WO2021199394A1 - 無線通信システム、無線通信方法、基地局制御装置及び基地局制御プログラム - Google Patents

無線通信システム、無線通信方法、基地局制御装置及び基地局制御プログラム Download PDF

Info

Publication number
WO2021199394A1
WO2021199394A1 PCT/JP2020/015148 JP2020015148W WO2021199394A1 WO 2021199394 A1 WO2021199394 A1 WO 2021199394A1 JP 2020015148 W JP2020015148 W JP 2020015148W WO 2021199394 A1 WO2021199394 A1 WO 2021199394A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
base station
terminal
information
control device
Prior art date
Application number
PCT/JP2020/015148
Other languages
English (en)
French (fr)
Inventor
亮太 椎名
谷口 友宏
一貴 原
真也 玉置
友規 村上
俊朗 中平
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/015148 priority Critical patent/WO2021199394A1/ja
Priority to US17/915,889 priority patent/US20230136032A1/en
Priority to JP2022511454A priority patent/JP7384270B2/ja
Publication of WO2021199394A1 publication Critical patent/WO2021199394A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • This disclosure relates to a wireless communication system and a wireless communication method.
  • Patent Document 1 In an RF (Radio Frequency) communication system such as Wi-Fi, a technique using optical wireless communication (downward communication by LED lighting or the like) has been proposed (see, for example, Patent Document 1).
  • data such as SSID (Service Set Identifier) and password required for Wi-Fi connection authentication are transmitted by optical radio.
  • SSID Service Set Identifier
  • Patent Document 1 the user simply enters the optical wireless communication area without investigating what wireless communication can be used and performing connection / authentication work such as input operation of SSID and password. Can be connected to Wi-Fi.
  • Patent Document 2 A technique has been proposed in which an optical ID with a small amount of data corresponding to these is transmitted instead of transmitting the connection / authentication information itself of RF communication by optical wireless communication (see, for example, Patent Document 2).
  • the optical transmitter transmits data under a color / brightness change under conditions that humans cannot perceive the above optical ID.
  • Both the base station / terminal have a correspondence list of the optical ID and the connection / authentication information, and the terminal extracts the connection / authentication information corresponding to the received optical ID and performs RF communication according to this information.
  • a terminal can be used.
  • the system of Patent Document 2 mainly has a configuration in which an optical base station (smart lighting, etc.) and an RF base station are integrated.
  • optical base stations are required depending on the number of RF base stations.
  • a concrete mechanism for integrated management / control of the already installed optical base station and RF base station is required.
  • the purpose of the present disclosure is to enable the smart lighting already installed to be used as an optical base station as it is without modifying it, and to perform RF communication connection / authentication control using an optical signal transmitted from the optical base station. And.
  • an optical base station and an RF base station are separated from each other, and the RF base station and the terminal are connected based on the information acquired from the RF base station. Controls one or more optical base stations.
  • the wireless communication system is With one or more wireless base stations that communicate wirelessly with the terminal, A base that collects wireless base station information from each wireless base station, determines a wireless base station that performs wireless communication with a terminal using the collected wireless base station information, and transmits an optical ID according to the determined wireless base station. Station control device and One or more optical base stations that receive the optical ID from the base station control device and transmit the received optical ID to the terminal using an optical signal. With The radio base station determined by the base station control device performs wireless communication with a terminal that has received the optical ID.
  • the wireless communication method is A wireless communication method executed by a wireless communication system in which one or more wireless base stations and one or more optical base stations are connected to a base station control device.
  • the base station control device Collecting radio base station information from each radio base station, Use the collected wireless base station information to determine the wireless base station that will perform wireless communication with the terminal.
  • the optical ID corresponding to the determined radio base station is transmitted to at least one of the above-mentioned one or more optical base stations.
  • the optical base station that has received the optical ID transmits the received optical ID to the terminal using an optical signal.
  • the radio base station determined by the base station control device performs wireless communication with a terminal that has received the optical ID.
  • the base station control device is A base station control device connected to one or more radio base stations and one or more optical base stations. Collecting radio base station information from each radio base station, Use the collected wireless base station information to determine the wireless base station that will perform wireless communication with the terminal.
  • the optical ID corresponding to the determined radio base station is transmitted to at least one of the one or more optical base stations.
  • the optical base station is made to transmit the optical ID to the terminal using an optical signal.
  • the determined radio base station is made to perform wireless communication with the terminal that has received the optical ID.
  • the base station control program according to the present disclosure is a program for realizing each functional unit provided in the base station control device according to the present disclosure on a computer, and each step provided in the wireless communication method according to the present disclosure. Is a program for making a computer execute.
  • optical base station It can be used as an optical base station as it is without modifying the smart lighting that has already been installed, and it is possible to perform RF communication connection / authentication control using the optical signal transmitted from the optical base station.
  • the basic configuration of the system according to the present disclosure is shown.
  • An example of the optical ID correspondence list is shown.
  • An example of radio base station information is shown.
  • a configuration example of the system according to the second embodiment is shown.
  • An example of the processing flow when the optical base station broadcasts the optical ID regardless of the presence or absence of the terminal is shown.
  • An example of the flow of the control signal in the second embodiment is shown.
  • An example of the processing flow when the probe request from the terminal is used as the starting point of the flow processing is shown.
  • a configuration example of the system according to the third embodiment is shown.
  • An example of the flow of the control signal in the third embodiment is shown.
  • a configuration example of the system according to the fourth embodiment is shown.
  • An example of the flow of the control signal in the fourth embodiment is shown.
  • An example of the processing flow in the fifth embodiment is shown.
  • An example of the flow of the control signal in the fifth embodiment is shown.
  • An example of the characteristics of the optical signal output by the optical transmitter according to the eighth embodiment is shown.
  • An example of the characteristics of the optical signal output by the optical transmitter according to the eighth embodiment is shown.
  • An example of the characteristics of the optical signal output by the optical transmitter according to the eighth embodiment is shown.
  • An example of the characteristics of the optical signal output by the optical transmitter according to the eighth embodiment is shown.
  • a configuration example of a terminal of the communication system according to the eighth embodiment is shown.
  • the main configuration is a configuration in which the optical base station and the RF base station are separated, and the already installed optical base station is flexibly controlled based on some information collected from the RF base station.
  • FIG. 1 shows the basic configuration of the system according to the present disclosure.
  • the system according to the present disclosure includes a base station control device 40, a single RF base station 10, and a single optical base station 50.
  • the RF base station 10 and the optical base station 50 are connected.
  • the RF base station 10 is connected to the upper network 30.
  • These connection forms are arbitrary, and may be a wired connection or a wireless connection.
  • the base station control device 40 is a device that externally controls the optical base station 50, and includes an authentication information integrated control unit 41, an optical base station control unit 42, and an optical ID compatible list.
  • the base station control device 40 of the present disclosure can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
  • FIG. 2 shows an example of an optical ID compatible list.
  • FIG. 2 shows an example of four optical IDs having serial numbers 1 to 4.
  • the wireless communication connection information is information that defines what kind of wireless system, which frequency band is used, and which wireless channel is used for RF wireless communication between the RF base station 10 and the terminal 20.
  • the wireless communication authentication information is information that defines an SSID (Service Set Identifier), a password, and an ID (Identifier) when the terminal 20 accesses the RF base station 10. One of these may be specified, or any plurality of them may be specified.
  • the wireless communication connection information and the wireless communication authentication information are examples, and other necessary information may be specified.
  • the authentication information integrated control unit 41 collects wireless base station information from the RF base station 10, selects the RF base station 10 to be connected by the terminal 20, and transmits the information to the optical base station control unit 42.
  • FIG. 3 shows an example of radio base station information.
  • the radio base station information includes radio parameters and wired parameters.
  • the wireless parameters are parameters used when performing wireless communication with the terminal 20, for example, wireless system, frequency band, wireless channel, number of connected terminals, transmission power, RSSI (Received Signal Strength Indicator), Modulation Coding Scene, spatial stream. Number, Channel state information. Wired parameters are, for example, wired interfaces, wired traffic alive monitoring results.
  • the authentication information integrated control unit 41 selects the optimum RF base station 10 to be connected by the terminal 20 using the collected radio base station information, and transmits the connection information and the authentication information used by the RF base station 10 to the optical base station control unit. Send to 42.
  • the optical base station control unit 42 extracts the connection information received from the authentication information integrated control unit 41 and the optical ID corresponding to the authentication information from the optical ID correspondence list, and transmits the extracted optical ID. Is transmitted to the optical base station 50.
  • the optical base station control information includes connection information and authentication information of the RF base station 10 to which the terminal 20 should connect.
  • the optical ID included in the optical base station control information may be the optical ID itself, or may be a signal pattern corresponding to the optical ID.
  • the signal pattern includes bit patterns such as 8 bits and 16 bits. By lengthening the bit pattern, the reception accuracy at the terminal 20 can be improved.
  • the optical base station 50 transmits an optical ID according to the optical base station control information from the base station control device 40 to the terminal 20 using an optical signal.
  • the optical base station 50 can use any device capable of transmitting the optical ID to the terminal 20, and may be a non-communication device that is not originally used for communication, such as smart lighting.
  • the optical signal transmitted from the optical base station 50 may be modulated by an orthogonal code or the like so that the reception accuracy at the terminal 20 is improved.
  • the terminal 20 holds the same optical ID correspondence list as the base station control device 40.
  • the terminal 20 receives the optical ID, it refers to the optical ID correspondence list, uses the RF transmission / reception connection information and the authentication information corresponding to the received optical ID, and transmits an authentication request to an appropriate RF base station 10. .. This enables a communication connection between the RF base station 10 and the terminal 20.
  • the terminal 20 does not have to hold the same optical ID correspondence list as the base station control device 40.
  • the terminal 20 automatically acquires the position information from the terminal 20 when the application is started, and uses the application to acquire the optical ID correspondence list according to the position information. Further, the terminal 20 may acquire an appropriate optical ID correspondence list according to the corresponding location information from the cloud via mobile communication.
  • FIG. 4 shows a configuration example of the system according to the present embodiment.
  • the system according to the present embodiment includes a base station control device 40, a plurality of RF base stations 10, and a single optical base station 50.
  • the base station control device 40 is a device that externally controls the optical base station 50, and includes an authentication information integrated control unit 41 and an optical base station control unit 42.
  • the authentication information integrated control unit 41 collects wireless base station information from each RF base station 10, selects the optimum RF base station 10 to be connected to the terminal 20, and transmits the information to the optical base station control unit 42.
  • the optical base station control unit 42 transmits control information to the optical base station 50.
  • the optimum RF base station 10 selected by the authentication information integrated control unit 41 can be exemplified as follows. -Priority is given to connecting to the RF base station 10 having the largest expected communication band. When there are a plurality of optical base stations 50, the RF base station 10 is selected so that the number of terminals 20 connected to the RF base station 10 is uniform.
  • FIG. 5 shows an example of a processing flow when the optical base station 50 broadcasts an optical ID regardless of the presence or absence of a terminal.
  • FIG. 6 shows an example of the flow of control signals.
  • Step S101 The authentication information integrated control unit 41 transmits a request for radio base station information to each RF base station 10.
  • Step S102 The authentication information integrated control unit 41 receives radio base station information from each RF base station 10.
  • Step S103 The authentication information integrated control unit 41 determines whether or not the radio base station information has been received from all the RF base stations 10.
  • Step S104 When the radio base station information is received from all the RF base stations 10 (Yes in S103), the authentication information integrated control unit 41 selects the optimum RF base station 10 from the plurality of RF base stations 10. ..
  • Steps S105 and S106 The optical base station control unit 42 negotiates with the optical base station 50 to confirm whether the optical base station control information can be transmitted. For example, the optical base station control unit 42 transmits a packet for confirming survival to the optical base station 50 (S105), and confirms whether or not there is a response from the optical base station 50 (S106).
  • Step S107 The optical base station control unit 42 transmits the optical base station control information to the optical base station 50 that has received a response from the optical base station 50.
  • the transmission of the optical base station control information to the optical base station 50 may be triggered by a probe request from the terminal 20.
  • FIG. 7 shows an example of the processing flow when the probe request from the terminal is used as the starting point of the flow processing.
  • FIG. 6 shows an example of the flow of control signals.
  • the base station control device 40 selects the optimum RF base station 10 in advance (S104), and executes steps S105 to S107 when the probe request transmitted from the terminal 20 is received.
  • the base station control device 40 may have a function as an RF base station.
  • the base station control device 40 itself may function as base station # N + 1.
  • FIG. 8 shows a configuration example of the system according to the present embodiment.
  • the system according to this embodiment includes a plurality of RF base stations 10 and a plurality of optical base stations 50.
  • a plurality of optical base stations 50 and optical base stations 50 perform the same operation.
  • FIG. 5 shows an example of a processing flow when the optical base station 50 broadcasts an optical ID regardless of the presence or absence of a terminal.
  • FIG. 9 shows an example of the flow of control signals.
  • the optical base station control unit 42 negotiates communication with each optical base station 50. Then, when the optical base station control unit 42 can confirm the responses from all the optical base stations 50 (True in S106), the optical base station control unit 42 transmits the optical base station control information to each optical base station 50 (S107).
  • the optical base station control information transmitted in step S107 is common to each optical base station 50.
  • the transmission of the optical base station control information to the optical base station 50 may be triggered by a probe request from the terminal 20.
  • FIG. 7 shows an example of the processing flow when the probe request from the terminal is used as the starting point of the flow processing.
  • FIG. 9 shows an example of the flow of control signals.
  • the base station control device 40 selects the optimum RF base station 10 in advance (S104), and executes steps S105 to S107 when the probe request transmitted from the terminal 20 is received.
  • the base station control device 40 may have a function as an RF base station.
  • the base station control device 40 itself may function as base station # N + 1.
  • FIG. 10 shows a configuration example of the system according to the present embodiment.
  • the system according to this embodiment includes a plurality of RF base stations 10 and a plurality of optical base stations 50.
  • the plurality of optical base stations 50 operate individually.
  • FIG. 5 shows an example of a processing flow when the optical base station 50 broadcasts an optical ID regardless of the presence or absence of a terminal.
  • FIG. 11 shows an example of the flow of control signals.
  • the optical base station control unit 42 negotiates communication with each optical base station 50. At this time, the optical base station control unit 42 negotiates communication for each optical base station 50. As a result, in the present embodiment, the plurality of optical base stations 50 can operate individually. Then, when the optical base station control unit 42 can confirm the responses from all the optical base stations 50 (True in S106), the optical base station control unit 42 transmits individual optical base station control information to each optical base station 50 (S107).
  • the transmission of the optical base station control information to the optical base station 50 may be triggered by a probe request from the terminal 20.
  • FIG. 7 shows an example of the processing flow when the probe request from the terminal is used as the starting point of the flow processing.
  • FIG. 11 shows an example of the flow of control signals.
  • the base station control device 40 selects the optimum RF base station 10 in advance (S104), and executes steps S105 to S107 when the probe request transmitted from the terminal 20 is received.
  • the base station control device 40 may have a function as an RF base station.
  • the base station control device 40 itself may function as base station # N + 1.
  • the position of the terminal 20 is grasped, and the optical base station 50 distributes individual optical IDs according to the position of the terminal 20.
  • the system configuration of this embodiment is the same as that of the fourth embodiment.
  • FIG. 12 shows an example of the processing flow of the base station control device 40.
  • FIG. 13 shows an example of the flow of control signals.
  • the optical base station control unit 42 executes step S111 before step S104.
  • step S111 the position information of the terminal 20 is collected.
  • the terminal 20 or its user is imaged using a camera, and the position information of the terminal 20 is derived using the position in the captured image. Further, it can be exemplified that the terminal 20 is estimated by using the radio wave at the time of Probe Request.
  • the optical base station control unit 42 negotiates communication only with the optical base station 50 at the specific location from the position information of the terminal 20 (S105), and illuminates only the optical base station 50 at the specific location.
  • the base station control information is transmitted (S107).
  • the terminal according to the present embodiment has a mechanism for periodically updating the threshold setting and reading the change in light illuminance according to changes in its own position, light receiving angle, and the like.
  • FIG. 14 is a diagram illustrating the configuration of the optical base station 50.
  • the optical base station 50 includes an optical transmitter 51 and a beam control unit 52. The same applies to the following embodiments.
  • the optical transmitter 51 uses a light source such as an LED that can be dimmed or toned.
  • the light source may also serve as a lighting application.
  • the optical transmitter 51 converts an optical ID (modulated signal) from the optical base station control unit 42 into an optical signal having a predetermined wavelength, power, modulation method, or data rate.
  • an optical signal an optical signal modulated by an optical ID under the above conditions
  • the beam control unit 52 controls the beam shape so that the optical signal from the optical transmitter 51 can reach a predetermined area 60, and then transmits the optical signal to the space. If there are no obstacles that block the light, the optical signal reaches all the terminals 20 in the predetermined area 60.
  • FIG. 15 is a diagram illustrating the configuration of the terminal 20.
  • Terminal 20 An optical sensor (optical sensor information acquisition unit 31) that receives an optical signal from the optical base station 50, A calculation unit (threshold value calculation unit 38) that samples the illuminance of the optical signal, acquires a sampling value, and calculates a threshold value for binary conversion of the optical signal based on the transition of the sampling value.
  • a determination unit (threshold value determination unit 37) that binary-converts the optical signal based on the threshold value, To be equipped.
  • the terminal 20 A list (optical ID correspondence list 36) describing the correspondence between the ID information and the authentication information for starting RF wireless communication, and An analysis unit (optical ID analysis unit 35) in which the determination unit queries the list for the ID information obtained by binarizing the optical signal and acquires the corresponding authentication information.
  • the RF transmission / reception unit 33 that transmits the authentication information acquired by the analysis unit to the RF base station 10 by RF wireless communication, and the RF transmission / reception unit 33. Further prepare.
  • the optical sensor information acquisition unit 31 converts the optical signal from the optical transmitter 51 into an electric signal and acquires it as a light illuminance value.
  • the optical sensor information acquisition unit 31 is not limited to the optical receiver dedicated to optical wireless communication, and if the terminal 20 is a smartphone, the camera function may be used.
  • the threshold value calculation unit 38 calculates the optimum threshold value from the light illuminance value acquired by the optical sensor information acquisition unit 31, and inputs the calculated threshold value to the threshold value determination unit 37.
  • FIG. 16 is a diagram illustrating a process performed by the threshold value calculation unit 38.
  • p (k) is a sampling value of light illuminance (k is a sampling number)
  • p th is a threshold value.
  • the threshold value calculation unit 38 periodically calculates the threshold p th based on sampled values of the illuminance of the light signal. The threshold calculation method will be described later.
  • the threshold value determination unit 37 uses the threshold value calculated by the threshold value calculation unit 38 to binarize (1/0) the optical signal received by the optical sensor information acquisition unit 31.
  • FIG. 17 is a diagram illustrating a process performed by the threshold value determination unit 37.
  • S (k) is a determination value of 1 or 0 performed by the threshold value determination unit 37 with respect to the illuminance p (k) of the sampling number k.
  • the threshold value calculation unit 38 is adaptively changing the threshold value p th in accordance with the light intensity, even if the illuminance of the light signal changes the position and acceptance angle of the terminal 20 changes, the threshold determination unit 37 lights ID Information can be obtained accurately.
  • the optical ID analysis unit 35 extracts the optical ID based on the data binarized by the threshold value determination unit 37.
  • FIG. 18 is a diagram illustrating a process performed by the optical ID analysis unit 35.
  • the optical ID analysis unit 35 compares the input binarized data with the signal shape of the stored optical ID, and extracts the optical ID of the signal shape having the maximum correlation. Subsequently, the optical ID analysis unit 35 collates the optical ID with the optical ID correspondence list 36, and selects the corresponding connection operation / authentication information from the optical ID correspondence list 36.
  • the description of the optical ID correspondence list 36 is the same as that of the optical ID correspondence list 46 of the base station control device 40.
  • the RF transmission / reception unit 33 transmits / receives RF radio signals using the protocol.
  • the protocol is Wi-Fi, LTE, or the like.
  • Wi-Fi may support a plurality of wireless standards such as 2.4 GHz / 5 GHz.
  • the RF transmission / reception unit 33 transmits the connection operation / authentication information extracted by the optical ID analysis unit 35 to the RF base station 10.
  • FIG. 19 is a diagram illustrating a calculation method performed by the threshold value calculation unit 38.
  • Figure 19 is an image for calculating the threshold value p th [k] when determining the sample k.
  • Threshold calculating unit 38 calculates the n-number of past sample values (p [k-n + 1 ] ⁇ p [k]) threshold p th determine sample k [k] used.
  • n pieces of the past sample values (p [k-n] ⁇ p [k-1]) threshold p th [k-1] is determined samples k-1 using, the n past sample values (p [k-n-1 ] ⁇ p [k-2]) threshold p th [k-2] determines sample k-2 is used to calculate the ....
  • p [k] is the illuminance value at the time k samples
  • p th [k] is k sample time threshold
  • n represents the number of data groups used
  • alpha is a smoothing constant.
  • Example 2 This is an example in which the threshold value calculation unit 38 calculates the threshold value by the weighted average method (Equation 2) using a plurality of the past sampling values.
  • Example 3 This is an example in which the threshold value calculation unit 38 calculates the threshold value by the exponential smoothing moving average method (Equation 3) using a plurality of the past sampling values.
  • FIG. 20 is a flowchart illustrating the operation (communication method) of the terminal 20 described in the sixth embodiment 1.
  • This communication method is a communication method in which communication between the terminal 20 and the RF base station 10 is performed by optical wireless communication and RF wireless communication.
  • Terminal 20 Receiving an optical signal from the optical base station 50 (step S201), Obtaining a sampling value by sampling the illuminance of the optical signal (step S202). Calculating a threshold value for binary conversion of the optical signal based on the transition of the sampling value (step S203), and binarizing the optical signal based on the threshold value (step S204). It is characterized by.
  • the optical sensor information acquisition unit 31 converts the optical signal from the optical base station 50 into an electric signal and samples the optical illuminance value.
  • the threshold value calculation unit 38 calculates the optimum threshold value from the light illuminance value (sampling value) acquired in step S202, and inputs the calculated threshold value to the threshold value determination unit 37. As shown in FIG. 16, the threshold value calculation unit 38 periodically calculates the threshold p th based on sampled values of the illuminance of the light signal.
  • FIG. 21 is a diagram illustrating the configuration of the terminal 20 of the present embodiment.
  • the terminal 20 of the present embodiment further includes a sensor information acquisition unit 32 in the terminal 20 of the sixth embodiment 1.
  • the sensor information acquisition unit 32 is a sensor that acquires physical information other than the illuminance of the optical signal.
  • the calculation unit changes the smoothing constant ⁇ used in the exponential smoothing moving average method based on the sensor information output by the sensor.
  • the physical information other than the illuminance of the optical signal is information such as the acceleration of the terminal 20 from the acceleration sensor, the inclination of the terminal 20 from the gyro sensor, and the direction (direction) of the terminal 20 from the magnetic sensor.
  • the sensor information acquisition unit 32 acquires the physical information and inputs it to the threshold value calculation unit 38.
  • the threshold value calculation unit 38 of the present embodiment uses not only the illuminance of the optical signal but also physical information when calculating the threshold value.
  • FIG. 22 is a diagram illustrating an example in which the threshold value calculation unit 38 sets the smoothing constant ⁇ by using physical information when calculating the threshold value by the exponential smoothing moving average.
  • the acceleration sensor acquires the acceleration of the terminal 20 for each of the three axes (x, y, z).
  • the background illuminance value fluctuates as the terminal 20 moves. Therefore, by setting the smoothing constant ⁇ according to the acceleration to Equation 3 as shown in FIG. 22, it is possible to improve the ability to follow the fluctuation of the illuminance value of the threshold value. Specifically, when the change in illuminance in the back round is small (when the acceleration is small), if ⁇ is set too large, the followability to the illuminance of the threshold value becomes too high, so it is effective to take a moderately small value. be. On the other hand, when the background illuminance change is large (when the acceleration value is large), the followability to the threshold illuminance can be improved by setting ⁇ relatively large.
  • FIG. 22 is an example, and the set value of ⁇ may be flexibly changed in consideration of the illuminance profile (directivity of the light source) of the lighting to be used. Further, the threshold value calculation unit 38 may use sensor information other than the acceleration sensor.
  • the terminal according to the present embodiment samples an optical signal with a particle size sufficiently finer than the transmission pattern of 1/0, and performs a majority decision determination using a plurality of sampling values.
  • FIG. 23 is a diagram illustrating the configuration of the terminal 20.
  • Terminal 20 An optical sensor (optical sensor information acquisition unit 31) that receives an optical signal from the optical base station 50, The illuminance of the optical signal is sampled at a sampling point having a grain size finer than the bit pattern of the optical signal to obtain a sampling value, and the sampling value is compared with an arbitrary threshold value to obtain a binary value (0/1) of the optical signal. ), And a determination unit (threshold value determination unit 37) Of the two values included in the determination time, the determination time is shorter than the time of one bit of the bit pattern and longer than the time of several minutes between the sampling points included in one bit of the bit pattern.
  • An estimation unit that estimates ID information included in the optical signal using the larger value as the bit value, and an estimation unit (optical ID estimation unit). To be equipped.
  • the functions and operations of the optical sensor information acquisition unit 31 are the same as those in the sixth embodiment.
  • the terminal 20 A list (optical ID correspondence list 36) describing the correspondence between the ID information and the authentication information for starting the RF wireless communication, and An analysis unit (optical ID analysis unit 35) that queries the list for the ID information estimated by the estimation unit and acquires the corresponding authentication information.
  • the RF transmission / reception unit 33 that transmits the authentication information acquired by the analysis unit to the RF base station 10 by the RF radio communication, and the RF transmission / reception unit 33. Further prepare.
  • the functions and operations of the RF transmitter / receiver 33 are the same as those in the sixth embodiment.
  • Threshold determination unit 37 utilizes the threshold p th set in advance, the optical signal optical sensor information acquisition unit 31 has received binarizes (1/0).
  • 24 and 25 are diagrams for explaining the processing performed by the threshold value determination unit 37.
  • a received signal is input from the sensor information acquisition unit 31 to the threshold value determination unit 37.
  • the threshold value determination unit 37 samples this electric signal with a particle size finer than that of the optical ID pattern.
  • the particle size finer than the pattern of the optical ID means an interval shorter than the length (time) of each bit constituting the optical ID.
  • the particle size is an interval capable of 3 sampling for each bit constituting the optical ID.
  • p (k) is a sampling value and k is a sampling number.
  • the sampling value may be a high value or a low value with respect to the true value due to various factors.
  • attention is paid to the sampling value p (k-2).
  • S (k) is a determination value of 1 or 0 performed by the threshold value determination unit 37 with respect to the illuminance p (k) of the sampling number k.
  • Figure 25 is obtained by binarization with a threshold p th sampled value in Fig. 24.
  • the sampling value p (k-2) should be originally determined to be "0", but is erroneously determined to be "1" due to the large influence of noise (point A).
  • the optical ID estimation unit 34 estimates each bit value of the received signal by a majority decision determination method using the determination processing window.
  • FIG. 26 is a bit pattern of the received signal estimated by the optical ID estimation unit 34. Since the optical ID estimation unit 34 estimates the bit value by the majority decision method, the bit value of the bit 61 can be correctly acquired regardless of the influence of the point A. The majority decision method performed by the optical ID estimation unit 34 will be described later.
  • the optical ID analysis unit 35 extracts the optical ID from the bit pattern estimated by the threshold value calculation unit 34.
  • FIG. 28 is a diagram illustrating a process performed by the optical ID analysis unit 35.
  • the optical ID analysis unit 35 compares the input bit pattern with the signal shape of the stored optical ID, and extracts the optical ID of the signal shape having the maximum correlation. Subsequently, the optical ID analysis unit 35 collates the optical ID with the optical ID correspondence list 36, and selects the corresponding connection operation / authentication information from the optical ID correspondence list 36.
  • the description of the optical ID correspondence list 36 is the same as that of the optical ID correspondence list 46 of the base station control device 40.
  • FIG. 27 is a diagram illustrating a majority decision determination method performed by the optical ID estimation unit 34.
  • FIG. 27 shows a state in which the transmitting side and the receiving side are not synchronized.
  • 27 (A) and 27 (B) show the case where all the sampling points are not in the uncertain region, and
  • FIG. 27 (C) shows the case where one of the sampling points is in the uncertain region.
  • the optical ID estimation unit 34 has a determination processing window 81 used when performing a majority decision determination. Determination processing time (determination time) t h of the window 81, shorter than the time t bit of one-bit bit pattern, and the bit pattern interval number n minutes of time of the sampling points included in a single bit (1 It is longer than / f s ⁇ n). In the example of FIG. 27, since three sampling points are included in the time t bit of one bit, the number of intervals n of the sampling points is 2. Therefore, the determination time is as follows. 1 / f s ⁇ 2 ⁇ t h ⁇ t bit
  • the majority decision method is as follows.
  • the optical ID estimation unit 34 performs a majority decision on which determination value (0/1) is larger in the determination processing window 81 for the binarized data. That is, when the number of observations of the judgment value "1" in the judgment processing window 81 is 2 or 3, "1" is assigned to the judgment processing window 81 (bit), and the judgment value "1" is assigned in the judgment processing window 81. When the number of observations of is 0 or 1, "0" is assigned to the determination processing window 81 (bit).
  • Such a majority decision can avoid the bit erroneous determination even if the erroneous determination sample A as shown in FIG. 25 exists.
  • FIG. 29 is a flowchart illustrating the operation (communication method) of the terminal 20 of the present embodiment.
  • This communication method is a communication method in which communication between the terminal 20 and the RF base station 10 is performed by optical wireless communication and RF wireless communication.
  • Terminal 20 Receiving an optical signal from the optical base station 50 (step S301), Obtaining a sampling value by sampling the illuminance of the optical signal at sampling points having a grain size finer than that of the bit pattern of the optical signal (step S302). Converting the optical signal into a binary value by comparing the sampling value with an arbitrary threshold value (step S303).
  • step S304 Setting a determination time shorter than the time of one bit of the bit pattern and longer than the time of several minutes between the sampling points included in one bit of the bit pattern (step S304), and Estimating the ID information included in the optical signal by using the larger of the two values included in the determination time as the value of the bit (step S305).
  • the optical sensor information acquisition unit 31 converts the optical signal from the optical base station 50 into an electric signal and samples the optical illuminance value.
  • the optical ID estimation unit 34 sets the determination processing window 81 described with reference to FIG. 27.
  • the optical ID estimation unit 34 determines each bit value of the received signal from the binarized data by the majority decision determination method.
  • FIG. 30 is a flowchart illustrating the operation (communication method) of the terminal 20 of the present embodiment.
  • this operation may be performed after the operation described with reference to FIG. 29.
  • this communication method is Inquiring the estimated ID information into a list (optical ID correspondence list 36) describing the correspondence between the ID information and the authentication information for starting the RF wireless communication, and acquiring the corresponding authentication information (step). S306), and transmitting the authentication information to the RF base station 10 by the RF wireless communication (step S307). It is characterized by further performing.
  • the authentication information transmitted in step S307 is received by the RF base station 10. Then, the terminal 20 whose authentication information is confirmed to be consistent by the RF base station 10 is permitted to communicate with the upper network 30.
  • the optical base station 50 In this embodiment, a configuration for limiting the communication area, ensuring communication safety, and communication stability will be described.
  • the optical base station 50 according to the present embodiment generates a signal pattern according to the optical ID, outputs an optical signal corresponding to the generated signal pattern, controls the beam shape of the output optical signal, and sends the output to space. ..
  • the optical base station control unit 42 extracts an optical ID and generates a signal pattern corresponding to the extracted optical ID. For example, when the connection information and the authentication information of the serial number "1" shown in the optical ID correspondence list shown in FIG. 2 are used, when "1010" is extracted as the optical ID, the signal pattern is also set to "1010". The signal pattern does not necessarily have to be “1010” according to the optical ID "1010", and a signal pattern such as "101011" may be used. When the signal pattern is analog, for example, when the optical ID is "1010", the signal pattern is repeated with a frequency of 1 Hz. When the optical ID is "1000”, for example, a repeating signal pattern having a frequency of 2 Hz is used.
  • the optical transmitter 51 outputs an optical signal of a signal pattern from the optical base station control unit 42.
  • the degree of photomodulation is preferably 20% or less. At this level, fluctuations in light intensity cannot be perceived when humans are concentrating on some kind of work. More preferably, the degree of photomodulation is 7% or less. At this level, fluctuations in light intensity cannot be perceived regardless of human activity.
  • FIGS. 31 to 34 Examples of the optical ID generated by the optical base station control unit 42 and the optical signal output by 13 of the optical transmission circuit are shown in FIGS. 31 to 34.
  • FIG. 31 shows an example in which the optical base station control unit 42 generates a signal pattern of “1010” which is a digital signal, and the optical transmitter 51 outputs an optical signal of “1010” as a digital signal.
  • the optical signal output by the optical transmitter 51 and the light from a lighting device different from the optical transmitter 51 are combined, and the optical modulation degree of both lights is set to be a predetermined percentage or less. ..
  • FIG. 32 is an example in which the optical base station control unit 42 generates a signal pattern of “1010” which is an electric signal, and the optical transmitter 51 outputs an optical signal of “1010” as a digital signal.
  • the optical transmitter 51 is set so that the optical signal of "1010” itself contains biased light and the optical modulation degree of the optical signal output by the optical transmitter 51 is equal to or less than a predetermined percentage. In this case, the optical transmitter 51 has both a function of outputting an optical signal and a function of lighting.
  • FIG. 33 is an example in which the optical base station control unit 42 generates an analog repetitive signal pattern which is an electric signal, and the optical transmitter 51 outputs the repetitive optical signal as an analog signal.
  • the optical signal output by the optical transmitter 51 and the light from a lighting device different from the optical transmitter 51 are combined, and the optical modulation degree of both lights is set to be a predetermined percentage or less. ..
  • FIG. 34 is an example in which the optical base station control unit 42 generates an analog repetitive signal pattern which is an electric signal, and the optical transmitter 51 outputs the repetitive optical signal as an analog signal.
  • the optical transmitter 51 is set so that the repeating optical signal itself contains bias light and the optical modulation degree of the optical signal output by the optical transmitter 51 is equal to or less than a predetermined percentage.
  • the optical transmitter 51 has both a function of outputting an optical signal and a function of lighting.
  • the optical transmitter 51 may have a configuration of frequency modulation or wavelength modulation instead of intensity modulation. In this case, the frequency or wavelength of the optical signal of the optical transmission circuit is changed according to the intensity of the signal pattern.
  • the beam control unit 52 controls the beam shape of the optical signal from the optical transmitter 51 and sends it out to the space set by the RF base station 10. This is to set the communicable area of the wireless communication system. By utilizing the linearity of the light wave output, it is possible to limit the communication area and ensure the safety of communication.
  • a reflector or a transparent refractive index body can be used to control the beam shape.
  • FIG. 35 is a diagram illustrating the configuration of the terminal 20.
  • Terminal 20 An optical receiver 21 that receives an optical signal from the beam control unit 52 and converts it into a signal pattern.
  • the terminal-side optical ID list 22 including the combination information of the optical ID and the corresponding wireless communication connection information and authentication information, and
  • An optical ID analysis circuit 23 that reproduces an optical ID from a signal pattern from the optical base station 50, collates the optical ID with the terminal-side optical ID correspondence list 26, and extracts corresponding connection information and authentication information.
  • a terminal-side RF transmitter 24 that transmits authentication information from the optical ID analysis circuit 23 by a predetermined RF radio according to the connection information from the optical ID analysis circuit 23. To be equipped.
  • the optical receiver 21 receives an optical signal from the beam control unit 52 and converts it into a signal pattern of an electric signal.
  • a light receiving element may be selected according to the wavelength of the light generated by the light transmitter 51.
  • the optical receiver 21 can receive the optical signal from the beam control unit 52 only when the wireless terminal device 20 is within the communicable area set by the beam control unit 52. Since a high-speed demodulation circuit is not required for receiving an optical signal, a wireless terminal device having a simple configuration can be realized.
  • the optical receiver 21 receives an optical signal, removes a bias component, and extracts an electric signal pattern. When the optical signal is a digital signal of "1010", for example, the optical signal is converted into an electric signal pattern of "1010". When the optical signal is an analog signal, it is converted into an electric signal pattern having a repetition frequency of 1 Hz, for example.
  • the optical ID analysis circuit 23 reproduces the optical ID from the signal pattern from the optical receiver 21, and collates the optical ID with the terminal-side optical ID correspondence list 26. Next, the connection information and the authentication information corresponding to the optical ID are extracted. For example, the optical ID analysis circuit 23 reproduces the optical ID of "1010” from the signal pattern of "1010” from the optical receiver 21, and collates the optical ID of "1010” with the terminal side optical ID correspondence list 26. For example, the optical ID analysis circuit 23 reproduces the optical ID of "1010” from the signal pattern of the 1 Hz repetition frequency from the optical receiver 21, and collates the optical ID of "1010” with the terminal side optical ID correspondence list 22.
  • the optical ID analysis circuit 23 extracts the connection information and the authentication information of the serial number “1” corresponding to the optical ID “1010”.
  • the optical ID analysis circuit 23 collates the reproduced optical ID with the terminal-side optical ID correspondence list 22, the optical ID that completely matches may be detected, or the optical ID having the maximum correlation coefficient is detected. You may.
  • the wireless terminal device 20 exists in the area of the plurality of RF base stations 10, it receives optical signals from each of the plurality of optical base stations 50 and reproduces a plurality of optical IDs. In this case, the priority of a plurality of serial numbers is extracted from the terminal side optical ID correspondence list 22, and the connection information and the authentication information of the serial numbers having high priority are extracted.
  • the terminal-side RF transmitter 24 sets RF radio standards such as a predetermined radio system, frequency, and channel according to the connection information extracted by the optical ID analysis circuit 23. Next, the terminal-side RF transmitter 24 transmits the authentication information extracted by the optical ID analysis circuit 23 by the RF radio set toward the RF base station 10. The stability of communication can be ensured by utilizing the diffusivity of radio waves for the transmission of authentication information and the information communication after authentication.
  • This disclosure can be applied to the information and communication industry.
  • RF base station 20 Terminal 21: Optical receiver 23: Optical ID analysis circuit 24: Terminal side RF transmitter 30: Upper network 31: Optical sensor information acquisition unit 33: RF transmission / reception unit 34: Optical ID estimation unit 35: Optical ID analysis unit 37: Threshold determination unit 38: Threshold calculation unit 40: Base station control device 41: Authentication information integrated control unit 42: Optical base station control unit 26, 36, 46: Optical ID correspondence list 50: Optical base station 51 : Optical transmitter 52: Beam control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示は、すでに敷設されているスマート照明に手を加えることなくそのまま光基地局として利用可能とし、光基地局から送出される光信号を用いてRF通信の接続/認証制御を行うことを目的とする。 本開示は、端末と無線通信を行う1以上の無線基地局と、各無線基地局から無線基地局情報を収集し、収集した無線基地局情報を用いて端末と無線通信を行う無線基地局を決定し、決定された無線基地局に応じた光IDを送信する基地局制御装置と、前記基地局制御装置から前記光IDを受信し、受信した前記光IDを、光信号を用いて端末に送信する1以上の光基地局と、を備え、前記基地局制御装置に決定された前記無線基地局が前記光IDを受信した端末と無線通信を行う、無線通信システムである。

Description

無線通信システム、無線通信方法、基地局制御装置及び基地局制御プログラム
 本開示は、無線通信システム及び無線通信方法に関する。
 Wi-FiなどのRF(Radio Frequency)通信システムにおいて、光無線通信(LED照明などで下り方向の通信)も用いる技術が提案されている(例えば、特許文献1参照。)。特許文献1では、Wi-Fiの接続認証に必要なSSID(Service Set Identifier)、パスワードなどのデータを光無線で下り通信する。これにより、特許文献1では、ユーザが使用可能な無線通信が何かを調べて、かつ、SSID及びパスワードの入力操作といった接続/認証作業などをしなくとも、光無線通信エリアに入っただけでWi-Fiに接続できる。
 光無線通信でRF通信の接続/認証情報自体を送信するのではなく、これらに対応したデータ量の小さい光IDを送信する技術が提案されている(例えば、特許文献2参照。)。特許文献2では、光送信器は、上記の光IDを人間が知覚できない条件の色/明るさ変化でデータを送信する。基地局/端末の双方で光IDと接続/認証情報の対応リストを保有し、端末においては、受信した光IDに対応する接続/認証情報を抽出し、この情報に従ってRF通信を行う。これにより、特許文献2では、光信号を用いてRF通信の接続/認証制御を行うシステムにおいて、基地局側で光無線通信/照明の兼用の光源、かつ、端末側で標準的なスマートフォン等の端末を用いることができる。また、設備導入時の設備普及、コスト・消費電力を抑制の観点でメリットがある。
 特許文献2のシステムでは、光基地局(スマート照明など)とRF基地局が一体化された構成を主構成としている。この構成の場合、RF基地局の数に応じて、光基地局が必要になる。また、上記構成の場合、すでに敷設されている光基地局をそのまま利用することが困難である。既に敷設されている光基地局とRF基地局を統合的に管理/制御する具体的な仕組みが必要となる。
US20180139202 A1 PCT/JP2019/031260
鹿倉智明他「オフィス証明環境における明るさの変動知覚に関する研究」照明学会誌Vol.85、No.5、2001、PP.346~351
 本開示は、すでに敷設されているスマート照明に手を加えることなくそのまま光基地局として利用可能とし、光基地局から送出される光信号を用いてRF通信の接続/認証制御を行うことを目的とする。
 本開示は、光/RF無線ハイブリッド通信システムにおいて、光基地局とRF基地局とが分離された構成とし、RF基地局から取得された情報に基づいて、RF基地局と端末とを接続させるように1以上の光基地局を制御する。
 具体的には、本開示に係る無線通信システムは、
 端末と無線通信を行う1以上の無線基地局と、
 各無線基地局から無線基地局情報を収集し、収集した無線基地局情報を用いて端末と無線通信を行う無線基地局を決定し、決定された無線基地局に応じた光IDを送信する基地局制御装置と、
 前記基地局制御装置から前記光IDを受信し、受信した前記光IDを、光信号を用いて端末に送信する1以上の光基地局と、
 を備え、
 前記基地局制御装置に決定された前記無線基地局が前記光IDを受信した端末と無線通信を行う。
 具体的には、本開示に係る無線通信方法は、
 1以上の無線基地局及び1以上の光基地局が基地局制御装置に接続されている無線通信システムが実行する無線通信方法であって、
 前記基地局制御装置が、
 各無線基地局から無線基地局情報を収集し、
 収集した無線基地局情報を用いて端末と無線通信を行う無線基地局を決定し、
 決定された無線基地局に応じた光IDを、前記1以上の光基地局の少なくともいずれかに送信し、
 前記光IDを受信した前記光基地局が、受信した前記光IDを、光信号を用いて端末に送信し、
 前記基地局制御装置に決定された前記無線基地局が前記光IDを受信した端末と無線通信を行う。
 具体的には、本開示に係る基地局制御装置は、
 1以上の無線基地局及び1以上の光基地局に接続されている基地局制御装置であって、
 各無線基地局から無線基地局情報を収集し、
 収集した無線基地局情報を用いて端末と無線通信を行う無線基地局を決定し、
 前記決定された無線基地局に応じた光IDを前記1以上の光基地局の少なくともいずれかに送信し、
 前記光基地局に、前記光IDを、光信号を用いて端末に送信させ、
 前記決定された無線基地局に、前記光IDを受信した端末と無線通信を行わせる。
 具体的には、本開示に係る基地局制御プログラムは、本開示に係る基地局制御装置に備わる各機能部をコンピュータに実現させるためのプログラムであり、本開示に係る無線通信方法に備わる各ステップをコンピュータに実行させるためのプログラムである。
 すでに敷設されているスマート照明に手を加えることなくそのまま光基地局として利用可能とし、光基地局から送出される光信号を用いてRF通信の接続/認証制御を行うことを可能とする。
本開示に係るシステムの基本構成を示す。 光ID対応リストの一例を示す。 無線基地局情報の一例を示す。 第2の実施形態に係るシステムの構成例を示す。 端末の有無に関係なく光基地局が光IDをブロードキャストする場合の処理フローの一例を示す。 第2の実施形態における制御信号の流れの一例を示す。 端末からのプローブリクエストをフロー処理の起点とする場合の処理フローの一例を示す。 第3の実施形態に係るシステムの構成例を示す。 第3の実施形態における制御信号の流れの一例を示す。 第4の実施形態に係るシステムの構成例を示す。 第4の実施形態における制御信号の流れの一例を示す。 第5の実施形態における処理フローの一例を示す。 第5の実施形態における制御信号の流れの一例を示す。
第6の実施形態に係る通信システムの光基地局の構成を説明する図である。 第6の実施形態に係る通信システムの端末の構成を説明する図である。 第6の実施形態に係る端末で受光する光信号の照度を説明する図である。 第6の実施形態に係る端末の判定部で二値化された信号を説明する図である。 第6の実施形態に係る端末の解析部での処理を説明する図である。 第6の実施形態に係る端末の算出部での処理を説明する図である。 第6の実施形態に係る通信方法を説明するフローチャートである。 第6の実施形態に係る通信システムの端末の構成を説明する図である。 第6の実施形態に係る端末の算出部での処理を説明する図である。
第7の実施形態に係る通信システムの端末の構成を説明する図である。 第7の実施形態に係る端末で受光する光信号の照度を説明する図である。 第7の実施形態に係る端末の判定部で二値化された信号を説明する図である。 第7の実施形態に係る端末の解析部での処理を説明する図である。 第7の実施形態に係る端末の光ID推定部での処理を説明する図である。 第7の実施形態に係る端末の光ID解析部での処理を説明する図である。 第7の実施形態に係る通信方法を説明する第1のフローチャートである。 第7の実施形態に係る通信方法を説明する第2のフローチャートである。
第8の実施形態に係る光送信器の出力する光信号の特性の一例を示す。 第8の実施形態に係る光送信器の出力する光信号の特性の一例を示す。 第8の実施形態に係る光送信器の出力する光信号の特性の一例を示す。 第8の実施形態に係る光送信器の出力する光信号の特性の一例を示す。 第8の実施形態に係る通信システムの端末の構成例を示す。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(本開示の概要)
・光基地局とRF基地局が分離された構成を主構成とし、RF基地局から集約された何らかの情報に基づき、すでに敷設された光基地局を柔軟に制御する。
・光基地局とRF基地局とで構成されるネットワークの中に、基地局制御装置を設けることで、RF基地局からの情報集約、光基地局の管理/制御を統合的に実行する。
・RF基地局からの情報収集や光基地局の制御を実行する上での、制御方式を提案する。
(第1の実施形態)
 図1に、本開示に係るシステムの基本構成を示す。本開示に係るシステムは、基地局制御装置40、単一のRF基地局10、単一の光基地局50を備える。RF基地局10及び光基地局50は接続されている。RF基地局10は上位ネットワーク30に接続されている。これらの接続形態は任意であり、有線接続であってもよいし、無線接続であってもよい。
 基地局制御装置40は、光基地局50を外的に制御する装置であり、認証情報統合制御部41、光基地局制御部42、光ID対応リストを備える。本開示の基地局制御装置40はコンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
 図2に、光ID対応リストの一例を示す。図2では、通番1から4までの4個の光IDの例を示している。無線通信の接続情報は、RF基地局10と端末20との間でどのような無線方式で、どの周波数帯を使用して、どの無線チャンネルでRF無線通信するかを規定する情報である。無線通信の認証情報は、端末20がRF基地局10にアクセスする際にSSID(Service Set Identifier)、パスワード、ID(Identifier)を規定する情報である。これらのうち1つでもよく、任意の複数を規定することでもよい。無線通信の接続情報及び無線通信の認証情報は例であって、この他に必要な情報を規定してもよい。
 認証情報統合制御部41は、RF基地局10から無線基地局情報を収集し、端末20が接続すべきRF基地局10を選択し、光基地局制御部42へ情報を送信する。
 図3に、無線基地局情報の一例を示す。無線基地局情報は、無線パラメータ及び有線パラメータを含む。無線パラメータは、端末20と無線通信を行う際に用いるパラメータであり、例えば、無線方式、周波数帯、無線チャンネル、接続端末数、送信電力、RSSI(Received Signal Strength Indicator)、Modulation Coding Scheme、空間ストリーム数、Channel state informationである。有線パラメータは、例えば、有線インターフェイス、有線トラヒック死活監視結果である。
 認証情報統合制御部41は、収集した無線基地局情報を用いて端末20が接続すべき最適なRF基地局10を選択し、RF基地局10で用いる接続情報及び認証情報を光基地局制御部42へ送信する。
 光基地局制御部42は、認証情報統合制御部41から受信した接続情報及び認証情報に対応する光IDを光ID対応リストから抽出し、抽出した光IDを送信する旨の光基地局制御情報を光基地局50へ送信する。光基地局制御情報は、端末20が接続すべきRF基地局10の接続情報及び認証情報を含む。光基地局制御情報に含まれる光IDは、光IDそのものであってもよいが、光IDに応じた信号パターンであってもよい。信号パターンは、8bitや16bitなどのビットパターンを含む。ビットパターンを長くすることで、端末20での受信精度を向上させることができる。
 光基地局50は、基地局制御装置40からの光基地局制御情報に従った光IDを、光信号を用いて端末20へ送信する。光基地局50は、光IDを端末20に送信可能な任意の機器を用いることができ、例えばスマート照明などの本来通信用途に用いない非通信機器でもよい。光基地局50から送信する光信号は、端末20での受信精度が向上するよう、直交符号などによる変調を用いてもよい。
 端末20は、基地局制御装置40と同じ光ID対応リストを保持している。端末20は、光IDを受信すると、光ID対応リストを参照し、受信した光IDに対応するRF送受信の接続情報及び認証情報を利用し、適切なRF基地局10へと認証要求を送信する。これにより、RF基地局10と端末20との通信接続が可能になる。
 なお、端末20は、基地局制御装置40と同じ光ID対応リストを保持していなくてもよい。例えば、端末20は、アプリケーション起動時に端末20内から位置情報を自動的に取得し、アプリケーションを用いて位置情報に応じた光ID対応リストを取得する。また、端末20は、モバイル通信経由で、クラウドから対応する位置情報に応じた適当な光ID対応リストを取得してもよい。
(第2の実施形態)
 図4に、本実施形態に係るシステムの構成例を示す。本実施形態に係るシステムは、基地局制御装置40、複数のRF基地局10、単一の光基地局50を備える。基地局制御装置40は、光基地局50を外的に制御する装置であり、認証情報統合制御部41、光基地局制御部42を備える。
 認証情報統合制御部41は、各RF基地局10から無線基地局情報を収集し、端末20が接続すべき最適なRF基地局10を選択し、光基地局制御部42へ情報を送信する。光基地局制御部42は、光基地局50へと制御情報を送信する。
 認証情報統合制御部41において選択する最適なRF基地局10は、例えば、以下が例示できる。
・期待される通信帯域が最も大きいRF基地局10へ優先的に接続させる。
・光基地局50が複数ある場合は、RF基地局10へ接続する端末20の数を均一にするように、RF基地局10を選択する。
 図5に、端末の有無に関係なく光基地局50が光IDをブロードキャストする場合の処理フローの一例を示す。図6に、制御信号の流れの一例を示す。
 ステップS101:認証情報統合制御部41が、無線基地局情報の要求を、各RF基地局10に送信する。
 ステップS102:認証情報統合制御部41が、各RF基地局10から、無線基地局情報を受信する。
 ステップS103:認証情報統合制御部41は、全てのRF基地局10から無線基地局情報を受信したか否かを判定する。
 ステップS104:全てのRF基地局10から無線基地局情報を受信した場合(S103においてYes)、認証情報統合制御部41は、複数のRF基地局10のなかから最適なRF基地局10を選択する。
 ステップS105及びS106:光基地局制御部42は、光基地局制御情報を送信可能かの確認のため、光基地局50と通信交渉を行う。例えば、光基地局制御部42は、生存確認用のパケットを光基地局50に送信し(S105)、光基地局50からの応答の有無を確認する(S106)。
 ステップS107:光基地局制御部42は、光基地局制御情報を、光基地局50からの応答のあった光基地局50に送信する。
 光基地局50への光基地局制御情報の送信は、端末20からのプローブリクエスト(Probe Request)を契機に行ってもよい。図7に、端末からのプローブリクエスト(Probe Request)をフロー処理の起点とする場合の処理フローの一例を示す。図6に、制御信号の流れの一例を示す。この場合、基地局制御装置40は、事前に最適なRF基地局10を選択しておき(S104)、端末20から送信されたプローブリクエストの受信を契機に、ステップS105~S107を実行する。
 なお、基地局制御装置40の中に、RF基地局として機能が備わっていてもよい。例えば、基地局制御装置40自体が基地局#N+1として機能してもよい。
(第3の実施形態)
 図8に、本実施形態に係るシステムの構成例を示す。本実施形態に係るシステムは、複数のRF基地局10、複数の光基地局50を備える。本実施形態では、複数の光基地局50光基地局50が同一の動作を行う。
 図5に、端末の有無に関係なく光基地局50が光IDをブロードキャストする場合の処理フローの一例を示す。図9に、制御信号の流れの一例を示す。本実施形態では、ステップS105において、光基地局制御部42は、各光基地局50と通信交渉を行う。そして、光基地局制御部42は、全ての光基地局50からの応答を確認できたら(S106においてTrue)、各光基地局50に光基地局制御情報を送信する(S107)。ここで、ステップS107において送信する光基地局制御情報は、各光基地局50に共通である。
 光基地局50への光基地局制御情報の送信は、端末20からのプローブリクエスト(Probe Request)を契機に行ってもよい。図7に、端末からのプローブリクエスト(Probe Request)をフロー処理の起点とする場合の処理フローの一例を示す。図9に、制御信号の流れの一例を示す。この場合、基地局制御装置40は、事前に最適なRF基地局10を選択しておき(S104)、端末20から送信されたプローブリクエストの受信を契機に、ステップS105~S107を実行する。
 なお、基地局制御装置40の中に、RF基地局として機能が備わっていてもよい。例えば、基地局制御装置40自体が基地局#N+1として機能してもよい。
(第4の実施形態)
 図10に、本実施形態に係るシステムの構成例を示す。本実施形態に係るシステムは、複数のRF基地局10、複数の光基地局50を備える。本実施形態では、複数の光基地局50が個別に動作を行う。
 図5に、端末の有無に関係なく光基地局50が光IDをブロードキャストする場合の処理フローの一例を示す。図11に、制御信号の流れの一例を示す。本実施形態では、ステップS105において、光基地局制御部42は、各光基地局50と通信交渉を行う。このとき、光基地局制御部42は、光基地局50ごとに通信交渉を行う。これにより、本実施形態では、複数の光基地局50が個別に動作を行うことが可能になる。そして、光基地局制御部42は、全ての光基地局50からの応答を確認できたら(S106においてTrue)、各光基地局50に個別の光基地局制御情報を送信する(S107)。
 光基地局50への光基地局制御情報の送信は、端末20からのプローブリクエストを契機に行ってもよい。図7に、端末からのプローブリクエスト(Probe Request)をフロー処理の起点とする場合の処理フローの一例を示す。図11に、制御信号の流れの一例を示す。この場合、基地局制御装置40は、事前に最適なRF基地局10を選択しておき(S104)、端末20から送信されたプローブリクエストの受信を契機に、ステップS105~S107を実行する。
 なお、基地局制御装置40の中に、RF基地局として機能が備わっていてもよい。例えば、基地局制御装置40自体が基地局#N+1として機能してもよい。
(第5の実施形態)
 本実施形態では、端末20の位置を把握し、端末20の位置に応じて光基地局50がそれぞれ個別の光IDを配布する。本実施形態のシステム構成は、第4の実施形態と同様である。
 図12に、基地局制御装置40の処理フローの一例を示す。図13に、制御信号の流れの一例を示す。本実施形態では、全てのRF基地局10から無線基地局情報を受信した場合(S103においてYes)、光基地局制御部42は、ステップS104の前に、ステップS111を実行する。ステップS111では、端末20の位置情報を収集する。例えば、カメラを用いて端末20又はそのユーザを撮像し、撮像した画像内の位置を用いて端末20の位置情報を導出する。また、Probe Request時の電波を用いて端末20を推定することが例示できる。
 そして、ステップS105及びS106において、光基地局制御部42は、端末20の位置情報から、特定場所の光基地局50とのみ通信交渉を行い(S105)、特定場所の光基地局50へのみ光基地局制御情報を送信する(S107)。
(第6の実施形態1)
 本実施形態では、端末の位置や受光角度に関わらず光IDの情報を正確に取得する構成について説明する。本実施形態に係る端末は、自身の位置や受光角度などの変化に応じて、定期的に閾値設定を更新し、光照度の変化を読み取る仕組みを備える。
 図14は、光基地局50の構成を説明する図である。光基地局50は、光送信器51、ビーム制御部52を備える。以下の実施形態においても同様である。
 光送信器51は、調光又は調色可能なLEDなどの光源を用いる。光源は照明用途を兼ねてもよい。光送信器51は、光基地局制御部42からの光ID(変調された信号)を所定の波長、パワー、変調方式、又はデータレートの光信号に変換する。本実施形態では、所定のエリア60内において一定以上の照度になるように光送信器51が光信号(上記条件で光IDにより変調された光信号)を送出する場合を説明する。
 ビーム制御部52は、光送信器51からの光信号が所定のエリア60に到達できるようにビーム形状を制御した上で、当該光信号を空間に送出する。光を遮る障害物が無ければ、所定のエリア60にある全ての端末20に光信号が到達する。
 図15は、端末20の構成を説明する図である。端末20は、
 光基地局50からの光信号を受信する光センサ(光センサ情報取得部31)と、
 前記光信号の照度をサンプリングしてサンプリング値を取得し、前記サンプリング値の推移に基づいて前記光信号を二値変換するための閾値を算出する算出部(閾値算出部38)と、
 前記閾値に基づいて前記光信号を二値変換する判定部(閾値判定部37)と、
を備える。
 また、端末20は、
 ID情報とRF無線通信を開始するための認証情報との対応を記載したリスト(光ID対応リスト36)と、
 判定部が前記光信号を二値変換して得た前記ID情報を前記リストに照会し、対応する前記認証情報を取得する解析部(光ID解析部35)と、
 前記解析部が取得した前記認証情報をRF無線通信でRF基地局10へ送信するRF送受信部33と、
をさらに備える。
 光センサ情報取得部31は、光送信器51からの光信号を電気信号に変換し、光照度値として取得する。光センサ情報取得部31は光無線通信専用の光受信器に限らず、端末20がスマートフォンであれば、カメラ機能を利用してもよい。
 閾値算出部38は、光センサ情報取得部31が取得した光照度値から最適な閾値を計算し、計算した閾値を閾値判定部37へ入力する。図16は、閾値算出部38が行う処理を説明する図である。図16において、p(k)は光照度のサンプリング値(kはサンプリング番号)、pthは閾値である。図16のように、閾値算出部38は定期的に光信号の照度のサンプリング値を基に閾値pthを計算する。閾値の計算手法については後述する。
 閾値判定部37は、閾値算出部38が計算した閾値を利用し、光センサ情報取得部31が受光した光信号を二値化(1/0)する。図17は、閾値判定部37が行う処理を説明する図である。閾値判定部37は、p(k)≧pthの場合、S(k)=1と判断し、p(k)<pthの場合、S(k)=0と判断し、受信信号を二値化する。ここで、S(k)は、サンプリング番号kの照度p(k)について閾値判定部37が行った1又は0の判定値である。つまり、閾値算出部38が光照度に応じて閾値pthを適応的に変更するため、端末20の位置や受光角度が変化して光信号の照度が変化しても、閾値判定部37は光IDの情報を正確に取得することができる。
 光ID解析部35は、閾値判定部37で二値化されたデータをもとに光IDを抽出する。図18は、光ID解析部35が行う処理を説明する図である。光ID解析部35は、入力された二値化データと記憶している光IDの信号形状とを比較し、相関が最大となる信号形状の光IDを抽出する。続いて、光ID解析部35は、光ID対応リスト36に光IDを照合し、対応する接続動作/認証情報を光ID対応リスト36から選択する。光ID対応リスト36の記載内容は、基地局制御装置40の光ID対応リスト46と同じである。
 RF送受信部33は、当該プロトコルでRF無線信号を送受信している。当該プロトコルは、Wi-FiやLTEなどである。例えば、Wi-Fiが2.4GHz/5GHzなどの複数の無線規格に対応してもよい。RF送受信部33は、光ID解析部35が抽出した接続動作/認証情報をRF基地局10へ送信する。
[閾値の計算手法]
 図19は、閾値算出部38が行う計算手法を説明する図である。図19は、サンプルkを判定するときの閾値pth [k]を算出するイメージである。閾値算出部38は、n個の過去のサンプル値(p[k-n+1]~p[k])を用いてサンプルkを判定する閾値pth [k]を算出する。同様に、閾値算出部38は、n個の過去のサンプル値(p[k-n]~p[k-1])を用いてサンプルk-1を判定する閾値pth [k-1]、n個の過去のサンプル値(p[k-n-1]~p[k-2])を用いてサンプルk-2を判定する閾値pth [k-2]、・・・を算出する。
 具体的な閾値計算方法を説明する。ここで、p[k]はkサンプル時の照度値、pth [k]はkサンプル時の閾値、nは用いられるデータ群の個数、αは平滑化定数である。
(例1)閾値算出部38が、過去の複数の前記サンプリング値を用いた移動平均法(数1)で前記閾値を算出する場合の例である。
Figure JPOXMLDOC01-appb-M000001
(例2)閾値算出部38が、過去の複数の前記サンプリング値を用いた加重平均法(数2)で前記閾値を算出する場合の例である。
Figure JPOXMLDOC01-appb-M000002
(例3)閾値算出部38が、過去の複数の前記サンプリング値を用いた指数平滑移動平均法(数3)で前記閾値を算出する場合の例である。
Figure JPOXMLDOC01-appb-M000003
(第6の実施形態2)
 図20は、第6の実施形態1で説明した端末20の動作(通信方法)を説明するフローチャートである。本通信方法は、端末20とRF基地局10と間の通信を光無線通信とRF無線通信とで行う通信方法であって、
 端末20が、
 光基地局50からの光信号を受信すること(ステップS201)、
 前記光信号の照度をサンプリングしてサンプリング値を取得すること(ステップS202)、
 前記サンプリング値の推移に基づいて前記光信号を二値変換するための閾値を算出すること(ステップS203)、及び
 前記閾値に基づいて前記光信号を二値変換すること(ステップS204)、
を特徴とする。
 ステップS201及びS202では、光センサ情報取得部31が、光基地局50からの光信号を電気信号に変換し、光照度値をサンプリングする。
 ステップS203では、閾値算出部38が、ステップS202で取得した光照度値(サンプリング値)から最適な閾値を計算し、計算した閾値を閾値判定部37へ入力する。図16のように、閾値算出部38は定期的に光信号の照度のサンプリング値を基に閾値pthを計算する。
 ステップS204では、閾値判定部37が、ステップS203で計算された閾値を利用し、ステップS201及びS202で取得したサンプリング値を基に光信号を二値化(1/0)する。閾値判定部37は、p(k)≧pthの場合、S(k)=1と判断し、p(k)<pthの場合、S(k)=0と判断し、受信信号を二値化する。
(第6の実施形態3)
 図21は、本実施形態の端末20の構成を説明する図である。本実施形態の端末20は、第6の実施形態1の端末20にセンサ情報取得部32をさらに備える。センサ情報取得部32は、前記光信号の照度以外の物理情報を取得するセンサである。そして、前記算出部(閾値算出部38)は、前記センサが出力するセンサ情報に基づき、前記指数平滑移動平均法に使用される平滑化定数αを変化させる。
 ここで、前記光信号の照度以外の物理情報とは、加速度センサからの端末20の加速度、ジャイロセンサからの端末20の傾き、磁気センサからの端末20の方向(向き)などの情報である。
 センサ情報取得部32は、前記物理情報を取得し、それらを閾値算出部38へ入力する。本実施形態の閾値算出部38は、閾値を算出するときに光信号の照度だけでなく、物理情報も利用する。図22は、閾値算出部38が指数平滑移動平均で閾値を算出するときに物理情報を利用して平滑化定数αを設定する例を説明する図である。
 加速度センサは端末20の加速度を3軸(x、y、z)毎に取得する。端末20の移動に伴ってバックグラウンドの照度値は変動する。このため、図22のように加速度に応じた平滑化定数αを数3に設定することで、閾値の照度値変動への追従性を高めることができる。具体的には、バックラウンドの照度変化が小さい場合(加速度が小さい場合)、αを大きくとりすぎると閾値の照度に対する追従性が高くなりすぎてしまうので、適度に小さい値をとることが有効である。一方、バックグラウンドの照度変化が大きい場合(加速度値が大きい場合)、αを比較的大きくとることで、閾値の照度に対する追従性を高めることができる。
 なお、図22は一例であり、利用する照明の照度プロファイル(光源の指向性)を考慮して、αの設定値を柔軟に変更してもよい。また、閾値算出部38は、加速度センサ以外のセンサ情報を利用してもよい。
(第7の実施形態1)
 本実施形態では、送信側と受信側とが非同期であっても誤り率を低減できる構成について説明する。本実施形態に係る端末は、1/0の伝送パターンよりも十分細かい粒度で光信号をサンプリングし、複数のサンプリング値を利用した多数決判定を実施する。
 図23は、端末20の構成を説明する図である。端末20は、
 光基地局50からの光信号を受信する光センサ(光センサ情報取得部31)と、
 前記光信号の照度を前記光信号のビットパターンより細かい粒度のサンプリングポイントでサンプリングしてサンプリング値を取得し、前記サンプリング値と任意の閾値とを比較して前記光信号を二値(0/1)に変換する判定部(閾値判定部37)と、
 前記ビットパターンの1つのビットの時間より短く、且つ前記ビットパターンの1つのビットに含まれる前記サンプリングポイントの間隔数分の時間より長い判定時間を持ち、前記判定時間に含まれる前記二値のうち多い方の値を前記ビットの値として前記光信号に含まれるID情報を推定する推定部(光ID推定部)と、
を備える。
 光センサ情報取得部31の機能及び動作については、第6の実施形態と同様である。
 また、端末20は、
 ID情報と前記RF無線通信を開始するための認証情報との対応を記載したリスト(光ID対応リスト36)と、
 前記推定部が推定した前記ID情報を前記リストに照会し、対応する前記認証情報を取得する解析部(光ID解析部35)と、
 前記解析部が取得した前記認証情報を前記RF無線通信でRF基地局10へ送信するRF送受信部33と、
をさらに備える。
 RF送受信部33の機能及び動作については、第6の実施形態と同様である。
 閾値判定部37は、あらかじめ設定された閾値pthを利用し、光センサ情報取得部31が受光した光信号を二値化(1/0)する。図24及び図25は、閾値判定部37が行う処理を説明する図である。まず、閾値判定部37にはセンサ情報取得部31から受信信号が入力される。閾値判定部37は、図24のように、この電気信号を光IDのパターンより細かい粒度でサンプリングする。ここで、「光IDのパターンより細かい粒度」とは、光IDを構成する各ビットの長さ(時間)より短い間隔、という意味である。図24の例であれば、当該粒度は、光IDを構成する各ビットに対して3サンプリング可能な間隔である。図24においてp(k)はサンプリング値、kはサンプリング番号である。様々な要因によりサンプリング値は、真値に対して高い値であったり、低い値であったりする。ここでは、サンプリング値p(k-2)について注目する。
 閾値判定部37は、p(k)≧pthの場合、S(k)=1と判断し、p(k)<pthの場合、S(k)=0と判断し、受信信号を二値化する。ここで、S(k)は、サンプリング番号kの照度p(k)について閾値判定部37が行った1又は0の判定値である。図25は、図24のサンプリング値を閾値pthで二値化したものである。ここで、サンプリング値p(k-2)は、本来であれば“0”と判断されなければならないが、ノイズの影響が大きいため“1”と誤判定されている(ポイントA)。
 光ID推定部34は、判定処理ウィンドウを用いた多数決判定方式によって、受信信号の各ビット値を推定する。図26は、光ID推定部34が推定した受信信号のビットパターンである。光ID推定部34が多数決判定方式でビット値を推定したため、ポイントAの影響によらず、ビット61のビット値を正しく取得できている。光ID推定部34が行う多数決判定方式については後述する。
 光ID解析部35は、閾値算出部34で推定したビットパターンから光IDを抽出する。図28は、光ID解析部35が行う処理を説明する図である。光ID解析部35は、入力されたビットパターンと記憶している光IDの信号形状とを比較し、相関が最大となる信号形状の光IDを抽出する。続いて、光ID解析部35は、光ID対応リスト36に光IDを照合し、対応する接続動作/認証情報を光ID対応リスト36から選択する。光ID対応リスト36の記載内容は、基地局制御装置40の光ID対応リスト46と同じである。
[多数決判定方式]
 図27は、光ID推定部34が行う多数決判定方式を説明する図である。図27は、送信側と受信側で同期が取れていない状態を表している。図27(A)と図27(B)は全てのサンプリングポイントが不確定領域にない場合、図27(C)はサンプリングポイントの1つが不確定領域にある場合である。
 光ID推定部34は、多数決判定を行うときに使用する判定処理ウィンドウ81を持つ。判定処理ウィンドウ81の時間(判定時間)tは、ビットパターンの1つのビットの時間tbitより短く、且つ前記ビットパターンの1つのビットに含まれる前記サンプリングポイントの間隔数n分の時間(1/f×n)より長い。図27の例では、1つのビットの時間tbit内に3つのサンプリングポイントが含まれるので、サンプリングポイントの間隔数nは2である。このため、判定時間は次のようになる。
1/f×2<t<tbit
 多数決判定方式は次のように行う。光ID推定部34が二値化したデータに対して判定処理ウィンドウ81内でいずれの判定値(0/1)が多いのか多数決判定を実施する。すなわち、判定処理ウィンドウ81内において判定値“1”の観測数が2又は3である場合、当該判定処理ウィンドウ81(ビット)に“1”を割り当て、判定処理ウィンドウ81内において判定値“1”の観測数が0又は1である場合、当該判定処理ウィンドウ81(ビット)に“0”を割り当てる。
 このような多数決判定を行えば、図27(A)や図27(B)のように全てのサンプリングポイントが不確定領域にない場合はもちろん、図27(C)のようにサンプリングポイントの1つが不確定領域にある場合でもビットの誤判定を回避することができる。
 このような多数決判定は、図25のような誤判定のサンプルAが存在してもビットの誤判定を回避することができる。
(第7の実施形態2)
 図29は、本実施形態の端末20の動作(通信方法)を説明するフローチャートである。本通信方法は、端末20とRF基地局10と間の通信を光無線通信とRF無線通信とで行う通信方法であって、
 端末20が、
 光基地局50からの光信号を受信すること(ステップS301)、
 前記光信号の照度を前記光信号のビットパターンより細かい粒度のサンプリングポイントでサンプリングしてサンプリング値を取得すること(ステップS302)、
 前記サンプリング値と任意の閾値とを比較して前記光信号を二値に変換すること(ステップS303)、
 前記ビットパターンの1つのビットの時間より短く、且つ前記ビットパターンの1つのビットに含まれる前記サンプリングポイントの間隔数分の時間より長い判定時間を設定すること(ステップS304)、及び、
 前記判定時間に含まれる前記二値のうち多い方の値を前記ビットの値として前記光信号に含まれるID情報を推定すること(ステップS305)、
を特徴とする
 ステップS301及びS302では、光センサ情報取得部31が、光基地局50からの光信号を電気信号に変換し、光照度値をサンプリングする。
 ステップS303では、閾値判定部37が、所定の閾値を利用し、ステップS301及びS302で取得したサンプリング値を基に光信号を二値化(1/0)する。閾値判定部37は、p(k)≧pthの場合、S(k)=1と判断し、p(k)<pthの場合、S(k)=0と判断し、受信信号を二値化する。
 ステップS304では、光ID推定部34が図27で説明した判定処理ウィンドウ81を設定する。
 ステップS305では、光ID推定部34が二値化されたデータから受信信号の各ビット値を前記多数決判定方式で判定する。
 図30は、本実施形態の端末20の動作(通信方法)を説明するフローチャートである。本通信方法は、図29で説明した動作の後に、本動作を行ってもよい。つまり、本通信方法は、
 ID情報と前記RF無線通信を開始するための認証情報との対応を記載したリスト(光ID対応リスト36)に、推定した前記ID情報を照会し、対応する前記認証情報を取得すること(ステップS306)、及び
 前記認証情報を前記RF無線通信でRF基地局10へ送信すること(ステップS307)、
をさらに行うことを特徴とする。
 ステップS307で送信された認証情報は、RF基地局10で受信される。そして、RF基地局10で認証情報の整合が確認できた端末20が、上位ネットワーク30との通信を許可される。
(第8の実施形態)
 本実施形態では、通信エリアの限定、通信の安全性、通信の安定性を確保する構成について説明する。本実施形態に係る光基地局50は、光IDに応じた信号パターンを生成し、生成した信号パターンに応じた光信号を出力し、出力した光信号のビーム形状を制御して空間に送出する。
 光基地局制御部42は、光IDを抽出し、抽出した光IDに応じた信号パターンを生成する。例えば、図2に記載の光ID対応リストに示す通番“1”の接続情報及び認証情報を利用する場合は、光IDとして“1010”を抽出すると、信号パターンも“1010”としている。必ずしも、光IDの“1010”に応じて、信号パターンも“1010”とする必要はなく、例えば“101011”のような信号パターンでもよい。信号パターンをアナログとする場合は、光IDが“1010”のときに、例えば、周波数1Hzの繰り返しの信号パターンとする。光IDが“1000”のとき、例えば、周波数2Hzの繰り返しの信号パターンとする。
 光送信器51は、光基地局制御部42からの信号パターンの光信号を出力する。無線端末装置20の保有者が、RF基地局10のエリアに入ったとき、ビーム制御部52の送出する光信号の変動が人間に知覚できない程度の変調度であれば、人間に不快感を与えることがない。非特許文献1によると、光変調度は20%以下が望ましい。この程度であれば、人間が何らかの作業に集中している状況では、光の強度の変動を知覚できない。より望ましくは、光変調度は7%以下である。この程度であれば、人間の活動状況によらず、光の強度の変動を知覚できない。
 光基地局制御部42の生成する光IDと光送信回路の13の出力する光信号の例を図31から図34に示す。図31は、光基地局制御部42がディジタル信号である“1010”の信号パターンを生成し、光送信器51がディジタル信号として、“1010”の光信号を出力する例である。この場合、光送信器51の出力する光信号と、光送信器51とは別の照明装置からの光とを合成し、両方の光で、光変調度が所定のパーセンテージ以下になるよう設定する。
 図32は、光基地局制御部42が電気信号である“1010”の信号パターンを生成し、光送信器51がディジタル信号として、“1010”の光信号を出力する例である。光送信器51は、“1010”の光信号自体にバイアス光を含み、光送信器51の出力する光信号の光変調度が所定のパーセンテージ以下になるよう設定する。この場合、光送信器51は、光信号を出力する機能と照明の機能を兼用して有することになる。
 図33は、光基地局制御部42が電気信号であるアナログの繰り返しの信号パターンを生成し、光送信器51がアナログ信号として、繰り返しの光信号を出力する例である。この場合、光送信器51の出力する光信号と、光送信器51とは別の照明装置からの光とを合成し、両方の光で、光変調度が所定のパーセンテージ以下になるよう設定する。
 図34は、光基地局制御部42が電気信号であるアナログの繰り返しの信号パターンを生成し、光送信器51がアナログ信号として、繰り返しの光信号を出力する例である。図34では、光送信器51は、繰り返しの光信号自体にバイアス光を含み、光送信器51の出力する光信号の光変調度が所定のパーセンテージ以下になるよう設定する。この場合、光送信器51は、光信号を出力する機能と照明の機能を兼用して有することになる。
 光送信器51は、強度変調に代えて、周波数変調又は波長変調とする構成でもよい。この場合、信号パターンの強度に応じて光送信回路の光信号の周波数又は波長を変動させることになる。
 ビーム制御部52は、光送信器51からの光信号のビーム形状を制御して、RF基地局10の設定された空間に送出する。本無線通信システムの通信可能なエリアを設定するためである。光波出力の直線性を利用して、通信エリアの限定、通信の安全性を確保することができる。ビーム形状の制御には、反射板や透明な屈折率体を利用することができる。
 図35は、端末20の構成を説明する図である。端末20は、
 ビーム制御部52からの光信号を受信して信号パターンに変換する光受信器21と、
 光IDとそれに対応する無線通信の接続情報及び認証情報との組み合わせ情報を含む端末側光IDリスト22と、
 光基地局50からの信号パターンから光IDを再生し、端末側光ID対応リスト26に光IDを照合し、対応する接続情報及び認証情報を抽出する光ID解析回路23と、
 光ID解析回路23からの接続情報に従った所定のRF無線で、光ID解析回路23からの認証情報を送信する端末側RF送信器24と、
 を備える。
 光受信器21は、ビーム制御部52からの光信号を受信して電気信号の信号パターンに変換する。受光には、光送信器51の発生する光の波長に合わせて受光素子を選択すればよい。無線端末装置20が、ビーム制御部52の設定する通信可能なエリア内にあるときに限って、光受信器21は、ビーム制御部52からの光信号を受信することができる。光信号の受信には、高速の復調回路が不要なため、簡易な構成の無線端末装置を実現することができる。光受信器21は、光信号を受信して、バイアス成分を除去して電気の信号パターンを抽出する。光信号が“1010”のディジタル信号の場合は、例えば、光信号を“1010”の電気の信号パターンに変換する。光信号がアナログ信号の場合は、例えば、1Hzの繰り返し周波数の電気の信号パターンに変換する。
 光ID解析回路23は、光受信器21からの信号パターンから光IDを再生し、端末側光ID対応リスト26に光IDを照合する。次に、光IDに対応する接続情報及び認証情報を抽出する。例えば、光ID解析回路23が光受信器21からの“1010”の信号パターンから“1010”の光IDを再生し、端末側光ID対応リスト26に“1010”の光IDを照合する。例えば、光ID解析回路23が光受信器21からの1Hzの繰り返し周波数の信号パターンから“1010”の光IDを再生し、端末側光ID対応リスト22に“1010”の光IDを照合する。光ID解析回路23は、光ID“1010”に対応するのは通番“1”の接続情報及び認証情報を抽出する。光ID解析回路23が、再生した光IDを端末側光ID対応リスト22に照合する際に、完全に一致する光IDを検出してもよいし、相関係数が最大となる光IDを検出してもよい。無線端末装置20が複数のRF基地局10のエリアに存在していると、複数の光基地局50からそれぞれ光信号を受信し、複数の光IDを再生することになる。この場合は、端末側光ID対応リスト22の中から、複数の通番の優先度を抽出し、優先度の高い通番の接続情報及び認証情報を抽出する。
 端末側RF送信器24は、光ID解析回路23の抽出した接続情報に従って、所定の無線方式、周波数、チャネル等のRF無線規格を設定する。次に、端末側RF送信器24は、光ID解析回路23の抽出した認証情報をRF基地局10に向けて設定したRF無線で送信する。認証情報の送信や認証後の情報通信に電波の拡散性を利用して、通信の安定性を確保することができる。
 本開示は情報通信産業に適用することができる。
10:RF基地局
20:端末
21:光受信器
23:光ID解析回路
24:端末側RF送信器
30:上位ネットワーク
31:光センサ情報取得部
33:RF送受信部
34:光ID推定部
35:光ID解析部
37:閾値判定部
38:閾値算出部
40:基地局制御装置
41:認証情報統合制御部
42:光基地局制御部
26、36、46:光ID対応リスト
50:光基地局
51:光送信器
52:ビーム制御部

Claims (5)

  1.  端末と無線通信を行う1以上の無線基地局と、
     各無線基地局から無線基地局情報を収集し、収集した無線基地局情報を用いて端末と無線通信を行う無線基地局を決定し、決定された無線基地局に応じた光IDを送信する基地局制御装置と、
     前記基地局制御装置から前記光IDを受信し、受信した前記光IDを、光信号を用いて端末に送信する1以上の光基地局と、
     を備え、
     前記基地局制御装置に決定された前記無線基地局が前記光IDを受信した端末と無線通信を行う、
     無線通信システム。
  2.  前記光IDは、前記無線基地局が無線通信を行う際に用いる接続情報及び認証情報に対応しており、
     前記基地局制御装置は、無線基地局の接続情報及び認証情報に応じた前記光IDを前記光基地局に送信する、
     請求項1に記載の無線通信システム。
  3.  1以上の無線基地局及び1以上の光基地局が基地局制御装置に接続されている無線通信システムが実行する無線通信方法であって、
     前記基地局制御装置が、
     各無線基地局から無線基地局情報を収集し、
     収集した無線基地局情報を用いて端末と無線通信を行う無線基地局を決定し、
     決定された無線基地局に応じた光IDを、前記1以上の光基地局の少なくともいずれかに送信し、
     前記光IDを受信した前記光基地局が、受信した前記光IDを、光信号を用いて端末に送信し、
     前記基地局制御装置に決定された前記無線基地局が前記光IDを受信した端末と無線通信を行う、
     無線通信方法。
  4.  1以上の無線基地局及び1以上の光基地局に接続されている基地局制御装置であって、
     各無線基地局から無線基地局情報を収集し、
     収集した無線基地局情報を用いて端末と無線通信を行う無線基地局を決定し、
     前記決定された無線基地局に応じた光IDを前記1以上の光基地局の少なくともいずれかに送信し、
     前記光基地局に、前記光IDを、光信号を用いて端末に送信させ、
     前記決定された無線基地局に、前記光IDを受信した端末と無線通信を行わせる、
     基地局制御装置。
  5.  コンピュータに、請求項4に記載の基地局制御装置に備わる各機能部を実現させるための基地局制御プログラム。
PCT/JP2020/015148 2020-04-02 2020-04-02 無線通信システム、無線通信方法、基地局制御装置及び基地局制御プログラム WO2021199394A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/015148 WO2021199394A1 (ja) 2020-04-02 2020-04-02 無線通信システム、無線通信方法、基地局制御装置及び基地局制御プログラム
US17/915,889 US20230136032A1 (en) 2020-04-02 2020-04-02 Wireless communication system, base station control device, evacuation guidance method, and base station control program
JP2022511454A JP7384270B2 (ja) 2020-04-02 2020-04-02 無線通信システム、無線通信方法、基地局制御装置及び基地局制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015148 WO2021199394A1 (ja) 2020-04-02 2020-04-02 無線通信システム、無線通信方法、基地局制御装置及び基地局制御プログラム

Publications (1)

Publication Number Publication Date
WO2021199394A1 true WO2021199394A1 (ja) 2021-10-07

Family

ID=77930136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015148 WO2021199394A1 (ja) 2020-04-02 2020-04-02 無線通信システム、無線通信方法、基地局制御装置及び基地局制御プログラム

Country Status (3)

Country Link
US (1) US20230136032A1 (ja)
JP (1) JP7384270B2 (ja)
WO (1) WO2021199394A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180006723A1 (en) * 2016-06-29 2018-01-04 Lg Electronics Inc. Device using visible light communications and method of connecting to network using visible light communications
WO2018070366A1 (ja) * 2016-10-12 2018-04-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置、受信装置、通信システム、送信方法、受信方法および通信方法
US20180139202A1 (en) * 2015-05-19 2018-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Communications system, a station, a controller of a light source, and methods therein for authenticating the station to access a network

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177765A (ja) 2007-12-26 2009-08-06 Panasonic Corp 無線基地局、無線通信端末、無線通信システム
JP6294814B2 (ja) 2014-11-18 2018-03-14 日本電信電話株式会社 無線通信方法、無線通信システム、無線通信装置、およびプログラム
JP7000802B2 (ja) 2017-11-07 2022-01-19 Tdk株式会社 通信システム、通信方法および端末装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180139202A1 (en) * 2015-05-19 2018-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Communications system, a station, a controller of a light source, and methods therein for authenticating the station to access a network
US20180006723A1 (en) * 2016-06-29 2018-01-04 Lg Electronics Inc. Device using visible light communications and method of connecting to network using visible light communications
WO2018070366A1 (ja) * 2016-10-12 2018-04-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置、受信装置、通信システム、送信方法、受信方法および通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUTAKA HARA, RYOTA SHIINA, SHINYA TAMAKI, TOMOHIRO TANIGUCHI, TOSHIRO NAKAHIRA, TOMONORI MURAKAMI, YASUHIRO SUZUKI, SATOSHI IKED: "Data Transmission and Radio Resource Control by applying Optical/RF Hybrid Coordinated Systems", IEICE TECHNICAL REPORT, vol. 119, no. 183 (CQ2019-80), 20 August 2018 (2018-08-20), JP, pages 119 - 124, XP009537087 *
SHIINA, RYOTA: "B-8-19 Application of Optical Wireless Transmission to Control Planes in Optical/RF Hybrid Wireless Systems", PROCEEDINGS OF 2019 IEICE SOCIETY CONFERENCE, 2; SEPTEMBER 10-13, 2019, 27 August 2019 (2019-08-27) - 13 September 2019 (2019-09-13), JP , pages 93, XP009537091, ISSN: 1349-144X *

Also Published As

Publication number Publication date
US20230136032A1 (en) 2023-05-04
JPWO2021199394A1 (ja) 2021-10-07
JP7384270B2 (ja) 2023-11-21

Similar Documents

Publication Publication Date Title
US20070258393A1 (en) System and method for pruning a neighbor list using motion vectors
RU2214049C2 (ru) Способ передачи и приема данных, система и приемник для его осуществления
Kang et al. Signal detection scheme in ambient backscatter system with multiple antennas
JP4852583B2 (ja) 無線通信システムにおいて無線リソース測定を促進するための装置及び関連方法
RU2019118265A (ru) Устройство связи и способ связи
US20230031794A1 (en) Selection of decoding level at signal forwarding devices
CN104868951A (zh) 基于led照明的可见光通信传输方法和系统
CN104735744B (zh) 一种基于终端直通通信的多跳中继路由的设计方法
CN106105284A (zh) 用户装置以及信号发送接收方法
KR20140111486A (ko) 단일 사용자를 위한 기기들의 협력에 기반하여 데이터를 전송하는 기지국, 마스터 기기, 슬레이브 기기 및 그 방법들
WO2021199394A1 (ja) 無線通信システム、無線通信方法、基地局制御装置及び基地局制御プログラム
WO2022205527A1 (zh) 可见光通信频谱感知系统及方法
JP7287500B2 (ja) 端末装置、通信方法、及び通信システム
US10404501B2 (en) Wireless communication system and communication method
US20220303004A1 (en) Wireless communication system, wireless terminal equipment, wireless base station equipment and wireless communication methods
WO2021199393A1 (ja) 無線通信システム、基地局制御装置、避難誘導方法及び基地局制御プログラム
Birsan et al. Key technologies for indoor positioning systems
JP7287501B2 (ja) 端末装置、通信方法、及び通信システム
CN103812574B (zh) 提高光子身份认证系统识别率的方法、装置及系统
JP2018098662A (ja) レート判定装置、レート判定方法及び受信装置
CN102281087B (zh) 通信方法、载波调度方法、基站和终端
Salvi et al. An Image Transmission Technique using Low-Cost Li-Fi Testbed
US11929781B2 (en) Terminal devices, communication methods, and communication systems
López et al. Indoor positioning system based on visible light communications
Thieu et al. Implementation of optical camera communication for indoor presence detection system in smart home concept

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928822

Country of ref document: EP

Kind code of ref document: A1