WO2023100672A1 - Display device and electronic apparatus - Google Patents

Display device and electronic apparatus Download PDF

Info

Publication number
WO2023100672A1
WO2023100672A1 PCT/JP2022/042722 JP2022042722W WO2023100672A1 WO 2023100672 A1 WO2023100672 A1 WO 2023100672A1 JP 2022042722 W JP2022042722 W JP 2022042722W WO 2023100672 A1 WO2023100672 A1 WO 2023100672A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
display device
recesses
emitting element
Prior art date
Application number
PCT/JP2022/042722
Other languages
French (fr)
Japanese (ja)
Inventor
淳志 末益
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2023100672A1 publication Critical patent/WO2023100672A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present disclosure relates to a display device and an electronic device including the same.
  • Patent Document 1 describes a technique for improving luminance by forming a first electrode layer, an organic layer, and a second electrode layer following concave portions on the surface of a substrate.
  • An object of the present disclosure is to provide a display device capable of improving luminance and an electronic device including the same.
  • the display device includes: a plurality of light emitting elements arranged two-dimensionally; a lower layer provided under the plurality of light emitting elements; and the lower layer has one or more recesses for each light emitting element, The light emitting element is provided following the recess, When the lower layer has one recess for each light emitting element, a cross section obtained by cutting one recess in a plane that passes through the geometric center of the light emitting element in plan view and is parallel to the thickness direction of the display device.
  • the display device the shape of which includes a plurality of concave portions.
  • the lower layer may be an insulating layer or a substrate.
  • the recess may have an annular shape in plan view.
  • the ring may be generally toric, generally elliptical, or generally polygonal.
  • a cross-sectional shape obtained by cutting a recess having an annular shape in plan view along a plane parallel to the width direction of the recess and parallel to the thickness direction of the display device has an arch shape or a substantially polygonal shape.
  • the arch shape may be substantially circular, substantially elliptical, or substantially parabolic.
  • the substantially polygonal shape may be a substantially square shape such as a substantially trapezoidal shape.
  • the lower layer may have a plurality of recesses for each light emitting element.
  • the plurality of recesses may have a concentric shape in plan view, or may have a dot shape in plan view.
  • the plurality of recesses having dot shapes in plan view may be arranged in a prescribed pattern.
  • the arrangement may be a one-dimensional arrangement or a two-dimensional arrangement.
  • the plurality of recesses may include a first recess having an annular shape in plan view and a second recess having a dot shape in plan view provided inside the first recess.
  • the dot shape may be substantially circular, substantially elliptical, substantially polygonal, or substantially cross-shaped.
  • the substantially polygonal shape may be a substantially square shape or a substantially hexagonal shape.
  • the recesses may have the same depth over the entire display area of the display device, or may have two or more depths over the entire display area of the display device.
  • the concave portion has two or more depths over the entire display area of the display device, the depth of the concave portion may differ depending on the position of the display area.
  • the display device may include a protective layer covering the plurality of light emitting elements, a planarizing layer provided on the protective layer, and a color filter provided on the planarizing layer.
  • the display device may further include a plurality of lenses provided above the plurality of light emitting elements, and one or more lenses may be provided for each light emitting element.
  • the concave portion and the lens may have the same shape in plan view.
  • the concave portion and the lens may have an annular shape in plan view, or may have a dot shape in plan view.
  • the lens may be a convex lens.
  • a cross-sectional shape obtained by cutting a convex lens along a plane parallel to the width direction of the lens and parallel to the thickness direction of the display device may have an arch shape or a substantially polygonal shape.
  • the arch shape may be substantially circular, substantially elliptical, or substantially parabolic.
  • the substantially polygonal shape may be a substantially square shape such as a substantially trapezoidal shape.
  • each light-emitting element may include, in order, a first electrode, an organic layer including a light-emitting layer, and a second electrode.
  • the display device according to the present disclosure may be provided in electronic equipment.
  • FIG. 1 is a plan view showing an example of the configuration of a display device according to one embodiment.
  • FIG. 2 is a plan view showing an enlarged part of the display area of the display device according to the embodiment.
  • FIG. 3 is a cross-sectional view taken along line III--III in FIG.
  • FIG. 4A is a plan view showing an example of the configuration of a circuit board provided with first electrodes and an insulating layer.
  • FIG. 4B is a cross-sectional view taken along line IVB--IVB of FIG. 4A.
  • FIG. 5A is a plan view showing an example of the configuration of a circuit board provided with first electrodes and an insulating layer.
  • FIG. 5B is a cross-sectional view along line VB-VB in FIG. 5A.
  • FIG. 9A is a cross-sectional view showing an example of the configuration of a circuit board provided with first electrodes and an insulating layer.
  • FIG. 9B is a cross-sectional view showing an example of the configuration of a circuit board provided with first electrodes and an insulating layer.
  • FIG. 10 is a cross-sectional view showing an example of the configuration of a circuit board provided with first electrodes and an insulating layer.
  • FIG. 11 is a cross-sectional view showing an example of the configuration of the display device.
  • FIG. 12A is a diagram showing cross-sectional shapes of first electrodes of Comparative Examples 1A, 1B, 1C, 2A, 2B, and 2C.
  • FIG. 12B is a diagram showing the cross-sectional shape of the first electrode of Reference Examples 1A, 1B, 1C, 2A, 2B, and 2C.
  • FIG. 12C is a diagram showing the cross-sectional shape of the first electrode of Reference Examples 3A, 3B, 3C, 4A, 4B, and 4C.
  • FIG. 13A is a front view showing an example of the appearance of a digital still camera.
  • FIG. 13B is a rear view showing an example of the appearance of the digital still camera.
  • FIG. 14 is a perspective view of an example of the appearance of a head mounted display.
  • FIG. 15 is a perspective view showing an example of the appearance of the television device.
  • FIG. 1 is a plan view showing an example of the configuration of a display device 10 according to one embodiment.
  • the display device 10 has a display region R1 and a peripheral region R2 provided around the display region R1.
  • the display area R1 has a rectangular shape in plan view.
  • a planar view means a planar view when an object is seen from a direction D Z (hereinafter referred to as “front direction D Z ”) perpendicular to the display surface of the display device 10 .
  • front direction D Z the direction parallel to the long sides of the display region R1
  • the vertical direction DY the direction parallel to the short sides of the display region R1
  • FIG. 2 is a plan view showing an enlarged part of the display region R1 of the display device 10 according to one embodiment.
  • a plurality of sub-pixels 100R, 100G, and 100B are two-dimensionally arranged in a prescribed arrangement pattern within the display region R1.
  • the prescribed arrangement pattern is, for example, a delta arrangement, a stripe arrangement or a mosaic arrangement. Note that FIG. 2 shows an example of a delta arrangement.
  • the peripheral region R2 is provided with a pad portion 101, an image display driver (not shown), and the like.
  • a flexible printed circuit (FPC) (not shown) may be connected to the pad section 101 .
  • sub-pixel 100R, 100G, and 100B are collectively referred to as sub-pixel 100 without particular distinction.
  • One pixel is composed of three adjacent sub-pixels 100R, 100G, and 100B.
  • the sub-pixels 100R, 100G, and 100B have, for example, a circular shape, an elliptical shape, or a rectangular shape in plan view.
  • the rectangular shape includes a square shape.
  • FIG. 2 shows an example in which the sub-pixels 100R, 100G, and 100B have a circular shape in plan view.
  • the display device 10 is an example of a light emitting device.
  • the display device 10 is a top emission type OLED display device.
  • the display device 10 may be a microdisplay.
  • the display device 10 may be provided in a VR (Virtual Reality) device, an MR (Mixed Reality) device, an AR (Augmented Reality) device, an Electronic View Finder (EVF), a small projector, or the like.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • the display device 10 includes a circuit board 11, a plurality of light emitting elements 20, an insulating layer 12, a protective layer 13, a planarizing layer 14, a color filter 15, a planarizing layer 16, and a lens array 17. .
  • a plurality of sub-pixels 100R, 100G, and 100B are configured by combining the color filters 15 and the light-emitting elements 20 .
  • the surface on the top side (display surface side) of the display device 10 is referred to as a first surface
  • the bottom side (opposite side to the display surface) of the display device 10 is referred to as a first surface. is called the second surface.
  • the substrate 11a may be made of, for example, a semiconductor that facilitates the formation of transistors or the like, or may be made of glass or resin with low permeability to moisture and oxygen.
  • the substrate 11a may be a semiconductor substrate, a glass substrate, a resin substrate, or the like.
  • Semiconductor substrates include, for example, amorphous silicon, polycrystalline silicon, monocrystalline silicon, or the like.
  • the glass substrate includes, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, quartz glass, or the like.
  • the insulating layer 11b has a plurality of recesses 110 on its first surface.
  • the concave portion 110 is for forming the light emitting element 20 into a shape that follows the concave portion 110 .
  • One recess 110 is provided for each light emitting element 20 .
  • a cross section obtained by cutting one concave portion 110 along a plane passing through the geometric center of the light emitting element 20 in plan view and parallel to the thickness direction of the display device 10 includes two concave portions.
  • the concave portion has, for example, a downwardly convex curved shape, a substantially trapezoidal shape, or a substantially rectangular shape.
  • the downwardly convex curved shape is, for example, a substantially circular arc shape, a substantially elliptical arc shape, or a substantially parabolic shape.
  • the concave portion 110 has an annular shape in plan view.
  • the annular ring is centered, for example, on the geometric center of the light emitting element 20 in plan view.
  • the recessed portion 110 may have a bottom portion 111, an inner peripheral wall portion 112a, and an outer peripheral wall portion 112b.
  • the bottom portion 111 may be planar and parallel to the first surface of the substrate 11a.
  • the inner peripheral wall portion 112a and the outer peripheral wall portion 112b may be inclined surfaces inclined with respect to the first surface of the substrate 11a, or may be vertical surfaces perpendicular to the first surface of the substrate 11a. good.
  • the cross-sectional shape obtained by cutting the inner peripheral wall portion 112a and the outer peripheral wall portion 112b along a plane parallel to the width direction of the recess 110 and parallel to the thickness direction of the display device 10 may be linear. and may be smooth curved.
  • the curved line is, for example, a concave curved line or a convex curved line.
  • the light emitting element 20 is a white OLED element, and can emit white light under control of a drive circuit or the like.
  • the white OLED element may be a white Micro-OLED (MOLED) element.
  • the peripheral edge of the first electrode 21 is preferably positioned outside the outer periphery of the annular recess 110 in plan view.
  • the first electrodes 21 have approximately the same thickness.
  • the depth of the concave portion 210 is, for example, 30 nm or more and 500 nm or less, preferably 30 nm or more and 300 nm or less.
  • the first electrode 21 may be composed of, for example, a metal layer, or may be composed of a metal layer and a transparent conductive oxide layer.
  • the transparent conductive oxide layer is the OLED layer. It is preferably provided on the 22 side.
  • a base layer may be provided adjacent to the second surface side of the metal layer.
  • the underlayer is for improving the crystal orientation of the metal layer when the metal layer is formed.
  • the underlayer contains, for example, at least one metal element selected from the group consisting of titanium (Ti) and tantalum (Ta).
  • the underlayer may contain the at least one metal element as a constituent element of the alloy.
  • the transparent conductive oxide layer contains a transparent conductive oxide.
  • Transparent conductive oxides include, for example, transparent conductive oxides containing indium (hereinafter referred to as “indium-based transparent conductive oxides”) and transparent conductive oxides containing tin (hereinafter referred to as “tin-based transparent conductive oxides”). ”) and transparent conductive oxides containing zinc (hereinafter referred to as “zinc-based transparent conductive oxides”).
  • Indium-based transparent conductive oxides include, for example, indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO) or indium gallium zinc oxide (IGZO) and fluorine-doped indium oxide (IFO).
  • ITO indium tin oxide
  • ITO indium tin oxide
  • Tin-based transparent conductive oxides include, for example, tin oxide, antimony-doped tin oxide (ATO), or fluorine-doped tin oxide (FTO).
  • Zinc-based transparent conductive oxides include, for example, zinc oxide, aluminum-doped zinc oxide (AZO), boron-doped zinc oxide, or gallium-doped zinc oxide (GZO).
  • the OLED layer 22 is an example of an organic layer including a light-emitting layer.
  • the OLED layer 22 can emit white light by recombination of holes injected from the first electrode 21 and electrons injected from the second electrode 23 .
  • the OLED layer 22 is provided between the multiple first electrodes 21 and the second electrodes 23 .
  • the OLED layer 22 follows the first surface (uneven surface) of the circuit board 11 on which the first electrode 21 is provided.
  • OLED layers 22 preferably have approximately the same thickness.
  • the OLED layer 22 is provided continuously over the plurality of light emitting elements 20 within the display region R1, and is shared by the plurality of light emitting elements 20 within the display region R1.
  • the OLED layer 22 may be an OLED layer with a single-layer light emitting unit, an OLED layer with two layers of light emitting units (tandem structure), or an OLED layer with a structure other than these.
  • An OLED layer comprising a single layer of light-emitting units includes, for example, a hole-injecting layer, a hole-transporting layer, a red-emitting layer, a light-emitting separating layer, a blue-emitting layer, from the first electrode 21 toward the second electrode 23 . It has a configuration in which a green light-emitting layer, an electron transport layer, and an electron injection layer are laminated in this order.
  • An OLED layer comprising two layers of light-emitting units is, for example, a hole-injection layer, a hole-transport layer, a blue-light-emitting layer, an electron-transport layer, a charge-generating layer, from the first electrode 21 toward the second electrode 23 . It has a structure in which a hole transport layer, a yellow light emitting layer, an electron transport layer, and an electron injection layer are laminated in this order.
  • the hole injection layer is intended to increase the efficiency of hole injection into each light-emitting layer and to suppress leakage.
  • the hole-transporting layer is for increasing the efficiency of hole-transporting to each light-emitting layer.
  • the electron injection layer is for increasing the efficiency of electron injection into each light-emitting layer.
  • the electron transport layer is for enhancing electron transport efficiency to each light-emitting layer.
  • the emission separation layer is a layer for adjusting the injection of carriers into each emission layer, and the emission balance of each color is adjusted by injecting electrons and holes into each emission layer through the emission separation layer.
  • the charge-generating layer is for supplying electrons and holes to the two light-emitting layers sandwiching the charge-generating layer.
  • red light emitting layer By applying an electric field to each of the red light emitting layer, the green light emitting layer, the blue light emitting layer, and the yellow light emitting layer, holes injected from the first electrode 21 or the charge generation layer and holes injected from the second electrode 23 or the charge generation layer Recombination with injected electrons occurs, and red light, green light, blue light, and yellow light can be emitted.
  • the second electrode 23 is the cathode. When a voltage is applied between the first electrode 21 and the second electrode 23 , electrons are injected from the second electrode 23 into the OLED layer 22 .
  • the second electrode 23 is a transparent electrode having transparency to visible light. In this specification, visible light refers to light in the wavelength range of 360 nm to 830 nm.
  • a second electrode 23 is provided on the first surface of the OLED layer 22 .
  • the second electrode 23 follows the first surface (uneven surface) of the circuit board 11 on which the first electrode 21 and the OLED layer 22 are provided.
  • the second electrodes 23 preferably have approximately the same thickness.
  • the second electrode 23 is provided continuously over the plurality of light emitting elements 20 within the display region R1 and is shared by the plurality of light emitting elements 20 within the display region R1.
  • the second electrode 23 is made of a material with a high transmittance and a small work function, in order to increase the luminous efficiency.
  • the second electrode 23 is composed of, for example, at least one layer of a metal layer and a transparent conductive oxide layer. More specifically, the second electrode 23 is composed of a single layer film of a metal layer or a transparent conductive oxide layer, or a laminated film of a metal layer and a transparent conductive oxide layer.
  • the metal layer may be provided on the OLED layer 22 side, and the transparent conductive oxide layer may be provided on the OLED layer 22 side. From the viewpoint of placing a layer having a work function adjacent to the OLED layer 22, it is preferable that the metal layer is provided on the OLED layer 22 side.
  • the metal layer contains, for example, at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), calcium (Ca) and sodium (Na).
  • the metal layer may contain the at least one metal element as a constituent element of an alloy. Specific examples of alloys include MgAg alloys, MgAl alloys, AlLi alloys, and the like.
  • the transparent conductive oxide layer includes a transparent conductive oxide. As the transparent conductive oxide, the same material as the transparent conductive oxide of the first electrode 21 can be exemplified.
  • the protective layer 13 has transparency to visible light.
  • the protective layer 13 is provided on the first surface of the second electrode 23 and covers the plurality of light emitting elements 20 .
  • the protective layer 13 shields the light emitting element 20 from the outside air, and can suppress moisture intrusion into the light emitting element 20 from the external environment.
  • the protective layer 13 may have a function of suppressing oxidation of this metal layer.
  • the protective layer 13 may have unevenness on the first surface. The unevenness may follow the unevenness of the first surface of the circuit board 11 on which the plurality of light emitting elements 20 are two-dimensionally arranged.
  • the protective layer 13 includes a first protective layer 13 a and a second protective layer 13 b in order on the first surface of the second electrode 23 .
  • the first protective layer 13a contains, for example, a low hygroscopic inorganic material or polymer resin.
  • the first protective layer 13a may have a single layer structure or a multilayer structure. When increasing the thickness of the first protective layer 13a, it is preferable to have a multilayer structure. This is for alleviating the internal stress in the protective layer 13 .
  • the inorganic material is, for example, selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), titanium oxide (TiO x ) and aluminum oxide (AlO x ).
  • contains at least one Polymer resins include, for example, at least one selected from the group consisting of thermosetting resins, ultraviolet-curable resins, and the like.
  • the polymer resin includes at least one selected from the group consisting of acrylic resins, polyimide resins, novolac resins, epoxy resins, norbornene resins, and the like.
  • the second protective layer 13b is, for example, a metal oxide layer.
  • the metal oxide layer preferably consists of a deposited monolayer. When the metal oxide layer is composed of a deposited monomolecular layer, it is possible to improve the effect of the protective layer 13 on suppressing moisture intrusion.
  • the second protective layer 13b preferably contains a material different from that of the first protective layer 13a. It is possible to suppress formation of pinholes generated in the first protective layer 13a that are also connected to the second protective layer 13b.
  • Metal oxide layers include, for example, aluminum oxide or titanium oxide.
  • the planarizing layer 14 is provided on the first surface of the protective layer 13 and planarizes the unevenness of the first surface of the protective layer 13 .
  • the planarization layer 14 contains, for example, an inorganic material or a polymeric resin. Examples of the inorganic material include materials similar to those of the first protective layer 13a.
  • the polymer resin the same material as the polymer resin of the first protective layer 13a can be exemplified.
  • the refractive index of the planarizing layer 14 is n 1 and the refractive index of the protective layer 13 is n 2 , it is preferable to satisfy the relationship n 1 >n 2 .
  • an internal lens is formed by the planarizing layer 14 and the protective layer 13, and the light emitted from the light emitting element 20 can be focused in the front direction DZ .
  • the front light extraction efficiency can be improved.
  • the refractive index represents the refractive index for light with a wavelength of 550 nm.
  • a color filter 15 is provided above the plurality of light emitting elements 20 . More specifically, the color filters 15 are provided on the first surface of the planarization layer 14 .
  • the color filter 15 is, for example, an on-chip color filter (OCCF).
  • the color filter 15 includes, for example, a plurality of red filter portions 15FR, a plurality of green filter portions 15FG, and a plurality of blue filter portions 15FB.
  • the red filter section 15FR, the green filter section 15FG, and the blue filter section 15FB are collectively referred to as the filter section 15F without particular distinction.
  • the plurality of filter portions 15F are two-dimensionally arranged in the in-plane direction.
  • the in-plane direction means the in-plane direction on the first surface of the circuit board 11 .
  • Each filter section 15 ⁇ /b>F is provided above the light emitting element 20 . More specifically, the red filter section 15FR is provided above the light emitting element 20, the green filter section 15FG is provided above the light emitting element 20, and the blue filter section 15FB is provided above the light emitting element 20. ing.
  • a sub-pixel 100R is composed of the red filter portion 15FR and the light-emitting element 20
  • a sub-pixel 100G is composed of the green filter portion 15FG and the light-emitting element 20
  • a sub-pixel 100B is composed of the blue filter portion 15FB and the light-emitting element 20.
  • the red filter portion 15FR transmits red light out of the white light emitted from the light emitting element 20, but absorbs light other than red light.
  • the green filter portion 15FG transmits green light out of the white light emitted from the light emitting element 20, but absorbs light other than green light.
  • the blue filter portion 15FB transmits blue light out of the white light emitted from the light emitting element 20, but absorbs light other than blue light.
  • the red filter portion 15FR includes, for example, a red color resist.
  • the green filter portion 15FG includes, for example, a green color resist.
  • the blue filter portion 15FB includes, for example, a blue color resist.
  • the planarization layer 16 is provided on the first surface of the color filter 15 and planarizes the unevenness of the first surface of the color filter 15 .
  • the planarization layer 16 contains, for example, an inorganic material or a polymeric resin. Examples of the inorganic material include materials similar to those of the first protective layer 13a.
  • the polymer resin the same material as the polymer resin of the first protective layer 13a can be exemplified.
  • the lens array 17 includes a plurality of lenses 17a.
  • the plurality of lenses 17a are two-dimensionally arranged on the first surface of the planarization layer 16 in a prescribed arrangement pattern.
  • One lens 17 a is provided for each light emitting element 20 .
  • Each lens 17 a is provided above the light emitting element 20 .
  • the lens 17a may be an on-chip microlens (OCL).
  • OCL on-chip microlens
  • the lens 17a collects the light emitted upward from the filter portion 15F in the front direction DZ .
  • the lens 17a has, for example, a convex curved surface protruding in the front direction DZ .
  • the convex curved surface is, for example, dome-shaped.
  • the dome shape includes shapes such as a substantially parabolic shape, a substantially hemispherical shape, and a substantially semiellipsoidal shape. It is preferable that the apex of the lens 17a approximately coincides with the center of the annular shape of the concave portion 110 in plan view.
  • the lens 17a includes, for example, an inorganic material or polymer resin that is transparent to visible light.
  • Inorganic materials include, for example, silicon oxide (SiO x ).
  • Polymer resins include, for example, ultraviolet curable resins.
  • an insulating layer 11b having a plurality of vias 11c therein is formed on the first surface of the substrate 11a.
  • the resist layer is exposed and developed to pattern the resist layer.
  • a plurality of openings are formed in portions of the resist layer that face the formation positions of the plurality of recesses 110 .
  • a plurality of recesses 110 are formed by etching the insulating layer 11b through the resist layer by dry etching, for example.
  • the method for forming a recess described in Patent Document 1 may be used.
  • Step of forming first electrode 21 First, a metal layer and a metal oxide layer are sequentially formed on the first surface of the circuit board 11 by, for example, a sputtering method, and then the metal layer and the metal oxide layer are patterned by, for example, a photolithography technique and an etching technique. . Thereby, a plurality of first electrodes 21 are formed on the first surface of the circuit board 11 .
  • the insulating layer 12 is formed on the first surface of the circuit board 11 so as to cover the plurality of first electrodes 21 by, for example, a CVD (Chemical Vapor Deposition) method.
  • openings 12a are formed in portions of the insulating layer 12 located on the first surfaces of the first electrodes 21 by photolithography and dry etching, for example.
  • a hole transport layer, a red light emitting layer, a light emitting separation layer, a blue light emitting layer, a green light emitting layer, an electron transport layer, and an electron injection layer are formed on the first surface of the plurality of first electrodes 21 by vapor deposition, for example. and on the first surface of the insulating layer 12 in this order to form the OLED layer 22 .
  • a second electrode 23 is formed on the first surface of the OLED layer 22 by vapor deposition or sputtering, for example. Thereby, a plurality of light emitting elements 20 are formed on the first surface of the circuit board 11 .
  • the first protective layer 13a is formed on the first surface of the second electrode 23 by, for example, CVD or vapor deposition.
  • the second protective layer 13b is formed on the first surface of the first protective layer 13a by atomic layer deposition (ALD), for example.
  • ALD atomic layer deposition
  • planarization layer 14 is formed on the first surface of the second electrode 23 by, for example, CVD or vapor deposition.
  • a coloring composition for forming a green filter portion is applied onto the first surface of the flattening layer 14, irradiated with ultraviolet rays through a photomask for pattern exposure, and then developed to form a green filter portion 15FG.
  • a coloring composition for forming a red filter portion is applied onto the first surface of the flattening layer 14, irradiated with ultraviolet rays through a photomask for pattern exposure, and then developed to form a red filter portion 15FR.
  • a coloring composition for forming a blue filter portion is applied onto the first surface of the flattening layer 14, irradiated with ultraviolet rays through a photomask for pattern exposure, and then developed to form a blue filter portion 15FB. to form Thus, color filters 15 are formed on the first surface of planarization layer 14 .
  • a planarizing layer 16 is formed on the first surface of the color filter 15 by, for example, CVD or vapor deposition.
  • a lens material layer such as an acrylic resin is formed by applying a lens material such as an acrylic resin onto the first surface of the flattening layer 16 and curing it.
  • the lens material layer is processed by, for example, photolithography technology and dry etching technology, it is reflowed and cured to form a plurality of lenses 17a.
  • the insulating layer (lower layer) 11b has one annular concave portion 110 for each light emitting element 20 on the first surface, and the light emitting elements 20 are provided so as to follow the concave portion 110. It is for this reason, the first electrode 21 of the light emitting element 20 has one annular concave portion 210 .
  • the first electrode 21 having one annular concave portion 210 compared with the first electrode having one bowl-shaped concave portion, the depth of the concave portion 210 is not increased, and the inclination of the first electrode 21 is reduced. The surface area can be increased.
  • deterioration of throwing power of the OLED layer 22 (uniformity of thickness of the OLED layer 22) can be suppressed. Therefore, deterioration of characteristics such as luminance, chromaticity and heat resistance due to deterioration of the throwing power of the OLED layer 22 can be suppressed.
  • luminance can be improved without increasing the aperture ratio as compared with a display device including a first electrode having one bowl-shaped concave portion and a display device including a flat first electrode.
  • the display device 10 since one annular concave portion 210 and one lens 17a are combined, the light reflected by the concave portion 210 is condensed in the front direction DZ by the lens 17a. be able to. Therefore, since the light extraction efficiency can be further improved, the luminance can be further improved.
  • two recesses 110 having an annular shape in plan view may be provided for each light emitting element 20 .
  • the two recesses 110 may be provided concentrically in plan view.
  • the two concentric recesses 110 may share the geometric center of the light emitting element 20 in plan view as the center.
  • the light emitting element 20 may be provided along the two recesses 110 . That is, the first electrode 21 may have two recesses 210 .
  • the area of the slope of the recess 110 that is, the area of the slope of the first electrode 21 can be increased compared to the one embodiment. Therefore, the luminance of the display device 10 can be further improved.
  • three or more recesses 110 that are concentric in plan view may be provided for each light emitting element 20, and the three or more recesses 110 may be concentrically provided in plan view. Three or more concentric recesses 110 may share the geometric center of the light emitting element 20 in plan view as the center.
  • the light emitting element 20 may be provided along the three recesses 110 . That is, the first electrode 21 may have three recesses 210 .
  • one concave portion (first concave portion) 110 having an annular shape in plan view and one concave portion (second concave portion) 110a having a circular shape (dot shape) in plan view. may be provided for each light emitting element 20 .
  • the recess 110 a may be provided inside the recess 110 .
  • the concave portion 110a may have a bowl shape.
  • the bowl may have a flat bottom and sides.
  • the side surface may be flat, or may be a convex or concave curved surface.
  • the bowl shape with flat bottom and sides may be a frustum shape.
  • the frustum may be, for example, a truncated cone, an elliptical truncated pyramid, a truncated pyramid (eg, a square truncated pyramid or a hexagonal truncated pyramid).
  • the bowl shape may be a concave surface shape.
  • the concave curved surface shape may be, for example, a substantially paraboloid shape, a substantially semispherical shape, a substantially semiellipsoidal shape, or the like.
  • the light emitting element 20 may be provided along one recess 110 and one recess 110a. That is, the first electrode 21 may have one recess 210 and one recess 210a.
  • the above configuration can be easily provided even when the size of the sub-pixel 100 is small and it is difficult to provide a plurality of annular concave portions 110 for each light emitting element 20 . Therefore, even when the size of the sub-pixel 100 is small, the area of the slope of the first electrode 21 can be easily increased.
  • first lens is a lens with a convex curved surface and may have the same shape as the concave portion 110 in plan view, that is, an annular shape.
  • the second lens is a lens with a convex curved surface and may have the same shape as the concave portion 110a in plan view, that is, a circular shape.
  • the first lens may be provided above the recess 110 .
  • the second lens may be provided above the recess 110a.
  • a plurality of recesses 110b having a circular shape in plan view may be provided for each light emitting element 20 .
  • the plurality of recesses 110b may be two-dimensionally arranged in a prescribed arrangement pattern on the first surface of the insulating layer 11b.
  • the shape of the recess 110b is the same as that of the recess 110a in the second modification.
  • the light emitting element 20 may be provided along the plurality of recesses 110b. That is, the first electrode 21 may have a plurality of recesses 210b.
  • the area of the slopes of the recesses 110b that is, the slope of the first electrode 21 can be increased.
  • the lower limit of the number of recesses 110b is, for example, 2 or more, 3 or more, 4 or more, or 5 or more.
  • the upper limit of the number of recesses 110b is not particularly limited, but is, for example, 10 or less.
  • a plurality of lenses 17a may be provided above the plurality of recesses 110b.
  • the lens 17a may have a convex curved surface such as a dome shape.
  • the width of the plurality of recesses 110 may vary according to the width of the lens 17a. Thereby, light can be efficiently incident on the plurality of lenses 17a.
  • Modification 4 When a plurality of recesses 110 are provided for each light emitting element 20 (see FIG. 5A, for example), the depths of the plurality of recesses 110 may be different. That is, when a plurality of recesses 210 are provided for each first electrode 21, the depths of the plurality of recesses 210 may be different. Thereby, the traveling direction of the light emitted from the light emitting element 20 can be controlled.
  • the depth of the concave portion 110 may be deeper than the depth of the concave portion 110 provided on the outside. That is, of the two recesses 210 of the first electrode 21, the recess 210 provided inside may be deeper than the recess 210 provided outside.
  • the depth of the recess 110 provided on the inner side of the two recesses 110 may be shallower than the depth of the recess 110 provided on the outer side. That is, the depth of the recess 210 provided on the inner side of the two recesses 210 of the first electrode 21 may be shallower than the depth of the recess 210 provided on the outer side.
  • the traveling direction of the reflected light is directed toward the inside of the sub-pixel 100. , the amount of reflected light entering the lens 17a of the adjacent sub-pixel 100 can be reduced.
  • first recess 110 having an annular shape in plan view and one recess (second recess) 110a having a circular shape in plan view are provided for each light emitting element 20.
  • the depth of the inner recess 110a may be greater than the depth of the outer recess 110, as shown in FIG. 9A. That is, in the first electrode 21, the depth of the recess 210a on the inner side may be deeper than the depth of the recess 210 on the outer side. Alternatively, the depth of the inner recess 110 a may be shallower than the depth of the outer recess 110 .
  • the depth of the recess 210a on the inner side may be shallower than the depth of the recess 210 on the outer side.
  • the recess 110a and the recess 210a may be bowl-shaped with a flat bottom as shown in FIG. 9A, or bowl-shaped with a concave curved bottom as shown in FIG. 9B. may
  • the traveling direction of the reflected light is further directed toward the inside of the sub-pixel 100. Therefore, the amount of reflected light entering the lens 17a of the adjacent sub-pixel 100 can be reduced.
  • the depths of the recesses 110 may be different, or the depths of the recesses 110 may be different, Moreover, the depth of the plurality of recesses 110 and the depth of the single recess 110a may be different. That is, in the first electrode 21, the plurality of recesses 210 may have different depths, or the plurality of recesses 210 may have different depths, and the plurality of recesses 210 and one recess 210a may have different depths. can be different.
  • the depths of the plurality of recesses 110b may be different. That is, in the first electrode 21, the recesses 210b may have different depths.
  • the widths of the plurality of recesses 110 may be different. That is, when a plurality of recesses 210 are provided for each first electrode 21, the widths of the plurality of recesses 210 may be different.
  • the width of the recess 110 provided on the inner side of the two recesses 110 is the width of the recess 110 provided on the outer side. It may be wider than the width of the recess 110 formed. That is, the width of the concave portion 210 provided on the inner side of the two concave portions 210 of the first electrode 21 may be wider than the width of the concave portion 210 provided on the outer side. Alternatively, the width of the recess 110 provided on the inner side of the two recesses 110 may be narrower than the width of the recess 110 provided on the outer side. In other words, the width of the recess 210 provided on the inner side of the two recesses 210 of the first electrode 21 may be narrower than the width of the recess 210 provided on the outer side.
  • a plurality of lenses 17a may be provided above the plurality of recesses 110, respectively.
  • Lens 17a may have a toric shape.
  • the width of the plurality of recesses 110 may vary according to the width of the lens 17a. Thereby, light can be efficiently incident on the plurality of lenses 17a.
  • the widths of the recesses 110 may be different, the widths of the recesses 110 may be different, and The width of the plurality of recesses 110 and the width of one recess 110a may be different. That is, in the first electrode 21, the plurality of recesses 210 may have different widths, or the plurality of recesses 210 may have different widths, and the plurality of recesses 210 and one recess 210a may have different widths. good.
  • the widths of the plurality of recesses 110b may be different. That is, in the first electrode 21, the widths of the recesses 210b may be different.
  • the insulating layer 11b further includes a plurality of conductive layers 21e inside, the conductive layers 21e are in contact with the bottom surface (second surface) of the recess 210, and the vias 11c are connected to the conductive layers 21e. may be connected to the wiring 11d.
  • the conductive layer 21e is, for example, wiring or an electrode.
  • the lens 17a has a convex curved surface such as a dome shape, but the shape of the lens 17a is not limited to this.
  • the lens 17a may have the same shape as the recess 110 of the insulating layer 11b (that is, the same shape as the recess 210 of the first electrode 21) in plan view. More specifically, the lens 17a may have an annular shape in plan view.
  • the lens 17a may be a lens having a convex curved surface.
  • the resulting cross-sectional shape may be arcuate.
  • the arch shape includes a substantially circular arc shape, a substantially elliptical arc shape and a substantially parabolic shape. Since the lens 17a has an annular shape as described above, it is possible to reduce light entering the adjacent sub-pixels 100 and suppress color mixture.
  • the display device 10 may include a plurality of lenses as many as the concave portions 110 .
  • Each of the plurality of lenses may have the same shape as the plurality of recesses 110 (that is, the same shape as the recesses 210 of the first electrode 21) in plan view.
  • the display device 10 has the same number of recesses 110 and one or more recesses 110a.
  • a plurality of first lenses and one second lens may be provided.
  • Each of the one or more first lenses has the same shape as the one or more recesses 110 (that is, the same shape as the one or more recesses 210 of the first electrode 21) in plan view.
  • the second lens may have the same shape as one recess 110a (that is, the same shape as one recess 210a of the first electrode 21) in plan view.
  • the display device 10 may include a plurality of lenses as many as the concave portions 110b.
  • Each of the plurality of lenses may have the same shape as the plurality of recesses 110b (that is, the same shape as the recesses 210b of the first electrode 21) in plan view.
  • the planarization layer 14 may have the function of the color filter 15 . More specifically, for example, the display device 10 may have the color filter 15 directly on the first surface of the protective layer 13 . In this case, since the distance from the light emitting element 20 to the lens 17a can be shortened, the amount of light leaking to the adjacent sub-pixel 100 can be reduced.
  • the display device 10 may have a filling resin layer and a counter substrate on the lens array 17 in this order.
  • the filling resin layer fills the gap between the lens array 17 and the counter substrate and bonds the lens array 17 and the counter substrate.
  • the filled resin layer contains, for example, at least one selected from the group consisting of thermosetting resins and UV-curable resins.
  • the counter substrate is provided on the first surface of the filled resin layer and faces the circuit board 11 .
  • the counter substrate and the filling resin layer seal the light emitting element 20, the color filter 15, and the like.
  • the counter substrate includes a material such as glass that is transparent to each color of light emitted from the color filter 15 .
  • the color scheme may be a scheme in which a light-emitting element that emits red light, a light-emitting element that emits green light, and a light-emitting element that emits blue light are provided.
  • the present disclosure can also employ the following configuration.
  • a display device in which the cross-sectional shape obtained by the above includes a plurality of concave portions.
  • the lower layer has a plurality of recesses for each light emitting element, The display device according to (1), wherein the plurality of recesses are concentric in plan view.
  • the lower layer has a plurality of recesses for each light emitting element, The display device according to (1), wherein each recess has a bowl shape.
  • the lower layer has a plurality of recesses for each light emitting element, According to (1), the plurality of recesses includes a first recess having an annular shape in plan view, and a second recess provided inside the first recess and having a dot shape in plan view. display device.
  • the lower layer has a plurality of recesses for each light emitting element, The display device according to (1), wherein the plurality of recesses have different widths.
  • the lower layer has a plurality of recesses for each light emitting element, The display device according to (1), wherein the plurality of recesses have different depths.
  • a protective layer covering the plurality of light emitting elements; and a planarization layer provided on the protective layer, The display device according to any one of (1) to (7), wherein the planarization layer functions as a color filter.
  • a protective layer covering the plurality of light emitting elements; a planarization layer provided on the protective layer;
  • (11) The display device according to (10), wherein the concave portion and the lens have the same shape in plan view.
  • the concave portion and the lens have an annular shape in the plan view.
  • each light emitting element includes, in order, a first electrode, an organic layer including a light emitting layer, and a second electrode.
  • An electronic device comprising the display device according to any one of (1) to (13).
  • FIG. 12A is a diagram showing cross-sectional shapes of first electrodes 21 of Comparative Examples 1A, 1B, 1C, 2A, 2B, and 2C.
  • FIG. 12B is a diagram showing the cross-sectional shape of the first electrode 21 of Reference Examples 1A, 1B, 1C, 2A, 2B, and 2C.
  • FIG. 12C is a diagram showing the cross-sectional shape of the first electrode 21 of Reference Examples 3A, 3B, 3C, 4A, 4B, and 4C.
  • the first electrode 21 having one bowl-shaped recess 210 Compared to the first electrode 21 having one bowl-shaped recess 210, the first electrode 21 having one or two annular recesses 210 does not increase the depth of the recess 210, and the first electrode 21 has It can be seen that the area of the electrode 21 can be increased.
  • the display device 10 according to the above embodiment and its modification can be provided in various electronic devices.
  • the display device 10 according to the above-described embodiment and its modification is required to have a high resolution, such as an electronic viewfinder of a video camera or a single-lens reflex camera, or a head-mounted display, and is enlarged and used near the eyes. suitable for
  • FIG. 1 This digital still camera 310 is of an interchangeable single-lens reflex type, and has an interchangeable photographing lens unit (interchangeable lens) 312 in approximately the center of the front of a camera main body (camera body) 311, and on the left side of the front. It has a grip portion 313 for a photographer to hold.
  • interchangeable photographing lens unit interchangeable lens
  • a monitor 314 is provided at a position shifted to the left from the center of the back surface of the camera body 311 .
  • An electronic viewfinder (eyepiece window) 315 is provided above the monitor 314 . By looking through the electronic viewfinder 315, the photographer can view the optical image of the subject guided from the photographing lens unit 312 and determine the composition.
  • the electronic viewfinder 315 includes any one of the display devices 10 according to the above embodiment and variations thereof.
  • FIG. 14 shows an example of the appearance of the head mounted display 320.
  • the head-mounted display 320 has, for example, ear hooks 322 on both sides of an eyeglass-shaped display 321 to be worn on the user's head.
  • the display unit 321 includes any one of the display devices 10 according to the above embodiment and its modification.
  • FIG. 15 shows an example of the appearance of the television device 330.
  • This television device 330 has, for example, a video display screen portion 331 including a front panel 332 and a filter glass 333.
  • This video display screen portion 331 is a display device according to the above embodiment and its modification. 10.
  • REFERENCE SIGNS LIST 10 display device 11 circuit board 11a substrate 11b insulating layer 11c via 11d wiring 12 insulating layer 12a opening 13 protective layer 13a first protective layer 13a second protective layer 14 flattening layer 15 color filter 15FR red filter section 15FG green filter section 15FB blue filter section 16 planarization layer 17 lens array 17a lens 20 light emitting element 21 first electrode 21e conductive layer 22 OLED layer 23 second electrode R1 display area R2 peripheral area 100R, 100G, 100B sub-pixel 101 pad section 110, 110a, 110b recessed portion 111 bottom portion 112a inner peripheral wall portion 112b outer peripheral wall portion 210, 210a, 210b recessed portion 310 digital still camera (electronic device) 320 head mounted display (electronic equipment) 330 Television equipment (electronic equipment) D Z front direction D X horizontal direction D Y vertical direction

Abstract

Provided is a display device capable of achieving an increase in brightness. The display device comprises a plurality of two-dimensionally arranged light emitting elements, and a lower layer provided under the plurality of light emitting elements. The lower layer includes one or a plurality of recesses per light emitting element, and the light emitting elements are provided in alignment with the recesses. When the lower layer has one recess per light emitting element, the shape of a cross section taken across one recess in a plane passing the geometric center of the light emitting element in plan view and parallel to the thickness direction of the display device includes a plurality of recessed portions.

Description

表示装置および電子機器Displays and electronics
 本開示は、表示装置およびそれを備える電子機器に関する。 The present disclosure relates to a display device and an electronic device including the same.
 近年、OLED(Organic Light Emitting Diode)表示装置は、広く普及している。OLED表示装置は、回路基板上に2次元配置された複数の発光素子を備え、各発光素子は、第1の電極と、発光層を含む有機層と、第2の電極とを順に備える。 In recent years, OLED (Organic Light Emitting Diode) display devices have become widespread. An OLED display device comprises a plurality of light-emitting elements arranged two-dimensionally on a circuit board, and each light-emitting element sequentially comprises a first electrode, an organic layer including a light-emitting layer, and a second electrode.
 特許文献1には、第1電極層、有機層および第2電極層を基体表面の凹部に倣って形成することで、輝度を向上させる技術が記載されている。 Patent Document 1 describes a technique for improving luminance by forming a first electrode layer, an organic layer, and a second electrode layer following concave portions on the surface of a substrate.
特開2019-133816号公報JP 2019-133816 A
 しかしながら、特許文献1に記載の技術では、輝度の向上が不十分となる場合があるため、特許文献1に記載の技術には改善の余地がある。特許文献1に記載の技術では、特に凹部が浅い場合に、輝度の向上が不十分になりやすい。 However, the technique described in Patent Document 1 may not improve the luminance sufficiently, so there is room for improvement in the technique described in Patent Document 1. With the technique described in Patent Document 1, especially when the concave portion is shallow, improvement in brightness tends to be insufficient.
 本開示の目的は、輝度を向上させることができる表示装置およびそれを備える電子機器を提供することにある。 An object of the present disclosure is to provide a display device capable of improving luminance and an electronic device including the same.
 上述の課題を解決するために、本開示に係る表示装置は、
 2次元配置された複数の発光素子と、
 複数の発光素子の下に設けられた下層と
 を備え、
 下層は、1つの発光素子毎に1つまたは複数の凹部を有し、
 発光素子は、凹部に倣って設けられ、
 下層が、1つの発光素子毎に1つの凹部を有する場合、平面視における発光素子の幾何中心を通り、かつ、表示装置の厚さ方向に平行な面で1つの凹部を切断して得られる断面形状が、複数の凹形状部を含む表示装置である。
In order to solve the above problems, the display device according to the present disclosure includes:
a plurality of light emitting elements arranged two-dimensionally;
a lower layer provided under the plurality of light emitting elements; and
the lower layer has one or more recesses for each light emitting element,
The light emitting element is provided following the recess,
When the lower layer has one recess for each light emitting element, a cross section obtained by cutting one recess in a plane that passes through the geometric center of the light emitting element in plan view and is parallel to the thickness direction of the display device. The display device, the shape of which includes a plurality of concave portions.
 本開示において、下層は、絶縁層または基板であってもよい。 In the present disclosure, the lower layer may be an insulating layer or a substrate.
 本開示において、凹部は、平面視において環状を有していてもよい。環状は、略円環状、略楕円環状または略多角形環状であってもよい。平面視において環状を有する凹部を当該凹部の幅方向に平行で、かつ、表示装置の厚さ方向に平行な面で切断して得られる断面形状は、アーチ状または略多角形状を有していてもよい。当該アーチ状は、略円弧状、略楕円弧状または略放物線状であってもよい。当該略多角形状は、略台形状等の略四角形状であってもよい。 In the present disclosure, the recess may have an annular shape in plan view. The ring may be generally toric, generally elliptical, or generally polygonal. A cross-sectional shape obtained by cutting a recess having an annular shape in plan view along a plane parallel to the width direction of the recess and parallel to the thickness direction of the display device has an arch shape or a substantially polygonal shape. good too. The arch shape may be substantially circular, substantially elliptical, or substantially parabolic. The substantially polygonal shape may be a substantially square shape such as a substantially trapezoidal shape.
 本開示において、下層が、1つの発光素子毎に複数の凹部を有していてもよい。この場合、複数の凹部は、平面視において同心状を有していてもよいし、平面視においてドット状を有していてもよい。平面視においてドット状を有する複数の凹部は、規定パターンで配置されていてもよい。当該配置は、1次元配置または2次元配置であってもよい。複数の凹部は、平面視において環状を有する第1の凹部と、当該第1の凹部の内側に設けられ、平面視においてドット状を有する第2の凹部とを含んでもよい。当該ドット状は、略円形状、略楕円形状、略多角形状または略十字状であってもよい。当該略多角形状は、略四角形状または略六角形状をであってもよい。 In the present disclosure, the lower layer may have a plurality of recesses for each light emitting element. In this case, the plurality of recesses may have a concentric shape in plan view, or may have a dot shape in plan view. The plurality of recesses having dot shapes in plan view may be arranged in a prescribed pattern. The arrangement may be a one-dimensional arrangement or a two-dimensional arrangement. The plurality of recesses may include a first recess having an annular shape in plan view and a second recess having a dot shape in plan view provided inside the first recess. The dot shape may be substantially circular, substantially elliptical, substantially polygonal, or substantially cross-shaped. The substantially polygonal shape may be a substantially square shape or a substantially hexagonal shape.
 平面視においてドット状を有する凹部は、椀状を有していてもよい。平面視においてドット状を有する凹部を当該凹部の幅方向に平行で、かつ、表示装置の厚さ方向に平行な面で切断して得られる断面形状は、アーチ状または略多角形状を有していてもよい。当該アーチ状は、略円弧状、略楕円弧状または略放物線状であってもよい。当該略多角形状は、略台形状等の略四角形状であってもよい。 A concave portion having a dot shape in plan view may have a bowl shape. A cross-sectional shape obtained by cutting a recess having a dot shape in plan view along a plane parallel to the width direction of the recess and parallel to the thickness direction of the display device has an arch shape or a substantially polygonal shape. may The arch shape may be substantially circular, substantially elliptical, or substantially parabolic. The substantially polygonal shape may be a substantially square shape such as a substantially trapezoidal shape.
 本開示において、下層が1つの発光素子毎に複数の凹部を有する場合、複数の凹部の幅が異なってもよいし、複数の凹部の深さが異なってもよいし、複数の凹部の幅と深さの両方が異なってもよい。 In the present disclosure, when the lower layer has a plurality of recesses for each light emitting element, the widths of the recesses may differ, the depths of the recesses may differ, and the widths and widths of the recesses may differ. Both depths may be different.
 本開示において、凹部は、表示装置の表示領域の全体において同一の幅を有していてもよいし、表示装置の表示領域の全体において2種以上の幅を有していてもよい。凹部が表示装置の表示領域の全体において2種以上の幅を有する場合、表示領域の位置により凹部の幅が異なっていてもよい。 In the present disclosure, the recess may have the same width over the entire display area of the display device, or may have two or more widths over the entire display area of the display device. When the recess has two or more widths over the entire display area of the display device, the width of the recess may vary depending on the position of the display area.
 本開示において、凹部は、表示装置の表示領域の全体において同一の深さを有していてもよいし、表示装置の表示領域の全体において2種以上の深さを有していてもよい。凹部が表示装置の表示領域の全体において2種以上の深さを有する場合、表示領域の位置により凹部の深さが異なっていてもよい。 In the present disclosure, the recesses may have the same depth over the entire display area of the display device, or may have two or more depths over the entire display area of the display device. When the concave portion has two or more depths over the entire display area of the display device, the depth of the concave portion may differ depending on the position of the display area.
 本開示において、表示装置は、複数の発光素子を覆う保護層と、保護層上に設けられた平坦化層とをさらに備え、平坦化層は、カラーフィルタとしての機能を有してもよい。 In the present disclosure, the display device may further include a protective layer covering the plurality of light emitting elements and a planarization layer provided on the protective layer, and the planarization layer may function as a color filter.
 本開示において、表示装置は、複数の発光素子を覆う保護層と、保護層上に設けられた平坦化層と、平坦化層上に設けられたカラーフィルタとを備えてもよい。 In the present disclosure, the display device may include a protective layer covering the plurality of light emitting elements, a planarizing layer provided on the protective layer, and a color filter provided on the planarizing layer.
 本開示において、表示装置は、複数の発光素子の上方に設けられた複数のレンズをさらに備え、1つまたは複数のレンズが1つの発光素子毎に設けられていてもよい。この場合、凹部およびレンズは、平面視において同一の形状を有していてもよい。例えば、凹部およびレンズは、平面視において環状を有していてもよいし、平面視においてドット状を有していてもよい。レンズは、凸曲面状のレンズであってもよい。凸曲面状のレンズを当該レンズの幅方向に平行で、かつ、表示装置の厚さ方向に平行な面で切断して得られる断面形状は、アーチ状または略多角形状を有していてもよい。当該アーチ状は、略円弧状、略楕円弧状または略放物線状であってもよい。当該略多角形状は、略台形状等の略四角形状であってもよい。 In the present disclosure, the display device may further include a plurality of lenses provided above the plurality of light emitting elements, and one or more lenses may be provided for each light emitting element. In this case, the concave portion and the lens may have the same shape in plan view. For example, the concave portion and the lens may have an annular shape in plan view, or may have a dot shape in plan view. The lens may be a convex lens. A cross-sectional shape obtained by cutting a convex lens along a plane parallel to the width direction of the lens and parallel to the thickness direction of the display device may have an arch shape or a substantially polygonal shape. . The arch shape may be substantially circular, substantially elliptical, or substantially parabolic. The substantially polygonal shape may be a substantially square shape such as a substantially trapezoidal shape.
 本開示において、表示装置は、1つの発光素子毎に複数の凹部および複数のレンズを有していてもよい。この場合、複数の凹部がおよび複数のレンズが、平面視において同一の形状を有していてもよい。 In the present disclosure, the display device may have multiple recesses and multiple lenses for each light emitting element. In this case, the plurality of recesses and the plurality of lenses may have the same shape in plan view.
 本開示において、各発光素子は、第1の電極と、発光層を含む有機層と、第2の電極とを順に備えていてもよい。 In the present disclosure, each light-emitting element may include, in order, a first electrode, an organic layer including a light-emitting layer, and a second electrode.
 本開示に係る表示装置は、電子機器に備えられてもよい。 The display device according to the present disclosure may be provided in electronic equipment.
図1は、一実施形態に係る表示装置の構成の一例を示す平面図である。FIG. 1 is a plan view showing an example of the configuration of a display device according to one embodiment. 図2は、一実施形態に係る表示装置の表示領域の一部を拡大して表す平面図である。FIG. 2 is a plan view showing an enlarged part of the display area of the display device according to the embodiment. 図3は、図2のIII-III線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line III--III in FIG. 図4Aは、第1の電極および絶縁層が設けられた回路基板の構成の一例を示す平面図である。図4Bは、図4AのIVB-IVB線に沿った断面図である。FIG. 4A is a plan view showing an example of the configuration of a circuit board provided with first electrodes and an insulating layer. FIG. 4B is a cross-sectional view taken along line IVB--IVB of FIG. 4A. 図5Aは、第1の電極および絶縁層が設けられた回路基板の構成の一例を示す平面図である。図5Bは、図5AのVB-VB線に沿った断面図である。FIG. 5A is a plan view showing an example of the configuration of a circuit board provided with first electrodes and an insulating layer. FIG. 5B is a cross-sectional view along line VB-VB in FIG. 5A. 図6Aは、第1の電極および絶縁層が設けられた回路基板の構成の一例を示す平面図である。図6Bは、図6AのVIB-VIB線に沿った断面図である。FIG. 6A is a plan view showing an example of the configuration of a circuit board provided with first electrodes and an insulating layer. FIG. 6B is a cross-sectional view along line VIB--VIB of FIG. 6A. 図7Aは、第1の電極および絶縁層が設けられた回路基板の構成の一例を示す平面図である。図7Bは、図7AのVIIB-VIIB線に沿った断面図である。FIG. 7A is a plan view showing an example of the configuration of a circuit board provided with first electrodes and an insulating layer. FIG. 7B is a cross-sectional view taken along line VIIB--VIIB of FIG. 7A. 図8Aは、第1の電極および絶縁層が設けられた回路基板の構成の一例を示す断面図である。図8Bは、第1の電極および絶縁層が設けられた回路基板の構成の一例を示す断面図である。FIG. 8A is a cross-sectional view showing an example of the configuration of a circuit board provided with a first electrode and an insulating layer. FIG. 8B is a cross-sectional view showing an example of the configuration of a circuit board provided with a first electrode and an insulating layer. 図9Aは、第1の電極および絶縁層が設けられた回路基板の構成の一例を示す断面図である。図9Bは、第1の電極および絶縁層が設けられた回路基板の構成の一例を示す断面図である。FIG. 9A is a cross-sectional view showing an example of the configuration of a circuit board provided with first electrodes and an insulating layer. FIG. 9B is a cross-sectional view showing an example of the configuration of a circuit board provided with first electrodes and an insulating layer. 図10は、第1の電極および絶縁層が設けられた回路基板の構成の一例を示す断面図である。FIG. 10 is a cross-sectional view showing an example of the configuration of a circuit board provided with first electrodes and an insulating layer. 図11は、表示装置の構成の一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of the configuration of the display device. 図12Aは、比較例1A、1B、1C、2A、2B、2Cの第1の電極の断面形状を示す図である。図12Bは、参考例1A、1B、1C、2A、2B、2Cの第1の電極の断面形状を示す図である。図12Cは、参考例3A、3B、3C、4A、4B、4Cの第1の電極の断面形状を示す図である。FIG. 12A is a diagram showing cross-sectional shapes of first electrodes of Comparative Examples 1A, 1B, 1C, 2A, 2B, and 2C. FIG. 12B is a diagram showing the cross-sectional shape of the first electrode of Reference Examples 1A, 1B, 1C, 2A, 2B, and 2C. FIG. 12C is a diagram showing the cross-sectional shape of the first electrode of Reference Examples 3A, 3B, 3C, 4A, 4B, and 4C. 図13Aは、デジタルスチルカメラの外観の一例を示す正面図である。図13Bは、デジタルスチルカメラの外観の一例を示す背面図である。FIG. 13A is a front view showing an example of the appearance of a digital still camera. FIG. 13B is a rear view showing an example of the appearance of the digital still camera. 図14は、ヘッドマウントディスプレイの外観の一例を斜視図である。FIG. 14 is a perspective view of an example of the appearance of a head mounted display. 図15は、テレビジョン装置の外観の一例を示す斜視図である。FIG. 15 is a perspective view showing an example of the appearance of the television device.
 本開示の実施形態について図面を参照しながら以下の順序で説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。
 1 一実施形態(表示装置の例)
 2 変形例(表示装置の変形例)
 3 参考例(表示装置の参考例)
 4 応用例(電子機器の例)
Embodiments of the present disclosure will be described in the following order with reference to the drawings. In addition, in all the drawings of the following embodiments, the same reference numerals are given to the same or corresponding parts.
1 One embodiment (example of display device)
2 Modification (Modification of display device)
3 Reference example (Reference example of display device)
4 Application example (example of electronic equipment)
<1 一実施形態>
[表示装置10の構成]
 図1は、一実施形態に係る表示装置10の構成の一例を示す平面図である。表示装置10は、表示領域R1と、表示領域R1の周辺に設けられた周辺領域R2とを有する。表示領域R1は、平面視において長方形状を有する。本明細書において、平面視とは、表示装置10の表示面に対して垂直な方向D(以下「正面方向D」という。)から対象物が見られたときの平面視を意味する。本明細書において、表示領域R1の長辺に平行な方向を水平方向D、表示領域R1の短辺に平行な方向を垂直方向Dという。
<1 one embodiment>
[Configuration of display device 10]
FIG. 1 is a plan view showing an example of the configuration of a display device 10 according to one embodiment. The display device 10 has a display region R1 and a peripheral region R2 provided around the display region R1. The display area R1 has a rectangular shape in plan view. In this specification, a planar view means a planar view when an object is seen from a direction D Z (hereinafter referred to as “front direction D Z ”) perpendicular to the display surface of the display device 10 . In this specification, the direction parallel to the long sides of the display region R1 is called the horizontal direction DX , and the direction parallel to the short sides of the display region R1 is called the vertical direction DY .
 図2は、一実施形態に係る表示装置10の表示領域R1の一部を拡大して表す平面図である。複数のサブ画素100R、100G、100Bが、表示領域R1内に規定の配置パターンで2次元配置されている。規定の配置パターンは、例えば、デルタ配列、ストライプ配列またはモザイク配列である。なお、図2では、デルタ配列の例が示されている。周辺領域R2には、パッド部101および映像表示用のドライバ(図示せず)等が設けられている。図示しないフレキシブルプリント配線基板(Flexible Printed Circuit:FPC)が、パッド部101に接続されていてもよい。 FIG. 2 is a plan view showing an enlarged part of the display region R1 of the display device 10 according to one embodiment. A plurality of sub-pixels 100R, 100G, and 100B are two-dimensionally arranged in a prescribed arrangement pattern within the display region R1. The prescribed arrangement pattern is, for example, a delta arrangement, a stripe arrangement or a mosaic arrangement. Note that FIG. 2 shows an example of a delta arrangement. The peripheral region R2 is provided with a pad portion 101, an image display driver (not shown), and the like. A flexible printed circuit (FPC) (not shown) may be connected to the pad section 101 .
 サブ画素100Rは、赤色光を発光することができる。サブ画素100Gは、緑色光を発光することができる。サブ画素100Bは、青色光を発光することができる。赤色は、3原色のうち第1の原色の一例である。緑色は、3原色のうち第2の原色の一例である。青色は、3原色のうち第3の原色の一例である。図2中にて記号「R」、「G」、「B」が付された区画はそれぞれ、サブ画素100R、サブ画素100G、サブ画素100Bを表している。 The sub-pixel 100R can emit red light. The sub-pixel 100G can emit green light. The sub-pixel 100B can emit blue light. Red is an example of the first of the three primary colors. Green is an example of the second of the three primary colors. Blue is an example of the third primary color of the three primary colors. In FIG. 2, blocks marked with symbols "R", "G", and "B" represent the sub-pixel 100R, the sub-pixel 100G, and the sub-pixel 100B, respectively.
 以下の説明において、サブ画素100R、100G、100Bを特に区別せず総称する場合には、サブ画素100という。1画素(1ピクセル)は、隣接する3つのサブ画素100R、100G、100Bにより構成されている。 In the following description, when sub-pixels 100R, 100G, and 100B are collectively referred to as sub-pixel 100 without particular distinction. One pixel (one pixel) is composed of three adjacent sub-pixels 100R, 100G, and 100B.
 サブ画素100R、100G、100Bは、例えば、平面視において円形状、楕円形状または長方形状を有する。本明細書において、長方形状には、正方形状も含まれるものとする。なお、図2では、サブ画素100R、100G、100Bが平面視において円形状を有する例が示されている。 The sub-pixels 100R, 100G, and 100B have, for example, a circular shape, an elliptical shape, or a rectangular shape in plan view. In this specification, the rectangular shape includes a square shape. Note that FIG. 2 shows an example in which the sub-pixels 100R, 100G, and 100B have a circular shape in plan view.
 表示装置10は、発光装置の一例である。表示装置10は、トップエミッション方式のOLED表示装置である。表示装置10は、マイクロディスプレイであってもよい。表示装置10は、VR(Virtual Reality)装置、MR(Mixed Reality)装置、AR(Augmented Reality)装置、電子ビューファインダ(Electronic View Finder:EVF)または小型プロジェクタ等に備えられてもよい。 The display device 10 is an example of a light emitting device. The display device 10 is a top emission type OLED display device. The display device 10 may be a microdisplay. The display device 10 may be provided in a VR (Virtual Reality) device, an MR (Mixed Reality) device, an AR (Augmented Reality) device, an Electronic View Finder (EVF), a small projector, or the like.
 図3は、図2のIII-III線に沿った断面図である。表示装置10は、回路基板11と、複数の発光素子20と、絶縁層12と、保護層13と、平坦化層14と、カラーフィルタ15と、平坦化層16と、レンズアレイ17とを備える。カラーフィルタ15と発光素子20との組み合わせにより、複数のサブ画素100R、100G、100Bが構成される。 FIG. 3 is a cross-sectional view taken along line III-III in FIG. The display device 10 includes a circuit board 11, a plurality of light emitting elements 20, an insulating layer 12, a protective layer 13, a planarizing layer 14, a color filter 15, a planarizing layer 16, and a lens array 17. . A plurality of sub-pixels 100R, 100G, and 100B are configured by combining the color filters 15 and the light-emitting elements 20 .
 以下の説明において、表示装置10を構成する各層において、表示装置10のトップ側(表示面側)となる面を第1の面といい、表示装置10のボトム側(表示面とは反対側)となる面を第2の面という。 In the following description, in each layer constituting the display device 10, the surface on the top side (display surface side) of the display device 10 is referred to as a first surface, and the bottom side (opposite side to the display surface) of the display device 10 is referred to as a first surface. is called the second surface.
(回路基板11)
 図4Aは、第1の電極21および絶縁層12が設けられた回路基板11の平面図である。図4Bは、図4AのIVB-IVB線に沿った断面図である。回路基板11は、いわゆるバックプレーンであり、複数の発光素子20を駆動する。回路基板11は、基板11aと、絶縁層11bとを順に備える。複数の配線11d、複数の発光素子20を駆動する駆動回路(図示せず)、および複数の発光素子20に電力を供給する電源回路(図示せず)等が、基板11aの第1の面に設けられている。
(circuit board 11)
FIG. 4A is a plan view of the circuit board 11 provided with the first electrodes 21 and the insulating layer 12. FIG. FIG. 4B is a cross-sectional view taken along line IVB--IVB of FIG. 4A. The circuit board 11 is a so-called backplane and drives the plurality of light emitting elements 20 . The circuit board 11 includes a substrate 11a and an insulating layer 11b in this order. A plurality of wirings 11d, a driving circuit (not shown) for driving the plurality of light emitting elements 20, a power supply circuit (not shown) for supplying power to the plurality of light emitting elements 20, and the like are provided on the first surface of the substrate 11a. is provided.
(基板11a)
 基板11aは、例えば、トランジスタ等の形成が容易な半導体で構成されていてもよいし、水分および酸素の透過性が低いガラスまたは樹脂で構成されていてもよい。具体的には、基板11aは、半導体基板、ガラス基板または樹脂基板等であってもよい。半導体基板は、例えば、アモルファスシリコン、多結晶シリコンまたは単結晶シリコン等を含む。ガラス基板は、例えば、高歪点ガラス、ソーダガラス、ホウケイ酸ガラス、フォルステライト、鉛ガラスまたは石英ガラス等を含む。樹脂基板は、例えば、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルフェノール、ポリエーテルスルホン、ポリイミド、ポリカーボネート、ポリエチレンテレフタラートおよびポリエチレンナフタレート等からなる群より選ばれた少なくとも1種を含む。
(Substrate 11a)
The substrate 11a may be made of, for example, a semiconductor that facilitates the formation of transistors or the like, or may be made of glass or resin with low permeability to moisture and oxygen. Specifically, the substrate 11a may be a semiconductor substrate, a glass substrate, a resin substrate, or the like. Semiconductor substrates include, for example, amorphous silicon, polycrystalline silicon, monocrystalline silicon, or the like. The glass substrate includes, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, quartz glass, or the like. The resin substrate contains, for example, at least one selected from the group consisting of polymethyl methacrylate, polyvinyl alcohol, polyvinyl phenol, polyethersulfone, polyimide, polycarbonate, polyethylene terephthalate and polyethylene naphthalate.
(絶縁層11b)
 絶縁層11bは、複数の発光素子20の下に設けられた下層の一例である。絶縁層11bは、基板11aの第1の面に設けられ、複数の配線11d、駆動回路および電源回路等を覆い平坦化する。絶縁層11bは、基板11aの第1の面に設けられた配線11d、駆動回路等と発光素子20の間を絶縁する。
(insulating layer 11b)
The insulating layer 11 b is an example of a lower layer provided under the plurality of light emitting elements 20 . The insulating layer 11b is provided on the first surface of the substrate 11a to cover and planarize the plurality of wirings 11d, the drive circuit, the power supply circuit, and the like. The insulating layer 11b insulates between the wiring 11d provided on the first surface of the substrate 11a, the driving circuit and the like and the light emitting element 20. As shown in FIG.
 絶縁層11bは、複数のビア11cを内部に備える。絶縁層11bは、複数の配線11dを内部に備えていてもよい。各ビア11cは、発光素子20と配線11dとを電気的に接続する接続部材である。ビア11cは、例えば、銅(Cu)およびチタン(Ti)等からなる群より選ばれた少なくとも1種の金属を含む。配線11dは、例えば、第1のバリア層、金属層、第2のバリア層を順に備える。第1のバリア層および第2のバリア層は、例えば、窒化チタン(TiN)等を含む。金属層は、例えば、アルミニウム(Al)またはアルミニウム合金を含む。 The insulating layer 11b has a plurality of vias 11c inside. The insulating layer 11b may include a plurality of wirings 11d therein. Each via 11c is a connection member that electrically connects the light emitting element 20 and the wiring 11d. The via 11c contains, for example, at least one metal selected from the group consisting of copper (Cu) and titanium (Ti). The wiring 11d includes, for example, a first barrier layer, a metal layer, and a second barrier layer in this order. The first barrier layer and the second barrier layer contain, for example, titanium nitride (TiN). The metal layer contains, for example, aluminum (Al) or an aluminum alloy.
 絶縁層11bは、複数の凹部110を第1の面に有する。凹部110は、発光素子20を凹部110に倣った形状にするためのものである。1つの凹部110が、1つの発光素子20毎に設けられている。平面視における発光素子20の幾何中心を通り、かつ、表示装置10の厚さ方向に平行な面で1つの凹部110を切断して得られる断面が、2つの凹形状部を含む。凹形状部は、例えば、下に凸の曲線状、略台形状または略長方形状である。下に凸の曲線状は、例えば、略円弧状、略楕円弧状または略放物線状である。 The insulating layer 11b has a plurality of recesses 110 on its first surface. The concave portion 110 is for forming the light emitting element 20 into a shape that follows the concave portion 110 . One recess 110 is provided for each light emitting element 20 . A cross section obtained by cutting one concave portion 110 along a plane passing through the geometric center of the light emitting element 20 in plan view and parallel to the thickness direction of the display device 10 includes two concave portions. The concave portion has, for example, a downwardly convex curved shape, a substantially trapezoidal shape, or a substantially rectangular shape. The downwardly convex curved shape is, for example, a substantially circular arc shape, a substantially elliptical arc shape, or a substantially parabolic shape.
 凹部110は、平面視において円環状を有する。当該円環状は、例えば、平面視における発光素子20の幾何中心を中心とする。凹部110は、底部111と内周壁部112aと外周壁部112bとを有していてもよい。底部111は、基板11aの第1の面に平行な平面状であってもよい。内周壁部112aおよび外周壁部112bは、基板11aの第1の面に対して傾斜した傾斜面であってもよいし、基板11aの第1の面に対して垂直な垂直面であってもよい。凹部110の幅方向に平行で、かつ、表示装置10の厚さ方向に平行な面で内周壁部112a、外周壁部112bをそれぞれ切断して得られる断面形状は、直線状であってもよいし、滑らかな曲線状であってもよい。当該曲線状は、例えば、凹状の曲線状または凸状の曲線状である。 The concave portion 110 has an annular shape in plan view. The annular ring is centered, for example, on the geometric center of the light emitting element 20 in plan view. The recessed portion 110 may have a bottom portion 111, an inner peripheral wall portion 112a, and an outer peripheral wall portion 112b. The bottom portion 111 may be planar and parallel to the first surface of the substrate 11a. The inner peripheral wall portion 112a and the outer peripheral wall portion 112b may be inclined surfaces inclined with respect to the first surface of the substrate 11a, or may be vertical surfaces perpendicular to the first surface of the substrate 11a. good. The cross-sectional shape obtained by cutting the inner peripheral wall portion 112a and the outer peripheral wall portion 112b along a plane parallel to the width direction of the recess 110 and parallel to the thickness direction of the display device 10 may be linear. and may be smooth curved. The curved line is, for example, a concave curved line or a convex curved line.
 絶縁層11bは、有機絶縁層であってもよいし、無機絶縁層であってもよし、これらの積層体であってもよい。有機絶縁層は、例えば、ポリイミド系樹脂、アクリル系樹脂およびノボラック系樹脂等からなる群より選ばれた少なくとも1種を含む。無機絶縁層は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)および酸窒化シリコン(SiO)等からなる群より選ばれた少なくとも1種を含む。 The insulating layer 11b may be an organic insulating layer, an inorganic insulating layer, or a laminate thereof. The organic insulating layer contains, for example, at least one selected from the group consisting of polyimide-based resins, acrylic-based resins, novolak-based resins, and the like. The inorganic insulating layer contains, for example, at least one selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and the like.
(発光素子20)
 発光素子20は、白色OLED素子であり、駆動回路等の制御に基づき、白色光を発光することができる。白色OLED素子は、白色Micro-OLED(MOLED)素子であってもよい。
(Light emitting element 20)
The light emitting element 20 is a white OLED element, and can emit white light under control of a drive circuit or the like. The white OLED element may be a white Micro-OLED (MOLED) element.
 発光素子20の少なくとも一部は、凹部110に倣って設けられていることが好ましい。すなわち、発光素子20の周縁が、平面視において円環状の凹部110の外周の外側に位置していることが好ましい。複数の発光素子20は、規定の配置パターンで回路基板11の第1の面上に2次元配置されている。複数の発光素子20は、複数の第1の電極21と、OLED層22と、第2の電極23とを順に回路基板11の第1の面上に備える。 At least part of the light emitting element 20 is preferably provided along the recess 110 . That is, it is preferable that the peripheral edge of the light emitting element 20 is positioned outside the outer periphery of the annular recess 110 in plan view. The plurality of light emitting elements 20 are two-dimensionally arranged on the first surface of the circuit board 11 in a prescribed arrangement pattern. The multiple light emitting elements 20 include multiple first electrodes 21 , an OLED layer 22 , and a second electrode 23 in this order on the first surface of the circuit board 11 .
(第1の電極21)
 第1の電極21は、アノードである。第1の電極21と第2の電極23の間に電圧が加えられると、第1の電極21からOLED層22にホールが注入される。第1の電極21は、複数の発光素子20で別々に設けられている。複数の第1の電極21は、複数の発光素子20と同様の配置パターンで回路基板11の第1の面上に2次元配置されている。第1の電極21の少なくとも一部は、凹部110に倣っている。すなわち、第1の電極21の少なくとも一部は、凹部210を有している。凹部210を有する第1の電極21は、フラットな形状の第1の電極と比較して面積を増大することができる。したがって、画素の高精細化によって開口率が小さくなる場合にも、第1の電極21の有効面積の減少を抑制することができる。よって、画素の高精細化によって開口率が小さくなる場合にも、輝度の低下を抑制することができる。第1の電極21の周縁は、平面視において円環状の凹部110の外周の外側に位置していることが好ましい。第1の電極21は、略同一の厚さを有することが好ましい。凹部210の深さは、例えば30nm以上500nm以下、好ましくは30nm以上300nm以下である。
(First electrode 21)
The first electrode 21 is the anode. When a voltage is applied between the first electrode 21 and the second electrode 23 , holes are injected from the first electrode 21 into the OLED layer 22 . The first electrodes 21 are separately provided for the plurality of light emitting elements 20 . The plurality of first electrodes 21 are two-dimensionally arranged on the first surface of the circuit board 11 in the same arrangement pattern as the plurality of light emitting elements 20 . At least part of the first electrode 21 follows the recess 110 . That is, at least part of the first electrode 21 has the recess 210 . The first electrode 21 having the concave portion 210 can increase the area compared to the flat-shaped first electrode. Therefore, even when the aperture ratio is reduced due to the high definition of the pixel, the reduction in the effective area of the first electrode 21 can be suppressed. Therefore, even when the aperture ratio is reduced due to the increase in pixel definition, it is possible to suppress the decrease in luminance. The peripheral edge of the first electrode 21 is preferably positioned outside the outer periphery of the annular recess 110 in plan view. Preferably, the first electrodes 21 have approximately the same thickness. The depth of the concave portion 210 is, for example, 30 nm or more and 500 nm or less, preferably 30 nm or more and 300 nm or less.
 第1の電極21は、例えば、金属層により構成されていてもよいし、金属層と透明導電性酸化物層により構成されていてもよい。第1の電極21が金属層と透明導電性酸化物層により構成されている場合には、高い仕事関数を有する層をOLED層22に隣接させる観点からすると、透明導電性酸化物層がOLED層22側に設けられることが好ましい。 The first electrode 21 may be composed of, for example, a metal layer, or may be composed of a metal layer and a transparent conductive oxide layer. When the first electrode 21 is composed of a metal layer and a transparent conductive oxide layer, from the viewpoint of placing a layer having a high work function adjacent to the OLED layer 22, the transparent conductive oxide layer is the OLED layer. It is preferably provided on the 22 side.
 金属層は、OLED層22で発光された光を反射する反射層としての機能も有している。金属層は、例えば、クロム(Cr)、金(Au)、白金(Pt)、ニッケル(Ni)、銅(Cu)、モリブデン(Mo)、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)、マグネシウム(Mg)、鉄(Fe)、タングステン(W)および銀(Ag)からなる群より選ばれた少なくとも1種の金属元素を含む。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、アルミニウム合金または銀合金が挙げられる。アルミニウム合金の具体例としては、例えば、AlNdまたはAlCuが挙げられる。 The metal layer also functions as a reflective layer that reflects light emitted by the OLED layer 22 . The metal layer is, for example, chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), aluminum (Al). , magnesium (Mg), iron (Fe), tungsten (W) and silver (Ag). The metal layer may contain the at least one metal element as a constituent element of an alloy. Specific examples of alloys include aluminum alloys and silver alloys. Specific examples of aluminum alloys include AlNd and AlCu.
 下地層(図示せず)が、金属層の第2の面側に隣接して設けられていてもよい。下地層は、金属層の成膜時に、金属層の結晶配向性を向上させるためのものである。下地層は、例えば、チタン(Ti)およびタンタル(Ta)からなる群より選ばれた少なくとも1種の金属元素を含む。下地層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。 A base layer (not shown) may be provided adjacent to the second surface side of the metal layer. The underlayer is for improving the crystal orientation of the metal layer when the metal layer is formed. The underlayer contains, for example, at least one metal element selected from the group consisting of titanium (Ti) and tantalum (Ta). The underlayer may contain the at least one metal element as a constituent element of the alloy.
 透明導電性酸化物層は、透明導電性酸化物を含む。透明導電性酸化物は、例えば、インジウムを含む透明導電性酸化物(以下「インジウム系透明導電性酸化物」という。)、錫を含む透明導電性酸化物(以下「錫系透明導電性酸化物」という。)および亜鉛を含む透明導電性酸化物(以下「亜鉛系透明導電性酸化物」という。)からなる群より選ばれた少なくとも1種を含む。 The transparent conductive oxide layer contains a transparent conductive oxide. Transparent conductive oxides include, for example, transparent conductive oxides containing indium (hereinafter referred to as "indium-based transparent conductive oxides") and transparent conductive oxides containing tin (hereinafter referred to as "tin-based transparent conductive oxides"). ”) and transparent conductive oxides containing zinc (hereinafter referred to as “zinc-based transparent conductive oxides”).
 インジウム系透明導電性酸化物は、例えば、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウムガリウム(IGO)または酸化インジウムガリウム亜鉛(IGZO)フッ素ドープ酸化インジウム(IFO)を含む。これらの透明導電性酸化物のうちでも酸化インジウム錫(ITO)が特に好ましい。酸化インジウム錫(ITO)は、仕事関数的にOLED層22へのホール注入障壁が特に低いため、表示装置10の駆動電圧を特に低電圧化することができるからである。錫系透明導電性酸化物は、例えば、酸化錫、アンチモンドープ酸化錫(ATO)またはフッ素ドープ酸化錫(FTO)を含む。亜鉛系透明導電性酸化物は、例えば、酸化亜鉛、アルミニウムドープ酸化亜鉛(AZO)、ホウ素ドープ酸化亜鉛またはガリウムドープ酸化亜鉛(GZO)を含む。 Indium-based transparent conductive oxides include, for example, indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO) or indium gallium zinc oxide (IGZO) and fluorine-doped indium oxide (IFO). Among these transparent conductive oxides, indium tin oxide (ITO) is particularly preferred. This is because indium tin oxide (ITO) has a particularly low hole injection barrier to the OLED layer 22 in terms of work function, so that the driving voltage of the display device 10 can be particularly lowered. Tin-based transparent conductive oxides include, for example, tin oxide, antimony-doped tin oxide (ATO), or fluorine-doped tin oxide (FTO). Zinc-based transparent conductive oxides include, for example, zinc oxide, aluminum-doped zinc oxide (AZO), boron-doped zinc oxide, or gallium-doped zinc oxide (GZO).
(OLED層22)
 OLED層22は、発光層を含む有機層の一例である。OLED層22は、第1の電極21から注入された正孔と第2の電極23から注入された電子との再結合により、白色光を発光することができる。
(OLED layer 22)
The OLED layer 22 is an example of an organic layer including a light-emitting layer. The OLED layer 22 can emit white light by recombination of holes injected from the first electrode 21 and electrons injected from the second electrode 23 .
 OLED層22は、複数の第1の電極21と第2の電極23の間に設けられている。OLED層22は、第1の電極21が設けられた回路基板11の第1の面(凹凸面)に倣っている。OLED層22は、略同一の厚さを有することが好ましい。OLED層22は、表示領域R1内において複数の発光素子20に亘って連続して設けられ、表示領域R1内において複数の発光素子20に共有されている。 The OLED layer 22 is provided between the multiple first electrodes 21 and the second electrodes 23 . The OLED layer 22 follows the first surface (uneven surface) of the circuit board 11 on which the first electrode 21 is provided. OLED layers 22 preferably have approximately the same thickness. The OLED layer 22 is provided continuously over the plurality of light emitting elements 20 within the display region R1, and is shared by the plurality of light emitting elements 20 within the display region R1.
 OLED層22は、単層の発光ユニットを備えるOLED層であってもよいし、2層の発光ユニットを備えるOLED層(タンデム構造)であってもよいし、これら以外の構造のOLED層であってもよい。単層の発光ユニットを備えるOLED層は、例えば、第1の電極21から第2の電極23に向かって、正孔注入層、正孔輸送層、赤色発光層、発光分離層、青色発光層、緑色発光層、電子輸送層、電子注入層がこの順序で積層された構成を有する。2層の発光ユニットを備えるOLED層は、例えば、第1の電極21から第2の電極23に向かって、正孔注入層、正孔輸送層、青色発光層、電子輸送層、電荷発生層、正孔輸送層、黄色発光層、電子輸送層と、電子注入層がこの順序で積層された構成を有する。 The OLED layer 22 may be an OLED layer with a single-layer light emitting unit, an OLED layer with two layers of light emitting units (tandem structure), or an OLED layer with a structure other than these. may An OLED layer comprising a single layer of light-emitting units includes, for example, a hole-injecting layer, a hole-transporting layer, a red-emitting layer, a light-emitting separating layer, a blue-emitting layer, from the first electrode 21 toward the second electrode 23 . It has a configuration in which a green light-emitting layer, an electron transport layer, and an electron injection layer are laminated in this order. An OLED layer comprising two layers of light-emitting units is, for example, a hole-injection layer, a hole-transport layer, a blue-light-emitting layer, an electron-transport layer, a charge-generating layer, from the first electrode 21 toward the second electrode 23 . It has a structure in which a hole transport layer, a yellow light emitting layer, an electron transport layer, and an electron injection layer are laminated in this order.
 正孔注入層は、各発光層への正孔注入効率を高めると共に、リークを抑制するためのものである。正孔輸送層は、各発光層への正孔輸送効率を高めるためのものである。電子注入層は、各発光層への電子注入効率を高めるためのものである。電子輸送層は、各発光層への電子輸送効率を高めるためのものである。発光分離層は、各発光層へのキャリアの注入を調整するための層であり、発光分離層を介して各発光層に電子やホールが注入されることにより各色の発光バランスが調整される。電荷発生層は、電荷発生層を挟む2つの発光層に電子と正孔をそれぞれ供給するためのものである。 The hole injection layer is intended to increase the efficiency of hole injection into each light-emitting layer and to suppress leakage. The hole-transporting layer is for increasing the efficiency of hole-transporting to each light-emitting layer. The electron injection layer is for increasing the efficiency of electron injection into each light-emitting layer. The electron transport layer is for enhancing electron transport efficiency to each light-emitting layer. The emission separation layer is a layer for adjusting the injection of carriers into each emission layer, and the emission balance of each color is adjusted by injecting electrons and holes into each emission layer through the emission separation layer. The charge-generating layer is for supplying electrons and holes to the two light-emitting layers sandwiching the charge-generating layer.
 赤色発光層、緑色発光層、青色発光層、黄色発光層はそれぞれ、電界をかけることにより、第1の電極21または電荷発生層から注入された正孔と第2の電極23または電荷発生層から注入された電子との再結合が起こり、赤色光、緑色光、青色光、黄色光を発光することができる。 By applying an electric field to each of the red light emitting layer, the green light emitting layer, the blue light emitting layer, and the yellow light emitting layer, holes injected from the first electrode 21 or the charge generation layer and holes injected from the second electrode 23 or the charge generation layer Recombination with injected electrons occurs, and red light, green light, blue light, and yellow light can be emitted.
(第2の電極23)
 第2の電極23は、カソードである。第1の電極21と第2の電極23の間に電圧が加えられると、第2の電極23からOLED層22に電子が注入される。第2の電極23は、可視光に対して透明性を有する透明電極である。本明細書において、可視光とは、360nm以上830nmの波長域の光をいう。第2の電極23は、OLED層22の第1の面上に設けられている。第2の電極23は、第1の電極21およびOLED層22が設けられた回路基板11の第1の面(凹凸面)に倣っている。第2の電極23は、略同一の厚さを有することが好ましい。第2の電極23は、表示領域R1内において複数の発光素子20に亘って連続して設けられ、表示領域R1内において複数の発光素子20に共有されている。
(Second electrode 23)
The second electrode 23 is the cathode. When a voltage is applied between the first electrode 21 and the second electrode 23 , electrons are injected from the second electrode 23 into the OLED layer 22 . The second electrode 23 is a transparent electrode having transparency to visible light. In this specification, visible light refers to light in the wavelength range of 360 nm to 830 nm. A second electrode 23 is provided on the first surface of the OLED layer 22 . The second electrode 23 follows the first surface (uneven surface) of the circuit board 11 on which the first electrode 21 and the OLED layer 22 are provided. The second electrodes 23 preferably have approximately the same thickness. The second electrode 23 is provided continuously over the plurality of light emitting elements 20 within the display region R1 and is shared by the plurality of light emitting elements 20 within the display region R1.
 第2の電極23は、できるだけ透過性が高く、かつ仕事関数が小さい材料によって構成されることが、発光効率を高める上で好ましい。第2の電極23は、例えば、金属層および透明導電性酸化物層のうちの少なくとも一層により構成されている。より具体的には、第2の電極23は、金属層もしくは透明導電性酸化物層の単層膜、または金属層と透明導電性酸化物層の積層膜により構成されている。第2の電極23が積層膜により構成されている場合、金属層がOLED層22側に設けられてもよいし、透明導電性酸化物層がOLED層22側に設けられてもよいが、低い仕事関数を有する層をOLED層22に隣接させる観点からすると、金属層がOLED層22側に設けられていることが好ましい。 It is preferable for the second electrode 23 to be made of a material with a high transmittance and a small work function, in order to increase the luminous efficiency. The second electrode 23 is composed of, for example, at least one layer of a metal layer and a transparent conductive oxide layer. More specifically, the second electrode 23 is composed of a single layer film of a metal layer or a transparent conductive oxide layer, or a laminated film of a metal layer and a transparent conductive oxide layer. When the second electrode 23 is composed of a laminated film, the metal layer may be provided on the OLED layer 22 side, and the transparent conductive oxide layer may be provided on the OLED layer 22 side. From the viewpoint of placing a layer having a work function adjacent to the OLED layer 22, it is preferable that the metal layer is provided on the OLED layer 22 side.
 金属層は、例えば、マグネシウム(Mg)、アルミニウム(Al)、銀(Ag)、カルシウム(Ca)およびナトリウム(Na)からなる群より選ばれた少なくとも1種の金属元素を含む。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、MgAg合金、MgAl合金またはAlLi合金等が挙げられる。透明導電性酸化物層は、透明導電性酸化物を含む。透明導電性酸化物としては、上記の第1の電極21の透明導電性酸化物と同様の材料を例示することができる。 The metal layer contains, for example, at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), calcium (Ca) and sodium (Na). The metal layer may contain the at least one metal element as a constituent element of an alloy. Specific examples of alloys include MgAg alloys, MgAl alloys, AlLi alloys, and the like. The transparent conductive oxide layer includes a transparent conductive oxide. As the transparent conductive oxide, the same material as the transparent conductive oxide of the first electrode 21 can be exemplified.
(保護層13)
 保護層13は、可視光に対して透明性を有している。保護層13は、第2の電極23の第1の面上に設けられ、複数の発光素子20を覆う。保護層13は、発光素子20を外気と遮断し、外部環境から発光素子20内部への水分浸入を抑制することができる。また、第2の電極23が金属層により構成されている場合には、保護層13は、この金属層の酸化を抑制する機能を有していてもよい。保護層13は、第1の面に凹凸を有していてもよい。当該凹凸は、複数の発光素子20が2次元配置された回路基板11の第1の面の凹凸に倣ったものであってもよい。
(Protective layer 13)
The protective layer 13 has transparency to visible light. The protective layer 13 is provided on the first surface of the second electrode 23 and covers the plurality of light emitting elements 20 . The protective layer 13 shields the light emitting element 20 from the outside air, and can suppress moisture intrusion into the light emitting element 20 from the external environment. Moreover, when the second electrode 23 is composed of a metal layer, the protective layer 13 may have a function of suppressing oxidation of this metal layer. The protective layer 13 may have unevenness on the first surface. The unevenness may follow the unevenness of the first surface of the circuit board 11 on which the plurality of light emitting elements 20 are two-dimensionally arranged.
 保護層13は、第1の保護層13aと第2の保護層13bとを第2の電極23の第1の面上に順に備える。第1の保護層13aは、例えば、吸湿性が低い無機材料または高分子樹脂を含む。第1の保護層13aは、単層構造であってもよいし、多層構造であってもよい。第1の保護層13aの厚さを厚くする場合には、多層構造とすることが好ましい。保護層13における内部応力を緩和するためである。無機材料は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、酸化窒化シリコン(SiO)、酸化チタン(TiO)および酸化アルミニウム(AlO)等からなる群より選ばれた少なくとも1種を含む。高分子樹脂は、例えば、熱硬化型樹脂および紫外線硬化型樹脂等からなる群より選ばれた少なくとも1種を含む。高分子樹脂は、具体的には例えば、アクリル系樹脂、ポリイミド系樹脂、ノボラック系樹脂、エポキシ系樹脂およびノルボルネン系樹脂等からなる群より選ばれた少なくとも1種を含む。 The protective layer 13 includes a first protective layer 13 a and a second protective layer 13 b in order on the first surface of the second electrode 23 . The first protective layer 13a contains, for example, a low hygroscopic inorganic material or polymer resin. The first protective layer 13a may have a single layer structure or a multilayer structure. When increasing the thickness of the first protective layer 13a, it is preferable to have a multilayer structure. This is for alleviating the internal stress in the protective layer 13 . The inorganic material is, for example, selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), titanium oxide (TiO x ) and aluminum oxide (AlO x ). contains at least one Polymer resins include, for example, at least one selected from the group consisting of thermosetting resins, ultraviolet-curable resins, and the like. Specifically, the polymer resin includes at least one selected from the group consisting of acrylic resins, polyimide resins, novolac resins, epoxy resins, norbornene resins, and the like.
 第2の保護層13bは、例えば、金属酸化物層である。当該金属酸化物層は、堆積された単分子層により構成されていることが好ましい。当該金属酸化物層が、堆積された単分子層により構成されていると、保護層13による水分浸入の抑制効果を向上させることができる。第2の保護層13bは、第1の保護層13aとは異なる材料を含むことが好ましい。第1の保護層13aに発生したピンホールが、第2の保護層13bにも繋がって形成されることを抑制することができる。金属酸化物層は、例えば、酸化アルミニウムまたは酸化チタンを含む。 The second protective layer 13b is, for example, a metal oxide layer. The metal oxide layer preferably consists of a deposited monolayer. When the metal oxide layer is composed of a deposited monomolecular layer, it is possible to improve the effect of the protective layer 13 on suppressing moisture intrusion. The second protective layer 13b preferably contains a material different from that of the first protective layer 13a. It is possible to suppress formation of pinholes generated in the first protective layer 13a that are also connected to the second protective layer 13b. Metal oxide layers include, for example, aluminum oxide or titanium oxide.
(平坦化層14)
 平坦化層14は、保護層13の第1の面上に設けられ、保護層13の第1の面の凹凸を平坦化する。平坦化層14は、例えば、無機材料または高分子樹脂を含む。無機材料としては、第1の保護層13aの無機材料と同様の材料を例示することができる。高分子樹脂としては、第1の保護層13aの高分子樹脂と同様の材料を例示することができる。
(Planarization layer 14)
The planarizing layer 14 is provided on the first surface of the protective layer 13 and planarizes the unevenness of the first surface of the protective layer 13 . The planarization layer 14 contains, for example, an inorganic material or a polymeric resin. Examples of the inorganic material include materials similar to those of the first protective layer 13a. As the polymer resin, the same material as the polymer resin of the first protective layer 13a can be exemplified.
 平坦化層14の屈折率をn、保護層13の屈折率をnとしたとき、n>nの関係を満たすことが好ましい。n>nの関係が満たされることにより、平坦化層14および保護層13によって内部レンズが形成され、発光素子20から出射された光を正面方向Dに集光することができる結果、正面光取り出し効率を向上させることができる。平坦化層14の屈折率をn、保護層13の屈折率をnとの屈折率差Δn(=n-n)は、上記内部レンズの機能向上の観点から、0.1以上0.6以下であることが好ましい。ここで、屈折率は、波長550nmの光に対する屈折率を表す。 When the refractive index of the planarizing layer 14 is n 1 and the refractive index of the protective layer 13 is n 2 , it is preferable to satisfy the relationship n 1 >n 2 . When the relationship n 1 >n 2 is satisfied, an internal lens is formed by the planarizing layer 14 and the protective layer 13, and the light emitted from the light emitting element 20 can be focused in the front direction DZ . The front light extraction efficiency can be improved. The refractive index difference Δn (=n 1 −n 2 ) between the refractive index n 1 of the planarizing layer 14 and the refractive index n 2 of the protective layer 13 is 0.1 or more from the viewpoint of improving the function of the internal lens. It is preferably 0.6 or less. Here, the refractive index represents the refractive index for light with a wavelength of 550 nm.
(カラーフィルタ15)
 カラーフィルタ15は、複数の発光素子20の上方に設けられている。より具体的には、カラーフィルタ15は、平坦化層14の第1の面上に設けられている。カラーフィルタ15は、例えば、オンチップカラーフィルタ(On Chip Color Filter:OCCF)である。カラーフィルタ15は、例えば、複数の赤色フィルタ部15FRと、複数の緑色フィルタ部15FGと、複数の青色フィルタ部15FBとを備える。なお、以下の説明において、赤色フィルタ部15FR、緑色フィルタ部15FG、青色フィルタ部15FBを特に区別せず総称する場合には、フィルタ部15Fという。
(Color filter 15)
A color filter 15 is provided above the plurality of light emitting elements 20 . More specifically, the color filters 15 are provided on the first surface of the planarization layer 14 . The color filter 15 is, for example, an on-chip color filter (OCCF). The color filter 15 includes, for example, a plurality of red filter portions 15FR, a plurality of green filter portions 15FG, and a plurality of blue filter portions 15FB. In the following description, the red filter section 15FR, the green filter section 15FG, and the blue filter section 15FB are collectively referred to as the filter section 15F without particular distinction.
 複数のフィルタ部15Fは、面内方向に二次元配置されている。本明細書において、面内方向とは、回路基板11の第1の面における面内方向を意味する。各フィルタ部15Fは、発光素子20の上方に設けられている。より具体的には、赤色フィルタ部15FRは、発光素子20の上方に設けられ、緑色フィルタ部15FGは、発光素子20の上方に設けられ、青色フィルタ部15FBは、発光素子20の上方に設けられている。赤色フィルタ部15FRと発光素子20とによりサブ画素100Rが構成され、緑色フィルタ部15FGと発光素子20とによりサブ画素100Gが構成され、青色フィルタ部15FBと発光素子20とによりサブ画素100Bが構成されている。 The plurality of filter portions 15F are two-dimensionally arranged in the in-plane direction. In this specification, the in-plane direction means the in-plane direction on the first surface of the circuit board 11 . Each filter section 15</b>F is provided above the light emitting element 20 . More specifically, the red filter section 15FR is provided above the light emitting element 20, the green filter section 15FG is provided above the light emitting element 20, and the blue filter section 15FB is provided above the light emitting element 20. ing. A sub-pixel 100R is composed of the red filter portion 15FR and the light-emitting element 20, a sub-pixel 100G is composed of the green filter portion 15FG and the light-emitting element 20, and a sub-pixel 100B is composed of the blue filter portion 15FB and the light-emitting element 20. ing.
 赤色フィルタ部15FRは、発光素子20から出射された白色光のうち赤色光を透過するのに対して、赤色光以外の光を吸収する。緑色フィルタ部15FGは、発光素子20から出射された白色光のうち緑色光を透過するのに対して、緑色光以外の光を吸収する。青色フィルタ部15FBは、発光素子20から出射された白色光のうち青色光を透過するのに対して、青色光以外の光を吸収する。 The red filter portion 15FR transmits red light out of the white light emitted from the light emitting element 20, but absorbs light other than red light. The green filter portion 15FG transmits green light out of the white light emitted from the light emitting element 20, but absorbs light other than green light. The blue filter portion 15FB transmits blue light out of the white light emitted from the light emitting element 20, but absorbs light other than blue light.
 赤色フィルタ部15FRは、例えば、赤色のカラーレジストを含む。緑色フィルタ部15FGは、例えば、緑色のカラーレジストを含む。青色フィルタ部15FBは、例えば、青色のカラーレジストを含む。 The red filter portion 15FR includes, for example, a red color resist. The green filter portion 15FG includes, for example, a green color resist. The blue filter portion 15FB includes, for example, a blue color resist.
(平坦化層16)
 平坦化層16は、カラーフィルタ15の第1の面上に設けられ、カラーフィルタ15の第1の面の凹凸を平坦化する。平坦化層16は、例えば、無機材料または高分子樹脂を含む。無機材料としては、第1の保護層13aの無機材料と同様の材料を例示することができる。高分子樹脂としては、第1の保護層13aの高分子樹脂と同様の材料を例示することができる。
(Planarization layer 16)
The planarization layer 16 is provided on the first surface of the color filter 15 and planarizes the unevenness of the first surface of the color filter 15 . The planarization layer 16 contains, for example, an inorganic material or a polymeric resin. Examples of the inorganic material include materials similar to those of the first protective layer 13a. As the polymer resin, the same material as the polymer resin of the first protective layer 13a can be exemplified.
(レンズアレイ17)
 レンズアレイ17は、複数のレンズ17aを含む。複数のレンズ17aは、規定の配置パターンで平坦化層16の第1の面上に2次元配置されている。1つのレンズ17aが、1つの発光素子20毎に設けられている。各レンズ17aは、発光素子20の上方に設けられている。レンズ17aは、オンチップマイクロレンズ(On Chip Microlens:OCL)であってもよい。レンズ17aは、フィルタ部15Fから上方に出射された光を正面方向Dに集光する。レンズ17aは、例えば、正面方向Dに突出した凸状湾曲面を有している。凸状湾曲面は、例えば、ドーム状である。ここで、ドーム状は、略放物面状、略半球状および略半楕円体状等の形状を含むものとする。レンズ17aの頂点は、平面視において、凹部110が有する円環状の中心と略一致することが好ましい。
(Lens array 17)
The lens array 17 includes a plurality of lenses 17a. The plurality of lenses 17a are two-dimensionally arranged on the first surface of the planarization layer 16 in a prescribed arrangement pattern. One lens 17 a is provided for each light emitting element 20 . Each lens 17 a is provided above the light emitting element 20 . The lens 17a may be an on-chip microlens (OCL). The lens 17a collects the light emitted upward from the filter portion 15F in the front direction DZ . The lens 17a has, for example, a convex curved surface protruding in the front direction DZ . The convex curved surface is, for example, dome-shaped. Here, the dome shape includes shapes such as a substantially parabolic shape, a substantially hemispherical shape, and a substantially semiellipsoidal shape. It is preferable that the apex of the lens 17a approximately coincides with the center of the annular shape of the concave portion 110 in plan view.
 レンズ17aは、例えば、可視光に対して透明な無機材料または高分子樹脂を含む。無機材料は、例えば、酸化シリコン(SiO)を含む。高分子樹脂は、例えば、紫外線硬化樹脂を含む。 The lens 17a includes, for example, an inorganic material or polymer resin that is transparent to visible light. Inorganic materials include, for example, silicon oxide (SiO x ). Polymer resins include, for example, ultraviolet curable resins.
[表示装置10の製造方法]
 以下、一実施形態に係る表示装置10の製造方法の一例について説明する。
[Manufacturing method of display device 10]
An example of a method for manufacturing the display device 10 according to one embodiment will be described below.
(回路基板11の形成工程)
 まず、複数のビア11cを内部に備える絶縁層11bを基板11aの第1の面上に形成する。次に、例えばスピンコート法により、フォトレジスト層を絶縁層11b上に形成した後、レジスト層を露光、現像し、レジスト層をパターニングする。これにより、レジスト層のうち、複数の凹部110の形成位置に対向する部分に複数の開口が形成される。次に、例えばドライエッチングにより、レジスト層を介して絶縁層11bをエッチングすることにより、複数の凹部110を形成する。凹部110の形成方法としては、特許文献1に記載された凹部の形成方法が用いられてもよい。
(Formation process of circuit board 11)
First, an insulating layer 11b having a plurality of vias 11c therein is formed on the first surface of the substrate 11a. Next, after forming a photoresist layer on the insulating layer 11b by spin coating, for example, the resist layer is exposed and developed to pattern the resist layer. As a result, a plurality of openings are formed in portions of the resist layer that face the formation positions of the plurality of recesses 110 . Next, a plurality of recesses 110 are formed by etching the insulating layer 11b through the resist layer by dry etching, for example. As a method for forming the recess 110, the method for forming a recess described in Patent Document 1 may be used.
(第1の電極21の形成工程)
 まず、例えばスパッタリング法により、金属層、金属酸化物層を回路基板11の第1の面上に順次形成したのち、例えばフォトリソグラフィ技術およびエッチング技術を用いて金属層および金属酸化物層をパターニングする。これにより、複数の第1の電極21が回路基板11の第1の面上に形成される。
(Step of forming first electrode 21)
First, a metal layer and a metal oxide layer are sequentially formed on the first surface of the circuit board 11 by, for example, a sputtering method, and then the metal layer and the metal oxide layer are patterned by, for example, a photolithography technique and an etching technique. . Thereby, a plurality of first electrodes 21 are formed on the first surface of the circuit board 11 .
(絶縁層12の形成工程)
 次に、例えばCVD(Chemical Vapor Deposition)法により、複数の第1の電極21を覆うように回路基板11の第1の面上に絶縁層12を形成する。次に、例えばフォトリソグラフィ技術およびドライエッチング技術により、絶縁層12のうち、各第1の電極21の第1の面上に位置する部分に開口12aを形成する。
(Step of forming insulating layer 12)
Next, the insulating layer 12 is formed on the first surface of the circuit board 11 so as to cover the plurality of first electrodes 21 by, for example, a CVD (Chemical Vapor Deposition) method. Next, openings 12a are formed in portions of the insulating layer 12 located on the first surfaces of the first electrodes 21 by photolithography and dry etching, for example.
(OLED層22の形成工程)
 次に、例えば蒸着法により、正孔輸送層、赤色発光層、発光分離層、青色発光層、緑色発光層、電子輸送層、電子注入層を複数の第1の電極21の第1の面上および絶縁層12の第1の面上にこの順序で積層することにより、OLED層22を形成する。
(Process of forming OLED layer 22)
Next, a hole transport layer, a red light emitting layer, a light emitting separation layer, a blue light emitting layer, a green light emitting layer, an electron transport layer, and an electron injection layer are formed on the first surface of the plurality of first electrodes 21 by vapor deposition, for example. and on the first surface of the insulating layer 12 in this order to form the OLED layer 22 .
(第2の電極23の形成工程)
 次に、例えば蒸着法またはスパッタリング法により、第2の電極23をOLED層22の第1の面上に形成する。これにより、回路基板11の第1の面上に複数の発光素子20が形成される。
(Step of forming second electrode 23)
Next, a second electrode 23 is formed on the first surface of the OLED layer 22 by vapor deposition or sputtering, for example. Thereby, a plurality of light emitting elements 20 are formed on the first surface of the circuit board 11 .
(保護層13の形成工程)
 次に、例えばCVD法または蒸着法により、第1の保護層13aを第2の電極23の第1の面上に形成する。次に、例えば原子層堆積(Atomic Layer Deposition:ALD)により、第2の保護層13bを第1の保護層13aの第1の面上に形成する。これにより、第1の保護層13aと第2の保護層13bとを備える保護層13が、第2の電極23の第1の面上に形成される。
(Step of forming protective layer 13)
Next, the first protective layer 13a is formed on the first surface of the second electrode 23 by, for example, CVD or vapor deposition. Next, the second protective layer 13b is formed on the first surface of the first protective layer 13a by atomic layer deposition (ALD), for example. Thereby, the protective layer 13 including the first protective layer 13 a and the second protective layer 13 b is formed on the first surface of the second electrode 23 .
(平坦化層14の形成工程)
 次に、例えばCVD法または蒸着法により、平坦化層14を第2の電極23の第1の面上に形成する。
(Step of forming planarization layer 14)
Next, the planarization layer 14 is formed on the first surface of the second electrode 23 by, for example, CVD or vapor deposition.
(カラーフィルタ15の形成工程)
 次に、平坦化層14の第1の面上に緑色フィルタ部形成用の着色組成物を塗布し、フォトマスクを介して紫外線を照射しパターン露光した後、現像することにより、緑色フィルタ部15FGを形成する。次に、平坦化層14の第1の面上に赤色フィルタ部形成用の着色組成物を塗布し、フォトマスクを介して紫外線を照射しパターン露光した後、現像することにより、赤色フィルタ部15FRを形成する。次に、平坦化層14の第1の面上に青色フィルタ部形成用の着色組成物を塗布し、フォトマスクを介して紫外線を照射しパターン露光した後、現像することにより、青色フィルタ部15FBを形成する。これにより、カラーフィルタ15が平坦化層14の第1の面上に形成される。
(Formation process of color filter 15)
Next, a coloring composition for forming a green filter portion is applied onto the first surface of the flattening layer 14, irradiated with ultraviolet rays through a photomask for pattern exposure, and then developed to form a green filter portion 15FG. to form Next, a coloring composition for forming a red filter portion is applied onto the first surface of the flattening layer 14, irradiated with ultraviolet rays through a photomask for pattern exposure, and then developed to form a red filter portion 15FR. to form Next, a coloring composition for forming a blue filter portion is applied onto the first surface of the flattening layer 14, irradiated with ultraviolet rays through a photomask for pattern exposure, and then developed to form a blue filter portion 15FB. to form Thus, color filters 15 are formed on the first surface of planarization layer 14 .
(平坦化層16の形成工程)
 次に、例えばCVD法または蒸着法により、平坦化層16をカラーフィルタ15の第1の面上に形成する。
(Step of forming planarization layer 16)
Next, a planarizing layer 16 is formed on the first surface of the color filter 15 by, for example, CVD or vapor deposition.
(レンズアレイ17の形成工程)
 次に、アクリル系樹脂等のレンズ材を平坦化層16の第1の面上に塗布し、硬化することにより、レンズ材層を形成する。次に、例えばフォトリソグラフィ技術およびドライエッチング技術によりレンズ材層を加工した後、リフロー、硬化することにより複数のレンズ17aを形成する。
(Step of forming lens array 17)
Next, a lens material layer such as an acrylic resin is formed by applying a lens material such as an acrylic resin onto the first surface of the flattening layer 16 and curing it. Next, after the lens material layer is processed by, for example, photolithography technology and dry etching technology, it is reflowed and cured to form a plurality of lenses 17a.
[作用効果]
 一実施形態に係る表示装置10では、絶縁層(下層)11bは、円環状の1つの凹部110を発光素子20毎に第1の面に有し、発光素子20は凹部110に倣うように設けられている。このため、発光素子20の第1の電極21は、円環状の1つの凹部210を有している。円環状の1つの凹部210を有する第1の電極21では、椀状の1つの凹部を有する第1の電極に比べて凹部210の深さを深くすることがなく、第1の電極21の傾斜面の面積を増加させることができる。
 したがって、OLED層22の形成工程において、OLED層22の付きまわり性(OLED層22の厚みの均一性)の低下を抑制することができる。よって、OLED層22の付きまわり性の低下に起因する輝度、色度および耐熱性等の特性低下を抑制することができる。
 また、椀状の1つの凹部を有する第1の電極を備える表示装置およびフラットな第1の電極を備える表示装置に比べて開口率を高くせずに、輝度を向上させることが可能である。
[Effect]
In the display device 10 according to one embodiment, the insulating layer (lower layer) 11b has one annular concave portion 110 for each light emitting element 20 on the first surface, and the light emitting elements 20 are provided so as to follow the concave portion 110. It is For this reason, the first electrode 21 of the light emitting element 20 has one annular concave portion 210 . In the first electrode 21 having one annular concave portion 210, compared with the first electrode having one bowl-shaped concave portion, the depth of the concave portion 210 is not increased, and the inclination of the first electrode 21 is reduced. The surface area can be increased.
Therefore, in the step of forming the OLED layer 22, deterioration of throwing power of the OLED layer 22 (uniformity of thickness of the OLED layer 22) can be suppressed. Therefore, deterioration of characteristics such as luminance, chromaticity and heat resistance due to deterioration of the throwing power of the OLED layer 22 can be suppressed.
In addition, luminance can be improved without increasing the aperture ratio as compared with a display device including a first electrode having one bowl-shaped concave portion and a display device including a flat first electrode.
 一実施形態に係る表示装置10では、円環状の1つの凹部210と1つのレンズ17aとが組み合わされているため、凹部210にて反射された光をレンズ17aにより正面方向Dに集光することができる。したがって、光取り出し効率をさらに向上させることができるので、さらなる輝度向上が可能である。 In the display device 10 according to one embodiment, since one annular concave portion 210 and one lens 17a are combined, the light reflected by the concave portion 210 is condensed in the front direction DZ by the lens 17a. be able to. Therefore, since the light extraction efficiency can be further improved, the luminance can be further improved.
<2 変形例>
(変形例1)
 図5A、図5Bに示すように、平面視において円環状を有する2つの凹部110が、1つの発光素子20毎に設けられていてもよい。2つの凹部110は、平面視において、同心円状に設けられていてもよい。同心状を有する2つの凹部110は、中心として、平面視における発光素子20の幾何中心を共有していてもよい。発光素子20は、2つの凹部110に倣って設けられていてもよい。すなわち、第1の電極21は、2つの凹部210を有していてもよい。
<2 Modifications>
(Modification 1)
As shown in FIGS. 5A and 5B , two recesses 110 having an annular shape in plan view may be provided for each light emitting element 20 . The two recesses 110 may be provided concentrically in plan view. The two concentric recesses 110 may share the geometric center of the light emitting element 20 in plan view as the center. The light emitting element 20 may be provided along the two recesses 110 . That is, the first electrode 21 may have two recesses 210 .
 上記構成では、一実施形態に比べて凹部110の斜面の面積、すなわち第1の電極21の斜面の面積を増加させることができる。したがって、表示装置10の輝度をさらに向上させることができる。 With the above configuration, the area of the slope of the recess 110, that is, the area of the slope of the first electrode 21 can be increased compared to the one embodiment. Therefore, the luminance of the display device 10 can be further improved.
 なお、平面視において同心状を有する3つ以上の凹部110が、1つの発光素子20毎に設けられ、3つ以上の凹部110が、平面視において、同心状に設けられていてもよい。同心状を有する3つ以上の凹部110は、中心として、平面視における発光素子20の幾何中心を共有していてもよい。発光素子20は、3つの凹部110に倣って設けられていてもよい。すなわち、第1の電極21は、3つの凹部210を有していてもよい。 Note that three or more recesses 110 that are concentric in plan view may be provided for each light emitting element 20, and the three or more recesses 110 may be concentrically provided in plan view. Three or more concentric recesses 110 may share the geometric center of the light emitting element 20 in plan view as the center. The light emitting element 20 may be provided along the three recesses 110 . That is, the first electrode 21 may have three recesses 210 .
(変形例2)
 図6A、図6Bに示すように、平面視において円環状を有する1つの凹部(第1の凹部)110と、平面視において円形状(ドット状)を有する1つの凹部(第2の凹部)110aとが、1つの発光素子20毎に設けられていてもよい。凹部110aは、凹部110の内側に設けられていてもよい。
(Modification 2)
As shown in FIGS. 6A and 6B, one concave portion (first concave portion) 110 having an annular shape in plan view and one concave portion (second concave portion) 110a having a circular shape (dot shape) in plan view. may be provided for each light emitting element 20 . The recess 110 a may be provided inside the recess 110 .
 凹部110aは、椀状を有していてもよい。当該椀状は、平坦な底部と側面とを有していてもよい。側面は、平面であってもよいし、凸状または凹状の曲面であってもよい。平坦な底部と側面を有する椀状は、錐台状であってもよい。錐台状は、例えば、円錐台状、楕円錐台状、角錐台状(例えば四角錐台状または六角錐台状)であってもよい。椀状は、凹湾曲面状であってもよい。凹湾曲面状は、例えば、略放物面状、略半球状または略半楕円体状等であってもよい。 The concave portion 110a may have a bowl shape. The bowl may have a flat bottom and sides. The side surface may be flat, or may be a convex or concave curved surface. The bowl shape with flat bottom and sides may be a frustum shape. The frustum may be, for example, a truncated cone, an elliptical truncated pyramid, a truncated pyramid (eg, a square truncated pyramid or a hexagonal truncated pyramid). The bowl shape may be a concave surface shape. The concave curved surface shape may be, for example, a substantially paraboloid shape, a substantially semispherical shape, a substantially semiellipsoidal shape, or the like.
 発光素子20は、1つの凹部110と1つの凹部110aに倣って設けられていてもよい。すなわち、第1の電極21は、1つの凹部210と1つの凹部210aを有していてもよい。 The light emitting element 20 may be provided along one recess 110 and one recess 110a. That is, the first electrode 21 may have one recess 210 and one recess 210a.
 上記構成は、サブ画素100のサイズが小さく、円環状を有する複数の凹部110を1つの発光素子20毎に設けることが困難である場合にも容易に設けることができる。したがって、サブ画素100のサイズが小さい場合にも、第1の電極21の斜面の面積を容易に大きくすることができる。 The above configuration can be easily provided even when the size of the sub-pixel 100 is small and it is difficult to provide a plurality of annular concave portions 110 for each light emitting element 20 . Therefore, even when the size of the sub-pixel 100 is small, the area of the slope of the first electrode 21 can be easily increased.
 上記のように、平面視において円環状を有する1つの凹部110と、平面視において円形状を有する1つの凹部110aとが、1つの発光素子20毎に設けられている場合、発光素子20の上方に第1のレンズと第2のレンズとが設けられていてもよい。第1のレンズは、凸曲面状のレンズであり、平面視において凹部110と同一の形状、すなわち円環状を有してもよい。第2のレンズは、凸曲面状のレンズであり、平面視において凹部110aと同一の形状、すなわち円形状を有してもよい。第1のレンズは、凹部110の上方に設けられていてもよい。第2のレンズは、凹部110aの上方に設けられていてもよい。これにより、複数のレンズ17aに効率的に光を入射させることができる。 As described above, when one concave portion 110 having an annular shape in plan view and one concave portion 110a having a circular shape in plan view are provided for each light emitting element 20, may be provided with a first lens and a second lens. The first lens is a lens with a convex curved surface and may have the same shape as the concave portion 110 in plan view, that is, an annular shape. The second lens is a lens with a convex curved surface and may have the same shape as the concave portion 110a in plan view, that is, a circular shape. The first lens may be provided above the recess 110 . The second lens may be provided above the recess 110a. Thereby, light can be efficiently incident on the plurality of lenses 17a.
(変形例3)
 図7A、図7Bに示すように、平面視において円形状を有する複数の凹部110bが、1つの発光素子20毎に設けられていてもよい。複数の凹部110bは、絶縁層11bの第1の面に規定の配置パターンで2次元配置されていてもよい。凹部110bの形状は、変形例2における凹部110aと同様である。発光素子20は、複数の凹部110bに倣って設けられていてもよい。すなわち、第1の電極21は、複数の凹部210bを有していてもよい。
(Modification 3)
As shown in FIGS. 7A and 7B , a plurality of recesses 110b having a circular shape in plan view may be provided for each light emitting element 20 . The plurality of recesses 110b may be two-dimensionally arranged in a prescribed arrangement pattern on the first surface of the insulating layer 11b. The shape of the recess 110b is the same as that of the recess 110a in the second modification. The light emitting element 20 may be provided along the plurality of recesses 110b. That is, the first electrode 21 may have a plurality of recesses 210b.
 上記の構成では、凹部110bの個数を増やすほど、凹部110bの斜面、すなわち第1の電極21の斜面の面積を大きくすることができる。凹部110bの個数の下限値は、例えば、2個以上、3個以上、4個以上または5個以上である。凹部110bの個数の上限値は、特に限定されないが、例えば10個以下である。 In the above configuration, as the number of recesses 110b is increased, the area of the slopes of the recesses 110b, that is, the slope of the first electrode 21 can be increased. The lower limit of the number of recesses 110b is, for example, 2 or more, 3 or more, 4 or more, or 5 or more. The upper limit of the number of recesses 110b is not particularly limited, but is, for example, 10 or less.
 椀状の複数の凹部110bが1つの発光素子20毎に設けられている場合、複数のレンズ17aがそれぞれ複数の凹部110bの上方に設けられていてもよい。レンズ17aは、ドーム状等の凸状湾曲面を有していてもよい。複数の凹部110の幅が、レンズ17aの幅に合わせて変化していてもよい。これにより、複数のレンズ17aに効率的に光を入射させることができる。 When a plurality of bowl-shaped recesses 110b are provided for each light emitting element 20, a plurality of lenses 17a may be provided above the plurality of recesses 110b. The lens 17a may have a convex curved surface such as a dome shape. The width of the plurality of recesses 110 may vary according to the width of the lens 17a. Thereby, light can be efficiently incident on the plurality of lenses 17a.
(変形例4)
 複数の凹部110が1つの発光素子20毎に設けられている場合(例えば図5A参照)、複数の凹部110の深さが異なっていてもよい。すなわち、複数の凹部210が1つの第1の電極21毎に設けられている場合、複数の凹部210の深さが異なっていてもよい。これにより、発光素子20から出射される光の進行方向を制御することができる。
(Modification 4)
When a plurality of recesses 110 are provided for each light emitting element 20 (see FIG. 5A, for example), the depths of the plurality of recesses 110 may be different. That is, when a plurality of recesses 210 are provided for each first electrode 21, the depths of the plurality of recesses 210 may be different. Thereby, the traveling direction of the light emitted from the light emitting element 20 can be controlled.
 例えば、平面視において円環状を有する2つの凹部110が1つの発光素子20毎に設けられている場合(例えば図5A参照)、図8Aに示すように、2つの凹部110のうち内側に設けられた凹部110の深さが、外側に設けられた凹部110の深さよりも深くてもよい。すなわち、第1の電極21の2つの凹部210のうち内側に設けられた凹部210の深さが、外側に設けられた凹部210の深さよりも深くてもよい。あるいは、図8Bに示すように、2つの凹部110のうち内側に設けられた凹部110の深さが、外側に設けられた凹部110の深さよりも浅くてもよい。すなわち、第1の電極21の2つの凹部210のうち内側に設けられた凹部210の深さが、外側に設けられた凹部210の深さよりも浅くてもよい。 For example, when two recesses 110 having an annular shape in plan view are provided for each light emitting element 20 (see, for example, FIG. 5A), as shown in FIG. The depth of the concave portion 110 may be deeper than the depth of the concave portion 110 provided on the outside. That is, of the two recesses 210 of the first electrode 21, the recess 210 provided inside may be deeper than the recess 210 provided outside. Alternatively, as shown in FIG. 8B, the depth of the recess 110 provided on the inner side of the two recesses 110 may be shallower than the depth of the recess 110 provided on the outer side. That is, the depth of the recess 210 provided on the inner side of the two recesses 210 of the first electrode 21 may be shallower than the depth of the recess 210 provided on the outer side.
 例えば、2つの凹部110のうち外側に設けられた凹部110の深さが、内側に設けられた凹部110の深さよりも深い場合、反射光の進行方向が、よりサブ画素100の内側へ向くため、隣接するサブ画素100のレンズ17aに入り込む反射光の量を低減することができる。 For example, if the depth of the concave portion 110 provided on the outer side of the two concave portions 110 is greater than the depth of the concave portion 110 provided on the inner side, the traveling direction of the reflected light is directed toward the inside of the sub-pixel 100. , the amount of reflected light entering the lens 17a of the adjacent sub-pixel 100 can be reduced.
 例えば、平面視において円環状を有する1つの凹部(第1の凹部)110と、平面視において円形状を有する1つの凹部(第2の凹部)110aとが、1つの発光素子20毎に設けられている場合(例えば図6A参照)、図9Aに示すように、内側の凹部110aの深さが、外側の凹部110の深さよりも深くてもよい。すなわち、第1の電極21において、内側の凹部210aの深さが、外側の凹部210の深さよりも深くてもよい。あるいは、内側の凹部110aの深さが、外側の凹部110の深さよりも浅くてもよい。すなわち、第1の電極21において、内側の凹部210aの深さが、外側の凹部210の深さよりも浅くてもよい。この場合、凹部110aおよび凹部210aは、図9Aに示すように、平坦な底部を有する椀状であってもよいし、図9Bに示すように、凹湾曲面状の底部を有する椀状であってもよい。 For example, one recess (first recess) 110 having an annular shape in plan view and one recess (second recess) 110a having a circular shape in plan view are provided for each light emitting element 20. 6A, the depth of the inner recess 110a may be greater than the depth of the outer recess 110, as shown in FIG. 9A. That is, in the first electrode 21, the depth of the recess 210a on the inner side may be deeper than the depth of the recess 210 on the outer side. Alternatively, the depth of the inner recess 110 a may be shallower than the depth of the outer recess 110 . That is, in the first electrode 21, the depth of the recess 210a on the inner side may be shallower than the depth of the recess 210 on the outer side. In this case, the recess 110a and the recess 210a may be bowl-shaped with a flat bottom as shown in FIG. 9A, or bowl-shaped with a concave curved bottom as shown in FIG. 9B. may
 例えば、2つの凹部110、110aのうち外側に設けられた凹部110の深さが、内側に設けられた凹部110aの深さよりも深い場合、反射光の進行方向が、よりサブ画素100の内側へ向くため、隣接するサブ画素100のレンズ17aに入り込む反射光の量を低減することができる。 For example, if the depth of the recess 110 provided on the outer side of the two recesses 110 and 110a is greater than the depth of the recess 110a provided on the inner side, the traveling direction of the reflected light is further directed toward the inside of the sub-pixel 100. Therefore, the amount of reflected light entering the lens 17a of the adjacent sub-pixel 100 can be reduced.
 例えば、複数の凹部110と1つの凹部110aが1つの発光素子20毎に設けられている場合、複数の凹部110の深さが異なっていてもよいし、複数の凹部110の深さが異なり、かつ、複数の凹部110と1つの凹部110aの深さが異なっていてもよい。すなわし、第1の電極21において、複数の凹部210の深さが異なっていてもよいし、複数の凹部210の深さが異なり、かつ、複数の凹部210と1つの凹部210aの深さが異なっていてもよい。 For example, when a plurality of recesses 110 and one recess 110a are provided for each light emitting element 20, the depths of the recesses 110 may be different, or the depths of the recesses 110 may be different, Moreover, the depth of the plurality of recesses 110 and the depth of the single recess 110a may be different. That is, in the first electrode 21, the plurality of recesses 210 may have different depths, or the plurality of recesses 210 may have different depths, and the plurality of recesses 210 and one recess 210a may have different depths. can be different.
 例えば、複数の凹部110bが1つの発光素子20毎に設けられている場合(例えば図7A参照)、複数の凹部110bの深さが異なっていてもよい。すなわし、第1の電極21において、複数の凹部210bの深さが異なっていてもよい。 For example, when a plurality of recesses 110b are provided for each light emitting element 20 (see FIG. 7A, for example), the depths of the plurality of recesses 110b may be different. That is, in the first electrode 21, the recesses 210b may have different depths.
(変形例5)
 複数の凹部110が1つの発光素子20毎に設けられている場合(例えば図5A参照)、複数の凹部110の幅が異なっていてもよい。すなわち、複数の凹部210が1つの第1の電極21毎に設けられている場合、複数の凹部210の幅が異なっていてもよい。
(Modification 5)
When a plurality of recesses 110 are provided for each light emitting element 20 (see FIG. 5A, for example), the widths of the plurality of recesses 110 may be different. That is, when a plurality of recesses 210 are provided for each first electrode 21, the widths of the plurality of recesses 210 may be different.
 例えば、円環状を有する2つの凹部110が1つの発光素子20毎に設けられている場合(例えば図5A参照)、2つの凹部110のうち内側に設けられた凹部110の幅が、外側に設けられた凹部110の幅よりも広くてもよい。すなわち、第1の電極21の2つの凹部210のうち内側に設けられた凹部210の幅が、外側に設けられた凹部210の幅よりも広くてもよい。あるいは、2つの凹部110のうち内側に設けられた凹部110の幅が、外側に設けられた凹部110の幅よりも狭くてもよい。すなわち、第1の電極21の2つの凹部210のうち内側に設けられた凹部210の幅が、外側に設けられた凹部210の幅よりも狭くてもよもよい。 For example, when two annular recesses 110 are provided for each light emitting element 20 (see, for example, FIG. 5A), the width of the recess 110 provided on the inner side of the two recesses 110 is the width of the recess 110 provided on the outer side. It may be wider than the width of the recess 110 formed. That is, the width of the concave portion 210 provided on the inner side of the two concave portions 210 of the first electrode 21 may be wider than the width of the concave portion 210 provided on the outer side. Alternatively, the width of the recess 110 provided on the inner side of the two recesses 110 may be narrower than the width of the recess 110 provided on the outer side. In other words, the width of the recess 210 provided on the inner side of the two recesses 210 of the first electrode 21 may be narrower than the width of the recess 210 provided on the outer side.
 円環状の複数の凹部110が1つの発光素子20毎に設けられている場合、複数のレンズ17aがそれぞれ複数の凹部110の上方に設けられていてもよい。レンズ17aは、円環状を有していてもよい。複数の凹部110の幅が、レンズ17aの幅に合わせて変化していてもよい。これにより、複数のレンズ17aに効率的に光を入射させることができる。 When a plurality of annular recesses 110 are provided for each light emitting element 20, a plurality of lenses 17a may be provided above the plurality of recesses 110, respectively. Lens 17a may have a toric shape. The width of the plurality of recesses 110 may vary according to the width of the lens 17a. Thereby, light can be efficiently incident on the plurality of lenses 17a.
 例えば、複数の凹部110と1つの凹部110aが1つの発光素子20毎に設けられている場合、複数の凹部110の幅が異なっていてもよいし、複数の凹部110の幅が異なり、かつ、複数の凹部110と1つの凹部110aの幅が異なっていてもよい。すなわち、第1の電極21において、複数の凹部210の幅が異なっていてもよいし、複数の凹部210の幅が異なり、かつ、複数の凹部210と1つの凹部210aの幅が異なっていてもよい。 For example, when a plurality of recesses 110 and one recess 110a are provided for each light emitting element 20, the widths of the recesses 110 may be different, the widths of the recesses 110 may be different, and The width of the plurality of recesses 110 and the width of one recess 110a may be different. That is, in the first electrode 21, the plurality of recesses 210 may have different widths, or the plurality of recesses 210 may have different widths, and the plurality of recesses 210 and one recess 210a may have different widths. good.
 例えば、複数の凹部110bが1つの発光素子20毎に設けられている場合(例えば図7A参照)、複数の凹部110bの幅が異なっていてもよい。すなわち、第1の電極21において、複数の凹部210bの幅が異なっていてもよい。 For example, when a plurality of recesses 110b are provided for each light emitting element 20 (see FIG. 7A, for example), the widths of the plurality of recesses 110b may be different. That is, in the first electrode 21, the widths of the recesses 210b may be different.
(変形例6)
 上記一実施形態では、ビア11cが、第1の電極21のうち、凹部210が設けられていない平坦部分に接続されている例について説明したが、ビア11cの接続形態はこの例に限定されるものではない。例えば、図10に示すように、絶縁層11bが内部に複数の導電層21eをさらに備え、導電層21eは凹部210の底部の裏面(第2の面)に接触し、ビア11cが導電層21eと配線11dとを接続してもよい。導電層21eは、例えば、配線または電極である。
(Modification 6)
In the above embodiment, the example in which the via 11c is connected to the flat portion of the first electrode 21 where the recess 210 is not provided has been described, but the connection form of the via 11c is limited to this example. not a thing For example, as shown in FIG. 10, the insulating layer 11b further includes a plurality of conductive layers 21e inside, the conductive layers 21e are in contact with the bottom surface (second surface) of the recess 210, and the vias 11c are connected to the conductive layers 21e. may be connected to the wiring 11d. The conductive layer 21e is, for example, wiring or an electrode.
(変形例7)
 上記一実施形態では、レンズ17aがドーム状等の凸状湾曲面を有する例について説明したが、レンズ17aの形状はこれに限定されるものではない。例えば、図11に示すように、レンズ17aは、平面視において、絶縁層11bの凹部110と同一の形状(すなわち第1の電極21の凹部210と同一の形状)を有していてもよい。より具体的には、レンズ17aは、平面視において、円環状を有していてもよい。レンズ17aは、凸曲面状を有するレンズであってもよく、具体的には、レンズ17aの幅方向に平行で、かつ、表示装置10の厚さ方向に平行な面でレンズ17aを切断して得られる断面形状は、アーチ状であってもよい。ここで、アーチ状には、略円弧状、略楕円弧状および略放物線状を含む。上記のようにレンズ17aが環状を有することで、隣接するサブ画素100に入る光を低減し、混色を抑制することができる。
(Modification 7)
In the above embodiment, the lens 17a has a convex curved surface such as a dome shape, but the shape of the lens 17a is not limited to this. For example, as shown in FIG. 11, the lens 17a may have the same shape as the recess 110 of the insulating layer 11b (that is, the same shape as the recess 210 of the first electrode 21) in plan view. More specifically, the lens 17a may have an annular shape in plan view. The lens 17a may be a lens having a convex curved surface. The resulting cross-sectional shape may be arcuate. Here, the arch shape includes a substantially circular arc shape, a substantially elliptical arc shape and a substantially parabolic shape. Since the lens 17a has an annular shape as described above, it is possible to reduce light entering the adjacent sub-pixels 100 and suppress color mixture.
 複数の凹部110が1つの発光素子20毎に設けられている場合(例えば図5A参照)、表示装置10が、凹部110と同数の複数のレンズを備えていてもよい。複数のレンズはそれぞれ、平面視において、複数の凹部110と同一の形状(すなわち第1の電極21の凹部210と同一の形状)を有していてもよい。 When a plurality of concave portions 110 are provided for each light emitting element 20 (see, for example, FIG. 5A), the display device 10 may include a plurality of lenses as many as the concave portions 110 . Each of the plurality of lenses may have the same shape as the plurality of recesses 110 (that is, the same shape as the recesses 210 of the first electrode 21) in plan view.
 1つまたは複数の凹部110と1つの凹部110aが1つの発光素子20毎に設けられている場合(例えば図6A参照)、表示装置10が、1つまたは複数の凹部110と同数の1つまたは複数の第1のレンズと、1つの第2のレンズとを備えていてもよい。1つまたは複数の第1のレンズはそれぞれ、平面視において、1つまたは複数の凹部110と同一の形状(すなわち第1の電極21の1つまたは複数の凹部210と同一の形状)を有し、かつ、第2のレンズが、平面視において、1つの凹部110aと同一の形状(すなわち第1の電極21の1つの凹部210aと同一の形状)を有していてもよい。 When one or more recesses 110 and one recess 110a are provided for each light emitting element 20 (see, for example, FIG. 6A), the display device 10 has the same number of recesses 110 and one or more recesses 110a. A plurality of first lenses and one second lens may be provided. Each of the one or more first lenses has the same shape as the one or more recesses 110 (that is, the same shape as the one or more recesses 210 of the first electrode 21) in plan view. Also, the second lens may have the same shape as one recess 110a (that is, the same shape as one recess 210a of the first electrode 21) in plan view.
 複数の凹部110bが1つの発光素子20毎に設けられている場合(例えば図7A参照)、表示装置10が、凹部110bと同数の複数のレンズを備えていてもよい。複数のレンズはそれぞれ、平面視において、複数の凹部110bと同一の形状(すなわち第1の電極21の凹部210bと同一の形状)を有していてもよい。 When a plurality of concave portions 110b are provided for each light emitting element 20 (see, for example, FIG. 7A), the display device 10 may include a plurality of lenses as many as the concave portions 110b. Each of the plurality of lenses may have the same shape as the plurality of recesses 110b (that is, the same shape as the recesses 210b of the first electrode 21) in plan view.
(変形例8)
 上記一実施形態では、表示装置10が、平坦化層14とカラーフィルタ15とを備える例について説明したが、平坦化層14がカラーフィルタ15の機能を有していてもよい。
より具体的には例えば、表示装置10が、カラーフィルタ15を保護層13の第1の面上に直接備えていてもよい。この場合、発光素子20からレンズ17aまでの距離を短くできるため、隣接するサブ画素100へ漏れる光の量を低減することができる。
(Modification 8)
Although the display device 10 includes the planarization layer 14 and the color filter 15 in the above embodiment, the planarization layer 14 may have the function of the color filter 15 .
More specifically, for example, the display device 10 may have the color filter 15 directly on the first surface of the protective layer 13 . In this case, since the distance from the light emitting element 20 to the lens 17a can be shortened, the amount of light leaking to the adjacent sub-pixel 100 can be reduced.
(変形例9)
 表示装置10が、充填樹脂層と対向基板とをレンズアレイ17上に順に備えていてもよい。充填樹脂層は、レンズアレイ17と対向基板との間の隙間を埋めると共に、レンズアレイ17と対向基板とを接着する。充填樹脂層は、例えば、熱硬化型樹脂および紫外線硬化型樹脂等からなる群より選ばれた少なくとも1種を含む。
(Modification 9)
The display device 10 may have a filling resin layer and a counter substrate on the lens array 17 in this order. The filling resin layer fills the gap between the lens array 17 and the counter substrate and bonds the lens array 17 and the counter substrate. The filled resin layer contains, for example, at least one selected from the group consisting of thermosetting resins and UV-curable resins.
 対向基板は、充填樹脂層の第1の面上に設けられ、回路基板11に対向している。対向基板および充填樹脂層は、発光素子20およびカラーフィルタ15等を封止する。対向基板は、カラーフィルタ15から出射される各色光に対して透明なガラス等の材料を含む。 The counter substrate is provided on the first surface of the filled resin layer and faces the circuit board 11 . The counter substrate and the filling resin layer seal the light emitting element 20, the color filter 15, and the like. The counter substrate includes a material such as glass that is transparent to each color of light emitted from the color filter 15 .
(変形例10)
 上記一実施形態では、表示装置10におけるカラー化の方式が、白色OLED素子とカラーフィルタ15とを組み合わせる方式である例について説明するが、カラー化の方式はこれに限定されるものではない。例えば、カラー化の方式は、赤色光を発光する発光素子、緑色光を発光する発光素子、および青色光を発光する発光素子が備えられる方式であってもよい。
(Modification 10)
In the above embodiment, an example in which the display device 10 is colored by combining the white OLED element and the color filter 15 is described, but the coloration method is not limited to this. For example, the color scheme may be a scheme in which a light-emitting element that emits red light, a light-emitting element that emits green light, and a light-emitting element that emits blue light are provided.
(その他の変形例)
 以上、本開示の一実施形態およびその変形例について具体的に説明したが、本開示は、上記の一実施形態およびその変形例に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。
(Other modifications)
As described above, the embodiment of the present disclosure and its modification have been specifically described, but the present disclosure is not limited to the above-described embodiment and its modification. is possible.
 例えば、上記の一実施形態およびその変形例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。 For example, the configurations, methods, steps, shapes, materials, numerical values, etc. given in the above-described embodiment and modifications thereof are merely examples, and if necessary, different configurations, methods, steps, shapes, materials and A numerical value or the like may be used.
 例えば、上記の一実施形態およびその変形例の構成、方法、工程、形状、材料および数値等は、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。 For example, the configurations, methods, steps, shapes, materials, numerical values, etc. of the above embodiment and its modifications can be combined with each other without departing from the gist of the present disclosure.
 例えば、上記の一実施形態およびその変形例に例示した材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。 For example, the materials exemplified in the above one embodiment and its modifications can be used singly or in combination of two or more unless otherwise specified.
 また、本開示は以下の構成を採用することもできる。
(1)
 2次元配置された複数の発光素子と、
 複数の前記発光素子の下に設けられた下層と
 を備え、
 前記下層は、1つの前記発光素子毎に1つまたは複数の凹部を有し、
 前記発光素子は、前記凹部に倣って設けられ、
 前記下層が、1つの前記発光素子毎に1つの前記凹部を有する場合、平面視における前記発光素子の幾何中心を通り、かつ、表示装置の厚さ方向に平行な面で1つの前記凹部を切断して得られる断面形状が、複数の凹形状部を含む表示装置。
(2)
 前記凹部は、前記平面視において環状を有する(1)に記載の表示装置。
(3)
 前記下層が、1つの前記発光素子毎に複数の前記凹部を有し、
 複数の前記凹部は、前記平面視において同心状を有する(1)に記載の表示装置。
(4)
 前記下層が、1つの前記発光素子毎に複数の前記凹部を有し、
 各前記凹部が、椀状を有する(1)に記載の表示装置。
(5)
 前記下層が、1つの前記発光素子毎に複数の前記凹部を有し、
 複数の前記凹部は、前記平面視において環状を有する第1の凹部と、前記第1の凹部の内側に設けられ、前記平面視においてドット状を有する第2の凹部とを含む(1)に記載の表示装置。
(6)
 前記下層が、1つの前記発光素子毎に複数の前記凹部を有し、
 複数の前記凹部の幅が異なる(1)に記載の表示装置。
(7)
 前記下層が、1つの前記発光素子毎に複数の前記凹部を有し、
 複数の前記凹部の深さが異なる(1)に記載の表示装置。
(8)
 複数の前記発光素子を覆う保護層と、
 前記保護層上に設けられた平坦化層と
 をさらに備え、
 前記平坦化層は、カラーフィルタとしての機能を有する(1)から(7)のいずれか1項に記載の表示装置。
(9)
 複数の前記発光素子を覆う保護層と、
 前記保護層上に設けられた平坦化層と、
 前記平坦化層上に設けられたカラーフィルタと
 をさらに備える(1)から(7)のいずれか1項に記載の表示装置。
(10)
 複数の前記発光素子の上方に設けられた複数のレンズをさらに備え、
 1つまたは複数の前記レンズが1つの前記発光素子毎に設けられている(1)から(9)のいずれか1項に記載の表示装置。
(11)
 前記凹部および前記レンズは、前記平面視において同一の形状を有する(10)に記載の表示装置。
(12)
 前記凹部および前記レンズは、前記平面視において環状を有する(10)に記載の表示装置。
(13)
 各前記発光素子は、第1の電極と、発光層を含む有機層と、第2の電極とを順に備える(1)から(12)のいずれか1項に記載の表示装置。
(14)
 (1)から(13)のいずれか1項に記載の表示装置を備える電子機器。
In addition, the present disclosure can also employ the following configuration.
(1)
a plurality of light emitting elements arranged two-dimensionally;
and a lower layer provided under the plurality of light emitting elements,
the lower layer has one or more recesses for each light emitting element;
The light emitting element is provided along the recess,
When the lower layer has one recess for each light emitting element, one recess is cut along a plane that passes through the geometric center of the light emitting element in plan view and is parallel to the thickness direction of the display device. A display device in which the cross-sectional shape obtained by the above includes a plurality of concave portions.
(2)
The display device according to (1), wherein the concave portion has an annular shape in plan view.
(3)
the lower layer has a plurality of recesses for each light emitting element,
The display device according to (1), wherein the plurality of recesses are concentric in plan view.
(4)
the lower layer has a plurality of recesses for each light emitting element,
The display device according to (1), wherein each recess has a bowl shape.
(5)
the lower layer has a plurality of recesses for each light emitting element,
According to (1), the plurality of recesses includes a first recess having an annular shape in plan view, and a second recess provided inside the first recess and having a dot shape in plan view. display device.
(6)
the lower layer has a plurality of recesses for each light emitting element,
The display device according to (1), wherein the plurality of recesses have different widths.
(7)
the lower layer has a plurality of recesses for each light emitting element,
The display device according to (1), wherein the plurality of recesses have different depths.
(8)
a protective layer covering the plurality of light emitting elements;
and a planarization layer provided on the protective layer,
The display device according to any one of (1) to (7), wherein the planarization layer functions as a color filter.
(9)
a protective layer covering the plurality of light emitting elements;
a planarization layer provided on the protective layer;
The display device according to any one of (1) to (7), further comprising a color filter provided on the planarization layer.
(10)
Further comprising a plurality of lenses provided above the plurality of light emitting elements,
The display device according to any one of (1) to (9), wherein one or more lenses are provided for each light emitting element.
(11)
The display device according to (10), wherein the concave portion and the lens have the same shape in plan view.
(12)
The display device according to (10), wherein the concave portion and the lens have an annular shape in the plan view.
(13)
The display device according to any one of (1) to (12), wherein each light emitting element includes, in order, a first electrode, an organic layer including a light emitting layer, and a second electrode.
(14)
An electronic device comprising the display device according to any one of (1) to (13).
<3 参考例>
 以下、参考例により本開示を具体的に説明するが、本開示はこれらの参考例に限定されるものではない。図12Aは、比較例1A、1B、1C、2A、2B、2Cの第1の電極21の断面形状を示す図である。図12Bは、参考例1A、1B、1C、2A、2B、2Cの第1の電極21の断面形状を示す図である。図12Cは、参考例3A、3B、3C、4A、4B、4Cの第1の電極21の断面形状を示す図である。
<3 Reference example>
Hereinafter, the present disclosure will be specifically described with reference examples, but the present disclosure is not limited to these reference examples. FIG. 12A is a diagram showing cross-sectional shapes of first electrodes 21 of Comparative Examples 1A, 1B, 1C, 2A, 2B, and 2C. FIG. 12B is a diagram showing the cross-sectional shape of the first electrode 21 of Reference Examples 1A, 1B, 1C, 2A, 2B, and 2C. FIG. 12C is a diagram showing the cross-sectional shape of the first electrode 21 of Reference Examples 3A, 3B, 3C, 4A, 4B, and 4C.
(比較例1A、1B、1C)
 1つの椀状の凹部210を有する第1の電極21の表面積Sを求めた。以下に、椀状の凹部210の構成の詳細を示す。
 平面視における凹部210の形状:円形状(直径φ=2.29μm)
 凹部210の断面形状:台形状(図12A参照)
 凹部210の深さD:100μm、200μm、300μm
 凹部210の傾斜面の傾斜角度θ:45度
 フラットな第1の電極21の表面積Sを基準として、上記の構成を有する第1の電極21の表面積Sの面積増加率Rを求めた。その結果を表1に示した。
(Comparative Examples 1A, 1B, 1C)
The surface area S A of the first electrode 21 having one bowl-shaped recess 210 was obtained. The details of the configuration of the bowl-shaped concave portion 210 are shown below.
Shape of concave portion 210 in plan view: circular shape (diameter φ=2.29 μm)
Cross-sectional shape of concave portion 210: Trapezoid (see FIG. 12A)
Depth D of recess 210: 100 μm, 200 μm, 300 μm
The inclination angle θ of the inclined surface of the concave portion 210: 45 degrees Based on the flat surface area S0 of the first electrode 21, the area increase rate R A of the surface area S A of the first electrode 21 having the above configuration was obtained. . The results are shown in Table 1.
(比較例2A、2B、2C)
 1つの椀状の凹部210を有する第1の電極21の表面積Sを求めた。以下に、椀状の凹部210の構成の詳細を示す。
 平面視における凹部210の形状:円形状(直径φ=1.85μm)
 凹部210の断面形状:台形状(図12A参照)
 凹部210の深さD:100μm、200μm、300μm
 凹部210の傾斜面の傾斜角度θ:45度
 フラットな第1の電極21の表面積Sを基準として、上記の構成を有する第1の電極21の表面積Sの面積増加率Rを求めた。その結果を表1に示した。
(Comparative Examples 2A, 2B, 2C)
The surface area S A of the first electrode 21 having one bowl-shaped recess 210 was determined. The details of the configuration of the bowl-shaped concave portion 210 are shown below.
Shape of concave portion 210 in plan view: circular shape (diameter φ=1.85 μm)
Cross-sectional shape of concave portion 210: Trapezoid (see FIG. 12A)
Depth D of recess 210: 100 μm, 200 μm, 300 μm
The inclination angle θ of the inclined surface of the concave portion 210: 45 degrees Based on the flat surface area S0 of the first electrode 21, the area increase rate R A of the surface area S A of the first electrode 21 having the above configuration was obtained. . The results are shown in Table 1.
(参考例1A、1B、1C)
 1つの円環状の凹部210を有する第1の電極21の表面積Sを求めた。以下に、環状の凹部210の構成の詳細を示す。
 平面視における凹部210の形状:円環状(円環の外周の直径φ=2.29μm)
 凹部210の断面形状:台形状(図12B参照)
 凹部210の深さD:100μm、200μm、300μm
 凹部210の傾斜面の傾斜角度θ:45度
 フラットな第1の電極21の表面積S0を基準として、上記の構成を有する第1の電極21の表面積Sの面積増加率Rを求めた。その結果を表2に示した。
(Reference Examples 1A, 1B, 1C)
The surface area S B of the first electrode 21 having one annular recess 210 was obtained. The details of the configuration of the annular recess 210 are shown below.
Shape of concave portion 210 in plan view: circular ring (circular outer diameter φ=2.29 μm)
Cross-sectional shape of concave portion 210: Trapezoid (see FIG. 12B)
Depth D of recess 210: 100 μm, 200 μm, 300 μm
Inclined angle θ of inclined surface of recess 210: 45 degrees Based on the surface area S0 of the flat first electrode 21, the area increase rate RB of the surface area SB of the first electrode 21 having the above configuration was obtained. The results are shown in Table 2.
(参考例2A、2B、2C)
 1つの円環状の凹部210を有する第1の電極21の表面積Sを求めた。以下に、環状の凹部210の構成の詳細を示す。
 平面視における凹部210の形状:円環状(円環の外周の直径φ=1.85μm)
 凹部210の断面形状:台形状(図12B参照)
 凹部210の深さD:100μm、200μm、300μm
 凹部210の傾斜面の傾斜角度θ:45度
 フラットな第1の電極21の表面積Sを基準として、上記の構成を有する第1の電極21の表面積Sの面積増加率Rを求めた。その結果を表2に示した。
(Reference Examples 2A, 2B, 2C)
The surface area S B of the first electrode 21 having one annular recess 210 was obtained. The details of the configuration of the annular recess 210 are shown below.
Shape of concave portion 210 in plan view: circular ring (circular outer circumference diameter φ=1.85 μm)
Cross-sectional shape of concave portion 210: Trapezoid (see FIG. 12B)
Depth D of recess 210: 100 μm, 200 μm, 300 μm
Inclination angle θ of the inclined surface of the concave portion 210: 45 degrees Based on the flat surface area S0 of the first electrode 21, the area increase rate R B of the surface area S B of the first electrode 21 having the above configuration was obtained. . The results are shown in Table 2.
(参考例3A、3B、3C)
 2つの円環状の凹部210を有する第1の電極21の表面積Sを求めた。以下に、環状の凹部210の構成の詳細を示す。
 平面視における凹部210の形状:円環状(外側に位置する円環の外周の直径φ=2.29μm)
 凹部210の断面形状:台形状(図12C参照)
 凹部210の深さD:100μm、200μm、300μm
 凹部210の傾斜面の傾斜角度θ:45度
 フラットな第1の電極21の表面積Sを基準として、上記の構成を有する第1の電極21の表面積Sの面積増加率Rを求めた。その結果を表3に示した。
(Reference Examples 3A, 3B, 3C)
The surface area SC of the first electrode 21 having two annular recesses 210 was obtained. The details of the configuration of the annular recess 210 are shown below.
Shape of concave portion 210 in plan view: circular ring (diameter φ of outer circumference of outer circular ring = 2.29 μm)
Cross-sectional shape of concave portion 210: Trapezoid (see FIG. 12C)
Depth D of recess 210: 100 μm, 200 μm, 300 μm
Inclination angle θ of the inclined surface of the concave portion 210: 45 degrees Based on the flat surface area S0 of the first electrode 21, the area increase rate Rc of the surface area Sc of the first electrode 21 having the above configuration was obtained. . The results are shown in Table 3.
(参考例4A、4B、4C)
 2つの円環状の凹部210を有する第1の電極21の表面積Sを求めた。以下に、環状の凹部210の構成の詳細を示す。
 平面視における凹部210の形状:円環状(外側に位置する円環の外周の直径φ=1.85μm)
 凹部210の断面形状:台形状(図12C参照)
 凹部210の深さD:100μm、200μm、300μm
 凹部210の傾斜面の傾斜角度θ:45度
 フラットな第1の電極21の表面積Sを基準として、上記の構成を有する第1の電極21の表面積Sの面積増加率Rを求めた。その結果を表3に示した。
(Reference Examples 4A, 4B, 4C)
The surface area SC of the first electrode 21 having two annular recesses 210 was obtained. The details of the configuration of the annular recess 210 are shown below.
Shape of concave portion 210 in plan view: circular ring (diameter φ of outer circumference of outer circular ring = 1.85 µm)
Cross-sectional shape of concave portion 210: Trapezoid (see FIG. 12C)
Depth D of recess 210: 100 μm, 200 μm, 300 μm
Inclination angle θ of the inclined surface of the concave portion 210: 45 degrees Based on the flat surface area S0 of the first electrode 21, the area increase rate Rc of the surface area Sc of the first electrode 21 having the above configuration was obtained. . The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1つまたは2つの環状の凹部210を有する第1の電極21では、1つの椀状の凹部210を有する第1の電極21に比べて、凹部210の深さを深くすることなく、第1の電極21の面積を増やせることがわかる。 Compared to the first electrode 21 having one bowl-shaped recess 210, the first electrode 21 having one or two annular recesses 210 does not increase the depth of the recess 210, and the first electrode 21 has It can be seen that the area of the electrode 21 can be increased.
<5 応用例>
(電子機器)
 上記の一実施形態およびその変形例に係る表示装置10は、各種の電子機器に備えられることが可能である。上記の一実施形態およびその変形例に係る表示装置10は、特にビデオカメラまたは一眼レフカメラの電子ビューファインダ、もしくはヘッドマウント型ディスプレイ等の高解像度が要求され、目の近くで拡大して使用されるものに適する。
<5 Application example>
(Electronics)
The display device 10 according to the above embodiment and its modification can be provided in various electronic devices. The display device 10 according to the above-described embodiment and its modification is required to have a high resolution, such as an electronic viewfinder of a video camera or a single-lens reflex camera, or a head-mounted display, and is enlarged and used near the eyes. suitable for
(具体例1)
 図13A、図13Bは、デジタルスチルカメラ310の外観の一例を示す。このデジタルスチルカメラ310は、レンズ交換式一眼レフレックスタイプのものであり、カメラ本体部(カメラボディ)311の正面略中央に交換式の撮影レンズユニット(交換レンズ)312を有し、正面左側に撮影者が把持するためのグリップ部313を有している。
(Specific example 1)
13A and 13B show an example of the appearance of the digital still camera 310. FIG. This digital still camera 310 is of an interchangeable single-lens reflex type, and has an interchangeable photographing lens unit (interchangeable lens) 312 in approximately the center of the front of a camera main body (camera body) 311, and on the left side of the front. It has a grip portion 313 for a photographer to hold.
 カメラ本体部311の背面中央から左側にずれた位置には、モニタ314が設けられている。モニタ314の上部には、電子ビューファインダ(接眼窓)315が設けられている。撮影者は、電子ビューファインダ315を覗くことによって、撮影レンズユニット312から導かれた被写体の光像を視認して構図決定を行うことが可能である。電子ビューファインダ315は、上記の一実施形態およびその変形例に係る表示装置10のうちいずれかを備える。 A monitor 314 is provided at a position shifted to the left from the center of the back surface of the camera body 311 . An electronic viewfinder (eyepiece window) 315 is provided above the monitor 314 . By looking through the electronic viewfinder 315, the photographer can view the optical image of the subject guided from the photographing lens unit 312 and determine the composition. The electronic viewfinder 315 includes any one of the display devices 10 according to the above embodiment and variations thereof.
(具体例2)
 図14は、ヘッドマウントディスプレイ320の外観の一例を示す。ヘッドマウントディスプレイ320は、例えば、眼鏡形の表示部321の両側に、使用者の頭部に装着するための耳掛け部322を有している。表示部321は、上記の一実施形態およびその変形例に係る表示装置10のうちいずれかを備える。
(Specific example 2)
FIG. 14 shows an example of the appearance of the head mounted display 320. As shown in FIG. The head-mounted display 320 has, for example, ear hooks 322 on both sides of an eyeglass-shaped display 321 to be worn on the user's head. The display unit 321 includes any one of the display devices 10 according to the above embodiment and its modification.
(具体例3)
 図15は、テレビジョン装置330の外観の一例を示す。このテレビジョン装置330は、例えば、フロントパネル332およびフィルターガラス333を含む映像表示画面部331を有しており、この映像表示画面部331は、上記の一実施形態およびその変形例に係る表示装置10のうちいずれかを備える。
(Specific example 3)
FIG. 15 shows an example of the appearance of the television device 330. As shown in FIG. This television device 330 has, for example, a video display screen portion 331 including a front panel 332 and a filter glass 333. This video display screen portion 331 is a display device according to the above embodiment and its modification. 10.
 10  表示装置
 11  回路基板
 11a  基板
 11b  絶縁層
 11c  ビア
 11d  配線
 12  絶縁層
 12a  開口
 13  保護層
 13a  第1の保護層
 13a  第2の保護層
 14  平坦化層
 15  カラーフィルタ
 15FR  赤色フィルタ部
 15FG  緑色フィルタ部
 15FB  青色フィルタ部
 16  平坦化層
 17  レンズアレイ
 17a  レンズ
 20  発光素子
 21  第1の電極
 21e  導電層
 22  OLED層
 23  第2の電極
 R1  表示領域
 R2  周辺領域
 100R、100G、100B  サブ画素
 101  パッド部
 110、110a、110b  凹部
 111  底部
 112a  内周壁部
 112b  外周壁部
 210、210a、210b  凹部
 310  デジタルスチルカメラ(電子機器)
 320  ヘッドマウントディスプレイ(電子機器)
 330  テレビジョン装置(電子機器)
 D  正面方向
 D  水平方向
 D  垂直方向
REFERENCE SIGNS LIST 10 display device 11 circuit board 11a substrate 11b insulating layer 11c via 11d wiring 12 insulating layer 12a opening 13 protective layer 13a first protective layer 13a second protective layer 14 flattening layer 15 color filter 15FR red filter section 15FG green filter section 15FB blue filter section 16 planarization layer 17 lens array 17a lens 20 light emitting element 21 first electrode 21e conductive layer 22 OLED layer 23 second electrode R1 display area R2 peripheral area 100R, 100G, 100B sub-pixel 101 pad section 110, 110a, 110b recessed portion 111 bottom portion 112a inner peripheral wall portion 112b outer peripheral wall portion 210, 210a, 210b recessed portion 310 digital still camera (electronic device)
320 head mounted display (electronic equipment)
330 Television equipment (electronic equipment)
D Z front direction D X horizontal direction D Y vertical direction

Claims (14)

  1.  2次元配置された複数の発光素子と、
     複数の前記発光素子の下に設けられた下層と
     を備え、
     前記下層は、1つの前記発光素子毎に1つまたは複数の凹部を有し、
     前記発光素子は、前記凹部に倣って設けられ、
     前記下層が、1つの前記発光素子毎に1つの前記凹部を有する場合、平面視における前記発光素子の幾何中心を通り、かつ、表示装置の厚さ方向に平行な面で1つの前記凹部を切断して得られる断面形状が、複数の凹形状部を含む表示装置。
    a plurality of light emitting elements arranged two-dimensionally;
    and a lower layer provided under the plurality of light emitting elements,
    the lower layer has one or more recesses for each light emitting element;
    The light emitting element is provided along the recess,
    When the lower layer has one recess for each light emitting element, one recess is cut along a plane that passes through the geometric center of the light emitting element in plan view and is parallel to the thickness direction of the display device. A display device in which the cross-sectional shape obtained by the above includes a plurality of concave portions.
  2.  前記凹部は、前記平面視において環状を有する請求項1に記載の表示装置。 The display device according to claim 1, wherein the concave portion has an annular shape in plan view.
  3.  前記下層が、1つの前記発光素子毎に複数の前記凹部を有し、
     複数の前記凹部は、前記平面視において同心状を有する請求項1に記載の表示装置。
    the lower layer has a plurality of recesses for each light emitting element,
    2. The display device according to claim 1, wherein the plurality of recesses are concentric in plan view.
  4.  前記下層が、1つの前記発光素子毎に複数の前記凹部を有し、
     各前記凹部が、椀状を有する請求項1に記載の表示装置。
    the lower layer has a plurality of recesses for each light emitting element,
    2. The display device according to claim 1, wherein each recess has a bowl shape.
  5.  前記下層が、1つの前記発光素子毎に複数の前記凹部を有し、
     複数の前記凹部は、前記平面視において環状を有する第1の凹部と、前記第1の凹部の内側に設けられ、前記平面視においてドット状を有する第2の凹部とを含む請求項1に記載の表示装置。
    the lower layer has a plurality of recesses for each light emitting element,
    2. The plurality of recesses according to claim 1, wherein the plurality of recesses includes a first recess having an annular shape in plan view, and a second recess provided inside the first recess and having a dot shape in plan view. display device.
  6.  前記下層が、1つの前記発光素子毎に複数の前記凹部を有し、
     複数の前記凹部の幅が異なる請求項1に記載の表示装置。
    the lower layer has a plurality of recesses for each light emitting element,
    2. The display device according to claim 1, wherein the plurality of recesses have different widths.
  7.  前記下層が、1つの前記発光素子毎に複数の前記凹部を有し、
     複数の前記凹部の深さが異なる請求項1に記載の表示装置。
    the lower layer has a plurality of recesses for each light emitting element,
    2. The display device according to claim 1, wherein the plurality of recesses have different depths.
  8.  複数の前記発光素子を覆う保護層と、
     前記保護層上に設けられた平坦化層と
     をさらに備え、
     前記平坦化層は、カラーフィルタとしての機能を有する請求項1に記載の表示装置。
    a protective layer covering the plurality of light emitting elements;
    and a planarization layer provided on the protective layer,
    2. The display device according to claim 1, wherein the planarization layer functions as a color filter.
  9.  複数の前記発光素子を覆う保護層と、
     前記保護層上に設けられた平坦化層と、
     前記平坦化層上に設けられたカラーフィルタと
     をさらに備える請求項1に記載の表示装置。
    a protective layer covering the plurality of light emitting elements;
    a planarization layer provided on the protective layer;
    The display device of Claim 1, further comprising: a color filter provided on the planarization layer.
  10.  複数の前記発光素子の上方に設けられた複数のレンズをさらに備え、
     1つまたは複数の前記レンズが1つの前記発光素子毎に設けられている請求項1に記載の表示装置。
    Further comprising a plurality of lenses provided above the plurality of light emitting elements,
    2. The display device according to claim 1, wherein one or more lenses are provided for each light emitting element.
  11.  前記凹部および前記レンズは、前記平面視において同一の形状を有する請求項10に記載の表示装置。 11. The display device according to claim 10, wherein the concave portion and the lens have the same shape in plan view.
  12.  前記凹部および前記レンズは、前記平面視において環状を有する請求項10に記載の表示装置。 11. The display device according to claim 10, wherein the concave portion and the lens have an annular shape in plan view.
  13.  各前記発光素子は、第1の電極と、発光層を含む有機層と、第2の電極とを順に備える請求項1に記載の表示装置。 2. The display device according to claim 1, wherein each light-emitting element includes, in order, a first electrode, an organic layer including a light-emitting layer, and a second electrode.
  14.  請求項1に記載の表示装置を備える電子機器。 An electronic device comprising the display device according to claim 1.
PCT/JP2022/042722 2021-12-03 2022-11-17 Display device and electronic apparatus WO2023100672A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021196697 2021-12-03
JP2021-196697 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023100672A1 true WO2023100672A1 (en) 2023-06-08

Family

ID=86612101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042722 WO2023100672A1 (en) 2021-12-03 2022-11-17 Display device and electronic apparatus

Country Status (1)

Country Link
WO (1) WO2023100672A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353809A (en) * 1999-03-02 2000-12-19 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
WO2012060404A1 (en) * 2010-11-02 2012-05-10 王子製紙株式会社 Organic light emitting diode, method for manufacturing same, image display device, and illuminating device
JP2015507351A (en) * 2011-12-16 2015-03-05 サイモン フレイザー ユニバーシティー Organic optoelectronic device with surface plasmon structure and method of fabrication
JP2016009554A (en) * 2014-06-23 2016-01-18 王子ホールディングス株式会社 Substrate for semiconductor element, organic light-emitting diode element, or organic thin-film solar battery element
JP2017103231A (en) * 2015-11-30 2017-06-08 エルジー ディスプレイ カンパニー リミテッド Organic light emitting display device and method for manufacturing the same
JP2019133816A (en) * 2018-01-31 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 Light-emitting device and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353809A (en) * 1999-03-02 2000-12-19 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
WO2012060404A1 (en) * 2010-11-02 2012-05-10 王子製紙株式会社 Organic light emitting diode, method for manufacturing same, image display device, and illuminating device
JP2015507351A (en) * 2011-12-16 2015-03-05 サイモン フレイザー ユニバーシティー Organic optoelectronic device with surface plasmon structure and method of fabrication
JP2016009554A (en) * 2014-06-23 2016-01-18 王子ホールディングス株式会社 Substrate for semiconductor element, organic light-emitting diode element, or organic thin-film solar battery element
JP2017103231A (en) * 2015-11-30 2017-06-08 エルジー ディスプレイ カンパニー リミテッド Organic light emitting display device and method for manufacturing the same
JP2019133816A (en) * 2018-01-31 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 Light-emitting device and display device

Similar Documents

Publication Publication Date Title
US11871637B2 (en) Display device having lens corresponding to pixel, and electronic apparatus
JP6331276B2 (en) Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
WO2017018041A1 (en) Display device
US11552274B2 (en) Display device having pixel electrode and color filter, and electronic apparatus
KR20200132520A (en) Light emitting display apparatus
US20220328795A1 (en) Display device and electronic apparatus
CN110854126A (en) Light emitting display device
TWI628789B (en) Display device and method of manufacturing the same
CN112864188A (en) Light emitting display device
WO2022149554A1 (en) Display device and electronic apparatus
US20230284513A1 (en) Display device, method of manufacturing display device, and electronic apparatus using display device
JPWO2020145148A1 (en) Display device
JP2012248453A (en) Display device
CN116583895A (en) Display device and electronic apparatus
JP2020061377A (en) Electro-optical device, method of manufacturing the same, and electronic apparatus
JP7442558B2 (en) Display devices and electronic equipment
WO2023100672A1 (en) Display device and electronic apparatus
US11342538B2 (en) Organic EL display device having reflection transmission portion, and electronic apparatus
US11539034B2 (en) Display device and electronic apparatus having lenses disposed correspondingly to respective pixel electrodes
WO2023095662A1 (en) Display device and method for producing same, and electronic device
WO2023068227A1 (en) Display device and electronic equipment
WO2023112580A1 (en) Display device and electronic equipment
US20230155080A1 (en) Display device, light-emitting device and electronic apparatus
TWI811838B (en) Light emitting display apparatus
US20240032392A1 (en) Display device and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901105

Country of ref document: EP

Kind code of ref document: A1