WO2021201026A1 - Display device and electronic device - Google Patents

Display device and electronic device Download PDF

Info

Publication number
WO2021201026A1
WO2021201026A1 PCT/JP2021/013679 JP2021013679W WO2021201026A1 WO 2021201026 A1 WO2021201026 A1 WO 2021201026A1 JP 2021013679 W JP2021013679 W JP 2021013679W WO 2021201026 A1 WO2021201026 A1 WO 2021201026A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
display device
layer
insulating layer
organic layer
Prior art date
Application number
PCT/JP2021/013679
Other languages
French (fr)
Japanese (ja)
Inventor
大智 今林
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2021201026A1 publication Critical patent/WO2021201026A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Definitions

  • This disclosure relates to a display device and an electronic device including the display device.
  • the display device covers a plurality of anodes 411 separated for each pixel, an insulating layer 412 provided between adjacent anodes 411, and the plurality of anodes 411 and the insulating layer 412.
  • the display device covers a plurality of anodes 411 separated for each pixel, an insulating layer 412 provided between adjacent anodes 411, and the plurality of anodes 411 and the insulating layer 412.
  • the hole injection layer 413A is divided by any of the following techniques (1) to (3).
  • (1) By controlling the direction of the vapor deposition when the hole injection layer 413A is deposited by the vapor deposition method, the hole injection layer 413A is divided at the peripheral edge of each pixel as shown in the region 421.
  • the hole injection layer 413A is divided at the peripheral edge of each pixel by making the shape of the insulating layer 412 between adjacent pixels into an overhang shape.
  • the hole injection layer 413A is divided between the adjacent pixels (see, for example, Patent Document 1).
  • the insulating layer 412 between adjacent pixels needs to have a certain width, so that the aperture diameter of the pixels is greatly restricted. Therefore, the aperture ratio of the pixels may decrease.
  • An object of the present disclosure is to provide a display device capable of suppressing a leakage current while suppressing a decrease in the aperture ratio of pixels, and an electronic device including the display device.
  • the first disclosure is With multiple anodes separated for each pixel, An insulating layer provided between adjacent anodes, An organic layer commonly provided for multiple pixels, which covers multiple anodes and insulating layers, With a cathode provided on the organic layer
  • the anode has a top surface provided at a position higher than the surface of the insulating layer and a side surface provided between the surfaces of the insulating layer.
  • the anode is a display device having at least one portion where the width of the side surface narrows from the top to the bottom of the anode.
  • the anode may have a second portion narrower than the first portion between the first portion having the widest width of the anode and the surface of the insulating layer.
  • the first portion may be on the top of the anode or on the bottom side of the top of the anode.
  • the second portion may be located inside the first portion.
  • the anode may have a portion on the side surface that is narrower than the top surface.
  • the anode may have a tapered shape on at least a part of the side surface.
  • the tapered shape may be inclined so that the width of the anode narrows from the top to the bottom of the anode.
  • the anode may have an overhang shape on the side surface.
  • the anode has a recess on the side surface, and at least a part of the recess may be provided at a position higher than the surface of the insulating layer.
  • the anode has a convex portion on the side surface, and this convex portion may be provided at a position higher than the surface of the insulating layer.
  • the organic layer may include a hole injection layer provided adjacent to the anode.
  • the hole injection layer may be divided at the peripheral edge of each pixel.
  • the surface of the insulating layer may be flat.
  • the height h of the top surface of the anode with respect to the surface of the insulating layer and the thickness t of the organic layer may satisfy the relationship of h ⁇ t.
  • the organic layer may be configured to emit white light.
  • the display device may further include a color filter provided on the cathode.
  • the second disclosure is an electronic device including the display device of the first disclosure.
  • FIG. 3 is an enlarged cross-sectional view showing an example of the configuration of the organic layer shown in FIG. It is a process drawing for demonstrating an example of the manufacturing method of the display device which concerns on one Embodiment of this disclosure.
  • FIG. 2 is a schematic view showing an example of the overall configuration of the organic EL display device 10 (hereinafter, simply referred to as “display device 10”) according to the embodiment of the present disclosure.
  • the display device 10 is suitable for use in various electronic devices, and has a display area 110A and a peripheral area 110B provided on the periphery of the display area 110A.
  • a plurality of sub-pixels 100R, 100G, and 100B are arranged in a matrix in the display area 110A.
  • the sub-pixel 100R displays red
  • the sub-pixel 100G displays green
  • the sub-pixel 100B displays blue.
  • sub-pixel 100 when the sub-pixels 100R, 100G, and 100B are not particularly distinguished, they are referred to as sub-pixel 100.
  • the peripheral region 110B is provided with a signal line drive circuit 111 and a scanning line drive circuit 112, which are drivers for displaying images.
  • the signal line drive circuit 111 supplies the signal voltage of the video signal corresponding to the luminance information supplied from the signal supply source (not shown) to the sub-pixel 100 selected via the signal line 111A.
  • the scanning line drive circuit 112 is composed of a shift register or the like that sequentially shifts (transfers) the start pulse in synchronization with the input clock pulse.
  • the scanning line drive circuit 112 scans the video signals in line units when writing the video signals to the sub-pixels 100, and sequentially supplies the scanning signals to the scanning lines 112A.
  • the display device 10 is, for example, a microdisplay in which self-luminous elements such as OLED or Micro-OLED are formed in an array.
  • the display device 10 is suitable for use in a display device for VR (Virtual Reality), MR (Mixed Reality) or AR (Augmented Reality), an electronic viewfinder (EVF), a small projector, or the like. be.
  • FIG. 3 is a cross-sectional view showing an example of the configuration of the display device 10 according to the embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view showing a part of FIG. 3 in an enlarged manner.
  • the display device 10 is a top emission type display device, and includes a substrate (first substrate) 11 having one main surface, an insulating layer 12 provided on one main surface of the substrate 11, and a plurality of light emitting elements 13. , A protective layer 14 provided on a plurality of light emitting elements 13, a color filter 15 provided on the protective layer 14, a filling resin layer 16 provided on the color filter 15, and a filling resin layer 16 provided on the filling resin layer 16.
  • the opposed substrate (second substrate) 17 is provided.
  • the facing substrate 17 side is the top side
  • the substrate 11 side is the bottom side.
  • the plurality of light emitting elements 13 are arranged in a matrix on one main surface of the substrate 11.
  • the light emitting element 13 is a white OLED or a white Micro-OLED (MOLED).
  • a colorization method in the display device 10 a method using a white OLED and a color filter 15 is used.
  • the light emitting element 13 has an anode 13A as a first electrode, an organic layer 13B, and a cathode 13C as a second electrode loaded in this order from the substrate 11 side.
  • the substrate 11 is a support that supports a plurality of light emitting elements 13 arranged on one main surface. Further, although not shown, the substrate 11 is provided with a drive circuit including a sampling transistor for controlling the drive of the plurality of light emitting elements 13 and a drive transistor, a power supply circuit for supplying electric power to the plurality of light emitting elements 13, and the like. You may be.
  • the substrate 11 may be made of, for example, glass or resin having low water and oxygen permeability, or may be made of a semiconductor such as a transistor which can be easily formed.
  • the substrate 11 is a glass substrate such as high-strain point glass, soda glass, borosilicate glass, forsterite, lead glass, or quartz glass, a semiconductor substrate such as amorphous silicon or polycrystalline silicon, or polymethyl.
  • It may be a resin substrate such as methacrylate, polyvinyl alcohol, polyvinylphenol, polyether sulfone, polyimide, polycarbonate, polyethylene terephthalate, or polyethylene naphthalate.
  • the anode 13A is electrically separated for each sub-pixel 100.
  • the anode 13A is a top surface 13S1 provided at a position higher than the surface 12S of the insulating layer 12 (hereinafter, simply referred to as “the surface 12S of the insulating layer 12”) between the adjacent sub-pixels 100, that is, between the adjacent light emitting elements 13.
  • the side surface 13S2 provided between the surface 12S and the top surface 13S1 of the insulating layer 12.
  • the top surface 13S1 is a film-forming surface on which the organic layer 13B is formed.
  • the side surface 12S2 is a surface for dividing the hole injection layer 131 included in the organic layer 13B at the time of film formation.
  • the width of the side surface 13S2 of the anode 13A changes in the height direction of the anode 13A.
  • the anode 13A has a portion on the side surface 13S2 that is narrower than the top surface 13S1. That is, the anode 13A has a portion (second portion) narrower than the widest apex of the anode 13A between the widest apex (first portion) of the anode 13A and the surface 12S of the insulating layer 12. Part).
  • the portion narrower than the widest top of the anode 13A is located inside the widest top of the anode 13A.
  • the anode 13A has a tapered shape over the entire side surface 12S1.
  • the tapered shape is inclined so that the width of the anode 13A narrows from the top to the bottom of the anode 13A. Since the side surface 13S2 of the anode 13A has the above-mentioned shape, the hole injection layer 131 can be divided at the peripheral edge of the sub-pixel 100 when the hole injection layer 131 is formed.
  • the height h of the top surface 13S1 of the anode 13A with respect to the surface 12S of the insulating layer 12 and the thickness t of the organic layer 13B satisfy the relationship of h ⁇ t. This is because the recesses between the adjacent anodes 13A can be filled with the organic layer 13B, so that the cathode 13C can be suppressed from being divided at the peripheral edge of the sub-pixel 100.
  • the anode 13A also functions as a reflective layer, and it is preferable that the anode 13A is composed of a metal layer having a high reflectance and a large work function as much as possible in order to increase the luminous efficiency.
  • the metal layer is, for example, chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), aluminum (Al). , Magnesium (Mg), Iron (Fe), Tungsten (W), Silver (Ag) and other metal elements alone and alloys. Specific examples of the alloy include AlNi alloy and AlCu alloy.
  • the anode 13A may be composed of a laminated film of a plurality of metal layers containing at least one of the above-mentioned simple substances of metal elements and alloys.
  • the cathode 13C is provided as an electrode common to all sub-pixels 100 in the display area 110A.
  • the cathode 13C is a transparent electrode having transparency to the light generated in the organic layer 13B.
  • the transparent electrode also includes a semitransparent reflective layer.
  • the cathode 13C is composed of, for example, a metal or a metal oxide.
  • the metal contains, for example, at least one of elemental substances and alloys of metal elements such as aluminum (Al), magnesium (Mg), calcium (Ca) and sodium (Na). Specific examples of the alloy include MgAg alloy, AlLi alloy and the like.
  • the metal oxide contains, for example, at least one of a mixture of indium oxide and tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO) and zinc oxide (ZnO).
  • FIG. 5 is a plan view showing an example of the arrangement of the plurality of anodes 13A. Note that FIG. 5 shows a state in which the insulating layer 12 and the plurality of anodes 13A are exposed.
  • the insulating layer 12 is for electrically separating the anode 13A for each sub-pixel 100.
  • the insulating layer 12 is provided between the adjacent anodes 13A. More specifically, the insulating layer 12 has a plurality of holes 12A, and each hole 12A is provided with an anode 13A.
  • a part of the anode 13A on the bottom side of the anode 13A is provided in the hole portion 12A, and a part of the top side of the anode 13A protrudes from the surface 12S of the insulating layer 12.
  • the surface 12S of the insulating layer 12 is preferably flat. Since the three-dimensional structure 424 (see FIG. 1) is not provided in the insulating layer 12 located between the adjacent anodes 13A, that is, between the adjacent sub-pixels 100, the opening diameter AD of the sub-pixels 100 is increased at the same pixel pitch P. can do.
  • the insulating layer 12 is made of, for example, an organic material or an inorganic material.
  • the organic material includes, for example, at least one of polyimide and acrylic resin.
  • Inorganic materials include, for example, at least one of silicon oxide, silicon nitride, silicon nitriding and aluminum oxide.
  • the organic layer 13B is provided as an organic layer common to all the sub-pixels 100 in the display area 110A.
  • the organic layer 13B is configured to be capable of emitting white light.
  • the organic layer 13B includes a hole injection layer 131 provided adjacent to the anode 13A. As described above, the hole injection layer 131 is divided by the side surface 13S2 at the peripheral edge of the sub-pixel 100. A non-deposited region R (see FIG. 4) of the hole injection layer 131 is formed around the sub-pixel 100.
  • FIG. 6 is an enlarged cross-sectional view of the organic layer 13B shown in FIG.
  • the organic layer 13B has a structure in which the hole injection layer 131, the hole transport layer 132, the light emitting layer 133, and the electron transport layer 134 are laminated in this order from the anode 13A toward the cathode 13C.
  • the configuration of the organic layer 13B is not limited to this, and layers other than the hole injection layer 131 and the light emitting layer 133 are provided as needed.
  • the hole injection layer 131 is a buffer layer for increasing the hole injection efficiency into the light emitting layer 133 and for suppressing leakage.
  • the hole transport layer 132 is for increasing the hole transport efficiency to the light emitting layer 133.
  • the electron transport layer 134 is for increasing the electron transport efficiency to the light emitting layer 133.
  • An electron injection layer (not shown) may be provided between the electron transport layer 134 and the cathode 13C. This electron injection layer is for increasing the electron injection efficiency.
  • the protective layer 14 is for blocking the light emitting element 13 from the outside air and suppressing the infiltration of moisture from the external environment into the light emitting element 13. Further, when the cathode 13C is composed of a metal layer, the protective layer 14 also has a function of suppressing oxidation of the metal layer.
  • the protective layer 14 is made of, for example, an inorganic material having low hygroscopicity.
  • the inorganic material contains, for example, at least one of silicon oxide (SiO), silicon nitride (SiN), silicon nitride nitride (SiNO), titanium oxide (TIO) and aluminum oxide (AlO).
  • the protective layer 14 may have a single-layer structure, but may have a multi-layer structure when the thickness is increased. This is to relieve the internal stress in the protective layer 14.
  • the protective layer 14 may be made of a polymer resin.
  • the polymer resin contains at least one of a thermosetting resin and an ultraviolet curable resin.
  • the color filter 15 is, for example, an on-chip color filter (OCCF).
  • the color filter 15 includes, for example, a red filter 15R, a green filter 15G, and a blue filter 15B.
  • the red filter 15R, the green filter 15G, and the blue filter 15B are provided so as to face the light emitting element 13 of the sub pixel 100R, the light emitting element 13 of the sub pixel 100G, and the light emitting element 13 of the sub pixel 100B, respectively.
  • the white light emitted from each of the light emitting elements 13 in the sub pixel 100R, the sub pixel 100G, and the sub pixel 100B passes through the red filter 15R, the green filter 15G, and the blue filter 15B, respectively, so that the red light is emitted.
  • Green light and blue light are emitted from the display surface, respectively.
  • a light-shielding layer (not shown) may be provided in the region between the color filters 15R, 15G, and 15B of each color, that is, between the sub-pixels 100.
  • the color filter 15 is not limited to the on-chip color filter, and may be provided on one main surface of the facing substrate 17.
  • the filled resin layer 16 has a function as an adhesive layer for adhering the color filter 15 and the facing substrate 17.
  • the packed resin layer 16 contains, for example, at least one of a thermosetting resin and an ultraviolet curable resin.
  • the facing substrate 17 is provided so that one main surface of the facing substrate 17 and one main surface of the substrate 11 provided with a plurality of light emitting elements 13 face each other.
  • the facing substrate 17 seals the light emitting element 13, the color filter 15, and the like together with the filled resin layer 16.
  • the facing substrate 17 is made of a material such as glass that is transparent to each color light emitted from the color filter 15.
  • a drive circuit or the like is formed on one main surface of the substrate 11 by using, for example, a thin film forming technique, a photolithography technique, and an etching technique, and then an insulating layer 12 is formed on the drive circuit or the like.
  • a resist is applied onto the insulating layer 12 to form the resist layer 21.
  • the resist layer 21 is processed by, for example, photolithography to form a plurality of openings 21A.
  • the first anode 13A1 and the second anode 13A2 are sequentially laminated by, for example, a sputtering method to form the anode 13A having a laminated structure.
  • the first anode 13A1 is composed of, for example, Ti.
  • the second anode 13A2 is made of, for example, an AlCu alloy.
  • the anode 13A is flatly polished to the position of the opening of the hole 12A by, for example, CMP (Chemical Mechanical Polish), so that the anode 13A is separated into each light emitting element 13 (that is, every sub pixel 100).
  • CMP Chemical Mechanical Polish
  • a plurality of anodes 13A are formed.
  • the insulating layer 12 is etched to make the top surface 13S1 of the anode 13A higher than the surface 12S of the insulating layer 12.
  • the hole injection layer 131, the hole transport layer 132, the light emitting layer 133, and the electron transport layer 134 are placed on the anode 13A and the insulating layer 12 by, for example, a vapor deposition method.
  • the organic layer 13B is formed by laminating in this order. At this time, the organic layer 13B is divided at the peripheral edge of each sub-pixel 100 by the tapered shape of the side surface 13S2 of the anode 13A.
  • the cathode 13C is formed on the organic layer 13B by, for example, a sputtering method. As a result, a plurality of light emitting elements 13 are formed on one main surface of the substrate 11.
  • the protective layer 14 is formed on the cathode 13C by, for example, a vapor deposition method or a CVD method, and then the color filter 15 is formed on the protective layer 14.
  • the flattening layer may be formed on both the upper, lower or upper and lower sides of the color filter 15.
  • the color filter 15 is covered with the filling resin layer 16 by the ODF (One Drop Fill) method, and then the facing substrate 17 is placed on the filling resin layer 16.
  • the substrate 11 and the facing substrate 17 are separated from each other via the filling resin layer 16.
  • the display device 10 is sealed.
  • the filled resin layer 16 contains both a thermosetting resin and an ultraviolet curable resin
  • the filled resin layer 16 is irradiated with ultraviolet rays to be temporarily cured, and then heat is applied to the filled resin layer 16 to perform main curing. You may let it.
  • the anode 13A has a tapered shape on the side surface 13S2.
  • This tapered shape is inclined so that the width of the anode 13A narrows from the top to the bottom of the anode 13A.
  • the hole injection layer 131 can be divided by the side surface 12S2 at the peripheral surface portion of each sub-pixel 100.
  • the insulating layer 12 between the adjacent sub-pixels 100 only needs to have a function of ensuring the insulating property between the adjacent anodes 13A, and the conventional three-dimensional structure 424 (see FIG. 1) or the like is not required.
  • the aperture diameter AD of the sub-pixel 100 can be increased at the same pixel pitch P. Therefore, at the same pixel pitch P, it is possible to improve the brightness and extend the life. In addition, high definition can be realized with the same pixel shape.
  • the insulating layer 12 secures the insulating property between the adjacent sub-pixels 100. , The distance between the ends of the anode 13A can be reduced.
  • FIG. 8 shows an example in which the anode 13A has a tapered shape in the region from the upper end of the side surface 12S1 (one end on the top surface 13S1 side) to the specified position on the bottom side, but is on the bottom side of the upper end side of the side surface 12S1.
  • the region from the first specified position to the second specified position on the bottom side may have a tapered shape.
  • the first defined position is set higher than the surface 12S of the insulating layer 12.
  • Modification 2 In one embodiment described above, an example in which the anode 13A has a tapered shape on the side surface 12S1 (see FIG. 4) has been described, but as shown in FIG. 9, even if the side surface 12S1 has a recess 13A3 as a part of the side surface 12S1. good. That is, the anode 13A may have an overhang shape on the side surface 12S1. At least a part of the recess 13A3 is provided at a position higher than the surface 12S of the insulating layer 12.
  • the entire recess 13A3 may be provided at a position higher than the surface 12S of the insulating layer 12, or a part of the recess 13A3 may be provided at a position higher than the surface 12S of the insulating layer 12.
  • the recess 12A1 extends in the circumferential direction of the side surface 13S2.
  • the recess 12A1 may have a closed loop shape.
  • FIG. 9 shows an example in which the cross-sectional shape of the recess 13A3 is substantially U-shaped, it may be substantially V-shaped, substantially arc-shaped, substantially elliptical arc-shaped, substantially parabolic-shaped, or the like.
  • the cross-sectional shape of the recess 13A3 means the cross-sectional shape when the recess 13A3 is cut in the direction perpendicular to the display surface.
  • a convex portion 13A4 may be provided on the side surface 13S2. That is, the anode 13A may have an overhang shape on the side surface 12S1.
  • the convex portion 13A4 is provided at a position higher than the surface 12S of the insulating layer 12.
  • the convex portion 13A4 extends in the circumferential direction of the side surface 13S2.
  • the convex portion 13A4 may have a closed loop shape.
  • the cross-sectional shape of the convex portion 13A4 is substantially U-shaped, it may be substantially V-shaped, substantially arc-shaped, substantially elliptical arc-shaped, substantially parabolic-shaped, or the like.
  • the cross-sectional shape of the convex portion 13A4 means the cross-sectional shape when the convex portion 13A4 is cut in the direction perpendicular to the display surface.
  • the width of the anode 13A on the bottom side of the convex portion 13A4 is preferably narrower than the width of the anode 13A on the upper side of the convex portion 13A4.
  • the display device 10 according to any one of the above-described embodiment and its modification is incorporated into various electronic devices as, for example, a module as shown in FIG.
  • a module as shown in FIG.
  • This module has an exposed region 210 on one short side of the substrate 11 that is not covered by an opposing substrate or the like, and the wiring of the signal line drive circuit 111 and the scanning line drive circuit 112 is extended to this region 210.
  • An external connection terminal (not shown) is formed.
  • a flexible printed circuit board (FPC) 220 for signal input / output may be connected to the external connection terminal.
  • FPC flexible printed circuit board
  • This digital still camera 310 is a single-lens reflex type with interchangeable lenses, and has an interchangeable shooting lens unit (interchangeable lens) 312 in the center of the front of the camera body (camera body) 311 and on the left side of the front. It has a grip portion 313 for the photographer to grip.
  • interchangeable shooting lens unit interchangeable lens
  • a monitor 314 is provided at a position shifted to the left from the center of the back of the camera body 311.
  • An electronic viewfinder (eyepiece window) 315 is provided above the monitor 314. By looking into the electronic viewfinder 315, the photographer can visually recognize the light image of the subject guided by the photographing lens unit 312 and determine the composition.
  • the display device 10 according to any one of the above-described embodiment and its modification can be used.
  • FIG. 13 shows an example of the appearance of the head-mounted display 320.
  • the head-mounted display 320 has, for example, ear hooks 322 for being worn on the user's head on both sides of the eyeglass-shaped display unit 321.
  • the display unit 321 the display device 10 according to any one of the above-described embodiment and its modification can be used.
  • FIG. 14 shows an example of the appearance of the television device 330.
  • the television device 330 has, for example, a video display screen unit 331 including a front panel 332 and a filter glass 333, and the video display screen unit 331 is a display according to any one of the above-described embodiments and modifications thereof. It is composed of a device 10.
  • the present disclosure may also adopt the following configuration.
  • An insulating layer provided between the adjacent anodes and An organic layer commonly provided for the plurality of pixels, which covers the plurality of anodes and the insulating layer, It is provided with a cathode provided on the organic layer.
  • the anode has a top surface provided at a position higher than the surface of the insulating layer and a side surface provided between the surface of the insulating layer and the top surface.
  • the anode is a display device having at least one portion in which the width of the side surface is narrowed from the top to the bottom of the anode.
  • the display device according to any one of (1) to (5), wherein the anode has an overhang shape on the side surface.
  • the anode has a recess on the side surface.
  • the display device according to any one of (1) to (6), wherein at least a part of the recess is provided at a position higher than the surface of the insulating layer.
  • the anode has a protrusion on the side surface and has a convex portion.
  • the display device according to any one of (1) to (7), wherein the convex portion is provided at a position higher than the surface of the insulating layer.
  • the organic layer includes a hole injection layer provided adjacent to the anode.
  • (11) The display device according to any one of (1) to (10), wherein the surface of the insulating layer is flat.
  • the organic layer is configured to be capable of emitting white light.
  • Display device 11 Substrate 12 Insulation layer 12A Hole 12S Surface 13 Light emitting element 13A Anode 13A1 First anode 13A2 Second anode 13A3 Concave 13A4 Convex 13B Organic layer 13C Cathode 13S1 Top surface 13S2 Side surface 14 Protective layer 15 Red filter 15G Green filter 15B Blue filter 16 Filled resin layer 17 Opposing substrate 21 Resist layer 21A Opening 100R, 100G, 100B Subpixel 110A Display area 110B Peripheral area 111 Signal line drive circuit 111A Signal line 112 Scan line drive circuit 112A Scan line 131 Hole injection layer 132 Hole transport layer 133 Organic light emitting layer 134 Electron transport layer 310 Digital still camera (electronic equipment) 320 Head-mounted display (electronic device) 330 Television equipment (electronic equipment) AD Aperture diameter P Pixel pitch h Height of top surface 13S1 t Thickness of organic layer 13B

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A display device provided with: a plurality of anodes separated for each pixel; an insulation layer provided between adjacent anodes; an organic layer covering the plurality of anodes and the insulation layer, and provided in common for the pixels; and a cathode provided on the organic layer. The anodes have a top surface provided at a position higher than the surface of the insulation layer, and a side surface provided between the top surface and the surface of the insulation layer. The anodes have at least one portion wherein the width of the side surface gradually narrows from a top portion to a base portion of the anode.

Description

表示装置および電子機器Display devices and electronic devices
 本開示は、表示装置およびそれを備える電子機器に関する。 This disclosure relates to a display device and an electronic device including the display device.
 近年、有機EL(Electro-Luminescence)素子を用いた表示装置の開発が進んでいる。この表示装置としては、図1に示すように、画素毎に分離された複数のアノード411と、隣接するアノード411の間に設けられた絶縁層412と、複数のアノード411および絶縁層412を覆う、画素に共通して設けられた有機層413と、有機層413上に設けられたカソード414とを備える構造のものがある。 In recent years, the development of display devices using organic EL (Electro-Luminescence) elements has progressed. As shown in FIG. 1, the display device covers a plurality of anodes 411 separated for each pixel, an insulating layer 412 provided between adjacent anodes 411, and the plurality of anodes 411 and the insulating layer 412. There is a structure including an organic layer 413 provided in common with the pixels and a cathode 414 provided on the organic layer 413.
 上記構造を有する表示装置では、各アノード411直上に設けられた正孔注入層413Aをリーク源として画素間に電流が流れるため、低輝度発光時に色度異常が発生する。このリーク電流を低減するため、従来は、以下の技術(1)から(3)のいずれかにより正孔注入層413Aが分断されている。
(1)正孔注入層413Aを蒸着法により成膜する際にその蒸着の方向を制御するとこにより、領域421に示すように、各画素の周縁部で正孔注入層413Aが分断される。
(2)領域422に示すように、隣接する画素間の絶縁層412の形状をオーバーハング形状にすることにより、各画素の周縁部で正孔注入層413Aが分断される。
(3)隣接する画素間の絶縁層412に溝423を設けることにより、隣接する画素間で正孔注入層413Aが分断される(例えば特許文献1参照)。
In the display device having the above structure, since the current flows between the pixels using the hole injection layer 413A provided directly above each anode 411 as a leak source, chromaticity abnormality occurs at the time of low-luminance light emission. Conventionally, in order to reduce this leakage current, the hole injection layer 413A is divided by any of the following techniques (1) to (3).
(1) By controlling the direction of the vapor deposition when the hole injection layer 413A is deposited by the vapor deposition method, the hole injection layer 413A is divided at the peripheral edge of each pixel as shown in the region 421.
(2) As shown in the region 422, the hole injection layer 413A is divided at the peripheral edge of each pixel by making the shape of the insulating layer 412 between adjacent pixels into an overhang shape.
(3) By providing the groove 423 in the insulating layer 412 between adjacent pixels, the hole injection layer 413A is divided between the adjacent pixels (see, for example, Patent Document 1).
特開2012-216338号公報Japanese Unexamined Patent Publication No. 2012-216338
 しかしながら、上記従来技術のいずれの構造においても、隣接する画素間の絶縁層412が、ある程度の幅である必要があるため、画素の開口径に大きな制約が生じる。このため、画素の開口率が低下する虞がある。 However, in any of the above-mentioned conventional structures, the insulating layer 412 between adjacent pixels needs to have a certain width, so that the aperture diameter of the pixels is greatly restricted. Therefore, the aperture ratio of the pixels may decrease.
 本開示の目的は、画素の開口率の低下を抑制しつつ、リーク電流を抑制することができる表示装置およびそれを備える電子機器を提供することにある。 An object of the present disclosure is to provide a display device capable of suppressing a leakage current while suppressing a decrease in the aperture ratio of pixels, and an electronic device including the display device.
 上述の課題を解決するために、第1の開示は、
 画素毎に分離された複数のアノードと、
 隣接するアノードの間に設けられた絶縁層と、
 複数のアノードおよび絶縁層を覆う、複数の画素に共通して設けられた有機層と、
 有機層上に設けられたカソードと
 を備え、
 アノードは、絶縁層の表面よりも高い位置に設けられた頂面と、絶縁層の表面と頂面の間に設けられた側面とを有し、
 アノードは、アノードの頂部から底部に向かって側面の幅が狭くなる部分を少なくとも1つ有する表示装置である。
In order to solve the above-mentioned problems, the first disclosure is
With multiple anodes separated for each pixel,
An insulating layer provided between adjacent anodes,
An organic layer commonly provided for multiple pixels, which covers multiple anodes and insulating layers,
With a cathode provided on the organic layer
The anode has a top surface provided at a position higher than the surface of the insulating layer and a side surface provided between the surfaces of the insulating layer.
The anode is a display device having at least one portion where the width of the side surface narrows from the top to the bottom of the anode.
 第1の開示において、アノードは、アノードの幅が最も広い第1の部分と絶縁層の表面との間に、第1の部分よりも幅が狭い第2の部分を有していてもよい。第1の部分は、アノードの頂部にあってもよいし、アノードの頂部より底部側にあってもよい。表示面に垂直な方向からアノードを見た場合、第2の部分は、第1の部分の内側に位置していてもよい。 In the first disclosure, the anode may have a second portion narrower than the first portion between the first portion having the widest width of the anode and the surface of the insulating layer. The first portion may be on the top of the anode or on the bottom side of the top of the anode. When the anode is viewed from a direction perpendicular to the display surface, the second portion may be located inside the first portion.
 第1の開示において、アノードは、頂面よりも幅が狭くなる部分を側面に有していてもよい。 In the first disclosure, the anode may have a portion on the side surface that is narrower than the top surface.
 第1の開示において、アノードは、側面の少なくとも一部にテーパー形状を有していてもよい。テーパー形状は、アノードの頂部から底部に向かってアノードの幅が狭くなるように傾斜していてもよい。 In the first disclosure, the anode may have a tapered shape on at least a part of the side surface. The tapered shape may be inclined so that the width of the anode narrows from the top to the bottom of the anode.
 第1の開示において、アノードは、側面にオーバーハング形状を有していてもよい。 In the first disclosure, the anode may have an overhang shape on the side surface.
 第1の開示において、アノードは、側面に凹部を有し、この凹部の少なくとも一部が、絶縁層の表面よりも高い位置に設けられていてもよい。 In the first disclosure, the anode has a recess on the side surface, and at least a part of the recess may be provided at a position higher than the surface of the insulating layer.
 第1の開示において、アノードは、側面に凸部を有し、この凸部は、絶縁層の表面よりも高い位置に設けられていてもよい。 In the first disclosure, the anode has a convex portion on the side surface, and this convex portion may be provided at a position higher than the surface of the insulating layer.
 第1の開示において、有機層は、アノードに隣接して設けられた正孔注入層を備えていてもよい。この場合、正孔注入層は、各画素の周縁部にて分断されていてもよい。 In the first disclosure, the organic layer may include a hole injection layer provided adjacent to the anode. In this case, the hole injection layer may be divided at the peripheral edge of each pixel.
 第1の開示において、絶縁層の表面は、平坦であってもよい。 In the first disclosure, the surface of the insulating layer may be flat.
 第1の開示において、絶縁層の表面を基準としたアノードの頂面の高さhと、有機層の厚さtが、h≦tの関係を満たしていてもよい。 In the first disclosure, the height h of the top surface of the anode with respect to the surface of the insulating layer and the thickness t of the organic layer may satisfy the relationship of h ≦ t.
 第1の開示において、有機層は、白色光を発光可能に構成されていてもよい。この場合、表示装置が、カソード上に設けられたカラーフィルタをさらに備えていてもよい。 In the first disclosure, the organic layer may be configured to emit white light. In this case, the display device may further include a color filter provided on the cathode.
 第2の開示は、第1の開示の表示装置を備える電子機器である。 The second disclosure is an electronic device including the display device of the first disclosure.
従来の表示装置の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional display device. 本開示の一実施形態に係る表示装置の全体構成の一例を示す概略図である。It is the schematic which shows an example of the whole structure of the display device which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る表示装置の構成の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the display device which concerns on one Embodiment of this disclosure. 図3の一部を拡大して表す断面図である。It is sectional drawing which shows the part of FIG. 3 enlarged. 複数のアノードの配列の一例を示す平面図である。It is a top view which shows an example of the arrangement of a plurality of anodes. 図3に示した有機層の構成の一例を示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing an example of the configuration of the organic layer shown in FIG. 本開示の一実施形態に係る表示装置の製造方法の一例について説明するための工程図である。It is a process drawing for demonstrating an example of the manufacturing method of the display device which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る表示装置の製造方法の一例について説明するための工程図である。It is a process drawing for demonstrating an example of the manufacturing method of the display device which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る表示装置の製造方法の一例について説明するための工程図である。It is a process drawing for demonstrating an example of the manufacturing method of the display device which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る表示装置の製造方法の一例について説明するための工程図である。It is a process drawing for demonstrating an example of the manufacturing method of the display device which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る表示装置の製造方法の一例について説明するための工程図である。It is a process drawing for demonstrating an example of the manufacturing method of the display device which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る表示装置の製造方法の一例について説明するための工程図である。It is a process drawing for demonstrating an example of the manufacturing method of the display device which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る表示装置の製造方法の一例について説明するための工程図である。It is a process drawing for demonstrating an example of the manufacturing method of the display device which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る表示装置の製造方法の一例について説明するための工程図である。It is a process drawing for demonstrating an example of the manufacturing method of the display device which concerns on one Embodiment of this disclosure. 表示装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the display device. 表示装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the display device. 表示装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the display device. モジュールの概略構成の一例を表す平面図である。It is a top view which shows an example of the schematic structure of a module. デジタルスチルカメラの外観の一例を示す正面図である。It is a front view which shows an example of the appearance of a digital still camera. デジタルスチルカメラの外観の一例を示す背面図である。It is a rear view which shows an example of the appearance of a digital still camera. ヘッドマウントディスプレイの外観の一例を斜視図である。It is a perspective view of an example of the appearance of a head-mounted display. テレビジョン装置の外観の一例を示す斜視図である。It is a perspective view which shows an example of the appearance of a television apparatus.
 本開示の実施形態について以下の順序で説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。
 1 表示装置の構成
 2 表示装置の製造方法
 3 作用効果
 4 変形例
 5 応用例
The embodiments of the present disclosure will be described in the following order. In all the drawings of the following embodiments, the same or corresponding parts are designated by the same reference numerals.
1 Display device configuration 2 Display device manufacturing method 3 Action effect 4 Modification example 5 Application example
[1 表示装置の構成]
 図2は、本開示の一実施形態に係る有機EL表示装置10(以下、単に「表示装置10」という。)の全体構成の一例を示す概略図である。表示装置10は、各種の電子機器に用いて好適なものであり、表示領域110Aと、表示領域110Aの周縁に設けられた周辺領域110Bとを有している。表示領域110A内には、複数のサブ画素100R、100G、100Bがマトリクス状に配置されている。サブ画素100Rは赤色を表示し、サブ画素100Gは緑色を表示し、サブ画素100Bは青色を表示する。なお、以下の説明において、サブ画素100R、100G、100Bを特に区別しない場合には、サブ画素100という。
[1 Display device configuration]
FIG. 2 is a schematic view showing an example of the overall configuration of the organic EL display device 10 (hereinafter, simply referred to as “display device 10”) according to the embodiment of the present disclosure. The display device 10 is suitable for use in various electronic devices, and has a display area 110A and a peripheral area 110B provided on the periphery of the display area 110A. A plurality of sub-pixels 100R, 100G, and 100B are arranged in a matrix in the display area 110A. The sub-pixel 100R displays red, the sub-pixel 100G displays green, and the sub-pixel 100B displays blue. In the following description, when the sub-pixels 100R, 100G, and 100B are not particularly distinguished, they are referred to as sub-pixel 100.
 同色を表示するサブ画素100R、100G、100Bの列が、繰り返し行方向に配置されている。したがって、行方向に並ぶ3つのサブ画素100R、100G、100Bの組み合わせが一つの画素(ピクセル)を構成している。周辺領域110Bには、映像表示用のドライバである信号線駆動回路111および走査線駆動回路112が設けられている。 Columns of sub-pixels 100R, 100G, and 100B displaying the same color are arranged in the repeating row direction. Therefore, a combination of three sub-pixels 100R, 100G, and 100B arranged in the row direction constitutes one pixel. The peripheral region 110B is provided with a signal line drive circuit 111 and a scanning line drive circuit 112, which are drivers for displaying images.
 信号線駆動回路111は、信号供給源(図示せず)から供給される輝度情報に応じた映像信号の信号電圧を、信号線111Aを介して選択されたサブ画素100に供給するものである。走査線駆動回路112は、入力されるクロックパルスに同期してスタートパルスを順にシフト(転送)するシフトレジスタ等によって構成される。走査線駆動回路112は、各サブ画素100への映像信号の書き込みに際し行単位でそれらを走査し、各走査線112Aに走査信号を順次供給するものである。 The signal line drive circuit 111 supplies the signal voltage of the video signal corresponding to the luminance information supplied from the signal supply source (not shown) to the sub-pixel 100 selected via the signal line 111A. The scanning line drive circuit 112 is composed of a shift register or the like that sequentially shifts (transfers) the start pulse in synchronization with the input clock pulse. The scanning line drive circuit 112 scans the video signals in line units when writing the video signals to the sub-pixels 100, and sequentially supplies the scanning signals to the scanning lines 112A.
 表示装置10は、例えば、OLEDまたはMicro-OLED等の自発光素子をアレイ状に形成したマイクロディスプレイである。表示装置10は、VR(Virtual Reality)用、MR(Mixed Reality)用もしくはAR(Augmented Reality)用の表示装置、電子ビューファインダ(Electronic View Finder:EVF)または小型プロジェクタ等に用いて好適なものである。 The display device 10 is, for example, a microdisplay in which self-luminous elements such as OLED or Micro-OLED are formed in an array. The display device 10 is suitable for use in a display device for VR (Virtual Reality), MR (Mixed Reality) or AR (Augmented Reality), an electronic viewfinder (EVF), a small projector, or the like. be.
 図3は、本開示の一実施形態に係る表示装置10の構成の一例を示す断面図である。図4は、図3の一部を拡大して表す断面図である。表示装置10は、トップエミッション方式の表示装置であり、一主面を有する基板(第1の基板)11と、基板11の一主面上に設けられた絶縁層12および複数の発光素子13と、複数の発光素子13上に設けられた保護層14と、保護層14上に設けられたカラーフィルタ15と、カラーフィルタ15上に設けられた充填樹脂層16と、充填樹脂層16上に設けられた対向基板(第2の基板)17とを備える。なお、対向基板17側がトップ側となり、基板11側がボトム側となる。 FIG. 3 is a cross-sectional view showing an example of the configuration of the display device 10 according to the embodiment of the present disclosure. FIG. 4 is a cross-sectional view showing a part of FIG. 3 in an enlarged manner. The display device 10 is a top emission type display device, and includes a substrate (first substrate) 11 having one main surface, an insulating layer 12 provided on one main surface of the substrate 11, and a plurality of light emitting elements 13. , A protective layer 14 provided on a plurality of light emitting elements 13, a color filter 15 provided on the protective layer 14, a filling resin layer 16 provided on the color filter 15, and a filling resin layer 16 provided on the filling resin layer 16. The opposed substrate (second substrate) 17 is provided. The facing substrate 17 side is the top side, and the substrate 11 side is the bottom side.
(発光素子)
 複数の発光素子13は、基板11の一主面にマトリクス状に配置されている。発光素子13は、白色OLEDまたは白色Micro-OLED(MOLED)である。表示装置10におけるカラー化の方式としては、白色OLEDとカラーフィルタ15とを用いる方式が用いられる。
(Light emitting element)
The plurality of light emitting elements 13 are arranged in a matrix on one main surface of the substrate 11. The light emitting element 13 is a white OLED or a white Micro-OLED (MOLED). As a colorization method in the display device 10, a method using a white OLED and a color filter 15 is used.
 発光素子13は、基板11側から、第1の電極としてのアノード13A、有機層13B、および第2の電極としてのカソード13Cがこの順序で積載されたものである。 The light emitting element 13 has an anode 13A as a first electrode, an organic layer 13B, and a cathode 13C as a second electrode loaded in this order from the substrate 11 side.
(基板)
 基板11は、一主面に配列された複数の発光素子13を支持する支持体である。また、図示しないが、基板11には、複数の発光素子13の駆動を制御するサンプリング用トランジスタおよび駆動用トランジスタを含む駆動回路、ならびに複数の発光素子13に電力を供給する電源回路等が設けられていてもよい。
(substrate)
The substrate 11 is a support that supports a plurality of light emitting elements 13 arranged on one main surface. Further, although not shown, the substrate 11 is provided with a drive circuit including a sampling transistor for controlling the drive of the plurality of light emitting elements 13 and a drive transistor, a power supply circuit for supplying electric power to the plurality of light emitting elements 13, and the like. You may be.
 基板11は、例えば、水分および酸素の透過性が低いガラスまたは樹脂で構成されていてもよいし、トランジスタ等の形成が容易な半導体で構成されていてもよい。具体的には、基板11は、高歪点ガラス、ソーダガラス、ホウケイ酸ガラス、フォルステライト、鉛ガラス、もしくは石英ガラス等のガラス基板、アモルファスシリコン、もしくは多結晶シリコン等の半導体基板、またはポリメチルメタクリレート、ポリビニルアルコール、ポリビニルフェノール、ポリエーテルスルホン、ポリイミド、ポリカーボネート、ポリエチレンテレフタラート、もしくはポリエチレンナフタレート等の樹脂基板等であってもよい。 The substrate 11 may be made of, for example, glass or resin having low water and oxygen permeability, or may be made of a semiconductor such as a transistor which can be easily formed. Specifically, the substrate 11 is a glass substrate such as high-strain point glass, soda glass, borosilicate glass, forsterite, lead glass, or quartz glass, a semiconductor substrate such as amorphous silicon or polycrystalline silicon, or polymethyl. It may be a resin substrate such as methacrylate, polyvinyl alcohol, polyvinylphenol, polyether sulfone, polyimide, polycarbonate, polyethylene terephthalate, or polyethylene naphthalate.
(アノード)
 アノード13Aは、サブ画素100毎に電気的に分離して設けられている。アノード13Aは、隣接するサブ画素100間、すなわち隣接する発光素子13間における絶縁層12の表面12S(以下単に「絶縁層12の表面12S」という。)よりも高い位置に設けられた頂面13S1と、絶縁層12の表面12Sと頂面13S1の間に設けられた側面13S2とを有する。頂面13S1は、有機層13Bが成膜される成膜面である。側面12S2は、有機層13Bが備える正孔注入層131を成膜時に分断するための面である。
(anode)
The anode 13A is electrically separated for each sub-pixel 100. The anode 13A is a top surface 13S1 provided at a position higher than the surface 12S of the insulating layer 12 (hereinafter, simply referred to as “the surface 12S of the insulating layer 12”) between the adjacent sub-pixels 100, that is, between the adjacent light emitting elements 13. And the side surface 13S2 provided between the surface 12S and the top surface 13S1 of the insulating layer 12. The top surface 13S1 is a film-forming surface on which the organic layer 13B is formed. The side surface 12S2 is a surface for dividing the hole injection layer 131 included in the organic layer 13B at the time of film formation.
 アノード13Aの側面13S2の幅は、アノード13Aの高さ方向に変化している。アノード13Aは、頂面13S1よりも幅が狭くなる部分を側面13S2に有する。すなわち、アノード13Aは、アノード13Aの幅が最も広い頂部(第1の部分)と絶縁層12の表面12Sとの間に、アノード13Aの幅が最も広い頂部よりも幅が狭い部分(第2の部分)を有する。表示面に垂直な方向からアノード13Aを見た場合、アノード13Aの幅が最も広い頂部よりも幅が狭い部分は、アノード13Aの幅が最も広い頂部の内側に位置している。より具体的には、アノード13Aは、側面12S1の全体にテーパー形状を有する。テーパー形状は、アノード13Aの頂部から底部に向かってアノード13Aの幅が狭くなるように傾斜している。アノード13Aの側面13S2が上述した形状を有しているので、正孔注入層131の成膜時に、サブ画素100の周縁部にて正孔注入層131を分断することができる。 The width of the side surface 13S2 of the anode 13A changes in the height direction of the anode 13A. The anode 13A has a portion on the side surface 13S2 that is narrower than the top surface 13S1. That is, the anode 13A has a portion (second portion) narrower than the widest apex of the anode 13A between the widest apex (first portion) of the anode 13A and the surface 12S of the insulating layer 12. Part). When the anode 13A is viewed from a direction perpendicular to the display surface, the portion narrower than the widest top of the anode 13A is located inside the widest top of the anode 13A. More specifically, the anode 13A has a tapered shape over the entire side surface 12S1. The tapered shape is inclined so that the width of the anode 13A narrows from the top to the bottom of the anode 13A. Since the side surface 13S2 of the anode 13A has the above-mentioned shape, the hole injection layer 131 can be divided at the peripheral edge of the sub-pixel 100 when the hole injection layer 131 is formed.
 絶縁層12の表面12Sを基準としたアノード13Aの頂面13S1の高さhと、有機層13Bの厚さtとが、h≦tの関係を満たすことが好ましい。隣接するアノード13A間の凹部を有機層13Bにより埋めることができるため、サブ画素100の周縁部でカソード13Cが分断されることを抑制することができるからである。 It is preferable that the height h of the top surface 13S1 of the anode 13A with respect to the surface 12S of the insulating layer 12 and the thickness t of the organic layer 13B satisfy the relationship of h ≦ t. This is because the recesses between the adjacent anodes 13A can be filled with the organic layer 13B, so that the cathode 13C can be suppressed from being divided at the peripheral edge of the sub-pixel 100.
 アノード13Aは、反射層としての機能も兼ねており、できるだけ反射率が高く、かつ仕事関数が大きい金属層によって構成されることが、発光効率を高める上で好ましい。金属層は、例えば、クロム(Cr)、金(Au)、白金(Pt)、ニッケル(Ni)、銅(Cu)、モリブデン(Mo)、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)、マグネシウム(Mg)、鉄(Fe)、タングステン(W)、銀(Ag)等の金属元素の単体および合金のうちの少なくとも1種を含む。合金の具体例としては、AlNi合金またはAlCu合金等が挙げられる。アノード13Aが、上記の金属元素の単体および合金のうちの少なくとも1種を含む複数の金属層の積層膜により構成されていてもよい。 The anode 13A also functions as a reflective layer, and it is preferable that the anode 13A is composed of a metal layer having a high reflectance and a large work function as much as possible in order to increase the luminous efficiency. The metal layer is, for example, chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), aluminum (Al). , Magnesium (Mg), Iron (Fe), Tungsten (W), Silver (Ag) and other metal elements alone and alloys. Specific examples of the alloy include AlNi alloy and AlCu alloy. The anode 13A may be composed of a laminated film of a plurality of metal layers containing at least one of the above-mentioned simple substances of metal elements and alloys.
(カソード)
 カソード13Cは、表示領域110A内においてすべてのサブ画素100に共通の電極として設けられている。カソード13Cは、有機層13Bで発生した光に対して透過性を有する透明電極である。ここで、透明電極には、半透過性反射層も含まれるものとする。カソード13Cは、例えば、金属または金属酸化物により構成される。金属は、例えば、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、ナトリウム(Na)等の金属元素の単体および合金のうちの少なくとも1種を含む。合金の具体例としては、MgAg合金またはAlLi合金等が挙げられる。金属酸化物は、例えば、インジウム酸化物と錫酸化物の混合体(ITO)、インジウム酸化物と亜鉛酸化物の混合体(IZO)および酸化亜鉛(ZnO)のうちの少なくとも1種を含む。
(Cathode)
The cathode 13C is provided as an electrode common to all sub-pixels 100 in the display area 110A. The cathode 13C is a transparent electrode having transparency to the light generated in the organic layer 13B. Here, it is assumed that the transparent electrode also includes a semitransparent reflective layer. The cathode 13C is composed of, for example, a metal or a metal oxide. The metal contains, for example, at least one of elemental substances and alloys of metal elements such as aluminum (Al), magnesium (Mg), calcium (Ca) and sodium (Na). Specific examples of the alloy include MgAg alloy, AlLi alloy and the like. The metal oxide contains, for example, at least one of a mixture of indium oxide and tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO) and zinc oxide (ZnO).
(絶縁層)
 図5は、複数のアノード13Aの配列の一例を示す平面図である。なお、図5では、絶縁層12および複数のアノード13Aが露出された状態が示されている。絶縁層12は、アノード13Aをサブ画素100毎に電気的に分離するためのものである。絶縁層12は、隣接するアノード13Aの間に設けられている。より具体的には、絶縁層12は、複数の穴部12Aを有し、各穴部12Aにアノード13Aが設けられている。アノード13Aは、アノード13Aの底部側の一部が穴部12A内に設けられ、アノード13Aの頂部側の一部が絶縁層12の表面12Sから突出している。絶縁層12の表面12Sは、平坦であることが好ましい。隣接するアノード13A間、すなわち隣接するサブ画素100間に位置する絶縁層12に立体構造424(図1参照)が設けられていないため、同一の画素ピッチPにおいてサブ画素100の開口径ADを大きくすることができる。
(Insulation layer)
FIG. 5 is a plan view showing an example of the arrangement of the plurality of anodes 13A. Note that FIG. 5 shows a state in which the insulating layer 12 and the plurality of anodes 13A are exposed. The insulating layer 12 is for electrically separating the anode 13A for each sub-pixel 100. The insulating layer 12 is provided between the adjacent anodes 13A. More specifically, the insulating layer 12 has a plurality of holes 12A, and each hole 12A is provided with an anode 13A. A part of the anode 13A on the bottom side of the anode 13A is provided in the hole portion 12A, and a part of the top side of the anode 13A protrudes from the surface 12S of the insulating layer 12. The surface 12S of the insulating layer 12 is preferably flat. Since the three-dimensional structure 424 (see FIG. 1) is not provided in the insulating layer 12 located between the adjacent anodes 13A, that is, between the adjacent sub-pixels 100, the opening diameter AD of the sub-pixels 100 is increased at the same pixel pitch P. can do.
 絶縁層12は、例えば、有機材料または無機材料により構成される。有機材料は、例えばポリイミドおよびアクリル樹脂のうちの少なくとも1種を含む。無機材料は、例えば、酸化シリコン、窒化シリコン、酸窒化シリコンおよび酸化アルミニウムのうちの少なくとも1種を含む。 The insulating layer 12 is made of, for example, an organic material or an inorganic material. The organic material includes, for example, at least one of polyimide and acrylic resin. Inorganic materials include, for example, at least one of silicon oxide, silicon nitride, silicon nitriding and aluminum oxide.
(有機層)
 有機層13Bは、表示領域110A内においてすべてのサブ画素100に共通の有機層として設けられている。有機層13Bは、白色光を発光可能に構成されている。有機層13Bは、アノード13Aに隣接して設けられた正孔注入層131を備える。正孔注入層131は、上述したように、側面13S2によりサブ画素100の周縁部にて分断されている。サブ画素100の周囲には、正孔注入層131の非成膜領域R(図4参照)が形成されている。
(Organic layer)
The organic layer 13B is provided as an organic layer common to all the sub-pixels 100 in the display area 110A. The organic layer 13B is configured to be capable of emitting white light. The organic layer 13B includes a hole injection layer 131 provided adjacent to the anode 13A. As described above, the hole injection layer 131 is divided by the side surface 13S2 at the peripheral edge of the sub-pixel 100. A non-deposited region R (see FIG. 4) of the hole injection layer 131 is formed around the sub-pixel 100.
 図6は、図3に示した有機層13Bを拡大して表す断面図である。有機層13Bは、アノード13Aからカソード13Cに向かって正孔注入層131、正孔輸送層132、発光層133、電子輸送層134がこの順序で積層された構成を有する。なお、有機層13Bの構成はこれに限定されるものではなく、正孔注入層131および発光層133以外の層は必要に応じて設けられるものである。 FIG. 6 is an enlarged cross-sectional view of the organic layer 13B shown in FIG. The organic layer 13B has a structure in which the hole injection layer 131, the hole transport layer 132, the light emitting layer 133, and the electron transport layer 134 are laminated in this order from the anode 13A toward the cathode 13C. The configuration of the organic layer 13B is not limited to this, and layers other than the hole injection layer 131 and the light emitting layer 133 are provided as needed.
 正孔注入層131は、発光層133への正孔注入効率を高めるためのものであると共に、リークを抑制するためのバッファ層である。正孔輸送層132は、発光層133への正孔輸送効率を高めるためのものである。発光層133は、電界をかけることにより電子と正孔との再結合が起こり、光を発生するものである。電子輸送層134は、発光層133への電子輸送効率を高めるためのものである。電子輸送層134とカソード13Cとの間には、電子注入層(図示せず)を設けてもよい。この電子注入層は、電子注入効率を高めるためのものである。 The hole injection layer 131 is a buffer layer for increasing the hole injection efficiency into the light emitting layer 133 and for suppressing leakage. The hole transport layer 132 is for increasing the hole transport efficiency to the light emitting layer 133. When an electric field is applied to the light emitting layer 133, recombination of electrons and holes occurs to generate light. The electron transport layer 134 is for increasing the electron transport efficiency to the light emitting layer 133. An electron injection layer (not shown) may be provided between the electron transport layer 134 and the cathode 13C. This electron injection layer is for increasing the electron injection efficiency.
(保護層)
 保護層14は、発光素子13を外気と遮断し、外部環境から発光素子13内部への水分浸入を抑制するためのものである。また、カソード13Cが金属層により構成されている場合には、保護層14は、この金属層の酸化を抑制する機能も有している。
(Protective layer)
The protective layer 14 is for blocking the light emitting element 13 from the outside air and suppressing the infiltration of moisture from the external environment into the light emitting element 13. Further, when the cathode 13C is composed of a metal layer, the protective layer 14 also has a function of suppressing oxidation of the metal layer.
 保護層14は、例えば、吸湿性が低い無機材料により構成される。無機材料は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、酸化窒化シリコン(SiNO)、酸化チタン(TiO)および酸化アルミニウム(AlO)のうちの少なくとも1種を含む。保護層14は、単層構造であってもよいが、厚さを大きくする場合には多層構造としてもよい。保護層14における内部応力を緩和するためである。保護層14が、高分子樹脂により構成されていてもよい。高分子樹脂は、熱硬化型樹脂および紫外線硬化型樹脂のうちの少なくとも1種を含む。 The protective layer 14 is made of, for example, an inorganic material having low hygroscopicity. The inorganic material contains, for example, at least one of silicon oxide (SiO), silicon nitride (SiN), silicon nitride nitride (SiNO), titanium oxide (TIO) and aluminum oxide (AlO). The protective layer 14 may have a single-layer structure, but may have a multi-layer structure when the thickness is increased. This is to relieve the internal stress in the protective layer 14. The protective layer 14 may be made of a polymer resin. The polymer resin contains at least one of a thermosetting resin and an ultraviolet curable resin.
(カラーフィルタ)
 カラーフィルタ15は、例えば、オンチップカラーフィルタ(On Chip Color Filter:OCCF)である。カラーフィルタ15は、例えば、赤色フィルタ15R、緑色フィルタ15Gおよび青色フィルタ15Bを備える。赤色フィルタ15R、緑色フィルタ15G、青色フィルタ15Bはそれぞれ、サブ画素100Rの発光素子13、サブ画素100Gの発光素子13、サブ画素100Bの発光素子13に対向して設けられている。これにより、サブ画素100R、サブ画素100G、サブ画素100B内の各発光素子13から発せられた白色光がそれぞれ、上記の赤色フィルタ15R、緑色フィルタ15Gおよび青色フィルタ15Bを透過することによって、赤色光、緑色光、青色光がそれぞれ表示面から出射される。また、各色のカラーフィルタ15R、15G、15B間、すなわちサブ画素100間の領域には、遮光層(図示せず)が設けられていてもよい。なお、カラーフィルタ15は、オンチップカラーフィルタに限定されるものではなく、対向基板17の一主面に設けられたものであってもよい。
(Color filter)
The color filter 15 is, for example, an on-chip color filter (OCCF). The color filter 15 includes, for example, a red filter 15R, a green filter 15G, and a blue filter 15B. The red filter 15R, the green filter 15G, and the blue filter 15B are provided so as to face the light emitting element 13 of the sub pixel 100R, the light emitting element 13 of the sub pixel 100G, and the light emitting element 13 of the sub pixel 100B, respectively. As a result, the white light emitted from each of the light emitting elements 13 in the sub pixel 100R, the sub pixel 100G, and the sub pixel 100B passes through the red filter 15R, the green filter 15G, and the blue filter 15B, respectively, so that the red light is emitted. , Green light and blue light are emitted from the display surface, respectively. Further, a light-shielding layer (not shown) may be provided in the region between the color filters 15R, 15G, and 15B of each color, that is, between the sub-pixels 100. The color filter 15 is not limited to the on-chip color filter, and may be provided on one main surface of the facing substrate 17.
(充填樹脂層)
 充填樹脂層16は、カラーフィルタ15と対向基板17とを接着する接着層としての機能を有している。充填樹脂層16は、例えば、熱硬化型樹脂および紫外線硬化型樹脂のうちの少なくとも1種を含む。
(Filled resin layer)
The filled resin layer 16 has a function as an adhesive layer for adhering the color filter 15 and the facing substrate 17. The packed resin layer 16 contains, for example, at least one of a thermosetting resin and an ultraviolet curable resin.
(対向基板)
 対向基板17は、対向基板17の一主面と、複数の発光素子13が設けられた基板11の一主面とが対向するように設けられている。対向基板17は、充填樹脂層16と共に、発光素子13およびカラーフィルタ15等を封止するものである。対向基板17は、カラーフィルタ15からから出射される各色光に対して透明なガラス等の材料により構成される。
(Opposite board)
The facing substrate 17 is provided so that one main surface of the facing substrate 17 and one main surface of the substrate 11 provided with a plurality of light emitting elements 13 face each other. The facing substrate 17 seals the light emitting element 13, the color filter 15, and the like together with the filled resin layer 16. The facing substrate 17 is made of a material such as glass that is transparent to each color light emitted from the color filter 15.
[2 表示装置の製造方法]
 以下、図7A~図7Hを参照して、本開示の一実施形態に係る表示装置10の製造方法の一例について説明する。
[2 Manufacturing method of display device]
Hereinafter, an example of a manufacturing method of the display device 10 according to the embodiment of the present disclosure will be described with reference to FIGS. 7A to 7H.
 まず、例えば薄膜形成技術、フォトリソグラフィ技術およびエッチング技術を用いて、基板11の一主面に駆動回路等を形成したのち、駆動回路等の上に絶縁層12を形成する。次に、図7Aに示すように、絶縁層12上にレジストを塗布し、レジスト層21を形成する。次に、図7Bに示すように、例えばフォトリソグラフィによりレジスト層21を加工し、複数の開口部21Aを形成する。 First, a drive circuit or the like is formed on one main surface of the substrate 11 by using, for example, a thin film forming technique, a photolithography technique, and an etching technique, and then an insulating layer 12 is formed on the drive circuit or the like. Next, as shown in FIG. 7A, a resist is applied onto the insulating layer 12 to form the resist layer 21. Next, as shown in FIG. 7B, the resist layer 21 is processed by, for example, photolithography to form a plurality of openings 21A.
 次に、図7Cに示すように、レジスト層21をマスクとして絶縁層12をエッチングすることにより、側面にテーパー形状を有する複数の穴部12Aを絶縁層12の一主面に形成する。ここで、テーパー形状は、穴部12Aの深さ方向に穴部12Aの幅が狭くなるように傾斜している。次に、レジスト層21を除去したのち、図7Dに示すように、例えばスパッタリング法により、第1のアノード13A1と第2のアノード13A2を順次積層し、積層構造を有するアノード13Aを形成する。第1のアノード13A1は、例えばTiにより構成される。第2のアノード13A2は、例えばAlCu合金により構成される。 Next, as shown in FIG. 7C, by etching the insulating layer 12 with the resist layer 21 as a mask, a plurality of holes 12A having a tapered shape on the side surface are formed on one main surface of the insulating layer 12. Here, the tapered shape is inclined so that the width of the hole portion 12A becomes narrower in the depth direction of the hole portion 12A. Next, after removing the resist layer 21, as shown in FIG. 7D, the first anode 13A1 and the second anode 13A2 are sequentially laminated by, for example, a sputtering method to form the anode 13A having a laminated structure. The first anode 13A1 is composed of, for example, Ti. The second anode 13A2 is made of, for example, an AlCu alloy.
 次に、図7Eに示すように、例えばCMP(Chemical Mechanical Polish)により穴部12Aの開口の位置までアノード13Aを平坦に研磨することにより、発光素子13毎(すなわちサブ画素100毎)に分離された複数のアノード13Aを形成する。次に、図7Fに示すように、絶縁層12をエッチングすることにより、アノード13Aの頂面13S1を絶縁層12の表面12Sよりも高い位置にする。 Next, as shown in FIG. 7E, the anode 13A is flatly polished to the position of the opening of the hole 12A by, for example, CMP (Chemical Mechanical Polish), so that the anode 13A is separated into each light emitting element 13 (that is, every sub pixel 100). A plurality of anodes 13A are formed. Next, as shown in FIG. 7F, the insulating layer 12 is etched to make the top surface 13S1 of the anode 13A higher than the surface 12S of the insulating layer 12.
 次に、図7Gに示すように、例えば蒸着法により、正孔注入層131、正孔輸送層132、発光層133、電子輸送層134(図6参照)をアノード13A上および絶縁層12上にこの順序で積層することにより、有機層13Bを形成する。この際、アノード13Aの側面13S2が有するテーパー形状により、有機層13Bが各サブ画素100の周縁部にて分断される。次に、図7Hに示すように、例えばスパッタリング法により、カソード13Cを有機層13B上に形成する。これにより、基板11の一主面に複数の発光素子13が形成される。 Next, as shown in FIG. 7G, the hole injection layer 131, the hole transport layer 132, the light emitting layer 133, and the electron transport layer 134 (see FIG. 6) are placed on the anode 13A and the insulating layer 12 by, for example, a vapor deposition method. The organic layer 13B is formed by laminating in this order. At this time, the organic layer 13B is divided at the peripheral edge of each sub-pixel 100 by the tapered shape of the side surface 13S2 of the anode 13A. Next, as shown in FIG. 7H, the cathode 13C is formed on the organic layer 13B by, for example, a sputtering method. As a result, a plurality of light emitting elements 13 are formed on one main surface of the substrate 11.
 次に、例えば蒸着法またはCVD法により、保護層14をカソード13C上に形成したのち、保護層14上にカラーフィルタ15を形成する。なお、保護層14の段差やカラーフィルタ15自体の膜厚差による段差を平坦化するために、カラーフィルタ15の上、下または上下両方に平坦化層を形成してもよい。次に、例えばODF(One Drop Fill)方式により、充填樹脂層16によりカラーフィルタ15を覆ったのち、対向基板17を充填樹脂層16上に載置する。次に、例えば充填樹脂層16に熱を加えるか、または充填樹脂層16に紫外線を照射し、充填樹脂層16を硬化させることにより、充填樹脂層16を介して基板11と対向基板17とを貼り合せる。これにより、表示装置10が封止される。なお、充填樹脂層16が熱硬化型樹脂および紫外線硬化型樹脂の両方を含む場合には、充填樹脂層16に紫外線を照射し仮硬化させたのち、充填樹脂層16に熱を加えて本硬化させるようにしてもよい。 Next, the protective layer 14 is formed on the cathode 13C by, for example, a vapor deposition method or a CVD method, and then the color filter 15 is formed on the protective layer 14. In addition, in order to flatten the step of the protective layer 14 and the step due to the difference in film thickness of the color filter 15 itself, the flattening layer may be formed on both the upper, lower or upper and lower sides of the color filter 15. Next, for example, the color filter 15 is covered with the filling resin layer 16 by the ODF (One Drop Fill) method, and then the facing substrate 17 is placed on the filling resin layer 16. Next, for example, by applying heat to the filling resin layer 16 or irradiating the filling resin layer 16 with ultraviolet rays to cure the filling resin layer 16, the substrate 11 and the facing substrate 17 are separated from each other via the filling resin layer 16. Paste together. As a result, the display device 10 is sealed. When the filled resin layer 16 contains both a thermosetting resin and an ultraviolet curable resin, the filled resin layer 16 is irradiated with ultraviolet rays to be temporarily cured, and then heat is applied to the filled resin layer 16 to perform main curing. You may let it.
[3 作用効果]
 上述したように、一実施形態に係る表示装置10では、アノード13Aは、側面13S2にテーパー形状を有する。このテーパー形状は、アノード13Aの頂部から底部に向かってアノード13Aの幅が狭くなるように傾斜している。これにより、正孔注入層131の成膜工程において、側面12S2により各サブ画素100の周面部にて正孔注入層131を分断させることができる。また、隣接するサブ画素100間の絶縁層12は、隣接するアノード13A間の絶縁性を確保できる機能を有してさえいれば良く、従来の立体構造424(図1参照)等が必要ないため、同一の画素ピッチPにおいてサブ画素100の開口径ADを大きくすることができる。したがって、同一の画素ピッチPにおいては輝度向上および長寿命化が可能となる。また、同一の画素形状においては高精細度を実現可能である。
[3 Action effect]
As described above, in the display device 10 according to the embodiment, the anode 13A has a tapered shape on the side surface 13S2. This tapered shape is inclined so that the width of the anode 13A narrows from the top to the bottom of the anode 13A. As a result, in the film forming step of the hole injection layer 131, the hole injection layer 131 can be divided by the side surface 12S2 at the peripheral surface portion of each sub-pixel 100. Further, the insulating layer 12 between the adjacent sub-pixels 100 only needs to have a function of ensuring the insulating property between the adjacent anodes 13A, and the conventional three-dimensional structure 424 (see FIG. 1) or the like is not required. The aperture diameter AD of the sub-pixel 100 can be increased at the same pixel pitch P. Therefore, at the same pixel pitch P, it is possible to improve the brightness and extend the life. In addition, high definition can be realized with the same pixel shape.
 隣接するアノード13Aの端部間の距離より、絶縁層12の表面12Sにおけるアノード13A間の距離を大きく取ることができるので、隣接するサブ画素100間の絶縁性を絶縁層12で確保した上で、アノード13Aの端部間の距離を近づけることができる。 Since the distance between the anodes 13A on the surface 12S of the insulating layer 12 can be made larger than the distance between the ends of the adjacent anodes 13A, the insulating layer 12 secures the insulating property between the adjacent sub-pixels 100. , The distance between the ends of the anode 13A can be reduced.
[4 変形例]
(変形例1)
 上述の一実施形態では、アノード13Aが、側面12S1の全体にテーパー形状を有する例(図4参照)について説明したが、図8に示すように、側面12S1の一部にテーパー形状を有していてもよい。図8では、アノード13Aが、側面12S1の上端(頂面13S1側の一端)から底部側の規定位置までの領域にテーパー形状を有する例が示されているが、側面12S1の上端よりも底部側の第1の規定位置から当該第1の規定位置から底部側の第2の規定位置までの領域にテーパー形状を有していてもよい。但し、第1の規定位置は、絶縁層12の表面12Sよりも高い位置に設定される。
[4 Modification example]
(Modification example 1)
In one embodiment described above, an example in which the anode 13A has a tapered shape on the entire side surface 12S1 (see FIG. 4) has been described, but as shown in FIG. 8, a part of the side surface 12S1 has a tapered shape. You may. FIG. 8 shows an example in which the anode 13A has a tapered shape in the region from the upper end of the side surface 12S1 (one end on the top surface 13S1 side) to the specified position on the bottom side, but is on the bottom side of the upper end side of the side surface 12S1. The region from the first specified position to the second specified position on the bottom side may have a tapered shape. However, the first defined position is set higher than the surface 12S of the insulating layer 12.
(変形例2)
 上述の一実施形態では、アノード13Aが、側面12S1にテーパー形状を有する例(図4参照)について説明したが、図9に示すように、側面12S1の一部に凹部13A3を有していてもよい。すなわち、アノード13Aが、側面12S1にオーバーハング形状を有していてもよい。凹部13A3の少なくとも一部が、絶縁層12の表面12Sよりも高い位置に設けられている。すなわち、凹部13A3の全体が絶縁層12の表面12Sよりも高い位置に設けられていてもよいし、凹部13A3の一部が絶縁層12の表面12Sよりも高い位置に設けられていてもよい。凹部12A1は、側面13S2の周方向に延設されている。凹部12A1は、閉ループ状を有していてもよい。図9では、凹部13A3の断面形状が略U字状である例が示されているが、略V字状、略円弧状、略楕円弧状または略放物線状等であってもよい。ここで、凹部13A3の断面形状は、表示面に垂直な方向に凹部13A3を切断したときの断面形状を意味する。
(Modification 2)
In one embodiment described above, an example in which the anode 13A has a tapered shape on the side surface 12S1 (see FIG. 4) has been described, but as shown in FIG. 9, even if the side surface 12S1 has a recess 13A3 as a part of the side surface 12S1. good. That is, the anode 13A may have an overhang shape on the side surface 12S1. At least a part of the recess 13A3 is provided at a position higher than the surface 12S of the insulating layer 12. That is, the entire recess 13A3 may be provided at a position higher than the surface 12S of the insulating layer 12, or a part of the recess 13A3 may be provided at a position higher than the surface 12S of the insulating layer 12. The recess 12A1 extends in the circumferential direction of the side surface 13S2. The recess 12A1 may have a closed loop shape. Although FIG. 9 shows an example in which the cross-sectional shape of the recess 13A3 is substantially U-shaped, it may be substantially V-shaped, substantially arc-shaped, substantially elliptical arc-shaped, substantially parabolic-shaped, or the like. Here, the cross-sectional shape of the recess 13A3 means the cross-sectional shape when the recess 13A3 is cut in the direction perpendicular to the display surface.
(変形例3)
 上述の一実施形態では、アノード13Aが、側面12S1にテーパー形状を有する例(図4参照)について説明したが、図10に示すように、側面13S2に凸部13A4を有していてもよい。すなわち、アノード13Aが、側面12S1にオーバーハング形状を有していてもよい。凸部13A4は、絶縁層12の表面12Sよりも高い位置に設けられている。凸部13A4は、側面13S2の周方向に延設されている。凸部13A4は、閉ループ状を有していてもよい。図10では、凸部13A4の断面形状が略U字状である例に示されているが、略V字状、略円弧状、略楕円弧状または略放物線状等であってもよい。ここで、凸部13A4の断面形状は、表示面に垂直な方向に凸部13A4を切断したときの断面形状を意味する。凸部13A4より底部側のアノード13Aの幅は、凸部13A4より上部側のアノード13Aの幅よりも狭いことが好ましい。
(Modification example 3)
In one embodiment described above, an example in which the anode 13A has a tapered shape on the side surface 12S1 (see FIG. 4) has been described, but as shown in FIG. 10, a convex portion 13A4 may be provided on the side surface 13S2. That is, the anode 13A may have an overhang shape on the side surface 12S1. The convex portion 13A4 is provided at a position higher than the surface 12S of the insulating layer 12. The convex portion 13A4 extends in the circumferential direction of the side surface 13S2. The convex portion 13A4 may have a closed loop shape. Although FIG. 10 shows an example in which the cross-sectional shape of the convex portion 13A4 is substantially U-shaped, it may be substantially V-shaped, substantially arc-shaped, substantially elliptical arc-shaped, substantially parabolic-shaped, or the like. Here, the cross-sectional shape of the convex portion 13A4 means the cross-sectional shape when the convex portion 13A4 is cut in the direction perpendicular to the display surface. The width of the anode 13A on the bottom side of the convex portion 13A4 is preferably narrower than the width of the anode 13A on the upper side of the convex portion 13A4.
[5 応用例]
(電子機器)
 上述の一実施形態およびその変形例のいずれかに係る表示装置10は、例えば、図11に示したようなモジュールとして、種々の電子機器に組み込まれる。特にビデオカメラや一眼レフカメラの電子ビューファインダまたはヘッドマウント型ディスプレイ等の高解像度が要求され、目の近くで拡大して使用されるものに適する。このモジュールは、基板11の一方の短辺側に、対向基板等により覆われず露出した領域210を有し、この領域210に、信号線駆動回路111および走査線駆動回路112の配線を延長して外部接続端子(図示せず)が形成されている。この外部接続端子には、信号の入出力のためのフレキシブルプリント配線基板(Flexible Printed Circuit:FPC)220が接続されていてもよい。
[5 Application example]
(Electronics)
The display device 10 according to any one of the above-described embodiment and its modification is incorporated into various electronic devices as, for example, a module as shown in FIG. In particular, it is suitable for those that require high resolution such as an electronic viewfinder or a head-mounted display of a video camera or a single-lens reflex camera, and are used by enlarging them near the eyes. This module has an exposed region 210 on one short side of the substrate 11 that is not covered by an opposing substrate or the like, and the wiring of the signal line drive circuit 111 and the scanning line drive circuit 112 is extended to this region 210. An external connection terminal (not shown) is formed. A flexible printed circuit board (FPC) 220 for signal input / output may be connected to the external connection terminal.
(具体例1)
 図12A、図12Bは、デジタルスチルカメラ310の外観の一例を示す。このデジタルスチルカメラ310は、レンズ交換式一眼レフレックスタイプのものであり、カメラ本体部(カメラボディ)311の正面略中央に交換式の撮影レンズユニット(交換レンズ)312を有し、正面左側に撮影者が把持するためのグリップ部313を有している。
(Specific example 1)
12A and 12B show an example of the appearance of the digital still camera 310. This digital still camera 310 is a single-lens reflex type with interchangeable lenses, and has an interchangeable shooting lens unit (interchangeable lens) 312 in the center of the front of the camera body (camera body) 311 and on the left side of the front. It has a grip portion 313 for the photographer to grip.
 カメラ本体部311の背面中央から左側にずれた位置には、モニタ314が設けられている。モニタ314の上部には、電子ビューファインダ(接眼窓)315が設けられている。撮影者は、電子ビューファインダ315を覗くことによって、撮影レンズユニット312から導かれた被写体の光像を視認して構図決定を行うことが可能である。電子ビューファインダ315としては、上述の一実施形態およびその変形例のいずれかに係る表示装置10を用いることができる。 A monitor 314 is provided at a position shifted to the left from the center of the back of the camera body 311. An electronic viewfinder (eyepiece window) 315 is provided above the monitor 314. By looking into the electronic viewfinder 315, the photographer can visually recognize the light image of the subject guided by the photographing lens unit 312 and determine the composition. As the electronic viewfinder 315, the display device 10 according to any one of the above-described embodiment and its modification can be used.
(具体例2)
 図13は、ヘッドマウントディスプレイ320の外観の一例を示す。ヘッドマウントディスプレイ320は、例えば、眼鏡形の表示部321の両側に、使用者の頭部に装着するための耳掛け部322を有している。表示部321としては、上述の一実施形態およびその変形例のいずれかに係る表示装置10を用いることができる。
(Specific example 2)
FIG. 13 shows an example of the appearance of the head-mounted display 320. The head-mounted display 320 has, for example, ear hooks 322 for being worn on the user's head on both sides of the eyeglass-shaped display unit 321. As the display unit 321, the display device 10 according to any one of the above-described embodiment and its modification can be used.
(具体例3)
 図14は、テレビジョン装置330の外観の一例を示す。このテレビジョン装置330は、例えば、フロントパネル332およびフィルターガラス333を含む映像表示画面部331を有し、この映像表示画面部331は、上述の一実施形態およびその変形例のいずれかに係る表示装置10により構成されている。
(Specific example 3)
FIG. 14 shows an example of the appearance of the television device 330. The television device 330 has, for example, a video display screen unit 331 including a front panel 332 and a filter glass 333, and the video display screen unit 331 is a display according to any one of the above-described embodiments and modifications thereof. It is composed of a device 10.
 以上、本開示の一実施形態および変形例について具体的に説明したが、本開示は、上述の一実施形態および変形例に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。 Although one embodiment and modification of the present disclosure have been specifically described above, the present disclosure is not limited to the above-mentioned embodiment and modification, and various modifications based on the technical idea of the present disclosure. Is possible.
 例えば、上述の一実施形態および変形例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。 For example, the configurations, methods, processes, shapes, materials, numerical values, etc. given in the above-described embodiment and modification are merely examples, and different configurations, methods, processes, shapes, materials, and numerical values may be used as necessary. Etc. may be used.
 上述の一実施形態および変形例の構成、方法、工程、形状、材料および数値等は、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。 The configurations, methods, processes, shapes, materials, numerical values, etc. of the above-described embodiment and modification can be combined with each other as long as they do not deviate from the gist of the present disclosure.
 上述の一実施形態および変形例に例示した材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。 Unless otherwise specified, the materials exemplified in the above-described embodiment and modification can be used alone or in combination of two or more.
 また、本開示は以下の構成を採用することもできる。
(1)
 画素毎に分離された複数のアノードと、
 隣接する前記アノードの間に設けられた絶縁層と、
 複数の前記アノードおよび前記絶縁層を覆う、複数の前記画素に共通して設けられた有機層と、
 前記有機層上に設けられたカソードと
 を備え、
 前記アノードは、前記絶縁層の表面よりも高い位置に設けられた頂面と、前記絶縁層の表面と前記頂面の間に設けられた側面とを有し、
 前記アノードは、前記アノードの頂部から底部に向かって前記側面の幅が狭くなる部分を少なくとも1つ有する表示装置。
(2)
 前記アノードは、前記アノードの幅が最も広い第1の部分と前記絶縁層の表面との間に、前記第1の部分よりも幅が狭い第2の部分を有する(1)に記載の表示装置。
(3)
 前記第2の部分は、前記第1の部分の内側に位置している(2)に記載の表示装置。
(4)
 前記アノードは、前記頂面よりも幅が狭くなる部分を前記側面に有する(1)に記載の表示装置。
(5)
 前記アノードは、前記側面の少なくとも一部にテーパー形状を有し、
 前記テーパー形状は、前記アノードの頂部から底部に向かって前記アノードの幅が狭くなるように傾斜している(1)から(4)のいずれかに記載の表示装置。
(6)
 前記アノードは、前記側面にオーバーハング形状を有している(1)から(5)のいずれかに記載の表示装置。
(7)
 前記アノードは、前記側面に凹部を有し、
 前記凹部の少なくとも一部が、前記絶縁層の表面よりも高い位置に設けられている(1)から(6)のいずれかに記載の表示装置。
(8)
 前記アノードは、前記側面に凸部を有し、
 前記凸部は、前記絶縁層の表面よりも高い位置に設けられている(1)から(7)のいずれかに記載の表示装置。
(9)
 前記有機層は、前記アノードに隣接して設けられた正孔注入層を備える(1)から(8)のいずれかに記載の表示装置。
(10)
 前記正孔注入層は、各前記画素の周縁部にて分断されている(9)に記載の表示装置。
(11)
 前記絶縁層の表面は、平坦である(1)から(10)のいずれかに記載の表示装置。
(12)
 前記絶縁層の表面を基準とした前記アノードの頂面の高さhと、前記有機層の厚さtが、h≦tの関係を満たす(1)から(11)のいずれかに記載の表示装置。
(13)
 前記有機層は、白色光を発光可能に構成され、
 前記カソード上に設けられたカラーフィルタをさらに備える(1)から(12)のいずれかに記載の表示装置。
(14)
 (1)から(13)のいずれかに記載の表示装置を備える電子機器。
The present disclosure may also adopt the following configuration.
(1)
With multiple anodes separated for each pixel,
An insulating layer provided between the adjacent anodes and
An organic layer commonly provided for the plurality of pixels, which covers the plurality of anodes and the insulating layer,
It is provided with a cathode provided on the organic layer.
The anode has a top surface provided at a position higher than the surface of the insulating layer and a side surface provided between the surface of the insulating layer and the top surface.
The anode is a display device having at least one portion in which the width of the side surface is narrowed from the top to the bottom of the anode.
(2)
The display device according to (1), wherein the anode has a second portion narrower than the first portion between a first portion having the widest width of the anode and a surface of the insulating layer. ..
(3)
The display device according to (2), wherein the second portion is located inside the first portion.
(4)
The display device according to (1), wherein the anode has a portion on the side surface whose width is narrower than that of the top surface.
(5)
The anode has a tapered shape on at least a part of the side surface.
The display device according to any one of (1) to (4), wherein the tapered shape is inclined so that the width of the anode is narrowed from the top to the bottom of the anode.
(6)
The display device according to any one of (1) to (5), wherein the anode has an overhang shape on the side surface.
(7)
The anode has a recess on the side surface.
The display device according to any one of (1) to (6), wherein at least a part of the recess is provided at a position higher than the surface of the insulating layer.
(8)
The anode has a protrusion on the side surface and has a convex portion.
The display device according to any one of (1) to (7), wherein the convex portion is provided at a position higher than the surface of the insulating layer.
(9)
The display device according to any one of (1) to (8), wherein the organic layer includes a hole injection layer provided adjacent to the anode.
(10)
The display device according to (9), wherein the hole injection layer is divided at a peripheral portion of each of the pixels.
(11)
The display device according to any one of (1) to (10), wherein the surface of the insulating layer is flat.
(12)
The display according to any one of (1) to (11), wherein the height h of the top surface of the anode with respect to the surface of the insulating layer and the thickness t of the organic layer satisfy the relationship of h ≦ t. Device.
(13)
The organic layer is configured to be capable of emitting white light.
The display device according to any one of (1) to (12), further comprising a color filter provided on the cathode.
(14)
An electronic device including the display device according to any one of (1) to (13).
 10 表示装置
 11  基板
 12  絶縁層
 12A  穴部
 12S  表面
 13  発光素子
 13A  アノード
 13A1  第1のアノード
 13A2  第2のアノード
 13A3  凹部
 13A4  凸部
 13B  有機層
 13C  カソード
 13S1  頂面
 13S2  側面
 14  保護層
 15  カラーフィルタ
 15R  赤色フィルタ
 15G  緑色フィルタ
 15B  青色フィルタ
 16  充填樹脂層
 17  対向基板
 21  レジスト層
 21A  開口部
 100R、100G、100B  サブ画素
 110A  表示領域
 110B  周辺領域
 111  信号線駆動回路
 111A  信号線
 112  走査線駆動回路
 112A  走査線
 131  正孔注入層
 132  正孔輸送層
 133  有機発光層
 134  電子輸送層
 310  デジタルスチルカメラ(電子機器)
 320  ヘッドマウントディスプレイ(電子機器)
 330  テレビジョン装置(電子機器)
 AD  開口径
 P  画素ピッチ
 h  頂面13S1の高さ
 t  有機層13Bの厚さ
10 Display device 11 Substrate 12 Insulation layer 12A Hole 12S Surface 13 Light emitting element 13A Anode 13A1 First anode 13A2 Second anode 13A3 Concave 13A4 Convex 13B Organic layer 13C Cathode 13S1 Top surface 13S2 Side surface 14 Protective layer 15 Red filter 15G Green filter 15B Blue filter 16 Filled resin layer 17 Opposing substrate 21 Resist layer 21A Opening 100R, 100G, 100B Subpixel 110A Display area 110B Peripheral area 111 Signal line drive circuit 111A Signal line 112 Scan line drive circuit 112A Scan line 131 Hole injection layer 132 Hole transport layer 133 Organic light emitting layer 134 Electron transport layer 310 Digital still camera (electronic equipment)
320 Head-mounted display (electronic device)
330 Television equipment (electronic equipment)
AD Aperture diameter P Pixel pitch h Height of top surface 13S1 t Thickness of organic layer 13B

Claims (14)

  1.  画素毎に分離された複数のアノードと、
     隣接する前記アノードの間に設けられた絶縁層と、
     複数の前記アノードおよび前記絶縁層を覆う、複数の前記画素に共通して設けられた有機層と、
     前記有機層上に設けられたカソードと
     を備え、
     前記アノードは、前記絶縁層の表面よりも高い位置に設けられた頂面と、前記絶縁層の表面と前記頂面の間に設けられた側面とを有し、
     前記アノードは、前記アノードの頂部から底部に向かって前記側面の幅が狭くなる部分を少なくとも1つ有する表示装置。
    With multiple anodes separated for each pixel,
    An insulating layer provided between the adjacent anodes and
    An organic layer commonly provided for the plurality of pixels, which covers the plurality of anodes and the insulating layer,
    It is provided with a cathode provided on the organic layer.
    The anode has a top surface provided at a position higher than the surface of the insulating layer and a side surface provided between the surface of the insulating layer and the top surface.
    The anode is a display device having at least one portion in which the width of the side surface is narrowed from the top to the bottom of the anode.
  2.  前記アノードは、前記アノードの幅が最も広い第1の部分と前記絶縁層の表面との間に、前記第1の部分よりも幅が狭い第2の部分を有する請求項1に記載の表示装置。 The display device according to claim 1, wherein the anode has a second portion narrower than the first portion between a first portion having the widest width of the anode and a surface of the insulating layer. ..
  3.  前記第2の部分は、前記第1の部分の内側に位置している請求項2に記載の表示装置。 The display device according to claim 2, wherein the second part is located inside the first part.
  4.  前記アノードは、前記頂面よりも幅が狭くなる部分を前記側面に有する請求項1に記載の表示装置。 The display device according to claim 1, wherein the anode has a portion on the side surface whose width is narrower than that of the top surface.
  5.  前記アノードは、前記側面の少なくとも一部にテーパー形状を有し、
     前記テーパー形状は、前記アノードの頂部から底部に向かって前記アノードの幅が狭くなるように傾斜している請求項1に記載の表示装置。
    The anode has a tapered shape on at least a part of the side surface.
    The display device according to claim 1, wherein the tapered shape is inclined so that the width of the anode is narrowed from the top to the bottom of the anode.
  6.  前記アノードは、前記側面にオーバーハング形状を有している請求項1に記載の表示装置。 The display device according to claim 1, wherein the anode has an overhang shape on the side surface.
  7.  前記アノードは、前記側面に凹部を有し、
     前記凹部の少なくとも一部が、前記絶縁層の表面よりも高い位置に設けられている請求項1に記載の表示装置。
    The anode has a recess on the side surface.
    The display device according to claim 1, wherein at least a part of the recess is provided at a position higher than the surface of the insulating layer.
  8.  前記アノードは、前記側面に凸部を有し、
     前記凸部は、前記絶縁層の表面よりも高い位置に設けられている請求項1に記載の表示装置。
    The anode has a protrusion on the side surface and has a convex portion.
    The display device according to claim 1, wherein the convex portion is provided at a position higher than the surface of the insulating layer.
  9.  前記有機層は、前記アノードに隣接して設けられた正孔注入層を備える請求項1に記載の表示装置。 The display device according to claim 1, wherein the organic layer includes a hole injection layer provided adjacent to the anode.
  10.  前記正孔注入層は、各前記画素の周縁部にて分断されている請求項9に記載の表示装置。 The display device according to claim 9, wherein the hole injection layer is divided at a peripheral portion of each of the pixels.
  11.  前記絶縁層の表面は、平坦である請求項1に記載の表示装置。 The display device according to claim 1, wherein the surface of the insulating layer is flat.
  12.  前記絶縁層の表面を基準とした前記アノードの頂面の高さhと、前記有機層の厚さtが、h≦tの関係を満たす請求項1に記載の表示装置。 The display device according to claim 1, wherein the height h of the top surface of the anode with respect to the surface of the insulating layer and the thickness t of the organic layer satisfy the relationship of h ≦ t.
  13.  前記有機層は、白色光を発光可能に構成され、
     前記カソード上に設けられたカラーフィルタをさらに備える請求項1に記載の表示装置。
    The organic layer is configured to be capable of emitting white light.
    The display device according to claim 1, further comprising a color filter provided on the cathode.
  14.  請求項1に記載の表示装置を備える電子機器。 An electronic device including the display device according to claim 1.
PCT/JP2021/013679 2020-03-31 2021-03-30 Display device and electronic device WO2021201026A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020062355A JP2021163577A (en) 2020-03-31 2020-03-31 Display device and electronic apparatus
JP2020-062355 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021201026A1 true WO2021201026A1 (en) 2021-10-07

Family

ID=77930074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013679 WO2021201026A1 (en) 2020-03-31 2021-03-30 Display device and electronic device

Country Status (2)

Country Link
JP (1) JP2021163577A (en)
WO (1) WO2021201026A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101918A1 (en) * 2010-02-22 2011-08-25 パナソニック株式会社 Light-emitting device and method for producing same
JP2013089505A (en) * 2011-10-19 2013-05-13 Sony Corp Display panel, display device and electronic apparatus
US20180123081A1 (en) * 2016-10-31 2018-05-03 Lg Display Co., Ltd. Organic light emitting display device, head mounted display including the same, and method for manufacturing the same
JP2018190551A (en) * 2017-04-28 2018-11-29 キヤノン株式会社 Organic light emitting device, imaging device, and method of manufacturing organic light emitting device
JP2019032939A (en) * 2017-08-04 2019-02-28 キヤノン株式会社 Display unit and method of manufacturing the same, and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101918A1 (en) * 2010-02-22 2011-08-25 パナソニック株式会社 Light-emitting device and method for producing same
JP2013089505A (en) * 2011-10-19 2013-05-13 Sony Corp Display panel, display device and electronic apparatus
US20180123081A1 (en) * 2016-10-31 2018-05-03 Lg Display Co., Ltd. Organic light emitting display device, head mounted display including the same, and method for manufacturing the same
JP2018190551A (en) * 2017-04-28 2018-11-29 キヤノン株式会社 Organic light emitting device, imaging device, and method of manufacturing organic light emitting device
JP2019032939A (en) * 2017-08-04 2019-02-28 キヤノン株式会社 Display unit and method of manufacturing the same, and electronic equipment

Also Published As

Publication number Publication date
JP2021163577A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
WO2020080022A1 (en) Display device
US20220013593A1 (en) Display device and electronic device
JP2024069643A (en) Light emitting element
WO2022124401A1 (en) Display apparatus and electronic device
US11997867B2 (en) Display device, method of manufacturing display device, electronic apparatus, and lighting device
WO2022054761A1 (en) Display device, light emitting device, and electronic apparatus
JP7050772B2 (en) Display devices and electronic devices
WO2021201026A1 (en) Display device and electronic device
WO2021187618A1 (en) Display device and electronic device
WO2020217954A1 (en) Display device and electronic apparatus
WO2022054831A1 (en) Display device and electronic apparatus
JP6844628B2 (en) Manufacturing method of organic electroluminescence device, organic electroluminescence device and electronic equipment
WO2022054843A1 (en) Display device, light emitting device and electronic device
WO2022009803A1 (en) Display device, light emitting device, and electronic apparatus
WO2022107679A1 (en) Display device and electronic apparatus
WO2023095662A1 (en) Display device and method for producing same, and electronic device
WO2023068227A1 (en) Display device and electronic equipment
WO2023106050A1 (en) Light-emitting device and electronic equipment
WO2023100672A1 (en) Display device and electronic apparatus
WO2023095663A1 (en) Display device and electronic device
KR20240005709A (en) Display devices and electronic devices
CN117716795A (en) Display device and electronic apparatus
CN118266267A (en) Display device and electronic apparatus
CN117881233A (en) Display device and method of manufacturing the same
KR20190062853A (en) Organic light emitting display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780118

Country of ref document: EP

Kind code of ref document: A1