and the second region 8 shown in FIG.
 図9および図10に示すように、第2領域8における第1領域7側の境界領域8Aは、第1電極層27の透明電極層28と第2電極層37の透明電極層38との間に位置し、第2電極層37の透明電極層38の下には位置しなくてもよい。これにより、第2電極層37の透明電極層38下に、第2斜面SF2における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚が厚いピラミッド11Aが位置しないので、抵抗の増加を抑制することができ、キャリアの取り出し効率の低下を抑制することができる。 As shown in FIGS. 9 and 10, the boundary region 8A on the first region 7 side in the second region 8 is between the transparent electrode layer 28 of the first electrode layer 27 and the transparent electrode layer 38 of the second electrode layer 37. It does not have to be located below the transparent electrode layer 38 of the second electrode layer 37. As a result, the thick pyramid 11A of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the second slope SF2 is positioned under the transparent electrode layer 38 of the second electrode layer 37. Therefore, an increase in resistance can be suppressed, and a decrease in carrier extraction efficiency can be suppressed.
 上述した第1実施形態では、図3および図5Aに示すように、第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)において、アンダーエッチングによって、第1真性半導体層23および第1導電型半導体層25(第1半導体層)が残らない形態について例示した。以下の第2実施形態では、後述の図13および図15Aに示すように、第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)において、アンダーエッチングの度合いによって、ピラミッド11Aの第1斜面SF1に第1真性半導体層23および第1導電型半導体層25(第1半導体層)が残る形態について例示する。 In the first embodiment described above, as shown in FIGS. 3 and 5A, in the boundary region 8A (exudation region of the pattern printing resist) on the first region 7 side in the second region 8, the first intrinsic property is obtained by under-etching. The form in which the semiconductor layer 23 and the first conductive type semiconductor layer 25 (first semiconductor layer) do not remain has been illustrated. In the second embodiment below, as shown in FIGS. 13 and 15A described later, in the boundary region 8A (exudation region of the pattern printing resist) on the first region 7 side in the second region 8, depending on the degree of underetching. , The mode in which the first intrinsic semiconductor layer 23 and the first conductive type semiconductor layer 25 (first semiconductor layer) remain on the first slope SF1 of the pyramid 11A will be illustrated.
[第2実施形態]
(太陽電池)
 図11は、第2実施形態に係る太陽電池を裏面側からみた図である。図11に示す太陽電池1は、裏面電極型(バックコンタクト型、裏面接合型ともいう。)の太陽電池である。太陽電池1は、2つの主面を備える半導体基板11を備え、半導体基板11の主面において第1領域7と第2領域8とを有する。
[Second Embodiment]
(Solar cell)
FIG. 11 is a view of the solar cell according to the second embodiment as viewed from the back surface side. The solar cell 1 shown in FIG. 11 is a back electrode type (also referred to as a back contact type or back surface bonding type) solar cell. The solar cell 1 includes a semiconductor substrate 11 having two main surfaces, and has a first region 7 and a second region 8 on the main surface of the semiconductor substrate 11.
 第1領域7は、いわゆる櫛型の形状をなし、櫛歯に相当する複数のフィンガー部7fと、櫛歯の支持部に相当するバスバー部7bとを有する。バスバー部7bは、半導体基板11の一方の辺部に沿って第1方向(X方向)に延在し、フィンガー部7fは、バスバー部7bから、第1方向(X方向)に交差する第2方向(Y方向)に延在する。 The first region 7 has a so-called comb-shaped shape, and has a plurality of finger portions 7f corresponding to the comb teeth and a bus bar portion 7b corresponding to the support portion of the comb teeth. The bus bar portion 7b extends in the first direction (X direction) along one side of the semiconductor substrate 11, and the finger portion 7f intersects the bus bar portion 7b in the first direction (X direction). It extends in the direction (Y direction).
 同様に、第2領域8は、いわゆる櫛型の形状であり、櫛歯に相当する複数のフィンガー部8fと、櫛歯の支持部に相当するバスバー部8bとを有する。バスバー部8bは、半導体基板11の一方の辺部に対向する他方の辺部に沿って第1方向(X方向)に延在し、フィンガー部8fは、バスバー部8bから、第2方向(Y方向)に延在する。 Similarly, the second region 8 has a so-called comb-shaped shape, and has a plurality of finger portions 8f corresponding to the comb teeth and a bus bar portion 8b corresponding to the support portion of the comb teeth. The bus bar portion 8b extends in the first direction (X direction) along the other side portion facing one side portion of the semiconductor substrate 11, and the finger portion 8f extends from the bus bar portion 8b in the second direction (Y). Extends in the direction).
 フィンガー部7fとフィンガー部8fとは、第1方向(X方向)に交互に設けられている。なお、第1領域7および第2領域8は、ストライプ状に形成されてもよい。 The finger portions 7f and the finger portions 8f are alternately provided in the first direction (X direction). The first region 7 and the second region 8 may be formed in a striped shape.
 図12は、図11の太陽電池におけるII-II線断面図である。図12に示すように、太陽電池1は、ヘテロ接合型の太陽電池である。太陽電池1は、半導体基板11と、半導体基板11の主面のうちの受光する側の一方の主面である受光面側に順に積層された真性半導体層13および光学調整層15を備える。また、太陽電池1は、半導体基板11の主面のうちの受光面の反対側の他方の主面である裏面側の一部(第1領域7)に順に積層された真性半導体層23、第1導電型半導体層25および第1電極層27を備える。また、太陽電池1は、半導体基板11の裏面側の他の一部(第2領域8)に順に積層された真性半導体層33、第2導電型半導体層35、および第2電極層37を備える。また、後述するように、第1領域7と第2領域8の境界付近において、第1導電型半導体層25と第2導電型半導体層35をともに備える領域は、第2領域8とする。
なお、以下では、真性半導体層23および第1導電型半導体層25を第1半導体層ともいい、真性半導体層33および第2導電型半導体層35を第2半導体層ともいう。
FIG. 12 is a sectional view taken along line II-II of the solar cell of FIG. As shown in FIG. 12, the solar cell 1 is a heterojunction type solar cell. The solar cell 1 includes a semiconductor substrate 11, an intrinsic semiconductor layer 13 and an optical adjustment layer 15 which are sequentially laminated on the light receiving surface side, which is one of the main surfaces of the semiconductor substrate 11 on the light receiving side. Further, the solar cell 1 has the intrinsic semiconductor layer 23, which is sequentially laminated on a part of the back surface side (first region 7) which is the other main surface of the main surface of the semiconductor substrate 11 opposite to the light receiving surface. 1 The conductive semiconductor layer 25 and the first electrode layer 27 are provided. Further, the solar cell 1 includes an intrinsic semiconductor layer 33, a second conductive semiconductor layer 35, and a second electrode layer 37, which are sequentially laminated on another part (second region 8) on the back surface side of the semiconductor substrate 11. .. Further, as will be described later, the region including both the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 in the vicinity of the boundary between the first region 7 and the second region 8 is referred to as the second region 8.
In the following, the intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 are also referred to as a first semiconductor layer, and the intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 are also referred to as a second semiconductor layer.
 半導体基板11は、単結晶シリコンまたは多結晶シリコン等の結晶シリコン材料で形成される。半導体基板11は、例えば結晶シリコン材料にn型ドーパントがドープされたn型の半導体基板である。なお、半導体基板11は、例えば結晶シリコン材料にp型ドーパントがドープされたp型の半導体基板であってもよい。n型ドーパントとしては、例えばリン(P)が挙げられる。p型ドーパントとしては、例えばホウ素(B)が挙げられる。半導体基板11は、受光面側からの入射光を吸収して光キャリア(電子および正孔)を生成する光電変換基板として機能する。 The semiconductor substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon. The semiconductor substrate 11 is, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant. The semiconductor substrate 11 may be, for example, a p-type semiconductor substrate in which a crystalline silicon material is doped with a p-type dopant. Examples of the n-type dopant include phosphorus (P). Examples of the p-type dopant include boron (B). The semiconductor substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes).
 半導体基板11の材料として結晶シリコンが用いられることにより、暗電流が比較的に小さく、入射光の強度が低い場合であっても比較的高出力(照度によらず安定した出力)が得られる。 By using crystalline silicon as the material of the semiconductor substrate 11, a relatively high output (stable output regardless of the illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.
 半導体基板11は、裏面側に、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有する。これにより、半導体基板11に吸収されず通過してしまった光の回収効率が高まる。 The semiconductor substrate 11 has a pyramid-shaped fine uneven structure called a texture structure on the back surface side. As a result, the recovery efficiency of light that has passed through without being absorbed by the semiconductor substrate 11 is increased.
 また、半導体基板11は、受光面側に、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有していてもよい。これにより、受光面において入射光の反射が低減し、半導体基板11における光閉じ込め効果が向上する。 Further, the semiconductor substrate 11 may have a pyramid-shaped fine uneven structure called a texture structure on the light receiving surface side. As a result, the reflection of incident light on the light receiving surface is reduced, and the light confinement effect on the semiconductor substrate 11 is improved.
 真性半導体層13は、半導体基板11の受光面側に形成されている。真性半導体層23は、半導体基板11の裏面側の第1領域7に形成されている。真性半導体層33は、半導体基板11の裏面側の第2領域8に形成されている。真性半導体層13,23,33は、例えば真性(i型)アモルファスシリコンを主成分とする材料で形成される。真性半導体層13,23,33は、いわゆるパッシベーション層として機能し、半導体基板11で生成されたキャリアの再結合を抑制し、キャリアの回収効率を高める。 The intrinsic semiconductor layer 13 is formed on the light receiving surface side of the semiconductor substrate 11. The intrinsic semiconductor layer 23 is formed in the first region 7 on the back surface side of the semiconductor substrate 11. The intrinsic semiconductor layer 33 is formed in the second region 8 on the back surface side of the semiconductor substrate 11. The intrinsic semiconductor layers 13, 23, 33 are formed of, for example, a material containing intrinsic (i-type) amorphous silicon as a main component. The intrinsic semiconductor layers 13, 23, 33 function as so-called passivation layers, suppress the recombination of carriers generated in the semiconductor substrate 11, and increase the carrier recovery efficiency.
 光学調整層15は、半導体基板11の受光面側の真性半導体層13上に形成されている。光学調整層15は、入射光の反射を防止する反射防止層として機能するとともに、半導体基板11の受光面側および真性半導体層13を保護する保護層として機能する。光学調整層15は、例えば酸化珪素(SiO)、窒化珪素(SiN)、または酸窒化珪素(SiON)のようなそれらの複合物等の絶縁体材料で形成される。 The optical adjustment layer 15 is formed on the intrinsic semiconductor layer 13 on the light receiving surface side of the semiconductor substrate 11. The optical adjustment layer 15 functions as an antireflection layer that prevents reflection of incident light, and also functions as a protective layer that protects the light receiving surface side of the semiconductor substrate 11 and the intrinsic semiconductor layer 13. The optical adjustment layer 15 is formed of an insulating material such as a composite thereof such as silicon oxide (SiO), silicon nitride (SiN), or silicon oxynitride (SiON).
 第1導電型半導体層25は、真性半導体層23上に、すなわち半導体基板11の裏面側の第1領域7に形成されている。第1導電型半導体層25は、例えばアモルファスシリコン材料で形成される。第1導電型半導体層25は、例えばアモルファスシリコン材料にp型ドーパント(例えば、上述したホウ素(B))がドープされたp型の半導体層である。 The first conductive semiconductor layer 25 is formed on the intrinsic semiconductor layer 23, that is, in the first region 7 on the back surface side of the semiconductor substrate 11. The first conductive semiconductor layer 25 is formed of, for example, an amorphous silicon material. The first conductive semiconductor layer 25 is, for example, a p-type semiconductor layer in which an amorphous silicon material is doped with a p-type dopant (for example, the above-mentioned boron (B)).
 第2導電型半導体層35は、真性半導体層33上に、すなわち半導体基板11の裏面側の第2領域8に形成されている。第2導電型半導体層35は、例えばアモルファスシリコン材料で形成される。第2導電型半導体層35は、例えばアモルファスシリコン材料にn型ドーパント(例えば、上述したリン(P))がドープされたn型の半導体層である。なお、第1導電型半導体層25がn型の半導体層であり、第2導電型半導体層35がp型の半導体層であってもよい。 The second conductive semiconductor layer 35 is formed on the intrinsic semiconductor layer 33, that is, in the second region 8 on the back surface side of the semiconductor substrate 11. The second conductive semiconductor layer 35 is formed of, for example, an amorphous silicon material. The second conductive semiconductor layer 35 is, for example, an n-type semiconductor layer in which an amorphous silicon material is doped with an n-type dopant (for example, phosphorus (P) described above). The first conductive semiconductor layer 25 may be an n-type semiconductor layer, and the second conductive semiconductor layer 35 may be a p-type semiconductor layer.
 第1電極層27は、第1導電型半導体層25上に形成されており、第2電極層37は、第2導電型半導体層35上に形成されている。第1電極層27は、第1導電型半導体層25上に順に積層された透明電極層28と金属電極層29とを有する。第2電極層37は、第2導電型半導体層35上に順に積層された透明電極層38と金属電極層39とを有する。 The first electrode layer 27 is formed on the first conductive semiconductor layer 25, and the second electrode layer 37 is formed on the second conductive semiconductor layer 35. The first electrode layer 27 has a transparent electrode layer 28 and a metal electrode layer 29, which are sequentially laminated on the first conductive semiconductor layer 25. The second electrode layer 37 has a transparent electrode layer 38 and a metal electrode layer 39 which are sequentially laminated on the second conductive semiconductor layer 35.
 透明電極層28,38は、透明な導電性材料で形成される。透明導電性材料としては、ITO(Indium Tin Oxide:酸化インジウムおよび酸化スズの複合酸化物)、ZnO(Zinc Oxide:酸化亜鉛)が挙げられる。金属電極層29,39は、銀等の金属粉末を含有する導電性ペースト材料または銅で形成される。 The transparent electrode layers 28 and 38 are formed of a transparent conductive material. Examples of the transparent conductive material include ITO (Indium Tin Oxide: a composite oxide of indium oxide and tin oxide) and ZnO (Zinc Oxide: zinc oxide). The metal electrode layers 29 and 39 are formed of a conductive paste material or copper containing a metal powder such as silver.
 図13は、図12に示す第1領域7と第2領域8との境界領域IIIの拡大断面図である。図14Aは、図13に示す第2領域8における第1領域7側の境界領域8A(後述するパターン印刷レジストの染み出し領域)の一部VAにおける半導体基板11の裏面の拡大断面図であり、図15Aは、図13に示す第2領域8における第1領域7側の境界領域8A(後述するパターン印刷レジストの染み出し領域)の一部VAにおける半導体層の拡大断面図である。また、図14Bは、図13に示す第2領域8における境界領域8A以外の一部VBにおける半導体基板11の裏面の拡大断面図であり、図15Bは、図13に示す第2領域8における境界領域8A以外の一部VBにおける半導体層の拡大断面図である。 FIG. 13 is an enlarged cross-sectional view of the boundary region III between the first region 7 and the second region 8 shown in FIG. FIG. 14A is an enlarged cross-sectional view of the back surface of the semiconductor substrate 11 in a part VA of the boundary region 8A (exudation region of the pattern printing resist described later) on the first region 7 side in the second region 8 shown in FIG. FIG. 15A is an enlarged cross-sectional view of a semiconductor layer in a part VA of a boundary region 8A (exudation region of a pattern printing resist described later) on the side of the first region 7 in the second region 8 shown in FIG. 14B is an enlarged cross-sectional view of the back surface of the semiconductor substrate 11 in a part of VB other than the boundary region 8A in the second region 8 shown in FIG. 13, and FIG. 15B is a boundary in the second region 8 shown in FIG. It is an enlarged cross-sectional view of the semiconductor layer in a part VB other than a region 8A.
 図13および図14Aに示すように、半導体基板11の裏面側の第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)には、4つの斜面で構成される複数のピラミッド11Aが形成されている。 As shown in FIGS. 13 and 14A, the boundary region 8A (exudation region of the pattern print resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11 is composed of four slopes. A plurality of pyramids 11A are formed.
 ピラミッド11Aの各斜面は、山裾1Aから中腹2Aに至るまでの第1斜面SF1と、中腹2Aから山頂3Aに至るまでの第2斜面SF2とを有する。第1斜面SF1と第2斜面SF2とは、中腹2Aの屈曲点を境界に、異なる傾斜角を有する。第2斜面SF2の傾斜は第1斜面SF1の傾斜よりも緩やかである。 Each slope of the pyramid 11A has a first slope SF1 from the foot of the mountain 1A to the middle 2A and a second slope SF2 from the middle 2A to the summit 3A. The first slope SF1 and the second slope SF2 have different inclination angles with the bending point of the middle slope 2A as a boundary. The slope of the second slope SF2 is gentler than the slope of the first slope SF1.
 山頂3Aを通り山裾1Aに対して直交させた断面(すなわち、図14Aに示される断面)において、山裾1Aから山頂3Aに至るまでの第1仮想直線L1と、山裾1Aから中腹2Aの屈曲点に至るまでの第2仮想直線L2との成す最小角度θ[°]は、8<θ≦30である。 In a cross section that passes through the mountaintop 3A and is orthogonal to the mountain hem 1A (that is, the cross section shown in FIG. 14A), the first virtual straight line L1 from the mountain hem 1A to the mountain top 3A and the inflection point from the mountain hem 1A to the middle 2A The minimum angle θ [°] formed by the second virtual straight line L2 up to that point is 8 <θ ≦ 30.
 このようなピラミッド11Aは、半導体基板11の裏面の面積に対して0.01%以上50%以下を占める。 Such a pyramid 11A occupies 0.01% or more and 50% or less with respect to the area of the back surface of the semiconductor substrate 11.
 一方、図13および図14Bに示すように、半導体基板11の裏面側の第2領域8における境界領域8A以外の領域には、4つの斜面で構成される複数のピラミッド11Bが形成されている。なお、図14Bには、比較のために、上述したピラミッド11Aの第1斜面SF1および第2斜面SF2を破線で示す。 On the other hand, as shown in FIGS. 13 and 14B, a plurality of pyramids 11B composed of four slopes are formed in a region other than the boundary region 8A in the second region 8 on the back surface side of the semiconductor substrate 11. In FIG. 14B, the first slope SF1 and the second slope SF2 of the pyramid 11A described above are shown by broken lines for comparison.
 ピラミッド11Bの各斜面は、山裾1Bから山頂3Bに至るまで、屈曲点がない第3斜面SF3を有する。第3斜面SF3の傾斜は、上述した第1斜面SF1の傾斜より緩やかである。 Each slope of the pyramid 11B has a third slope SF3 with no bending point from the foot of the mountain 1B to the top of the mountain 3B. The slope of the third slope SF3 is gentler than the slope of the first slope SF1 described above.
 これにより、ピラミッド11Aの第1斜面SF1および第2斜面SF2の傾斜には、以下の関係が成り立つ。
第2斜面SF2の傾斜<第1斜面SF1の傾斜
As a result, the following relationship holds for the inclinations of the first slope SF1 and the second slope SF2 of the pyramid 11A.
Slope of the second slope SF2 <Slope of the first slope SF1
 図15Aに示すように、半導体基板11の裏面側の第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)において、ピラミッド11Aの第1斜面SF1には、第1真性半導体層23および第1導電型半導体層25(第1半導体層)と、第2真性半導体層33および第2導電型半導体層35(第2半導体層)とが順に積層(形成)されている。なお、第1真性半導体層23および第1導電型半導体層25(第1半導体層)は、ピラミッド11Aの第1斜面SF1の全部に積層されていてもよいし、少なくとも一部(例えば、山裾1A側、すなわち谷部側)に積層されていてもよい。 As shown in FIG. 15A, in the boundary region 8A (exudation region of the pattern printing resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11, the first slope SF1 of the pyramid 11A has a position on the first slope SF1. The 1 intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 (first semiconductor layer), and the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) are laminated (formed) in this order. There is. The first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 (first semiconductor layer) may be laminated on all of the first slope SF1 of the pyramid 11A, or at least a part (for example, the foot of the mountain 1A). It may be laminated on the side, that is, the valley side).
 一方、ピラミッド11Aの第2斜面SF2には、第1真性半導体層23および第1導電型半導体層25(第1半導体層)は積層(形成)されておらず、第2真性半導体層33および第2導電型半導体層35(第2半導体層)のみが積層(形成)されている。 On the other hand, the first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 (first semiconductor layer) are not laminated (formed) on the second slope SF2 of the pyramid 11A, and the second intrinsic semiconductor layer 33 and the second intrinsic semiconductor layer 33 and the second. Only the two conductive semiconductor layer 35 (second semiconductor layer) is laminated (formed).
 また、半導体基板11の裏面側の第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)では、ピラミッド11Aの第2斜面SF2における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚は、ピラミッド11Aの第1斜面SF1における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚よりも厚い。 Further, in the boundary region 8A (exudation region of the pattern printing resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11, the second intrinsic semiconductor layer 33 and the second intrinsic semiconductor layer 33 in the second slope SF2 of the pyramid 11A. The thickness of the two conductive semiconductor layer 35 (second semiconductor layer) is larger than the thickness of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the first slope SF1 of the pyramid 11A. thick.
 ピラミッド11Aの第2斜面SF2における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚をピラミッド11Aの第1斜面SF1における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚で除した値が、好ましくは1.02以上1.80以下、さらに好ましくは1.03以上1.60以下、さらに好ましくは、1.05以上1.40以下である。 The thickness of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the second slope SF2 of the pyramid 11A is set to the thickness of the second intrinsic semiconductor layer 33 and the second conductive on the first slope SF1 of the pyramid 11A. The value divided by the film thickness of the type semiconductor layer 35 (second semiconductor layer) is preferably 1.02 or more and 1.80 or less, more preferably 1.03 or more and 1.60 or less, still more preferably 1.05 or more. It is 1.40 or less.
 ここで、半導体層の膜厚とは、半導体基板11のピラミッドの斜面に直交する方向の膜厚であり、第1斜面SF1における膜厚は山裾1Aと屈曲点(中腹)2Aの中点PA1、第2斜面SF2における膜厚はピラミッドの山頂3Aと屈曲点(中腹)2Aの中点PA2の位置を測定するものとする。2つ以上の屈曲点を有する場合には、山頂に最も近い屈曲点を膜厚測定に使用するものとする。 Here, the film thickness of the semiconductor layer is the film thickness in the direction orthogonal to the slope of the pyramid of the semiconductor substrate 11, and the film thickness on the first slope SF1 is the midpoint PA1 of the mountain hem 1A and the bending point (middle) 2A. The film thickness on the second slope SF2 shall be measured at the positions of the peak 3A of the pyramid and the midpoint PA2 of the bending point (middle) 2A. When there are two or more bending points, the bending point closest to the mountaintop shall be used for film thickness measurement.
 裏面電極型の太陽電池では裏面に第1半導体領域と第2半導体領域が存在し、それぞれ隣り合った構造となっている。裏面に第1半導体領域と第2半導体領域の境界が存在するのは、バックコンタクト型太陽電池特有の構造であり、前記境界領域周辺の構造が太陽電池の信頼性に大きく影響し、前記境界領域において面積が小さくとも前記のピラミッドAの構造を有し、前記第1斜面SF1と第2斜面SF2の膜厚比を有することで信頼性向上が可能となる。 The back electrode type solar cell has a first semiconductor region and a second semiconductor region on the back surface, and each has a structure adjacent to each other. The existence of the boundary between the first semiconductor region and the second semiconductor region on the back surface is a structure peculiar to the back contact type solar cell, and the structure around the boundary region greatly affects the reliability of the solar cell, and the boundary region The reliability can be improved by having the structure of the pyramid A even if the area is small and having the film thickness ratio of the first slope SF1 and the second slope SF2.
 一方、図15Bに示すように、半導体基板11の裏面側の第2領域8における境界領域8A以外の領域では、ピラミッド11Bの第3斜面SF3にはピラミッド11Aのような屈曲がないため、第3斜面SF3において山裾1Bと山頂3Bを4等分する3つ点PB1,PB2,PB3の内、山頂3Bから1つ目の点PB3と3つ目の点PB1の膜厚を測定するものとする。 On the other hand, as shown in FIG. 15B, in the region other than the boundary region 8A in the second region 8 on the back surface side of the semiconductor substrate 11, the third slope SF3 of the pyramid 11B does not have a bend like the pyramid 11A, so that the third Of the three points PB1, PB2, and PB3 that divide the mountain hem 1B and the mountaintop 3B into four equal parts on the slope SF3, the film thickness of the first point PB3 and the third point PB1 from the mountaintop 3B shall be measured.
 これにより、ピラミッド11Aの第1斜面SF1および第2斜面SF2における第2半導体層35,33の膜厚、およびピラミッド11Bの第3斜面SF3における第2半導体層の膜厚には、以下の関係が成り立つ。
第2斜面SF2の第2半導体層35,33の膜厚/第1斜面SF1の第2半導体層35,33の膜厚>第3斜面SF3の山裾1Bおよび山頂3Bの中点PB2と山頂3Bとの中点PB3位置の第2半導体層35,33の膜厚/第3斜面SF3の山裾1Bおよび山頂3Bの中点PB2と山裾1Bとの中点PB1位置の第2半導体層35,33の膜厚
As a result, the film thicknesses of the second semiconductor layers 35 and 33 on the first slope SF1 and the second slope SF2 of the pyramid 11A and the film thickness of the second semiconductor layer on the third slope SF3 of the pyramid 11B have the following relationship. It holds.
The thickness of the second semiconductor layers 35 and 33 of the second slope SF2 / the thickness of the second semiconductor layers 35 and 33 of the first slope SF1> The thickness of the second semiconductor layers 35 and 33 at the midpoint PB3 position / the film of the second semiconductor layers 35 and 33 at the midpoint PB1 position between the midpoint PB2 and the midpoint 1B of the peak 1B and the peak 3B of the third slope SF3. Thick
 図13に示すように、第2領域8における第1領域7側の境界領域8Aは、第1電極層27の透明電極層28と第2電極層37の透明電極層38との間に位置するとともに、第2電極層37の透明電極層38における第1電極層27の透明電極層28側の下に位置していてもよい。 As shown in FIG. 13, the boundary region 8A on the first region 7 side in the second region 8 is located between the transparent electrode layer 28 of the first electrode layer 27 and the transparent electrode layer 38 of the second electrode layer 37. At the same time, it may be located below the transparent electrode layer 28 side of the first electrode layer 27 in the transparent electrode layer 38 of the second electrode layer 37.
(太陽電池の製造方法) (Solar cell manufacturing method)
 以下に、図16A~図16Hを参照して、第2実施形態に係る太陽電池1の製造方法について説明する。図16Aは、第2実施形態に係る太陽電池の製造方法における第1半導体層材料膜形成工程およびリフトオフ層形成工程を示す図であり、図16B~図16Dは、第2実施形態に係る太陽電池の製造方法における第1半導体層形成工程を示す図である。また、図16Eは、第2実施形態に係る太陽電池の製造方法における第2半導体層材料膜形成工程を示す図であり、図16Fは、第2実施形態に係る太陽電池の製造方法における第2半導体層形成工程を示す図である。また、図16Gは、第2実施形態に係る太陽電池の製造方法における電極層形成工程を示す図であり、図16Hは、第2実施形態に係る太陽電池の製造方法における光学調整層形成工程を示す図である。 The manufacturing method of the solar cell 1 according to the second embodiment will be described below with reference to FIGS. 16A to 16H. 16A is a diagram showing a first semiconductor layer material film forming step and a lift-off layer forming step in the method for manufacturing a solar cell according to the second embodiment, and FIGS. 16B to 16D are views of the solar cell according to the second embodiment. It is a figure which shows the 1st semiconductor layer formation process in the manufacturing method of. Further, FIG. 16E is a diagram showing a second semiconductor layer material film forming step in the solar cell manufacturing method according to the second embodiment, and FIG. 16F is a diagram showing a second semiconductor layer material film forming step in the solar cell manufacturing method according to the second embodiment. It is a figure which shows the semiconductor layer formation process. Further, FIG. 16G is a diagram showing an electrode layer forming step in the solar cell manufacturing method according to the second embodiment, and FIG. 16H is a diagram showing an optical adjustment layer forming step in the solar cell manufacturing method according to the second embodiment. It is a figure which shows.
 まず、半導体基板11の少なくとも裏面側に、異方性エッチングを行うことにより、ピラミッド型の微細な凹凸構造を有するテクスチャ構造を形成する。エッチング溶液としては、例えば水酸化カリウム水溶液のようなアルカリ性溶液が挙げられる。 First, by performing anisotropic etching on at least the back surface side of the semiconductor substrate 11, a texture structure having a pyramid-shaped fine uneven structure is formed. Examples of the etching solution include an alkaline solution such as an aqueous solution of potassium hydroxide.
 次に、図16Aに示すように、例えばCVD法(化学気相堆積法)を用いて、半導体基板11の裏面側の全面に、真性半導体層材料膜23Zおよび第1導電型半導体層材料膜25Zを順に積層(製膜)する(第1半導体層材料膜形成工程)。 Next, as shown in FIG. 16A, for example, by using a CVD method (chemical vapor deposition method), the intrinsic semiconductor layer material film 23Z and the first conductive semiconductor layer material film 25Z are applied to the entire back surface side of the semiconductor substrate 11. Are laminated (film-formed) in order (first semiconductor layer material film forming step).
 また、例えばCVD法を用いて、半導体基板11の受光面側の全面に、真性半導体層13を積層(製膜)する。なお、真性半導体層材料膜23Zおよび第1導電型半導体層材料膜25Zと、真性半導体層13との製膜の順序は限定されない。 Further, for example, using the CVD method, the intrinsic semiconductor layer 13 is laminated (film-formed) on the entire surface of the semiconductor substrate 11 on the light receiving surface side. The order of film formation of the intrinsic semiconductor layer material film 23Z, the first conductive semiconductor layer material film 25Z, and the intrinsic semiconductor layer 13 is not limited.
 また、受光面側の真性半導体層13は、後の第2半導体層材料膜形成工程において製膜されてもよい。この場合、この段階で製膜された受光面側の真性半導体層は、後の第1半導体層形成工程において除去されてもよい。或いは、この段階で受光面側に真性半導体層が形成されなくてもよい、すなわちこの段階で真性半導体層形成工程がなくてもよい。 Further, the intrinsic semiconductor layer 13 on the light receiving surface side may be formed in the subsequent second semiconductor layer material film forming step. In this case, the intrinsic semiconductor layer on the light receiving surface side formed at this stage may be removed in a later first semiconductor layer forming step. Alternatively, the intrinsic semiconductor layer may not be formed on the light receiving surface side at this stage, that is, there may be no intrinsic semiconductor layer forming step at this stage.
 次に、例えばCVD法を用いて、半導体基板11の裏面側の全面に、具体的には第1導電型半導体層材料膜25Z上の全面に、リフトオフ層(犠牲層)41を積層(製膜)する(リフトオフ層形成工程)。リフトオフ層41は、酸化珪素(SiO)、窒化珪素(SiN)、または酸窒化珪素(SiON)のようなそれらの複合物等の材料で形成される。 Next, for example, by using a CVD method, a lift-off layer (sacrificial layer) 41 is laminated (film formation) on the entire surface of the back surface side of the semiconductor substrate 11, specifically, on the entire surface of the first conductive semiconductor layer material film 25Z. ) (Lift-off layer forming process). The lift-off layer 41 is formed of a material such as silicon oxide (SiO), silicon nitride (SiN), or a composite thereof such as silicon oxynitride (SiON).
 次に、図16B~図16Dに示すように、パターン印刷レジストを用いて、半導体基板11の裏面側において、第2領域8における真性半導体層材料膜23Z、第1導電型半導体層材料膜25Zおよびリフトオフ層41を除去することにより、第1領域7に、パターン化された真性半導体層23、第1導電型半導体層25およびリフトオフ層41を形成する(第1半導体層形成工程)。 Next, as shown in FIGS. 16B to 16D, the intrinsic semiconductor layer material film 23Z, the first conductive semiconductor layer material film 25Z, and the first conductive semiconductor layer material film 25Z in the second region 8 are used on the back surface side of the semiconductor substrate 11 using the pattern printing resist. By removing the lift-off layer 41, a patterned intrinsic semiconductor layer 23, a first conductive semiconductor layer 25, and a lift-off layer 41 are formed in the first region 7 (first semiconductor layer forming step).
 具体的には、図16Bに示すように、半導体基板11の裏面側の第1領域7、および半導体基板11の受光面側の全面に、パターン印刷法を用いてパターン印刷レジスト90を形成する(レジスト形成工程)。 Specifically, as shown in FIG. 16B, a pattern printing resist 90 is formed on the first region 7 on the back surface side of the semiconductor substrate 11 and the entire surface on the light receiving surface side of the semiconductor substrate 11 by using a pattern printing method (. Resist forming process).
 パターン印刷とは、フォトリソグラフィ法のように、一度、パターン化前のレジスト膜(非パターンレジスト膜)を形成した後に、露光・現像のような工程を経る印刷ではなく、スクリーン印刷若しくはグラビア印刷のようなプレス印刷、または、インクジェット印刷のような吐出印刷のような、レジスト付着面に対して、直接、パターン化したレジスト(印刷材料)を付着させる印刷法を意味する。 Pattern printing is not printing that goes through processes such as exposure and development after forming a resist film (non-patterned resist film) before patterning, as in the photolithography method, but screen printing or gravure printing. It means a printing method in which a patterned resist (printing material) is directly adhered to a resist-adhering surface, such as press printing such as, or ejection printing such as inkjet printing.
 このように、第1導電型半導体層のパターニング(1回目のパターニング)において、パターン印刷法によるパターン印刷レジストを用いることにより、スピンコート法によるフォトレジスト(フォトリソグラフィ法)を用いた場合と比較して、露光および現像の工程を削減することができ、太陽電池の製造プロセスの簡略化が可能となる。 As described above, in the patterning of the first conductive semiconductor layer (first patterning), by using the pattern printing resist by the pattern printing method, it is compared with the case where the photoresist by the spin coating method (photolithography method) is used. As a result, the number of exposure and development steps can be reduced, and the solar cell manufacturing process can be simplified.
 パターン印刷レジスト90は、樹脂材料および無機材料を含む印刷材料を印刷し硬化することにより得られる。このとき、第1領域7に印刷された印刷材料から印刷材料の一部が染み出す。印刷材料は溶剤成分を含有していてもよく、硬化プロセスは加熱によるものだけでなく光による硬化でもよい。また、硬化プロセスでは必ずしも樹脂成分が架橋等により硬化する必要はなく、溶媒の揮発に伴う粘度の上昇により室温においてその形状を維持し耐溶剤性を有する、つまりレジストとしての機能を有する状態となることを指す。 The pattern printing resist 90 is obtained by printing and curing a printing material containing a resin material and an inorganic material. At this time, a part of the printing material exudes from the printing material printed in the first region 7. The printing material may contain a solvent component, and the curing process may be cured by light as well as by heating. Further, in the curing process, the resin component does not necessarily have to be cured by cross-linking or the like, and the shape is maintained at room temperature due to the increase in viscosity due to the volatilization of the solvent, and the resin component has solvent resistance, that is, it has a function as a resist. Point to that.
 図17Aは、図16Bに示す第1領域7と第2領域8との境界領域VIIAの拡大図である。図17Aに示すように、染み出したレジスト材料は、第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)におけるピラミッド11Aの谷部を被覆する。 FIG. 17A is an enlarged view of the boundary region VIA between the first region 7 and the second region 8 shown in FIG. 16B. As shown in FIG. 17A, the exuded resist material covers the valley portion of the pyramid 11A in the boundary region 8A (the exuded region of the pattern printing resist) on the first region 7 side in the second region 8.
 詳説すれば、印刷材料が染み出してなる染み出し膜90Aは、図18に示すように、第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)におけるピラミッド11Aの山裾1Aから中腹2Aに至るまでの第1斜面SF1を被覆するように形成される。 More specifically, as shown in FIG. 18, the exuding film 90A formed by exuding the printing material is a pyramid 11A in the boundary region 8A (exuding region of the pattern printing resist) on the first region 7 side in the second region 8. It is formed so as to cover the first slope SF1 from the mountain hem 1A to the middle 2A.
 ここで、パターン印刷レジスト90の膜厚が3μm以上50μm以下であるのに対して、ピラミッド11Aの高さは0.1μm以上15μm以下である。ピラミッドの高さとは山裾から山頂までの高さであり、パターン印刷レジスト90の膜厚とはピラミッド山裾からの膜厚である。 Here, the film thickness of the pattern printing resist 90 is 3 μm or more and 50 μm or less, while the height of the pyramid 11A is 0.1 μm or more and 15 μm or less. The height of the pyramid is the height from the foot of the mountain to the top of the mountain, and the film thickness of the pattern printing resist 90 is the film thickness from the foot of the pyramid.
 その後、図16Cに示すように、パターン印刷レジスト90およびその周縁の染み出し膜90Aをマスクとして、第2領域8におけるリフトオフ層41、第1導電型半導体層材料膜25Zおよび真性半導体層材料膜23Zをエッチングすることにより、第1領域7に、パターン化された真性半導体層23、第1導電型半導体層25およびリフトオフ層41を形成する。 Then, as shown in FIG. 16C, the lift-off layer 41, the first conductive semiconductor layer material film 25Z, and the intrinsic semiconductor layer material film 23Z in the second region 8 are used as a mask with the pattern printing resist 90 and the exuding film 90A around the pattern printing resist 90 as a mask. The patterned intrinsic semiconductor layer 23, the first conductive semiconductor layer 25, and the lift-off layer 41 are formed in the first region 7 by etching.
 リフトオフ層41に対するエッチング溶液としては、例えばオゾンをフッ酸に溶解させた混合液、またはフッ酸と硝酸との混合液等の酸性溶液が挙げられる。また、p型の半導体層材料膜に対するエッチング溶液としては、例えばオゾンをフッ酸に溶解させた混合液、またはフッ酸と硝酸との混合液等の酸性溶液が挙げられ、n型の半導体層材料膜に対するエッチング溶液としては、例えば水酸化カリウム水溶液のようなアルカリ性溶液が挙げられる。 Examples of the etching solution for the lift-off layer 41 include a mixed solution in which ozone is dissolved in hydrofluoric acid, or an acidic solution such as a mixed solution of hydrofluoric acid and nitric acid. Examples of the etching solution for the p-type semiconductor layer material film include an acidic solution such as a mixed solution of ozone dissolved in hydrofluoric acid or a mixed solution of hydrofluoric acid and nitric acid, and an n-type semiconductor layer material. Examples of the etching solution for the film include an alkaline solution such as an aqueous potassium hydroxide solution.
 図17Bは、図16Cに示す第1領域7と第2領域8との境界領域VIIBの拡大図である。図17Bに示すように、第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)において、染み出し膜90Aで被覆されたピラミッド11Aの第1斜面SF1には、第1真性半導体層23および第1導電型半導体層25(第1半導体層)が残る。 FIG. 17B is an enlarged view of the boundary region VIIB between the first region 7 and the second region 8 shown in FIG. 16C. As shown in FIG. 17B, in the boundary region 8A (the exuding region of the pattern printing resist) on the first region 7 side in the second region 8, the first slope SF1 of the pyramid 11A coated with the exuding film 90A has a surface SF1. The first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 (first semiconductor layer) remain.
 上述した図14Aおよび図18は、図17Bに示す第2領域8における第1領域7側の境界領域8Aの一部IVAの拡大断面図に相当し、上述した図14Bは、図17Bに示す第2領域8における境界領域8A以外の一部IVBの拡大断面図に相当する。 14A and 18 described above correspond to an enlarged cross-sectional view of a part of IVA of the boundary region 8A on the side of the first region 7 in the second region 8 shown in FIG. 17B, and FIG. 14B described above is shown in FIG. 17B. It corresponds to an enlarged cross-sectional view of a part of IVB other than the boundary region 8A in the two regions 8.
 図14Aおよび図18に示すように、半導体基板11の裏面側の第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)では、ピラミッド11Aにおける、染み出し膜90Aによって被覆されている山裾側はエッチングされず、染み出し膜90Aによって被覆されていない山頂側はエッチングされる。 As shown in FIGS. 14A and 18, in the boundary region 8A (exuding region of the pattern printing resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11, the exuding film 90A in the pyramid 11A. The hem side covered with is not etched, and the top side not covered with the exudate film 90A is etched.
 これにより、ピラミッド11Aの各斜面は、山裾1Aから中腹2Aに至るまでの第1斜面SF1と、中腹2Aから山頂3Aに至るまでの第2斜面SF2とを有することとなる。第1斜面SF1と第2斜面SF2とは、中腹2Aの屈曲点を境界に、異なる傾斜角を有する。第2斜面SF2の傾斜は第1斜面SF1の傾斜よりも緩やかとなる。 As a result, each slope of the pyramid 11A has a first slope SF1 from the foot of the mountain 1A to the middle 2A and a second slope SF2 from the middle 2A to the summit 3A. The first slope SF1 and the second slope SF2 have different inclination angles with the bending point of the middle slope 2A as a boundary. The slope of the second slope SF2 is gentler than the slope of the first slope SF1.
 山頂3Aを通り山裾1Aに対して直交させた断面(すなわち、図14Aおよび図18に示される断面)において、山裾1Aから山頂3Aに至るまでの第1仮想直線L1と、山裾1Aから中腹2Aの屈曲点に至るまでの第2仮想直線L2との成す最小角度θ[°]は、8<θ≦30となる。 In a cross section that passes through the mountaintop 3A and is orthogonal to the mountain hem 1A (that is, the cross section shown in FIGS. 14A and 18), the first virtual straight line L1 from the mountain hem 1A to the mountain top 3A and the mountain hem 1A to the middle 2A The minimum angle θ [°] formed by the second virtual straight line L2 up to the bending point is 8 <θ ≦ 30.
 このようなピラミッド11Aは、半導体基板11の裏面の面積に対して0.01%以上50%以下を占めることとなる。 Such a pyramid 11A occupies 0.01% or more and 50% or less with respect to the area of the back surface of the semiconductor substrate 11.
 一方、図14Bに示すように、半導体基板11の裏面側の第2領域8における境界領域8A以外の領域では、ピラミッド11Bは、染み出し膜90Aによって被覆されていないので、全体的にエッチングされる。 On the other hand, as shown in FIG. 14B, in the region other than the boundary region 8A in the second region 8 on the back surface side of the semiconductor substrate 11, the pyramid 11B is not covered with the exuding film 90A, so that the pyramid 11B is entirely etched. ..
 これにより、ピラミッド11Bの各斜面は、山裾1Bから山頂3Bに至るまで、屈曲点がない第3斜面SF3を有することとなる。ピラミッド11Bでは、斜面が全体的にエッチングされるため、第3斜面SF3の傾斜は、第2斜面SF2の傾斜よりは急となる。 As a result, each slope of the pyramid 11B has a third slope SF3 having no bending point from the foot of the mountain 1B to the top of the mountain 3B. In the pyramid 11B, since the slope is entirely etched, the slope of the third slope SF3 is steeper than the slope of the second slope SF2.
 また、ピラミッド11Aの第1斜面SF1には、リフトオフ層41、第1真性半導体層23および第1導電型半導体層25(第1半導体層)が残る。なお、リフトオフ層41、第1真性半導体層23および第1導電型半導体層25(第1半導体層)は、ピラミッド11Aの第1斜面SF1の全部において残ってもよいし、少なくとも一部(例えば、山裾1A側、すなわち谷部側)において残ってもよい。 Further, the lift-off layer 41, the first intrinsic semiconductor layer 23, and the first conductive semiconductor layer 25 (first semiconductor layer) remain on the first slope SF1 of the pyramid 11A. The lift-off layer 41, the first intrinsic semiconductor layer 23, and the first conductive semiconductor layer 25 (first semiconductor layer) may remain on all of the first slope SF1 of the pyramid 11A, or at least a part (for example, for example). It may remain on the mountain hem 1A side, that is, the valley side).
 その後、図16Dに示すように、パターン印刷レジスト90を除去する。パターン印刷レジスト90に対するエッチング溶液としては、例えば水酸化カリウム水溶液のようなアルカリ性溶液が挙げられる。 After that, as shown in FIG. 16D, the pattern print resist 90 is removed. Examples of the etching solution for the pattern printing resist 90 include an alkaline solution such as an aqueous potassium hydroxide solution.
 このように、第1導電型半導体層25のパターニング(1回目のパターニング)において、パターン印刷レジストを除去する溶液として安価なアルカリ性溶液を採用することにより、太陽電池の低コスト化が可能となる。 As described above, in the patterning of the first conductive semiconductor layer 25 (first patterning), the cost of the solar cell can be reduced by adopting an inexpensive alkaline solution as the solution for removing the pattern printing resist.
 なお、第1半導体層形成工程では、半導体基板11の裏面側の第2領域8における真性半導体層材料膜23Zの一部または全部を残すように、第1導電型半導体層25のパターニングを行えばよい。 In the first semiconductor layer forming step, the first conductive semiconductor layer 25 may be patterned so as to leave a part or all of the intrinsic semiconductor layer material film 23Z in the second region 8 on the back surface side of the semiconductor substrate 11. good.
 次に、半導体基板11Xの両面側をクリーニングする(第1洗浄工程)。第1洗浄工程では、例えばオゾン処理を行った後、フッ酸処理が行われる。フッ酸処理とは、フッ酸のみならず、フッ酸に他の種類の酸(第1洗浄工程では、例えば塩酸)を含めた混合物での処理も含むものとする。 Next, clean both sides of the semiconductor substrate 11X (first cleaning step). In the first cleaning step, for example, ozone treatment is followed by hydrofluoric acid treatment. The hydrofluoric acid treatment includes not only hydrofluoric acid but also treatment with a mixture of hydrofluoric acid and another kind of acid (for example, hydrochloric acid in the first washing step).
 次に、図16Eに示すように、例えばCVD法を用いて、半導体基板11の裏面側の全面に、真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zを順に積層(製膜)する(第2半導体層材料膜形成工程)。 Next, as shown in FIG. 16E, for example, using the CVD method, the intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z are laminated in order on the entire surface of the back surface side of the semiconductor substrate 11 (film formation). (Second semiconductor layer material film forming step).
 次に、図16Fに示すように、リフトオフ層(犠牲層)を用いたリフトオフ法を利用して、半導体基板11の裏面側において、第1領域7における真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zを除去することにより、第2領域8に、パターン化された真性半導体層33および第2導電型半導体層35を形成する(第2半導体層形成工程)。 Next, as shown in FIG. 16F, the intrinsic semiconductor layer material film 33Z and the second conductive type in the first region 7 on the back surface side of the semiconductor substrate 11 by using the lift-off method using the lift-off layer (sacrificial layer). By removing the semiconductor layer material film 35Z, a patterned intrinsic semiconductor layer 33 and a second conductive semiconductor layer 35 are formed in the second region 8 (second semiconductor layer forming step).
 具体的には、リフトオフ層41を除去することにより、リフトオフ層41上の真性半導体層材料膜33Zおよび第2導電型半導体層材料膜35Zを除去し、第2領域8に真性半導体層33および第2導電型半導体層35を形成する。リフトオフ層41の除去溶液としては、例えばフッ酸等の酸性溶液が用いられる。 Specifically, by removing the lift-off layer 41, the intrinsic semiconductor layer material film 33Z and the second conductive semiconductor layer material film 35Z on the lift-off layer 41 are removed, and the intrinsic semiconductor layer 33 and the second region 8 are removed. 2 Conductive semiconductor layer 35 is formed. As the removal solution for the lift-off layer 41, for example, an acidic solution such as hydrofluoric acid is used.
 このように、第2導電型半導体層35のパターニング(2回目のパターニング)において、リフトオフ層(犠牲層)を用いたリフトオフ法を採用することにより、太陽電池の製造プロセスの簡略化が可能となる。 As described above, by adopting the lift-off method using the lift-off layer (sacrificial layer) in the patterning (second patterning) of the second conductive semiconductor layer 35, the manufacturing process of the solar cell can be simplified. ..
 図17Cは、図16Gに示す第1領域7と第2領域8との境界領域VIICの拡大断面図である。上述した図15Aは、図17Cに示す第2領域8における第1領域7側の境界領域8Aの一部VAの拡大断面図に相当し、上述した図15Bは、図17Cに示す第2領域8における境界領域8A以外の一部VBの拡大断面図に相当する。 FIG. 17C is an enlarged cross-sectional view of the boundary region VIIC between the first region 7 and the second region 8 shown in FIG. 16G. FIG. 15A described above corresponds to an enlarged cross-sectional view of a part of VA of the boundary region 8A on the side of the first region 7 in the second region 8 shown in FIG. 17C, and FIG. 15B described above corresponds to the second region 8 shown in FIG. 17C. Corresponds to the enlarged cross-sectional view of a part of VB other than the boundary region 8A in.
 図17Cおよび図15Aに示すように、半導体基板11の裏面側の第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)において、ピラミッド11Aの第1斜面SF1には、第1真性半導体層23および第1導電型半導体層25(第1半導体層)と、第2真性半導体層33および第2導電型半導体層35(第2半導体層)とが順に積層(形成)される。なお、第1真性半導体層23および第1導電型半導体層25(第1半導体層)は、ピラミッド11Aの第1斜面SF1の全部に積層されていてもよいし、少なくとも一部(例えば、山裾1A側、すなわち谷部側)に積層されていてもよい。 As shown in FIGS. 17C and 15A, in the boundary region 8A (exudation region of the pattern printing resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11, the first slope SF1 of the pyramid 11A Is a stack (formation) of a first intrinsic semiconductor layer 23 and a first conductive semiconductor layer 25 (first semiconductor layer), and a second intrinsic semiconductor layer 33 and a second conductive semiconductor layer 35 (second semiconductor layer) in order. ). The first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 (first semiconductor layer) may be laminated on all of the first slope SF1 of the pyramid 11A, or at least a part (for example, the foot of the mountain 1A). It may be laminated on the side, that is, the valley side).
 一方、ピラミッド11Aの第2斜面SF2には、第1真性半導体層23および第1導電型半導体層25(第1半導体層)は積層(形成)されておらず、第2真性半導体層33および第2導電型半導体層35(第2半導体層)のみが積層(形成)される。 On the other hand, the first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 (first semiconductor layer) are not laminated (formed) on the second slope SF2 of the pyramid 11A, and the second intrinsic semiconductor layer 33 and the second intrinsic semiconductor layer 33 and the second. Only the two conductive semiconductor layer 35 (second semiconductor layer) is laminated (formed).
 また、半導体基板11の裏面側の第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)では、第2斜面SF2における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚は、第1斜面SF1における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚よりも厚く形成される。これは、傾斜が緩やかであるほど、積層される半導体層の膜厚が厚くなることによるものと推測される。 Further, in the boundary region 8A (exudation region of the pattern printing resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11, the second intrinsic semiconductor layer 33 and the second conductive type on the second slope SF2 The thickness of the semiconductor layer 35 (second semiconductor layer) is formed to be thicker than the thickness of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the first slope SF1. It is presumed that this is because the gentler the inclination, the thicker the film thickness of the semiconductor layers to be laminated.
 なお、第1半導体層形成工程において、半導体基板11の裏面側の第2領域8における真性半導体層材料膜23Zの全部が残る場合、第2半導体層材料膜形成工程および第2半導体層形成工程では、真性半導体層材料膜の積層(製膜)を行わず、第2導電型半導体層35のパターニングを行えばよい。また、第1半導体層形成工程において、半導体基板11の裏面側の第2領域8における真性半導体層材料膜23Zの一部が残る場合、第2半導体層材料膜形成工程および第2半導体層形成工程では、除去された分だけ真性半導体層材料膜の積層(製膜)を行い、真性半導体層および第2導電型半導体層35のパターニングを行えばよい。 In the first semiconductor layer forming step, when all of the intrinsic semiconductor layer material film 23Z in the second region 8 on the back surface side of the semiconductor substrate 11 remains, in the second semiconductor layer material film forming step and the second semiconductor layer forming step. The second conductive semiconductor layer 35 may be patterned without laminating (forming) the intrinsic semiconductor layer material film. Further, in the first semiconductor layer forming step, when a part of the intrinsic semiconductor layer material film 23Z in the second region 8 on the back surface side of the semiconductor substrate 11 remains, the second semiconductor layer material film forming step and the second semiconductor layer forming step Then, the intrinsic semiconductor layer material film may be laminated (film-formed) by the amount removed, and the intrinsic semiconductor layer and the second conductive semiconductor layer 35 may be patterned.
 次に、図16Gに示すように、半導体基板11の裏面側に、第1電極層27および第2電極層37を形成する(電極層形成工程)。 Next, as shown in FIG. 16G, the first electrode layer 27 and the second electrode layer 37 are formed on the back surface side of the semiconductor substrate 11 (electrode layer forming step).
 具体的には、例えばスパッタリング法等のPVD法(物理気相成長法)を用いて、半導体基板11の裏面側の全面に、透明電極層材料膜を積層(製膜)する。その後、例えばエッチングペーストを用いたエッチング法を用いて、透明電極層材料膜の一部を除去することにより、パターン化された透明電極層28,38を形成する。透明電極層材料膜に対するエッチング溶液としては、例えば塩酸または塩化第二鉄水溶液が用いられる。 Specifically, for example, using a PVD method (physical vapor deposition method) such as a sputtering method, a transparent electrode layer material film is laminated (film-formed) on the entire back surface side of the semiconductor substrate 11. Then, the patterned transparent electrode layers 28 and 38 are formed by removing a part of the transparent electrode layer material film by, for example, an etching method using an etching paste. As the etching solution for the transparent electrode layer material film, for example, hydrochloric acid or an aqueous ferric chloride solution is used.
 その後、例えばパターン印刷法または塗布法を用いて、透明電極層28上に金属電極層29を形成し、透明電極層38の上に金属電極層39を形成することにより、第1電極層27および第2電極層37を形成する。 Then, for example, by forming a metal electrode layer 29 on the transparent electrode layer 28 and forming a metal electrode layer 39 on the transparent electrode layer 38 by using, for example, a pattern printing method or a coating method, the first electrode layer 27 and The second electrode layer 37 is formed.
 上述した図13は、図16Gに示す第1領域7と第2領域8との境界領域IIIの拡大断面図に相当する。図13に示すように、第2領域8における第1領域7側の境界領域8Aは、第1電極層27の透明電極層28と第2電極層37の透明電極層38との間に位置するとともに、第2電極層37の透明電極層38における第1電極層27の透明電極層28側の下に位置していてもよい。 FIG. 13 described above corresponds to an enlarged cross-sectional view of the boundary region III between the first region 7 and the second region 8 shown in FIG. 16G. As shown in FIG. 13, the boundary region 8A on the first region 7 side in the second region 8 is located between the transparent electrode layer 28 of the first electrode layer 27 and the transparent electrode layer 38 of the second electrode layer 37. At the same time, it may be located below the transparent electrode layer 28 side of the first electrode layer 27 in the transparent electrode layer 38 of the second electrode layer 37.
 次に、図16Hに示すように、半導体基板11の受光面側の全面に、光学調整層15を積層(製膜)する。
 以上の工程により、第2実施形態に係る裏面電極型の太陽電池1が完成する。
Next, as shown in FIG. 16H, the optical adjustment layer 15 is laminated (film-formed) on the entire surface of the semiconductor substrate 11 on the light receiving surface side.
Through the above steps, the back electrode type solar cell 1 according to the second embodiment is completed.
 以上説明したように、第2実施形態の太陽電池1およびその製造方法によれば、第2領域8における第1領域7側の境界領域8A、すなわち透明電極層28,38間、におけるピラミッド11Aの第2斜面SF2における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚が厚い。また、第2領域8における第1領域7側の境界領域8A、すなわち透明電極層28,38間、におけるピラミッド11Aの第1斜面SF1では、第1真性半導体層23および第1導電型半導体層25(第1半導体層)が残るので、第1真性半導体層23および第1導電型半導体層25(第1半導体層)と、第2真性半導体層33および第2導電型半導体層35(第2半導体層)との総膜厚が厚い。これにより、太陽電池1の信頼性を向上させることができる。また、パッシベーション性能が向上し、太陽電池1の性能(例えばVoc)を向上させることができる。 As described above, according to the solar cell 1 of the second embodiment and the method for manufacturing the solar cell 1, the boundary region 8A on the first region 7 side in the second region 8, that is, the pyramid 11A between the transparent electrode layers 28 and 38. The thickness of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the second slope SF2 is large. Further, in the first slope SF1 of the pyramid 11A in the boundary region 8A on the first region 7 side in the second region 8, that is, between the transparent electrode layers 28 and 38, the first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 Since the (first semiconductor layer) remains, the first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 (first semiconductor layer), the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor) The total film thickness with the layer) is thick. Thereby, the reliability of the solar cell 1 can be improved. Further, the passivation performance is improved, and the performance of the solar cell 1 (for example, Voc) can be improved.
 また、第2実施形態の太陽電池1およびその製造方法によれば、第2領域8における第1領域7側の境界領域8Aは、第1電極層27の透明電極層28と第2電極層37の透明電極層38との間に位置するとともに、第2電極層37の透明電極層38における第1電極層27の透明電極層28側の下に位置している。これにより、製造ばらつき等があっても、透明電極層28,38間における第2領域8に、第2斜面SF2における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚が厚く、かつ、第1斜面SF1における第1真性半導体層23および第1導電型半導体層25(第1半導体層)と第2真性半導体層33および第2導電型半導体層35(第2半導体層)との総膜厚が厚いピラミッド11Aが配置され、太陽電池1の信頼性および性能を向上させることができる。 Further, according to the solar cell 1 of the second embodiment and the manufacturing method thereof, the boundary region 8A on the first region 7 side in the second region 8 is the transparent electrode layer 28 and the second electrode layer 37 of the first electrode layer 27. It is located between the transparent electrode layer 38 and the transparent electrode layer 28 of the first electrode layer 27 in the transparent electrode layer 38 of the second electrode layer 37. As a result, even if there are manufacturing variations, the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the second slope SF2 are located in the second region 8 between the transparent electrode layers 28 and 38. The first intrinsic semiconductor layer 23, the first conductive semiconductor layer 25 (first semiconductor layer), the second intrinsic semiconductor layer 33, and the second conductive semiconductor layer 35 (the first) on the first slope SF1 are thick. A pyramid 11A having a large total thickness with the two semiconductor layers) is arranged, and the reliability and performance of the solar cell 1 can be improved.
 また、第2実施形態の太陽電池の製造方法によれば、第1導電型半導体層のパターニング(1回目のパターニング)において、パターン印刷法によるパターン印刷レジストを用いることにより、太陽電池の製造プロセスの簡略化を図りつつ、パターン印刷レジストにおける樹脂材料の染み出し膜を利用して、上述したように太陽電池1の信頼性の向上および性能の向上を実現させることができる。 Further, according to the method for manufacturing a solar cell of the second embodiment, in the patterning of the first conductive semiconductor layer (first patterning), by using a pattern printing resist by a pattern printing method, a solar cell manufacturing process can be performed. As described above, the reliability and performance of the solar cell 1 can be improved by utilizing the exuding film of the resin material in the pattern printing resist while simplifying the process.
 なお、ピラミッド型の微細な凹凸構造(テクスチャ構造)を有さないフラットな半導体基板では、パターン印刷法によるパターン印刷レジストを用いたとしても、パターン印刷レジストにおける樹脂材料の染み出しはほとんど発生しない。つまり、上述した第2実施形態の太陽電池1の特徴は、ピラミッド型の微細な凹凸構造(テクスチャ構造)を有する半導体基板の使用と、パターン印刷法によるパターン印刷レジストの使用との組み合わせにより実現できる。 In a flat semiconductor substrate that does not have a pyramid-shaped fine uneven structure (texture structure), even if a pattern printing resist by the pattern printing method is used, the resin material hardly exudes from the pattern printing resist. That is, the characteristics of the solar cell 1 of the second embodiment described above can be realized by combining the use of a semiconductor substrate having a pyramid-shaped fine uneven structure (texture structure) and the use of a pattern printing resist by a pattern printing method. ..
 また、第2実施形態の太陽電池1およびその製造方法によれば、ピラミッドのサイズ、および/または、パターン印刷レジストの成分・粘度を調整することにより、パターン印刷レジストにおける樹脂材料の染み出し幅を調整することができる。半導体基板11の裏面側の第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)においてピラミッドの山裾付近を保護することで、第一半導体層パターニング後にも半導体層の膜厚が薄くなりがちな山裾の半導体層の膜厚を厚くして信頼性を向上させつつ、山頂部分に積層されていた第一半導体層は除去されるためこの山頂部からは大きな抵抗ロスなく電流を回収することができる最適な構造とすることができる。これにより、上述した第2実施形態の太陽電池1の特徴について、最適化の設計が容易となる。 Further, according to the solar cell 1 of the second embodiment and the manufacturing method thereof, the exuding width of the resin material in the pattern printing resist can be adjusted by adjusting the size of the pyramid and / or the component / viscosity of the pattern printing resist. Can be adjusted. By protecting the vicinity of the mountain hem of the pyramid in the boundary region 8A (exudation region of the pattern printing resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11, the semiconductor layer is formed even after the first semiconductor layer is patterned. The thickness of the semiconductor layer at the foot of the mountain, which tends to be thin, is increased to improve reliability, and the first semiconductor layer laminated on the mountaintop is removed, resulting in a large resistance loss from the mountaintop. The optimum structure can be used so that the current can be recovered without any trouble. This facilitates an optimization design for the features of the solar cell 1 of the second embodiment described above.
(変形例)
 図19は、第2実施形態の変形例に係る太陽電池の断面図であって、図11におけるII-II線相当の断面図である。また、図20は、図19に示す第1領域7と第2領域8との境界領域Xの拡大断面図である。
(Modification example)
FIG. 19 is a cross-sectional view of the solar cell according to the modified example of the second embodiment, and is a cross-sectional view corresponding to the line II-II in FIG. Further, FIG. 20 is an enlarged cross-sectional view of the boundary region X between the first region 7 and the second region 8 shown in FIG.
 図19および図20に示すように、第2領域8における第1領域7側の境界領域8Aは、第1電極層27の透明電極層28と第2電極層37の透明電極層38との間に位置し、第2電極層37の透明電極層38の下には位置しなくてもよい。これにより、第2電極層37の透明電極層38下に、第2斜面SF2における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚が厚く、かつ、第1斜面SF1における第1真性半導体層23および第1導電型半導体層25(第1半導体層)と第2真性半導体層33および第2導電型半導体層35(第2半導体層)との総膜厚が厚いピラミッド11Aが位置しないので、抵抗の増加を抑制することができ、キャリアの取り出し効率の低下を抑制することができる。 As shown in FIGS. 19 and 20, the boundary region 8A on the first region 7 side in the second region 8 is between the transparent electrode layer 28 of the first electrode layer 27 and the transparent electrode layer 38 of the second electrode layer 37. It does not have to be located below the transparent electrode layer 38 of the second electrode layer 37. As a result, the thickness of the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the second slope SF2 is thick under the transparent electrode layer 38 of the second electrode layer 37, and the second is The total thickness of the first intrinsic semiconductor layer 23 and the first conductive semiconductor layer 25 (first semiconductor layer) and the second intrinsic semiconductor layer 33 and the second conductive semiconductor layer 35 (second semiconductor layer) on the slope SF1. Since the thick pyramid 11A is not located, an increase in resistance can be suppressed, and a decrease in carrier extraction efficiency can be suppressed.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更および変形が可能である。例えば、上述した実施形態では、半導体基板11の裏面側の第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)において、山裾1Aから山頂3Aに至るまでの中腹2Aにおいて1つの屈曲点を有するピラミッド11Aを有する形態を例示した。しかし、本発明はこれに限定されず、半導体基板の裏面側の第2領域における第1領域側の境界領域(パターン印刷レジストの染み出し領域)では、山裾から山頂に至るまでに2つ以上の屈曲点を有するピラミッドを有する形態であってもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and modifications can be made. For example, in the above-described embodiment, in the boundary region 8A (exudation region of the pattern printing resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11, the middle part from the mountain hem 1A to the mountain peak 3A. In 2A, a form having a pyramid 11A having one inflection point was illustrated. However, the present invention is not limited to this, and in the boundary region (exudation region of the pattern printing resist) on the first region side in the second region on the back surface side of the semiconductor substrate, two or more from the foot of the mountain to the top of the mountain. It may be in the form of having a pyramid having an inflection point.
 この場合、ピラミッドの各斜面は、山裾から山頂に至るまでに、異なる傾斜角を有する3以上の斜面を有する。これにより、半導体基板11の裏面側の第2領域8における第1領域7側の境界領域8A(パターン印刷レジストの染み出し領域)では、各斜面における第2真性半導体層33および第2導電型半導体層35(第2半導体層)の膜厚が異なる。 In this case, each slope of the pyramid has three or more slopes with different inclination angles from the foot of the mountain to the top of the mountain. As a result, in the boundary region 8A (exudation region of the pattern printing resist) on the first region 7 side in the second region 8 on the back surface side of the semiconductor substrate 11, the second intrinsic semiconductor layer 33 and the second conductive semiconductor on each slope. The film thickness of the layer 35 (second semiconductor layer) is different.
 1 太陽電池
 1A,1B 山裾
 2A 山腹
 3A,3B 山頂
 7 第1領域
 7b,8b バスバー部
 7f,8f フィンガー部
 8 第2領域
 8A 第2領域における境界領域
 11 半導体基板
 11A,11B ピラミッド
 13 真性半導体層
 15 光学調整層
 23,33 真性半導体層
 23Z,33Z 真性半導体層材料膜
 25 第1導電型半導体層
 25Z 第1導電型半導体層材料膜
 27 第1電極層
 28,38 透明電極層
 28Z 透明電極層材料膜
 29,39 金属電極層
 35 第2導電型半導体層
 35Z 第2導電型半導体層材料膜
 37 第2電極層
 41 リフトオフ層
 90 パターン印刷レジスト
 90A 染み出し膜
 L1 第1仮想直線
 L2 第2仮想直線
 SF1 第1斜面
 SF2 第2斜面
 SF3 第3斜面
1 Solar cell 1A, 1B Mountain hem 2A Mountainside 3A, 3B Mountain peak 7 1st area 7b, 8b Bus bar part 7f, 8f Finger part 8 2nd area 8A Boundary area in 2nd area 11 Semiconductor substrate 11A, 11B Pyramid 13 Intrinsic semiconductor layer 15 Optical adjustment layer 23,33 Intrinsic semiconductor layer 23Z, 33Z Intrinsic semiconductor layer Material film 25 First conductive semiconductor layer 25Z First conductive semiconductor layer Material film 27 First electrode layer 28,38 Transparent electrode layer 28Z Transparent electrode layer Material film 29, 39 Metal electrode layer 35 2nd conductive semiconductor layer 35Z 2nd conductive semiconductor layer Material film 37 2nd electrode layer 41 Lift-off layer 90 Pattern printing resist 90A Exud film L1 1st virtual straight line L2 2nd virtual straight line SF1 1st 1 slope SF2 2nd slope SF3 3rd slope

Claims (9)

  1.  半導体基板と、前記半導体基板の一方主面側と反対側の他方主面側の一部である第1領域に順に積層された第1半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部である第2領域に順に積層された第2半導体層および第2電極層とを備える裏面電極型の太陽電池であって、
     前記半導体基板の少なくとも前記他方主面側には、ピラミッド型の微細な凹凸構造を有するテクスチャ構造が形成されており、
     前記半導体基板の前記他方主面側の前記第2領域における前記第1領域側の境界領域において、
      前記ピラミッドの斜面は、山裾から中腹に至るまでの第1斜面と、前記中腹から山頂に至るまでの第2斜面とを有し、
      前記第2斜面の傾斜は、前記第1斜面の傾斜よりも緩やかであり、
      前記山頂を通り前記山裾に対して直交させた断面にあって、前記山裾から前記山頂に至るまでの第1仮想直線と、前記山裾から前記中腹の屈曲点に至るまでの第2仮想直線との成す最小角度θ[°]が、8<θ≦30になっており、
      前記ピラミッドが、前記他方主面の面積における0.01%以上50%以下を占めており、
      前記第2斜面における前記第2半導体層の膜厚は、前記第1斜面における前記第2半導体層の膜厚よりも厚い、
    太陽電池。
    A semiconductor substrate, a first semiconductor layer and a first electrode layer laminated in order in a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate, and the other of the semiconductor substrate. A back electrode type solar cell including a second semiconductor layer and a second electrode layer that are sequentially laminated in a second region that is another part of the main surface side.
    A texture structure having a pyramid-shaped fine uneven structure is formed on at least the other main surface side of the semiconductor substrate.
    In the boundary region on the first region side in the second region on the other main surface side of the semiconductor substrate,
    The slope of the pyramid has a first slope from the foot of the mountain to the middle of the mountain and a second slope from the middle of the mountain to the top of the mountain.
    The slope of the second slope is gentler than the slope of the first slope.
    A first virtual straight line from the foot of the mountain to the top of the mountain and a second virtual straight line from the foot of the mountain to the inflection point of the middle of the mountain in a cross section orthogonal to the foot of the mountain. The minimum angle θ [°] to be formed is 8 <θ ≦ 30.
    The pyramid occupies 0.01% or more and 50% or less of the area of the other main surface.
    The film thickness of the second semiconductor layer on the second slope is thicker than the film thickness of the second semiconductor layer on the first slope.
    Solar cell.
  2.  半導体基板と、前記半導体基板の一方主面側と反対側の他方主面側の一部である第1領域に順に積層された第1半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部である第2領域に順に積層された第2半導体層および第2電極層とを備える裏面電極型の太陽電池であって、
     前記半導体基板の少なくとも前記他方主面側には、ピラミッド型の微細な凹凸構造を有するテクスチャ構造が形成されており、
     前記半導体基板の前記他方主面側の前記第2領域における前記第1領域側の境界領域において、
      前記ピラミッドの斜面は、山裾から中腹に至るまでの第1斜面と、前記中腹から山頂に至るまでの第2斜面とを有し、
      前記第2斜面の傾斜は、前記第1斜面の傾斜よりも緩やかであり、
      前記第1斜面の少なくとも一部には、前記第1半導体層と前記第2半導体層とが順に積層されており、
      前記第2斜面における前記第2半導体層の膜厚は、前記第1斜面における前記第2半導体層の膜厚よりも厚い、
    太陽電池。
    A semiconductor substrate, a first semiconductor layer and a first electrode layer laminated in order in a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate, and the other of the semiconductor substrate. A back electrode type solar cell including a second semiconductor layer and a second electrode layer that are sequentially laminated in a second region that is another part of the main surface side.
    A texture structure having a pyramid-shaped fine uneven structure is formed on at least the other main surface side of the semiconductor substrate.
    In the boundary region on the first region side in the second region on the other main surface side of the semiconductor substrate,
    The slope of the pyramid has a first slope from the foot of the mountain to the middle of the mountain and a second slope from the middle of the mountain to the top of the mountain.
    The slope of the second slope is gentler than the slope of the first slope.
    The first semiconductor layer and the second semiconductor layer are laminated in this order on at least a part of the first slope.
    The film thickness of the second semiconductor layer on the second slope is thicker than the film thickness of the second semiconductor layer on the first slope.
    Solar cell.
  3.  前記境界領域は、前記第1電極層と前記第2電極層との間に位置し、前記第2電極層の下には位置しない、請求項1または2に記載の太陽電池。 The solar cell according to claim 1 or 2, wherein the boundary region is located between the first electrode layer and the second electrode layer and is not located below the second electrode layer.
  4.  前記境界領域は、前記第1電極層と前記第2電極層との間、および前記第2電極層の前記第1電極層側の下に位置する、請求項1または2に記載の太陽電池。 The solar cell according to claim 1 or 2, wherein the boundary region is located between the first electrode layer and the second electrode layer, and below the first electrode layer side of the second electrode layer.
  5.  半導体基板と、前記半導体基板の一方主面側と反対側の他方主面側の一部である第1領域に順に積層された第1半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部である第2領域に順に積層された第2半導体層および第2電極層とを備える裏面電極型の太陽電池の製造方法であって、
     前記半導体基板の少なくとも前記他方主面側に、ピラミッド型の微細な凹凸構造を有するテクスチャ構造を形成する工程と、
     前記半導体基板の前記他方主面側に、前記第1半導体層の材料膜を形成する第1半導体層材料膜形成工程と、
     前記第1領域における前記第1半導体層の材料膜の上にレジストを形成するレジスト形成工程と、
     前記レジストをマスクとして、前記第2領域における前記第1半導体層の材料膜を除去することにより、前記第1領域に、パターン化された前記第1半導体層を形成し、前記レジストを除去する第1半導体層形成工程と、
     前記第2領域に、パターン化された前記第2半導体層を形成する第2半導体層形成工程と、
    を含み、
     前記レジスト形成工程では、パターン印刷法を用いて、樹脂材料を含む印刷材料を印刷して硬化させることにより、前記第1領域に前記レジストを形成するとともに、前記第2領域における前記第1領域側の境界領域(印刷レジストの染み出し領域)における前記ピラミッドの山裾から中腹に至るまでの第1斜面に、前記印刷材料が染み出してなる染み出し膜を形成し、
     前記第1半導体層形成工程では、前記レジストおよびその周縁の染み出し膜をマスクとして、前記第1半導体層の材料膜をエッチングすることにより、前記第2領域における前記第1領域側の境界領域において、
      前記ピラミッドの斜面は、山裾から中腹に至るまでの第1斜面と、前記中腹から山頂に至るまでの第2斜面とを有し、
      前記第2斜面の傾斜は、前記第1斜面の傾斜よりも緩やかであり、
      前記山頂を通り前記山裾に対して直交させた断面にあって、前記山裾から前記山頂に至るまでの第1仮想直線と、前記山裾から前記中腹の屈曲点に至るまでの第2仮想直線との成す最小角度θ[°]が、8<θ≦30になっており、
      前記ピラミッドが、前記他方主面の面積における0.01%以上50%以下を占めている、
    前記ピラミッドを形成し、
     前記第2半導体層形成工程では、前記第2領域における前記第1領域側の境界領域(印刷レジストの染み出し領域)において、前記第2斜面における膜厚が前記第1斜面における膜厚よりも厚い前記第2半導体層を形成する、
    太陽電池の製造方法。
    A semiconductor substrate, a first semiconductor layer and a first electrode layer laminated in order in a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate, and the other of the semiconductor substrate. A method for manufacturing a back electrode type solar cell including a second semiconductor layer and a second electrode layer which are sequentially laminated in a second region which is another part of the main surface side.
    A step of forming a texture structure having a pyramid-shaped fine uneven structure on at least the other main surface side of the semiconductor substrate.
    A first semiconductor layer material film forming step of forming a material film of the first semiconductor layer on the other main surface side of the semiconductor substrate,
    A resist forming step of forming a resist on the material film of the first semiconductor layer in the first region,
    By removing the material film of the first semiconductor layer in the second region using the resist as a mask, a patterned first semiconductor layer is formed in the first region, and the resist is removed. 1 Semiconductor layer forming process and
    A second semiconductor layer forming step of forming the patterned second semiconductor layer in the second region,
    Including
    In the resist forming step, the resist is formed in the first region by printing and curing the printing material containing the resin material by using the pattern printing method, and the first region side in the second region is formed. An exuding film formed by exuding the printing material is formed on the first slope from the mountain hem to the middle of the pyramid in the boundary region (exuding region of the printing resist).
    In the first semiconductor layer forming step, the material film of the first semiconductor layer is etched with the resist and the exuding film on the periphery thereof as a mask, so that the boundary region on the first region side in the second region is formed. ,
    The slope of the pyramid has a first slope from the foot of the mountain to the middle of the mountain and a second slope from the middle of the mountain to the top of the mountain.
    The slope of the second slope is gentler than the slope of the first slope.
    A first virtual straight line from the foot of the mountain to the top of the mountain and a second virtual straight line from the foot of the mountain to the inflection point of the middle of the mountain in a cross section orthogonal to the foot of the mountain. The minimum angle θ [°] to be formed is 8 <θ ≦ 30.
    The pyramid occupies 0.01% or more and 50% or less of the area of the other main surface.
    Forming the pyramid
    In the second semiconductor layer forming step, the film thickness on the second slope is thicker than the film thickness on the first slope in the boundary region (print resist exuding region) on the first region side in the second region. Forming the second semiconductor layer,
    How to manufacture solar cells.
  6.  半導体基板と、前記半導体基板の一方主面側と反対側の他方主面側の一部である第1領域に順に積層された第1半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部である第2領域に順に積層された第2半導体層および第2電極層とを備える裏面電極型の太陽電池の製造方法であって、
     前記半導体基板の少なくとも前記他方主面側に、ピラミッド型の微細な凹凸構造を有するテクスチャ構造を形成する工程と、
     前記半導体基板の前記他方主面側に、前記第1半導体層の材料膜を形成する第1半導体層材料膜形成工程と、
     前記第1領域における前記第1半導体層の材料膜の上にレジストを形成するレジスト形成工程と、
     前記レジストをマスクとして、前記第2領域における前記第1半導体層の材料膜を除去することにより、前記第1領域に、パターン化された前記第1半導体層を形成し、前記レジストを除去する第1半導体層形成工程と、
     前記第2領域に、パターン化された前記第2半導体層を形成する第2半導体層形成工程と、
    を含み、
     前記レジスト形成工程では、パターン印刷法を用いて、樹脂材料を含む印刷材料を印刷して硬化させることにより、前記第1領域に前記レジストを形成するとともに、前記第2領域における前記第1領域側の境界領域における前記ピラミッドの山裾から中腹に至るまでの第1斜面に、前記印刷材料が染み出してなる染み出し膜を形成し、
     前記第1半導体層形成工程では、前記レジストおよびその周縁の染み出し膜をマスクとして、前記第1半導体層の材料膜をエッチングすることにより、前記第2領域における前記第1領域側の境界領域において、
      前記ピラミッドの斜面は、山裾から中腹に至るまでの第1斜面と、前記中腹から山頂に至るまでの第2斜面とを有し、
      前記第2斜面の傾斜は、前記第1斜面の傾斜よりも緩やかであり、
      前記第1斜面の少なくとも一部には、前記第1半導体層が積層されている、
    前記ピラミッドを形成し、
     前記第2半導体層形成工程では、前記第2領域における前記第1領域側の境界領域において、前記第1斜面における前記第1半導体層上に前記第2半導体層を形成するとともに、前記第2斜面における膜厚が前記第1斜面における膜厚よりも厚い前記第2半導体層を形成する、
    太陽電池の製造方法。
    A semiconductor substrate, a first semiconductor layer and a first electrode layer laminated in order in a first region which is a part of the other main surface side opposite to one main surface side of the semiconductor substrate, and the other of the semiconductor substrate. A method for manufacturing a back electrode type solar cell including a second semiconductor layer and a second electrode layer which are sequentially laminated in a second region which is another part of the main surface side.
    A step of forming a texture structure having a pyramid-shaped fine uneven structure on at least the other main surface side of the semiconductor substrate.
    A first semiconductor layer material film forming step of forming a material film of the first semiconductor layer on the other main surface side of the semiconductor substrate,
    A resist forming step of forming a resist on the material film of the first semiconductor layer in the first region,
    By removing the material film of the first semiconductor layer in the second region using the resist as a mask, a patterned first semiconductor layer is formed in the first region, and the resist is removed. 1 Semiconductor layer forming process and
    A second semiconductor layer forming step of forming the patterned second semiconductor layer in the second region,
    Including
    In the resist forming step, the resist is formed in the first region by printing and curing the printing material containing the resin material by using the pattern printing method, and the first region side in the second region is formed. On the first slope from the mountain hem to the middle of the pyramid in the boundary region of the above, an exudate film formed by exuding the printing material is formed.
    In the first semiconductor layer forming step, the material film of the first semiconductor layer is etched with the resist and the exuding film on the periphery thereof as a mask, so that the boundary region on the first region side in the second region is formed. ,
    The slope of the pyramid has a first slope from the foot of the mountain to the middle of the mountain and a second slope from the middle of the mountain to the top of the mountain.
    The slope of the second slope is gentler than the slope of the first slope.
    The first semiconductor layer is laminated on at least a part of the first slope.
    Forming the pyramid
    In the second semiconductor layer forming step, the second semiconductor layer is formed on the first semiconductor layer on the first slope in the boundary region on the first region side in the second region, and the second slope is formed. To form the second semiconductor layer whose film thickness is thicker than the film thickness on the first slope.
    How to manufacture solar cells.
  7.  前記第1領域に前記第1電極層を形成し、前記第2領域に前記第2電極層を形成する電極層形成工程を更に備え、
     前記電極層形成工程では、前記境界領域が、前記第1電極層と前記第2電極層との間に位置し、前記第2電極層の下には位置しないように、前記第1電極層および前記第2電極層を形成する、
    請求項5または6に記載の太陽電池の製造方法。
    An electrode layer forming step of forming the first electrode layer in the first region and forming the second electrode layer in the second region is further provided.
    In the electrode layer forming step, the first electrode layer and the first electrode layer and the boundary region are located between the first electrode layer and the second electrode layer and not below the second electrode layer. Forming the second electrode layer,
    The method for manufacturing a solar cell according to claim 5 or 6.
  8.  前記第1領域に前記第1電極層を形成し、前記第2領域に前記第2電極層を形成する電極層形成工程を更に備え、
     前記電極層形成工程では、前記境界領域が、前記第1電極層と前記第2電極層との間、および前記第2電極層の前記第1電極層側の下に位置するように、前記第1電極層および前記第2電極層を形成する、
    請求項5または6に記載の太陽電池の製造方法。
    An electrode layer forming step of forming the first electrode layer in the first region and forming the second electrode layer in the second region is further provided.
    In the electrode layer forming step, the first electrode layer is located between the first electrode layer and the second electrode layer and below the first electrode layer side of the second electrode layer. Forming one electrode layer and the second electrode layer,
    The method for manufacturing a solar cell according to claim 5 or 6.
  9.  前記第1半導体層材料膜形成工程の後に、前記第1半導体層の材料膜の上に、リフトオフ層を形成するリフトオフ層形成工程を更に備え、
     前記レジスト形成工程では、前記第1領域における前記リフトオフ層の上に前記レジストを形成し、
     前記第1半導体層形成工程では、前記レジストをマスクとして、前記第2領域における前記リフトオフ層および前記第1半導体層の材料膜を除去することにより、前記第1領域に、パターン化された前記リフトオフ層および前記第1半導体層を形成し、前記レジストを除去し、
     前記第2半導体層形成工程の前に、前記第1領域における前記リフトオフ層の上および前記第2領域に、前記第2半導体層の材料膜を形成する第2半導体層材料膜形成工程を更に備え、
     前記第2半導体層形成工程では、前記リフトオフ層を除去することにより、前記第1領域における前記第2半導体層の材料膜を除去し、前記第2領域に、パターン化された前記第2半導体層を形成する、
    請求項5~8のいずれか1項に記載の太陽電池の製造方法。
    After the first semiconductor layer material film forming step, a lift-off layer forming step of forming a lift-off layer on the material film of the first semiconductor layer is further provided.
    In the resist forming step, the resist is formed on the lift-off layer in the first region.
    In the first semiconductor layer forming step, the lift-off layer patterned in the first region is removed by removing the material film of the lift-off layer and the first semiconductor layer in the second region using the resist as a mask. The layer and the first semiconductor layer are formed, the resist is removed, and the film is removed.
    Prior to the second semiconductor layer forming step, a second semiconductor layer material film forming step of forming the material film of the second semiconductor layer on the lift-off layer in the first region and on the second region is further provided. ,
    In the second semiconductor layer forming step, the material film of the second semiconductor layer in the first region is removed by removing the lift-off layer, and the second semiconductor layer patterned in the second region. Form,
    The method for manufacturing a solar cell according to any one of claims 5 to 8.
PCT/JP2021/013687 2020-03-30 2021-03-30 Solar cell and solar cell manufacturing method WO2021201030A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022512586A JPWO2021201030A1 (en) 2020-03-30 2021-03-30

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020060930 2020-03-30
JP2020-060931 2020-03-30
JP2020-060930 2020-03-30
JP2020060931 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021201030A1 true WO2021201030A1 (en) 2021-10-07

Family

ID=77930022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013687 WO2021201030A1 (en) 2020-03-30 2021-03-30 Solar cell and solar cell manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2021201030A1 (en)
WO (1) WO2021201030A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220376124A1 (en) * 2022-06-08 2022-11-24 Zhejiang Jinko Solar Co., Ltd. Solar cell and photovoltaic module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100154869A1 (en) * 2008-12-24 2010-06-24 Min-Seok Oh Photoelectric conversion device and manufacturing method thereof
JP2012238853A (en) * 2011-04-29 2012-12-06 Semiconductor Energy Lab Co Ltd Photoelectric conversion device, and manufacturing method thereof
WO2014083804A1 (en) * 2012-11-29 2014-06-05 三洋電機株式会社 Solar cell
WO2018179656A1 (en) * 2017-03-31 2018-10-04 株式会社カネカ Solar cell, solar cell module, and solar cell manufacturing method
WO2019163784A1 (en) * 2018-02-23 2019-08-29 株式会社カネカ Method for manufacturing solar cell
WO2020090423A1 (en) * 2018-10-31 2020-05-07 株式会社カネカ Solar cell manufacturing method, solar cell, and solar cell module
WO2021044617A1 (en) * 2019-09-06 2021-03-11 株式会社カネカ Method for manufacturing back electrode type solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100154869A1 (en) * 2008-12-24 2010-06-24 Min-Seok Oh Photoelectric conversion device and manufacturing method thereof
JP2012238853A (en) * 2011-04-29 2012-12-06 Semiconductor Energy Lab Co Ltd Photoelectric conversion device, and manufacturing method thereof
WO2014083804A1 (en) * 2012-11-29 2014-06-05 三洋電機株式会社 Solar cell
WO2018179656A1 (en) * 2017-03-31 2018-10-04 株式会社カネカ Solar cell, solar cell module, and solar cell manufacturing method
WO2019163784A1 (en) * 2018-02-23 2019-08-29 株式会社カネカ Method for manufacturing solar cell
WO2020090423A1 (en) * 2018-10-31 2020-05-07 株式会社カネカ Solar cell manufacturing method, solar cell, and solar cell module
WO2021044617A1 (en) * 2019-09-06 2021-03-11 株式会社カネカ Method for manufacturing back electrode type solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220376124A1 (en) * 2022-06-08 2022-11-24 Zhejiang Jinko Solar Co., Ltd. Solar cell and photovoltaic module
US11799040B2 (en) 2022-06-08 2023-10-24 Zhejiang Jinko Solar Co., Ltd. Solar cell and photovoltaic module
AU2022209227A1 (en) * 2022-06-08 2024-01-04 Jinko Solar Co., Ltd. Solar Cell and Photovoltaic Module
AU2022209227B2 (en) * 2022-06-08 2024-01-11 Jinko Solar Co., Ltd. Solar Cell and Photovoltaic Module

Also Published As

Publication number Publication date
JPWO2021201030A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7356445B2 (en) Method of manufacturing solar cells, solar cells, and solar cell modules
WO2021201030A1 (en) Solar cell and solar cell manufacturing method
WO2009008672A2 (en) Solar cell and method of manufacturing the same
JP7101264B2 (en) How to manufacture solar cells
WO2021221049A1 (en) Solar cell manufacturing method and solar cell
JP7053892B2 (en) How to manufacture solar cells
JP7110173B2 (en) SOLAR CELL, SOLAR CELL MODULE, AND SOLAR CELL MANUFACTURING METHOD
JP7436299B2 (en) How to manufacture solar cells
CN114365294B (en) Solar cell and method for manufacturing solar cell
CN114649441B (en) Method for manufacturing solar cell
JP2013168605A (en) Manufacturing method of solar cell
WO2021206056A1 (en) Semiconductor element and method for producing semiconductor element
WO2020217999A1 (en) Method for manufacturing solar cell and solar cell
JP7459059B2 (en) Method for manufacturing solar cell and solar cell
WO2022210611A1 (en) Solar cell and method for manufacturing solar cell
WO2021117818A1 (en) Etching method for photoelectric conversion element and etching apparatus for photoelectric conversion element
JP7506593B2 (en) How solar cells are manufactured
WO2020195570A1 (en) Method for producing solar cell and in-process product of solar cell
JP7241173B2 (en) Element manufacturing method
WO2021124991A1 (en) Solar cell manufacturing method
JP2022130823A (en) Solar cell and manufacturing method thereof
JP2022098248A (en) Method for manufacturing solar cell and film forming method
JP2020155710A (en) Method for manufacturing solar cell
JP2023111632A (en) Method for manufacturing solar cell and solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21782003

Country of ref document: EP

Kind code of ref document: A1