WO2021200661A1 - Vehicular braking device - Google Patents

Vehicular braking device Download PDF

Info

Publication number
WO2021200661A1
WO2021200661A1 PCT/JP2021/012879 JP2021012879W WO2021200661A1 WO 2021200661 A1 WO2021200661 A1 WO 2021200661A1 JP 2021012879 W JP2021012879 W JP 2021012879W WO 2021200661 A1 WO2021200661 A1 WO 2021200661A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
hydraulic pressure
solenoid valve
pressure
unit
Prior art date
Application number
PCT/JP2021/012879
Other languages
French (fr)
Japanese (ja)
Inventor
和俊 余語
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2021200661A1 publication Critical patent/WO2021200661A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/04Arrangements of piping, valves in the piping, e.g. cut-off valves, couplings or air hoses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking

Definitions

  • the present invention relates to a vehicle braking device.
  • the vehicle braking device of US Pat. No. 9,205,821 includes a master cylinder unit, an electric cylinder, and an ESC actuator.
  • a master cut valve which is a normally open type solenoid valve, is arranged between the master cylinder unit, the electric cylinder, and the ESC actuator. In the by-wire mode, the master cut valve is closed, and the hydraulic pressure of the wheel cylinder (hereinafter, also referred to as “wheel pressure”) is adjusted by the electric cylinder or the ESC actuator.
  • the master cut valve includes a valve body arranged on the wheel cylinder side and a valve seat arranged on the master cylinder unit side.
  • master pressure hydraulic pressure in the master chamber of the master cylinder unit
  • the direction of the force applied to the valve body due to the differential pressure is the direction in which the valve body separates from the valve seat. That is, it is in the valve opening direction.
  • the direction of the force applied to the valve body by the differential pressure is the direction in which the valve body approaches the valve seat, that is, the valve closing direction.
  • the master cut valve needs to be configured so that it can be opened even if the valve is closed and the wheel pressure is higher than the master pressure (for example, even if the supply current becomes 0). be. This is because if the master cut valve cannot be opened while the wheel pressure is high, the wheel pressure cannot be reduced and the braking force cannot be reduced.
  • the spring force of the spring that urges the valve body toward the valve seat. Needs to be large.
  • the electromagnetic force required for valve closing is a force larger than the sum of the force applied to the valve body by the master pressure on the valve opening side and the spring force.
  • the electromagnetic force required for valve closing it is necessary to increase the required current value and increase the size of the coil. From the viewpoint of power saving and miniaturization of the coil, in order to reduce the electromagnetic force required for valve closing, the flow path cross-sectional area of the master cut valve should be reduced, and the force and spring force that the master pressure presses against the valve body should be reduced. It is possible to make it smaller.
  • the flow path cross-sectional area of the master cut valve is small, the resistance when the fluid passes through the master cut valve increases, which leads to a decrease in boost response when the wheel cylinder is pressurized.
  • the responsiveness of the ESC actuator when sucking fluid through the master cut valve is reduced.
  • An object of the present invention is to provide a vehicle braking device capable of downsizing the coil and improving the responsiveness when a hydraulic pressure generating portion such as a master cylinder unit boosts the wheel cylinder.
  • a hydraulic pressure output unit such as an ESC actuator
  • the responsiveness when the hydraulic pressure output unit sucks the brake fluid through the valve unit can be improved. It is to provide a braking device for a vehicle.
  • the vehicle braking device of the present invention includes a first hydraulic pressure generating portion that generates hydraulic pressure in a wheel cylinder via a first liquid passage, and the wheel cylinder and the first hydraulic pressure generating portion in the first liquid passage. It is provided with a valve unit provided between the two.
  • the valve unit has a first solenoid valve and a second solenoid valve.
  • the first solenoid valve has a first valve body and a first valve seat, and the direction from the wheel cylinder toward the first hydraulic pressure generating portion is such that the first valve body is seated on the first valve seat. It is a normally open type solenoid valve that opens in the non-energized state, which is the same direction as one direction.
  • the second solenoid valve is connected in parallel to the first solenoid valve, has a second valve body and a second valve seat, and the direction from the wheel cylinder to the first hydraulic pressure generating portion is the second valve.
  • a solenoid valve whose body is seated in the second valve seat in the direction opposite to the second direction.
  • the hydraulic pressure on the wheel cylinder side of the valve unit when the hydraulic pressure on the wheel cylinder side of the valve unit is higher than the hydraulic pressure on the first hydraulic pressure generating portion side, the hydraulic pressure pushes the valve body of the second solenoid valve toward the valve opening side. , The valve opening is urged.
  • the hydraulic pressure on the first hydraulic pressure generating part side of the valve unit is higher than the hydraulic pressure on the wheel cylinder side, the hydraulic pressure pushes the valve body of the first solenoid valve toward the valve opening side, and the valve opening is promoted. ..
  • the hydraulic pressure on the first hydraulic pressure generating portion side is high or low
  • at least one of the first solenoid valve and the second solenoid valve is in a non-energized state.
  • the hydraulic pressure on the first hydraulic pressure generating part side and the hydraulic pressure on the wheel cylinder side of the valve unit become the same, and the other solenoid valve also opens by spring force. , Both solenoid valves open.
  • the hydraulic pressure generated by the first hydraulic pressure generating part can be supplied to the wheel cylinder via the open first solenoid valve.
  • the hydraulic pressure of the wheel cylinder When the hydraulic pressure of the wheel cylinder is high, the hydraulic pressure of the wheel cylinder can be reduced via the second solenoid valve opened by the hydraulic pressure. Therefore, it is not necessary to design one solenoid valve in consideration of the situation where the first hydraulic pressure generating portion generates the hydraulic pressure in the wheel cylinder and the situation where the wheel pressure is reduced through the solenoid valve.
  • the first solenoid valve does not need to reduce the flow path area, and does not need to increase the current or increase the size of the coil. Therefore, according to the present invention, it is possible to suppress an increase in the size of the coil and improve the responsiveness of the first hydraulic pressure generating portion. Further, for example, when a hydraulic pressure output unit such as an ESC actuator is provided between the valve unit and the wheel cylinder, the responsiveness when the hydraulic pressure output unit sucks the brake fluid through the valve unit is also improved. can.
  • the vehicle braking device 1 of the first embodiment includes an electric cylinder (corresponding to a “second hydraulic pressure generating portion”) 2, an actuator 3, and a master cylinder unit (“first hydraulic pressure”). 4), the first liquid passage 51, the second liquid passage 52, the third liquid passage 53, the brake fluid supply passage 54, the communication control valve 61, and the first solenoid valve 62.
  • a second solenoid valve 63, a first brake ECU 901, a second brake ECU 902, a power supply device 903, and a reservoir 45 are provided.
  • the first solenoid valve 62 and the second solenoid valve 63 constitute a valve unit 60.
  • the valve unit 60 functions as a master cut valve.
  • the function of the master cut valve is a function of hydraulically shutting off the master cylinder unit 4 and the wheel cylinder.
  • the electric cylinder 2, the master cylinder unit 4, the valve unit 60 and the like are included in the upstream unit 11.
  • the first brake ECU 901 mainly controls the upstream unit 11.
  • the second brake ECU 902 mainly controls the actuator 3. Note that FIG. 1 shows a non-energized state of the vehicle braking device 1.
  • the electric cylinder 2 is a pressurizing unit capable of supplying the first brake pressure to the first wheel cylinders 81 and 82 and the second wheel cylinders 83 and 84.
  • the first wheel cylinders 81 and 82 are wheel cylinders of the first system
  • the second wheel cylinders 83 and 84 are wheel cylinders of the second system.
  • the first wheel cylinder 81 is provided on the right front wheel
  • the first wheel cylinder 82 is provided on the left rear wheel
  • the second wheel cylinder 83 is provided on the left front wheel
  • the second wheel cylinder 84 is on the right. It is provided on the rear wheel. That is, the arrangement of the system of the first embodiment is a cross pipe (X pipe).
  • the electric cylinder 2 includes a cylinder 21, an electric motor 22, a piston 23, an output chamber 24, and an urging member 25.
  • the electric motor 22 is connected to the piston 23 via a linear motion mechanism 22a that converts a rotary motion into a linear motion.
  • the electric cylinder 2 is a single type electric cylinder in which a single output chamber 24 is formed in the cylinder 21.
  • the piston 23 slides in the cylinder 21 in the axial direction by driving the electric motor 22.
  • the piston 23 is formed in a bottomed cylindrical shape that opens on one side in the axial direction and has a bottom surface on the other side in the axial direction. That is, the piston 23 includes a cylindrical portion that forms an opening and a cylindrical portion that forms a bottom surface (pressure receiving surface).
  • the output chamber 24 is partitioned by the cylinder 21 and the piston 23, and the volume changes due to the movement of the piston 23.
  • the output chamber 24 is connected to the reservoir 45 and the actuator 3.
  • the piston 23 slides in a sliding region composed of a communication region for communicating between the output chamber 24 and the reservoir 45 and a blocking region for blocking between the output chamber 24 and the reservoir 45.
  • the communication area includes the initial position of the piston 23 that maximizes the volume of the output chamber 24.
  • the blocking region is larger than the communication region in the axial direction.
  • the urging member 25 is a spring that is arranged in the output chamber 24 and urges the piston 23 to the other side in the axial direction (toward the initial position).
  • the actuator 3 has a first hydraulic pressure output unit (corresponding to a “hydraulic pressure output unit”) 31 capable of adjusting the pressure of the first wheel cylinders 81 and 82 and a second liquid capable of adjusting the pressure of the second wheel cylinders 83 and 84. It is a pressure adjusting unit having a pressure output unit 32.
  • the first hydraulic pressure output unit 31 generates the first wheel cylinders 81 and 82 by generating a differential pressure between the hydraulic pressure input from the first liquid passage 51 and the hydraulic pressure of the first wheel cylinders 81 and 82. It is configured to pressurize.
  • the second hydraulic pressure output unit 32 generates a differential pressure between the hydraulic pressure input from the second hydraulic passage 52 and the hydraulic pressure of the second wheel cylinders 83 and 84 to generate the second wheel cylinders 83 and 84. It is configured to pressurize.
  • the actuator 3 is a so-called ESC actuator, and can independently regulate the hydraulic pressure of each wheel cylinder 81 to 84.
  • the actuator 3 executes, for example, anti-skid control (also referred to as ABS control), electronic stability control (ESC), traction control, or the like according to the control of the second brake ECU 902.
  • the first hydraulic pressure output unit 31 and the second hydraulic pressure output unit 32 are independent of each other on the hydraulic pressure circuit of the actuator 3. The configuration of the actuator 3 will be described later.
  • the master cylinder unit 4 is a pressurizing unit capable of supplying master pressure to the first hydraulic pressure output unit 31 via the first liquid passage 51. More specifically, the master cylinder unit 4 is connected to the reservoir 45 and mechanically supplies the fluid to the first hydraulic pressure output unit 31 of the actuator 3 according to the operating amount (stroke and / or pedaling force) of the brake operating member Z. It is a unit to do.
  • the master cylinder unit 4 is configured to be able to pressurize the first wheel cylinders 81 and 82 via the first hydraulic pressure output unit 31.
  • the master cylinder unit 4 includes a master cylinder 41 and a master piston 42.
  • the master cylinder 41 is a bottomed cylindrical member and includes an input port 411 and an output port 412.
  • the master piston 42 is a piston member that slides in the master cylinder 41 according to the amount of operation of the brake operating member Z.
  • the master piston 42 is formed in a bottomed cylindrical shape that opens on one side in the axial direction and has a bottom surface on the other side in the axial direction.
  • a single master chamber 41a is formed by the master piston 42.
  • the volume of the master chamber 41a fluctuates due to the movement of the master piston 42.
  • the master piston 42 moves to one side in the axial direction, the volume of the master chamber 41a decreases, and the hydraulic pressure of the master chamber 41a, that is, the master pressure increases.
  • the master chamber 41a is provided with an urging member 41b that urges the master piston 42 toward the initial position (on the other side in the axial direction).
  • the urging member 41b returns the master piston 42 to the initial position.
  • the output port 412 communicates the master chamber 41a with the first liquid passage 51.
  • the input port 411 communicates the master chamber 41a with the reservoir 45 via a through hole 421 formed in the cylindrical portion of the master piston 42.
  • the input port 411 and the through hole 421 overlap, and the master chamber 41a and the reservoir 45 communicate with each other.
  • the master piston 42 moves from the initial position to one side in the axial direction by a predetermined amount (overlap distance)
  • the connection between the master chamber 41a and the reservoir 45 is cut off.
  • a stroke simulator 43 and a simulator cut valve 44 are connected to the master cylinder unit 4.
  • the stroke simulator 43 is a device that generates a reaction force (load) with respect to the operation of the brake operating member Z.
  • the stroke simulator 43 is composed of, for example, a cylinder, a piston, and an urging member.
  • the stroke simulator 43 and the output port 412 of the master cylinder 41 are connected by a liquid passage 43a.
  • the simulator cut valve 44 is a solenoid valve provided in the liquid passage 43a.
  • the first liquid passage 51 connects the master cylinder unit 4 and the first hydraulic pressure output unit 31 of the actuator 3.
  • the second liquid passage 52 connects the electric cylinder 2 and the second hydraulic pressure output unit 32.
  • the third liquid passage 53 connects the first liquid passage 51 and the second liquid passage 52.
  • the valve unit 60 is provided in the first liquid passage 51.
  • the master cylinder unit 4 is configured to be able to supply fluid via the first liquid passage 51 and the valve unit 60.
  • the first hydraulic pressure output unit 31 is configured to suck fluid from the first liquid passage 51 when pressurizing the first wheel cylinders 81 and 82.
  • the communication control valve 61 is a normally closed type solenoid valve provided in the third liquid passage 53.
  • the communication control valve 61 permits or prohibits the supply of fluid to the first hydraulic pressure output unit 31 by the electric cylinder 2.
  • the communication control valve 61 has a valve body on the first wheel cylinder 81, 82 side (first system side) of the valve seat in order to prevent backflow of fluid from the first wheel cylinders 81, 82 to the electric cylinder 2 when the valve is closed. ) Is placed.
  • the brake fluid supply path 54 connects the reservoir 45 and the input port 211 of the electric cylinder 2.
  • the reservoir 45 stores fluid, and the internal pressure is maintained at atmospheric pressure. Further, the inside of the reservoir 45 is divided into two rooms 451 and 452 in which fluid is stored. A master cylinder unit 4 is connected to one room 451 of the reservoir 45, and an electric cylinder 2 is connected to the other room 452 via a brake fluid supply path 54.
  • the reservoir 45 may consist of two separate reservoirs instead of the two chambers.
  • the first hydraulic pressure output unit 31 of the actuator 3 includes a liquid passage 311, a differential pressure control valve 312, a holding valve 313, a pressure reducing valve 314, a pump 315, an electric motor 316, and the like. It includes a reservoir 317, a perfusion fluid passage 317a, and a pressure sensor 75.
  • the liquid passage 311 connects the first liquid passage 51 and the first wheel cylinder 81.
  • a pressure sensor 75 is provided in the liquid passage 311.
  • the differential pressure control valve 312 is a normally open type linear solenoid valve for generating a differential pressure between upstream and downstream.
  • a check valve 312a that allows only the flow of brake fluid from the first liquid passage 51 to the first wheel cylinder 81 is provided in parallel with the differential pressure control valve 312.
  • the holding valve 313 is a normally open type solenoid valve provided between the differential pressure control valve 312 and the first wheel cylinder 81 in the liquid passage 311. Further, a check valve 313a is provided in parallel with the holding valve 313.
  • the pressure reducing valve 314 is a normally closed type solenoid valve provided in the pressure reducing liquid passage 314a.
  • the decompression liquid passage 314a connects the portion of the liquid passage 311 between the holding valve 313 and the first wheel cylinder 81 and the reservoir 317.
  • the pump 315 is operated by the driving force of the electric motor 316.
  • the pump 315 is provided in the pump liquid passage 315a.
  • the pump liquid passage 315a connects a portion of the liquid passage 311 between the differential pressure control valve 312 and the holding valve 313 (hereinafter referred to as “branch portion X”) and the reservoir 317.
  • branch portion X a portion of the liquid passage 311 between the differential pressure control valve 312 and the holding valve 313
  • Reservoir 317 is a pressure regulating reservoir.
  • the reflux liquid passage 317a connects the first liquid passage 51 and the reservoir 317.
  • the brake fluid in the reservoir 317 is preferentially sucked into the reservoir 317 by the operation of the pump 315, and when the brake fluid in the reservoir 317 decreases, the valve is opened and the brake is applied from the first fluid passage 51 via the reflux fluid passage 317a.
  • the liquid is configured to be inhaled.
  • the second brake ECU 902 When the first wheel cylinder 81 is pressurized by the actuator 3, the second brake ECU 902 responds to the target differential pressure (hydraulic pressure of the first wheel cylinder 81> hydraulic pressure of the first liquid passage 51) in the differential pressure control valve 312. A control current is applied to close the differential pressure control valve 312. At this time, the holding valve 313 is open and the pressure reducing valve 314 is closed. Further, when the pump 315 is operated, the fluid is supplied from the first liquid passage 51 and the reservoir 317 to the branch portion X. As a result, the first wheel cylinder 81 is pressurized.
  • the differential pressure control valve When the difference between the hydraulic pressure of the first wheel cylinder 81 (hereinafter, also referred to as “wheel pressure”) and the hydraulic pressure of the first liquid passage 51 is about to exceed the target differential pressure, the differential pressure control valve is affected by the magnitude of the force. 312 opens the valve.
  • the wheel pressure after pressurization is determined by the hydraulic pressure of the first liquid passage 51, that is, the basal hydraulic pressure, and the target differential pressure. In this way, the actuator 3 pressurizes the wheel cylinders 81 to 84 by generating a differential pressure between the basic hydraulic pressure, which is the output pressure of the electric cylinder 2, and the wheel pressure.
  • the second brake ECU 902 When the wheel pressure is reduced by the actuator 3 by the actuator 3 by anti-skid control or the like, the second brake ECU 902 operates the pump 315 with the pressure reducing valve 314 opened and the holding valve 313 closed to operate the pump 315 in the wheel cylinder 81. Pump back the brake fluid.
  • the second brake ECU 902 closes the holding valve 313 and the pressure reducing valve 314.
  • the second brake ECU 902 opens the differential pressure control valve 312 and the holding valve 313, and closes the pressure reducing valve 314.
  • the vehicle braking device 1 of the first embodiment includes a master cylinder unit 4 that generates hydraulic pressure in the first wheel cylinder via the first liquid passage 51 and a first wheel cylinder in the first liquid passage 51. It is provided with a valve unit 60 provided between the master cylinder unit 4 and the master cylinder unit 4. Further, the vehicle braking device 1 is provided between the valve unit 60 and the first wheel cylinders 81 and 82 in the first liquid passage 51, and sucks fluid from the master cylinder unit 4 via the valve unit 60 to suck the liquid. A first hydraulic pressure output unit 31 that outputs pressure is provided.
  • the first brake ECU 901 and the second brake ECU 902 are electronic control units including a CPU and a memory, respectively.
  • Each brake ECU 901, 902 includes one or more processors that perform various controls.
  • the first brake ECU 901 and the second brake ECU 902 are separate ECUs, and are connected to each other so that information (control information, etc.) can be communicated with each other.
  • the first brake ECU 901 is controllably connected to the electric cylinder 2 and the solenoid valves 61, 62, 63, 44, respectively.
  • the second brake ECU 902 is controllably connected to the actuator 3.
  • the brake ECUs 901 and 902 execute various controls based on the detection results of the various sensors.
  • the vehicle braking device 1 is provided with, for example, a stroke sensor 71, pressure sensors 72, 73, 75, a wheel speed sensor (not shown), an acceleration sensor (not shown), and the like.
  • the stroke sensor 71 detects the stroke of the brake operating member Z.
  • the vehicle braking device 1 is provided with two stroke sensors 71 so as to have a one-to-one correspondence with the brake ECUs 901 and 902.
  • the brake ECUs 901 and 902 acquire stroke information from the corresponding stroke sensors 71, respectively.
  • the pressure sensor 72 is a sensor that detects the master pressure, and is provided in, for example, the first liquid passage 51.
  • the pressure sensor 73 is a sensor that detects the output pressure (first brake pressure) of the electric cylinder 2, and is provided in, for example, the second liquid passage 52.
  • the pressure sensor 75 detects the input hydraulic pressure from the first liquid passage 51 to the first hydraulic pressure output unit 31. The detected values of the various sensors may be transmitted to both brake ECUs 901 and 902.
  • the first brake ECU 901 receives the detection results of the stroke sensor 71 and the pressure sensors 72 and 73, and controls the electric cylinder 2 and the solenoid valves 61, 62, 63 and 44 based on the detection results.
  • the first brake ECU 901 can calculate each wheel pressure based on the detection results of the pressure sensors 72 and 73 and the control state of the actuator 3.
  • the second brake ECU 902 receives the detection results of the stroke sensor 71 and the pressure sensor 75, and controls the actuator 3 based on the detection results.
  • the brake ECUs 901 and 902 can calculate each wheel pressure based on the control state of the pressure sensor 75 and the actuator 3.
  • the second brake ECU 902 sets a target value of the differential pressure between the input pressure and the hydraulic pressures of the first wheel cylinders 81 and 82, and a target value of the differential pressure between the input pressure and the hydraulic pressures of the second wheel cylinders 83 and 84. do.
  • the power supply device 903 is a device that supplies electric power to the brake ECUs 901 and 902.
  • the power supply unit 903 includes a battery.
  • the power supply device 903 is connected to both brake ECUs 901 and 902. That is, in the first embodiment, power is supplied from the power supply device 903 common to the two brake ECUs 901 and 902.
  • the first brake ECU 901 executes normal control depending on the situation.
  • the communication control valve 61 and the simulator cut valve 44 are opened, the first solenoid valve 62 and the second solenoid valve 63 are closed, and the electric cylinder 2 is used to open the first wheel cylinders 81, 82 and the second wheel.
  • the communication control valve 61 is opened and the valve unit 60 is closed, and at least one of the electric cylinder 2 and the actuator 3 is used to apply the hydraulic pressure of the first wheel cylinders 81 and 82 and the second wheel cylinders 83 and 84. It is a control (control mode) to be adjusted. In normal control, the simulator cut valve 44 is opened.
  • the master cylinder unit 4 and the wheel cylinders 81 to 84 are hydraulically separated to form a so-called by-wire mode in which the wheel pressure is adjusted by controlling the brake ECUs 901 and 902.
  • the first brake ECU 901 is based on the data detected by the stroke sensor 71 and the pressure sensor 72 in a state where the valve unit 60 is closed and the simulator cut valve 44 and the communication control valve 61 are opened. Drive the electric cylinder 2.
  • the first brake ECU 901 sets a target deceleration and a target wheel pressure based on the detection results of the stroke sensor 71 and the pressure sensor 72, and controls the electric cylinder 2 so that the actual wheel pressure approaches the target wheel pressure.
  • the second brake ECU 902 operates the actuator 3 when executing anti-skid control or the like.
  • the valve unit 60 of the present embodiment is provided in the first liquid passage 51, and includes a normally open type first solenoid valve 62 and a second solenoid valve 63, respectively.
  • a normally open type solenoid valve is a solenoid valve that opens in a non-energized state.
  • the first solenoid valve 62 includes a first valve body 621 arranged on the first wheel cylinder 81, 82 side, a first valve seat 622 arranged on the reservoir 45 side, and a first penetration. It has a hole 623 and. The first through hole 623 is formed in the first valve seat 622 so that fluid can be circulated by opening the first solenoid valve 62.
  • the first solenoid valve 62 is closed when the first valve body 621 abuts on the first valve seat 622 and closes the first through hole 623.
  • the solenoid valve constituting the valve unit is represented by a conceptual diagram.
  • the second solenoid valve 63 includes a second solenoid valve 631 arranged in parallel with the first solenoid valve 62 and arranged on the reservoir 45 side, and a second valve seat 632 arranged on the first wheel cylinders 81 and 82 sides. , And a second through hole 633.
  • the first liquid passage 51 is branched into a liquid passage 511 in which the first solenoid valve 62 is arranged and a liquid passage 512 in which the second solenoid valve 63 is arranged.
  • the second through hole 633 is formed in the second valve seat 632 so that fluid can be circulated by opening the second solenoid valve 63.
  • the second solenoid valve 63 is closed when the second valve body 631 comes into contact with the second valve seat 632 and closes the second through hole 633.
  • the first solenoid valve 62 has the first valve body 621 and the first valve seat 622, and the first valve body 621 is the first valve in the direction from the first wheel cylinders 81 and 82 toward the reservoir 45. It is configured to be in the same direction as the first direction in which the seat 622 is seated.
  • the second solenoid valve 63 is a solenoid valve connected in parallel to the first solenoid valve 62, has a second valve body 631 and a second valve seat 632, and is connected to the reservoir 45 from the first wheel cylinders 81 and 82.
  • the direction in which the second valve body 631 is seated is opposite to the second direction in which the second valve body 631 is seated on the second valve seat 632.
  • the solenoid valve 600 includes a valve body 601, a valve seat 602, a through hole 603, a plunger 604, an urging member 605, and a coil 606.
  • the valve body 601 is arranged so as to face the valve seat 602.
  • the valve seat 602 is formed with a through hole 603 that connects the valve body chamber 607 and the external flow path C1.
  • the valve body chamber 607 accommodates the valve body 601 and the urging member 605 and communicates with the external flow path C2.
  • the solenoid valve 600 is closed when the valve body 601 is seated (contacted) with the valve seat 602 and closes the through hole 603, and the valve body 601 moves so that the through hole 603 and the valve body chamber 607 communicate with each other. It opens the valve.
  • the flow path of the solenoid valve 600 is formed by the through hole 603 and the valve body chamber 607.
  • the valve body 601 is provided at the tip of the plunger 604.
  • the valve body 601 and the plunger 604 are urged by the urging member (spring) 605 in a direction away from the valve seat 602.
  • a coil 606 is arranged on the outer peripheral side of the plunger 604. When a current (control current) is supplied to the coil 606, an electromagnetic force is generated in the direction in which the valve body 601 approaches the valve seat 602.
  • the solenoid valve 600 communicates one external flow path C1 with the other external flow path C2 via the through hole 603 and the valve body chamber 607.
  • the valve body 601 is opened apart from the valve seat 602 by the urging member 605 in the non-energized state, and the valve body 601 is opened by the electromagnetic force in the state where the control current equal to or higher than the predetermined current value is supplied. It abuts on 602 and closes the valve.
  • the hydraulic pressure of the valve body chamber 607 is the same as the hydraulic pressure of the external flow path C2, and the hydraulic pressure on the back side of the plunger 604 is also the same as the hydraulic pressure of the external flow path C2. That is, the hydraulic pressure of the external flow path C2 presses the valve body 601 in the direction of approaching the valve seat 602. On the other hand, the hydraulic pressure of the external flow path C1 presses the valve body 601 in the direction away from the valve seat 602 through the through hole 603. This pressing force increases as the cross-sectional area of the flow path of the through hole 603 increases.
  • the flow path cross-sectional area is the area of the cross section obtained by cutting the flow path in a plane orthogonal to the extension direction (fluid flow direction) of the flow path.
  • the pressing force in the direction of separating the valve body 601 from the valve seat 602 increases not according to the cross-sectional area of the flow path but according to the projected area of the valve body 601 in contact with the valve seat 602. This can be said to be the seal area when the valve body 601 is seated on the valve seat 602.
  • the pressing force will be described as changing according to the cross-sectional area.
  • the valve body 601 When the hydraulic pressure of the external flow path C1 is higher than the hydraulic pressure of the external flow path C2, the valve body 601 receives a force on the valve opening side due to the differential pressure. On the contrary, when the hydraulic pressure of the external flow path C2 is higher than the hydraulic pressure of the external flow path C1, the valve body 601 receives a force on the valve closing side due to the differential pressure.
  • the direction from the valve body 601 to the valve seat 602 is also referred to as a sealing direction.
  • the sealing direction can also be said to be the self-sealing direction.
  • valve body 601 corresponds to the first valve body 621 and the second valve body 631
  • valve seat 602 corresponds to the first valve seat 622 and the second valve seat 632
  • the through hole 603 corresponds to the first through hole 623 and the second through hole 633.
  • the hydraulic pressure of the external flow path C1 corresponds to the master pressure
  • the hydraulic pressure of the external flow path C2 is in a state where the communication control valve 61 is open and the electric cylinder 2 is generating the hydraulic pressure.
  • the hydraulic pressure of the external flow path C1 corresponds to the output hydraulic pressure of the electric cylinder 2 and is an external flow.
  • the hydraulic pressure of the path C2 corresponds to the master pressure.
  • the flow path cross-sectional area of the first through hole 623 is larger than the flow path cross-sectional area of the second through hole 633.
  • the first differential pressure at which the first solenoid valve 62 can maintain the closed state by the current supply is smaller than the second differential pressure at which the second solenoid valve 63 can maintain the closed state by the current supply.
  • the first differential pressure is the differential pressure between the first wheel cylinders 81 and 82 and the master pressure when the master pressure is higher than the hydraulic pressure of the first wheel cylinders 81 and 82.
  • a vehicle braking device 1 is provided in a vehicle provided with a regenerative braking device capable of applying a regenerative braking force.
  • the brake operating member Z When the brake operating member Z is operated with the first solenoid valve 62 and the second solenoid valve 63 closed and the brake is braked only by the regenerative braking force, the master pressure becomes larger than 0, but the wheel pressure becomes higher. It remains 0. In such a situation, the master pressure will be higher than the wheel pressure. Therefore, the first differential pressure (difference pressure that can maintain the closed valve) of the first solenoid valve 62 is set to a value (for example, 5 MPa) corresponding to the maximum value of the master pressure assumed by the driver's depression of the brake operating member Z. It suffices if it is done.
  • the second differential pressure is the differential pressure between the hydraulic pressure of the first wheel cylinders 81 and 82 and the master pressure when the hydraulic pressure of the first wheel cylinders 81 and 82 is higher than the master pressure.
  • the situation where the wheel pressure becomes larger than the master pressure is, for example, the situation where the wheel pressure is pressurized in the by-wire mode (normal control), the situation where the wheel pressure is pressurized without the driver's braking operation such as automatic brake control, etc. Can be mentioned. Therefore, the second solenoid valve 63 (the differential pressure that can maintain the closed valve) is the second solenoid valve 63 in a state where the master pressure is 0 and the pressure is maximized by using the electric cylinder 2 and the actuator 3.
  • the vehicle braking device 1 is configured to be able to generate a hydraulic pressure higher than the hydraulic pressure that can be generated by the master cylinder unit 4 in the first wheel cylinders 81 and 82, and the valve unit 60 in the first liquid passage 51.
  • An electric cylinder 2 connected to the portion between the first wheel cylinders 81 and 82 via a second liquid passage 52 is provided.
  • the second differential pressure at which the second solenoid valve 63 can maintain the closed state by the current supply is larger than the first differential pressure at which the first solenoid valve 62 can maintain the closed state by the current supply, and is electrically operated.
  • the value is equal to or higher than the hydraulic pressure that the cylinder 2 can generate.
  • the second solenoid valve 63 is opened when the wheel pressure is higher than the master pressure without increasing the spring force of the first solenoid valve 62. That is, even if the flow path cross-sectional area of the first solenoid valve 62 is increased, the spring force can be reduced, so that an increase in the electromagnetic force required for closing the valve can be suppressed. That is, according to the first embodiment, it is possible to achieve both miniaturization of the coil (606) and an increase in the cross-sectional area of the flow path.
  • the second brake ECU 902 controls the actuator 3 to pressurize the wheel cylinders 81 to 84. That is, the first hydraulic pressure output unit 31 sucks the fluid from the master cylinder unit 4 via the valve unit 60.
  • the flow path cross-sectional area of the first through hole 623 of the first solenoid valve 62 can be increased, so that the boost response of the wheel cylinder by the master pressure can be increased. Improves sex. Further, the fluid suction by the actuator 3 through the valve unit 60 becomes smooth. Therefore, the pressurization by the first hydraulic pressure output unit 31 becomes smooth, and the responsiveness of the first hydraulic pressure output unit 31 is improved. As described above, according to the first embodiment, it is possible to reduce the size of the coil and improve the responsiveness of pressurization by the master cylinder unit 4.
  • the first solenoid valve 62 and the second solenoid valve 63 when one of the first solenoid valve 62 and the second solenoid valve 63 is opened in the non-energized state, the differential pressure between the input and output of the valve unit 60 becomes 0, and the first solenoid valve 62 and the second solenoid valve become zero.
  • the other of 63 is also opened. That is, according to the first embodiment, the first solenoid valve 62 and the second solenoid valve 63 may be configured to be opened when the differential pressure is 0, and the first solenoid valve 62 and the second solenoid valve 63 are attached.
  • the spring force of the force member (605) can be reduced.
  • the master cylinder unit 40 of the second embodiment is a tandem type master cylinder unit having two master chambers 410a and 410b.
  • the master cylinder unit 40 includes a master cylinder 410, a first master piston 401, a second master piston 402, and urging members 403 and 404.
  • the master cylinder 410 internally includes a first master chamber 410a partitioned by the first master piston 401, and a second master chamber 410b partitioned by the first master piston 401 and the second master piston 402. .
  • the urging member 403 is arranged in the first master chamber 410a and urges the first master piston 401 toward the initial position.
  • the urging member 404 is arranged in the second master chamber 410b and urges the second master piston 402 toward the initial position.
  • the master cylinder unit 40 is configured such that the first master chamber 410a and the second master chamber 410b have the same pressure.
  • the communication between the reservoir 45 and the master chambers 410a and 410b is cut off when the master pistons 401 and 402 advance by a predetermined amount from the initial position.
  • the first master chamber 410a is connected to the first liquid passage 51.
  • the communication control valve 61 is a normally closed solenoid valve having the same purpose and function as the communication control valve 61 of the first embodiment.
  • the communication control valve 61 is provided in the third liquid passage 53, and permits / prohibits the supply of fluid from the electric cylinder 2 to the first hydraulic pressure output unit 31.
  • the first master chamber 410a is connected to the first hydraulic pressure output unit 31 via the first liquid passage 51.
  • the second master chamber 410b is connected to the second hydraulic pressure output unit 32 via the liquid passage 55, the valve unit 60b, and the second liquid passage 52.
  • the liquid passage 55 connects the second master chamber 410b and the second liquid passage 52.
  • the second hydraulic pressure output unit 32 is configured to suck in fluid from the liquid passage 55 and the second liquid passage 52 when pressurizing the second wheel cylinders 83 and 84.
  • the vehicle braking device 10 of the second embodiment includes two valve units 60 and 60b.
  • One valve unit 60 is provided in the first liquid passage 51 as in the first embodiment, and includes the first solenoid valve 62 and the second solenoid valve 63.
  • the other valve unit 60b is provided in the liquid passage 55 and includes a first solenoid valve 62b and a second solenoid valve 63b.
  • the first solenoid valve 62b and the second solenoid valve 63b are normally open type solenoid valves.
  • the first solenoid valve 62b has a first valve body 621b arranged on the second wheel cylinders 83 and 84 sides and a first valve seat 622b arranged on the master cylinder 410 side. That is, the sealing direction (first direction) of the first solenoid valve 62b is the same as the direction from the second wheel cylinders 83 and 84 toward the master cylinder unit 40.
  • the second solenoid valve 63b is arranged in parallel with the first solenoid valve 62b.
  • the second solenoid valve 63b has a second valve body 631b arranged on the master cylinder 410 side and a second valve seat 632b arranged on the second wheel cylinders 83 and 84 side.
  • the sealing direction (second direction) of the second solenoid valve 63b is opposite to the direction from the second wheel cylinders 83 and 84 toward the master cylinder unit 40.
  • the sealing direction of the first solenoid valve 62b and the sealing direction of the second solenoid valve 63b are opposite to each other, as in the valve unit 60.
  • the valve unit 60 and the valve unit 60b exert the same effect as that of the first embodiment.
  • the reservoir 45 is divided into three rooms, the room 451 is connected to the second master room 410b, the room 452 is connected to the electric cylinder 2, and the room 453 is connected to the first master room 410a.
  • the present invention is not limited to the above embodiment.
  • the present invention can also be applied to, for example, a vehicle including a regenerative braking device (hybrid vehicle or electric vehicle), a vehicle that executes automatic braking control, or an autonomous driving vehicle.
  • the system may be arranged in front and rear piping such that the wheel cylinder of the first system is provided on the front wheels and the wheel cylinder of the second system is provided on the rear wheels.
  • the first solenoid valve 62 and the second solenoid valve 63 may be normally closed type solenoid valves.
  • a pressurizing unit capable of generating hydraulic pressure according to the driving of the motor may be provided instead of the master cylinder unit 4, a pressurizing unit capable of generating hydraulic pressure according to the driving of the motor may be provided.
  • the present invention can be applied even when the electric cylinder 2 is not collapsed.
  • the present invention is also applied to a case where a vehicle braking device configured to operate either the electric cylinder 2 or the actuator 3 according to a required braking force operates the actuator 3 without operating the electric cylinder 2. Can be used.
  • the generating part corresponding to the first hydraulic pressure generating part may be other than the master cylinder units 4 and 40.
  • the generating portion corresponding to the first hydraulic pressure generating portion may be an electric cylinder.
  • a plurality of generating units may be provided instead of the master cylinder units 4 and 40.
  • it may be composed of a plurality of electric cylinders.
  • a plurality of electric cylinders may be arranged in parallel.
  • one solenoid valve may be provided in each of the plurality of liquid passages connecting the plurality of electric cylinders and the wheel cylinders.
  • the valve unit is composed of a plurality of solenoid valves provided in the plurality of liquid passages.
  • the second solenoid valve 63 may be a normally closed solenoid valve that closes in a non-energized state.
  • the second solenoid valve 63 is a normally closed type solenoid valve.
  • both solenoid valves are de-energized so that the wheel pressure becomes the first withstand voltage. If it is smaller than, the first solenoid valve 62 opens, so that the wheel pressure can be reduced.
  • the first withstand voltage is a differential pressure (hydraulic pressure on the wheel cylinder side> hydraulic pressure on the master cylinder 41 side) in which the first solenoid valve 62 in the non-energized state can maintain the valve opening.
  • the second withstand voltage is a differential pressure (hydraulic pressure on the wheel cylinder side> hydraulic pressure on the master cylinder 41 side) in which the second solenoid valve 63 in the non-energized state can maintain the closed valve.
  • the second solenoid valve 63 may be provided with an urging member that urges the valve body in the valve closing direction, and may be configured so that a force acts on the valve body in the valve closing direction when energized.
  • the second solenoid valve 63 acts on the side where both the urging force and the solenoid force are closed.
  • the total of the urging force by the urging member and the force acting in the valve closing direction when energized may be larger than the pressure output by the electric cylinder 2.
  • the spring force of the second solenoid valve 63 may be small, the second withstand voltage can be reduced, and the first withstand voltage of the first solenoid valve 62 can also be reduced.
  • the flow path area of the first solenoid valve 62 can be increased and the spring force of the first solenoid valve 62 can be reduced, so that it is not necessary to increase the size of the coil.
  • the second solenoid valve 63 is a normally closed type solenoid valve
  • the flow path area of the first solenoid valve 62 can be increased, so that the boost responsiveness when pressurized by the master cylinder unit 4 can be improved. Can be improved.
  • an actuator 3 for sucking fluid from the master cylinder unit 4 is provided between the master cylinder unit 4 and the wheel cylinder, the suction responsiveness of the actuator 3 can be improved.
  • the second solenoid valve 63 When the wheel pressure is high, the differential pressure exceeds the second withstand voltage by de-energizing the second solenoid valve 63, the second solenoid valve 63 opens, and the wheel pressure can be reduced. ..
  • the second solenoid valve 63 can also be applied to the second embodiment.

Abstract

The present invention comprises a first hydraulic pressure generation unit that generates hydraulic pressure in a wheel cylinder through a first channel, and a valve unit provided in the first channel between the wheel cylinder and the first hydraulic pressure generation unit. The valve unit includes a first solenoid valve and a second solenoid valve. The first solenoid valve includes a first valving element and a first valve seat, and is a normally-open type solenoid valve, wherein the direction proceeding from the wheel cylinder to the first hydraulic pressure generation unit is the same as a first direction in which the first valving element lands on the first valve seat. The second solenoid valve is connected in parallel with the first solenoid valve, includes a second valving element and a second valve seat, and is a solenoid valve, wherein the direction proceeding from the wheel cylinder to the first hydraulic pressure generation unit is the opposite of a second direction in which the second valving element lands on the second valve seat.

Description

車両用制動装置Vehicle braking device
 本発明は、車両用制動装置に関する。 The present invention relates to a vehicle braking device.
 米国特許第9205821号の車両用制動装置は、マスタシリンダユニットと、電動シリンダと、ESCアクチュエータと、を備える。マスタシリンダユニットと電動シリンダ及びESCアクチュエータとの間には、ノーマルオープン型の電磁弁であるマスタカット弁が配置されている。バイワイヤモードでは、マスタカット弁が閉弁され、電動シリンダ又はESCアクチュエータによりホイールシリンダの液圧(以下「ホイール圧」ともいう)が調整される。 The vehicle braking device of US Pat. No. 9,205,821 includes a master cylinder unit, an electric cylinder, and an ESC actuator. A master cut valve, which is a normally open type solenoid valve, is arranged between the master cylinder unit, the electric cylinder, and the ESC actuator. In the by-wire mode, the master cut valve is closed, and the hydraulic pressure of the wheel cylinder (hereinafter, also referred to as “wheel pressure”) is adjusted by the electric cylinder or the ESC actuator.
 一般に、マスタカット弁は、ホイールシリンダ側に配置された弁体と、マスタシリンダユニット側に配置された弁座と、を備えている。この構成では、マスタシリンダユニットのマスタ室の液圧(以下「マスタ圧」ともいう)がホイール圧より高い場合、当該差圧により弁体に加わる力の向きは、弁体が弁座から離れる方向すなわち開弁方向となる。反対に、ホイール圧がマスタ圧よりも高い場合、当該差圧により弁体に加わる力の向きは、弁体が弁座に近づく方向すなわち閉弁方向となる。 Generally, the master cut valve includes a valve body arranged on the wheel cylinder side and a valve seat arranged on the master cylinder unit side. In this configuration, when the hydraulic pressure in the master chamber of the master cylinder unit (hereinafter also referred to as "master pressure") is higher than the wheel pressure, the direction of the force applied to the valve body due to the differential pressure is the direction in which the valve body separates from the valve seat. That is, it is in the valve opening direction. On the contrary, when the wheel pressure is higher than the master pressure, the direction of the force applied to the valve body by the differential pressure is the direction in which the valve body approaches the valve seat, that is, the valve closing direction.
米国特許第9205821号明細書U.S. Pat. No. 9,205,821
 ここで、マスタカット弁は、閉弁状態で且つホイール圧がマスタ圧よりも高い状態で失陥したとしても(例えば供給電流が0になったとしても)、開弁可能に構成される必要がある。これは、ホイール圧が高い状態でマスタカット弁を開弁させることができないと、ホイール圧を減圧できずに制動力を減少させることができないためである。マスタカット弁が非通電状態であり且つホイール圧がマスタ圧よりも高い状態において、マスタカット弁を開弁可能に構成するためには、弁体を弁座に向けて付勢するバネのバネ力を大きくする必要がある。 Here, the master cut valve needs to be configured so that it can be opened even if the valve is closed and the wheel pressure is higher than the master pressure (for example, even if the supply current becomes 0). be. This is because if the master cut valve cannot be opened while the wheel pressure is high, the wheel pressure cannot be reduced and the braking force cannot be reduced. In order to configure the master cut valve so that it can be opened when the master cut valve is not energized and the wheel pressure is higher than the master pressure, the spring force of the spring that urges the valve body toward the valve seat. Needs to be large.
 一方で、バネ力を大きくすると、閉弁の際に当該バネ力に打ち勝つ電磁力を発生させなければならない。具体的に、閉弁に必要な電磁力は、マスタ圧が弁体に加える開弁側への力と、バネ力との合計よりも大きい力となる。この閉弁に必要な電磁力を大きくするためには、必要電流値の増大及びコイルの大型化が必要となる。省電力及びコイルの小型化の観点から、閉弁に必要な電磁力を小さくするためには、マスタカット弁の流路断面積を小さくし、マスタ圧が弁体を押圧する力及びバネ力を小さくすることが考えられる。 On the other hand, if the spring force is increased, an electromagnetic force that overcomes the spring force must be generated when the valve is closed. Specifically, the electromagnetic force required for valve closing is a force larger than the sum of the force applied to the valve body by the master pressure on the valve opening side and the spring force. In order to increase the electromagnetic force required for this valve closing, it is necessary to increase the required current value and increase the size of the coil. From the viewpoint of power saving and miniaturization of the coil, in order to reduce the electromagnetic force required for valve closing, the flow path cross-sectional area of the master cut valve should be reduced, and the force and spring force that the master pressure presses against the valve body should be reduced. It is possible to make it smaller.
 しかしながら、マスタカット弁の流路断面積が小さい場合、フルードがマスタカット弁を通過する際の抵抗が大きくなるため、ホイールシリンダを加圧する場合における昇圧応答性の低下につながる。例えば、マスタカット弁とホイールシリンダとの間にESCアクチュエータが設けられる場合には、ESCアクチュエータがマスタカット弁を介してフルードを吸入するときの応答性の低下につながる。 However, if the flow path cross-sectional area of the master cut valve is small, the resistance when the fluid passes through the master cut valve increases, which leads to a decrease in boost response when the wheel cylinder is pressurized. For example, when an ESC actuator is provided between the master cut valve and the wheel cylinder, the responsiveness of the ESC actuator when sucking fluid through the master cut valve is reduced.
 本発明の目的は、コイルの小型化が可能であり且つマスタシリンダユニット等の液圧発生部がホイールシリンダを昇圧する場合の応答性を向上できる車両用制動装置を提供することである。例えば、弁ユニットとホイールシリンダとの間にESCアクチュエータ等の液圧出力部が設けられている場合には、液圧出力部が弁ユニットを介してブレーキ液を吸入するときの応答性も向上できる車両用制動装置を提供することである。 An object of the present invention is to provide a vehicle braking device capable of downsizing the coil and improving the responsiveness when a hydraulic pressure generating portion such as a master cylinder unit boosts the wheel cylinder. For example, when a hydraulic pressure output unit such as an ESC actuator is provided between the valve unit and the wheel cylinder, the responsiveness when the hydraulic pressure output unit sucks the brake fluid through the valve unit can be improved. It is to provide a braking device for a vehicle.
 本発明の車両用制動装置は、第1液路を介してホイールシリンダに液圧を発生させる第1液圧発生部と、前記第1液路において前記ホイールシリンダと前記第1液圧発生部との間に設けられた弁ユニットと、を備える。前記弁ユニットは第1電磁弁と第2電磁弁とを有する。第1電磁弁は、第1弁体及び第1弁座を有し、前記ホイールシリンダから前記第1液圧発生部に向かう方向が、前記第1弁体が前記第1弁座に着座する第1方向と同じ向きである非通電状態で開弁するノーマルオープン型の電磁弁である。第2電磁弁は、前記第1電磁弁に並列に接続され、第2弁体と第2弁座を有し、前記ホイールシリンダから前記第1液圧発生部に向かう方向が、前記第2弁体が前記第2弁座に着座する第2方向と反対向きである電磁弁である。 The vehicle braking device of the present invention includes a first hydraulic pressure generating portion that generates hydraulic pressure in a wheel cylinder via a first liquid passage, and the wheel cylinder and the first hydraulic pressure generating portion in the first liquid passage. It is provided with a valve unit provided between the two. The valve unit has a first solenoid valve and a second solenoid valve. The first solenoid valve has a first valve body and a first valve seat, and the direction from the wheel cylinder toward the first hydraulic pressure generating portion is such that the first valve body is seated on the first valve seat. It is a normally open type solenoid valve that opens in the non-energized state, which is the same direction as one direction. The second solenoid valve is connected in parallel to the first solenoid valve, has a second valve body and a second valve seat, and the direction from the wheel cylinder to the first hydraulic pressure generating portion is the second valve. A solenoid valve whose body is seated in the second valve seat in the direction opposite to the second direction.
 本発明によれば、弁ユニットよりもホイールシリンダ側の液圧が第1液圧発生部側の液圧よりも高い場合、当該液圧により第2電磁弁の弁体が開弁側に押圧され、開弁が促される。弁ユニットよりも第1液圧発生部側の液圧がホイールシリンダ側の液圧よりも高い場合、当該液圧により第1電磁弁の弁体が開弁側に押圧され、開弁が促される。このように、第1液圧発生部側の液圧が高い場合と低い場合のいずれの場合であっても、第1電磁弁と第2電磁弁とが非通電状態である場合に、少なくとも一方の電磁弁が開弁し、その結果、弁ユニットよりも第1液圧発生部側の液圧とホイールシリンダ側の液圧は同圧になり、他方の電磁弁もバネ力によって開弁するため、両方の電磁弁が開弁する。 According to the present invention, when the hydraulic pressure on the wheel cylinder side of the valve unit is higher than the hydraulic pressure on the first hydraulic pressure generating portion side, the hydraulic pressure pushes the valve body of the second solenoid valve toward the valve opening side. , The valve opening is urged. When the hydraulic pressure on the first hydraulic pressure generating part side of the valve unit is higher than the hydraulic pressure on the wheel cylinder side, the hydraulic pressure pushes the valve body of the first solenoid valve toward the valve opening side, and the valve opening is promoted. .. In this way, regardless of whether the hydraulic pressure on the first hydraulic pressure generating portion side is high or low, at least one of the first solenoid valve and the second solenoid valve is in a non-energized state. As a result, the hydraulic pressure on the first hydraulic pressure generating part side and the hydraulic pressure on the wheel cylinder side of the valve unit become the same, and the other solenoid valve also opens by spring force. , Both solenoid valves open.
 第1液圧発生部が発生した液圧は開いた第1電磁弁を介してホイールシリンダに供給可能である。また、ホイールシリンダの液圧が高い場合には、当該液圧によって開弁された第2電磁弁を介してホイールシリンダの液圧を減圧することができる。そのため1つの電磁弁を、第1液圧発生部がホイールシリンダに液圧を発生させる状況と、当該電磁弁を介してホイール圧を減圧させる状況とを考慮して設計する必要がない。具体的には、第1電磁弁は流路面積を小さくする必要がなく、電流の増大やコイルの大型化も必要がない。したがって、本発明によれば、コイルの大型化を抑制し且つ第1液圧発生部による応答性も向上できる。また例えば、弁ユニットとホイールシリンダとの間にESCアクチュエータ等の液圧出力部が設けられている場合には、液圧出力部が弁ユニットを介してブレーキ液を吸入するときの応答性も向上できる。 The hydraulic pressure generated by the first hydraulic pressure generating part can be supplied to the wheel cylinder via the open first solenoid valve. When the hydraulic pressure of the wheel cylinder is high, the hydraulic pressure of the wheel cylinder can be reduced via the second solenoid valve opened by the hydraulic pressure. Therefore, it is not necessary to design one solenoid valve in consideration of the situation where the first hydraulic pressure generating portion generates the hydraulic pressure in the wheel cylinder and the situation where the wheel pressure is reduced through the solenoid valve. Specifically, the first solenoid valve does not need to reduce the flow path area, and does not need to increase the current or increase the size of the coil. Therefore, according to the present invention, it is possible to suppress an increase in the size of the coil and improve the responsiveness of the first hydraulic pressure generating portion. Further, for example, when a hydraulic pressure output unit such as an ESC actuator is provided between the valve unit and the wheel cylinder, the responsiveness when the hydraulic pressure output unit sucks the brake fluid through the valve unit is also improved. can.
第1実施形態の車両用制動装置の構成図である。It is a block diagram of the vehicle braking device of 1st Embodiment. 第1実施形態のアクチュエータの構成図である。It is a block diagram of the actuator of 1st Embodiment. 第1実施形態の弁ユニットの構成を説明するための概念図である。It is a conceptual diagram for demonstrating the structure of the valve unit of 1st Embodiment. ノーマルオープン型の電磁弁の構成例を示す断面図である。It is sectional drawing which shows the structural example of the normal open type solenoid valve. 第2実施形態の車両用制動装置の構成図である。It is a block diagram of the vehicle braking device of 2nd Embodiment.
 以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。また、説明に用いる各図は概念図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each of the following embodiments, parts that are the same or equal to each other are designated by the same reference numerals in the drawings. Moreover, each figure used for explanation is a conceptual diagram.
<第1実施形態>
 第1実施形態の車両用制動装置1は、図1に示すように、電動シリンダ(「第2液圧発生部」に相当する)2と、アクチュエータ3と、マスタシリンダユニット(「第1液圧発生部」に相当する)4と、第1液路51と、第2液路52と、第3液路53と、ブレーキ液供給路54と、連通制御弁61と、第1電磁弁62と、第2電磁弁63と、第1ブレーキECU901と、第2ブレーキECU902と、電源装置903と、リザーバ45と、を備えている。
<First Embodiment>
As shown in FIG. 1, the vehicle braking device 1 of the first embodiment includes an electric cylinder (corresponding to a “second hydraulic pressure generating portion”) 2, an actuator 3, and a master cylinder unit (“first hydraulic pressure”). 4), the first liquid passage 51, the second liquid passage 52, the third liquid passage 53, the brake fluid supply passage 54, the communication control valve 61, and the first solenoid valve 62. A second solenoid valve 63, a first brake ECU 901, a second brake ECU 902, a power supply device 903, and a reservoir 45 are provided.
 第1電磁弁62及び第2電磁弁63は、弁ユニット60を構成している。弁ユニット60は、マスタカット弁として機能する。マスタカット弁の機能とは、マスタシリンダユニット4とホイールシリンダとを液圧的に遮断する機能である。また、電動シリンダ2、マスタシリンダユニット4、及び弁ユニット60等は、上流ユニット11に含まれている。第1ブレーキECU901は、主に上流ユニット11を制御する。第2ブレーキECU902は、主にアクチュエータ3を制御する。なお、図1は、車両用制動装置1の非通電状態を表している。 The first solenoid valve 62 and the second solenoid valve 63 constitute a valve unit 60. The valve unit 60 functions as a master cut valve. The function of the master cut valve is a function of hydraulically shutting off the master cylinder unit 4 and the wheel cylinder. Further, the electric cylinder 2, the master cylinder unit 4, the valve unit 60 and the like are included in the upstream unit 11. The first brake ECU 901 mainly controls the upstream unit 11. The second brake ECU 902 mainly controls the actuator 3. Note that FIG. 1 shows a non-energized state of the vehicle braking device 1.
 電動シリンダ2は、第1ホイールシリンダ81、82及び第2ホイールシリンダ83、84に第1ブレーキ圧を供給可能な加圧ユニットである。第1ホイールシリンダ81、82は第1系統のホイールシリンダであり、第2ホイールシリンダ83、84は第2系統のホイールシリンダである。第1実施形態では、第1ホイールシリンダ81は右前輪に設けられ、第1ホイールシリンダ82は左後輪に設けられ、第2ホイールシリンダ83は左前輪に設けられ、第2ホイールシリンダ84は右後輪に設けられている。つまり、第1実施形態の系統の配置は、クロス配管(X配管)となっている。 The electric cylinder 2 is a pressurizing unit capable of supplying the first brake pressure to the first wheel cylinders 81 and 82 and the second wheel cylinders 83 and 84. The first wheel cylinders 81 and 82 are wheel cylinders of the first system, and the second wheel cylinders 83 and 84 are wheel cylinders of the second system. In the first embodiment, the first wheel cylinder 81 is provided on the right front wheel, the first wheel cylinder 82 is provided on the left rear wheel, the second wheel cylinder 83 is provided on the left front wheel, and the second wheel cylinder 84 is on the right. It is provided on the rear wheel. That is, the arrangement of the system of the first embodiment is a cross pipe (X pipe).
 電動シリンダ2は、シリンダ21と、電気モータ22と、ピストン23と、出力室24と、付勢部材25と、を有する。電気モータ22は、回転運動を直線運動に変換する直動機構22aを介してピストン23に接続されている。電動シリンダ2は、シリンダ21内に単一の出力室24が形成されているシングルタイプの電動シリンダである。 The electric cylinder 2 includes a cylinder 21, an electric motor 22, a piston 23, an output chamber 24, and an urging member 25. The electric motor 22 is connected to the piston 23 via a linear motion mechanism 22a that converts a rotary motion into a linear motion. The electric cylinder 2 is a single type electric cylinder in which a single output chamber 24 is formed in the cylinder 21.
 ピストン23は、電気モータ22の駆動によりシリンダ21内を軸方向に摺動する。ピストン23は、軸方向一方側に開口し軸方向他方側に底面を有する有底円筒状に形成されている。つまり、ピストン23は、開口を形成する筒状部分と、底面(受圧面)を形成する円柱部分と、を備えている。 The piston 23 slides in the cylinder 21 in the axial direction by driving the electric motor 22. The piston 23 is formed in a bottomed cylindrical shape that opens on one side in the axial direction and has a bottom surface on the other side in the axial direction. That is, the piston 23 includes a cylindrical portion that forms an opening and a cylindrical portion that forms a bottom surface (pressure receiving surface).
 出力室24は、シリンダ21とピストン23により区画されピストン23の移動により容積が変化する。出力室24は、リザーバ45及びアクチュエータ3に接続されている。ピストン23は、出力室24とリザーバ45との間を連通させる連通領域、及び出力室24とリザーバ45との間を遮断する遮断領域で構成された摺動領域を摺動する。連通領域は、出力室24の容積が最大となるピストン23の初期位置を含んでいる。遮断領域は、軸方向において、連通領域よりも大きい。付勢部材25は、出力室24に配置され、ピストン23を軸方向他方側に(初期位置に向けて)付勢するバネである。電動シリンダ2が非通電状態になると、電気モータ22が停止し、付勢部材25によりピストン23は初期位置に戻される。 The output chamber 24 is partitioned by the cylinder 21 and the piston 23, and the volume changes due to the movement of the piston 23. The output chamber 24 is connected to the reservoir 45 and the actuator 3. The piston 23 slides in a sliding region composed of a communication region for communicating between the output chamber 24 and the reservoir 45 and a blocking region for blocking between the output chamber 24 and the reservoir 45. The communication area includes the initial position of the piston 23 that maximizes the volume of the output chamber 24. The blocking region is larger than the communication region in the axial direction. The urging member 25 is a spring that is arranged in the output chamber 24 and urges the piston 23 to the other side in the axial direction (toward the initial position). When the electric cylinder 2 is de-energized, the electric motor 22 is stopped, and the urging member 25 returns the piston 23 to the initial position.
 アクチュエータ3は、第1ホイールシリンダ81、82を調圧可能な第1液圧出力部(「液圧出力部」に相当する)31及び第2ホイールシリンダ83、84を調圧可能な第2液圧出力部32を有する調圧ユニットである。第1液圧出力部31は、第1液路51から入力された液圧と第1ホイールシリンダ81、82の液圧との間に差圧を発生させることで第1ホイールシリンダ81、82を加圧するように構成されている。第2液圧出力部32は、第2液路52から入力された液圧と第2ホイールシリンダ83、84の液圧との間に差圧を発生させることで第2ホイールシリンダ83、84を加圧するように構成されている。 The actuator 3 has a first hydraulic pressure output unit (corresponding to a “hydraulic pressure output unit”) 31 capable of adjusting the pressure of the first wheel cylinders 81 and 82 and a second liquid capable of adjusting the pressure of the second wheel cylinders 83 and 84. It is a pressure adjusting unit having a pressure output unit 32. The first hydraulic pressure output unit 31 generates the first wheel cylinders 81 and 82 by generating a differential pressure between the hydraulic pressure input from the first liquid passage 51 and the hydraulic pressure of the first wheel cylinders 81 and 82. It is configured to pressurize. The second hydraulic pressure output unit 32 generates a differential pressure between the hydraulic pressure input from the second hydraulic passage 52 and the hydraulic pressure of the second wheel cylinders 83 and 84 to generate the second wheel cylinders 83 and 84. It is configured to pressurize.
 アクチュエータ3は、いわゆるESCアクチュエータであって、各ホイールシリンダ81~84の液圧を独立に調圧することができる。アクチュエータ3は、第2ブレーキECU902の制御に応じて、例えばアンチスキッド制御(ABS制御とも呼ばれる)、横滑り防止制御(ESC)、又はトラクションコントロール等を実行する。第1液圧出力部31と第2液圧出力部32とは、アクチュエータ3の液圧回路上、互いに独立している。アクチュエータ3の構成については後述する。 The actuator 3 is a so-called ESC actuator, and can independently regulate the hydraulic pressure of each wheel cylinder 81 to 84. The actuator 3 executes, for example, anti-skid control (also referred to as ABS control), electronic stability control (ESC), traction control, or the like according to the control of the second brake ECU 902. The first hydraulic pressure output unit 31 and the second hydraulic pressure output unit 32 are independent of each other on the hydraulic pressure circuit of the actuator 3. The configuration of the actuator 3 will be described later.
 マスタシリンダユニット4は、第1液路51を介して、第1液圧出力部31にマスタ圧を供給可能な加圧ユニットである。より詳細に、マスタシリンダユニット4は、リザーバ45に接続され、ブレーキ操作部材Zの操作量(ストローク及び/又は踏力)に応じて機械的にアクチュエータ3の第1液圧出力部31にフルードを供給するユニットである。マスタシリンダユニット4は、第1液圧出力部31を介して第1ホイールシリンダ81、82を加圧可能に構成されている。マスタシリンダユニット4は、マスタシリンダ41と、マスタピストン42と、を備えている。 The master cylinder unit 4 is a pressurizing unit capable of supplying master pressure to the first hydraulic pressure output unit 31 via the first liquid passage 51. More specifically, the master cylinder unit 4 is connected to the reservoir 45 and mechanically supplies the fluid to the first hydraulic pressure output unit 31 of the actuator 3 according to the operating amount (stroke and / or pedaling force) of the brake operating member Z. It is a unit to do. The master cylinder unit 4 is configured to be able to pressurize the first wheel cylinders 81 and 82 via the first hydraulic pressure output unit 31. The master cylinder unit 4 includes a master cylinder 41 and a master piston 42.
 マスタシリンダ41は、有底円筒状の部材であって、入力ポート411と出力ポート412とを備えている。マスタピストン42は、ブレーキ操作部材Zの操作量に応じて、マスタシリンダ41内を摺動するピストン部材である。マスタピストン42は、軸方向一方側に開口し軸方向他方側に底面を有する有底円筒状に形成されている。 The master cylinder 41 is a bottomed cylindrical member and includes an input port 411 and an output port 412. The master piston 42 is a piston member that slides in the master cylinder 41 according to the amount of operation of the brake operating member Z. The master piston 42 is formed in a bottomed cylindrical shape that opens on one side in the axial direction and has a bottom surface on the other side in the axial direction.
 マスタシリンダ41内には、マスタピストン42により単一のマスタ室41aが形成されている。マスタ室41aの容積は、マスタピストン42の移動により変動する。マスタピストン42が軸方向一方側に移動すると、マスタ室41aの容積が小さくなり、マスタ室41aの液圧すなわちマスタ圧が増大する。マスタ室41aには、マスタピストン42を初期位置に向けて(軸方向他方側に)付勢する付勢部材41bが設けられている。ブレーキ操作が解除されると、付勢部材41bによりマスタピストン42が初期位置に戻される。 In the master cylinder 41, a single master chamber 41a is formed by the master piston 42. The volume of the master chamber 41a fluctuates due to the movement of the master piston 42. When the master piston 42 moves to one side in the axial direction, the volume of the master chamber 41a decreases, and the hydraulic pressure of the master chamber 41a, that is, the master pressure increases. The master chamber 41a is provided with an urging member 41b that urges the master piston 42 toward the initial position (on the other side in the axial direction). When the brake operation is released, the urging member 41b returns the master piston 42 to the initial position.
 出力ポート412は、マスタ室41aと第1液路51とを連通させる。入力ポート411は、マスタピストン42の筒状部分に形成された貫通孔421を介して、マスタ室41aとリザーバ45とを連通させる。マスタ室41aの容積が最大となるマスタピストン42の初期位置において、入力ポート411と貫通孔421とはオーバーラップし、マスタ室41aとリザーバ45とが連通する。マスタピストン42が初期位置から軸方向一方側に所定量(オーバーラップ距離)移動すると、マスタ室41aとリザーバ45との接続が遮断される。 The output port 412 communicates the master chamber 41a with the first liquid passage 51. The input port 411 communicates the master chamber 41a with the reservoir 45 via a through hole 421 formed in the cylindrical portion of the master piston 42. At the initial position of the master piston 42, which maximizes the volume of the master chamber 41a, the input port 411 and the through hole 421 overlap, and the master chamber 41a and the reservoir 45 communicate with each other. When the master piston 42 moves from the initial position to one side in the axial direction by a predetermined amount (overlap distance), the connection between the master chamber 41a and the reservoir 45 is cut off.
 マスタシリンダユニット4には、ストロークシミュレータ43及びシミュレータカット弁44が接続されている。ストロークシミュレータ43は、ブレーキ操作部材Zの操作に対して反力(負荷)を発生させる装置である。ストロークシミュレータ43は、例えばシリンダ、ピストン、及び付勢部材により構成される。ストロークシミュレータ43とマスタシリンダ41の出力ポート412とは、液路43aにより接続されている。シミュレータカット弁44は、液路43aに設けられた電磁弁である。 A stroke simulator 43 and a simulator cut valve 44 are connected to the master cylinder unit 4. The stroke simulator 43 is a device that generates a reaction force (load) with respect to the operation of the brake operating member Z. The stroke simulator 43 is composed of, for example, a cylinder, a piston, and an urging member. The stroke simulator 43 and the output port 412 of the master cylinder 41 are connected by a liquid passage 43a. The simulator cut valve 44 is a solenoid valve provided in the liquid passage 43a.
(液路と電磁弁)
 第1液路51は、マスタシリンダユニット4とアクチュエータ3の第1液圧出力部31とを接続している。第2液路52は、電動シリンダ2と第2液圧出力部32とを接続している。第3液路53は、第1液路51と第2液路52とを接続している。
(Liquid passage and solenoid valve)
The first liquid passage 51 connects the master cylinder unit 4 and the first hydraulic pressure output unit 31 of the actuator 3. The second liquid passage 52 connects the electric cylinder 2 and the second hydraulic pressure output unit 32. The third liquid passage 53 connects the first liquid passage 51 and the second liquid passage 52.
 弁ユニット60は、第1液路51に設けられている。マスタシリンダユニット4は、第1液路51及び弁ユニット60を介してフルードを供給可能に構成されている。第1液圧出力部31は、第1ホイールシリンダ81、82を加圧する場合、第1液路51からフルードを吸入するように構成されている。 The valve unit 60 is provided in the first liquid passage 51. The master cylinder unit 4 is configured to be able to supply fluid via the first liquid passage 51 and the valve unit 60. The first hydraulic pressure output unit 31 is configured to suck fluid from the first liquid passage 51 when pressurizing the first wheel cylinders 81 and 82.
 連通制御弁61は、第3液路53に設けられたノーマルクローズ型の電磁弁である。連通制御弁61は、電動シリンダ2による第1液圧出力部31へのフルードの供給を許可又は禁止する。連通制御弁61は、閉弁時の第1ホイールシリンダ81、82から電動シリンダ2へのフルードの逆流を防ぐため、弁体が弁座よりも第1ホイールシリンダ81、82側(第1系統側)に配置されている。これにより、連通制御弁61閉弁時に第1ホイールシリンダ81、82の液圧が電動シリンダ2の出力圧よりも高くなっても、弁体には弁座に押し付けられる方向に力が加わるため(セルフシールされ)、閉弁が維持される。 The communication control valve 61 is a normally closed type solenoid valve provided in the third liquid passage 53. The communication control valve 61 permits or prohibits the supply of fluid to the first hydraulic pressure output unit 31 by the electric cylinder 2. The communication control valve 61 has a valve body on the first wheel cylinder 81, 82 side (first system side) of the valve seat in order to prevent backflow of fluid from the first wheel cylinders 81, 82 to the electric cylinder 2 when the valve is closed. ) Is placed. As a result, even if the hydraulic pressure of the first wheel cylinders 81 and 82 becomes higher than the output pressure of the electric cylinder 2 when the communication control valve 61 is closed, a force is applied to the valve body in the direction of being pressed against the valve seat ( Self-sealing) and keeps the valve closed.
 ブレーキ液供給路54は、リザーバ45と電動シリンダ2の入力ポート211とを接続している。なお、リザーバ45は、フルードを貯留し、内部の圧力は大気圧に保たれている。また、リザーバ45の内部は、フルードが貯留された2つの部屋451、452に区画されている。リザーバ45の一方の部屋451にはマスタシリンダユニット4が接続され、他方の部屋452にはブレーキ液供給路54を介して電動シリンダ2が接続されている。リザーバ45は、2つの部屋でなく、2つの別々のリザーバで構成されてもよい。 The brake fluid supply path 54 connects the reservoir 45 and the input port 211 of the electric cylinder 2. The reservoir 45 stores fluid, and the internal pressure is maintained at atmospheric pressure. Further, the inside of the reservoir 45 is divided into two rooms 451 and 452 in which fluid is stored. A master cylinder unit 4 is connected to one room 451 of the reservoir 45, and an electric cylinder 2 is connected to the other room 452 via a brake fluid supply path 54. The reservoir 45 may consist of two separate reservoirs instead of the two chambers.
(アクチュエータの構成例)
 アクチュエータ3の構成例について、第1ホイールシリンダ81に接続された液路を例に簡単に説明する。アクチュエータ3の第1液圧出力部31は、図2に示すように、液路311と、差圧制御弁312と、保持弁313と、減圧弁314と、ポンプ315と、電気モータ316と、リザーバ317と、還流液路317aと、圧力センサ75と、を備えている。
(Example of actuator configuration)
A configuration example of the actuator 3 will be briefly described by taking a liquid passage connected to the first wheel cylinder 81 as an example. As shown in FIG. 2, the first hydraulic pressure output unit 31 of the actuator 3 includes a liquid passage 311, a differential pressure control valve 312, a holding valve 313, a pressure reducing valve 314, a pump 315, an electric motor 316, and the like. It includes a reservoir 317, a perfusion fluid passage 317a, and a pressure sensor 75.
 液路311は、第1液路51と第1ホイールシリンダ81とを接続している。液路311には圧力センサ75が設けられている。差圧制御弁312は、上下流間に差圧を発生させるためのノーマルオープン型のリニアソレノイドバルブである。第1液路51から第1ホイールシリンダ81へのブレーキ液の流通のみを許可するチェックバルブ312aが差圧制御弁312と並列に設けられている。 The liquid passage 311 connects the first liquid passage 51 and the first wheel cylinder 81. A pressure sensor 75 is provided in the liquid passage 311. The differential pressure control valve 312 is a normally open type linear solenoid valve for generating a differential pressure between upstream and downstream. A check valve 312a that allows only the flow of brake fluid from the first liquid passage 51 to the first wheel cylinder 81 is provided in parallel with the differential pressure control valve 312.
 保持弁313は、液路311のうち差圧制御弁312と第1ホイールシリンダ81との間に設けられたノーマルオープン型の電磁弁である。また、チェックバルブ313aが保持弁313と並列に設けられている。減圧弁314は、減圧液路314aに設けられたノーマルクローズ型の電磁弁である。減圧液路314aは、液路311のうち保持弁313と第1ホイールシリンダ81との間の部分と、リザーバ317とを接続している。 The holding valve 313 is a normally open type solenoid valve provided between the differential pressure control valve 312 and the first wheel cylinder 81 in the liquid passage 311. Further, a check valve 313a is provided in parallel with the holding valve 313. The pressure reducing valve 314 is a normally closed type solenoid valve provided in the pressure reducing liquid passage 314a. The decompression liquid passage 314a connects the portion of the liquid passage 311 between the holding valve 313 and the first wheel cylinder 81 and the reservoir 317.
 ポンプ315は、電気モータ316の駆動力により作動する。ポンプ315は、ポンプ液路315aに設けられている。ポンプ液路315aは、液路311のうち差圧制御弁312と保持弁313との間の部分(以下「分岐部X」という)と、リザーバ317とを接続している。ポンプ315が作動すると、フルードがリザーバ317から分岐部Xに吐出される。 The pump 315 is operated by the driving force of the electric motor 316. The pump 315 is provided in the pump liquid passage 315a. The pump liquid passage 315a connects a portion of the liquid passage 311 between the differential pressure control valve 312 and the holding valve 313 (hereinafter referred to as “branch portion X”) and the reservoir 317. When the pump 315 is activated, the fluid is discharged from the reservoir 317 to the branch X.
 リザーバ317は、調圧リザーバである。還流液路317aは、第1液路51とリザーバ317とを接続している。リザーバ317は、ポンプ315の作動により、リザーバ317内のブレーキ液が優先的に吸入され、リザーバ317内のブレーキ液が減少すると開弁して還流液路317aを介して第1液路51からブレーキ液が吸入されるように構成されている。 Reservoir 317 is a pressure regulating reservoir. The reflux liquid passage 317a connects the first liquid passage 51 and the reservoir 317. The brake fluid in the reservoir 317 is preferentially sucked into the reservoir 317 by the operation of the pump 315, and when the brake fluid in the reservoir 317 decreases, the valve is opened and the brake is applied from the first fluid passage 51 via the reflux fluid passage 317a. The liquid is configured to be inhaled.
 第2ブレーキECU902は、アクチュエータ3により第1ホイールシリンダ81を加圧する場合、差圧制御弁312に目標差圧(第1ホイールシリンダ81の液圧>第1液路51の液圧)に応じた制御電流を印加し、差圧制御弁312を閉弁させる。この際、保持弁313は開弁しており、減圧弁314は閉弁している。また、ポンプ315が作動することで、第1液路51及びリザーバ317から分岐部Xにフルードが供給される。これにより、第1ホイールシリンダ81が加圧される。 When the first wheel cylinder 81 is pressurized by the actuator 3, the second brake ECU 902 responds to the target differential pressure (hydraulic pressure of the first wheel cylinder 81> hydraulic pressure of the first liquid passage 51) in the differential pressure control valve 312. A control current is applied to close the differential pressure control valve 312. At this time, the holding valve 313 is open and the pressure reducing valve 314 is closed. Further, when the pump 315 is operated, the fluid is supplied from the first liquid passage 51 and the reservoir 317 to the branch portion X. As a result, the first wheel cylinder 81 is pressurized.
 第1ホイールシリンダ81の液圧(以下「ホイール圧」ともいう)と第1液路51の液圧との差が目標差圧を超えて高くなろうとすると、力の大小関係から差圧制御弁312が開弁する。加圧後のホイール圧は、第1液路51の液圧すなわち基礎液圧と、目標差圧とによって決まる。このように、アクチュエータ3は、電動シリンダ2の出力圧である基礎液圧とホイール圧との間に差圧を発生させることで、ホイールシリンダ81~84を加圧する。 When the difference between the hydraulic pressure of the first wheel cylinder 81 (hereinafter, also referred to as “wheel pressure”) and the hydraulic pressure of the first liquid passage 51 is about to exceed the target differential pressure, the differential pressure control valve is affected by the magnitude of the force. 312 opens the valve. The wheel pressure after pressurization is determined by the hydraulic pressure of the first liquid passage 51, that is, the basal hydraulic pressure, and the target differential pressure. In this way, the actuator 3 pressurizes the wheel cylinders 81 to 84 by generating a differential pressure between the basic hydraulic pressure, which is the output pressure of the electric cylinder 2, and the wheel pressure.
 第2ブレーキECU902は、アンチスキッド制御等でアクチュエータ3によりホイール圧を減圧する場合、減圧弁314を開弁させ且つ保持弁313を閉弁させた状態でポンプ315を作動させ、ホイールシリンダ81内のブレーキ液をポンプバックさせる。第2ブレーキECU902は、アクチュエータ3によりホイール圧を保持する場合、保持弁313及び減圧弁314を閉弁させる。電動シリンダ2又はマスタシリンダユニット4の作動のみによりホイール圧を加圧又は減圧する場合、第2ブレーキECU902は、差圧制御弁312及び保持弁313を開弁し、減圧弁314を閉弁させる。 When the wheel pressure is reduced by the actuator 3 by the actuator 3 by anti-skid control or the like, the second brake ECU 902 operates the pump 315 with the pressure reducing valve 314 opened and the holding valve 313 closed to operate the pump 315 in the wheel cylinder 81. Pump back the brake fluid. When the wheel pressure is held by the actuator 3, the second brake ECU 902 closes the holding valve 313 and the pressure reducing valve 314. When the wheel pressure is pressurized or reduced only by the operation of the electric cylinder 2 or the master cylinder unit 4, the second brake ECU 902 opens the differential pressure control valve 312 and the holding valve 313, and closes the pressure reducing valve 314.
 このように、第1実施形態の車両用制動装置1は、第1液路51を介して第1ホイールシリンダに液圧を発生させるマスタシリンダユニット4と、第1液路51において第1ホイールシリンダとマスタシリンダユニット4との間に設けられた弁ユニット60とを備えている。また、車両用制動装置1は、第1液路51において弁ユニット60と第1ホイールシリンダ81、82との間に設けられ、弁ユニット60を介してマスタシリンダユニット4からフルードを吸入して液圧を出力する第1液圧出力部31を備えている。 As described above, the vehicle braking device 1 of the first embodiment includes a master cylinder unit 4 that generates hydraulic pressure in the first wheel cylinder via the first liquid passage 51 and a first wheel cylinder in the first liquid passage 51. It is provided with a valve unit 60 provided between the master cylinder unit 4 and the master cylinder unit 4. Further, the vehicle braking device 1 is provided between the valve unit 60 and the first wheel cylinders 81 and 82 in the first liquid passage 51, and sucks fluid from the master cylinder unit 4 via the valve unit 60 to suck the liquid. A first hydraulic pressure output unit 31 that outputs pressure is provided.
(ブレーキECU及び各種センサ)
 第1ブレーキECU901及び第2ブレーキECU902(以下「ブレーキECU901、902」ともいう)は、それぞれCPUやメモリを備える電子制御ユニットである。各ブレーキECU901、902は、各種制御を実行する1つ又は複数のプロセッサを備えている。第1ブレーキECU901と第2ブレーキECU902とは、別個のECUであって、互いに情報(制御情報等)を通信可能に接続されている。
(Brake ECU and various sensors)
The first brake ECU 901 and the second brake ECU 902 (hereinafter, also referred to as " brake ECUs 901 and 902") are electronic control units including a CPU and a memory, respectively. Each brake ECU 901, 902 includes one or more processors that perform various controls. The first brake ECU 901 and the second brake ECU 902 are separate ECUs, and are connected to each other so that information (control information, etc.) can be communicated with each other.
 第1ブレーキECU901は、電動シリンダ2及び各電磁弁61、62、63、44に制御可能に接続されている。第2ブレーキECU902は、アクチュエータ3に制御可能に接続されている。各ブレーキECU901、902は、各種センサの検出結果に基づいて各種制御を実行する。各種センサとして、車両用制動装置1には、例えば、ストロークセンサ71、圧力センサ72、73、75、車輪速度センサ(図示略)、及び加速度センサ(図示略)等が設けられている。 The first brake ECU 901 is controllably connected to the electric cylinder 2 and the solenoid valves 61, 62, 63, 44, respectively. The second brake ECU 902 is controllably connected to the actuator 3. The brake ECUs 901 and 902 execute various controls based on the detection results of the various sensors. As various sensors, the vehicle braking device 1 is provided with, for example, a stroke sensor 71, pressure sensors 72, 73, 75, a wheel speed sensor (not shown), an acceleration sensor (not shown), and the like.
 ストロークセンサ71は、ブレーキ操作部材Zのストロークを検出する。車両用制動装置1には、各ブレーキECU901、902に一対一で対応するように、2つのストロークセンサ71が設けられている。ブレーキECU901、902は、それぞれ対応するストロークセンサ71からストローク情報を取得する。圧力センサ72は、マスタ圧を検出するセンサであって、例えば第1液路51に設けられている。圧力センサ73は、電動シリンダ2の出力圧(第1ブレーキ圧)を検出するセンサであって、例えば第2液路52に設けられている。圧力センサ75は、第1液路51から第1液圧出力部31への入力液圧を検出する。各種センサの検出値は、両方のブレーキECU901、902に送信されてもよい。 The stroke sensor 71 detects the stroke of the brake operating member Z. The vehicle braking device 1 is provided with two stroke sensors 71 so as to have a one-to-one correspondence with the brake ECUs 901 and 902. The brake ECUs 901 and 902 acquire stroke information from the corresponding stroke sensors 71, respectively. The pressure sensor 72 is a sensor that detects the master pressure, and is provided in, for example, the first liquid passage 51. The pressure sensor 73 is a sensor that detects the output pressure (first brake pressure) of the electric cylinder 2, and is provided in, for example, the second liquid passage 52. The pressure sensor 75 detects the input hydraulic pressure from the first liquid passage 51 to the first hydraulic pressure output unit 31. The detected values of the various sensors may be transmitted to both brake ECUs 901 and 902.
 第1ブレーキECU901は、ストロークセンサ71、及び圧力センサ72、73の検出結果を受信し、当該検出結果に基づいて電動シリンダ2及び各電磁弁61、62、63、44を制御する。第1ブレーキECU901は、圧力センサ72、73の検出結果及びアクチュエータ3の制御状態に基づいて、各ホイール圧を演算することができる。 The first brake ECU 901 receives the detection results of the stroke sensor 71 and the pressure sensors 72 and 73, and controls the electric cylinder 2 and the solenoid valves 61, 62, 63 and 44 based on the detection results. The first brake ECU 901 can calculate each wheel pressure based on the detection results of the pressure sensors 72 and 73 and the control state of the actuator 3.
 第2ブレーキECU902は、ストロークセンサ71及び圧力センサ75の検出結果を受信し、当該検出結果に基づいてアクチュエータ3を制御する。ブレーキECU901、902は、圧力センサ75及びアクチュエータ3の制御状態に基づいて、各ホイール圧を演算することができる。第2ブレーキECU902は、入力圧と第1ホイールシリンダ81、82の液圧との差圧の目標値、及び入力圧と第2ホイールシリンダ83、84の液圧との差圧の目標値を設定する。 The second brake ECU 902 receives the detection results of the stroke sensor 71 and the pressure sensor 75, and controls the actuator 3 based on the detection results. The brake ECUs 901 and 902 can calculate each wheel pressure based on the control state of the pressure sensor 75 and the actuator 3. The second brake ECU 902 sets a target value of the differential pressure between the input pressure and the hydraulic pressures of the first wheel cylinders 81 and 82, and a target value of the differential pressure between the input pressure and the hydraulic pressures of the second wheel cylinders 83 and 84. do.
 電源装置903は、各ブレーキECU901、902に電力を供給する装置である。電源装置903は、バッテリを備えている。電源装置903は、両ブレーキECU901、902に接続されている。つまり、第1実施形態では、2つのブレーキECU901、902に共通の電源装置903から電力が供給される。 The power supply device 903 is a device that supplies electric power to the brake ECUs 901 and 902. The power supply unit 903 includes a battery. The power supply device 903 is connected to both brake ECUs 901 and 902. That is, in the first embodiment, power is supplied from the power supply device 903 common to the two brake ECUs 901 and 902.
(通常制御)
 第1ブレーキECU901は、状況に応じて、通常制御を実行する。通常制御は、連通制御弁61及びシミュレータカット弁44を開弁し、且つ第1電磁弁62及び第2電磁弁63を閉弁し、電動シリンダ2により第1ホイールシリンダ81、82及び第2ホイールシリンダ83、84の液圧を調整する制御(制御モード)である。
(Normal control)
The first brake ECU 901 executes normal control depending on the situation. In normal control, the communication control valve 61 and the simulator cut valve 44 are opened, the first solenoid valve 62 and the second solenoid valve 63 are closed, and the electric cylinder 2 is used to open the first wheel cylinders 81, 82 and the second wheel. This is a control (control mode) for adjusting the hydraulic pressure of the cylinders 83 and 84.
 通常制御は、連通制御弁61を開弁し且つ弁ユニット60を閉弁し、電動シリンダ2及びアクチュエータ3の少なくとも一方により第1ホイールシリンダ81、82及び第2ホイールシリンダ83、84の液圧を調整する制御(制御モード)である。通常制御において、シミュレータカット弁44は開弁される。 In normal control, the communication control valve 61 is opened and the valve unit 60 is closed, and at least one of the electric cylinder 2 and the actuator 3 is used to apply the hydraulic pressure of the first wheel cylinders 81 and 82 and the second wheel cylinders 83 and 84. It is a control (control mode) to be adjusted. In normal control, the simulator cut valve 44 is opened.
 通常制御は、マスタシリンダユニット4とホイールシリンダ81~84とを液圧的に切り離し、ブレーキECU901、902の制御によりホイール圧を調整するいわゆるバイワイヤモードを形成する。具体的に、第1ブレーキECU901は、弁ユニット60が閉弁され、且つシミュレータカット弁44及び連通制御弁61が開弁された状態で、ストロークセンサ71及び圧力センサ72が検出したデータを基に電動シリンダ2を駆動させる。第1ブレーキECU901は、ストロークセンサ71及び圧力センサ72の検出結果に基づいて目標減速度及び目標ホイール圧を設定し、実際のホイール圧が目標ホイール圧に近づくように電動シリンダ2を制御する。第2ブレーキECU902は、アンチスキッド制御等の実行に際してアクチュエータ3を作動させる。 In normal control, the master cylinder unit 4 and the wheel cylinders 81 to 84 are hydraulically separated to form a so-called by-wire mode in which the wheel pressure is adjusted by controlling the brake ECUs 901 and 902. Specifically, the first brake ECU 901 is based on the data detected by the stroke sensor 71 and the pressure sensor 72 in a state where the valve unit 60 is closed and the simulator cut valve 44 and the communication control valve 61 are opened. Drive the electric cylinder 2. The first brake ECU 901 sets a target deceleration and a target wheel pressure based on the detection results of the stroke sensor 71 and the pressure sensor 72, and controls the electric cylinder 2 so that the actual wheel pressure approaches the target wheel pressure. The second brake ECU 902 operates the actuator 3 when executing anti-skid control or the like.
(弁ユニットの詳細)
 本実施形態の弁ユニット60は、第1液路51に設けられており、それぞれノーマルオープン型の第1電磁弁62及び第2電磁弁63を備えている。ノーマルオープン型の電磁弁とは、非通電状態で開弁する電磁弁である。図3に示すように、第1電磁弁62は、第1ホイールシリンダ81、82側に配置された第1弁体621と、リザーバ45側に配置された第1弁座622と、第1貫通孔623と、を有している。第1貫通孔623は、第1電磁弁62の開弁によりフルードが流通可能となるように、第1弁座622に形成されている。第1弁体621が第1弁座622に当接して第1貫通孔623を塞ぐことで第1電磁弁62は閉弁する。なお、図3及び図5では、弁体と弁座とを表示するために、弁ユニットを構成する電磁弁を概念図で表している。
(Details of valve unit)
The valve unit 60 of the present embodiment is provided in the first liquid passage 51, and includes a normally open type first solenoid valve 62 and a second solenoid valve 63, respectively. A normally open type solenoid valve is a solenoid valve that opens in a non-energized state. As shown in FIG. 3, the first solenoid valve 62 includes a first valve body 621 arranged on the first wheel cylinder 81, 82 side, a first valve seat 622 arranged on the reservoir 45 side, and a first penetration. It has a hole 623 and. The first through hole 623 is formed in the first valve seat 622 so that fluid can be circulated by opening the first solenoid valve 62. The first solenoid valve 62 is closed when the first valve body 621 abuts on the first valve seat 622 and closes the first through hole 623. In addition, in FIG. 3 and FIG. 5, in order to display the valve body and the valve seat, the solenoid valve constituting the valve unit is represented by a conceptual diagram.
 第2電磁弁63は、第1電磁弁62に並列に配置され、リザーバ45側に配置された第2弁体631と、第1ホイールシリンダ81、82側に配置された第2弁座632と、第2貫通孔633と、を有している。第1液路51は、第1電磁弁62が配置される液路511と、第2電磁弁63が配置される液路512とに分岐している。第2貫通孔633は、第2電磁弁63の開弁によりフルードが流通可能となるように、第2弁座632に形成されている。第2弁体631が第2弁座632に当接して第2貫通孔633を塞ぐことで第2電磁弁63は閉弁する。 The second solenoid valve 63 includes a second solenoid valve 631 arranged in parallel with the first solenoid valve 62 and arranged on the reservoir 45 side, and a second valve seat 632 arranged on the first wheel cylinders 81 and 82 sides. , And a second through hole 633. The first liquid passage 51 is branched into a liquid passage 511 in which the first solenoid valve 62 is arranged and a liquid passage 512 in which the second solenoid valve 63 is arranged. The second through hole 633 is formed in the second valve seat 632 so that fluid can be circulated by opening the second solenoid valve 63. The second solenoid valve 63 is closed when the second valve body 631 comes into contact with the second valve seat 632 and closes the second through hole 633.
 このように、第1電磁弁62は、第1弁体621及び第1弁座622を有し、第1ホイールシリンダ81、82からリザーバ45に向かう方向が、第1弁体621が第1弁座622に着座する第1方向と同じ向きとなるように構成されている。第2電磁弁63は、第1電磁弁62に並列に接続された電磁弁であって、第2弁体631及び第2弁座632を有し、第1ホイールシリンダ81、82からリザーバ45に向かう方向が、第2弁体631が第2弁座632に着座する第2方向と反対向きとなるように構成されている。 As described above, the first solenoid valve 62 has the first valve body 621 and the first valve seat 622, and the first valve body 621 is the first valve in the direction from the first wheel cylinders 81 and 82 toward the reservoir 45. It is configured to be in the same direction as the first direction in which the seat 622 is seated. The second solenoid valve 63 is a solenoid valve connected in parallel to the first solenoid valve 62, has a second valve body 631 and a second valve seat 632, and is connected to the reservoir 45 from the first wheel cylinders 81 and 82. The direction in which the second valve body 631 is seated is opposite to the second direction in which the second valve body 631 is seated on the second valve seat 632.
 ここで、ノーマルオープン型の電磁弁600の構成について簡単に説明する。図4に示すように、電磁弁600は、弁体601と、弁座602と、貫通孔603と、プランジャ604と、付勢部材605と、コイル606と、を備えている。弁体601は、弁座602に対向して配置されている。弁座602には、弁体室607と外部流路C1とを接続する貫通孔603が形成されている。弁体室607は、弁体601及び付勢部材605を収容するとともに、外部流路C2に連通している。電磁弁600は、弁体601が弁座602に着座(当接)して貫通孔603を塞ぐことで閉弁し、弁体601が移動して貫通孔603と弁体室607とが連通することで開弁する。この場合、貫通孔603と弁体室607とで電磁弁600の流路が形成される。 Here, the configuration of the normally open type solenoid valve 600 will be briefly described. As shown in FIG. 4, the solenoid valve 600 includes a valve body 601, a valve seat 602, a through hole 603, a plunger 604, an urging member 605, and a coil 606. The valve body 601 is arranged so as to face the valve seat 602. The valve seat 602 is formed with a through hole 603 that connects the valve body chamber 607 and the external flow path C1. The valve body chamber 607 accommodates the valve body 601 and the urging member 605 and communicates with the external flow path C2. The solenoid valve 600 is closed when the valve body 601 is seated (contacted) with the valve seat 602 and closes the through hole 603, and the valve body 601 moves so that the through hole 603 and the valve body chamber 607 communicate with each other. It opens the valve. In this case, the flow path of the solenoid valve 600 is formed by the through hole 603 and the valve body chamber 607.
 弁体601は、プランジャ604の先端に設けられている。弁体601及びプランジャ604は、付勢部材(バネ)605により弁座602から離れる方向に付勢されている。プランジャ604の外周側にはコイル606が配置されている。コイル606に電流(制御電流)が供給されると、弁体601が弁座602に近づく方向に電磁力が発生する。 The valve body 601 is provided at the tip of the plunger 604. The valve body 601 and the plunger 604 are urged by the urging member (spring) 605 in a direction away from the valve seat 602. A coil 606 is arranged on the outer peripheral side of the plunger 604. When a current (control current) is supplied to the coil 606, an electromagnetic force is generated in the direction in which the valve body 601 approaches the valve seat 602.
 電磁弁600は、開弁状態において、貫通孔603及び弁体室607を介して、一方の外部流路C1と他方の外部流路C2とを連通させる。電磁弁600は、非通電状態では付勢部材605により弁体601が弁座602から離れて開弁し、所定電流値以上の制御電流が供給された状態では電磁力により弁体601が弁座602に当接して閉弁する。 In the valve open state, the solenoid valve 600 communicates one external flow path C1 with the other external flow path C2 via the through hole 603 and the valve body chamber 607. In the solenoid valve 600, the valve body 601 is opened apart from the valve seat 602 by the urging member 605 in the non-energized state, and the valve body 601 is opened by the electromagnetic force in the state where the control current equal to or higher than the predetermined current value is supplied. It abuts on 602 and closes the valve.
 弁体室607の液圧は、外部流路C2の液圧と同圧になり、プランジャ604の背面側の液圧も外部流路C2の液圧と同圧となる。つまり、外部流路C2の液圧は、弁体601を弁座602に近づける方向に押圧する。一方、外部流路C1の液圧は、貫通孔603を介して弁体601を弁座602から離す方向に押圧する。この押圧力は、貫通孔603の流路断面積が大きいほど大きくなる。流路断面積は、流路の延伸方向(フルードの流れ方向)に直交する平面で流路を切断した断面の面積である。なお詳細には、弁体601を弁座602から離す方向の押圧力は、流路断面積ではなく、弁体601のうち弁座602と当接する部分を投影した面積に応じて大きくなる。これは、弁体601が弁座602に着座した状態におけるシール面積ともいえる。本明細書では、説明を分かりやすくするために、押圧力は断面積に応じて変化するものとして説明する。 The hydraulic pressure of the valve body chamber 607 is the same as the hydraulic pressure of the external flow path C2, and the hydraulic pressure on the back side of the plunger 604 is also the same as the hydraulic pressure of the external flow path C2. That is, the hydraulic pressure of the external flow path C2 presses the valve body 601 in the direction of approaching the valve seat 602. On the other hand, the hydraulic pressure of the external flow path C1 presses the valve body 601 in the direction away from the valve seat 602 through the through hole 603. This pressing force increases as the cross-sectional area of the flow path of the through hole 603 increases. The flow path cross-sectional area is the area of the cross section obtained by cutting the flow path in a plane orthogonal to the extension direction (fluid flow direction) of the flow path. More specifically, the pressing force in the direction of separating the valve body 601 from the valve seat 602 increases not according to the cross-sectional area of the flow path but according to the projected area of the valve body 601 in contact with the valve seat 602. This can be said to be the seal area when the valve body 601 is seated on the valve seat 602. In the present specification, for the sake of clarity, the pressing force will be described as changing according to the cross-sectional area.
 外部流路C1の液圧が外部流路C2の液圧よりも高い場合、当該差圧により弁体601は開弁する側に力を受ける。反対に、外部流路C2の液圧が外部流路C1の液圧よりも高い場合、当該差圧により弁体601は閉弁する側に力を受ける。以下、弁体601から弁座602に向かう方向を、シール方向とも称する。シール方向は、セルフシール方向ともいえる。 When the hydraulic pressure of the external flow path C1 is higher than the hydraulic pressure of the external flow path C2, the valve body 601 receives a force on the valve opening side due to the differential pressure. On the contrary, when the hydraulic pressure of the external flow path C2 is higher than the hydraulic pressure of the external flow path C1, the valve body 601 receives a force on the valve closing side due to the differential pressure. Hereinafter, the direction from the valve body 601 to the valve seat 602 is also referred to as a sealing direction. The sealing direction can also be said to be the self-sealing direction.
 図3と図4の対応関係について説明すると、弁体601は第1弁体621及び第2弁体631に相当し、弁座602は第1弁座622及び第2弁座632に相当し、貫通孔603は第1貫通孔623及び第2貫通孔633に相当する。 Explaining the correspondence between FIGS. 3 and 4, the valve body 601 corresponds to the first valve body 621 and the second valve body 631, and the valve seat 602 corresponds to the first valve seat 622 and the second valve seat 632. The through hole 603 corresponds to the first through hole 623 and the second through hole 633.
 第1電磁弁62において、外部流路C1の液圧はマスタ圧に相当し、連通制御弁61が開いていて且つ電動シリンダ2が液圧を発生させている状態では外部流路C2の液圧は電動シリンダ2の出力液圧に相当する。第2電磁弁63において、連通制御弁61が開いていて且つ電動シリンダ2が液圧を発生させている状態では外部流路C1の液圧は電動シリンダ2の出力液圧に相当し、外部流路C2の液圧はマスタ圧に相当する。このように、第1液路51において、第1電磁弁62のシール方向(第1方向)と第2電磁弁63のシール方向(第2方向)とは、反対になっている。 In the first solenoid valve 62, the hydraulic pressure of the external flow path C1 corresponds to the master pressure, and the hydraulic pressure of the external flow path C2 is in a state where the communication control valve 61 is open and the electric cylinder 2 is generating the hydraulic pressure. Corresponds to the output hydraulic pressure of the electric cylinder 2. In the second solenoid valve 63, when the communication control valve 61 is open and the electric cylinder 2 is generating the hydraulic pressure, the hydraulic pressure of the external flow path C1 corresponds to the output hydraulic pressure of the electric cylinder 2 and is an external flow. The hydraulic pressure of the path C2 corresponds to the master pressure. As described above, in the first liquid passage 51, the sealing direction of the first solenoid valve 62 (first direction) and the sealing direction of the second solenoid valve 63 (second direction) are opposite to each other.
(弁ユニットの構成例)
 第1実施形態の弁ユニット60において、第1貫通孔623の流路断面積は、第2貫通孔633の流路断面積よりも大きい。これにより、第1電磁弁62が開弁した状態では、フルードが第1電磁弁62を介して流通しやすくなる。
(Example of valve unit configuration)
In the valve unit 60 of the first embodiment, the flow path cross-sectional area of the first through hole 623 is larger than the flow path cross-sectional area of the second through hole 633. As a result, when the first solenoid valve 62 is opened, the fluid can easily flow through the first solenoid valve 62.
 また、電流供給により第1電磁弁62が閉弁状態を維持可能な第1差圧は、電流供給により第2電磁弁63が閉弁状態を維持可能な第2差圧よりも小さい。第1差圧は、マスタ圧が第1ホイールシリンダ81、82の液圧よりも高い場合における第1ホイールシリンダ81、82とマスタ圧との差圧である。 Further, the first differential pressure at which the first solenoid valve 62 can maintain the closed state by the current supply is smaller than the second differential pressure at which the second solenoid valve 63 can maintain the closed state by the current supply. The first differential pressure is the differential pressure between the first wheel cylinders 81 and 82 and the master pressure when the master pressure is higher than the hydraulic pressure of the first wheel cylinders 81 and 82.
 ここで、回生制動力を付与可能な回生制動装置が設けられた車両に、車両用制動装置1が設けられている例を用いて説明する。第1電磁弁62と第2電磁弁63とが閉じられた状態でブレーキ操作部材Zが操作されていて且つ回生制動力のみで制動されている場合、マスタ圧は0より大きくなるがホイール圧は0のままである。このような状況では、マスタ圧がホイール圧より高くなる。したがって、第1電磁弁62の第1差圧(閉弁維持可能差圧)は、運転者のブレーキ操作部材Zの踏み込みにより想定されるマスタ圧の最大値に対応する値(例えば5MPa)に設定されていればよい。 Here, an example will be described in which a vehicle braking device 1 is provided in a vehicle provided with a regenerative braking device capable of applying a regenerative braking force. When the brake operating member Z is operated with the first solenoid valve 62 and the second solenoid valve 63 closed and the brake is braked only by the regenerative braking force, the master pressure becomes larger than 0, but the wheel pressure becomes higher. It remains 0. In such a situation, the master pressure will be higher than the wheel pressure. Therefore, the first differential pressure (difference pressure that can maintain the closed valve) of the first solenoid valve 62 is set to a value (for example, 5 MPa) corresponding to the maximum value of the master pressure assumed by the driver's depression of the brake operating member Z. It suffices if it is done.
 第2差圧は、第1ホイールシリンダ81、82の液圧がマスタ圧よりも高い場合における第1ホイールシリンダ81、82の液圧とマスタ圧との差圧である。ホイール圧がマスタ圧よりも大きくなる状況は、例えばバイワイヤモード(通常制御)でホイール圧が加圧された状況や、自動ブレーキ制御など運転者のブレーキ操作なしでホイール圧が加圧された状況などが挙げられる。したがって、第2電磁弁63の第2差圧(閉弁維持可能差圧)は、マスタ圧が0であり且つ電動シリンダ2およびアクチュエータ3を用いて最大限加圧した状態で第2電磁弁63が開弁しない値(例えば20MPa)に設定されていればよい。
 このように、車両用制動装置1は、マスタシリンダユニット4が発生可能な液圧よりも大きい液圧を第1ホイールシリンダ81、82に発生可能に構成され、第1液路51において弁ユニット60と第1ホイールシリンダ81、82との間の部分に第2液路52を介して接続された電動シリンダ2を備えている。そして、電流供給により第2電磁弁63が閉弁状態を維持可能な第2差圧は、電流供給により第1電磁弁62が閉弁状態を維持可能な第1差圧よりも大きく、且つ電動シリンダ2が発生可能な液圧以上の値である。
The second differential pressure is the differential pressure between the hydraulic pressure of the first wheel cylinders 81 and 82 and the master pressure when the hydraulic pressure of the first wheel cylinders 81 and 82 is higher than the master pressure. The situation where the wheel pressure becomes larger than the master pressure is, for example, the situation where the wheel pressure is pressurized in the by-wire mode (normal control), the situation where the wheel pressure is pressurized without the driver's braking operation such as automatic brake control, etc. Can be mentioned. Therefore, the second solenoid valve 63 (the differential pressure that can maintain the closed valve) is the second solenoid valve 63 in a state where the master pressure is 0 and the pressure is maximized by using the electric cylinder 2 and the actuator 3. May be set to a value that does not open the valve (for example, 20 MPa).
As described above, the vehicle braking device 1 is configured to be able to generate a hydraulic pressure higher than the hydraulic pressure that can be generated by the master cylinder unit 4 in the first wheel cylinders 81 and 82, and the valve unit 60 in the first liquid passage 51. An electric cylinder 2 connected to the portion between the first wheel cylinders 81 and 82 via a second liquid passage 52 is provided. The second differential pressure at which the second solenoid valve 63 can maintain the closed state by the current supply is larger than the first differential pressure at which the first solenoid valve 62 can maintain the closed state by the current supply, and is electrically operated. The value is equal to or higher than the hydraulic pressure that the cylinder 2 can generate.
(第1実施形態の効果)
 第1実施形態によれば、第1電磁弁62及び第2電磁弁63を開弁させる場合、弁ユニット60よりも第1ホイールシリンダ81、82側の液圧がマスタシリンダ41側の液圧よりも高い場合、当該液圧により第2電磁弁63の第2弁体631が開弁側に押圧され、開弁が促される。一方で、弁ユニット60よりもマスタシリンダ41側の液圧が第1ホイールシリンダ81、82側の液圧よりも高い場合、当該液圧により第1電磁弁62の第1弁体621が開弁側に押圧され、開弁が促される。このように、弁ユニット60の開弁にあたり、弁ユニット60の両側のうちいずれの液圧が相対的に高い場合でも、一方の電磁弁の作動が開弁側に促される。
(Effect of the first embodiment)
According to the first embodiment, when the first solenoid valve 62 and the second solenoid valve 63 are opened, the hydraulic pressure on the first wheel cylinders 81 and 82 side of the valve unit 60 is higher than the hydraulic pressure on the master cylinder 41 side. If it is too high, the hydraulic pressure pushes the second valve body 631 of the second solenoid valve 63 toward the valve opening side, and the valve opening is promoted. On the other hand, when the hydraulic pressure on the master cylinder 41 side of the valve unit 60 is higher than the hydraulic pressure on the first wheel cylinders 81 and 82, the hydraulic pressure causes the first valve body 621 of the first solenoid valve 62 to open. It is pressed to the side and the valve opening is promoted. As described above, when opening the valve unit 60, even if the hydraulic pressure on either side of the valve unit 60 is relatively high, the operation of one of the solenoid valves is promoted to the valve opening side.
 これにより、第1電磁弁62のバネ力を大きくしなくても、ホイール圧がマスタ圧より高い場合には第2電磁弁63が開弁される。つまり、第1電磁弁62の流路断面積を大きくしても、バネ力を小さくできるため、閉弁に必要な電磁力の増大を抑制することができる。つまり、第1実施形態によれば、コイル(606)の小型化と流路断面積の増大とを両立させることができる。 As a result, the second solenoid valve 63 is opened when the wheel pressure is higher than the master pressure without increasing the spring force of the first solenoid valve 62. That is, even if the flow path cross-sectional area of the first solenoid valve 62 is increased, the spring force can be reduced, so that an increase in the electromagnetic force required for closing the valve can be suppressed. That is, according to the first embodiment, it is possible to achieve both miniaturization of the coil (606) and an increase in the cross-sectional area of the flow path.
 例えば第1ブレーキECU901に関する電気失陥が発生した場合、電動シリンダ2、弁ユニット60、連通制御弁61及びシミュレータカット弁44は、非通電状態となる。したがって、電動シリンダ2は停止し、弁ユニット60は開弁し、連通制御弁61とシミュレータカット弁44は閉弁する。この場合、第2ブレーキECU902は、アクチュエータ3を制御してホイールシリンダ81~84を加圧する。つまり、第1液圧出力部31は、弁ユニット60を介してマスタシリンダユニット4からフルードを吸入する。 For example, when an electric failure occurs in the first brake ECU 901, the electric cylinder 2, the valve unit 60, the communication control valve 61, and the simulator cut valve 44 are in a non-energized state. Therefore, the electric cylinder 2 is stopped, the valve unit 60 is opened, and the communication control valve 61 and the simulator cut valve 44 are closed. In this case, the second brake ECU 902 controls the actuator 3 to pressurize the wheel cylinders 81 to 84. That is, the first hydraulic pressure output unit 31 sucks the fluid from the master cylinder unit 4 via the valve unit 60.
 ここで、第1実施形態によれば、上記構成例のように、第1電磁弁62の第1貫通孔623の流路断面積を大きくすることができるため、マスタ圧によるホイールシリンダの昇圧応答性が向上する。また、アクチュエータ3による弁ユニット60を介したフルード吸入がスムーズとなる。したがって、第1液圧出力部31による加圧がスムーズになり、第1液圧出力部31の応答性は向上する。このように、第1実施形態によれば、コイルの小型化を可能にするとともに、マスタシリンダユニット4による加圧の応答性を向上させることができる。 Here, according to the first embodiment, as in the above configuration example, the flow path cross-sectional area of the first through hole 623 of the first solenoid valve 62 can be increased, so that the boost response of the wheel cylinder by the master pressure can be increased. Improves sex. Further, the fluid suction by the actuator 3 through the valve unit 60 becomes smooth. Therefore, the pressurization by the first hydraulic pressure output unit 31 becomes smooth, and the responsiveness of the first hydraulic pressure output unit 31 is improved. As described above, according to the first embodiment, it is possible to reduce the size of the coil and improve the responsiveness of pressurization by the master cylinder unit 4.
 また、非通電状態において、第1電磁弁62及び第2電磁弁63の一方が開弁すると、弁ユニット60の入出力間の差圧が0になり、第1電磁弁62及び第2電磁弁63の他方も開弁する。つまり、第1実施形態によれば、第1電磁弁62及び第2電磁弁63は差圧0の際に開弁する構成であればよく、第1電磁弁62及び第2電磁弁63の付勢部材(605)のバネ力を小さくすることができる。 Further, when one of the first solenoid valve 62 and the second solenoid valve 63 is opened in the non-energized state, the differential pressure between the input and output of the valve unit 60 becomes 0, and the first solenoid valve 62 and the second solenoid valve become zero. The other of 63 is also opened. That is, according to the first embodiment, the first solenoid valve 62 and the second solenoid valve 63 may be configured to be opened when the differential pressure is 0, and the first solenoid valve 62 and the second solenoid valve 63 are attached. The spring force of the force member (605) can be reduced.
<第2実施形態>
 第2実施形態のマスタシリンダユニット40は、図5に示すように、2つのマスタ室410a、410bを有するタンデム型のマスタシリンダユニットである。マスタシリンダユニット40は、マスタシリンダ410と、第1マスタピストン401と、第2マスタピストン402と、付勢部材403、404と、を備えている。
<Second Embodiment>
As shown in FIG. 5, the master cylinder unit 40 of the second embodiment is a tandem type master cylinder unit having two master chambers 410a and 410b. The master cylinder unit 40 includes a master cylinder 410, a first master piston 401, a second master piston 402, and urging members 403 and 404.
 マスタシリンダ410は、内部に、第1マスタピストン401で区画された第1マスタ室410aと、第1マスタピストン401及び第2マスタピストン402で区画された第2マスタ室410bと、を備えている。付勢部材403は、第1マスタ室410aに配置され、第1マスタピストン401を初期位置に向けて付勢する。付勢部材404は、第2マスタ室410bに配置され、第2マスタピストン402を初期位置に向けて付勢する。 The master cylinder 410 internally includes a first master chamber 410a partitioned by the first master piston 401, and a second master chamber 410b partitioned by the first master piston 401 and the second master piston 402. .. The urging member 403 is arranged in the first master chamber 410a and urges the first master piston 401 toward the initial position. The urging member 404 is arranged in the second master chamber 410b and urges the second master piston 402 toward the initial position.
 マスタシリンダユニット40は、第1マスタ室410aと第2マスタ室410bとが同圧になるように構成されている。リザーバ45とマスタ室410a、410bとの連通は、マスタピストン401、402が初期位置から所定量前進することで遮断される。第1マスタ室410aは第1液路51と接続されている。連通制御弁61は、第1実施形態の連通制御弁61と同じ目的・機能を有するノーマルクローズ型の電磁弁である。連通制御弁61は、第3液路53に設けられ、電動シリンダ2から第1液圧出力部31へのフルード供給を許可/禁止する。 The master cylinder unit 40 is configured such that the first master chamber 410a and the second master chamber 410b have the same pressure. The communication between the reservoir 45 and the master chambers 410a and 410b is cut off when the master pistons 401 and 402 advance by a predetermined amount from the initial position. The first master chamber 410a is connected to the first liquid passage 51. The communication control valve 61 is a normally closed solenoid valve having the same purpose and function as the communication control valve 61 of the first embodiment. The communication control valve 61 is provided in the third liquid passage 53, and permits / prohibits the supply of fluid from the electric cylinder 2 to the first hydraulic pressure output unit 31.
 第1マスタ室410aは、第1液路51を介して、第1液圧出力部31に接続されている。第2マスタ室410bは、液路55、弁ユニット60b、及び第2液路52を介して、第2液圧出力部32に接続されている。液路55は、第2マスタ室410bと第2液路52とを接続している。第2液圧出力部32は、第2ホイールシリンダ83、84を加圧する場合、液路55及び第2液路52からフルードを吸入するように構成されている。 The first master chamber 410a is connected to the first hydraulic pressure output unit 31 via the first liquid passage 51. The second master chamber 410b is connected to the second hydraulic pressure output unit 32 via the liquid passage 55, the valve unit 60b, and the second liquid passage 52. The liquid passage 55 connects the second master chamber 410b and the second liquid passage 52. The second hydraulic pressure output unit 32 is configured to suck in fluid from the liquid passage 55 and the second liquid passage 52 when pressurizing the second wheel cylinders 83 and 84.
 上記のように、第2実施形態の車両用制動装置10は、2つの弁ユニット60、60bを備えている。一方の弁ユニット60は、第1実施形態同様、第1液路51に設けられており、第1電磁弁62及び第2電磁弁63を含む。他方の弁ユニット60bは、液路55に設けられ、第1電磁弁62b及び第2電磁弁63bを含む。 As described above, the vehicle braking device 10 of the second embodiment includes two valve units 60 and 60b. One valve unit 60 is provided in the first liquid passage 51 as in the first embodiment, and includes the first solenoid valve 62 and the second solenoid valve 63. The other valve unit 60b is provided in the liquid passage 55 and includes a first solenoid valve 62b and a second solenoid valve 63b.
 第1電磁弁62b及び第2電磁弁63bは、ノーマルオープン型の電磁弁である。第1電磁弁62bは、第2ホイールシリンダ83、84側に配置された第1弁体621bと、マスタシリンダ410側に配置された第1弁座622bと、を有している。つまり、第1電磁弁62bのシール方向(第1方向)は、第2ホイールシリンダ83、84からマスタシリンダユニット40に向かう方向と同じ向きである。 The first solenoid valve 62b and the second solenoid valve 63b are normally open type solenoid valves. The first solenoid valve 62b has a first valve body 621b arranged on the second wheel cylinders 83 and 84 sides and a first valve seat 622b arranged on the master cylinder 410 side. That is, the sealing direction (first direction) of the first solenoid valve 62b is the same as the direction from the second wheel cylinders 83 and 84 toward the master cylinder unit 40.
 第2電磁弁63bは、第1電磁弁62bに並列に配置されている。第2電磁弁63bは、マスタシリンダ410側に配置された第2弁体631bと、第2ホイールシリンダ83、84側に配置された第2弁座632bと、を有している。第2電磁弁63bのシール方向(第2方向)は、第2ホイールシリンダ83、84からマスタシリンダユニット40に向かう方向と反対向きである。このように、弁ユニット60bにおいても、弁ユニット60同様、第1電磁弁62bのシール方向と第2電磁弁63bのシール方向とは反対である。 The second solenoid valve 63b is arranged in parallel with the first solenoid valve 62b. The second solenoid valve 63b has a second valve body 631b arranged on the master cylinder 410 side and a second valve seat 632b arranged on the second wheel cylinders 83 and 84 side. The sealing direction (second direction) of the second solenoid valve 63b is opposite to the direction from the second wheel cylinders 83 and 84 toward the master cylinder unit 40. As described above, in the valve unit 60b as well, the sealing direction of the first solenoid valve 62b and the sealing direction of the second solenoid valve 63b are opposite to each other, as in the valve unit 60.
 第2実施形態の構成によっても、弁ユニット60と弁ユニット60bとが第1実施形態同様の効果を発揮する。なお、リザーバ45は、3つの部屋に分かれており、部屋451が第2マスタ室410bに接続され、部屋452が電動シリンダ2に接続され、部屋453が第1マスタ室410aに接続されている。 Depending on the configuration of the second embodiment, the valve unit 60 and the valve unit 60b exert the same effect as that of the first embodiment. The reservoir 45 is divided into three rooms, the room 451 is connected to the second master room 410b, the room 452 is connected to the electric cylinder 2, and the room 453 is connected to the first master room 410a.
<その他>
 本発明は、上記実施形態に限られない。本発明は、例えば、回生制動装置を含む車両(ハイブリッド車や電気自動車)、自動ブレーキ制御を実行する車両、又は自動運転車両にも適用できる。また、系統の配置は、例えば第1系統のホイールシリンダが前輪に設けられ、第2系統のホイールシリンダが後輪に設けられるような前後配管でもよい。第1電磁弁62及び第2電磁弁63は、ノーマルクローズ型の電磁弁でもよい。また、マスタシリンダユニット4の代わりにモータ駆動に応じて液圧を発生可能な加圧部が設けられていてもよい。また、電動シリンダ2が失陥していない状態においても、本発明は適用できる。要求制動力に応じて、電動シリンダ2とアクチュエータ3とのいずれかを作動させるよう構成された車両用制動装置が、電動シリンダ2を作動させずにアクチュエータ3を作動させる場合においても、本発明を用いることができる。
<Others>
The present invention is not limited to the above embodiment. The present invention can also be applied to, for example, a vehicle including a regenerative braking device (hybrid vehicle or electric vehicle), a vehicle that executes automatic braking control, or an autonomous driving vehicle. Further, the system may be arranged in front and rear piping such that the wheel cylinder of the first system is provided on the front wheels and the wheel cylinder of the second system is provided on the rear wheels. The first solenoid valve 62 and the second solenoid valve 63 may be normally closed type solenoid valves. Further, instead of the master cylinder unit 4, a pressurizing unit capable of generating hydraulic pressure according to the driving of the motor may be provided. Further, the present invention can be applied even when the electric cylinder 2 is not collapsed. The present invention is also applied to a case where a vehicle braking device configured to operate either the electric cylinder 2 or the actuator 3 according to a required braking force operates the actuator 3 without operating the electric cylinder 2. Can be used.
 第1液圧発生部に相当する発生部は、マスタシリンダユニット4、40以外でもよい。例えば、第1液圧発生部に相当する発生部は電動シリンダでもよい。また、マスタシリンダユニット4、40の代わりに、複数の発生部が設けられていてもよい。例えば、複数の電動シリンダによって構成されていてもよい。複数の電動シリンダは並列に配置されていてもよい。この場合、複数の電動シリンダとホイールシリンダとを接続する複数の液路に電磁弁が1つずつ設けられていてもよい。この場合、複数の液路に設けられた複数の電磁弁によって、弁ユニットが構成される。 The generating part corresponding to the first hydraulic pressure generating part may be other than the master cylinder units 4 and 40. For example, the generating portion corresponding to the first hydraulic pressure generating portion may be an electric cylinder. Further, instead of the master cylinder units 4 and 40, a plurality of generating units may be provided. For example, it may be composed of a plurality of electric cylinders. A plurality of electric cylinders may be arranged in parallel. In this case, one solenoid valve may be provided in each of the plurality of liquid passages connecting the plurality of electric cylinders and the wheel cylinders. In this case, the valve unit is composed of a plurality of solenoid valves provided in the plurality of liquid passages.
 第2電磁弁63は非通電状態で閉弁するノーマルクローズ型の電磁弁でもよい。以下、第2電磁弁63がノーマルクローズ型の電磁弁である場合について説明する。例えば第1電磁弁62の第1バネ力および第1シール面積の関係によって、第1耐圧が第2耐圧よりも大きい場合、両電磁弁が非通電状態とすることで、ホイール圧が第1耐圧よりも小さければ第1電磁弁62が開弁するのでホイール圧を減圧できる。第1耐圧とは、非通電状態の第1電磁弁62が開弁を維持可能な差圧(ホイールシリンダ側の液圧>マスタシリンダ41側の液圧)である。第2耐圧とは、非通電状態の第2電磁弁63が閉弁を維持可能な差圧(ホイールシリンダ側の液圧>マスタシリンダ41側の液圧)である。この場合、第2電磁弁63は弁体を閉弁する方向に付勢する付勢部材を備え、通電時には弁体に対して閉弁方向に力が作用するよう構成されていればよい。つまり、この第2電磁弁63は、付勢力も電磁力も閉弁する側に作用する。この場合、付勢部材による付勢力と通電時に閉弁方向に作用する力との合計が、電動シリンダ2が出力する圧力よりも大きく構成されていればよい。これにより、電動シリンダ2が出力したフルードがマスタシリンダユニット4に向けて流入することを防止できる。第2電磁弁63のバネ力は小さくてもよいので第2耐圧を小さくでき、第1電磁弁62の第1耐圧も小さくできる。そのため第1電磁弁62の流路面積は大きくすることができ且つ第1電磁弁62のバネ力も小さくできるため、コイルを大型化する必要がない。このように第2電磁弁63がノーマルクローズ型の電磁弁であっても、第1電磁弁62の流路面積を大きくすることができるため、マスタシリンダユニット4により加圧するときの昇圧応答性を向上できる。マスタシリンダユニット4とホイールシリンダとの間にマスタシリンダユニット4からフルードを吸入するアクチュエータ3が設けられている場合には、アクチュエータ3による吸入応答性も向上できる。なお、ホイール圧が高圧である場合、第2電磁弁63を非通電状態とすることで差圧が第2耐圧を超え、第2電磁弁63が開弁し、ホイール圧を減圧することができる。この第2電磁弁63は、第2実施形態でも適用できる。 The second solenoid valve 63 may be a normally closed solenoid valve that closes in a non-energized state. Hereinafter, a case where the second solenoid valve 63 is a normally closed type solenoid valve will be described. For example, when the first withstand voltage is larger than the second withstand voltage due to the relationship between the first spring force of the first solenoid valve 62 and the first seal area, both solenoid valves are de-energized so that the wheel pressure becomes the first withstand voltage. If it is smaller than, the first solenoid valve 62 opens, so that the wheel pressure can be reduced. The first withstand voltage is a differential pressure (hydraulic pressure on the wheel cylinder side> hydraulic pressure on the master cylinder 41 side) in which the first solenoid valve 62 in the non-energized state can maintain the valve opening. The second withstand voltage is a differential pressure (hydraulic pressure on the wheel cylinder side> hydraulic pressure on the master cylinder 41 side) in which the second solenoid valve 63 in the non-energized state can maintain the closed valve. In this case, the second solenoid valve 63 may be provided with an urging member that urges the valve body in the valve closing direction, and may be configured so that a force acts on the valve body in the valve closing direction when energized. That is, the second solenoid valve 63 acts on the side where both the urging force and the solenoid force are closed. In this case, the total of the urging force by the urging member and the force acting in the valve closing direction when energized may be larger than the pressure output by the electric cylinder 2. As a result, it is possible to prevent the fluid output by the electric cylinder 2 from flowing toward the master cylinder unit 4. Since the spring force of the second solenoid valve 63 may be small, the second withstand voltage can be reduced, and the first withstand voltage of the first solenoid valve 62 can also be reduced. Therefore, the flow path area of the first solenoid valve 62 can be increased and the spring force of the first solenoid valve 62 can be reduced, so that it is not necessary to increase the size of the coil. As described above, even if the second solenoid valve 63 is a normally closed type solenoid valve, the flow path area of the first solenoid valve 62 can be increased, so that the boost responsiveness when pressurized by the master cylinder unit 4 can be improved. Can be improved. When an actuator 3 for sucking fluid from the master cylinder unit 4 is provided between the master cylinder unit 4 and the wheel cylinder, the suction responsiveness of the actuator 3 can be improved. When the wheel pressure is high, the differential pressure exceeds the second withstand voltage by de-energizing the second solenoid valve 63, the second solenoid valve 63 opens, and the wheel pressure can be reduced. .. The second solenoid valve 63 can also be applied to the second embodiment.

Claims (5)

  1.  第1液路を介してホイールシリンダに液圧を発生させる第1液圧発生部と、
     前記第1液路において前記ホイールシリンダと前記第1液圧発生部との間に設けられた弁ユニットと、を備え、
     前記弁ユニットは、
     第1弁体及び第1弁座を有し、前記ホイールシリンダから前記第1液圧発生部に向かう方向が、前記第1弁体が前記第1弁座に着座する第1方向と同じ向きである非通電状態で開弁するノーマルオープン型の第1電磁弁と、
     前記第1電磁弁に並列に接続され、第2弁体と第2弁座を有し、前記ホイールシリンダから前記第1液圧発生部に向かう方向が、前記第2弁体が前記第2弁座に着座する第2方向と反対向きである第2電磁弁と、
     を備える、車両用制動装置。
    A first hydraulic pressure generating part that generates hydraulic pressure in the wheel cylinder via the first liquid passage,
    A valve unit provided between the wheel cylinder and the first hydraulic pressure generating portion in the first liquid passage is provided.
    The valve unit
    It has a first valve body and a first valve seat, and the direction from the wheel cylinder toward the first hydraulic pressure generating portion is the same as the first direction in which the first valve body is seated on the first valve seat. A normally open type first solenoid valve that opens in a certain non-energized state,
    It is connected in parallel to the first solenoid valve, has a second valve body and a second valve seat, and the second valve body is the second valve in the direction from the wheel cylinder to the first hydraulic pressure generating portion. The second solenoid valve, which is in the opposite direction to the second direction in which the seat is seated,
    A braking device for vehicles.
  2.   前記第2電磁弁は、非通電状態で開弁するノーマルオープン型の電磁弁である、請求項1に記載の車両用制動装置。 The vehicle braking device according to claim 1, wherein the second solenoid valve is a normally open type solenoid valve that opens in a non-energized state.
  3.  開弁した状態でフルードが流通するように前記第1弁座に形成された第1貫通孔の流路断面積は、開弁した状態でフルードが流通するように前記第2弁座に形成された第2貫通孔の流路断面積よりも大きい、請求項1または2に記載の車両用制動装置。 The flow path cross-sectional area of the first through hole formed in the first valve seat so that the fluid flows in the opened state is formed in the second valve seat so that the fluid flows in the opened state. The vehicle braking device according to claim 1 or 2, which is larger than the flow path cross-sectional area of the second through hole.
  4.  前記第1液路において前記弁ユニットと前記ホイールシリンダとの間に設けられ、前記弁ユニットを介して前記第1液圧発生部からフルードを吸入して液圧を出力する液圧出力部を更に備えた、請求項3に記載の車両用制動装置。 Further, a hydraulic pressure output unit provided between the valve unit and the wheel cylinder in the first liquid passage, sucks fluid from the first hydraulic pressure generating unit via the valve unit, and outputs the hydraulic pressure. The vehicle braking device according to claim 3, which is provided.
  5.  前記第1液圧発生部が発生可能な液圧よりも大きい液圧を前記ホイールシリンダに発生可能に構成され、前記第1液路において前記弁ユニットと前記ホイールシリンダとの間の部分に第2液路を介して接続された第2液圧発生部を更に備え、
     電流供給により前記第2電磁弁が閉弁状態を維持可能な第2差圧は、電流供給により前記第1電磁弁が閉弁状態を維持可能な第1差圧よりも大きく、
     前記第2差圧は、前記第2液圧発生部が発生可能な液圧以上の値である、請求項1~4の何れか一項に記載の車両用制動装置。
    A hydraulic pressure larger than the hydraulic pressure that can be generated by the first hydraulic pressure generating portion is configured to be able to be generated in the wheel cylinder, and a second liquid pressure is formed in a portion between the valve unit and the wheel cylinder in the first liquid passage. Further provided with a second hydraulic pressure generator connected via a liquid passage,
    The second differential pressure at which the second solenoid valve can be maintained in the closed state by the current supply is larger than the first differential pressure at which the first solenoid valve can be maintained in the closed state by the current supply.
    The vehicle braking device according to any one of claims 1 to 4, wherein the second differential pressure is a value equal to or higher than a hydraulic pressure that can be generated by the second hydraulic pressure generating portion.
PCT/JP2021/012879 2020-03-30 2021-03-26 Vehicular braking device WO2021200661A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-060594 2020-03-30
JP2020060594A JP2021160370A (en) 2020-03-30 2020-03-30 Vehicle braking device

Publications (1)

Publication Number Publication Date
WO2021200661A1 true WO2021200661A1 (en) 2021-10-07

Family

ID=77928942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012879 WO2021200661A1 (en) 2020-03-30 2021-03-26 Vehicular braking device

Country Status (2)

Country Link
JP (1) JP2021160370A (en)
WO (1) WO2021200661A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084753A (en) * 2002-08-26 2004-03-18 Toyota Motor Corp Solenoid valve control device
JP2015193313A (en) * 2014-03-31 2015-11-05 日信工業株式会社 Brake fluid pressure generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084753A (en) * 2002-08-26 2004-03-18 Toyota Motor Corp Solenoid valve control device
JP2015193313A (en) * 2014-03-31 2015-11-05 日信工業株式会社 Brake fluid pressure generator

Also Published As

Publication number Publication date
JP2021160370A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
US9499149B2 (en) Brake hydraulic pressure generator
US9371062B2 (en) Brake device
KR101724969B1 (en) Brake system having pedal simulator
KR20170107548A (en) Brake system for motor vehicles
JP2004182035A (en) Brake device for vehicle
CN110356381B (en) Vehicle brake system
KR20180002825A (en) Brake control device and brake system
JP2019059458A (en) Brake control device
WO2018116794A1 (en) Hydraulic control apparatus and brake system
JP5927093B2 (en) Brake device
JP2002220042A (en) Hydraulic control device and vehicle braking device using it
WO2021200661A1 (en) Vehicular braking device
KR101882340B1 (en) Electronic hydraulic brake system and control method thereof
JP6245696B2 (en) Brake fluid pressure generator
JP5093082B2 (en) Brake hydraulic pressure control device
JP7167656B2 (en) vehicle braking device
JP7443872B2 (en) Vehicle braking device
JP4998368B2 (en) Hydraulic control mechanism
WO2021187435A1 (en) Vehicle braking device
JP2020104833A (en) Vehicle brake apparatus
JP2020032833A (en) Brake control device of vehicle
JP7318458B2 (en) vehicle braking device
WO2022071499A1 (en) Brake device for vehicle
WO2022138814A1 (en) Vehicular braking device and electric cylinder
CN111231915B (en) Brake system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782218

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21782218

Country of ref document: EP

Kind code of ref document: A1