WO2021199381A1 - Air conditioning system and method for controlling air conditioner - Google Patents

Air conditioning system and method for controlling air conditioner Download PDF

Info

Publication number
WO2021199381A1
WO2021199381A1 PCT/JP2020/015040 JP2020015040W WO2021199381A1 WO 2021199381 A1 WO2021199381 A1 WO 2021199381A1 JP 2020015040 W JP2020015040 W JP 2020015040W WO 2021199381 A1 WO2021199381 A1 WO 2021199381A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
comfort
user
air conditioning
air conditioner
Prior art date
Application number
PCT/JP2020/015040
Other languages
French (fr)
Japanese (ja)
Inventor
芸青 范
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/015040 priority Critical patent/WO2021199381A1/en
Priority to CN202080098957.8A priority patent/CN115335644A/en
Priority to US17/796,342 priority patent/US20230066057A1/en
Priority to JP2022511442A priority patent/JP7199597B2/en
Publication of WO2021199381A1 publication Critical patent/WO2021199381A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • F24F11/523Indication arrangements, e.g. displays for displaying temperature data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/14Activity of occupants

Definitions

  • This disclosure relates to an air conditioning system that air-conditions the air-conditioned space and a control method for the air conditioning device.
  • the air conditioning control system disclosed in Patent Document 1 when performing local air conditioning that sends a local air flow to a requester, the PMV of an adjacent person at a predetermined distance from the requester maintains a predetermined range, and the requester Local air conditioning is performed so that the PMV of the above is within a predetermined range.
  • the air conditioning control system disclosed in Patent Document 1 weakens local air conditioning when the PMV of an adjacent person deviates from a predetermined range.
  • the air conditioning control system disclosed in Patent Document 1 gives priority to the comfort of the neighbor over the requester when the PMV of the neighbor deviates from the predetermined range, and controls to weaken the local air conditioning. In this case, it takes time for the requester's PMV to fall within a predetermined range due to the weakening of the local air conditioning. Meanwhile, the requester must put up with an unpleasant condition.
  • the air conditioning control system disclosed in Patent Document 1 when there are a plurality of users in the air conditioning target space, if an attempt is made to improve the comfort of some users, the comfort of the remaining users is impaired.
  • This disclosure is made to solve the above-mentioned problems, and provides an air conditioning system for improving the comfort of a plurality of users in an air-conditioned space, and a control method for the air conditioning device. be.
  • the air conditioning system detects the activity amount of each user and the position of each user in the air conditioning target space for an air conditioning device that air-conditions the air conditioning target space and a plurality of users in the air conditioning target space.
  • a plurality of activities include a group including a person detection means and a comfort index distribution which is a distribution of comfort indexes indicating the comfort level of a user in the air-conditioned space corresponding to each of a plurality of air-conditioning control patterns of the air-conditioning device.
  • the storage device that stores each amount and the group corresponding to the activity amount detected by the person detecting means are specified for each user, and the person is detected from the plurality of comfort index distributions in the specified group.
  • a plurality of the comfort indexes corresponding to the positions detected by the means are extracted, and the plurality of comfort indexes extracted corresponding to the positions of the respective users are used, and the air conditioning control patterns are described for each of the plurality of air conditioning control patterns. It has a control device that calculates a comfort efficiency indicating the total comfort level of a plurality of users and obtains an air conditioning control pattern that maximizes the calculated comfort efficiency among the plurality of air conditioning control patterns. ..
  • the control method of the air conditioning device includes, for a plurality of users in the air-conditioned space, the activity amount of each user and the person detecting means and the storage device for detecting the position of each user in the air-conditioned space.
  • a method of controlling an air conditioner by a connected control device which is a distribution of comfort indexes indicating a user's comfort level in the air-conditioned space corresponding to each of a plurality of air conditioning control patterns of the air conditioner.
  • the steps of extracting the plurality of comfort indexes corresponding to the positions detected by the person detecting means and the steps corresponding to the positions of the respective users were extracted.
  • a group including a comfort index distribution in the air-conditioned space corresponding to each of a plurality of air-conditioned control patterns can be obtained according to the activity amount of each user in the air-conditioned space.
  • a plurality of comfort indexes are extracted from a plurality of comfort index distributions in the group according to the position of each user in the air-conditioned space.
  • the air conditioning control pattern that maximizes the comfort efficiency of the plurality of users is obtained from the plurality of air conditioning control patterns.
  • FIG. It is a figure which shows one configuration example of the air-conditioning system which concerns on Embodiment 1.
  • FIG. It is a refrigerant circuit diagram which shows one configuration example of the air conditioner shown in FIG.
  • It is a side schematic diagram which shows one configuration example of the load side unit shown in FIG.
  • It is a schematic diagram which shows the relationship between the angle of the 1st flap shown in FIG. 3 and the air blowing direction.
  • FIG. 5 is a layout diagram showing an example of an air-conditioned space in which the air conditioner shown in FIG. 1 is air-conditioned. It is a table which shows an example of the activity amount and position of each user. It is a schematic diagram which shows the operation procedure of the information processing apparatus which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the operation procedure of the information processing apparatus which concerns on Embodiment 1.
  • FIG. It is a table which shows an example of the calculation result of comfort efficiency.
  • It is an image diagram which shows an example of the IPMV distribution in the case of the air conditioning control pattern determined in step S107.
  • the communication means either one or both of wireless communication and wired communication.
  • the communication may be a communication method in which wireless communication and wired communication are mixed.
  • the communication method may be, for example, one in which wireless communication is performed in a certain section and wired communication is performed in another space.
  • the communication from one device to another device may be performed by wired communication, and the communication from another device to a certain device may be performed by wireless communication.
  • FIG. 1 is a diagram showing a configuration example of an air conditioning system according to the first embodiment.
  • the air conditioning system includes an air conditioning device 10 that harmonizes the air in a room that is an air-conditioned space, a person detecting means 30 that detects the activity amount and position of a user in the room, and an air conditioning device. It has 10 and an information processing device 2 that is communicated and connected with the person detecting means 30.
  • the air conditioner 10 and the person detecting means 30 are communicated and connected to the information processing device 2 via the network 50.
  • the network 50 is, for example, the Internet.
  • the person detecting means 30 includes an activity amount detecting means 32 for detecting the activity amount of the user in the room and a position detecting means 31 for detecting the position of the user in the room.
  • FIG. 2 is a refrigerant circuit diagram showing a configuration example of the air conditioner shown in FIG.
  • the air conditioner 10 has a heat source side unit 104 that generates a heat source, and a load side unit 103 that adjusts the air in the room by using the heat source generated by the heat source side unit 104.
  • the heat source side unit 104 includes a compressor 119, a heat source side heat exchanger 116, an expansion valve 117, a blower 114, and a four-way valve 118.
  • the load-side unit 103 includes a load-side heat exchanger 115, a blower 113, a wind direction adjusting unit 105, and a control device 130.
  • the wind direction adjusting unit 105 has a first flap 4 and a second flap 5 for adjusting the blowing direction of the air blown out from the load side unit 103.
  • the load side unit 103 is provided with an environment detection unit 120.
  • the environment detection unit 120 detects a room temperature sensor 121 that detects the temperature of the indoor air, a humidity sensor 122 that detects the humidity of the indoor air, and a temperature that detects the temperature Tb of the air blown into the room from the load side unit 103. It has a sensor 123.
  • the load side unit 103 is provided with an infrared sensor 140 that detects the temperature distribution in the indoor space.
  • the infrared sensor 140 functions as the person detecting means 30 shown in FIG.
  • the compressor 119, the heat source side heat exchanger 116, the expansion valve 117, and the load side heat exchanger 115 are connected by a refrigerant pipe 110 to form a refrigerant circuit 102 in which the refrigerant circulates.
  • the compressor 119, the expansion valve 117, the blower 114, the four-way valve 118, and the wind direction adjusting unit 105 are communicated with the control device 130.
  • the environment detection unit 120 and the infrared sensor 140 are communicated with the control device 130.
  • the compressor 119 compresses and discharges the refrigerant to be sucked.
  • the compressor 119 is, for example, an inverter type compressor whose capacity can be changed.
  • the four-way valve 118 changes the flow direction of the refrigerant flowing through the refrigerant circuit 102.
  • the expansion valve 117 depressurizes the refrigerant and expands it.
  • the expansion valve 117 is, for example, an electronic expansion valve.
  • the heat source side heat exchanger 116 is a heat exchanger that exchanges heat between the refrigerant and the outside air.
  • the load side heat exchanger 115 is a heat exchanger that exchanges heat between the refrigerant and the air in the room.
  • the heat source side heat exchanger 116 and the load side heat exchanger 115 are, for example, fin tube type heat exchangers.
  • a heat pump is formed by circulating the refrigerant in the refrigerant circuit 102 while repeating compression and expansion.
  • the load side unit 103 adjusts the air in the room by performing operations such as cooling, heating, dehumidifying, humidifying, moisturizing, and blowing air.
  • FIG. 2 shows a case where the control device 130 is provided in the load side unit 103, but the installation position of the control device 130 is not limited to the load side unit 103.
  • the control device 130 may be provided in the heat source side unit 104, or may be provided at a position other than both the load side unit 103 and the heat source side unit 104.
  • a temperature sensor (not shown) for detecting the condensation temperature and the evaporation temperature may be provided in the air conditioner 10.
  • FIG. 3 is a side schematic view showing a configuration example of the load side unit shown in FIG.
  • the load side unit 103 is embedded in the ceiling 70.
  • the air outlet 6 is provided with a first flap 4 and a second flap 5.
  • the second flap 5 has a front blade 5a and a rear blade 5b.
  • FIG. 4 is a schematic diagram showing the relationship between the angle of the first flap shown in FIG. 3 and the air blowing direction.
  • the first flap 4 has blades 4a to 4d.
  • the air blowing direction ad1 at the horizontal angle ⁇ h1 is indicated by a broken line arrow
  • the air blowing direction ad2 at a horizontal angle ⁇ h2 is indicated by a solid arrow.
  • FIG. 5 is a schematic diagram showing the relationship between the angle of the second flap shown in FIG. 3 and the air blowing direction.
  • the front blade 5a is shown in an enlarged manner, and the rear blade 5b is omitted.
  • the downward direction (opposite direction of the Z-axis arrow) of the load side unit 103 is represented by the vertical reference VAX, and the angle of the front blade 5a is represented by ⁇ v.
  • the air blowing direction ad3 at the vertical angle ⁇ v1 is indicated by a solid arrow
  • the air blowing direction ad4 at a vertical angle ⁇ v2 is indicated by a broken arrow.
  • the load side unit 103 is a ceiling-embedded type.
  • Other types may be used.
  • the configuration of the load side unit 103 shown in FIG. 3 is an example, and is not limited to the configuration shown in FIG.
  • the arrangement of the load side heat exchanger 115 and the blower 113 is not limited to the configuration shown in FIG.
  • the configuration for adjusting the blowing direction of the air blown out from the load side unit 103 is not limited to the wind direction adjusting unit 105 described with reference to FIGS. 3 to 5.
  • the wind direction adjusting unit 105 has two types of vanes, a first flap 4 for adjusting the horizontal angle and a second flap 5 for adjusting the vertical angle. Of these, a configuration in which one type of vane that can adjust the angle in any direction may be provided.
  • the means for adjusting the blowing direction of the air blown out from the load side unit 103 is not limited to the means such as the wind direction adjusting unit 105, but may be a means for changing the direction of the air outlet itself. For example, a means for changing the vertical and horizontal angles of the air outlet can be considered.
  • FIG. 6 is a diagram showing an example of the vertical range of the temperature distribution detected by the infrared sensor shown in FIG. Similar to FIG. 5, the angle in the vertical direction with respect to the vertical reference Vax is defined as ⁇ v.
  • FIG. 7 is a diagram showing an example of the horizontal range of the temperature distribution detected by the infrared sensor shown in FIG. Similar to FIG. 4, the horizontal angle with respect to the horizontal reference ⁇ h0 is defined as ⁇ h.
  • the infrared sensor 140 has a fixed range of an angle ⁇ v in the vertical direction and a horizontal direction with respect to the direction of the wall on which the load side unit 103 faces (the direction opposite to the Y-axis arrow). The temperature distribution in the room is measured within a certain range of the angle ⁇ h.
  • FIG. 8 is an image diagram showing an example when the temperature distribution detected by the infrared sensor shown in FIG. 2 is displayed on a two-dimensional image.
  • the boundaries between each of the walls, floors and ceilings and the other parts are shown by broken lines in FIG.
  • the thermal conductivity of each material of the wall, floor, and ceiling is different, the temperature of the wall, floor, and ceiling is different from each other in the two-dimensional image showing the temperature distribution, and each boundary can be detected. ..
  • the higher the density of the pattern the higher the temperature. Since warm air tends to stay closer to the ceiling than the floor FL, the pattern density is higher on the ceiling side than on the floor FL. Since the temperature of the floor FL is low, the pattern is not displayed.
  • the image Img shown in FIG. 8 it can be seen that when there is a person in the room, the position of the human body can be detected because the surface temperature of the human body is different from the temperature of the floor FL and the wall.
  • the image Img in FIG. 8 shows the case where the positions of the user MA and the user MB in the room are detected.
  • the amount of activity of each user can be estimated by comparing the densities of the patterns indicating the surface temperatures of the user MA and the user MB.
  • the pattern of the user MB has a higher density than the pattern of the user MA, it can be inferred that the activity amount of the user MB is larger than the activity amount of the user MA.
  • FIG. 9 is a functional block diagram showing a configuration example of the control device shown in FIG.
  • the control device 130 is, for example, a microcomputer.
  • the control device 130 includes a refrigeration cycle control means 131 and a communication means 132.
  • Various functions of the control device 130 are realized by executing software by an arithmetic unit such as a microcomputer.
  • the control device 130 may be composed of hardware such as a circuit device that realizes various functions.
  • the refrigeration cycle control means 131 controls the four-way valve 118 in response to operations such as cooling, heating, dehumidification, humidification, moisturization, and ventilation of the load side unit 103.
  • the refrigeration cycle control means 131 controls the refrigeration cycle of the refrigerant circuit 102 based on the room temperature and the set temperature, and the humidity and the set humidity.
  • the refrigeration cycle control means 131 opens the operating frequency of the compressor 119 and the expansion valve 117 so that the room temperature matches the set temperature in a certain range and the indoor humidity matches the set humidity in a certain range.
  • the degree and the rotation speed of the blowers 113 and 114 are controlled.
  • the wind speed W of the airflow generated by the blower 113 can be selected, for example, in three stages of large, medium, and small.
  • the set temperature and set humidity are set by the user in the control device 130 via a remote controller (not shown).
  • the refrigeration cycle control means 131 transmits environmental information including the room temperature detected by the room temperature sensor 121 and the humidity detected by the humidity sensor 122 to the communication means 132.
  • the refrigeration cycle control means 131 transmits operation information including the frequency of the compressor 119, the condensation temperature, the evaporation temperature, and the opening degree of the expansion valve 117 to the communication means 132.
  • the operation information includes airflow information including the temperature Tb detected by the temperature sensor 123, the horizontal angle ⁇ h of the first flap 4, the vertical angle ⁇ v of the second flap 5, and the wind speed W. May be good.
  • the refrigeration cycle control means 131 analyzes a two-dimensional image of the temperature distribution detected by the infrared sensor 140, and combines the position information indicating the position of the user in the room and the temperature data which is the data of the surface temperature of the user.
  • the user information is transmitted to the communication means 132.
  • the position information is information indicating a position represented by an angle ⁇ h in the horizontal direction and an angle ⁇ v in the vertical direction with reference to the load side unit 103.
  • the refrigeration cycle control means 131 transmits the plurality of user information to the communication means 132.
  • the refrigeration cycle control means 131 may transmit the data of the two-dimensional image of the temperature distribution detected by the infrared sensor 140 to the communication means 132 instead of the plurality of user information.
  • the refrigerating cycle control means 131 controls the wind direction adjusting unit 105 and the blower 113 according to the air conditioning control pattern. Specifically, the refrigeration cycle control means 131 adjusts the blowout temperature, the wind speed, and the wind direction in accordance with the air conditioning control pattern.
  • the air conditioning control pattern is, for example, blown out from the temperature Tb, which is the detected value of the temperature sensor 123, the horizontal angle ⁇ h of the first flap 4, the vertical angle ⁇ v of the second flap 5, and the load side unit 103. It is a combination of four control parameters with the wind speed W of the air.
  • the plurality of air conditioning control patterns are patterns in which at least one of these four control parameters is combined so as to be different from each other. Specific examples of the plurality of air conditioning control patterns will be described later.
  • the communication means 132 transmits the environment information, the operation information, and the user information received from the refrigeration cycle control means 131 to the information processing device 2.
  • the communication means 132 receives the two-dimensional image data showing the temperature distribution from the refrigeration cycle control means 131
  • the communication means 132 transmits the two-dimensional image data to the information processing device 2.
  • the communication means 132 receives the air conditioning control pattern information from the information processing device 2
  • the communication means 132 transmits the received air conditioning control pattern information to the refrigeration cycle control means 131.
  • the communication means 132 transmits / receives information to / from the information processing device 2 according to, for example, TCP / IP (Transmission Control Protocol / Internet Protocol).
  • FIG. 10 is a hardware configuration diagram showing a configuration example of the control device shown in FIG.
  • the control device 130 shown in FIG. 9 is composed of a processing circuit 80 as shown in FIG.
  • Each function of the refrigeration cycle control means 131 and the communication means 132 shown in FIG. 9 is realized by the processing circuit 80.
  • the processing circuit 80 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate). It corresponds to Array) or a combination of these.
  • Each of the functions of the refrigerating cycle control means 131 and the communication means 132 may be realized by the processing circuit 80. Further, the functions of the refrigerating cycle control means 131 and the communication means 132 may be realized by one processing circuit 80.
  • FIG. 11 is a hardware configuration diagram showing another configuration example of the control device shown in FIG.
  • the control device 130 shown in FIG. 9 is composed of a processor 81 and a memory 82 as shown in FIG.
  • Each function of the refrigeration cycle control means 131 and the communication means 132 is realized by the processor 81 and the memory 82.
  • FIG. 11 shows that the processor 81 and the memory 82 are communicably connected to each other via the bus 83.
  • the functions of the refrigeration cycle control means 131 and the communication means 132 are realized by software, firmware, or a combination of software and firmware.
  • the software and firmware are written as a program and stored in the memory 82.
  • the processor 81 realizes the functions of each means by reading and executing the program stored in the memory 82.
  • a non-volatile semiconductor memory such as a ROM (Read Only Memory), a flash memory, an EPROM (Erasable and Programmable ROM) and an EEPROM (Electrically Erasable and Programmable ROM) is used.
  • a volatile semiconductor memory of RAM Random Access Memory
  • a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versaille Disc) may be used.
  • the comfort index used by the information processing device 2 when determining the air conditioning control pattern of the air conditioning device 10 will be described.
  • PMV which is a kind of comfort index
  • the sense of fatigue and ease of work during work is composed of physical environmental factors such as the thermal environment, visual environment, and sound environment surrounding the person.
  • Thermal environments are, for example, temperature, humidity, airflow and radiation.
  • the visual environment is, for example, illuminance.
  • the sound environment is, for example, sound pressure.
  • the complex environment which is a combination of these environmental factors, affects the work fit and fatigue of the person working in the environment.
  • PMV is a value proposed by Professor Fanger of the Technical University of Denmark as an index for numerically evaluating the comfort level and feeling of warmth and coldness of a person in a thermal environment. PMV was internationally standardized as ISO-7730 in 1984. PMV is a combination of the heat load of the human body and the feeling of warmth and coldness of the human body. Specifically, PMV has a heat equilibrium equation for the human body based on the elements on the air environment side and the elements on the human body side, and the heat equilibrium equation determines the skin temperature and the amount of heat released by sweating when humans feel comfortable. It is calculated by substituting the formula of.
  • the elements on the air environment side are not only the air temperature but also the radiation temperature, the radiation temperature, the humidity, the air flow, and the like. Factors on the human body side are factors such as the amount of human activity, the amount of clothing, and the average skin temperature.
  • the amount of activity is an example of human biological information, and is expressed in a unit called MET (Metabolic Equivalent), which indicates exercise intensity.
  • MET Metal Equivalent
  • Various movements are quantified using MET.
  • the exercise intensity when a person is watching TV while sitting at rest is defined as 1 MET.
  • the comfort index is IPMV (Individual PMV), which is an individual comfort index, which is an individual comfort index, will be described.
  • the IPMV value is a value based on PMV, but it is not the average value of the overall warm / cool sensation of the air-conditioned space, but identifies the position where a person is, and indicates the local warm / cool sensation which is the warm / cool sensation at the specified position.
  • the value. Local warming sensation is sometimes referred to as local comfort.
  • M is the amount of metabolism [W / m 2 ]
  • W is the amount of mechanical work [W / m 2 ].
  • Ed is the amount of insensitive evaporation [W / m 2 ]
  • Es is the amount of heat of vaporization of sweat from the skin surface [W / m 2 ].
  • Ere is the amount of latent heat loss due to respiration [W / m 2 ]
  • Cre is the amount of sensible heat loss due to respiration [W / m 2 ].
  • R is the amount of radiant heat loss [W / m 2 ]
  • C is the amount of convection heat loss [W / m 2 ].
  • the IPMV is a numerical expression of a person's feeling of warmth and coldness according to temperature, humidity, radiation temperature, and the like.
  • FIG. 12 is a functional block diagram showing a configuration example of the control device of the information processing device shown in FIG.
  • the information processing device 2 is a storage device 21 that stores an IPMV database, and a control that obtains an optimum air conditioning control pattern based on the activity amount, position, and comfort index of a plurality of users in the room and provides the air conditioning device 10 to the air conditioning device 10. It has a device 22 and.
  • the storage device 21 is, for example, an HDD (Hard Disk Drive).
  • the control device 22 is, for example, a microcomputer.
  • Various functions of the control device 22 are realized by executing software by an arithmetic circuit such as a microcomputer. The procedure shown in the flowchart (FIG. 18) described later is written in this software.
  • the control device 22 includes a data acquisition means 11, a model generation means 12, an activity amount determination means 13, a position determination means 14, an efficiency calculation means 15, and a control determination means 16.
  • the storage device 21 stores a standard fluid three-dimensional model for generating an IPMV database.
  • the storage device 21 stores the IPMV database generated by the model generation means 12.
  • the IPMV database has a configuration in which a group including a comfort index distribution, which is a distribution of a user's comfort index in a room corresponding to each of a plurality of air conditioning control patterns of the air conditioner 10, is provided for each of a plurality of activity amounts. Is.
  • the data acquisition means 11 stores the environmental information, the operation information, and the user information received from the air conditioner 10 in the storage device 21 at regular intervals.
  • the data acquisition means 11 stores information received from the air conditioner 10 in a time series in the storage device 21 at regular intervals, and monitors the operating state of the air conditioner 10.
  • the model generation means 12 reads environmental information and operation information from the storage device 21, reflects the read information in a standard fluid three-dimensional model, and generates an IPMV database.
  • the activity amount determining means 13 refers to the IPMV database and identifies a group corresponding to the activity amount detected by the infrared sensor 140 for each user.
  • the position determination means 14 extracts a plurality of comfort indexes corresponding to the positions detected by the infrared sensor 140 from a plurality of comfort index distributions in the group specified by the activity amount determination means 13 for each user.
  • the efficiency calculation means 15 uses a plurality of comfort indexes extracted corresponding to the positions of each user to calculate a comfort efficiency ⁇ indicating the total comfort of a plurality of users for each of the plurality of air conditioning control patterns. ..
  • the control determining means 16 obtains an air conditioning control pattern that maximizes the calculated comfort efficiency ⁇ among the plurality of air conditioning control patterns.
  • the control determination means 16 transmits the obtained air conditioning control pattern to the air conditioner 10.
  • the control device 22 transmits an air conditioning control pattern for changing the wind direction, air volume, and the like to the air conditioner 10 so that the IPMV at the position where the user is located approaches neutrality.
  • the control device 22 does not try to neutralize the PMV in the entire area of the room, but determines the air conditioning control pattern so that the IPMV at the position where the user is present approaches neutral, and controls the IPMV at the position where the user is not present. Do not include in pattern determinants.
  • the configurations of the model generating means 12 and the efficiency calculating means 15 will be described in detail.
  • the configuration of the model generation means 12 shown in FIG. 12 will be described.
  • the values of the eight variables in the equation (1) can be derived from the six values of room temperature, wind speed, radiant temperature and humidity, and the amount of clothing and activity of the user.
  • the room temperature, wind speed, and radiant temperature are values corresponding to the user's position. Therefore, here, the room temperature is defined as the local temperature, the wind speed is defined as the local wind speed, and the radiation temperature is defined as the local radiation temperature.
  • the method by which the model generating means 12 obtains these six values will be described below.
  • the model generation means 12 simulates the temperature distribution of the air conditioning target space corresponding to the air conditioning control pattern by using CFD (Computational Fluid Dynamics) which is an example of numerical fluid analysis, and a specific position from the temperature distribution. Estimate the temperature of. Humidity is detected by the humidity sensor 122. The model generation means 12 acquires humidity information from the operation information stored in the storage device 21. As the local wind speed, the model generating means 12 estimates the wind speed at a specific position from the wind speed of the entire air in the air-conditioned space in the analysis result by CFD. The local radiant temperature is assumed to be equivalent to room temperature. Therefore, the model generating means 12 acquires the detected value of the room temperature sensor 121 from the operation information stored in the storage device 21.
  • CFD Computer Fluid Dynamics
  • the model generating means 12 estimates the clo value representing the thermal resistance of clothing using the data of the two-dimensional image received from the air conditioner 10. Specifically, the model generation means 12 estimates the skin temperature, the amount of skin exposure, and the surface temperature of clothing for each detected user from the data of the two-dimensional image. Then, the model generation means 12 refers to the claw value table in which the skin temperature, the amount of exposure of the skin, the surface temperature of the clothes, and the clo value are associated with each other, and acquires the clo value of each user. The storage device 21 stores the claw value table. As the amount of activity, the model generating means 12 estimates the MET of each user from the data of the two-dimensional image received from the air conditioner 10.
  • the storage device 21 stores in advance a MET table in which the infrared detection value of the two-dimensional image data and the MET are associated with each other.
  • the model generation means 12 refers to the MET table and reads out the MET corresponding to the infrared detection value of each user.
  • the model generation means 12 uses CFD as a numerical fluid analysis to generate an IPMV database for each activity amount regardless of the position of a person in the air-conditioned space in response to a plurality of air-conditioning control patterns, and is a storage device. Store in 21.
  • FIG. 13 is a table showing an example of a combination describing the type of activity and the energy metabolism rate representing the amount of activity.
  • the energy metabolism rate is calculated by the formula (2). Referring to FIG. 13, for example, the amount of activity of a sleeping person is 0.7 MET, and the amount of activity of a person sitting at rest is 1 MET.
  • the model generation means 12 three-dimensionally models the air-conditioned space to be simulated by using a standard fluid three-dimensional model. Subsequently, the model generating means 12 divides the modeled air-conditioned space into, for example, a grid pattern. Then, the model generation means 12 determines the boundary condition for each rectangular region between the lattices based on the result of heat calculation corresponding to the pressure, temperature, velocity of the fluid, the heating element existing in the space, and the heat entering from the wall. Give the necessary initial conditions as. Further, the model generating means 12 analyzes the pressure, air volume, temperature, etc. in each rectangular region based on the boundary conditions such as the invading heat from the wall and the internal heat generation, using the determined turbulence model and the difference scheme. ..
  • the IPMV is calculated corresponding to each air conditioning control pattern of the plurality of air conditioning control patterns.
  • the plurality of air conditioning control patterns include, for example, three patterns relating to the angle ⁇ h of the first flap 4, three patterns relating to the angle ⁇ v of the second flap 5, three patterns relating to the wind speed W, and three patterns relating to the temperature Tb.
  • the horizontal angle ⁇ h of the first flap 4 is three patterns of leftward (X-axis arrow direction in FIG. 4) 30 °, 0 °, and rightward (opposite direction of the X-axis arrow in FIG. 4) 30 °.
  • the wind speed W has three patterns of large, medium and small.
  • the temperature Tb of the air blown out from the load-side unit 103 has three patterns of high, medium, and low.
  • the model generation means 12 performs CFD analysis on 81 air-conditioning control patterns for each activity amount such as 1MET and 2MET with respect to the entire air-conditioning target space regardless of the position of the air-conditioning target space, and IPMV in the air-conditioning target space. Generate an IPMV distribution, which is the distribution of. In the IPMV distribution, the space to be air-conditioned is divided into a plurality of rectangular regions by CFD analysis, and the IPMV is stored in the storage device 21 corresponding to each rectangular region. For example, the model generation means 12 generates 81 IPMV distributions for 1 MET activity to form one group, and 81 IPMV distributions for 2 MET activity to form another group.
  • the model generation means 12 generates groups corresponding to each of the plurality of activity amounts, and stores the plurality of groups in the storage device 21 as an IPMV database.
  • the interval of the activity amount is not limited to 1.0.
  • the activity interval may be 0.1 or 0.5.
  • the efficiency calculation means 15 calculates the comfort efficiency ⁇ of each of the plurality of air conditioning control patterns using the equation (3) using the information on the position and activity amount of the user in the room.
  • k is an identification number that differs for each user, and K is the number of users in the room.
  • K is the number of users in the room.
  • K ⁇ 2.
  • the target value is that the personal comfort index IPMV is within ⁇ 0.5, and when
  • the control determining means 16 obtains an air conditioning control pattern having the maximum comfort efficiency ⁇ among the comfort efficiency ⁇ corresponding to 81 kinds of air conditioning control patterns.
  • FIG. 14 is a hardware configuration diagram showing a configuration example of the arithmetic unit shown in FIG.
  • the control device 22 shown in FIG. 12 is composed of a processor 91 such as a CPU (Central Processing Unit) and a memory 92, as shown in FIG. ..
  • the functions of the data acquisition means 11, the model generation means 12, the activity amount determination means 13, the position determination means 14, the efficiency calculation means 15, and the control determination means 16 are realized by the processor 91 and the memory 92.
  • FIG. 14 shows that the processor 91 and the memory 92 are communicably connected to each other via the bus 93.
  • the processor 91 and the memory 92 are connected to the storage device 21 shown in FIG. 12 via the bus 93.
  • the memory 92 serves as a primary storage device, and the storage device 21 serves as a secondary storage device.
  • the functions of the data acquisition means 11, the model generation means 12, the activity amount determination means 13, the position determination means 14, the efficiency calculation means 15, and the control determination means 16 are software, firmware, or software. It is realized by the combination of and firmware.
  • the software and firmware are written as a program and stored in the memory 92.
  • the processor 91 realizes the function of each means by reading and executing the program stored in the memory 92.
  • the memory 92 has, for example, the same configuration as the memory 82, and detailed description thereof will be omitted.
  • the model generating means 12 may learn the calculation method of the IPMV in advance by the neural network and estimate the IPMV of the air-conditioned space from the input conditions such as the building load, the area, and the user's preference.
  • the model generating means 12 learns the optimum combination of the temperature Tb of the air blown from the load side unit 103, the angles ⁇ h and ⁇ v, and the wind speed W from the input conditions such as the building load, the area, and the user's preference.
  • the number of air conditioning control patterns to be selected may be narrowed down by a neural network. In this case, since the control determination means 16 selects the optimum air conditioning control pattern from the narrowed number of air conditioning control patterns, the determination process of the air conditioning control pattern is smoothly performed.
  • the user's preference is, for example, the tendency of the user to feel warm or cold.
  • the storage device 21 stores the combination data in time series, which is a combination of the input condition including the heat load of the building in which the air conditioner 10 is installed and the air conditioning control pattern that maximizes the comfort efficiency ⁇ . do. Then, the control determination means 16 narrows down the number of air conditioning control patterns to be selected from the plurality of air conditioning control patterns based on the plurality of combination data stored in time series.
  • the input conditions include, in addition to the heat load of the building, the weather data of the area where the air conditioner 10 is installed, the amount of solar radiation of the building, and the information indicating the tendency of the feeling of warmth and coldness of a plurality of users. May include.
  • the model generation means 12 may update the IPMV distribution of the IPMV database as follows.
  • the model generating means 12 estimates the refrigerating capacity of the air conditioner 10 from the operation information including the frequency of the compressor 119, the condensation temperature, the evaporation temperature, and the opening degree of the expansion valve 117. Then, the model generating means 12 stores the estimated refrigerating capacity and the airflow state estimated from the temperature Tb, the horizontal angle ⁇ h, the vertical angle ⁇ v, and the wind speed W for each of the plurality of activity amounts. It is reflected in each IPMV distribution of the group. In this case, the IPMV database is updated to the latest state according to the change in the operating state of the air conditioner 10.
  • FIG. 15 is a layout diagram showing an example of an air-conditioned space in which the air conditioner shown in FIG. 1 is air-conditioned.
  • FIG. 15 shows the positions of furniture placed in the room and the positions of two users in the room.
  • the vertical axis of FIG. 15 is the Y-axis coordinate
  • the horizontal axis is the X-axis coordinate.
  • FIG. 16 is a table showing an example of the activity amount and position of each user.
  • the activity amount of the user MA is 1 MET
  • the activity amount of the user MB is 2 MET.
  • FIG. 17 is a schematic diagram showing an operation procedure of the information processing apparatus according to the first embodiment.
  • n in nMET is a positive integer greater than or equal to 2.
  • FIG. 18 is a flowchart showing an operation procedure of the information processing apparatus according to the first embodiment.
  • step S101 the data acquisition means 11 acquires environmental information from the air conditioner 10.
  • the data acquisition means 11 stores the acquired environmental information in the storage device 21.
  • step S102 the data acquisition means 11 acquires operation information from the air conditioner 10.
  • the data acquisition means 11 stores the acquired operation information in the storage device 21.
  • the operation information includes the frequency of the compressor 119, the condensation temperature, the evaporation temperature, and the opening degree of the expansion valve 117. Further, the operation information includes airflow information including the temperature Tb detected by the temperature sensor 123, the horizontal angle ⁇ h of the first flap 4, the vertical angle ⁇ v of the second flap 5, and the wind speed W. I'm out.
  • step S101 or S102 the data acquisition means 11 acquires the two-dimensional image data detected by the infrared sensor 140 from the air conditioner 10 and stores it in the storage device 21 as user information.
  • the model generation means 12 generates an IPMV database using the information stored in the storage device 21.
  • the model generation means 12 stores the generated IPMV database in the storage device 21.
  • FIG. 17 shows an IPMV database in which 81 IPMV distributions are provided for each activity amount.
  • the activity amount determining means 13 refers to the two-dimensional image data stored in the storage device 21 and acquires the activity amount information of each user.
  • the activity amount determining means 13 estimates the activity amount of the user MA as 1 MET and the activity amount of the user MB as 2 MET.
  • step S104 the position determination means 14 refers to the two-dimensional image data stored in the storage device 21 to acquire the position information of each user.
  • the position determining means 14 determines the position of the user MA as the coordinates (2, 7) and determines the position of the user MB as the coordinates (7, 9).
  • step S105 the efficiency calculation means 15 reads out the 1MET group and the 2MET group from the IPMV database from the estimation result of the activity amount determination means 13. Subsequently, the efficiency calculating means 15 reads out 81 IPMVs located at the coordinates (2,7) of the group of 1MET from the determination result of the position determining means 14. Further, the efficiency calculating means 15 reads out 81 IPMVs located at the coordinates (7, 9) of the 2MET group from the determination result of the position determining means 14. At that time, the efficiency calculation means 15 reads out the IPMV at a predetermined height (for example, 1.3 m above the floor) of the air-conditioned space in each IPMV distribution. Then, the efficiency calculation means 15 substitutes 81 IPMVs of the user MA and 81 IPMVs of the user MB into the equation (3) to calculate 81 different comfort efficiencies ⁇ (step S106).
  • a predetermined height for example, 1.3 m above the floor
  • step S107 the control determining means 16 determines the air conditioning control pattern having the largest comfort efficiency ⁇ among the 81 air conditioning control patterns.
  • the selection condition of the air conditioning control pattern may include not only the condition that the comfort efficiency ⁇ is the maximum but also the condition that the IPMV of each user is within ⁇ 0.5.
  • step S108 the control determination means 16 transmits the information of the air conditioning control pattern determined in step S107 to the air conditioner 10.
  • the control device 130 of the air conditioner 10 receives the information of the air conditioning control pattern from the information processing device 2, it controls at least one of the compressor 119, the blower 113, and the wind direction adjusting unit 105 according to the air conditioning control pattern. ..
  • the refrigeration cycle control means 131 changes the operating frequency of the compressor 119.
  • the refrigeration cycle control means 131 changes the rotation speed of the blower 113.
  • the refrigeration cycle control means 131 changes the angle ⁇ h of the first flap 4.
  • the refrigeration cycle control means 131 changes the angle ⁇ v of the second flap 5.
  • step S109 the data acquisition means 11 determines whether or not a certain time has elapsed. If a certain period of time does not elapse, the control device 22 goes into a standby state. As a result of the determination in step S109, when a certain time has elapsed, the control device 22 returns to the process of step S101.
  • FIG. 19 is a table showing an example of the calculation result of comfort efficiency.
  • FIG. 19 shows the IPMV when the activity amount is 1 MET, the IPMV when the activity amount is 2 MET, and the comfort efficiency ⁇ corresponding to each air conditioning control pattern.
  • the numbers in the left column of the table shown in FIG. 19 are identification numbers of the air conditioning control pattern. With reference to the table shown in FIG. 19, it can be seen that the air conditioning control pattern that maximizes the comfort efficiency ⁇ is the air conditioning control pattern No. 16.
  • FIG. 20 is an image diagram showing an example of the IPMV distribution in the case of the air conditioning control pattern determined in step S107.
  • FIG. 20 shows the IPMV distribution when the activity amount is 1 MET in the 16th air conditioning control pattern.
  • FIG. 21 is an image diagram showing another example of the IPMV distribution in the case of the air conditioning control pattern determined in step S107.
  • FIG. 21 shows the IPMV distribution when the activity amount is 2MET in the 16th air conditioning control pattern.
  • the IPMV of the user MA having an activity amount of 1 MET and the IPMV of the user MB having an activity amount of 2 MET are visualized.
  • 20 and 21 show that the higher the pattern density is, the more the IPMV is on the negative side than the neutral value, and the smaller the pattern density is, the more the IPMV is on the negative side than the neutral value.
  • the IPMV at the position of the user MA is close to 0.
  • the IPMV is a value larger than 0 in a wide range of the room, but the peripheral IPMV centered on the coordinates (7, 7) close to the position of the user MB is a value close to 0. You can see that there is.
  • step S103 the data acquisition means 11 acquires the data of the two-dimensional image detected by the infrared sensor 140 from the air conditioner 10 as user information. If the IPMV database built in the storage device 21 is suitable for the air conditioner 10 and the air-conditioned space, it does not need to be updated frequently. In this case, the load of arithmetic processing of the model generation means 12 is reduced.
  • the activity amount determining means 13 and the position determining means 14 may monitor the data of the two-dimensional image detected by the infrared sensor 140 from the air conditioner 10. If the activity amount determining means 13 determines that the user's activity amount is not constant within a certain period of time, or if the position determining means 14 cannot determine the presence or absence of the user in the room, one or both of them, the load side unit. The wind direction of the air blown from 103 may be changed. Specifically, the control determining means 16 controls to perform a swing operation in which one or both of the horizontal angle of the first flap 4 and the vertical angle of the second flap 5 are changed at regular intervals. Information is transmitted to the air conditioner 10.
  • the swing operation of the first flap 4 is an operation in which the first flap 4 swings left and right with a cycle of 20 seconds with respect to the horizontal reference ⁇ h0.
  • the environmental information and the operation information received by the information processing device 2 from the air conditioner 10 change, and the control device 22 can easily recognize the activity amount and the position of the user.
  • the efficiency calculating means 15 uses the equation (3) to determine the comfort efficiency ⁇ of each air conditioning control pattern.
  • the efficiency calculation means 15 may use TOPSIS (Technique for Order of Preferences by Similarity to Ideal Solution) to obtain an air conditioning control pattern that maximizes the overall comfort of a plurality of users.
  • TOPSIS Technique for Order of Preferences by Similarity to Ideal Solution
  • the air conditioning system 1 of the first embodiment includes an air conditioning device 10, a person detecting means 30 for detecting an activity amount for each of a plurality of users and a position for each of a plurality of users, a storage device 21, and a control device 22.
  • the storage device 21 stores a group including a comfort index distribution, which is a distribution of the user's comfort index in the air-conditioned space corresponding to each of the plurality of air-conditioning control patterns of the air-conditioning device 10, for each of the plurality of activity amounts.
  • the control device 22 includes an activity amount determination unit 13, a position determination unit 14, an efficiency calculation unit 15, and a control determination unit 16.
  • the activity amount determining means 13 identifies a group corresponding to the activity amount detected by the person detecting means 30 for each user.
  • the position determining means 14 extracts a plurality of comfort indexes corresponding to the positions detected by the person detecting means 30 from the plurality of comfort index distributions in the specified group.
  • the efficiency calculation means 15 uses a plurality of comfort indexes extracted corresponding to the positions of each user to calculate a comfort efficiency ⁇ indicating the total comfort of a plurality of users for each of the plurality of air conditioning control patterns. ..
  • the control determining means 16 obtains an air conditioning control pattern that maximizes the calculated comfort efficiency ⁇ among the plurality of air conditioning control patterns.
  • a group including a comfort index distribution in the air-conditioned space corresponding to each of the plurality of air-conditioned control patterns is obtained according to the activity amount of each user in the air-conditioned space.
  • a plurality of comfort indexes are extracted from a plurality of comfort index distributions in the group according to the position of each user in the air-conditioned space.
  • the air conditioning control pattern that maximizes the comfort efficiency of the plurality of users is obtained from the plurality of air conditioning control patterns.
  • the person detecting means 20 is not limited to the infrared sensor 140.
  • the activity amount detecting means 32 may be a wearable sensor. The case where the activity amount detecting means 32 is a wearable sensor will be described below.
  • FIG. 22 is a diagram showing a configuration example of the air conditioning system of the modified example 1.
  • the same reference numerals are given to the same configurations as those described with reference to FIG. 1, and detailed description thereof will be omitted in the present modification 1.
  • the air conditioning system 1a includes an air conditioning device 10 having a position detecting means 31, an information processing device 2, an access point (AP) 60, and a wearable terminal 40 provided for each user.
  • the AP60 is provided in a room which is an air-conditioned space of the air conditioner 10.
  • the AP60 has a short-range wireless communication means (not shown) such as Bluetooth (registered trademark) and a network communication means (not shown) corresponding to the communication protocol of the network 50.
  • the communication protocol is, for example, TCP / IP.
  • the position detecting means 31 is, for example, the infrared sensor 140 shown in FIG.
  • the wearable terminal 40 is provided for each user.
  • the wearable terminal 40 is, for example, in the form of a wristwatch or bracelet.
  • the wearable terminal 40 has an activity amount detecting means 32 that detects a pulse as an activity amount of the user at a fixed cycle.
  • the amount of activity may be the skin temperature of the user.
  • the wearable terminal 40 has a memory (not shown) for storing a terminal identifier and a program, which are different identifiers for each terminal, and a CPU (not shown) for executing processing according to the program.
  • the CPU (not shown) of the wearable terminal 40 sends the user information including the activity amount information and the terminal identifier to the information processing device 2 via the AP 60 and the network 50. Send.
  • the memory (not shown) of the wearable terminal 40 may store the coordinates of the installation position of the AP60.
  • the CPU (not shown) of the wearable terminal 40 refers to the strength of the radio wave with the AP60 and estimates the distance from the installation position of the AP60. Then, the CPU (not shown) of the wearable terminal 40 includes the estimated position information in the user information as the user's position information.
  • the CPU of the wearable terminal 40 estimates the position of the user in the room more accurately by comparing the strengths of the radio waves of the plurality of AP60s. can do.
  • the information processing device 2 associates the user information received from the wearable terminal 40 with the position of the user detected by the position detecting means 31.
  • the information processing apparatus 2 can determine the optimum air conditioning control pattern from the plurality of air conditioning control patterns according to the procedure shown in FIG.
  • the wearable terminal 40 worn for each user detects the activity amount of the user, so that the activity amount is detected more accurately. As a result, it is possible to perform air conditioning more suitable for each activity amount of the plurality of users.
  • Quantity detection means 40 wearable terminals, 50 networks, 60 access points, 70 ceilings, 80 processing circuits, 81 processors, 82 memories, 83 buses, 91 processors, 92 memories, 93 buses, 102 refrigerant circuits, 103 load side units, 104 Heat source side unit, 105 wind direction adjustment unit, 110 refrigerant pipe, 113 blower, 114 blower, 115 load side heat exchanger, 116 heat source side heat exchanger, 117 expansion valve, 118 four-way valve, 119 compressor, 120 environment detector, 121 room temperature sensor, 122 humidity sensor, 123 temperature sensor, 130 control device, 131 refrigeration cycle control means, 132 communication means, 140 infrared sensor, FL floor surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioning system comprises: an air conditioner; a person detection means for detecting, for a plurality of users, the amount of activity of each user and the position of each user; a storage device that stores groups containing comfort index distributions, which are distributions of comfort indexes indicating the comfort level of users in an air-conditioned space corresponding to each of the plurality of air conditioning control patterns of the air conditioner, for each of a plurality of activity amounts; and a control device that identifies the group corresponding to the amount of activity of each user, extracts the plurality of comfort indexes corresponding to the position of each user from the plurality of comfort index distributions in the identified group, calculates the comfort efficiency, which indicates the overall comfort level of the plurality of users for each of the plurality of air conditioning control patterns, using the plurality of comfort indexes extracted according to the position of each user, and finds the air conditioning control pattern that maximizes the calculated comfort efficiency from among the multiple air conditioning control patterns.

Description

空気調和システムおよび空気調和装置の制御方法How to control air conditioners and air conditioners
 本開示は、空調対象空間を空気調和する空気調和システム、および空気調和装置の制御方法に関する。 This disclosure relates to an air conditioning system that air-conditions the air-conditioned space and a control method for the air conditioning device.
 近年、地球温暖化などの外部環境の変化の影響により、居住環境の快適性向上のニーズが高まってきている。空気調和装置について、居住する人間の温冷感を快適に保つ役目の重要性が増している。快適性を実現するためにPMV(Predicted Mean Vote)という快適指標が提案されている。空調対象空間に居るユーザのPMVを監視して空気調和機を制御する空調制御システムが開示されている(例えば、特許文献1参照)。 In recent years, there is an increasing need for improving the comfort of the living environment due to the effects of changes in the external environment such as global warming. The role of air conditioners to keep the warmth and coldness of living people comfortable is increasing. A comfort index called PMV (Predicted Mean Vote) has been proposed to realize comfort. An air conditioning control system that monitors the PMV of a user in an air conditioning target space and controls an air conditioner is disclosed (see, for example, Patent Document 1).
 特許文献1に開示された空調制御システムは、要求者に向けて局所気流を送る局所空調を行う際、要求者から所定の距離離れた隣接者のPMVが所定の範囲を維持し、かつ要求者のPMVが所定の範囲になるように局所空調を行う。特許文献1に開示された空調制御システムは、隣接者のPMVが所定の範囲から外れると、局所空調を弱める。 In the air conditioning control system disclosed in Patent Document 1, when performing local air conditioning that sends a local air flow to a requester, the PMV of an adjacent person at a predetermined distance from the requester maintains a predetermined range, and the requester Local air conditioning is performed so that the PMV of the above is within a predetermined range. The air conditioning control system disclosed in Patent Document 1 weakens local air conditioning when the PMV of an adjacent person deviates from a predetermined range.
国際公開第2008/087959号International Publication No. 2008/087959
 特許文献1に開示された空調制御システムは、隣接者のPMVが所定の範囲から外れると、要求者よりも隣接者の快適性を優先して、局所空調を弱める制御を行う。この場合、局所空調が弱まることで、要求者のPMVが所定の範囲に入るまでに時間がかかる。その間、要求者は不快な状態で我慢しなければならない。特許文献1に開示された空調制御システムは、空調対象空間に複数のユーザが居る場合、一部のユーザの快適性を向上させようとすると、残りのユーザの快適性が損なわれてしまう。 The air conditioning control system disclosed in Patent Document 1 gives priority to the comfort of the neighbor over the requester when the PMV of the neighbor deviates from the predetermined range, and controls to weaken the local air conditioning. In this case, it takes time for the requester's PMV to fall within a predetermined range due to the weakening of the local air conditioning. Meanwhile, the requester must put up with an unpleasant condition. In the air conditioning control system disclosed in Patent Document 1, when there are a plurality of users in the air conditioning target space, if an attempt is made to improve the comfort of some users, the comfort of the remaining users is impaired.
 本開示は、上記のような課題を解決するためになされたもので、空調対象空間に居る複数のユーザの快適性の向上を図る空気調和システム、および空気調和装置の制御方法を提供するものである。 This disclosure is made to solve the above-mentioned problems, and provides an air conditioning system for improving the comfort of a plurality of users in an air-conditioned space, and a control method for the air conditioning device. be.
 本開示に係る空気調和システムは、空調対象空間を空気調和する空気調和装置と、前記空調対象空間に居る複数のユーザについて、各ユーザの活動量および前記空調対象空間における各ユーザの位置を検出する人検出手段と、前記空気調和装置の複数の空調制御パターンのそれぞれに対応する前記空調対象空間におけるユーザの快適度を示す快適性指標の分布である快適性指標分布を含むグループを、複数の活動量毎に記憶する記憶装置と、前記各ユーザについて、前記人検出手段によって検出された活動量に対応する前記グループを特定し、特定したグループ内の複数の前記快適性指標分布から、前記人検出手段によって検出される位置に対応する複数の前記快適性指標を抽出し、前記各ユーザの位置に対応して抽出された前記複数の快適性指標を用いて、前記複数の空調制御パターン毎に前記複数のユーザの総合的な快適度を示す快適効率を算出し、前記複数の空調制御パターンのうち、算出された前記快適効率が最大となる空調制御パターンを求める制御装置と、を有するものである。 The air conditioning system according to the present disclosure detects the activity amount of each user and the position of each user in the air conditioning target space for an air conditioning device that air-conditions the air conditioning target space and a plurality of users in the air conditioning target space. A plurality of activities include a group including a person detection means and a comfort index distribution which is a distribution of comfort indexes indicating the comfort level of a user in the air-conditioned space corresponding to each of a plurality of air-conditioning control patterns of the air-conditioning device. The storage device that stores each amount and the group corresponding to the activity amount detected by the person detecting means are specified for each user, and the person is detected from the plurality of comfort index distributions in the specified group. A plurality of the comfort indexes corresponding to the positions detected by the means are extracted, and the plurality of comfort indexes extracted corresponding to the positions of the respective users are used, and the air conditioning control patterns are described for each of the plurality of air conditioning control patterns. It has a control device that calculates a comfort efficiency indicating the total comfort level of a plurality of users and obtains an air conditioning control pattern that maximizes the calculated comfort efficiency among the plurality of air conditioning control patterns. ..
 本開示に係る空気調和装置の制御方法は、空調対象空間に居る複数のユーザについて、各ユーザの活動量および前記空調対象空間における前記各ユーザの位置を検出する人検出手段ならびに記憶装置のそれぞれと接続される制御装置による空気調和装置の制御方法であって、前記空気調和装置の複数の空調制御パターンのそれぞれに対応する前記空調対象空間におけるユーザの快適度を示す快適性指標の分布である快適性指標分布を含むグループを、複数の活動量毎に記憶するステップと、前記各ユーザについて、前記人検出手段によって検出された活動量に対応する前記グループを特定するステップと、前記各ユーザについて、特定したグループ内の複数の前記快適性指標分布から、前記人検出手段によって検出される位置に対応する複数の前記快適性指標を抽出するステップと、前記各ユーザの位置に対応して抽出された前記複数の快適性指標を用いて、前記複数の空調制御パターン毎に前記複数のユーザの総合的な快適度を示す快適効率を算出するステップと、前記複数の空調制御パターンのうち、算出された前記快適効率が最大となる空調制御パターンを求めるステップと、を有するものである。 The control method of the air conditioning device according to the present disclosure includes, for a plurality of users in the air-conditioned space, the activity amount of each user and the person detecting means and the storage device for detecting the position of each user in the air-conditioned space. A method of controlling an air conditioner by a connected control device, which is a distribution of comfort indexes indicating a user's comfort level in the air-conditioned space corresponding to each of a plurality of air conditioning control patterns of the air conditioner. A step of storing a group including a sex index distribution for each of a plurality of activity amounts, a step of specifying the group corresponding to the activity amount detected by the person detecting means for each user, and a step of specifying the group corresponding to the activity amount detected by the person detecting means, and for each user. From the plurality of comfort index distributions in the specified group, the steps of extracting the plurality of comfort indexes corresponding to the positions detected by the person detecting means and the steps corresponding to the positions of the respective users were extracted. The step of calculating the comfort efficiency indicating the total comfort of the plurality of users for each of the plurality of air conditioning control patterns using the plurality of comfort indexes, and the calculation of the plurality of air conditioning control patterns. It has a step of obtaining an air conditioning control pattern that maximizes the comfort efficiency.
 本開示によれば、空調対象空間に居る各ユーザの活動量に対応して、複数の空調制御パターンのそれぞれに対応する空調対象空間における快適性指標分布を含むグループが求まる。また、空調対象空間に居る各ユーザの位置に対応して、グループ内の複数の快適性指標分布から複数の快適性指標が抽出される。そして、各ユーザの複数の快適性指標に基づいて、複数のユーザの快適効率が最大となる空調制御パターンが、複数の空調制御パターンから求まる。複数のユーザの快適効率が最大となる空調制御パターンにしたがって空気調和装置が空気調和を行うことで、複数のユーザに対して快適性の向上を図ることができる。 According to the present disclosure, a group including a comfort index distribution in the air-conditioned space corresponding to each of a plurality of air-conditioned control patterns can be obtained according to the activity amount of each user in the air-conditioned space. In addition, a plurality of comfort indexes are extracted from a plurality of comfort index distributions in the group according to the position of each user in the air-conditioned space. Then, based on the plurality of comfort indexes of each user, the air conditioning control pattern that maximizes the comfort efficiency of the plurality of users is obtained from the plurality of air conditioning control patterns. By performing air conditioning by the air conditioner according to the air conditioning control pattern that maximizes the comfort efficiency of the plurality of users, it is possible to improve the comfort for the plurality of users.
実施の形態1に係る空気調和システムの一構成例を示す図である。It is a figure which shows one configuration example of the air-conditioning system which concerns on Embodiment 1. FIG. 図1に示した空気調和装置の一構成例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows one configuration example of the air conditioner shown in FIG. 図2に示した負荷側ユニットの一構成例を示す側面模式図である。It is a side schematic diagram which shows one configuration example of the load side unit shown in FIG. 図3に示した第1フラップの角度と空気の吹き出し方向との関係を示す模式図である。It is a schematic diagram which shows the relationship between the angle of the 1st flap shown in FIG. 3 and the air blowing direction. 図3に示した第2フラップの角度と空気の吹き出し方向との関係を示す模式図である。It is a schematic diagram which shows the relationship between the angle of the 2nd flap shown in FIG. 3 and the air blowing direction. 図2に示した赤外線センサが検出する温度分布の垂直方向の範囲の一例を示す図である。It is a figure which shows an example of the range in the vertical direction of the temperature distribution detected by the infrared sensor shown in FIG. 図2に示した赤外線センサが検出する温度分布の水平方向の範囲の一例を示す図である。It is a figure which shows an example of the horizontal range of the temperature distribution detected by the infrared sensor shown in FIG. 図2に示した赤外線センサによって検出された温度分布を2次元画像に表示した場合の一例を示すイメージ図である。It is an image diagram which shows an example of the case where the temperature distribution detected by the infrared sensor shown in FIG. 2 is displayed on a two-dimensional image. 図2に示した制御装置の一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the control device shown in FIG. 図9に示した制御装置の一構成例を示すハードウェア構成図である。It is a hardware configuration diagram which shows one configuration example of the control device shown in FIG. 図9に示した制御装置の別の構成例を示すハードウェア構成図である。It is a hardware configuration diagram which shows another configuration example of the control device shown in FIG. 図1に示した情報処理装置の制御装置の一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the control device of the information processing apparatus shown in FIG. 活動の種類と活動量を代表するエネルギー代謝率とを記述した組み合わせの例を示すテーブルである。It is a table which shows the example of the combination which described the type of activity and the energy metabolism rate which represents the amount of activity. 図12に示した演算装置の一構成例を示すハードウェア構成図である。It is a hardware configuration diagram which shows one configuration example of the arithmetic unit shown in FIG. 図1に示した空気調和装置が空気調和する空調対象空間の一例を示すレイアウト図である。FIG. 5 is a layout diagram showing an example of an air-conditioned space in which the air conditioner shown in FIG. 1 is air-conditioned. 各ユーザの活動量および位置の一例を示す表である。It is a table which shows an example of the activity amount and position of each user. 実施の形態1に係る情報処理装置の動作手順を示す模式図である。It is a schematic diagram which shows the operation procedure of the information processing apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る情報処理装置の動作手順を示すフローチャートである。It is a flowchart which shows the operation procedure of the information processing apparatus which concerns on Embodiment 1. FIG. 快適効率の算出結果の一例を示すテーブルである。It is a table which shows an example of the calculation result of comfort efficiency. ステップS107で決定された空調制御パターンの場合のIPMV分布の一例を示すイメージ図である。It is an image diagram which shows an example of the IPMV distribution in the case of the air conditioning control pattern determined in step S107. ステップS107で決定された空調制御パターンの場合のIPMV分布の別の例を示すイメージ図である。It is an image diagram which shows another example of the IPMV distribution in the case of the air conditioning control pattern determined in step S107. 変形例1の空気調和システムの一構成例を示す図である。It is a figure which shows one configuration example of the air-conditioning system of the modification 1.
 本開示の実施の形態について、図面を用いて詳細に説明する。本実施の形態で説明する各種の具体的な設定例は一例であり、記載された設定例に限定されない。また、本開示の実施の形態において、通信とは、無線通信および有線通信のいずれか一方または両方を意味する。本実施の形態において、通信は、無線通信と有線通信とが混在した通信方式であってもよい。通信方式は、例えば、ある区間では無線通信が行われ、別の空間では有線通信が行われるものであってもよい。また、ある装置から他の装置への通信が有線通信で行われ、他の装置からある装置への通信が無線通信で行われるものであってもよい。 The embodiments of the present disclosure will be described in detail with reference to the drawings. The various specific setting examples described in the present embodiment are examples, and are not limited to the described setting examples. Further, in the embodiment of the present disclosure, the communication means either one or both of wireless communication and wired communication. In the present embodiment, the communication may be a communication method in which wireless communication and wired communication are mixed. The communication method may be, for example, one in which wireless communication is performed in a certain section and wired communication is performed in another space. Further, the communication from one device to another device may be performed by wired communication, and the communication from another device to a certain device may be performed by wireless communication.
実施の形態1.
 本実施の形態1の空気調和システム1の構成を説明する。図1は、実施の形態1に係る空気調和システムの一構成例を示す図である。図1に示すように、空気調和システムは、空調対象空間となる室内の空気を調和する空気調和装置10と、室内に居るユーザの活動量および位置を検出する人検出手段30と、空気調和装置10および人検出手段30と通信接続される情報処理装置2とを有する。空気調和装置10および人検出手段30はネットワーク50を介して情報処理装置2と通信接続される。ネットワーク50は、例えば、インターネットである。
Embodiment 1.
The configuration of the air conditioning system 1 of the first embodiment will be described. FIG. 1 is a diagram showing a configuration example of an air conditioning system according to the first embodiment. As shown in FIG. 1, the air conditioning system includes an air conditioning device 10 that harmonizes the air in a room that is an air-conditioned space, a person detecting means 30 that detects the activity amount and position of a user in the room, and an air conditioning device. It has 10 and an information processing device 2 that is communicated and connected with the person detecting means 30. The air conditioner 10 and the person detecting means 30 are communicated and connected to the information processing device 2 via the network 50. The network 50 is, for example, the Internet.
 人検出手段30は、室内に居るユーザの活動量を検出する活動量検出手段32と、室内におけるユーザの位置を検出する位置検出手段31とを有する。 The person detecting means 30 includes an activity amount detecting means 32 for detecting the activity amount of the user in the room and a position detecting means 31 for detecting the position of the user in the room.
 図1に示した空気調和装置10の構成を説明する。図2は、図1に示した空気調和装置の一構成例を示す冷媒回路図である。空気調和装置10は、熱源を生成する熱源側ユニット104と、熱源側ユニット104で生成される熱源を用いて室内の空気を調整する負荷側ユニット103とを有する。熱源側ユニット104は、圧縮機119、熱源側熱交換器116、膨張弁117、送風機114および四方弁118を有する。負荷側ユニット103は、負荷側熱交換器115、送風機113、風向調整部105および制御装置130を有する。 The configuration of the air conditioner 10 shown in FIG. 1 will be described. FIG. 2 is a refrigerant circuit diagram showing a configuration example of the air conditioner shown in FIG. The air conditioner 10 has a heat source side unit 104 that generates a heat source, and a load side unit 103 that adjusts the air in the room by using the heat source generated by the heat source side unit 104. The heat source side unit 104 includes a compressor 119, a heat source side heat exchanger 116, an expansion valve 117, a blower 114, and a four-way valve 118. The load-side unit 103 includes a load-side heat exchanger 115, a blower 113, a wind direction adjusting unit 105, and a control device 130.
 風向調整部105は、負荷側ユニット103から吹き出される空気の吹き出し方向を調整する第1フラップ4および第2フラップ5を有する。負荷側ユニット103には、環境検出部120が設けられている。環境検出部120は、室内の空気の温度を検出する室温センサ121と、室内の空気の湿度を検出する湿度センサ122と、負荷側ユニット103から室内に吹き出される空気の温度Tbを検出する温度センサ123とを有する。また、負荷側ユニット103には、室内の空間の温度分布を検出する赤外線センサ140が設けられている。赤外線センサ140は、図1に示した人検出手段30として機能する。 The wind direction adjusting unit 105 has a first flap 4 and a second flap 5 for adjusting the blowing direction of the air blown out from the load side unit 103. The load side unit 103 is provided with an environment detection unit 120. The environment detection unit 120 detects a room temperature sensor 121 that detects the temperature of the indoor air, a humidity sensor 122 that detects the humidity of the indoor air, and a temperature that detects the temperature Tb of the air blown into the room from the load side unit 103. It has a sensor 123. Further, the load side unit 103 is provided with an infrared sensor 140 that detects the temperature distribution in the indoor space. The infrared sensor 140 functions as the person detecting means 30 shown in FIG.
 圧縮機119、熱源側熱交換器116、膨張弁117および負荷側熱交換器115が冷媒配管110で接続され、冷媒が循環する冷媒回路102が構成される。圧縮機119、膨張弁117、送風機114、四方弁118および風向調整部105は制御装置130と通信接続される。環境検出部120および赤外線センサ140は制御装置130と通信接続される。 The compressor 119, the heat source side heat exchanger 116, the expansion valve 117, and the load side heat exchanger 115 are connected by a refrigerant pipe 110 to form a refrigerant circuit 102 in which the refrigerant circulates. The compressor 119, the expansion valve 117, the blower 114, the four-way valve 118, and the wind direction adjusting unit 105 are communicated with the control device 130. The environment detection unit 120 and the infrared sensor 140 are communicated with the control device 130.
 圧縮機119は、吸入する冷媒を圧縮して吐出する。圧縮機119は、例えば、容量を変更できるインバータ式圧縮機である。四方弁118は、冷媒回路102を流通する冷媒の流通方向を変更する。膨張弁117は、冷媒を減圧して膨張させる。膨張弁117は、例えば、電子膨張弁である。熱源側熱交換器116は、冷媒と外気とを熱交換させる熱交換器である。負荷側熱交換器115は、冷媒と室内の空気とを熱交換させる熱交換器である。熱源側熱交換器116および負荷側熱交換器115は、例えば、フィンチューブ式熱交換器である。 The compressor 119 compresses and discharges the refrigerant to be sucked. The compressor 119 is, for example, an inverter type compressor whose capacity can be changed. The four-way valve 118 changes the flow direction of the refrigerant flowing through the refrigerant circuit 102. The expansion valve 117 depressurizes the refrigerant and expands it. The expansion valve 117 is, for example, an electronic expansion valve. The heat source side heat exchanger 116 is a heat exchanger that exchanges heat between the refrigerant and the outside air. The load side heat exchanger 115 is a heat exchanger that exchanges heat between the refrigerant and the air in the room. The heat source side heat exchanger 116 and the load side heat exchanger 115 are, for example, fin tube type heat exchangers.
 冷媒が圧縮と膨張とを繰り返しながら冷媒回路102を循環することで、ヒートポンプが形成される。負荷側ユニット103は、冷房、暖房、除湿、加湿、保湿および送風などの運転を行うことで、室内の空気を調整する。図2では、制御装置130が負荷側ユニット103に設けられている場合を示しているが、制御装置130の設置位置は負荷側ユニット103に限定されない。制御装置130は、熱源側ユニット104に設けられていてもよく、負荷側ユニット103および熱源側ユニット104の両方を除く位置に設けられていてもよい。また、凝縮温度および蒸発温度を検出する温度センサ(図示せず)が空気調和装置10に設けられていてもよい。 A heat pump is formed by circulating the refrigerant in the refrigerant circuit 102 while repeating compression and expansion. The load side unit 103 adjusts the air in the room by performing operations such as cooling, heating, dehumidifying, humidifying, moisturizing, and blowing air. FIG. 2 shows a case where the control device 130 is provided in the load side unit 103, but the installation position of the control device 130 is not limited to the load side unit 103. The control device 130 may be provided in the heat source side unit 104, or may be provided at a position other than both the load side unit 103 and the heat source side unit 104. Further, a temperature sensor (not shown) for detecting the condensation temperature and the evaporation temperature may be provided in the air conditioner 10.
 図3は、図2に示した負荷側ユニットの一構成例を示す側面模式図である。負荷側ユニット103は、天井70に埋め込まれている。送風機113が回転すると、負荷側ユニット103において、破線矢印に示す方向に空気が流通する気流が形成され、吹出口6を介して空気が室内に吹き出される。吹出口6には、第1フラップ4および第2フラップ5が設けられている。第2フラップ5は、前方羽根5aおよび後方羽根5bを有する。 FIG. 3 is a side schematic view showing a configuration example of the load side unit shown in FIG. The load side unit 103 is embedded in the ceiling 70. When the blower 113 rotates, an air flow in which air flows in the direction indicated by the broken line arrow is formed in the load side unit 103, and the air is blown into the room through the air outlet 6. The air outlet 6 is provided with a first flap 4 and a second flap 5. The second flap 5 has a front blade 5a and a rear blade 5b.
 図4は、図3に示した第1フラップの角度と空気の吹き出し方向との関係を示す模式図である。図4に示すように、第1フラップ4は羽根4a~4dを有する。図4においては、説明のために、負荷側ユニット103を上から見下ろしたとき、透視される羽根4a~4dを示している。第1フラップ4の羽根4a~4dの角度をθhと表し、負荷側ユニット103の正面方向(X軸矢印の反対方向)を水平基準θh0=0°とする。図4では、水平方向の角度θh1のときの空気の吹き出し方向ad1を破線の矢印で示し、水平方向の角度θh2のときの空気の吹き出し方向ad2を実線の矢印で示している。 FIG. 4 is a schematic diagram showing the relationship between the angle of the first flap shown in FIG. 3 and the air blowing direction. As shown in FIG. 4, the first flap 4 has blades 4a to 4d. In FIG. 4, for the sake of explanation, the blades 4a to 4d that are seen through when the load side unit 103 is viewed from above are shown. The angles of the blades 4a to 4d of the first flap 4 are represented by θh, and the front direction (opposite direction of the X-axis arrow) of the load side unit 103 is defined as the horizontal reference θh0 = 0 °. In FIG. 4, the air blowing direction ad1 at the horizontal angle θh1 is indicated by a broken line arrow, and the air blowing direction ad2 at a horizontal angle θh2 is indicated by a solid arrow.
 図5は、図3に示した第2フラップの角度と空気の吹き出し方向との関係を示す模式図である。図5においては、説明のために、図3に示した第2フラップ5のうち、前方羽根5aを拡大して示し、後方羽根5bを示すことを省略している。負荷側ユニット103の下方向(Z軸矢印の反対方向)を垂直基準Vaxとして、前方羽根5aの角度をθvと表す。図5は、垂直方向の角度θv1のときの空気の吹き出し方向ad3を実線の矢印で示し、垂直方向の角度θv2のときの空気の吹き出し方向ad4を破線の矢印で示している。 FIG. 5 is a schematic diagram showing the relationship between the angle of the second flap shown in FIG. 3 and the air blowing direction. In FIG. 5, for the sake of explanation, of the second flap 5 shown in FIG. 3, the front blade 5a is shown in an enlarged manner, and the rear blade 5b is omitted. The downward direction (opposite direction of the Z-axis arrow) of the load side unit 103 is represented by the vertical reference VAX, and the angle of the front blade 5a is represented by θv. In FIG. 5, the air blowing direction ad3 at the vertical angle θv1 is indicated by a solid arrow, and the air blowing direction ad4 at a vertical angle θv2 is indicated by a broken arrow.
 なお、本実施の形態1においては、負荷側ユニット103が天井埋め込みタイプの場合で説明したが、天井埋め込みタイプに限らず、天井の室内側の面に取り付けられるタイプ、または壁に取りつけられるタイプなど、他のタイプであってもよい。また、図3に示した負荷側ユニット103の構成は一例であり、図3に示した構成に限らない。負荷側熱交換器115および送風機113の配置は図3に示した構成に限定されない。 In the first embodiment, the case where the load side unit 103 is a ceiling-embedded type has been described. , Other types may be used. Further, the configuration of the load side unit 103 shown in FIG. 3 is an example, and is not limited to the configuration shown in FIG. The arrangement of the load side heat exchanger 115 and the blower 113 is not limited to the configuration shown in FIG.
 また、負荷側ユニット103から吹き出される空気の吹き出し方向を調整する構成は、図3~図5を参照して説明した風向調整部105に限らない。風向調整部105は水平方向の角度を調整する第1フラップ4および垂直方向の角度を調整する第2フラップ5の2種類のベーンを有する構成であるが、水平方向および垂直方向を組み合わせた方向のうち、どの方向にも角度を調整できる1種類のベーンが設けられた構成でもよい。さらに、負荷側ユニット103から吹き出される空気の吹き出し方向を調整する手段として、風向調整部105のような手段に限らず、吹出口自体の方向を変更する手段であってもよい。例えば、吹出口の垂直方向および水平方向のそれぞれの角度を変更する手段が考えられる。 Further, the configuration for adjusting the blowing direction of the air blown out from the load side unit 103 is not limited to the wind direction adjusting unit 105 described with reference to FIGS. 3 to 5. The wind direction adjusting unit 105 has two types of vanes, a first flap 4 for adjusting the horizontal angle and a second flap 5 for adjusting the vertical angle. Of these, a configuration in which one type of vane that can adjust the angle in any direction may be provided. Further, the means for adjusting the blowing direction of the air blown out from the load side unit 103 is not limited to the means such as the wind direction adjusting unit 105, but may be a means for changing the direction of the air outlet itself. For example, a means for changing the vertical and horizontal angles of the air outlet can be considered.
 図6は、図2に示した赤外線センサが検出する温度分布の垂直方向の範囲の一例を示す図である。図5と同様に、垂直基準Vaxを基準とした垂直方向の角度をθvとする。図7は、図2に示した赤外線センサが検出する温度分布の水平方向の範囲の一例を示す図である。図4と同様に、水平基準θh0を基準とした水平方向の角度をθhとする。赤外線センサ140は、図6および図7に示すように、負荷側ユニット103が対向する壁の方向(Y軸矢印の反対方向)に対して、垂直方向の角度θvの一定の範囲と、水平方向の角度θhの一定の範囲とにおける室内の温度分布を測定する。 FIG. 6 is a diagram showing an example of the vertical range of the temperature distribution detected by the infrared sensor shown in FIG. Similar to FIG. 5, the angle in the vertical direction with respect to the vertical reference Vax is defined as θv. FIG. 7 is a diagram showing an example of the horizontal range of the temperature distribution detected by the infrared sensor shown in FIG. Similar to FIG. 4, the horizontal angle with respect to the horizontal reference θh0 is defined as θh. As shown in FIGS. 6 and 7, the infrared sensor 140 has a fixed range of an angle θv in the vertical direction and a horizontal direction with respect to the direction of the wall on which the load side unit 103 faces (the direction opposite to the Y-axis arrow). The temperature distribution in the room is measured within a certain range of the angle θh.
 図8は、図2に示した赤外線センサによって検出された温度分布を2次元画像に表示した場合の一例を示すイメージ図である。説明のために、図8において、壁、床および天井のそれぞれと他の部分との境を破線で示している。一般的には、壁、床および天井の各材料の熱の伝導率が異なるため、温度分布を示す2次元画像において、壁、床および天井の温度が互いに異なり、各境界を検出することができる。 FIG. 8 is an image diagram showing an example when the temperature distribution detected by the infrared sensor shown in FIG. 2 is displayed on a two-dimensional image. For illustration purposes, the boundaries between each of the walls, floors and ceilings and the other parts are shown by broken lines in FIG. In general, since the thermal conductivity of each material of the wall, floor, and ceiling is different, the temperature of the wall, floor, and ceiling is different from each other in the two-dimensional image showing the temperature distribution, and each boundary can be detected. ..
 図8に示す画像Imgにおいては、模様の密度が高いほど温度が高いことを示している。暖かい空気は、床面FLよりも天井に近い側に滞留する傾向があるため、床面FLよりも天井側の方が模様の密度が高くなっている。床面FLは温度が低いため、模様が表示されていない。図8に示す画像Imgを参照すると、室内に人がいる場合、人体の表面温度が床面FLおよび壁の温度と異なるため、人体の位置を検出できることがわかる。図8の画像Imgは、ユーザMAおよびユーザMBの各ユーザの室内における位置が検出された場合を示す。また、ユーザMAおよびユーザMBの表面温度を示す模様の密度を比較することで、各ユーザの活動量を推測することができる。図8に示す画像Imgにおいて、ユーザMBの模様の方がユーザMAの模様よりも密度が大きいので、ユーザMBの活動量がユーザMAの活動量よりも大きいと推測できる。 In the image Img shown in FIG. 8, it is shown that the higher the density of the pattern, the higher the temperature. Since warm air tends to stay closer to the ceiling than the floor FL, the pattern density is higher on the ceiling side than on the floor FL. Since the temperature of the floor FL is low, the pattern is not displayed. With reference to the image Img shown in FIG. 8, it can be seen that when there is a person in the room, the position of the human body can be detected because the surface temperature of the human body is different from the temperature of the floor FL and the wall. The image Img in FIG. 8 shows the case where the positions of the user MA and the user MB in the room are detected. In addition, the amount of activity of each user can be estimated by comparing the densities of the patterns indicating the surface temperatures of the user MA and the user MB. In the image Img shown in FIG. 8, since the pattern of the user MB has a higher density than the pattern of the user MA, it can be inferred that the activity amount of the user MB is larger than the activity amount of the user MA.
 図9は、図2に示した制御装置の一構成例を示す機能ブロック図である。制御装置130は、例えば、マイクロコンピュータである。制御装置130は、冷凍サイクル制御手段131と、通信手段132とを有する。制御装置130は、マイクロコンピュータなどの演算装置がソフトウェアを実行することにより各種機能が実現される。また、制御装置130は、各種機能を実現する回路デバイスなどのハードウェアで構成されてもよい。 FIG. 9 is a functional block diagram showing a configuration example of the control device shown in FIG. The control device 130 is, for example, a microcomputer. The control device 130 includes a refrigeration cycle control means 131 and a communication means 132. Various functions of the control device 130 are realized by executing software by an arithmetic unit such as a microcomputer. Further, the control device 130 may be composed of hardware such as a circuit device that realizes various functions.
 冷凍サイクル制御手段131は、負荷側ユニット103の冷房、暖房、除湿、加湿、保湿および送風などの運転に対応して四方弁118を制御する。冷凍サイクル制御手段131は、室温および設定温度と、湿度および設定湿度とに基づいて、冷媒回路102の冷凍サイクルを制御する。例えば、冷凍サイクル制御手段131は、室温が設定温度と一定の範囲で一致し、室内の湿度が設定湿度と一定の範囲で一致するように、圧縮機119の運転周波数と、膨張弁117の開度と、送風機113および114の回転数とを制御する。送風機113によって生成される気流の風速Wは、例えば、大、中および小の3段階で選択できる。設定温度および設定湿度は、図に示さないリモートコントローラを介して制御装置130にユーザによって設定される。 The refrigeration cycle control means 131 controls the four-way valve 118 in response to operations such as cooling, heating, dehumidification, humidification, moisturization, and ventilation of the load side unit 103. The refrigeration cycle control means 131 controls the refrigeration cycle of the refrigerant circuit 102 based on the room temperature and the set temperature, and the humidity and the set humidity. For example, the refrigeration cycle control means 131 opens the operating frequency of the compressor 119 and the expansion valve 117 so that the room temperature matches the set temperature in a certain range and the indoor humidity matches the set humidity in a certain range. The degree and the rotation speed of the blowers 113 and 114 are controlled. The wind speed W of the airflow generated by the blower 113 can be selected, for example, in three stages of large, medium, and small. The set temperature and set humidity are set by the user in the control device 130 via a remote controller (not shown).
 また、冷凍サイクル制御手段131は、室温センサ121によって検出される室温および湿度センサ122によって検出される湿度を含む環境情報を通信手段132に送信する。冷凍サイクル制御手段131は、圧縮機119の周波数と、凝縮温度と、蒸発温度と、膨張弁117の開度とを含む運転情報を通信手段132に送信する。運転情報は、温度センサ123によって検出される温度Tbと、第1フラップ4の水平方向の角度θhと、第2フラップ5の垂直方向の角度θvと、風速Wとを含む気流情報を含んでいてもよい。 Further, the refrigeration cycle control means 131 transmits environmental information including the room temperature detected by the room temperature sensor 121 and the humidity detected by the humidity sensor 122 to the communication means 132. The refrigeration cycle control means 131 transmits operation information including the frequency of the compressor 119, the condensation temperature, the evaporation temperature, and the opening degree of the expansion valve 117 to the communication means 132. The operation information includes airflow information including the temperature Tb detected by the temperature sensor 123, the horizontal angle θh of the first flap 4, the vertical angle θv of the second flap 5, and the wind speed W. May be good.
 さらに、冷凍サイクル制御手段131は、赤外線センサ140によって検出される温度分布の2次元画像を解析し、室内におけるユーザの位置を示す位置情報とユーザの表面温度のデータである温度データとを組にしたユーザ情報を通信手段132に送信する。位置情報は、負荷側ユニット103を基準として、水平方向の角度θhおよび垂直方向の角度θvによって表される位置を示す情報である。室内に複数のユーザが居る場合、冷凍サイクル制御手段131は、複数のユーザ情報を通信手段132に送信する。冷凍サイクル制御手段131は、複数のユーザ情報の代わりに、赤外線センサ140によって検出される温度分布の2次元画像のデータを通信手段132に送信してもよい。 Further, the refrigeration cycle control means 131 analyzes a two-dimensional image of the temperature distribution detected by the infrared sensor 140, and combines the position information indicating the position of the user in the room and the temperature data which is the data of the surface temperature of the user. The user information is transmitted to the communication means 132. The position information is information indicating a position represented by an angle θh in the horizontal direction and an angle θv in the vertical direction with reference to the load side unit 103. When there are a plurality of users in the room, the refrigeration cycle control means 131 transmits the plurality of user information to the communication means 132. The refrigeration cycle control means 131 may transmit the data of the two-dimensional image of the temperature distribution detected by the infrared sensor 140 to the communication means 132 instead of the plurality of user information.
 さらに、冷凍サイクル制御手段131は、通信手段132から空調制御パターンの情報を受信すると、空調制御パターンにしたがって、風向調整部105および送風機113を制御する。具体的には、冷凍サイクル制御手段131は、空調制御パターンに対応して、吹き出し温度、風速および風向を調整する。 Further, when the refrigerating cycle control means 131 receives the information of the air conditioning control pattern from the communication means 132, the refrigerating cycle control means 131 controls the wind direction adjusting unit 105 and the blower 113 according to the air conditioning control pattern. Specifically, the refrigeration cycle control means 131 adjusts the blowout temperature, the wind speed, and the wind direction in accordance with the air conditioning control pattern.
 空調制御パターンは、例えば、温度センサ123の検出値である温度Tbと、第1フラップ4の水平方向の角度θhと、第2フラップ5の垂直方向の角度θvと、負荷側ユニット103から吹き出される空気の風速Wとの4つの制御パラメータの組み合わせである。複数の空調制御パターンは、これら4つの制御パラメータのうち、少なくとも1つの制御パラメータが相互に異なるように組み合わされたパターンである。複数の空調制御パターンの具体例は後で説明する。 The air conditioning control pattern is, for example, blown out from the temperature Tb, which is the detected value of the temperature sensor 123, the horizontal angle θh of the first flap 4, the vertical angle θv of the second flap 5, and the load side unit 103. It is a combination of four control parameters with the wind speed W of the air. The plurality of air conditioning control patterns are patterns in which at least one of these four control parameters is combined so as to be different from each other. Specific examples of the plurality of air conditioning control patterns will be described later.
 通信手段132は、冷凍サイクル制御手段131から受信する環境情報、運転情報およびユーザ情報を情報処理装置2に送信する。通信手段132は、温度分布を示す2次元画像のデータを冷凍サイクル制御手段131から受信すると、2次元画像のデータを情報処理装置2に送信する。通信手段132は、空調制御パターンの情報を情報処理装置2から受信すると、受信した空調制御パターンの情報を冷凍サイクル制御手段131に送信する。通信手段132は、例えば、TCP/IP(Transmission Control Protocol/Internet Protocol)にしたがって、情報処理装置2と情報を送受信する。 The communication means 132 transmits the environment information, the operation information, and the user information received from the refrigeration cycle control means 131 to the information processing device 2. When the communication means 132 receives the two-dimensional image data showing the temperature distribution from the refrigeration cycle control means 131, the communication means 132 transmits the two-dimensional image data to the information processing device 2. When the communication means 132 receives the air conditioning control pattern information from the information processing device 2, the communication means 132 transmits the received air conditioning control pattern information to the refrigeration cycle control means 131. The communication means 132 transmits / receives information to / from the information processing device 2 according to, for example, TCP / IP (Transmission Control Protocol / Internet Protocol).
 ここで、図9に示した制御装置130のハードウェアの一例を説明する。図10は、図9に示した制御装置の一構成例を示すハードウェア構成図である。制御装置130の各種機能がハードウェアで実行される場合、図9に示した制御装置130は、図10に示すように、処理回路80で構成される。図9に示した、冷凍サイクル制御手段131および通信手段132の各機能は、処理回路80により実現される。 Here, an example of the hardware of the control device 130 shown in FIG. 9 will be described. FIG. 10 is a hardware configuration diagram showing a configuration example of the control device shown in FIG. When various functions of the control device 130 are executed by hardware, the control device 130 shown in FIG. 9 is composed of a processing circuit 80 as shown in FIG. Each function of the refrigeration cycle control means 131 and the communication means 132 shown in FIG. 9 is realized by the processing circuit 80.
 各機能がハードウェアで実行される場合、処理回路80は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものに該当する。冷凍サイクル制御手段131および通信手段132の各手段の機能のそれぞれを処理回路80で実現してもよい。また、冷凍サイクル制御手段131および通信手段132の各手段の機能を1つの処理回路80で実現してもよい。 When each function is executed by hardware, the processing circuit 80 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate). It corresponds to Array) or a combination of these. Each of the functions of the refrigerating cycle control means 131 and the communication means 132 may be realized by the processing circuit 80. Further, the functions of the refrigerating cycle control means 131 and the communication means 132 may be realized by one processing circuit 80.
 また、図9に示した制御装置130の別のハードウェアの一例を説明する。図11は、図9に示した制御装置の別の構成例を示すハードウェア構成図である。制御装置130の各種機能がソフトウェアで実行される場合、図9に示した制御装置130は、図11に示すように、プロセッサ81およびメモリ82で構成される。冷凍サイクル制御手段131および通信手段132の各機能は、プロセッサ81およびメモリ82により実現される。図11は、プロセッサ81およびメモリ82が互いにバス83を介して通信可能に接続されることを示している。 Further, an example of another hardware of the control device 130 shown in FIG. 9 will be described. FIG. 11 is a hardware configuration diagram showing another configuration example of the control device shown in FIG. When various functions of the control device 130 are executed by software, the control device 130 shown in FIG. 9 is composed of a processor 81 and a memory 82 as shown in FIG. Each function of the refrigeration cycle control means 131 and the communication means 132 is realized by the processor 81 and the memory 82. FIG. 11 shows that the processor 81 and the memory 82 are communicably connected to each other via the bus 83.
 各機能がソフトウェアで実行される場合、冷凍サイクル制御手段131および通信手段132の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ82に格納される。プロセッサ81は、メモリ82に記憶されたプログラムを読み出して実行することにより、各手段の機能を実現する。 When each function is executed by software, the functions of the refrigeration cycle control means 131 and the communication means 132 are realized by software, firmware, or a combination of software and firmware. The software and firmware are written as a program and stored in the memory 82. The processor 81 realizes the functions of each means by reading and executing the program stored in the memory 82.
 メモリ82として、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable and Programmable ROM)およびEEPROM(Electrically Erasable and Programmable ROM)等の不揮発性の半導体メモリが用いられる。また、メモリ82として、RAM(Random Access Memory)の揮発性の半導体メモリが用いられてもよい。さらに、メモリ82として、磁気ディスク、フレキシブルディスク、光ディスク、CD(Compact Disc)、MD(Mini Disc)およびDVD(Digital Versatile Disc)等の着脱可能な記録媒体が用いられてもよい。 As the memory 82, for example, a non-volatile semiconductor memory such as a ROM (Read Only Memory), a flash memory, an EPROM (Erasable and Programmable ROM) and an EEPROM (Electrically Erasable and Programmable ROM) is used. Further, as the memory 82, a volatile semiconductor memory of RAM (Random Access Memory) may be used. Further, as the memory 82, a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versaille Disc) may be used.
 次に、図1に示した情報処理装置2の構成を説明する前に、情報処理装置2が空気調和装置10の空調制御パターンを決定する際に用いる快適性指標について説明する。はじめに、快適性指標の一種であるPMVについて説明する。 Next, before explaining the configuration of the information processing device 2 shown in FIG. 1, the comfort index used by the information processing device 2 when determining the air conditioning control pattern of the air conditioning device 10 will be described. First, PMV, which is a kind of comfort index, will be described.
 人にとって、作業時における疲労および作業のしやすさの感覚は、人をとりまく温熱環境、視環境および音環境等の物理的な環境要因で構成される。温熱環境は、例えば、温度、湿度、気流および輻射である。視環境は、例えば、照度である。音環境は、例えば、音圧である。これらの環境要因の組み合わせである複合環境は、その環境で働く人の作業の適合感および人の疲労感に影響を与える。 For humans, the sense of fatigue and ease of work during work is composed of physical environmental factors such as the thermal environment, visual environment, and sound environment surrounding the person. Thermal environments are, for example, temperature, humidity, airflow and radiation. The visual environment is, for example, illuminance. The sound environment is, for example, sound pressure. The complex environment, which is a combination of these environmental factors, affects the work fit and fatigue of the person working in the environment.
 PMVは、温熱環境における人の快適度および温冷感を数値で評価する指標として、デンマーク工科大学ファンガー教授によって提唱された値である。PMVは、1984年にISO-7730として国際規格化された。PMVは、人体の熱負荷と人の温冷感とを結びつけたものである。具体的には、PMVは、空気環境側の要素と人体側の要素とによよって、人体に関する熱平衡式が立てられ、その熱平衡式に人間が快適と感じるときの皮膚温度と発汗による放熱量との式を代入することで算出される。空気環境側の要素は、空気温度だけではなく、放射温度、輻射温度、湿度および気流等の要素である。人体側の要素は、人の活動量、着衣量および平均皮膚温度等の要素である。 PMV is a value proposed by Professor Fanger of the Technical University of Denmark as an index for numerically evaluating the comfort level and feeling of warmth and coldness of a person in a thermal environment. PMV was internationally standardized as ISO-7730 in 1984. PMV is a combination of the heat load of the human body and the feeling of warmth and coldness of the human body. Specifically, PMV has a heat equilibrium equation for the human body based on the elements on the air environment side and the elements on the human body side, and the heat equilibrium equation determines the skin temperature and the amount of heat released by sweating when humans feel comfortable. It is calculated by substituting the formula of. The elements on the air environment side are not only the air temperature but also the radiation temperature, the radiation temperature, the humidity, the air flow, and the like. Factors on the human body side are factors such as the amount of human activity, the amount of clothing, and the average skin temperature.
 活動量は、人の生体情報の一例であり、MET(Metabolic Equivalent)という運動強度を示す単位で表される。種々の運動がMETを用いて数値化されている。例えば、人が安静に座ったままテレビを観賞しているときの運動強度は1METと定義されている。 The amount of activity is an example of human biological information, and is expressed in a unit called MET (Metabolic Equivalent), which indicates exercise intensity. Various movements are quantified using MET. For example, the exercise intensity when a person is watching TV while sitting at rest is defined as 1 MET.
 本実施の形態1においては、快適性指標が個人の快適性指標であるIPMV(Individual PMV)の場合で説明する。IPMV値は、PMVに基づく値であるが、空調対象空間の全体の温冷感の平均値ではなく、人が居る位置を特定し、特定した位置の温冷感である局所温冷感を示す値である。局所温冷感は、局所快適度と称されることもある。 In the first embodiment, the case where the comfort index is IPMV (Individual PMV), which is an individual comfort index, will be described. The IPMV value is a value based on PMV, but it is not the average value of the overall warm / cool sensation of the air-conditioned space, but identifies the position where a person is, and indicates the local warm / cool sensation which is the warm / cool sensation at the specified position. The value. Local warming sensation is sometimes referred to as local comfort.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)における8つの変数について説明する。Mは代謝量[W/m]であり、Wは機械的仕事量[W/m2]である。Edは不感蒸泄量[W/m2]であり、Esは皮膚表面よりの汗蒸発熱損失量[W/m2]である。Ereは呼吸による潜熱損失量[W/m2]であり、Creは呼吸による顕熱損失量[W/m2]である。Rは放射熱損失量[W/m2]であり、Cは対流熱損失量[W/m2]である。 Eight variables in the equation (1) will be described. M is the amount of metabolism [W / m 2 ], and W is the amount of mechanical work [W / m 2 ]. Ed is the amount of insensitive evaporation [W / m 2 ], and Es is the amount of heat of vaporization of sweat from the skin surface [W / m 2 ]. Ere is the amount of latent heat loss due to respiration [W / m 2 ], and Cre is the amount of sensible heat loss due to respiration [W / m 2 ]. R is the amount of radiant heat loss [W / m 2 ], and C is the amount of convection heat loss [W / m 2 ].
 式(1)に示すように、IPMVは、温度、湿度および放射温度等によって、人の温冷感が数値で表されたものである。IPMVの範囲は、-3~+3である。IPMV=0のときを中立としている。IPMV=0のとき、快適と定義されている。IPMV=3のとき暑いと定義され、IPMV値=2のとき暖かいと定義され、IPMV=1のとき少し暖かいと定義されている。IPMV=-3のとき寒いと定義され、IPMV=-2のとき涼しいと定義され、IPMV=-1のとき少し涼しいと定義されている。つまり、IPMVが0に近いほど、人の快適性が向上すると定義されている。 As shown in the formula (1), the IPMV is a numerical expression of a person's feeling of warmth and coldness according to temperature, humidity, radiation temperature, and the like. The range of IPMV is -3 to +3. It is neutral when IPMV = 0. When IPMV = 0, it is defined as comfortable. It is defined as hot when IPMV = 3, warm when IPMV value = 2, and slightly warm when IPMV = 1. When IPMV = -3, it is defined as cold, when IPMV = -2, it is defined as cool, and when IPMV = -1, it is defined as slightly cool. That is, it is defined that the closer the IPMV is to 0, the better the comfort of the person.
 次に、図1に示した情報処理装置2の構成を説明する。図12は、図1に示した情報処理装置の制御装置の一構成例を示す機能ブロック図である。情報処理装置2は、IPMVデータベースを記憶する記憶装置21と、室内に居る複数のユーザの活動量、位置および快適性指標に基づいて最適な空調制御パターンを求めて空気調和装置10に提供する制御装置22とを有する。記憶装置21は、例えば、HDD(Hard Disk Drive)である。制御装置22は、例えば、マイクロコンピュータである。制御装置22は、マイクロコンピュータなどの演算回路がソフトウェアを実行することにより各種機能が実現される。このソフトウェアには、後で説明するフローチャート(図18)に示す手順が書き込まれている。 Next, the configuration of the information processing device 2 shown in FIG. 1 will be described. FIG. 12 is a functional block diagram showing a configuration example of the control device of the information processing device shown in FIG. The information processing device 2 is a storage device 21 that stores an IPMV database, and a control that obtains an optimum air conditioning control pattern based on the activity amount, position, and comfort index of a plurality of users in the room and provides the air conditioning device 10 to the air conditioning device 10. It has a device 22 and. The storage device 21 is, for example, an HDD (Hard Disk Drive). The control device 22 is, for example, a microcomputer. Various functions of the control device 22 are realized by executing software by an arithmetic circuit such as a microcomputer. The procedure shown in the flowchart (FIG. 18) described later is written in this software.
 制御装置22は、データ取得手段11と、モデル生成手段12と、活動量判定手段13と、位置判定手段14と、効率算出手段15と、制御決定手段16とを有する。記憶装置21は、IPMVデータベースを生成するための標準的な流体3次元モデルを記憶している。記憶装置21は、モデル生成手段12によって生成されるIPMVデータベースを記憶する。IPMVデータベースは、空気調和装置10の複数の空調制御パターンのそれぞれに対応する室内におけるユーザの快適性指標の分布である快適性指標分布を含むグループが、複数の活動量毎に設けられている構成である。 The control device 22 includes a data acquisition means 11, a model generation means 12, an activity amount determination means 13, a position determination means 14, an efficiency calculation means 15, and a control determination means 16. The storage device 21 stores a standard fluid three-dimensional model for generating an IPMV database. The storage device 21 stores the IPMV database generated by the model generation means 12. The IPMV database has a configuration in which a group including a comfort index distribution, which is a distribution of a user's comfort index in a room corresponding to each of a plurality of air conditioning control patterns of the air conditioner 10, is provided for each of a plurality of activity amounts. Is.
 データ取得手段11は、一定の周期で空気調和装置10から受信する環境情報、運転情報およびユーザ情報を記憶装置21に記憶させる。データ取得手段11は、一定の周期で空気調和装置10から受信する情報を記憶装置21に時系列で記憶させ、空気調和装置10の動作状態を監視する。モデル生成手段12は、記憶装置21から環境情報および運転情報を読み出し、読み出した情報を標準的な流体3次元モデルに反映させて、IPMVデータベースを生成する。活動量判定手段13は、IPMVデータベースを参照し、各ユーザについて、赤外線センサ140によって検出された活動量に対応するグループを特定する。 The data acquisition means 11 stores the environmental information, the operation information, and the user information received from the air conditioner 10 in the storage device 21 at regular intervals. The data acquisition means 11 stores information received from the air conditioner 10 in a time series in the storage device 21 at regular intervals, and monitors the operating state of the air conditioner 10. The model generation means 12 reads environmental information and operation information from the storage device 21, reflects the read information in a standard fluid three-dimensional model, and generates an IPMV database. The activity amount determining means 13 refers to the IPMV database and identifies a group corresponding to the activity amount detected by the infrared sensor 140 for each user.
 位置判定手段14は、各ユーザについて、活動量判定手段13によって特定されたグループ内の複数の快適性指標分布から、赤外線センサ140によって検出される位置に対応する複数の快適性指標を抽出する。効率算出手段15は、各ユーザの位置に対応して抽出された複数の快適性指標を用いて、複数の空調制御パターン毎に複数のユーザの総合的な快適度を示す快適効率ζを算出する。制御決定手段16は、複数の空調制御パターンのうち、算出された快適効率ζが最大となる空調制御パターンを求める。制御決定手段16は、求めた空調制御パターンを空気調和装置10に送信する。 The position determination means 14 extracts a plurality of comfort indexes corresponding to the positions detected by the infrared sensor 140 from a plurality of comfort index distributions in the group specified by the activity amount determination means 13 for each user. The efficiency calculation means 15 uses a plurality of comfort indexes extracted corresponding to the positions of each user to calculate a comfort efficiency ζ indicating the total comfort of a plurality of users for each of the plurality of air conditioning control patterns. .. The control determining means 16 obtains an air conditioning control pattern that maximizes the calculated comfort efficiency ζ among the plurality of air conditioning control patterns. The control determination means 16 transmits the obtained air conditioning control pattern to the air conditioner 10.
 制御装置22は、ユーザが居る位置のIPMVが中立に近づくように、風向および風量等を変更する空調制御パターンを空気調和装置10に送信する。制御装置22は、室内の全領域におけるPMVを中立にしようとするのではなく、ユーザが居る位置のIPMVを中立に近づくように空調制御パターンを決定し、ユーザが居ない位置のIPMVを空調制御パターンの決定要素に含めない。図12に示した制御装置22の各手段のうち、モデル生成手段12および効率算出手段15の構成を詳しく説明する。 The control device 22 transmits an air conditioning control pattern for changing the wind direction, air volume, and the like to the air conditioner 10 so that the IPMV at the position where the user is located approaches neutrality. The control device 22 does not try to neutralize the PMV in the entire area of the room, but determines the air conditioning control pattern so that the IPMV at the position where the user is present approaches neutral, and controls the IPMV at the position where the user is not present. Do not include in pattern determinants. Among the means of the control device 22 shown in FIG. 12, the configurations of the model generating means 12 and the efficiency calculating means 15 will be described in detail.
 図12に示したモデル生成手段12の構成について説明する。式(1)における8つの変数の値は、室温、風速、輻射温度および湿度と、ユーザの着衣量および活動量との6つの値から導き出せる。IPMVにおいては、室温、風速、輻射温度はユーザの位置に対応する値である。そのため、ここでは、室温を局所温度とし、風速を局所風速とし、輻射温度を局所輻射温度とする。以下に、モデル生成手段12が、これら6つの値を求める方法を説明する。 The configuration of the model generation means 12 shown in FIG. 12 will be described. The values of the eight variables in the equation (1) can be derived from the six values of room temperature, wind speed, radiant temperature and humidity, and the amount of clothing and activity of the user. In IPMV, the room temperature, wind speed, and radiant temperature are values corresponding to the user's position. Therefore, here, the room temperature is defined as the local temperature, the wind speed is defined as the local wind speed, and the radiation temperature is defined as the local radiation temperature. The method by which the model generating means 12 obtains these six values will be described below.
 局所温度として、モデル生成手段12は、数値流体解析の一例であるCFD(Computational Fluid Dynamics)を用いて、空調制御パターンに対応して空調対象空間の温度分布をシミュレーションし、温度分布から特定の位置の温度を推定する。湿度は、湿度センサ122によって検出される。モデル生成手段12は、記憶装置21に記憶された運転情報から湿度の情報を取得する。局所風速として、モデル生成手段12は、CFDによる解析結果において、空調対象空間の全体の空気の風速から、特定の位置の風速を推定する。局所輻射温度は、室温と同等であることが想定される。そのため、モデル生成手段12は、記憶装置21に記憶された運転情報から、室温センサ121の検出値を取得する。 As the local temperature, the model generation means 12 simulates the temperature distribution of the air conditioning target space corresponding to the air conditioning control pattern by using CFD (Computational Fluid Dynamics) which is an example of numerical fluid analysis, and a specific position from the temperature distribution. Estimate the temperature of. Humidity is detected by the humidity sensor 122. The model generation means 12 acquires humidity information from the operation information stored in the storage device 21. As the local wind speed, the model generating means 12 estimates the wind speed at a specific position from the wind speed of the entire air in the air-conditioned space in the analysis result by CFD. The local radiant temperature is assumed to be equivalent to room temperature. Therefore, the model generating means 12 acquires the detected value of the room temperature sensor 121 from the operation information stored in the storage device 21.
 着衣量として、モデル生成手段12は、空気調和装置10から受信した2次元画像のデータを用いて、衣類の熱抵抗を表すclo値を推定する。具体的には、モデル生成手段12は、2次元画像のデータから、検出されたユーザ毎に、皮膚温度と、肌の露出量と、着衣の表面温度とを推定する。そして、モデル生成手段12は、皮膚温度、肌の露出量および着衣の表面温度と、clo値とを対応付けたクロー値テーブルを参照し、各ユーザのclo値を取得する。記憶装置21はクロー値テーブルを記憶している。活動量として、モデル生成手段12は、空気調和装置10から受信した2次元画像のデータから各ユーザのMETを推定する。例えば、2次元画像のデータの赤外線検出値とMETとが対応付けられたMETテーブルを予め記憶装置21が記憶している。モデル生成手段12は、METテーブルを参照し、各ユーザの赤外線検出値に対応するMETを読み出す。 As the amount of clothing, the model generating means 12 estimates the clo value representing the thermal resistance of clothing using the data of the two-dimensional image received from the air conditioner 10. Specifically, the model generation means 12 estimates the skin temperature, the amount of skin exposure, and the surface temperature of clothing for each detected user from the data of the two-dimensional image. Then, the model generation means 12 refers to the claw value table in which the skin temperature, the amount of exposure of the skin, the surface temperature of the clothes, and the clo value are associated with each other, and acquires the clo value of each user. The storage device 21 stores the claw value table. As the amount of activity, the model generating means 12 estimates the MET of each user from the data of the two-dimensional image received from the air conditioner 10. For example, the storage device 21 stores in advance a MET table in which the infrared detection value of the two-dimensional image data and the MET are associated with each other. The model generation means 12 refers to the MET table and reads out the MET corresponding to the infrared detection value of each user.
 モデル生成手段12は、数値流体解析としてCFDを用いて、複数の空調制御パターンに対応して、空調対象空間に対して、人の位置によらない活動量ごとのIPMVデータベースを生成して記憶装置21に記憶させる。 The model generation means 12 uses CFD as a numerical fluid analysis to generate an IPMV database for each activity amount regardless of the position of a person in the air-conditioned space in response to a plurality of air-conditioning control patterns, and is a storage device. Store in 21.
 図13は、活動の種類と活動量を代表するエネルギー代謝率とを記述した組み合わせの例を示すテーブルである。エネルギー代謝率は、式(2)により算出される。図13を参照すると、例えば、寝ている人の活動量は0.7METであり、安静にして座っている人の活動量は1METである。 FIG. 13 is a table showing an example of a combination describing the type of activity and the energy metabolism rate representing the amount of activity. The energy metabolism rate is calculated by the formula (2). Referring to FIG. 13, for example, the amount of activity of a sleeping person is 0.7 MET, and the amount of activity of a person sitting at rest is 1 MET.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 モデル生成手段12によるCFDの計算処理の一例を説明。まず、モデル生成手段12は、シミュレーションの対象となる空調対象空間を、標準的な流体3次元モデルを用いて3次元モデル化する。続いて、モデル生成手段12は、モデル化した空調対象空間を、例えば、格子状に区切る。そして、モデル生成手段12は、格子間の各矩形領域に対して、流体の圧力、温度、速度、空間に存在する発熱体、および壁からの侵入熱に対応した熱計算の結果に、境界条件として必要初期条件を与える。さらに、モデル生成手段12は、決められた乱流モデルおよび差分スキームを用いて、壁からの侵入熱および内部発熱などの境界条件に基づいて、各矩形領域における圧力、風量および温度などを解析する。 Explain an example of CFD calculation processing by the model generation means 12. First, the model generation means 12 three-dimensionally models the air-conditioned space to be simulated by using a standard fluid three-dimensional model. Subsequently, the model generating means 12 divides the modeled air-conditioned space into, for example, a grid pattern. Then, the model generation means 12 determines the boundary condition for each rectangular region between the lattices based on the result of heat calculation corresponding to the pressure, temperature, velocity of the fluid, the heating element existing in the space, and the heat entering from the wall. Give the necessary initial conditions as. Further, the model generating means 12 analyzes the pressure, air volume, temperature, etc. in each rectangular region based on the boundary conditions such as the invading heat from the wall and the internal heat generation, using the determined turbulence model and the difference scheme. ..
 本実施の形態1においては、IPMVは、複数の空調制御パターンの各空調制御パターンに対応して算出される。複数の空調制御パターンは、例えば、第1フラップ4の角度θhに関する3つのパターンと、第2フラップ5の角度θvに関する3つのパターンと、風速Wに関する3つのパターンと、温度Tbに関する3つのパターンとの組み合わせによる81通りである。つまり、本実施の形態1は、空調制御パターンが、3×3×3×3=81通りの場合である。 In the first embodiment, the IPMV is calculated corresponding to each air conditioning control pattern of the plurality of air conditioning control patterns. The plurality of air conditioning control patterns include, for example, three patterns relating to the angle θh of the first flap 4, three patterns relating to the angle θv of the second flap 5, three patterns relating to the wind speed W, and three patterns relating to the temperature Tb. There are 81 ways depending on the combination of. That is, the first embodiment is a case where the air conditioning control patterns are 3 × 3 × 3 × 3 = 81.
 第1フラップ4の水平方向の角度θhは、左向き(図4のX軸矢印方向)30°、0°、および右向き(図4のX軸矢印の反対方向)30°の3つのパターンである。第2フラップ5の垂直方向の角度θvは、θv=20°、45°および60°の3つのパターンである。風速Wは、大、中および小の3つのパターンである。負荷側ユニット103から吹き出される空気の温度Tbは、高、中および低の3つのパターンである。 The horizontal angle θh of the first flap 4 is three patterns of leftward (X-axis arrow direction in FIG. 4) 30 °, 0 °, and rightward (opposite direction of the X-axis arrow in FIG. 4) 30 °. The vertical angle θv of the second flap 5 is three patterns of θv = 20 °, 45 °, and 60 °. The wind speed W has three patterns of large, medium and small. The temperature Tb of the air blown out from the load-side unit 103 has three patterns of high, medium, and low.
 モデル生成手段12は、空調対象空間の位置によらず、空調対象空間全体に対して、1METおよび2MET等の活動量毎に81通りの空調制御パターンについてCFD解析を行って、空調対象空間におけるIPMVの分布であるIPMV分布を生成する。IPMV分布は、CFD解析によって空調対象空間が複数の矩形領域に分割され、各矩形領域に対応してIPMVが記憶装置21に記憶されるものである。例えば、モデル生成手段12は、1METの活動量について81通りのIPMV分布を生成して1つのグループとし、2METの活動量について81通りのIPMV分布を生成して別のグループとする。このようにして、モデル生成手段12は、複数の活動量のそれぞれに対応するグループを生成し、複数のグループをIPMVデータベースとして記憶装置21に記憶させる。本実施の形態1においては、活動量を1MET、2MET等の間隔で変化させる場合で説明するが、活動量の間隔は1.0の場合に限らない。活動量の間隔は、0.1または0.5であってもよい。 The model generation means 12 performs CFD analysis on 81 air-conditioning control patterns for each activity amount such as 1MET and 2MET with respect to the entire air-conditioning target space regardless of the position of the air-conditioning target space, and IPMV in the air-conditioning target space. Generate an IPMV distribution, which is the distribution of. In the IPMV distribution, the space to be air-conditioned is divided into a plurality of rectangular regions by CFD analysis, and the IPMV is stored in the storage device 21 corresponding to each rectangular region. For example, the model generation means 12 generates 81 IPMV distributions for 1 MET activity to form one group, and 81 IPMV distributions for 2 MET activity to form another group. In this way, the model generation means 12 generates groups corresponding to each of the plurality of activity amounts, and stores the plurality of groups in the storage device 21 as an IPMV database. In the first embodiment, the case where the activity amount is changed at intervals of 1 MET, 2 MET, etc. will be described, but the interval of the activity amount is not limited to 1.0. The activity interval may be 0.1 or 0.5.
 効率算出手段15は、室内に居るユーザの位置および活動量の情報を用いて、複数の空調制御パターンのそれぞれの快適効率ζを、式(3)を用いて算出する。 The efficiency calculation means 15 calculates the comfort efficiency ζ of each of the plurality of air conditioning control patterns using the equation (3) using the information on the position and activity amount of the user in the room.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)において、kはユーザ毎に異なる識別番号であり、Kは室内に居るユーザの人数である。本実施の形態1においては、K≧2である。目標値は個人の快適性指標IPMVが±0.5以内とすることで、|IPMVk|>0.5のとき、|IPMVk|は0.5とする。 In formula (3), k is an identification number that differs for each user, and K is the number of users in the room. In the first embodiment, K ≧ 2. The target value is that the personal comfort index IPMV is within ± 0.5, and when | IPMVk |> 0.5, | IPMVk | is 0.5.
 快適効率ζは、複数のユーザの温冷感が中立(個人IPMV=0)とどのくらい近いかを評価する値である。快適効率ζは、室内に居る複数のユーザの総合的な快適度を示す値である。快適効率ζが高いほど(最大100%)、室内に居る複数のユーザの快適性が満足できると考える。すなわち、快適効率ζ=100%は複数のユーザが快適であることを意味し、快適効率ζ=0%は複数のユーザが不快でることを意味する。制御決定手段16は、81通りの空調制御パターンに対応する快適効率ζのうち、快適効率ζが最大となる空調制御パターンを求める。 Comfort efficiency ζ is a value for evaluating how close the feeling of warmth and coldness of a plurality of users is to neutrality (individual IPMV = 0). The comfort efficiency ζ is a value indicating the overall comfort level of a plurality of users in the room. It is considered that the higher the comfort efficiency ζ (up to 100%), the more the comfort of a plurality of users in the room can be satisfied. That is, the comfort efficiency ζ = 100% means that a plurality of users are comfortable, and the comfort efficiency ζ = 0% means that a plurality of users are uncomfortable. The control determining means 16 obtains an air conditioning control pattern having the maximum comfort efficiency ζ among the comfort efficiency ζ corresponding to 81 kinds of air conditioning control patterns.
 図12に示した制御装置22のハードウェアの一例を説明する。図14は、図12に示した演算装置の一構成例を示すハードウェア構成図である。制御装置22の各種機能がソフトウェアで実行される場合、図12に示した制御装置22は、図14に示すように、CPU(Central Processing Unit)等のプロセッサ91と、メモリ92とで構成される。データ取得手段11、モデル生成手段12、活動量判定手段13、位置判定手段14、効率算出手段15および制御決定手段16の各機能は、プロセッサ91およびメモリ92により実現される。図14は、プロセッサ91およびメモリ92が、バス93を介して互いに通信可能に接続されることを示している。プロセッサ91およびメモリ92は、バス93を介して、図12に示した記憶装置21と接続される。メモリ92は一次記憶装置の役目を果たし、記憶装置21は二次記憶装置の役目を果たす。 An example of the hardware of the control device 22 shown in FIG. 12 will be described. FIG. 14 is a hardware configuration diagram showing a configuration example of the arithmetic unit shown in FIG. When various functions of the control device 22 are executed by software, the control device 22 shown in FIG. 12 is composed of a processor 91 such as a CPU (Central Processing Unit) and a memory 92, as shown in FIG. .. The functions of the data acquisition means 11, the model generation means 12, the activity amount determination means 13, the position determination means 14, the efficiency calculation means 15, and the control determination means 16 are realized by the processor 91 and the memory 92. FIG. 14 shows that the processor 91 and the memory 92 are communicably connected to each other via the bus 93. The processor 91 and the memory 92 are connected to the storage device 21 shown in FIG. 12 via the bus 93. The memory 92 serves as a primary storage device, and the storage device 21 serves as a secondary storage device.
 各機能がソフトウェアで実行される場合、データ取得手段11、モデル生成手段12、活動量判定手段13、位置判定手段14、効率算出手段15および制御決定手段16の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ92に格納される。プロセッサ91は、メモリ92に記憶されたプログラムを読み出して実行することにより、各手段の機能を実現する。メモリ92は、例えば、メモリ82と同様な構成であり、その詳細な説明を省略する。 When each function is executed by software, the functions of the data acquisition means 11, the model generation means 12, the activity amount determination means 13, the position determination means 14, the efficiency calculation means 15, and the control determination means 16 are software, firmware, or software. It is realized by the combination of and firmware. The software and firmware are written as a program and stored in the memory 92. The processor 91 realizes the function of each means by reading and executing the program stored in the memory 92. The memory 92 has, for example, the same configuration as the memory 82, and detailed description thereof will be omitted.
 なお、モデル生成手段12は、ニューラルネットワークによりIPMVの計算方法を予め学習し、建物負荷、地域およびユーザの好みなど入力条件から、空調対象空間のIPMVを推定してもよい。 The model generating means 12 may learn the calculation method of the IPMV in advance by the neural network and estimate the IPMV of the air-conditioned space from the input conditions such as the building load, the area, and the user's preference.
 また、負荷側ユニット103から吹き出される空気の温度Tbは、建物の負荷および圧縮機119の運転周波数に応じて、リニアに変化する。そのため、モデル生成手段12は、建物負荷、地域およびユーザの好みなど入力条件から、負荷側ユニット103から吹き出される空気の温度Tbと、角度θhおよびθvと、風速Wとの最適な組み合わせを学習し、ニューラルネットワークにより選択対象の空調制御パターンの数を絞ってもよい。この場合、制御決定手段16は、絞られた数の空調制御パターンから最適な空調制御パターンを選択するので、空調制御パターンの決定処理がスムーズに行われる。ユーザの好みは、例えば、ユーザの温冷感の傾向である。 Further, the temperature Tb of the air blown out from the load side unit 103 changes linearly according to the load of the building and the operating frequency of the compressor 119. Therefore, the model generating means 12 learns the optimum combination of the temperature Tb of the air blown from the load side unit 103, the angles θh and θv, and the wind speed W from the input conditions such as the building load, the area, and the user's preference. However, the number of air conditioning control patterns to be selected may be narrowed down by a neural network. In this case, since the control determination means 16 selects the optimum air conditioning control pattern from the narrowed number of air conditioning control patterns, the determination process of the air conditioning control pattern is smoothly performed. The user's preference is, for example, the tendency of the user to feel warm or cold.
 具体的には、記憶装置21は、空気調和装置10が設置された建物の熱負荷を含む入力条件と、快適効率ζが最大となる空調制御パターンとの組み合わせである組み合わせデータを時系列で記憶する。そして、制御決定手段16は、時系列で記憶された複数の組み合わせデータに基づいて、複数の空調制御パターンのうち、選択する空調制御パターンの数を絞る。この場合、入力条件は、建物の熱負荷の他に、空気調和装置10が設置された地域および地域の気象データと、建物の日射量と、複数のユーザの温冷感の傾向を示す情報とを含んでいてもよい。 Specifically, the storage device 21 stores the combination data in time series, which is a combination of the input condition including the heat load of the building in which the air conditioner 10 is installed and the air conditioning control pattern that maximizes the comfort efficiency ζ. do. Then, the control determination means 16 narrows down the number of air conditioning control patterns to be selected from the plurality of air conditioning control patterns based on the plurality of combination data stored in time series. In this case, the input conditions include, in addition to the heat load of the building, the weather data of the area where the air conditioner 10 is installed, the amount of solar radiation of the building, and the information indicating the tendency of the feeling of warmth and coldness of a plurality of users. May include.
 また、モデル生成手段12は、次のようにして、IPMVデータベースのIPMV分布を更新してもよい。モデル生成手段12は、圧縮機119の周波数、凝縮温度、蒸発温度および膨張弁117の開度を含む運転情報から空気調和装置10の冷凍能力を推定する。そして、モデル生成手段12は、推定した冷凍能力と、温度Tb、水平方向の角度θh、垂直方向の角度θvおよび風速Wから推定される気流状態とを、複数の活動量毎に記憶される複数のグループの各IPMV分布に反映させる。この場合、空気調和装置10の運転状態の変化に応じて、IPMVデータベースが最新の状態に更新される。 Further, the model generation means 12 may update the IPMV distribution of the IPMV database as follows. The model generating means 12 estimates the refrigerating capacity of the air conditioner 10 from the operation information including the frequency of the compressor 119, the condensation temperature, the evaporation temperature, and the opening degree of the expansion valve 117. Then, the model generating means 12 stores the estimated refrigerating capacity and the airflow state estimated from the temperature Tb, the horizontal angle θh, the vertical angle θv, and the wind speed W for each of the plurality of activity amounts. It is reflected in each IPMV distribution of the group. In this case, the IPMV database is updated to the latest state according to the change in the operating state of the air conditioner 10.
 次に、本実施の形態1の情報処理装置2による制御方法を説明する。図15は、図1に示した空気調和装置が空気調和する空調対象空間の一例を示すレイアウト図である。図15は、室内に置かれた家具の位置と、室内に居る2人のユーザの位置とを示す。ここでは、図15に示すように、ユーザMAおよびユーザMBの2人が室内に居る場合で説明する。図15の縦軸はY軸座標であり、横軸はX軸座標である。図16は、各ユーザの活動量および位置の一例を示す表である。ユーザMAの活動量が1METであり、ユーザMBの活動量が2METである。 Next, the control method by the information processing device 2 of the first embodiment will be described. FIG. 15 is a layout diagram showing an example of an air-conditioned space in which the air conditioner shown in FIG. 1 is air-conditioned. FIG. 15 shows the positions of furniture placed in the room and the positions of two users in the room. Here, as shown in FIG. 15, a case where two users, a user MA and a user MB, are in the room will be described. The vertical axis of FIG. 15 is the Y-axis coordinate, and the horizontal axis is the X-axis coordinate. FIG. 16 is a table showing an example of the activity amount and position of each user. The activity amount of the user MA is 1 MET, and the activity amount of the user MB is 2 MET.
 図17は、実施の形態1に係る情報処理装置の動作手順を示す模式図である。nMETのnは2以上の正の整数である。図18は、実施の形態1に係る情報処理装置の動作手順を示すフローチャートである。ステップS101において、データ取得手段11は、空気調和装置10から環境情報を取得する。データ取得手段11は、取得した環境情報を記憶装置21に記憶させる。 FIG. 17 is a schematic diagram showing an operation procedure of the information processing apparatus according to the first embodiment. n in nMET is a positive integer greater than or equal to 2. FIG. 18 is a flowchart showing an operation procedure of the information processing apparatus according to the first embodiment. In step S101, the data acquisition means 11 acquires environmental information from the air conditioner 10. The data acquisition means 11 stores the acquired environmental information in the storage device 21.
 ステップS102において、データ取得手段11は、空気調和装置10から運転情報を取得する。データ取得手段11は、取得した運転情報を記憶装置21に記憶させる。運転情報は、圧縮機119の周波数と、凝縮温度と、蒸発温度と、膨張弁117の開度とを含む。また、運転情報は、温度センサ123によって検出される温度Tbと、第1フラップ4の水平方向の角度θhと、第2フラップ5の垂直方向の角度θvと、風速Wとを含む気流情報を含んでいる。 In step S102, the data acquisition means 11 acquires operation information from the air conditioner 10. The data acquisition means 11 stores the acquired operation information in the storage device 21. The operation information includes the frequency of the compressor 119, the condensation temperature, the evaporation temperature, and the opening degree of the expansion valve 117. Further, the operation information includes airflow information including the temperature Tb detected by the temperature sensor 123, the horizontal angle θh of the first flap 4, the vertical angle θv of the second flap 5, and the wind speed W. I'm out.
 ステップS101またはS102において、データ取得手段11は、ユーザ情報として、赤外線センサ140によって検出された2次元画像のデータを空気調和装置10から取得して記憶装置21に記憶させる。モデル生成手段12は、記憶装置21が記憶する情報を用いて、IPMVデータベースを生成する。モデル生成手段12は、生成したIPMVデータベースを記憶装置21に記憶させる。図17には、活動量毎に81通りのIPMV分布が設けられたIPMVデータベースを示す。 In step S101 or S102, the data acquisition means 11 acquires the two-dimensional image data detected by the infrared sensor 140 from the air conditioner 10 and stores it in the storage device 21 as user information. The model generation means 12 generates an IPMV database using the information stored in the storage device 21. The model generation means 12 stores the generated IPMV database in the storage device 21. FIG. 17 shows an IPMV database in which 81 IPMV distributions are provided for each activity amount.
 ステップS103において、活動量判定手段13は、記憶装置21が記憶する2次元画像のデータを参照して、各ユーザの活動量の情報を取得する。ここでは、活動量判定手段13は、ユーザMAの活動量を1METと推定し、ユーザMBの活動量を2METと推定する。 In step S103, the activity amount determining means 13 refers to the two-dimensional image data stored in the storage device 21 and acquires the activity amount information of each user. Here, the activity amount determining means 13 estimates the activity amount of the user MA as 1 MET and the activity amount of the user MB as 2 MET.
 ステップS104において、位置判定手段14は、記憶装置21が記憶する2次元画像のデータを参照して、各ユーザの位置の情報を取得する。ここでは、位置判定手段14は、ユーザMAの位置を座標(2,7)と判定し、ユーザMBの位置を座標(7,9)と判定する。 In step S104, the position determination means 14 refers to the two-dimensional image data stored in the storage device 21 to acquire the position information of each user. Here, the position determining means 14 determines the position of the user MA as the coordinates (2, 7) and determines the position of the user MB as the coordinates (7, 9).
 ステップS105において、効率算出手段15は、活動量判定手段13の推定結果から、1METのグループと、2METのグループとを、IPMVデータベースから読み出す。続いて、効率算出手段15は、位置判定手段14の判定結果から、1METのグループの座標(2,7)に位置する81個のIPMVを読み出す。また、効率算出手段15は、位置判定手段14の判定結果から、2METのグループの座標(7,9)に位置する81個のIPMVを読み出す。その際、効率算出手段15は、各IPMV分布において、空調対象空間の予め決められた高さ(例えば、床上1.3m)におけるIPMVを読み出す。そして、効率算出手段15は、ユーザMAの81個のIPMVとユーザMBの81個のIPMVとを式(3)に代入して、81通りの快適効率ζを算出する(ステップS106)。 In step S105, the efficiency calculation means 15 reads out the 1MET group and the 2MET group from the IPMV database from the estimation result of the activity amount determination means 13. Subsequently, the efficiency calculating means 15 reads out 81 IPMVs located at the coordinates (2,7) of the group of 1MET from the determination result of the position determining means 14. Further, the efficiency calculating means 15 reads out 81 IPMVs located at the coordinates (7, 9) of the 2MET group from the determination result of the position determining means 14. At that time, the efficiency calculation means 15 reads out the IPMV at a predetermined height (for example, 1.3 m above the floor) of the air-conditioned space in each IPMV distribution. Then, the efficiency calculation means 15 substitutes 81 IPMVs of the user MA and 81 IPMVs of the user MB into the equation (3) to calculate 81 different comfort efficiencies ζ (step S106).
 ステップS107において、制御決定手段16は、81通りの空調制御パターンのうち、快適効率ζが最も大きい空調制御パターンを決定する。その際、空調制御パターンの選択条件として、快適効率ζが最大という条件だけでなく、各ユーザのIPMVが±0.5以内である条件を含んでいてもよい。 In step S107, the control determining means 16 determines the air conditioning control pattern having the largest comfort efficiency ζ among the 81 air conditioning control patterns. At that time, the selection condition of the air conditioning control pattern may include not only the condition that the comfort efficiency ζ is the maximum but also the condition that the IPMV of each user is within ± 0.5.
 ステップS108において、制御決定手段16は、ステップS107で決定した空調制御パターンの情報を空気調和装置10に送信する。空気調和装置10の制御装置130は、空調制御パターンの情報を情報処理装置2から受信すると、空調制御パターンにしたがって、圧縮機119、送風機113および風向調整部105のうち、少なくともいずれかを制御する。例えば、負荷側ユニット103からの空気の吹き出し温度を変更する場合、冷凍サイクル制御手段131は圧縮機119の運転周波数を変更する。風速Wを変更する場合、冷凍サイクル制御手段131は送風機113の回転数を変更する。角度θhを変更する場合、冷凍サイクル制御手段131は第1フラップ4の角度θhを変更する。角度θvを変更する場合、冷凍サイクル制御手段131は第2フラップ5の角度θvを変更する。 In step S108, the control determination means 16 transmits the information of the air conditioning control pattern determined in step S107 to the air conditioner 10. When the control device 130 of the air conditioner 10 receives the information of the air conditioning control pattern from the information processing device 2, it controls at least one of the compressor 119, the blower 113, and the wind direction adjusting unit 105 according to the air conditioning control pattern. .. For example, when changing the temperature at which air is blown out from the load-side unit 103, the refrigeration cycle control means 131 changes the operating frequency of the compressor 119. When the wind speed W is changed, the refrigeration cycle control means 131 changes the rotation speed of the blower 113. When changing the angle θh, the refrigeration cycle control means 131 changes the angle θh of the first flap 4. When changing the angle θv, the refrigeration cycle control means 131 changes the angle θv of the second flap 5.
 ステップS109において、データ取得手段11は、一定時間が経過したか否かを判定する。一定時間が経過しない場合、制御装置22は待機状態となる。ステップS109の判定の結果、一定時間が経過した場合、制御装置22は、ステップS101の処理に戻る。 In step S109, the data acquisition means 11 determines whether or not a certain time has elapsed. If a certain period of time does not elapse, the control device 22 goes into a standby state. As a result of the determination in step S109, when a certain time has elapsed, the control device 22 returns to the process of step S101.
 図19は、快適効率の算出結果の一例を示すテーブルである。図19は、各空調制御パターンに対応して、活動量が1METの場合のIPMVと、活動量が2METの場合のIPMVと、快適効率ζとを表している。図19に示すテーブルの左欄の番号は空調制御パターンの識別番号である。図19に示すテーブルを参照すると、快適効率ζが最大となる空調制御パターンは、16番の空調制御パターンであることがわかる。 FIG. 19 is a table showing an example of the calculation result of comfort efficiency. FIG. 19 shows the IPMV when the activity amount is 1 MET, the IPMV when the activity amount is 2 MET, and the comfort efficiency ζ corresponding to each air conditioning control pattern. The numbers in the left column of the table shown in FIG. 19 are identification numbers of the air conditioning control pattern. With reference to the table shown in FIG. 19, it can be seen that the air conditioning control pattern that maximizes the comfort efficiency ζ is the air conditioning control pattern No. 16.
 図20は、ステップS107で決定された空調制御パターンの場合のIPMV分布の一例を示すイメージ図である。図20は、16番の空調制御パターンにおいて、活動量が1METの場合のIPMV分布である。図21は、ステップS107で決定された空調制御パターンの場合のIPMV分布の別の例を示すイメージ図である。図21は、16番の空調制御パターンにおいて、活動量が2METの場合のIPMV分布である。 FIG. 20 is an image diagram showing an example of the IPMV distribution in the case of the air conditioning control pattern determined in step S107. FIG. 20 shows the IPMV distribution when the activity amount is 1 MET in the 16th air conditioning control pattern. FIG. 21 is an image diagram showing another example of the IPMV distribution in the case of the air conditioning control pattern determined in step S107. FIG. 21 shows the IPMV distribution when the activity amount is 2MET in the 16th air conditioning control pattern.
 図20および図21に示すように、番号16の空調制御パターンにおいて、活動量が1METのユーザMAのIPMVと、活動量が2METのユーザMBのIPMVとが可視化される。図20および図21は、模様の密度が高いほど、IPMVが中立よりもマイナス側の値であり、模様の密度が小さいほど、IPMVが中立よりもマイナス側の値であることを示す。図20においては、ユーザMAの位置のIPMVが0に近い値になっている。図21においては、室内の広い範囲でIPMVが0よりも大きい値になっているが、ユーザMBの位置に近い座標(7,7)を中心にした周囲のIPMVが0に近い値になっていることがわかる。これは、負荷側ユニット103から座標(7,7)の方向に空気が吹き出される制御が行われ、IPMVの値が下がるためである。このようにして、ユーザMAおよびユーザMBの複数のユーザのIPMVが中立に近くなるように、IPMVを速やかに快適領域に到達させて安定させることができる。 As shown in FIGS. 20 and 21, in the air conditioning control pattern of No. 16, the IPMV of the user MA having an activity amount of 1 MET and the IPMV of the user MB having an activity amount of 2 MET are visualized. 20 and 21 show that the higher the pattern density is, the more the IPMV is on the negative side than the neutral value, and the smaller the pattern density is, the more the IPMV is on the negative side than the neutral value. In FIG. 20, the IPMV at the position of the user MA is close to 0. In FIG. 21, the IPMV is a value larger than 0 in a wide range of the room, but the peripheral IPMV centered on the coordinates (7, 7) close to the position of the user MB is a value close to 0. You can see that there is. This is because the control is performed so that air is blown out from the load side unit 103 in the direction of the coordinates (7, 7), and the value of IPMV is lowered. In this way, the IPMV can be quickly reached and stabilized in the comfort zone so that the IPMVs of the plurality of users of the user MA and the user MB are close to neutral.
 なお、図18に示すフローチャートを参照して、ステップS109において一定時間の経過後、ステップS101に戻る場合を説明したが、ステップS103に戻ってもよい。この場合、ステップS103において、データ取得手段11は、ユーザ情報として、赤外線センサ140によって検出された2次元画像のデータを空気調和装置10から取得する。記憶装置21に構築されたIPMVデータベースが、空気調和装置10および空調対象空間に適合したものであれば、頻繁に更新する必要はない。この場合、モデル生成手段12の演算処理の負荷が軽減する。 Although the case of returning to step S101 after a certain period of time has elapsed in step S109 has been described with reference to the flowchart shown in FIG. 18, the process may return to step S103. In this case, in step S103, the data acquisition means 11 acquires the data of the two-dimensional image detected by the infrared sensor 140 from the air conditioner 10 as user information. If the IPMV database built in the storage device 21 is suitable for the air conditioner 10 and the air-conditioned space, it does not need to be updated frequently. In this case, the load of arithmetic processing of the model generation means 12 is reduced.
 また、ステップS109において、活動量判定手段13および位置判定手段14が、空気調和装置10から赤外線センサ140によって検出される2次元画像のデータを監視してもよい。一定時間内に、活動量判定手段13がユーザの活動量が一定でないと判定した場合、および位置判定手段14が室内におけるユーザの有無を判定できない場合のうち、一方または両方の場合、負荷側ユニット103から吹き出される空気の風向を変えてもよい。具体的には、制御決定手段16は、第1フラップ4の水平方向の角度および第2フラップ5の垂直方向の角度のうち、一方または両方の角度を一定の周期で変化させるスイング動作をさせる制御情報を空気調和装置10に送信する。例えば、第1フラップ4のスイング動作は、第1フラップ4が水平基準θh0を基準として左右に20秒周期でスイングする動作である。この場合、情報処理装置2が空気調和装置10から受信する環境情報および運転情報が変化し、制御装置22は、ユーザの活動量および位置を認識しやすくなる。 Further, in step S109, the activity amount determining means 13 and the position determining means 14 may monitor the data of the two-dimensional image detected by the infrared sensor 140 from the air conditioner 10. If the activity amount determining means 13 determines that the user's activity amount is not constant within a certain period of time, or if the position determining means 14 cannot determine the presence or absence of the user in the room, one or both of them, the load side unit. The wind direction of the air blown from 103 may be changed. Specifically, the control determining means 16 controls to perform a swing operation in which one or both of the horizontal angle of the first flap 4 and the vertical angle of the second flap 5 are changed at regular intervals. Information is transmitted to the air conditioner 10. For example, the swing operation of the first flap 4 is an operation in which the first flap 4 swings left and right with a cycle of 20 seconds with respect to the horizontal reference θh0. In this case, the environmental information and the operation information received by the information processing device 2 from the air conditioner 10 change, and the control device 22 can easily recognize the activity amount and the position of the user.
 さらに、本実施の形態1においては、図18に示すステップS107において制御決定手段が空調制御パターンを決定する際、効率算出手段15は、式(3)を用いて各空調制御パターンの快適効率ζを算出したが、この評価方法に限らない。効率算出手段15は、TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution)を用いて、複数のユーザの総合的な快適度が最大となる空調制御パターンを求めてもよい。本実施の形態1においては、式(3)を用いた評価方法の方がTOPSISに比べて計算量が少ないため、制御装置22の演算処理の負荷が軽減する。 Further, in the first embodiment, when the control determining means determines the air conditioning control pattern in step S107 shown in FIG. 18, the efficiency calculating means 15 uses the equation (3) to determine the comfort efficiency ζ of each air conditioning control pattern. However, it is not limited to this evaluation method. The efficiency calculation means 15 may use TOPSIS (Technique for Order of Preferences by Similarity to Ideal Solution) to obtain an air conditioning control pattern that maximizes the overall comfort of a plurality of users. In the first embodiment, since the evaluation method using the equation (3) requires less calculation than TOPSIS, the load of arithmetic processing of the control device 22 is reduced.
 本実施の形態1の空気調和システム1は、空気調和装置10と、複数のユーザ毎の活動量および複数のユーザ毎の位置を検出する人検出手段30と、記憶装置21と、制御装置22とを有する。記憶装置21は、空気調和装置10の複数の空調制御パターンのそれぞれに対応する、空調対象空間におけるユーザの快適性指標の分布である快適性指標分布を含むグループを、複数の活動量毎に記憶する。制御装置22は、活動量判定手段13、位置判定手段14、効率算出手段15および制御決定手段16を有する。活動量判定手段13は、各ユーザについて、人検出手段30によって検出された活動量に対応するグループを特定する。位置判定手段14は、特定されたグループ内の複数の快適性指標分布から、人検出手段30によって検出される位置に対応する複数の快適性指標を抽出する。効率算出手段15は、各ユーザの位置に対応して抽出された複数の快適性指標を用いて、複数の空調制御パターン毎に複数のユーザの総合的な快適度を示す快適効率ζを算出する。制御決定手段16は、複数の空調制御パターンのうち、算出された快適効率ζが最大となる空調制御パターンを求める。 The air conditioning system 1 of the first embodiment includes an air conditioning device 10, a person detecting means 30 for detecting an activity amount for each of a plurality of users and a position for each of a plurality of users, a storage device 21, and a control device 22. Has. The storage device 21 stores a group including a comfort index distribution, which is a distribution of the user's comfort index in the air-conditioned space corresponding to each of the plurality of air-conditioning control patterns of the air-conditioning device 10, for each of the plurality of activity amounts. do. The control device 22 includes an activity amount determination unit 13, a position determination unit 14, an efficiency calculation unit 15, and a control determination unit 16. The activity amount determining means 13 identifies a group corresponding to the activity amount detected by the person detecting means 30 for each user. The position determining means 14 extracts a plurality of comfort indexes corresponding to the positions detected by the person detecting means 30 from the plurality of comfort index distributions in the specified group. The efficiency calculation means 15 uses a plurality of comfort indexes extracted corresponding to the positions of each user to calculate a comfort efficiency ζ indicating the total comfort of a plurality of users for each of the plurality of air conditioning control patterns. .. The control determining means 16 obtains an air conditioning control pattern that maximizes the calculated comfort efficiency ζ among the plurality of air conditioning control patterns.
 本実施の形態1によれば、空調対象空間に居る各ユーザの活動量に対応して、複数の空調制御パターンのそれぞれに対応する空調対象空間における快適性指標分布を含むグループが求まる。また、空調対象空間に居る各ユーザの位置に対応して、グループ内の複数の快適性指標分布から複数の快適性指標が抽出される。そして、各ユーザの複数の快適性指標に基づいて、複数のユーザの快適効率が最大となる空調制御パターンが、複数の空調制御パターンから求まる。複数のユーザの快適効率が最大となる空調制御パターンにしたがって空気調和装置が空気調和を行うことで、複数のユーザに対して快適性の向上を図ることができる。 According to the first embodiment, a group including a comfort index distribution in the air-conditioned space corresponding to each of the plurality of air-conditioned control patterns is obtained according to the activity amount of each user in the air-conditioned space. In addition, a plurality of comfort indexes are extracted from a plurality of comfort index distributions in the group according to the position of each user in the air-conditioned space. Then, based on the plurality of comfort indexes of each user, the air conditioning control pattern that maximizes the comfort efficiency of the plurality of users is obtained from the plurality of air conditioning control patterns. By performing air conditioning by the air conditioner according to the air conditioning control pattern that maximizes the comfort efficiency of the plurality of users, it is possible to improve the comfort for the plurality of users.
 なお、上述の実施の形態1においては、赤外線センサ140が人検出手段20として機能する場合で説明したが、人検出手段20は赤外線センサ140に限らない。例えば、活動量検出手段32がウェアラブルセンサであってもよい。以下に、活動量検出手段32がウェアラブルセンサの場合を説明する。 Although the case where the infrared sensor 140 functions as the person detecting means 20 has been described in the above-described first embodiment, the person detecting means 20 is not limited to the infrared sensor 140. For example, the activity amount detecting means 32 may be a wearable sensor. The case where the activity amount detecting means 32 is a wearable sensor will be described below.
(変形例1)
 図22は、変形例1の空気調和システムの一構成例を示す図である。図22に示す構成においては、図1を参照して説明した構成と同一の構成について同一の符号を付し、本変形例1においては、その詳細な説明を省略する。
(Modification example 1)
FIG. 22 is a diagram showing a configuration example of the air conditioning system of the modified example 1. In the configuration shown in FIG. 22, the same reference numerals are given to the same configurations as those described with reference to FIG. 1, and detailed description thereof will be omitted in the present modification 1.
 空気調和システム1aは、位置検出手段31を有する空気調和装置10と、情報処理装置2と、アクセスポイント(AP)60と、ユーザ毎に設けられたウェアラブル端末40とを有する。AP60は、空気調和装置10の空調対象空間である室内に設けられている。AP60は、Bluetooth(登録商標)等の近距離無線通信手段(図示せず)と、ネットワーク50の通信プロトコルに対応するネットワーク通信手段(図示せず)とを有する。通信プロトロルは、例えば、TCP/IPである。位置検出手段31は、例えば、図2に示した赤外線センサ140である。 The air conditioning system 1a includes an air conditioning device 10 having a position detecting means 31, an information processing device 2, an access point (AP) 60, and a wearable terminal 40 provided for each user. The AP60 is provided in a room which is an air-conditioned space of the air conditioner 10. The AP60 has a short-range wireless communication means (not shown) such as Bluetooth (registered trademark) and a network communication means (not shown) corresponding to the communication protocol of the network 50. The communication protocol is, for example, TCP / IP. The position detecting means 31 is, for example, the infrared sensor 140 shown in FIG.
 ウェアラブル端末40は、ユーザ毎に設けられる。ウェアラブル端末40は、例えば、腕時計またはブレスレットの形態である。ウェアラブル端末40は、一定の周期でユーザの活動量として脈拍を検出する活動量検出手段32を有する。活動量はユーザの肌温度であってもよい。また、ウェアラブル端末40は、端末毎に異なる識別子である端末識別子およびプログラムを記憶するメモリ(図示せず)と、プログラムにしたがって処理を実行するCPU(図示せず)とを有する。 The wearable terminal 40 is provided for each user. The wearable terminal 40 is, for example, in the form of a wristwatch or bracelet. The wearable terminal 40 has an activity amount detecting means 32 that detects a pulse as an activity amount of the user at a fixed cycle. The amount of activity may be the skin temperature of the user. Further, the wearable terminal 40 has a memory (not shown) for storing a terminal identifier and a program, which are different identifiers for each terminal, and a CPU (not shown) for executing processing according to the program.
 活動量検出手段32がユーザの活動量を検出すると、ウェアラブル端末40のCPU(図示せず)は、活動量の情報および端末識別子を含むユーザ情報をAP60およびネットワーク50を介して情報処理装置2に送信する。ウェアラブル端末40のメモリ(図示せず)は、AP60の設置位置の座標を記憶していてもよい。ウェアラブル端末40のCPU(図示せず)は、AP60との無線電波の強度を参照し、AP60の設置位置からの距離を推定する。そして、ウェアラブル端末40のCPU(図示せず)は、推定した位置の情報をユーザの位置の情報としてユーザ情報に含める。例えば、複数のAP60が室内に設置されている場合、ウェアラブル端末40のCPU(図示せず)は、複数のAP60の無線電波の強度を比較することで、室内におけるユーザの位置をより精度よく推定することができる。情報処理装置2は、ウェアラブル端末40から受信するユーザ情報と位置検出手段31が検出するユーザの位置とを対応づける。 When the activity amount detecting means 32 detects the activity amount of the user, the CPU (not shown) of the wearable terminal 40 sends the user information including the activity amount information and the terminal identifier to the information processing device 2 via the AP 60 and the network 50. Send. The memory (not shown) of the wearable terminal 40 may store the coordinates of the installation position of the AP60. The CPU (not shown) of the wearable terminal 40 refers to the strength of the radio wave with the AP60 and estimates the distance from the installation position of the AP60. Then, the CPU (not shown) of the wearable terminal 40 includes the estimated position information in the user information as the user's position information. For example, when a plurality of AP60s are installed indoors, the CPU of the wearable terminal 40 (not shown) estimates the position of the user in the room more accurately by comparing the strengths of the radio waves of the plurality of AP60s. can do. The information processing device 2 associates the user information received from the wearable terminal 40 with the position of the user detected by the position detecting means 31.
 本変形例1においても、情報処理装置2は、図18に示した手順にしたがって、複数の空調制御パターンから最適な空調制御パターンを決定することができる。本変形例1の場合、ユーザ毎に装着されたウェアラブル端末40がユーザの活動量を検出するので、より精度よく活動量が検出される。その結果、複数のユーザのそれぞれの活動量により適合した空調を行うことができる。 Also in the present modification 1, the information processing apparatus 2 can determine the optimum air conditioning control pattern from the plurality of air conditioning control patterns according to the procedure shown in FIG. In the case of the first modification, the wearable terminal 40 worn for each user detects the activity amount of the user, so that the activity amount is detected more accurately. As a result, it is possible to perform air conditioning more suitable for each activity amount of the plurality of users.
 1、1a 空気調和システム、2 情報処理装置、4 第1フラップ、4a~4d 羽根、5 第2フラップ、5a 前方羽根、5b 後方羽根、6 吹出口、10 空気調和装置、11 データ取得手段、12 モデル生成手段、13 活動量判定手段、14 位置判定手段、15 効率算出手段、16 制御決定手段、20 人検出手段、21 記憶装置、22 制御装置、30 人検出手段、31 位置検出手段、32 活動量検出手段、40 ウェアラブル端末、50 ネットワーク、60 アクセスポイント、70 天井、80 処理回路、81 プロセッサ、82 メモリ、83 バス、91 プロセッサ、92 メモリ、93 バス、102 冷媒回路、103 負荷側ユニット、104 熱源側ユニット、105 風向調整部、110 冷媒配管、113 送風機、114 送風機、115 負荷側熱交換器、116 熱源側熱交換器、117 膨張弁、118 四方弁、119 圧縮機、120 環境検出部、121 室温センサ、122 湿度センサ、123 温度センサ、130 制御装置、131 冷凍サイクル制御手段、132 通信手段、140 赤外線センサ、FL 床面。 1, 1a air conditioning system, 2 information processing device, 4 first flap, 4a-4d blades, 5 second flap, 5a front blade, 5b rear blade, 6 outlet, 10 air conditioner, 11 data acquisition means, 12 Model generation means, 13 activity amount determination means, 14 position determination means, 15 efficiency calculation means, 16 control determination means, 20 person detection means, 21 storage device, 22 control device, 30 person detection means, 31 position detection means, 32 activity. Quantity detection means, 40 wearable terminals, 50 networks, 60 access points, 70 ceilings, 80 processing circuits, 81 processors, 82 memories, 83 buses, 91 processors, 92 memories, 93 buses, 102 refrigerant circuits, 103 load side units, 104 Heat source side unit, 105 wind direction adjustment unit, 110 refrigerant pipe, 113 blower, 114 blower, 115 load side heat exchanger, 116 heat source side heat exchanger, 117 expansion valve, 118 four-way valve, 119 compressor, 120 environment detector, 121 room temperature sensor, 122 humidity sensor, 123 temperature sensor, 130 control device, 131 refrigeration cycle control means, 132 communication means, 140 infrared sensor, FL floor surface.

Claims (11)

  1.  空調対象空間を空気調和する空気調和装置と、
     前記空調対象空間に居る複数のユーザについて、各ユーザの活動量および前記空調対象空間における各ユーザの位置を検出する人検出手段と、
     前記空気調和装置の複数の空調制御パターンのそれぞれに対応する前記空調対象空間におけるユーザの快適度を示す快適性指標の分布である快適性指標分布を含むグループを、複数の活動量毎に記憶する記憶装置と、
     前記各ユーザについて、前記人検出手段によって検出された活動量に対応する前記グループを特定し、特定したグループ内の複数の前記快適性指標分布から、前記人検出手段によって検出される位置に対応する複数の前記快適性指標を抽出し、前記各ユーザの位置に対応して抽出された前記複数の快適性指標を用いて、前記複数の空調制御パターン毎に前記複数のユーザの総合的な快適度を示す快適効率を算出し、前記複数の空調制御パターンのうち、算出された前記快適効率が最大となる空調制御パターンを求める制御装置と、
    を有する空気調和システム。
    An air conditioner that harmonizes the air-conditioned space,
    For a plurality of users in the air-conditioned space, a person detecting means for detecting the activity amount of each user and the position of each user in the air-conditioned space.
    A group including a comfort index distribution, which is a distribution of comfort indexes indicating the user's comfort level in the air-conditioned space corresponding to each of the plurality of air-conditioning control patterns of the air conditioner, is stored for each of the plurality of activity amounts. Storage device and
    For each user, the group corresponding to the amount of activity detected by the person detecting means is specified, and the position detected by the person detecting means corresponds to the position detected by the person detecting means from the plurality of comfort index distributions in the specified group. A plurality of the comfort indexes are extracted, and the plurality of comfort indexes extracted corresponding to the positions of the respective users are used to obtain the total comfort level of the plurality of users for each of the plurality of air conditioning control patterns. A control device that calculates the comfort efficiency indicating the above and obtains the air conditioning control pattern that maximizes the calculated comfort efficiency among the plurality of air conditioning control patterns.
    Air conditioning system with.
  2.  前記人検出手段は、赤外線センサである、
     請求項1に記載の空気調和システム。
    The person detecting means is an infrared sensor.
    The air conditioning system according to claim 1.
  3.  前記人検出手段は、
     前記各ユーザに設けられ、前記各ユーザの活動量を検出するウェアラブル端末と、
     前記空調対象空間における各ユーザの位置を検出する赤外線センサと、を有する、
     請求項1または2に記載の空気調和システム。
    The person detecting means
    A wearable terminal provided for each user and detecting the amount of activity of each user,
    It has an infrared sensor that detects the position of each user in the air-conditioned space.
    The air conditioning system according to claim 1 or 2.
  4.  空調対象空間に居る複数のユーザについて、各ユーザの活動量および前記空調対象空間における前記各ユーザの位置を検出する人検出手段ならびに記憶装置のそれぞれと接続される制御装置による空気調和装置の制御方法であって、
     前記空気調和装置の複数の空調制御パターンのそれぞれに対応する前記空調対象空間におけるユーザの快適度を示す快適性指標の分布である快適性指標分布を含むグループを、複数の活動量毎に前記記憶装置に記憶させるステップと、
     前記各ユーザについて、前記人検出手段によって検出された活動量に対応する前記グループを特定するステップと、
     前記各ユーザについて、特定したグループ内の複数の前記快適性指標分布から、前記人検出手段によって検出される位置に対応する複数の前記快適性指標を抽出するステップと、
     前記各ユーザの位置に対応して抽出された前記複数の快適性指標を用いて、前記複数の空調制御パターン毎に前記複数のユーザの総合的な快適度を示す快適効率を算出するステップと、
     前記複数の空調制御パターンのうち、算出された前記快適効率が最大となる空調制御パターンを求めるステップと、
     を有する空気調和装置の制御方法。
    A method of controlling an air conditioner by a control device connected to each of a person detecting means and a storage device for detecting the activity amount of each user and the position of each user in the air-conditioned space for a plurality of users in the air-conditioned space. And
    A group including a comfort index distribution, which is a distribution of comfort indexes indicating the user's comfort level in the air-conditioned space corresponding to each of the plurality of air-conditioning control patterns of the air conditioner, is stored for each of the plurality of activity amounts. Steps to be stored in the device and
    For each of the users, a step of identifying the group corresponding to the amount of activity detected by the person detecting means, and
    For each of the users, a step of extracting a plurality of the comfort indexes corresponding to the positions detected by the person detecting means from the plurality of comfort index distributions in the specified group, and a step of extracting the plurality of comfort indexes.
    Using the plurality of comfort indexes extracted corresponding to the positions of the respective users, a step of calculating the comfort efficiency indicating the total comfort of the plurality of users for each of the plurality of air conditioning control patterns, and a step of calculating the comfort efficiency.
    Among the plurality of air conditioning control patterns, a step of obtaining the calculated air conditioning control pattern that maximizes the comfort efficiency, and
    A method of controlling an air conditioner having.
  5.  前記複数のユーザ毎に異なる識別番号をkとし、識別番号kのユーザの前記快適性指標をIPMVkとし、Kを2以上の整数とし、前記快適効率をζとすると、前記複数の空調制御パターン毎の前記快適効率ζは、
     ζ=(1-2|IPMV1|)×(1-2|IPMV2|)×・・・×(1-2|IPMV|)×・・・(1-2|IPMV|)×100%
    の式で算出される、
     請求項4に記載の空気調和装置の制御方法。
    Assuming that the identification number different for each of the plurality of users is k, the comfort index of the user with the identification number k is IPMVk, K is an integer of 2 or more, and the comfort efficiency is ζ, then each of the plurality of air conditioning control patterns The comfort efficiency ζ of
    ζ = (1-2 | IPMV 1 |) × (1-2 | IPMV 2 |) × ・ ・ ・ × (1-2 | IPMV k |) × ・ ・ ・ (1-2 | IPMV K |) × 100 %
    Calculated by the formula of
    The control method for an air conditioner according to claim 4.
  6.  前記複数の空調制御パターンは、前記空気調和装置に設けられた負荷側ユニットから吹き出される空気の温度と、前記負荷側ユニットから吹き出される空気の水平方向の角度と、前記負荷側ユニットから吹き出される空気の垂直方向の角度と、前記負荷側ユニットから吹き出される空気の風速との4つの制御パラメータのうち、少なくとも1つの制御パラメータが相互に異なるように組み合わされたパターンである、
     請求項4または5に記載の空気調和装置の制御方法。
    The plurality of air conditioning control patterns include the temperature of the air blown from the load-side unit provided in the air conditioner, the horizontal angle of the air blown from the load-side unit, and the blow-out from the load-side unit. It is a pattern in which at least one of the four control parameters of the vertical angle of the air to be generated and the wind speed of the air blown from the load-side unit are combined so as to be different from each other.
    The method for controlling an air conditioner according to claim 4 or 5.
  7.  前記制御装置は、
     前記空気調和装置が設置された建物の熱負荷を含む入力条件と、前記複数のユーザの快適効率が最大となる前記空調制御パターンとの組み合わせである組み合わせデータを時系列で記憶し、前記時系列で記憶した複数の前記組み合わせデータに基づいて、前記複数の空調制御パターンのうち、選択する空調制御パターンの数を絞る、
     請求項6に記載の空気調和装置の制御方法。
    The control device is
    The combination data, which is a combination of the input condition including the heat load of the building in which the air conditioner is installed and the air conditioning control pattern that maximizes the comfort efficiency of the plurality of users, is stored in time series, and the time series is stored. The number of air conditioning control patterns to be selected from the plurality of air conditioning control patterns is narrowed down based on the plurality of combination data stored in.
    The control method for an air conditioner according to claim 6.
  8.  前記入力条件は、前記建物の熱負荷の他に、前記空気調和装置が設置された地域および前記地域の気象データと、前記建物の日射量と、前記複数のユーザの温冷感の傾向を示す情報とを含む、
     請求項7に記載の空気調和装置の制御方法。
    The input conditions indicate, in addition to the heat load of the building, the weather data of the area where the air conditioner is installed and the area, the amount of solar radiation of the building, and the tendency of the feeling of warmth and coldness of the plurality of users. Including information,
    The control method for an air conditioner according to claim 7.
  9.  前記制御装置は、
     前記空気調和装置から、圧縮機の周波数、凝縮温度、蒸発温度および膨張弁の開度を含む運転情報を受信し、受信した前記運転情報から前記空気調和装置の冷凍能力を推定し、推定した冷凍能力と、前記空気の温度、前記水平方向の角度、前記垂直方向の角度および前記風速から推定される気流状態とを、前記複数の活動量毎に記憶される複数の前記グループの各快適性指標分布に反映させる、
     請求項6~8のいずれか1項に記載の空気調和装置の制御方法。
    The control device is
    Operation information including the frequency of the compressor, the condensation temperature, the evaporation temperature, and the opening degree of the expansion valve is received from the air conditioner, and the refrigerating capacity of the air conditioner is estimated from the received operation information, and the estimated refrigeration is performed. Each comfort index of the plurality of groups in which the capacity and the air temperature, the horizontal angle, the vertical angle, and the air flow state estimated from the wind speed are stored for each of the plurality of activity amounts. Reflect in the distribution,
    The control method for an air conditioner according to any one of claims 6 to 8.
  10.  前記快適性指標分布は、前記空調対象空間が複数の領域に分割され、各領域に対応して前記快適性指標の値が前記記憶装置に記憶されるものである、
     請求項4~9のいずれか1項に記載の空気調和装置の制御方法。
    In the comfort index distribution, the air-conditioned space is divided into a plurality of regions, and the value of the comfort index is stored in the storage device corresponding to each region.
    The control method for an air conditioner according to any one of claims 4 to 9.
  11.  前記制御装置は、
     予め決められた一定時間に、前記人検出手段によって検出される前記活動量が一定でない場合および前記空調対象空間におけるユーザの有無を判定できない場合のうち、一方または両方である場合、前記空気調和装置に対して、空気の吹き出し方向の水平方向および垂直方向のうち、一方または両方の角度を一定の周期で変化させるスイング動作をさせる、
     請求項4~10のいずれか1項に記載の空気調和装置の制御方法。
    The control device is
    When the amount of activity detected by the person detecting means is not constant at a predetermined fixed time and when it is not possible to determine the presence or absence of a user in the air-conditioned space, one or both of them, the air conditioner. On the other hand, a swing operation is performed in which one or both angles of the horizontal direction and the vertical direction of the air blowing direction are changed at regular intervals.
    The control method for an air conditioner according to any one of claims 4 to 10.
PCT/JP2020/015040 2020-04-01 2020-04-01 Air conditioning system and method for controlling air conditioner WO2021199381A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/015040 WO2021199381A1 (en) 2020-04-01 2020-04-01 Air conditioning system and method for controlling air conditioner
CN202080098957.8A CN115335644A (en) 2020-04-01 2020-04-01 Air conditioning system and control method of air conditioning device
US17/796,342 US20230066057A1 (en) 2020-04-01 2020-04-01 Air-conditioning system and method for controlling air-conditioning apparatus
JP2022511442A JP7199597B2 (en) 2020-04-01 2020-04-01 Air conditioning system and method for controlling air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015040 WO2021199381A1 (en) 2020-04-01 2020-04-01 Air conditioning system and method for controlling air conditioner

Publications (1)

Publication Number Publication Date
WO2021199381A1 true WO2021199381A1 (en) 2021-10-07

Family

ID=77929914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015040 WO2021199381A1 (en) 2020-04-01 2020-04-01 Air conditioning system and method for controlling air conditioner

Country Status (4)

Country Link
US (1) US20230066057A1 (en)
JP (1) JP7199597B2 (en)
CN (1) CN115335644A (en)
WO (1) WO2021199381A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114963413A (en) * 2022-04-21 2022-08-30 日立楼宇技术(广州)有限公司 Control method, device and equipment of air conditioner and storage medium
WO2023188798A1 (en) * 2022-03-30 2023-10-05 パナソニックIpマネジメント株式会社 Environment control system, environment control method, and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7387010B2 (en) 2020-08-24 2023-11-27 三菱電機株式会社 Air conditioning system and air conditioner control method
CN116796569B (en) * 2023-07-10 2024-03-29 锦州佳润农业科技有限公司 Greenhouse environment regulation and control system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180139A (en) * 1992-12-11 1994-06-28 Matsushita Electric Ind Co Ltd Application devices of control device and image processing device of air-conditioner
JPH06257821A (en) * 1993-03-04 1994-09-16 Matsushita Electric Ind Co Ltd Control device for air conditioner
JP2011069577A (en) * 2009-09-28 2011-04-07 Oki Electric Industry Co Ltd Air conditioning control system, air conditioning control method, air conditioning control device and air conditioning control program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159814B2 (en) * 2010-03-12 2013-03-13 三菱電機株式会社 Air conditioning control system
JP6180139B2 (en) 2013-03-11 2017-08-16 リンテック株式会社 Protective film-forming composite sheet and method for producing protective film-forming chip with film
JP6448180B2 (en) * 2013-08-23 2019-01-09 株式会社東芝 Air conditioning control system and air conditioning control device
JP2018032243A (en) * 2016-08-25 2018-03-01 三菱電機ビルテクノサービス株式会社 Information processor and program
WO2019013014A1 (en) * 2017-07-12 2019-01-17 三菱電機株式会社 Comfort level display device
JP7258701B2 (en) * 2019-09-17 2023-04-17 株式会社東芝 Control device, terminal device and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180139A (en) * 1992-12-11 1994-06-28 Matsushita Electric Ind Co Ltd Application devices of control device and image processing device of air-conditioner
JPH06257821A (en) * 1993-03-04 1994-09-16 Matsushita Electric Ind Co Ltd Control device for air conditioner
JP2011069577A (en) * 2009-09-28 2011-04-07 Oki Electric Industry Co Ltd Air conditioning control system, air conditioning control method, air conditioning control device and air conditioning control program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188798A1 (en) * 2022-03-30 2023-10-05 パナソニックIpマネジメント株式会社 Environment control system, environment control method, and program
CN114963413A (en) * 2022-04-21 2022-08-30 日立楼宇技术(广州)有限公司 Control method, device and equipment of air conditioner and storage medium
CN114963413B (en) * 2022-04-21 2023-07-04 日立楼宇技术(广州)有限公司 Control method, device, equipment and storage medium of air conditioner

Also Published As

Publication number Publication date
US20230066057A1 (en) 2023-03-02
JPWO2021199381A1 (en) 2021-10-07
JP7199597B2 (en) 2023-01-05
CN115335644A (en) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2021199381A1 (en) Air conditioning system and method for controlling air conditioner
JP7055218B2 (en) Air conditioner, air conditioner control method and program
JP7004827B2 (en) Air conditioners, controls, air conditioners and programs
US11428433B2 (en) Air conditioner and method for controlling the same
JP6832985B2 (en) Air conditioner
EP1747408B1 (en) Air conditioner and method for controlling the same
JP2021152416A (en) Air conditioning control device, air conditioning control method, and air conditioning control system
KR20120096722A (en) Air conditioner and controlling method thereof
KR100565697B1 (en) method for controlling agreeableness quotient in air-conditioning system
JP2011027301A (en) Air conditioning control device
JP6815178B2 (en) Air conditioner and air conditioning control method
JP6698947B1 (en) Air conditioner, control device, air conditioning method and program
JP6701449B1 (en) Air conditioner, control device, air conditioning method and program
JP6932264B2 (en) Air conditioners, controls, air conditioners and programs
TWI746087B (en) Air conditioning system control method
KR100323541B1 (en) Air Conditioner Control Method
WO2017159632A1 (en) Air conditioner
JP7038835B2 (en) Air conditioners, controls, air conditioners and programs
CN108413589B (en) Air conditioner control method based on temperature and cold feeling and air conditioner
CN108317691B (en) Gender compensation-based temperature and cold sensing air conditioner control method and air conditioner
JP7387010B2 (en) Air conditioning system and air conditioner control method
JP7141002B1 (en) Air conditioner and control system
JP7475557B2 (en) Air conditioning system, information processing device, and method for controlling air conditioning equipment
KR20200036978A (en) Air conditioning control apparatus and method
WO2021024422A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928821

Country of ref document: EP

Kind code of ref document: A1