WO2021197423A1 - 一种铜铝复合电能传输系统及其加工方法 - Google Patents

一种铜铝复合电能传输系统及其加工方法 Download PDF

Info

Publication number
WO2021197423A1
WO2021197423A1 PCT/CN2021/084920 CN2021084920W WO2021197423A1 WO 2021197423 A1 WO2021197423 A1 WO 2021197423A1 CN 2021084920 W CN2021084920 W CN 2021084920W WO 2021197423 A1 WO2021197423 A1 WO 2021197423A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
aluminum
power transmission
transmission system
welding
Prior art date
Application number
PCT/CN2021/084920
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
吉林省中赢高科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林省中赢高科技有限公司 filed Critical 吉林省中赢高科技有限公司
Priority to BR112022019787A priority Critical patent/BR112022019787A2/pt
Priority to EP21780071.3A priority patent/EP4131662A4/en
Priority to MX2022012399A priority patent/MX2022012399A/es
Priority to CA3173470A priority patent/CA3173470A1/en
Priority to US17/915,672 priority patent/US20230112646A1/en
Priority to JP2022560265A priority patent/JP7350194B2/ja
Priority to KR1020227038123A priority patent/KR20220161463A/ko
Publication of WO2021197423A1 publication Critical patent/WO2021197423A1/zh
Priority to ZA2022/11112A priority patent/ZA202211112B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/62Connections between conductors of different materials; Connections between or with aluminium or steel-core aluminium conductors
    • H01R4/625Soldered or welded connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/02Pressure butt welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/18Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/20Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of different metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/029Welded connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials

Definitions

  • the present invention requires the priority of a Chinese invention patent whose patent application number is 202010250067.6 and the invention title is "a copper-aluminum composite power transmission system and its processing method".
  • the invention relates to the technical field of conductive metal connectors, in particular to a copper-aluminum composite electric energy transmission system, and a processing method of the copper-aluminum composite electric energy transmission system.
  • Copper material or copper alloy material has good electrical conductivity, thermal conductivity, and plasticity and is widely used in the field of electrical connection.
  • copper resources there is a shortage of copper resources, and the content of copper in the earth's crust is only about 0.01%.
  • the cost of copper will increase year by year. For this reason, people began to look for alternatives to metallic copper to reduce costs.
  • the content of metallic aluminum in the earth’s crust is about 7.73%. After the optimization of the refining technology, the price is relatively low, and it also has excellent electrical conductivity, thermal conductivity and plastic workability. Therefore, it is the current The main trend of development.
  • Aluminum is slightly inferior in hardness, plasticity and corrosion resistance, but its weight is lighter, and its conductivity is second only to copper.
  • Aluminum can partially replace copper in the field of electrical connections. However, due to the large electrode potential difference between copper and aluminum, after direct connection, electrochemical corrosion will occur between copper and aluminum. Aluminum is susceptible to corrosion and the resistance of the connection area increases, which is likely to cause serious consequences in electrical connection. Such as functional failure, fire, etc.
  • the previous copper-aluminum connection methods are generally fusion welding, cold pressure welding, electron beam welding, explosive welding, etc.
  • the joints welded by these welding methods are brittle, and the welds are prone to pores and cracks, especially the welds under high temperature treatment.
  • the crystal grains become coarse, which seriously affects the mechanical and electrical properties of the bonding surface of the welding base material, and cannot meet the requirements of the automotive electrical connection field.
  • the current copper-aluminum connection methods are generally friction welding, ultrasonic welding and resistance welding.
  • Friction welding is to generate energy through the relative rotational friction of the copper and aluminum weldments.
  • Ultrasonic welding is to generate energy through the relative displacement and friction of the copper and aluminum weldments.
  • Resistance welding is to pass current between the copper and aluminum weldments, generate energy through contact resistance, and then apply pressure. , Make the copper and aluminum weldments welded together.
  • the relatively smooth surface of the copper-aluminum weldment contact surface will reduce the friction coefficient and reduce the welding energy generated.
  • the flatter the contact surface of the weldment the smaller the contact resistance, and the lower the welding energy.
  • the reduced energy absorbed by welding also reduces the welding quality between copper and aluminum, which is prone to batch accidents. In order to ensure that the welding contact area absorbs enough energy, it is necessary to increase the output of welding energy, resulting in a lot of cost waste.
  • friction welding of copper-aluminum weldments has relative rotational friction.
  • the center point of copper-aluminum weldments has no relative linear velocity. The closer to the outer circumference of the copper-aluminum welding, the greater the relative rotational velocity of the copper-aluminum welding.
  • the energy generated by the friction between the center and the outer periphery of the weldment is not the same, which will cause the center of the copper-aluminum weldment to not be welded, and the outer periphery has been over welded.
  • the weld will generate a lot of internal stress, even if the welded joint performance is qualified when the welding is completed. , After long-term use, brittle fracture of the weld will occur, which may cause major accidents in severe cases.
  • the purpose of the present invention is to provide a copper-aluminum composite power transmission system, which reduces the initial copper-aluminum contact surface area, increases the initial friction coefficient of the copper-aluminum contact surface, and reduces the production of copper-aluminum composite power transmission system.
  • the energy required by the system improves the mechanical and electrical properties of the copper-aluminum composite power transmission system and reduces the use cost of the copper-aluminum composite power transmission system.
  • the invention discloses a copper-aluminum composite power transmission system, which includes a copper terminal and an aluminum cable.
  • the aluminum cable includes an aluminum conductor and an insulating layer covering the periphery of the aluminum conductor.
  • a section of aluminum conductor from which the insulating layer has been stripped is wrapped in the power transmission aluminum piece to form a connecting piece; the end of the copper terminal for welding with the connecting piece is provided with a welding platform, and the welding platform is connected to the connecting piece.
  • a transition layer in which metal atoms infiltrate or bond with each other is formed between the connecting members.
  • the invention also discloses a processing method of the copper-aluminum composite electric energy transmission system, the processing method includes:
  • Pre-assembly step sheathing the aluminum conductor from which the insulating layer has been stripped into the aluminum power transmission part, and using a pressing device to press the aluminum conductor into the aluminum power transmission part to form a connecting piece wrapped by the aluminum power transmission part;
  • Welding step the copper terminal with the welding platform is welded to the connecting piece, and a transition layer is formed between the welding platform and the connecting piece through mutual penetration of metal atoms or mutual bonding of metal atoms.
  • the present invention has the following beneficial effects:
  • the copper-aluminum composite power transmission system of the present invention is different from the existing research results.
  • the prior art is to increase the copper-aluminum initial contact area in the copper-aluminum composite power transmission system to ensure the mechanics of the copper-aluminum composite power transmission system Performance and electrical performance, and by increasing the welding energy of the copper-aluminum composite power transmission system to ensure that the increase in the welding energy demand caused by the increase of the initial contact area, so as to prepare the copper-aluminum composite power transmission system.
  • the present invention By reducing the initial contact area of copper and aluminum, the present invention not only significantly reduces the energy required to make a copper-aluminum composite power transmission system, but also improves the mechanical and electrical properties of the copper-aluminum composite power transmission system compared with the prior art.
  • the service life of the copper-aluminum composite power transmission system is prolonged, and the production cost of the copper-aluminum composite power transmission system is reduced.
  • the invention reduces the initial contact area of copper and aluminum, increases the friction coefficient of the copper-aluminum contact surface, and increases the transition layer to resist external environmental corrosion of copper and aluminum by adding a welding platform at the end of the copper terminal for welding with the connector.
  • the path of the composite power transmission system significantly increases the mechanical and electrical properties of the copper-aluminum composite power transmission system, effectively delays the corrosion problem of copper and aluminum, significantly prolongs the service life of the copper-aluminum composite power transmission system, and significantly reduces the production of copper
  • the energy requirements of the aluminum composite power transmission system have clearly reduced the production cost and usage fee of the copper-aluminum composite power transmission system.
  • the front end of the power transmission aluminum part and the aluminum conductor is welded to the copper terminal through a welding platform, so that the power transmission aluminum part and the aluminum conductor are further fused into a molten layer in the welding state .
  • the molten layer not only destroys the dense oxide film on the surface of the electric power transmission aluminum part and the aluminum conductor, but also improves the mechanical and electrical properties of the electric power transmission aluminum part and the aluminum conductor.
  • the energy of the Gibbs free energy of the molten layer is relatively low, and it is easier to form a copper-aluminum solid solution-based transition layer with the welding platform during the production of the copper-aluminum composite power transmission system, which can significantly reduce the transition layer
  • the weight ratio of the brittle copper-aluminum compound in the copper-aluminum alloy significantly improves the mechanical and electrical properties of the copper-aluminum welded joint.
  • a welding platform is provided on the copper terminal welding side, which increases the final contact area between the copper terminal welding side and the molten layer, and reduces the internal stress generated during copper-aluminum welding. Further enhance the mechanical properties of the copper-aluminum welding surface.
  • the welding platform makes the center position of the copper-aluminum welding friction generate energy first, and then the root of the copper terminal friction generates energy, so that the energy generated during friction is more uniform, and the electrical performance generated during welding is reduced. Poor copper-aluminum compound, thereby improving the mechanical and electrical properties of the welding surface, and reducing the cost of making a copper-aluminum composite power transmission system.
  • the welding method is ultrasonic welding, under the same pressure, the mutual friction coefficient between the welding platform and the connecting parts increases, which makes the heat generated by friction greater, thereby improving the mechanical and electrical properties of the welding surface, and reducing The cost of making a copper-aluminum composite power transmission system.
  • the welding method is resistance welding
  • the contact resistance between the welding platform and the connecting piece is large, the generated energy is high, and the stability of the welding energy is ensured, thereby improving the mechanical and electrical properties of the welding surface, and reducing the electrical energy for the production of copper-aluminum composites.
  • the cost of the transmission system is a welding method.
  • the extended coating layer of the present invention is coated on the outer side of the transition layer, which can effectively reduce the erosion of the transition layer by the external environment.
  • the outer side of the welding platform extends the corrosion path of the transition layer from the external environment, increases the corrosion resistance of the copper-aluminum composite power transmission system, and prolongs the life of the copper-aluminum composite power transmission system by about 20%.
  • a welding platform can be processed on the welding side of the copper terminal by a mechanical processing device before welding.
  • the molten layer and the welding platform of the copper terminal are under pressure
  • a transition layer in which copper and aluminum atoms infiltrate or bond with each other is formed. This transition layer can effectively reduce the electrochemical corrosion between copper and aluminum, increase the weight percentage of copper and aluminum solid solution, reduce the production of brittle copper and aluminum compounds, and increase copper and aluminum. The service life of the composite power transmission system.
  • the copper-aluminum composite power transmission system of the present invention can be provided with a plating layer on the copper terminal, and the plating layer of the copper terminal is not removed before welding.
  • the molten layer, the copper terminal and the plating metal form copper, aluminum and A transition layer in which the atoms of the coating metal penetrate each other or combine with each other.
  • the coating metal will be a metal material with a potential between copper and aluminum or a metal material with strong chemical stability, which will slow down the electrochemical corrosion caused by the large potential between copper and aluminum in the transition layer, thereby prolonging the The service life of the copper-aluminum composite power transmission system is described.
  • the copper-aluminum composite power transmission system of the present invention may also include an aluminum cable with a shielding layer, which is mainly applied to high-voltage wiring harnesses used in electric vehicles. It can significantly reduce the weight of the electric vehicle wiring harness, reduce energy consumption, and at the same time reduce the cost of the high-voltage wiring harness.
  • the processing method of the copper-aluminum composite power transmission system of the present invention further includes a welding platform manufacturing step.
  • a mechanical processing device is used to process the welding platform on the end surface of the copper terminal, which can significantly reduce the copper-aluminum composite power transmission The production cost of the system.
  • the method of online production of the welding platform can also significantly increase the pass rate of the production of the copper-aluminum composite power transmission system, thereby further reducing the production loss cost.
  • Fig. 1 is a schematic diagram of the butt welding structure of the copper-aluminum composite electric power transmission system according to the present invention
  • FIG. 2 is a schematic diagram of the butt welding structure of the copper-aluminum composite electric power transmission system according to the present invention
  • Fig. 3 is a schematic diagram of the structure of the superimposed welding of the copper-aluminum composite electric power transmission system according to the present invention
  • FIG. 4 is a schematic diagram of the structure of the butt welding of the copper-aluminum composite power transmission system according to the present invention, using an aluminum cable with a shielding layer;
  • FIG. 5 is a schematic diagram of the structure of the butt welding of the copper-aluminum composite power transmission system according to the present invention, using an aluminum cable with a shielding layer and an outer insulation layer;
  • Figure 6 is an electronic mirror image of the transition layer according to the present invention.
  • Fig. 7 is an enlarged electron mirror image and an X-ray energy spectrum diagram of test point 1 in Fig. 5, where a is an enlarged electron mirror image and b is an X-ray energy spectrum diagram;
  • Figure 8 is a tensile simulation experiment diagram of a copper-aluminum composite power transmission system without a welding platform at the welding end of a copper terminal;
  • Figure 9 is a drawing of the tensile simulation experiment results of a copper-aluminum composite power transmission system without a welding platform at the welding end of the copper terminal;
  • Figure 10 is a tensile simulation experiment diagram of a copper-aluminum composite power transmission system with a welding platform at the welding end of a copper terminal;
  • Figure 11 is a drawing of the tensile simulation experiment results of a copper-aluminum composite power transmission system with a welding platform at the welding end of a copper terminal;
  • Insulation layer 31. Outer insulation layer,
  • a copper-aluminum composite power transmission system includes a copper terminal 1 and an aluminum cable 6.
  • the aluminum cable 6 includes an aluminum conductor 2 and an insulating layer 3 covering the periphery of the aluminum conductor 2. It also includes a power transmission aluminum piece 4, a section of aluminum conductor 2 from which the insulating layer is stripped is wrapped in the power transmission aluminum piece 4 to form a connecting piece; the copper terminal 1 is provided with an end for welding with the connecting piece There is a welding platform 11, and a transition layer 12 is formed between the welding platform 11 and the connecting member in which metal atoms penetrate each other or combine with each other.
  • the electric power transmission aluminum piece can be, but not limited to, a conductive aluminum piece with an aluminum tubular structure.
  • the transition layer in which metal atoms penetrate or bond with each other means that energy is generated by friction or current or arc between the connecting piece and the copper terminal, and then the connecting piece and the copper terminal are applied to each other through welding equipment.
  • the copper and aluminum atoms infiltrate and dissolve into each other’s crystal lattice due to the energy of the copper and aluminum atoms at the welding interface, resulting in a solid solution of copper and aluminum; in addition, there may be a small amount of copper and aluminum atoms passing between The metal bonds combine to produce a copper-aluminum compound.
  • a transition layer in which metal atoms infiltrate or bond with each other is generated between copper and aluminum which can effectively reduce the electrochemical corrosion between copper and aluminum, and extend the service life of the copper-aluminum composite power transmission system by about 20%. %, it also improves the electrical and mechanical properties of the copper-aluminum connection.
  • the front end of the connector of the present invention has a melting layer 5.
  • the molten layer and the power transmission aluminum parts and aluminum conductors, which effectively guarantees seamless connection between the copper terminals and the connection between the power transmission aluminum parts and the aluminum conductors, which can further ensure the mechanical performance of the copper-aluminum composite power transmission system And electrical performance.
  • the front ends of the power transmission aluminum parts and the aluminum conductors are welded to the copper terminals through the welding platform, so that the power transmission aluminum parts and the aluminum conductors are further fused into a molten layer under the welding state, and damage
  • the dense oxide film on the surface of the power transmission aluminum part and the aluminum conductor not only improves the mechanical and electrical properties of the power transmission aluminum part and the aluminum conductor, but also can better form a transition layer in the subsequent welding process.
  • the molten layer 5 of the present invention forms an extended coating layer around the end surface of the welding platform 11 in the direction of the copper terminal.
  • the heat generated after copper-aluminum welding will first heat the aluminum to a molten state to form a molten layer.
  • the molten layer 5 forms an extended cladding layer 7 around the end surface of the welding platform 11 in the direction of the copper terminal. The purpose is to protect the welding seam of the copper-aluminum welding surface and avoid direct contact with the copper-aluminum welding surface during use. In the external environment, the possibility of corrosion of the copper-aluminum welding surface is reduced, and the service life of the copper-aluminum composite power transmission system is prolonged.
  • the molten layer will extend to the surroundings to produce flashes under the action of pressure. In the subsequent use, additional steps are required to remove the flashes.
  • the melting layer of the present invention directly forms an extended coating layer in the direction of the copper terminal under the action of the fixture forming groove of the welding equipment, which saves the process of flash cutting and also beautifies the appearance of the copper-aluminum composite power transmission system.
  • the thickness of the molten layer 5 affects the connection strength between the copper terminal 1 and the aluminum conductor 2 and the power transmission aluminum part 4, which is specifically expressed as: when the thickness of the molten layer 5 is too small, the reason is copper and aluminum
  • the welding heat generated by insufficient friction strength or small current is not enough to melt the more power transmission aluminum parts 4 and aluminum conductors 2, resulting in insufficient strength of the melting layer 5 and the transition layer 12, which reduces the performance of the copper-aluminum composite power transmission system.
  • the thickness of the molten layer 5 is too small, and the transition layer 12 is too small or the transition layer 12 is not formed, the degree of electrochemical corrosion between copper and aluminum will greatly increase, thereby reducing the electrical performance of the copper-aluminum composite power transmission system. And the service life.
  • the thickness of the molten layer 5 is too large, the friction strength of copper and aluminum is too large or the current is too large, and the welding heat is too high. More power transmission aluminum parts 4 and aluminum conductors 2 are melted and then cooled to form a metal structure with a coarse crystal lattice.
  • the mechanical strength of the molten layer 5 is not as good as the mechanical strength of the power transmission aluminum parts and the aluminum conductor 2 base material, which reduces the mechanical properties of the copper-aluminum composite power transmission system.
  • the molten layer 5 and the transition layer 12 contain more copper-aluminum compounds with poor conductivity, which also reduces the electrical performance of the copper-aluminum composite power transmission system. Therefore, in the present invention, as a further preferred solution, the thickness of the molten layer is 0.01 cm-15 cm.
  • the extended coating layer 7 covers at least the end of the copper terminal.
  • the extended coating layer of the present invention is coated to the end of the copper terminal, which can effectively avoid the corrosion of the transition layer by the external environment.
  • the outer side of the welding platform extends the corrosion path of the transition layer from the external environment, increases the corrosion resistance of the copper-aluminum composite power transmission system, and prolongs the life of the copper-aluminum composite power transmission system by about 20%.
  • the welding platform of the present invention includes an end surface welded with the connector and a root connected with the end of the copper terminal, and the cross-sectional area of the end surface is smaller than the cross-sectional area of the root.
  • the end face of the copper terminal that frictions with the aluminum parts for power transmission and the aluminum cable is mainly the end face of the welding platform.
  • the end face of the welding platform should not be too small. If the friction area is too small, the thickness of the transition layer may be insufficient due to insufficient welding energy, which will affect the mechanical and electrical properties of the welded joint. Therefore, in order to obtain a welded joint with more excellent performance, it is preferable that the cross-sectional area of the end face of the welding platform of the present invention is at least 50% of the cross-sectional area of the root.
  • a welding platform is set on the welding surface of the copper terminal.
  • the welding platform in the center position first generates energy, then the side of the welding platform, and finally the bottom surface of the welding platform.
  • the higher the linear velocity, the welding time The shorter the length, the more uniform the energy generated during welding and the reduction of the copper-aluminum compound with poor electrical properties during welding, thereby improving the electrical properties of the welding surface.
  • the contact area between the welding side of the copper terminal and the molten layer can be increased, the internal stress generated during copper and aluminum welding can be reduced, and the mechanical properties of the welding surface can be enhanced.
  • the extended coating layer of the present invention covers the outer side of the transition layer, which can effectively reduce the erosion of the transition layer by the external environment.
  • the outer side of the welding platform extends the corrosion path of the transition layer from the external environment, increases the corrosion resistance of the copper-aluminum composite power transmission system, and prolongs the life of the copper-aluminum composite power transmission system by about 20%.
  • the height of the welding platform of the present invention is 0.01 cm to 15 cm.
  • the transition layer of the present invention contains not less than 10wt% of copper-aluminum solid solution.
  • the transition layer contains at least copper element, aluminum element, copper-aluminum solid solution, and copper-aluminum compound.
  • the copper-aluminum compound is one or more of Cu 2 Al, Cu 3 Al 2 , CuAl, and CuAl 2.
  • the other components in the transition layer are more than 90% by weight.
  • the large ratio of copper and aluminum in the transition layer indicates that the copper-aluminum welding is insufficient, and the copper-aluminum simple substance is not fused into a copper-aluminum solid solution.
  • the transition layer of the present invention contains at least 10 wt% of copper and aluminum solid solution.
  • the thickness of the transition layer of the present invention is 0.01 ⁇ m to 6000 ⁇ m.
  • the thickness of the transition layer 12 is too small, the degree of electrochemical corrosion between copper and aluminum will greatly increase, thereby reducing the electrical performance and service life of the copper-aluminum composite power transmission system. If the thickness of the transition layer 12 is too large, the electrical performance of the copper-aluminum composite power transmission system will be reduced due to the inclusion of more copper-aluminum compounds with poor conductivity.
  • a metal plating layer is provided on the surface of the copper terminal of the present invention. Because copper terminals need to be connected to electrical devices, they will be exposed to air and water. There are even salt in the air in some places. The copper terminals will be oxidized and corroded by salt spray, thereby reducing the service life of the terminals. In severe cases, the terminals will be exposed. The occurrence of a short circuit leads to a burning accident, causing greater losses. Therefore, the metal plating layer on the surface of the copper terminal can effectively prevent the erosion of air, water, and salt spray, prolong the service life of the copper terminal and even the copper-aluminum joint, and reduce the occurrence of safety accidents.
  • the plating metal will select a metal material with a potential between copper and aluminum, which will slow down the electrochemical corrosion caused by the large potential between copper and aluminum in the transition layer, thereby prolonging the use of the copper-aluminum composite power transmission system life. Therefore, preferably, the metal coating material in the present invention contains at least but not limited to one of nickel, cadmium, zirconium, chromium, cobalt, manganese, aluminum, tin, titanium, zinc, copper, silver or gold.
  • the aluminum cable of the present invention further includes a shielding layer 8 wrapped around the insulating layer for shielding electromagnetic interference.
  • the copper-aluminum composite electric energy transmission system welding aluminum cable with a shield layer of the present invention is mainly applied to high-voltage wiring harnesses used in electric vehicles. It can reduce the weight of the electric vehicle wiring harness, reduce energy consumption, and at the same time reduce the cost of the high-voltage wiring harness.
  • the invention also discloses a processing method of the copper-aluminum composite electric energy transmission system, the processing method includes:
  • Pre-assembly step sheathing the aluminum conductor from which the insulating layer has been stripped into the aluminum power transmission part, and using a pressing device to press the aluminum conductor into the aluminum power transmission part to form a connecting piece wrapped by the aluminum power transmission part;
  • Welding step the copper terminal with the welding platform is welded to the connecting piece, and a transition layer is formed between the welding platform and the connecting piece through mutual penetration of metal atoms or mutual bonding of metal atoms.
  • the welding step of the present invention further includes forming a molten layer at the front end of the connector.
  • the processing method of the copper-aluminum composite power transmission system of the present invention further includes a welding platform manufacturing step: using a mechanical processing device to process a welding platform on the end surface of the copper terminal.
  • a copper-aluminum composite power transmission system includes a copper terminal 1 and an aluminum cable 6.
  • the aluminum cable 6 includes an aluminum conductor 2 and an insulating layer 3 covering the periphery of the aluminum conductor 2. It also includes a power transmission aluminum piece 4, a section of aluminum conductor 2 from which the insulating layer is stripped is wrapped in the power transmission aluminum piece 4 to form a connecting piece; the copper terminal 1 is provided with an end for welding with the connecting piece There is a welding platform 11, and a transition layer 12 is formed between the welding platform 11 and the connecting member in which metal atoms penetrate each other or combine with each other.
  • the power transmission aluminum piece wraps the aluminum conductor to form a connecting piece.
  • the structure is simple, and the power transmission aluminum piece is easier to process, which can greatly improve the power transmission aluminum piece. Production efficiency reduces the production cost of the copper-aluminum composite power transmission system.
  • the copper-aluminum composite power transmission system is processed through the following processes:
  • Pre-assembly step sheathing the aluminum conductor from which the insulating layer has been stripped into the aluminum power transmission part, and using a pressing device to press the aluminum conductor into the aluminum power transmission part to form a connecting piece wrapped by the aluminum power transmission part;
  • Clamping step Clamp the copper terminal with the welding platform in the rotating fixture of the friction welding equipment, and install the aluminum conductor and the electric power transmission aluminum part after the pre-assembly step in the mobile fixture;
  • Welding step the copper terminal is rotated under the drive of the rotating fixture, the rotating speed of the rotating fixture is 1000R/Min, the moving fixture drives the connecting piece to move horizontally and squeeze against the rotating copper terminal, the pressure of the moving fixture is 10000N, A molten layer is formed at the front end of the connecting piece by frictional heat generation, and then the molten layer is coated on the welding platform of the welding end of the copper terminal under pressure, and is formed with the welding platform so that metal atoms can infiltrate or bond with each other The transition layer.
  • the inventor inspected the structure of the transition layer, and the inspection results are shown in Figs. 6-7.
  • a copper-aluminum composite power transmission system includes a copper terminal 1 and an aluminum cable 6.
  • the aluminum cable 6 includes an aluminum conductor 2 and an insulating layer 3 covering the periphery of the aluminum conductor 2. It also includes a power transmission aluminum piece 4, a section of aluminum conductor 2 from which the insulating layer is stripped is wrapped in the power transmission aluminum piece 4 to form a connecting piece; the copper terminal 1 is provided with an end for welding with the connecting piece There is a welding platform 11, and a transition layer 12 is formed between the welding platform 11 and the connecting member in which metal atoms penetrate each other or combine with each other.
  • the copper-aluminum composite power transmission system is processed through the following processes:
  • Pre-assembly step sheathing the aluminum conductor from which the insulating layer has been stripped into the aluminum power transmission part, and using a pressing device to press the aluminum conductor into the aluminum power transmission part to form a connecting piece wrapped by the aluminum power transmission part;
  • Clamping step Clamp the copper terminal with the welding platform in the rotating fixture of the friction welding equipment, and install the aluminum conductor and the electric power transmission aluminum part after the pre-assembly step in the mobile fixture;
  • Welding step the copper terminal is rotated under the drive of the rotating fixture, the rotating speed of the rotating fixture is 1000R/Min, the moving fixture drives the connecting piece to move horizontally and squeeze against the rotating copper terminal, the pressure of the moving fixture is 10000N, A molten layer is formed at the front end of the connecting piece by frictional heat generation, and then the molten layer is coated on the welding platform of the welding end of the copper terminal under pressure, and is formed with the welding platform so that metal atoms can infiltrate or bond with each other The transition layer.
  • the inventor conducted a series of the above-mentioned two different copper-aluminum composite power transmission systems. Experiments on mechanical properties, electrical properties, and life span.
  • the specific experimental process is as follows: simulate the actual use environment of the copper-aluminum composite power transmission system, but increase the test conditions to a level that is far more stringent than the ordinary environment, and can obtain the same long-term performance in the actual use environment in a short time. Test results achieved.
  • the series of experiments include: 1) the initial pull-out force and voltage drop test to obtain the initial performance of the copper-aluminum composite power transmission system; 2) a 1000-hour salt spray test, using a salt spray test box, in the copper-aluminum composite power transmission The system is sprayed with salt water, which can replace the ten-year salt spray resistance test in the ordinary coastal environment; 3) 200 hours of high and low temperature experiments, the copper-aluminum composite power transmission system is at the highest and lowest temperature of the use environment for one hour each.
  • the switching time is less than 5 seconds, and 100 cycles are performed, which can replace the 10-year high and low temperature resistance test in the external cold and heat alternate environment; 4) 120-hour vibration test, fix the copper-aluminum composite power transmission system on the vibration test bench, according to the use environment Select the vibration amplitude and perform the vibration of the copper-aluminum composite power transmission system in three directions, which can replace the 10-year vibration test under the ordinary vibration environment; 5) 6000 hours of aging test, put the copper-aluminum composite power transmission system into the aging test In the box, the environment that exceeds the rated use conditions can be simulated, which can replace the aging test under the normal use environment for 20 years. After each experiment, the voltage drop value and the pulling force value of the copper-aluminum composite power transmission system must be tested. The experimental results are shown in Table 1-1, Table 1-2 and Table 1-3.
  • Table 1-1 The influence of the copper terminal welding platform on the pull-out force and voltage drop of the copper-aluminum composite power transmission system (before the experiment and after the 1000-hour salt spray experiment)
  • Table 1-2 The influence of the copper terminal welding platform on the pulling force and voltage drop of the copper-aluminum composite power transmission system (200 hours of high and low temperature experiment and 120 hours of vibration)
  • Table 1-3 The influence of the copper terminal welding platform on the pull-out force and voltage drop of the copper-aluminum composite power transmission system (6000-hour aging test)
  • the copper terminal welding end is equipped with a copper-aluminum composite power transmission system with a welding platform, and the copper-aluminum composite power transmission system after the experiment
  • the pull-out force of the composite power transmission system is still higher than the initial pull-out force of the copper-aluminum composite power transmission system without a welding platform at the welding end of the copper terminal.
  • the copper-aluminum composite power transmission system without a welding platform at the copper terminal welding end has significantly lower pulling force after the experiment and unstable mechanical properties, which may cause the copper-aluminum composite power transmission system to detach, resulting in short circuit of the cable Otherwise, the function will fail, and it will lead to a combustion accident.
  • the copper-aluminum composite power transmission system with a welding platform is set on the copper terminal welding end.
  • the voltage drop after the experiment is basically the same as the initial voltage drop of the copper-aluminum composite power transmission system without a welding platform at the copper terminal welding end.
  • the copper-aluminum composite power transmission system without a welding platform at the copper terminal welding end has a significantly lower voltage drop after the experiment, and the electrical performance is unstable.
  • the contact resistance of the copper-aluminum composite power transmission system increases, which will cause copper-aluminum composite electrical energy when conducting electricity.
  • the transmission system is hot and red, and in severe cases, it will burn due to excessive temperature, causing serious accidents.
  • a copper-aluminum composite power transmission system includes a copper terminal 1 and an aluminum cable 6.
  • the aluminum cable 6 includes an aluminum conductor 2 and an insulation covering the periphery of the aluminum conductor 2.
  • the layer 3 also includes a power transmission aluminum part 4, a section of the aluminum conductor 2 from which the insulation layer is stripped and at least part of the aluminum conductor with the insulation layer 3 are wrapped in the power transmission aluminum part 4 to form a connector;
  • the copper terminal 1 is provided with a welding platform 11 at the end for welding with the connecting piece, and a transition layer 12 is formed between the welding platform 11 and the connecting piece through mutual penetration of metal atoms or mutual bonding of metal atoms.
  • the aluminum electric power transmission part of the present invention includes a conductor crimping section 41, an insulating lamination section 43, and a transition section 42.
  • the inner diameter is larger than the conductor crimping section 41, and the conductor crimping section 41 and the insulating lamination section 43 are connected by a stepped transition section 42; the aluminum conductor 2 is fitted and sleeved in the conductor crimping section 41 ,
  • the insulating layer 3 is in an interference fit with the insulating lamination section 43, and the front end of the insulating layer 3 does not enter the conductor crimping section 41.
  • the gap between the aluminum power transmission part and the aluminum conductor is further avoided, and the possibility of air and moisture entering the inside of the power transmission aluminum part is effectively prevented.
  • the front end of the insulating layer is located in the transition section, and the stepped transition section accommodates the insulating layer deformed and stretched during the crimping process to prevent the insulating layer from being pressed into the conductor to increase the resistance.
  • the copper-aluminum composite power transmission system Heat or even burn.
  • the copper-aluminum composite power transmission system is processed through the following processes:
  • Pre-assembly step sheathing the aluminum conductor with the insulation layer stripped into the aluminum part for power transmission, and pressing the aluminum conductor with the insulation layer and part of the aluminum conductor with the insulation layer on the aluminum conductor for power transmission using a pressing device Connecting parts are formed in the parts;
  • Clamping step clamping the copper terminal with the welding platform in the rotating fixture of the friction welding equipment, and installing the connecting piece after the pre-assembly step in the mobile fixture;
  • Welding step the copper terminal is rotated under the drive of the rotating fixture, the rotating speed of the rotating fixture is 1000R/Min, the moving fixture drives the connecting piece to move horizontally and squeeze against the rotating copper terminal, the pressure of the moving fixture is 10000N, A molten layer is formed at the front end of the connecting piece by frictional heat generation, and then the molten layer is coated on the welding platform of the welding end of the copper terminal under pressure, and is formed with the welding platform so that metal atoms can infiltrate or bond with each other The transition layer.
  • the inventors used copper terminals with a welding platform and a copper terminal without a welding platform to obtain the copper-aluminum composite power transmission according to the above method.
  • the copper terminal without a welding platform directly forms a transition layer with the front end of the connector forming the molten layer.
  • the two copper-aluminum composite power transmission systems are subjected to tensile simulation experiments through the simulation software Ansys.
  • the simulation experiment method will be used separately
  • the digital model of the copper terminal with a welding platform and the copper terminal without a welding platform and the front end of the connector forming the molten layer are imported into the simulation software, and the two ends of the copper terminal and the connector are respectively applied with a tensile force.
  • the tensile force is 1700N, and the software automatically simulates the internal stress of the interface. The greater the internal stress, the more unstable the welding and the smaller the pulling force. Refer to Figure 8 to Figure 11 for the process and results of the tensile simulation experiment.
  • a copper-aluminum composite power transmission system includes a copper terminal 1 and an aluminum cable 6.
  • the aluminum cable 6 includes an aluminum conductor 2 and an insulating layer 3 covering the periphery of the aluminum conductor 2. It also includes a power transmission aluminum piece 4, a section of aluminum conductor 2 from which the insulation layer is stripped and at least part of the aluminum conductor with an insulation layer 3 are wrapped in the power transmission aluminum piece 4 to form a connecting piece; the copper terminal 1 is used for
  • a welding platform 11 is provided at the end welded to the connecting piece, and a transition layer 12 is formed between the welding platform 11 and the connecting piece through mutual penetration of metal atoms or mutual bonding of metal atoms.
  • the copper-aluminum composite power transmission system is processed through the following processes:
  • Pre-assembly step sheathing the aluminum conductor with the insulation layer stripped into the aluminum part for power transmission, and pressing the aluminum conductor with the insulation layer and part of the aluminum conductor with the insulation layer on the aluminum conductor for power transmission using a pressing device Connecting parts are formed in the parts;
  • Clamping step clamp the copper terminal with the welding platform in the fixing fixture of the ultrasonic equipment, and install the pre-assembled connection piece in the vibration fixture of the ultrasonic equipment;
  • Welding step the copper terminal is fixed in a fixed fixture, and the vibration fixture drives the connecting piece to vibrate horizontally and squeeze against the fixed copper terminal.
  • the frequency of the vibration fixture is 200KHz
  • the pressure is 10000N
  • the vibration is caused by friction.
  • the heat forms a molten layer at the front end of the connecting piece, and then the molten layer is coated on the welding platform of the welding end of the copper terminal under pressure, and forms a transition layer with metal atoms infiltrating or combining with the welding platform. .
  • the purpose of this example is to demonstrate the influence of different melting layer thicknesses on the drawing force and voltage drop and welding strength of the copper-aluminum composite power transmission system, and to investigate the drawing force value and voltage of the copper-aluminum composite power transmission system with different melting layer thicknesses. See Table 2 for the results of derating and welding strength.
  • Table 2 The influence of different melting layer thickness on the pulling force and voltage drop of the copper-aluminum composite power transmission system
  • the thickness of the molten layer is less than 0.01cm, the drawing force is significantly lower, and the value of the voltage drop is higher, and the performance of the obtained copper-aluminum composite power transmission system is relatively poor.
  • the thickness of the molten layer is too large. Small, the heat generated by copper-aluminum friction is small, the strength of the melting layer and transition layer of the copper-aluminum composite power transmission system is weak, and the mechanical and electrical properties of the copper-aluminum composite power transmission system after welding are relatively weak.
  • the drawing force will decrease obviously, and the value of voltage drop will also increase obviously.
  • the performance of the obtained copper-aluminum composite power transmission system is relatively poor, and the heat generated by the friction of copper-aluminum will increase.
  • more of the front ends of the connecting parts are melted and then cooled to form a metal structure with a coarse crystal lattice.
  • more copper and aluminum compounds with poor conductivity are generated, resulting in the mechanical properties of the copper-aluminum composite power transmission system And the electrical performance appears to decline instead.
  • the thickness of the molten layer is 0.01 cm to 15 cm, and the obtained copper-aluminum composite power transmission system has obvious advantages in the pulling force value, voltage drop value and welding strength.
  • a copper-aluminum composite power transmission system includes a copper terminal 1 and an aluminum cable 6.
  • the aluminum cable 6 includes an aluminum conductor 2 and an insulating layer 3 covering the periphery of the aluminum conductor 2. It also includes a power transmission aluminum piece 4, a section of aluminum conductor 2 from which the insulation layer is stripped and at least part of the aluminum conductor with an insulation layer 3 are wrapped in the power transmission aluminum piece 4 to form a connecting piece; the copper terminal 1 is used for
  • a welding platform 11 is provided at the end welded to the connecting piece, and a transition layer 12 is formed between the welding platform 11 and the connecting piece through mutual penetration of metal atoms or mutual bonding of metal atoms.
  • the copper-aluminum composite power transmission system is processed through the following processes:
  • Pre-assembly step sheathing the aluminum conductor with the insulation layer stripped into the aluminum part for power transmission, and pressing the aluminum conductor with the insulation layer and part of the aluminum conductor with the insulation layer on the aluminum conductor for power transmission using a pressing device Connecting parts are formed in the parts;
  • Clamping step clamp the copper terminal with the welding platform in the lower electrode of the resistance welding equipment, and install the pre-assembled connector in the upper electrode of the resistance welding equipment;
  • Welding step the copper terminal is fixed in the lower electrode, the upper electrode drives the connecting member to move down and energizes and squeezes the fixed copper terminal, the current applied by the resistance welding equipment is 40KA, the upper electrode The applied pressure is 10000N, conduction and heat generation through contact resistance, a molten layer is formed at the front end of the connector, and then the molten layer is coated on the welding platform of the welding end of the copper terminal under pressure, and is connected to the welding platform A transition layer in which metal atoms penetrate or bond with each other is formed.
  • Table 3 The influence of different welding platform heights on the pull-out force and voltage drop of the copper-aluminum composite power transmission system
  • Table 3 show that when the height of the welding platform is less than 0.01 cm, it is very close to a flush welding end surface, and the mechanical and electrical properties of the copper-aluminum composite power transmission system at this time are at a relatively low level.
  • the height of the welding platform is higher than 15cm, in order to make the molten layer and the welding end surface of the copper terminal all contact and form a transition layer, the welding equipment is required to provide higher frictional heat and pressure, and the end surface and bottom surface of the welding platform bear the heat and pressure
  • the inconsistency results in uneven thicknesses of the melting layer and the transition layer, and the contact resistance increases, so that the mechanical properties and electrical properties of the copper-aluminum composite power transmission system tend to decline.
  • Table 4 The influence of the ratio of the cross-sectional area of the end face of different welding platforms to the cross-sectional area of the root on the pull-out force and voltage drop of the copper-aluminum composite power transmission system
  • the end surface of the welding platform should not be too small.
  • the copper-aluminum contact friction area during the welding process is greater than 50%, copper with excellent electrical and mechanical properties can be obtained.
  • a copper-aluminum composite power transmission system includes a copper terminal 1 and an aluminum cable 6.
  • the aluminum cable includes an aluminum conductor and an insulating layer 3 covering the periphery of the aluminum conductor, and
  • the shielding layer 8 on the periphery of the insulating layer 3 for shielding electromagnetic interference also includes a power transmission aluminum piece 4, and a section of aluminum conductor 2 from which the insulation layer 3 is stripped is wrapped in the power transmission aluminum piece 4 to form a connecting piece;
  • the end of the copper terminal 1 for welding with the connecting piece is provided with a welding platform 11, and a transition layer 12 is formed between the welding platform 11 and the connecting piece through mutual penetration of metal atoms or mutual bonding of metal atoms.
  • the power transmission aluminum piece wraps the aluminum conductor to form a connecting piece, the structure is simple, the processing of the power transmission aluminum piece is easier, and the production of the power transmission aluminum piece can be greatly improved Efficiency, reduce the production cost of the copper-aluminum composite power transmission system.
  • the copper-aluminum composite power transmission system is processed through the following processes:
  • Pre-assembly step sleeve the aluminum conductor 2 with the insulation layer 3 stripped into the aluminum power transmission part 4, and use a pressing device to press the aluminum conductor 2 with the insulation layer 3 removed in the aluminum power transmission part 4 to form Connector
  • Clamping step Clamp the copper terminal 1 with the welding platform in the rotating fixture of the friction welding equipment, and install the connector after the pre-assembly step in the mobile fixture;
  • Welding step the copper terminal is rotated under the drive of the rotating fixture, the rotating speed of the rotating fixture is 1000R/Min, the moving fixture drives the connecting piece to move horizontally and squeeze against the rotating copper terminal, the pressure of the moving fixture is 10000N, A molten layer is formed at the front end of the connector by frictional heat generation, and then the molten layer is coated on the welding platform 11 of the welding end of the copper terminal 1 under pressure, and is formed with the welding platform 11 so that metal atoms can penetrate each other Or the transition layer 12 combined with each other.
  • the purpose of this embodiment is to demonstrate the influence of the proportions of different copper-aluminum solid solutions in the transition layer on the pulling force and voltage drop of the copper-aluminum composite power transmission system, and to investigate the effects of different copper-aluminum solid solutions in the transition layer.
  • the pull-out force value, voltage drop value and welding strength of the copper-aluminum composite power transmission system accounted for. The results are shown in Table 5.
  • the transition layer contains not less than 10wt% of the copper-aluminum solid solution.
  • a copper-aluminum composite power transmission system includes a copper terminal 1 and an aluminum cable 6.
  • the aluminum cable includes an aluminum conductor and an insulating layer 3 covering the periphery of the aluminum conductor, and A shielding layer 8 that functions to shield electromagnetic interference at the periphery of the insulating layer 3 and an outer insulating layer 31 covering the periphery of the shielding layer 8 are also provided.
  • It also includes a power transmission aluminum piece 4, a section of aluminum conductor 2 from which the insulating layer 3 is stripped is wrapped in the power transmission aluminum piece 4 to form a connecting piece; the end of the copper terminal 1 for welding with the connecting piece A welding platform 11 is provided, and a transition layer 12 is formed between the welding platform 11 and the connecting member in which metal atoms penetrate each other or combine with each other.
  • the copper-aluminum composite power transmission system is processed through the following processes:
  • Pre-assembly step sleeve the aluminum conductor 2 with the insulation layer 3 stripped into the aluminum power transmission part 4, and use a pressing device to press the aluminum conductor 2 with the insulation layer 3 removed in the aluminum power transmission part 4 to form Connector
  • Clamping step Clamp the copper terminal 1 with the welding platform in the rotating fixture of the friction welding equipment, and install the connector after the pre-assembly step in the mobile fixture;
  • Welding step the copper terminal is rotated under the drive of the rotating fixture, the rotating speed of the rotating fixture is 1000R/Min, the moving fixture drives the connecting piece to move horizontally and squeeze against the rotating copper terminal, the pressure of the moving fixture is 10000N, A molten layer is formed at the front end of the connecting piece by frictional heat generation, and then the molten layer is coated on the welding platform 11 of the welding end of the copper terminal 1 under pressure, and formed with the welding platform 11 so that metal atoms can penetrate each other Or the transition layer 12 combined with each other.
  • a metal plating layer is provided on the surface of the copper terminal of the present invention. Because copper terminals need to be connected to electrical devices, they will be exposed to air and water. There are even salt in the air in some places. The copper terminals will be oxidized and corroded by salt spray, thereby reducing the service life of the terminals. In severe cases, the terminals will be exposed. The occurrence of a short circuit leads to a burning accident, causing greater losses. Therefore, the metal plating layer on the surface of the copper terminal can effectively prevent the erosion of air, water, and salt spray, prolong the service life of the copper terminal and even the copper-aluminum joint, and reduce the occurrence of safety accidents.
  • the plating metal will select a metal material with a potential between copper and aluminum, which will slow down the electrochemical corrosion caused by the large potential between copper and aluminum in the transition layer, thereby prolonging the use of the copper-aluminum composite power transmission system life. Therefore, preferably, the metal coating material in the present invention contains at least but not limited to one of nickel, cadmium, zirconium, chromium, cobalt, manganese, aluminum, tin, titanium, zinc, copper, silver or gold.
  • the purpose of this example is to demonstrate the influence of copper terminals with different metal coatings on the pull-out force and voltage drop of the copper-aluminum composite power transmission system.
  • the copper-aluminum composite power transmission system made of copper terminals with different metal coatings was investigated.
  • the pull-out force value, voltage drop value and welding strength of the copper-aluminum composite power transmission system after 48 hours of salt spray test are shown in Table 6.
  • the pull-out force of the electrical connector of the copper-aluminum composite power transmission system without the anti-corrosion protection layer is significantly reduced, and the voltage drop is significantly increased, which cannot meet the requirements of the copper-aluminum composite
  • the pulling force of the power transmission system must be greater than 2000N, and the voltage drop must be under 0.5mV.
  • the pulling force and voltage drop of the copper-aluminum composite power transmission system after the test still meet the mechanical and electrical performance requirements of the copper-aluminum composite power transmission system. Therefore, the invention People set the material of the anti-corrosion protection layer to contain at least one of nickel, cadmium, zirconium, chromium, cobalt, manganese, aluminum, tin, titanium, zinc, copper, silver or gold.
  • the copper-aluminum welding terminal was fabricated according to the steps of Example 1 above.
  • the inventors investigated different thicknesses.
  • the pull-out force value, voltage drop value and welding strength of the copper-aluminum composite power transmission system of the transition layer are shown in Table 7.
  • Table 7 The influence of the thickness of the copper-aluminum transition layer on the pull-out force and voltage drop of the copper-aluminum composite power transmission system
  • the thickness of the copper-aluminum transition layer is greater than 6000 ⁇ m, the mechanical and electrical properties of the copper-aluminum composite power transmission system show a downward trend.
  • the pressure and time applied by the equipment therefore, the inventor chooses the thickness of the copper-aluminum transition layer to be 0.01 ⁇ m to 6000 ⁇ m.
  • the processing method of the copper-aluminum composite power transmission system as in the above embodiment further includes a welding platform manufacturing step: using a mechanical processing device, a welding platform is processed on the end surface of the copper terminal.
  • the machining device used may be a turning device. Before welding, a turning tool on the turning device is used to turn a welding platform on the end surface of the rotating copper terminal.
  • the used machining device may be a milling device. Before welding, the milling cutter on the milling device is used to mill the end face of the fixed copper terminal to form a welding platform.
  • the mechanical processing device used may be a sawing device. Before welding, the saw blade on the sawing device is used to saw the end surface of the fixed copper terminal out of the welding platform.
  • the machining device used may be a grinding device. Before welding, the grinding wheel on the grinding device is used to grind the end surface of the fixed copper terminal to form a welding platform.
  • the mechanical processing device used may be a planing device. Before welding, the planing knife on the planing device is used to plan the end surface of the fixed copper terminal to form a welding platform.
  • the mechanical processing device of the present invention includes but is not limited to the above processing device and processing method.

Abstract

一种铜铝复合电能传输系统及其加工方法。所述铜铝复合电能传输系统包括铜端子(1)和铝线缆(6),所述铝线缆(6)包括铝导体(2)和设置在所述铝导体(2)外围的绝缘层(3),还包括电能传输铝件(4),剥除绝缘层(3)的一段铝导体(2)压紧在所述电能传输铝件(4)内形成连接件;所述电能传输铝件(4)与铝导体(2)的前端形成熔融层(5),所述铜端子(1)上用于与电能传输铝件(4)焊接的端部设置有焊接平台(11),所述熔融层(5)包覆在所述焊接平台(11)形成以金属原子互相渗透或金属原子相互结合的过渡层(12)。通过减少铜铝之间的内部应力,提高铜铝焊接接头的力学性能;并减少过渡层(12)中铜铝化合物,提高铜铝焊接接头的电学性能;同时增加过渡层(12)被外界环境侵蚀的路径,解决铜铝焊接接头的金属腐蚀问题,延长其使用寿命。

Description

一种铜铝复合电能传输系统及其加工方法
相关申请
本发明要求专利申请号为202010250067.6、发明名称为“一种铜铝复合电能传输系统及其加工方法”的中国发明专利的优先权。
技术领域
本发明涉及导电金属连接件技术领域,尤其涉及一种铜铝复合电能传输系统,以及这种铜铝复合电能传输系统的加工方法。
背景技术
铜材质或铜合金材质具有良好的导电性、导热性、塑性而被广泛应用在电气连接领域。然而,铜资源短缺,铜在地壳中的含量只有约为0.01%,随着使用年限的增加,铜成本会逐年递增。为此,人们开始寻找金属铜的替代品来降低成本。
金属铝在地壳中的含量约为7.73%,提炼技术优化后,价格相对较低,且同样具有优良的导电性、导热和塑性加工性,因此,在汽车电气连接领域中以铝代铜是目前发展的主要趋势。
相对于铜,铝的硬度、塑性和耐腐蚀性稍差,但重量较轻,导电率仅次于铜,铝在电气连接领域可以部分替代铜。但是,由于铜铝之间的电极电位差较大,直接连接后,铜铝之间会产生电化学腐蚀,铝易受腐蚀而导致连接区域电阻增大,易在电气连接中产生严重的后果,例如功能失效、火灾等。
之前的铜铝连接方式一般为熔化焊、冷压焊、电子束焊、爆炸焊等,这些焊接方式焊出来的接头脆性大,焊缝中易产生气孔和裂纹,尤其高温处理下的焊缝,晶粒变得粗大,严重影响焊接基材结合面的机械性能和电气性能,无法满足汽车电气连接领域的要求。
现行的铜铝连接方式一般为摩擦焊、超声波焊和电阻焊等,为了增加铜铝复合传输系统铜铝接触面的稳定性,现有技术都会增加铜铝初始接触面的面积,以获取更稳定的系统。摩擦焊是通过铜铝焊件相对旋转摩擦产生能量,超声波焊是通过铜铝焊件相对位移摩擦产生能量,电阻焊是铜铝焊件之间通电流,通过接触电阻产生能量,然后再施加 压力,使铜铝焊件焊接在一起。同时,需要注意的是,对于摩擦焊和超声波焊接来说,铜铝焊件接触面相对光滑的平面,会使得摩擦系数变小,产生的焊接能量降低。对于电阻焊来说,焊件接触面越平整,接触电阻越小,产生的焊接能量降低。焊接吸收的能量降低,也就降低了铜铝间的焊接质量,容易出现批量事故。为了确保焊接接触区域吸收足够的能量,就要加大焊接能量的输出,从而产生很多成本浪费。
另外,摩擦焊的铜铝焊件相对旋转摩擦,实际上铜铝焊件的中心点并没有相对线速度,越靠近铜铝焊接的外周,铜铝焊接相对旋转的线速度越大,因此铜铝焊件中心和外周摩擦产生的能量是不一样的,会导致铜铝焊件中心还没焊接上,外周已经过度焊接,同时焊缝也会产生大量的内部应力,即使焊接完成时焊接接头性能合格,在长期使用后,会出现焊接处脆断的情况,严重时会导致重大事故。
因此,在导电金属连接件技术领域,急需一种结构简单,焊接过程更加稳定,具有更好的力学性能和电学性能,使用寿命更长的铜铝复合电能传输系统。
发明内容
为了克服现有技术的不足,本发明的发明目的在于提供一种铜铝复合电能传输系统,通过减少初始铜铝接触面面积,增加铜铝接触面的初始摩擦系数,降低制作铜铝复合电能传输系统所需要的能量,提高铜铝复合电能传输系统的力学性能与电学性能并降低铜铝复合电能传输系统的使用成本。同时,通过增加过渡层抵御外界环境侵蚀铜铝复合电能传输系统的路径,解决铜铝复合电能传输系统的腐蚀问题,延长铜铝复合电能传输系统的使用寿命。
为了实现上述目的,本发明所采用的技术方案内容具体如下:
本发明公开了一种铜铝复合电能传输系统,包括铜端子和铝线缆,所述铝线缆包括铝导体和包覆在所述铝导体外围的绝缘层,其中,还包括电能传输铝件,剥除绝缘层的一段铝导体被包裹在所述电能传输铝件内形成连接件;所述铜端子上用于与所述连接件焊接的端部设置有焊接平台,所述焊接平台与所述连接件之间形成以金属原子互相渗透或金属原子相互结合的过渡层。
本发明还公开了一种铜铝复合电能传输系统的加工方法,该加工方法包括:
预装步骤:将剥除绝缘层的铝导体套入电能传输铝件内,使用压紧装置将所述铝导体压入所述电能传输铝件内形成被电能传输铝件包裹的连接件;
焊接步骤:所述带有焊接平台的铜端子与所述连接件进行焊接,所述焊接平台与所 述连接件之间形成以金属原子互相渗透或金属原子相互结合的过渡层。
与现有技术相比,本发明的有益效果在于:
1.本发明所述的铜铝复合电能传输系统与现有的研究结果不同,现有技术是通过增加铜铝复合电能传输系统中的铜铝初始接触面积来确保铜铝复合电能传输系统的力学性能与电学性能,并通过增加制作铜铝复合电能传输系统的焊接能量来确保因增加了初始接触面积所带来的焊接能量需求量增加,从而制备铜铝复合电能传输系统的方式。本发明通过减少铜铝初始接触面积,不但显著的降低了制作铜铝复合电能传输系统所需要的能量,还提高了相比现有技术的铜铝复合电能传输系统的力学性能与电学性能,显著延长了铜铝复合电能传输系统的使用寿命,降低了铜铝复合电能传输系统的制作成本。本发明通过在铜端子上增加用于与所述连接件焊接的端部的焊接平台,减少了铜铝的初始接触面积,增加铜铝接触面的摩擦系数,增加过渡层抵御外界环境侵蚀铜铝复合电能传输系统的路径,显著增加了铜铝复合电能传输系统的力学性能与电学性能,有效延缓了铜铝的腐蚀问题,显著延长铜铝复合电能传输系统的使用寿命,突出地降低了制作铜铝复合电能传输系统的能量需求,从而使铜铝复合电能传输系统的制作成本与使用费得以明确降低。
2.本发明所述的铜铝复合电能传输系统,电能传输铝件和铝导体的前端通过焊接平台与铜端子焊接,使电能传输铝件和铝导体在焊接的状态下,进一步融合成为熔融层。该熔融层不但破坏了电能传输铝件和铝导体表面的致密氧化膜,提高了电能传输铝件和铝导体的机械性能和电气性能。同时,该熔融层的吉布斯自由能的能量相对较低,在制作铜铝复合电能传输系统的过程中会更易与焊接平台形成以铜铝固溶体为主的过渡层,从而可以显著减少过渡层中的脆性铜铝化合物重量比例,显著提高铜铝焊接接头的力学与电学性能。
3.本发明所述的铜铝复合电能传输系统,在所述铜端子焊接侧设置焊接平台,增加了铜端子焊接侧与熔融层的最终接触面积,减少铜铝焊接时产生的内部应力,进而进一步增强铜铝焊接面的机械性能。
4.当焊接方式为摩擦焊时,焊接平台使铜铝焊接中心位置先摩擦产生能量,然后是铜端子根部再摩擦产生能量,使摩擦时产生的能量更加均匀,降低焊接时产生的电气性能较差的铜铝化合物,从而提高了焊接面的力学性能和电气性能,并降低了制作铜铝复合电能传输系统的成本。
5.当焊接方式为超声波焊时,在同样压力下,焊接平台与连接件的相互摩擦系数增 大,使摩擦产生的热量更大,从而提高了焊接面的力学性能和电气性能,并降低了制作铜铝复合电能传输系统的成本。
6.当焊接方式为电阻焊时,焊接平台与连接件的接触电阻大,产生能量高,保证焊接能量的稳定,从而提高了焊接面的力学性能和电气性能,并降低了制作铜铝复合电能传输系统的成本。
7.本发明所述的延伸包覆层包覆在所述过渡层的外侧,能够有效地减少外界环境对过渡层的侵蚀。另外,焊接平台的外侧边延长了外界环境对所述过渡层的侵蚀路径,增加铜铝复合电能传输系统的耐腐蚀性,延长了铜铝复合电能传输系统的寿命约20%。
8.本发明所述的铜铝复合电能传输系统,在焊接前可由机械加工装置在铜端子焊接侧加工出焊接平台,焊接过程中,所述熔融层与所述铜端子的焊接平台在压力作用下形成以铜铝原子互相渗透或相互结合的过渡层,此过渡层能够有效的减少铜铝之间的电化学腐蚀,增加铜铝固溶体的重量百分比,降低脆性铜铝化合物的产生,增加铜铝复合电能传输系统使用寿命。
9.本发明所述的铜铝复合电能传输系统,可以在铜端子上设置镀层,在焊接前不去除铜端子镀层,焊接过程中,所述熔融层、铜端子及镀层金属形成铜、铝和镀层金属的原子互相渗透或相互结合的过渡层。所述镀层金属会选用电势电位在铜铝之间的金属材质或者化学稳定性极强的金属材质,会在过渡层中,减缓因为铜铝之间电势电位大引起的电化学腐蚀,从而延长所述铜铝复合电能传输系统的使用寿命。
10.本发明所述的铜铝复合电能传输系统,还可以包含带屏蔽层的铝线缆,主要是应用在电动车使用的高压线束上。能够显著减轻电动车线束的重量,减少能源消耗,同时降低所述高压线束的成本。
11.本发明所述的铜铝复合电能传输系统的加工方法,还包括焊接平台制作步骤,使用机械加工装置,在所述铜端子的端面上加工出焊接平台,可以显著降低铜铝复合电能传输系统的制作成本。在线制作焊接平台的方法还可以显著提升铜铝复合电能传输系统制作的合格率,从而进一步降低制作损耗费用。
附图说明
图1为本发明所述的铜铝复合电能传输系统的对接焊接的结构示意图;
图2为本发明所述的铜铝复合电能传输系统的对接焊接的结构示意图;
图3为本发明所述的铜铝复合电能传输系统的叠加焊接的结构示意图;
图4为本发明所述的铜铝复合电能传输系统的对接焊接,使用带屏蔽层的铝线缆的结构示意图;
图5为本发明所述的铜铝复合电能传输系统的对接焊接,使用带屏蔽层和外绝缘层的铝线缆的结构示意图;
图6为本发明所述的过渡层的电子镜像图;
图7为图5中测试点1的电子镜像放大图和X射线能谱图,其中a为电子镜像放大图,b为X射线能谱图;
图8为铜端子焊接端不设置焊接平台的铜铝复合电能传输系统的拉力模拟实验图;
图9为铜端子焊接端不设置焊接平台的铜铝复合电能传输系统的拉力模拟实验结果图;
图10为铜端子焊接端带有焊接平台的铜铝复合电能传输系统的拉力模拟实验图;
图11为铜端子焊接端带有焊接平台的铜铝复合电能传输系统的拉力模拟实验结果图;
其中,各附图标记为:
1、铜端子,11、焊接平台,12、过渡层,2、铝导体,
3、绝缘层,31、外绝缘层,
4、电能传输铝件,41、导体压接段,42、过渡段,43、绝缘层压接段,
5、熔融层,6、铝线缆,7、延伸包覆层,8、屏蔽层。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如下:
如图1所示,一种铜铝复合电能传输系统,包括铜端子1和铝线缆6,所述铝线缆6包括铝导体2和包覆在所述铝导体2外围的绝缘层3,还包括电能传输铝件4,剥除绝缘层的一段铝导体2被包裹在所述电能传输铝件4内形成连接件;所述铜端子1上用于与所述连接件焊接的端部设置有焊接平台11,所述焊接平台11与所述连接件之间形成以金属原子互相渗透或金属原子相互结合的过渡层12。
作为进一步优选的方案,所述电能传输铝件可以采用但不限于铝制管状结构的导电铝件。
在本发明中所述的金属原子互相渗透或金属原子相互结合的过渡层是指在所述连 接件与铜端子摩擦或通电流或电弧产生能量,再通过焊接设备对连接件和铜端子施加相互挤压的压力,在焊接界面由于铜铝原子在能量的作用下铜铝原子相互渗透溶入彼此的晶格中,产生铜铝固溶体;另外还可能会有少量的铜原子和铝原子之间通过金属键相结合,产生铜铝化合物。
由于铜铝之间存在较大的电势电位差,因此普通的铜铝电气连接,都会因为电化学腐蚀原因导致使用寿命降低。在本发明中,铜铝之间产生金属原子互相渗透或金属原子相互结合的过渡层,能够有效的减少铜铝之间的电化学腐蚀,延长所述铜铝复合电能传输系统的使用寿命约20%,同时也提高了铜铝连接的电学性能和力学性能。
如图5、图6所示,为所述的过渡层的电子镜像图,可以看出铜铝焊接界面的过渡层。并且对过渡层进行了X射线能谱图,能够看出过渡层大致的元素分布。
作为进一步的方案,本发明所述的连接件的前端具有熔融层5。熔融层与电能传输铝件和铝导体之间完全没有空隙,有效保证铜端子与电能传输铝件和铝导体之间的连接处实现无缝连接,能进一步保证铜铝复合电能传输系统的机械性能和电学性能。
本发明所述的铜铝复合电能传输系统,电能传输铝件和铝导体的前端通过焊接平台与铜端子焊接,使电能传输铝件和铝导体在焊接的状态下,进一步融合成为熔融层,破坏了电能传输铝件和铝导体表面的致密氧化膜,既提高电能传输铝件和铝导体的机械性能和电气性能,也在后续焊接过程中能够更好的形成过渡层。
优选的方案中,本发明所述的熔融层5在所述焊接平台11端面四周向铜端子方向形成延伸包覆层。
由于铜的熔点为1083℃,铝的熔点为660℃,实际上铜铝焊接后产生的热量,会先将铝加热到熔融状态,形成熔融层。而所述的熔融层5在所述焊接平台11端面四周向铜端子方向形成延伸包覆层7,目的是能够将铜铝焊接面的焊缝保护起来,避免在使用中铜铝焊接面直接接触到外部环境,降低铜铝焊接面腐蚀的可能性,延长铜铝复合电能传输系统的使用寿命。另外,一般现有的焊接方式,所述熔融层在压力的作用下会向四周延展产生飞边,在后续的使用中还要增加工序将飞边切除。本发明的所述熔融层在焊接设备的夹具成型槽作用下,直接在铜端子方向形成延伸包覆层,节省了飞边切除的工序,也美化了铜铝复合电能传输系统的外观。
在本发明中,通过研究发现,熔融层5厚度影响铜端子1与铝导体2和电能传输铝件4之间的连接强度,具体表现为:当熔融层5的厚度过小,原因为铜铝摩擦强度不足或电流较小产生的焊接热量不足以熔融较多的电能传输铝件4和铝导体2,导致熔融层 5和过渡层12的强度不足,降低了所述铜铝复合电能传输系统的力学性能。另外,熔融层5的厚度过小,同时导致过渡层12厚度过小或没有形成过渡层12,铜铝之间的电化学腐蚀程度会极大地增加,从而降低铜铝复合电能传输系统的电学性能以及使用寿命。当熔融层5厚度过大时,由于铜铝摩擦强度过大或电流较大产生焊接热量过高,较多的电能传输铝件4和铝导体2熔融后再冷却,形成晶格粗大的金属结构,并夹杂较多的铜铝化合物,熔融层5机械强度反而不如电能传输铝件和铝导体2母材材料的机械强度,降低了所述铜铝复合电能传输系统的力学性能。同时,所述熔融层5和过渡层12因为夹杂较多导电性很差的铜铝化合物,也降低铜铝复合电能传输系统的电学性能。因此,在本发明中,作为进一步优选的方案,所述熔融层的厚度为0.01cm-15cm。
作为进一步的方案,本发明所述的,所述延伸包覆层7至少包覆至铜端子端部。
本发明所述的延伸包覆层包覆至铜端子端部,能够有效地避免外界环境对过渡层的侵蚀。另外,焊接平台的外侧边延长了外界环境对所述过渡层的侵蚀路径,增加铜铝复合电能传输系统的耐腐蚀性,延长了铜铝复合电能传输系统的寿命约20%。
作为进一步的方案,本发明所述的焊接平台包括与连接件焊接的端面和与铜端子端部连接的根部,所述端面的横截面积小于所述根部的横截面积。在焊接过程中,与电能传输铝件和铝线缆进行摩擦的铜端子端面,主要是焊接平台的端面,为了能够满足产生足够的摩擦能量,所述焊接平台端面不能太小,如果铜铝接触摩擦面积太小,可能会因为焊接能量不够导致过渡层厚度不够而影响焊接接头的力学性能和电学性能。因此,为了获得性能更加优异性能的焊接接头,优选的,本发明所述的焊接平台端面的横截面积至少为根部横截面积的50%。
本发明中,在铜端子焊接面设置焊接平台,铜铝焊接时,一方面中心位置的焊接平台先产生能量,然后是焊接平台侧面,最后是焊接平台底面,线速度越大的区域,焊接时间越短,使焊接时产生的能量更加均匀,降低焊接时产生的电气性能较差的铜铝化合物,从而提高了焊接面的电气性能。另一方面。通过在铜端子端部设置焊接平台,可以增加铜端子焊接侧与熔融层的接触面积,减少铜铝焊接时产生的内部应力,增强焊接面的机械性能。此外,本发明所述的延伸包覆层包覆在所述过渡层的外侧,能够有效地减少外界环境对过渡层的侵蚀。焊接平台的外侧边延长了外界环境对所述过渡层的侵蚀路径,增加铜铝复合电能传输系统的耐腐蚀性,延长了铜铝复合电能传输系统的寿命约20%。优选的,本发明所述的焊接平台高度为0.01cm-15cm。
作为进一步的方案,本发明所述的过渡层包含不少于10wt%的铜铝固溶体。
需要说明的是,所述过渡层中至少包含了铜单质、铝单质、铜铝固溶体与铜铝化合物。铜铝化合物为Cu 2Al,Cu 3Al 2,CuAl,CuAl 2中的一种或多种。当所述的过渡层包含铜铝固溶体少于10wt%时,则所述过渡层内其他成分大于90wt%。所述过渡层中铜单质、铝单质比例大,代表铜铝焊接并不充分,铜铝单质没有融合为铜铝固溶体。所述过渡层中铜铝化合物比例大,铜铝化合物的导电性非常差,且铜铝化合物脆性较大,含量多的时候会降低铜铝复合基材的机械性能和电气性能。因此本发明所述的过渡层至少包含10wt%的铜铝固溶体。
作为进一步的方案,本发明所述的过渡层的厚度为0.01μm~6000μm。
在本发明中,所述过渡层12厚度过小,铜铝之间的电化学腐蚀程度会极大地增加,从而降低铜铝复合电能传输系统的电学性能以及使用寿命。所述过渡层12厚度过大,会因为夹杂较多导电性很差的铜铝化合物,也降低铜铝复合电能传输系统的电学性能。
作为进一步的方案,本发明所述的铜端子表面设置金属镀层。由于铜端子需要与用电装置相连接,因此会暴露在空气和水中,甚至有些地方的空气中还有盐分,铜端子会受到氧化和盐雾腐蚀,从而减少端子的使用寿命,严重时端子会发生短路导致燃烧事故,造成更大的损失。因此,在铜端子表面设置金属镀层,能够有效的防止空气、水、盐雾的侵蚀,延长铜端子甚至铜铝接头的使用寿命,减少安全事故的发生。所述镀层金属会选用电势电位在铜铝之间的金属材质,会在过渡层中,减缓因为铜铝之间电势电位大引起的电化学腐蚀,从而延长所述铜铝复合电能传输系统的使用寿命。因此,优选的,在本发明中所述金属镀层材质至少含有但不限于镍、镉、锆、铬、钴、锰、铝、锡、钛、锌、铜、银或金中的一种。
作为进一步的方案,本发明所述的铝线缆还包括包覆在所述绝缘层外围用于屏蔽电磁干扰的屏蔽层8。本发明所述的铜铝复合电能传输系统焊接带屏蔽层的铝线缆,主要是应用在电动车使用的高压线束上。能够减轻电动车线束的重量,减少能源消耗,同时降低所述高压线束的成本。
本发明还公开了一种铜铝复合电能传输系统的加工方法,该加工方法包括:
预装步骤:将剥除绝缘层的铝导体套入电能传输铝件内,使用压紧装置将所述铝导体压入所述电能传输铝件内形成被电能传输铝件包裹的连接件;
焊接步骤:所述带有焊接平台的铜端子与所述连接件进行焊接,所述焊接平台与所述连接件之间形成以金属原子互相渗透或金属原子相互结合的过渡层。
作为进一步的方案,本发明所述的焊接步骤中还包括在连接件前端形成熔融层。
作为进一步的方案,本发明所述的铜铝复合电能传输系统的加工方法,还包括焊接平台制作步骤:使用机械加工装置,在所述铜端子的端面上加工出焊接平台。
以下是本发明具体的实施例,在下述实施例中,除本发明做出限定外,所采用的设备、装置、测试方法等均属于现有技术。
实施例1
如图1所示,一种铜铝复合电能传输系统,包括铜端子1和铝线缆6,所述铝线缆6包括铝导体2和包覆在所述铝导体2外围的绝缘层3,还包括电能传输铝件4,剥除绝缘层的一段铝导体2被包裹在所述电能传输铝件4内形成连接件;所述铜端子1上用于与所述连接件焊接的端部设置有焊接平台11,所述焊接平台11与所述连接件之间形成以金属原子互相渗透或金属原子相互结合的过渡层12。
本实施例所述的铜铝复合电能传输系统,所述电能传递铝件包裹所述铝导体形成连接件,结构简单,所述电能传递铝件加工更容易,能够极大地提高电能传输铝件的生产效率,降低铜铝复合电能传输系统的制作成本。
所述铜铝复合电能传输系统通过以下工艺加工而成:
预装步骤:将剥除绝缘层的铝导体套入电能传输铝件内,使用压紧装置将所述铝导体压入所述电能传输铝件内形成被电能传输铝件包裹的连接件;
装夹步骤:将带有焊接平台的铜端子装夹在摩擦焊设备的旋转夹具中,将所述经过预装步骤后的铝导体和电能传输铝件安装在移动夹具中;
焊接步骤:所述铜端子在旋转夹具带动下旋转,旋转夹具的转速为1000R/Min,所述移动夹具带动所述连接件水平移动并向旋转的铜端子挤压,移动夹具的压力为10000N,通过摩擦生热在所述连接件前端形成熔融层,然后在压力作用下使所述熔融层包覆在所述铜端子焊接端的焊接平台上,并与焊接平台形成以金属原子互相渗透或相互结合的过渡层。
在该实施例中,发明人对所述过渡层的结构进行检测,检测结果参见图6-图7。
实施例2
如图1所示,一种铜铝复合电能传输系统,包括铜端子1和铝线缆6,所述铝线缆6包括铝导体2和包覆在所述铝导体2外围的绝缘层3,还包括电能传输铝件4,剥除绝缘层的一段铝导体2被包裹在所述电能传输铝件4内形成连接件;所述铜端子1上用于 与所述连接件焊接的端部设置有焊接平台11,所述焊接平台11与所述连接件之间形成以金属原子互相渗透或金属原子相互结合的过渡层12。
所述铜铝复合电能传输系统通过以下工艺加工而成:
预装步骤:将剥除绝缘层的铝导体套入电能传输铝件内,使用压紧装置将所述铝导体压入所述电能传输铝件内形成被电能传输铝件包裹的连接件;
装夹步骤:将带有焊接平台的铜端子装夹在摩擦焊设备的旋转夹具中,将所述经过预装步骤后的铝导体和电能传输铝件安装在移动夹具中;
焊接步骤:所述铜端子在旋转夹具带动下旋转,旋转夹具的转速为1000R/Min,所述移动夹具带动所述连接件水平移动并向旋转的铜端子挤压,移动夹具的压力为10000N,通过摩擦生热在所述连接件前端形成熔融层,然后在压力作用下使所述熔融层包覆在所述铜端子焊接端的焊接平台上,并与焊接平台形成以金属原子互相渗透或相互结合的过渡层。
进一步的,为了论证铜端子焊接端设置焊接平台和不设焊接平台对铜铝复合电能传输系统力学性能和电学性能的影响,发明人对上述两种不同的铜铝复合电能传输系统进行了一系列的力学性能、电学性能和寿命的实验。
具体实验过程如下:模拟铜铝复合电能传输系统实际的使用环境,但将测试条件增加到远远严苛于普通环境的程度,能在短时间内,获得与实际的使用环境下很长时间能达到的测试效果。系列实验中包括:1)初始的拉拔力和电压降测试,以获得铜铝复合电能传输系统初始的性能;2)1000小时的盐雾实验,使用盐雾实验箱,在铜铝复合电能传输系统上喷淋盐水,可以代替普通沿海环境下十年的耐盐雾测试;3)200小时的高低温实验,使铜铝复合电能传输系统分别处于使用环境最高和最低的温度各一个小时,温度切换时间小于5秒,进行100个循环,可以替代外界冷热交替环境10年的耐高低温测试;4)120小时振动实验,将铜铝复合电能传输系统固定在振动实验台上,按照使用环境选择振动幅度,在三个方向进行铜铝复合电能传输系统的振动,可以代替普通使用振动环境下10年的振动测试;5)6000小时的老化实验,将铜铝复合电能传输系统放入老化实验箱中,模拟超过额定使用条件的环境,可以替代20年普通使用环境下的老化测试。在每一个实验之后,都要测试铜铝复合电能传输系统的电压降值和拉拔力值。实验结果参见表1-1、表1-2和表1-3。
表1-1:铜端子焊接平台对铜铝复合电能传输系统的拉拔力和电压降的影响(实验前与1000小时盐雾实验后)
Figure PCTCN2021084920-appb-000001
表1-2:铜端子焊接平台对铜铝复合电能传输系统的拉拔力和电压降的影响(200小时的高低温实验及120小时振动)
Figure PCTCN2021084920-appb-000002
Figure PCTCN2021084920-appb-000003
表1-3:铜端子焊接平台对铜铝复合电能传输系统的拉拔力和电压降的影响(6000小时老化实验)
Figure PCTCN2021084920-appb-000004
从上述表1-1、表1-2和表1-3的结果可以看出:铜端子焊接端设置有焊接平台的铜铝复合电能传输系统,初始的拉拔力数值就远高于铜端子焊接端不带焊接平台的铜铝复 合电能传输系统,并且电压降数值也比较小。在经过分别经过1000小时盐雾试验、200小时的高低温实验、120小时振动实验和6000小时的老化实验之后,铜端子焊接端设置有焊接平台的铜铝复合电能传输系统,实验后的铜铝复合电能传输系统拉拔力仍然高于铜端子焊接端不带焊接平台的铜铝复合电能传输系统的初始拉拔力。而铜端子焊接端不带焊接平台的铜铝复合电能传输系统,实验后的拉拔力明显较低,力学性能不稳定,有可能造成铜铝复合电能传输系统脱离,从而导致线缆短路,轻则功能失效,重则导致燃烧事故。铜端子焊接端设置有焊接平台的铜铝复合电能传输系统,实验后的电压降与铜端子焊接端不带焊接平台的铜铝复合电能传输系统的初始电压降基本相同。而铜端子焊接端不带焊接平台的铜铝复合电能传输系统,实验后的电压降也明显降低,电学性能不稳定,铜铝复合电能传输系统接触电阻升高,导电时会引起铜铝复合电能传输系统发热发红,严重时会因温度过高而燃烧,造成严重的事故。
实施例3
如图2、图3所示,一种铜铝复合电能传输系统,包括铜端子1和铝线缆6,所述铝线缆6包括铝导体2和包覆在所述铝导体2外围的绝缘层3,还包括电能传输铝件4,剥除绝缘层的一段铝导体2和至少部分带有绝缘层3的铝导体被包裹在所述电能传输铝件4内形成连接件;所述铜端子1上用于与所述连接件焊接的端部设置有焊接平台11,所述焊接平台11与所述连接件之间形成以金属原子互相渗透或金属原子相互结合的过渡层12。
作为进一步的方案,如图2、图3所示,本发明所述的电能传输铝件包括导体压接段41、绝缘层压接段43和过渡段42,所述绝缘层压接段43的内径大于所述导体压接段41,所述导体压接段41和绝缘层压接段43之间由台阶状的过渡段42连接;所述铝导体2配合套接于导体压接段41内,所述绝缘层3与绝缘层压接段43过盈配合,所述绝缘层3前端不进入所述导体压接段41。在该方案中,通过绝缘层与电能传输铝件之间的过盈配合,进一步避免电能传输铝件与铝导体之间产生空隙,杜绝了空气和水分进入电能传输铝件内部的可能,有效防止金属腐蚀。所述绝缘层前端位于所述过渡段内,台阶状的过渡段会容纳压接过程中变形延展的绝缘层,以防止绝缘层被压入导体导致电阻升高,所述铜铝复合电能传输系统发热甚至燃烧。
所述铜铝复合电能传输系统通过以下工艺加工而成:
预装步骤:将剥除绝缘层的铝导体套入电能传输铝件内,使用压紧装置将所述除绝 缘层的铝导体和部分带有绝缘层的铝导体压紧在所述电能传输铝件内形成连接件;
装夹步骤:将带有焊接平台的铜端子装夹在摩擦焊设备的旋转夹具中,将所述经过预装步骤后的连接件安装在移动夹具中;
焊接步骤:所述铜端子在旋转夹具带动下旋转,旋转夹具的转速为1000R/Min,所述移动夹具带动所述连接件水平移动并向旋转的铜端子挤压,移动夹具的压力为10000N,通过摩擦生热在所述连接件前端形成熔融层,然后在压力作用下使所述熔融层包覆在所述铜端子焊接端的焊接平台上,并与焊接平台形成以金属原子互相渗透或相互结合的过渡层。
在该实施例中,为了考察焊接平台对铜端子焊接效果与焊接接头性能的影响,发明人分别采用带有焊接平台的铜端子和不设置焊接平台的铜端子按照上述方法获得铜铝复合电能传输系统,不设置焊接平台的铜端子直接与形成熔融层的连接件前端形成过渡层,对这两种铜铝复合电能传输系统进行通过模拟软件Ansys进行拉力模拟实验,模拟实验的方法是分别将采用带有焊接平台的铜端子和不设置焊接平台的铜端子和形成熔融层的连接件前端的数模,导入到模拟软件中,在铜端子和连接件的两端,分别施加拉力,施加拉力为1700N,然后软件自动模拟出交界面的内部应力,内部应力越大,则焊接越不稳定,拉拔力越小。拉力模拟实验的过程及结果参见图8~图11。
图8~图11的结果可知:铜端子焊接端不设置焊接平台的接头内部应力为10.887Mpa,铜端子焊接端带有焊接平台的接头内部应力为8.2405Mpa。通过焊缝处的内部应力可见铜端子焊接端设置焊接平台的接头比铜端子焊接端不设置焊接平台的接头的内部应力减少24.3%。由于内部应力越小,拉拔时,铜铝复合电能传输系统越不容易断裂,说明铜端子焊接端设置焊接平台的铜铝复合电能传输系统的焊接性能明显更好。
实施例4
如图3所示,一种铜铝复合电能传输系统,包括铜端子1和铝线缆6,所述铝线缆6包括铝导体2和包覆在所述铝导体2外围的绝缘层3,还包括电能传输铝件4,剥除绝缘层的一段铝导体2和至少部分带有绝缘层3的铝导体被包裹在所述电能传输铝件4内形成连接件;所述铜端子1上用于与所述连接件焊接的端部设置有焊接平台11,所述焊接平台11与所述连接件之间形成以金属原子互相渗透或金属原子相互结合的过渡层12。
所述铜铝复合电能传输系统通过以下工艺加工而成:
预装步骤:将剥除绝缘层的铝导体套入电能传输铝件内,使用压紧装置将所述除绝缘层的铝导体和部分带有绝缘层的铝导体压紧在所述电能传输铝件内形成连接件;
装夹步骤:将带有焊接平台的铜端子装夹在超声波设备的固定夹具中,将所述经过预装步骤后的连接件安装在超声波设备的振动夹具中;
焊接步骤:所述铜端子在固定夹具中固定不动,所述振动夹具带动所述连接件水平振动并向固定的铜端子挤压,振动夹具的频率为200KHz,压力为10000N,通过振动摩擦生热在所述连接件前端形成熔融层,然后在压力作用下使所述熔融层包覆在所述铜端子焊接端的焊接平台上,并与焊接平台形成以金属原子互相渗透或相互结合的过渡层。
本实施例的目的在于论证不同熔融层厚度对铜铝复合电能传输系统的拉拔力和电压降以及焊接强度的影响,考察了不同熔融层厚度铜铝复合电能传输系统的拉拔力值、电压降值和焊接强度,结果参见表2。
表2:不同熔融层厚度对铜铝复合电能传输系统的拉拔力和电压降的影响
Figure PCTCN2021084920-appb-000005
从上表可以看出,熔融层厚度小于0.01cm时,拉拔力明显较低,而电压降的值较高,得到的铜铝复合电能传输系统的性能相对较差,同时由于熔融层厚度太小,铜铝摩擦产生的热量小,铜铝复合电能传输系统的熔融层和过渡层的强度较弱,焊接后铜铝复合电能传输系统的力学性能和电学性能也相对较弱。
当熔融层大于15cm时,拉拔力出现比较明显的降低趋势,而电压降的值也明显升高,得到的铜铝复合电能传输系统的性能相对较差,铜铝摩擦产生热量会升高,摩擦焊过程中有更多的连接件前端熔融后再冷却,形成晶格粗大的金属结构,反而会生成比较多的导电性较差的铜铝化合物,从而导致铜铝复合电能传输系统的力学性能和电学性能反而出现下降的趋势。
因此在本发明中,优选的,所述熔融层的厚度为0.01cm~15cm,得到的铜铝复合电能传输系统的拉拔力值、电压降值以及焊接强度都具有明显的优势。
实施例5
如图3所示,一种铜铝复合电能传输系统,包括铜端子1和铝线缆6,所述铝线缆6包括铝导体2和包覆在所述铝导体2外围的绝缘层3,还包括电能传输铝件4,剥除绝缘层的一段铝导体2和至少部分带有绝缘层3的铝导体被包裹在所述电能传输铝件4内形成连接件;所述铜端子1上用于与所述连接件焊接的端部设置有焊接平台11,所述焊接平台11与所述连接件之间形成以金属原子互相渗透或金属原子相互结合的过渡层12。
所述铜铝复合电能传输系统通过以下工艺加工而成:
预装步骤:将剥除绝缘层的铝导体套入电能传输铝件内,使用压紧装置将所述除绝缘层的铝导体和部分带有绝缘层的铝导体压紧在所述电能传输铝件内形成连接件;
装夹步骤:将带有焊接平台的铜端子装夹在电阻焊设备的下电极中,将所述经过预装步骤后的连接件安装在电阻焊设备的上电极中;
焊接步骤:所述铜端子在下电极中固定不动,所述上电极带动所述连接件向下移动并向固定的铜端子通电并挤压,电阻焊设备施加的电流为40KA,所述上电极施加的压力为10000N,通过接触电阻导电生热,在所述连接件前端形成熔融层,然后在压力作用下使所述熔融层包覆在所述铜端子焊接端的焊接平台上,并与焊接平台形成以金属原子互相渗透或相互结合的过渡层。
在该实施例中,发明人为了论证焊接平台高度对铜铝复合电能传输系统的拉拔力和电压降以及焊接强度的的影响,考察了不同焊接平台高度的铜铝复合电能传输系统的拉拔力值、电压降值和焊接强度,结果参见表3。
表3:不同焊接平台高度对铜铝复合电能传输系统的拉拔力和电压降的影响
Figure PCTCN2021084920-appb-000006
表3的结果表明:当所述焊接平台高度低于0.01cm,就很接近齐平的焊接端面,此时的铜铝复合电能传输系统的力学性能和电学性能处于较低的水平。当所述焊接平台高度高于15cm,为了能使熔融层和铜端子焊接端面全部接触并形成过渡层,需要焊接设备提供更高的摩擦热量和压力,并且焊接平台端面和底面承受的热量和压力不一致,导致所述熔融层和所述过渡层厚度不均匀,接触电阻增大,从而使铜铝复合电能传输系统的力学性能和电学性能出现下降的趋势。
进一步的,在该实施例中,发明人为了论证焊接平台端面面积对铜铝复合电能传输系统的拉拔力和电压降以及焊接强度的影响,考察了不同焊接平台端面面积的铜铝复合电能传输系统的拉拔力值、电压降值和焊接强度,结果参见表4。
表4:不同焊接平台端面的横截面积占其根部横截面积的比例对铜铝复合电能传输系统的拉拔力和电压降的影响
Figure PCTCN2021084920-appb-000007
根据上述表4的结果可知,为了能够满足产生足够的摩擦热量,所述焊接平台端面不能太小,当焊接过程中铜铝接触摩擦面积大于50%时,能够获得电学性能和力学性能优异的铜铝接头。
实施例6
如图4所示,一种铜铝复合电能传输系统,包括铜端子1和铝线缆6,铝线缆包括铝导体和包覆在所述铝导体外围的绝缘层3,以及包覆在所述绝缘层3外围的起到屏蔽电磁干扰的屏蔽层8,还包括电能传输铝件4,剥除绝缘层3的一段铝导体2被包裹在所述电能传输铝件4内形成连接件;所述铜端子1上用于与所述连接件焊接的端部设置有焊接平台11,所述焊接平台11与所述连接件之间形成以金属原子互相渗透或金属原 子相互结合的过渡层12。
本发明所述的铜铝复合电能传输系统,所述电能传递铝件包裹所述铝导体形成连接件,结构简单,所述电能传递铝件加工更容易,能够极大地提高电能传输铝件的生产效率,降低铜铝复合电能传输系统的制作成本。
所述铜铝复合电能传输系统通过以下工艺加工而成:
预装步骤:将剥除绝缘层3的铝导体2套入电能传输铝件4内,使用压紧装置将所述除绝缘层3的铝导体2压紧在所述电能传输铝件4内形成连接件;
装夹步骤:将带有焊接平台的铜端子1装夹在摩擦焊设备的旋转夹具中,将所述经过预装步骤后的连接件安装在移动夹具中;
焊接步骤:所述铜端子在旋转夹具带动下旋转,旋转夹具的转速为1000R/Min,所述移动夹具带动所述连接件水平移动并向旋转的铜端子挤压,移动夹具的压力为10000N,通过摩擦生热在所述连接件前端形成熔融层,然后在压力作用下使所述熔融层包覆在所述铜端子1焊接端的焊接平台11上,并与焊接平台11形成以金属原子互相渗透或相互结合的过渡层12。
本实施例的目的在于论证不同铜铝固溶体在所述过渡层中的占比对铜铝复合电能传输系统的拉拔力和电压降的影响,考察了不同铜铝固溶体在所述过渡层中的占比的铜铝复合电能传输系统的拉拔力值、电压降值和焊接强度,结果参见表5。
表5铜铝固溶体在所述过渡层中的占比对铜铝复合电能传输系统的拉拔力和电压降的影响
Figure PCTCN2021084920-appb-000008
从上表可以看出,当所述过渡层包含的铜铝固溶体小于10wt%时,铜铝复合电能传输系统的拉拔力逐步降低,铜铝复合电能传输系统的电压降逐步上升,无法满足铜铝复合电能传输系统的力学性能和电气性能要求。随着所述过渡层包含的铜铝固溶体占比逐渐增多,铜铝复合电能传输系统的力学性能和电气性能逐渐增强,因此所述的 过渡层包含不少于10wt%的铜铝固溶体。
实施例7
如图5所示,一种铜铝复合电能传输系统,包括铜端子1和铝线缆6,铝线缆包括铝导体和包覆在所述铝导体外围的绝缘层3,以及包覆在所述绝缘层3外围的起到屏蔽电磁干扰的屏蔽层8,还有包覆在所述屏蔽层8外围的外绝缘层31。还包括电能传输铝件4,剥除绝缘层3的一段铝导体2被包裹在所述电能传输铝件4内形成连接件;所述铜端子1上用于与所述连接件焊接的端部设置有焊接平台11,所述焊接平台11与所述连接件之间形成以金属原子互相渗透或金属原子相互结合的过渡层12。
所述铜铝复合电能传输系统通过以下工艺加工而成:
预装步骤:将剥除绝缘层3的铝导体2套入电能传输铝件4内,使用压紧装置将所述除绝缘层3的铝导体2压紧在所述电能传输铝件4内形成连接件;
装夹步骤:将带有焊接平台的铜端子1装夹在摩擦焊设备的旋转夹具中,将所述经过预装步骤后的连接件安装在移动夹具中;
焊接步骤:所述铜端子在旋转夹具带动下旋转,旋转夹具的转速为1000R/Min,所述移动夹具带动所述连接件水平移动并向旋转的铜端子挤压,移动夹具的压力为10000N,通过摩擦生热在所述连接件前端形成熔融层,然后在压力作用下使所述熔融层包覆在所述铜端子1焊接端的焊接平台11上,并与焊接平台11形成以金属原子互相渗透或相互结合的过渡层12。
作为进一步的方案,本发明所述的铜端子表面设置金属镀层。由于铜端子需要与用电装置相连接,因此会暴露在空气和水中,甚至有些地方的空气中还有盐分,铜端子会受到氧化和盐雾腐蚀,从而减少端子的使用寿命,严重时端子会发生短路导致燃烧事故,造成更大的损失。因此,在铜端子表面设置金属镀层,能够有效的防止空气、水、盐雾的侵蚀,延长铜端子甚至铜铝接头的使用寿命,减少安全事故的发生。所述镀层金属会选用电势电位在铜铝之间的金属材质,会在过渡层中,减缓因为铜铝之间电势电位大引起的电化学腐蚀,从而延长所述铜铝复合电能传输系统的使用寿命。因此,优选的,在本发明中所述金属镀层材质至少含有但不限于镍、镉、锆、铬、钴、锰、铝、锡、钛、锌、铜、银或金中的一种。
本实施例的目的在于论证不同金属镀层的铜端子对铜铝复合电能传输系统的拉拔力和电压降的影响,考察了不同金属镀层的铜端子制成的的铜铝复合电能传输系统,在 铜铝复合电能传输系统经过48小时盐雾实验后的拉拔力值、电压降值和焊接强度,结果参见表6。
表6不同金属镀层材质对铜铝复合电能传输系统性能的影响
Figure PCTCN2021084920-appb-000009
从上表可知,在经过48小时的盐雾实验后,无防腐蚀保护层的铜铝复合电能传输系统,电气接头的拉拔力明显下降,电压降明显上升,无法较好的满足铜铝复合电能传输系统的拉拔力要大于2000N,电压降要在0.5mV以下的要求。而其他带有防腐蚀保护层的铜铝复合电能传输系统,试验后铜铝复合电能传输系统的拉拔力和电压降仍然满足铜铝复合电能传输系统的力学性能和电学性能要求,因此,发明人将防腐蚀保护层的材质设定至少含有镍、镉、锆、铬、钴、锰、铝、锡、钛、锌、铜、银或金中的一种。
实施例8
按照上述实施例1的步骤制作铜铝焊接端子,在该实施例中,发明人为了论证过渡层厚度对铜铝复合电能传输系统的拉拔力和电压降以及焊接强度的影响,考察了不同厚度过渡层的铜铝复合电能传输系统的拉拔力值、电压降值和焊接强度,结果参见表7。
表7:不同铜铝过渡层的厚度对铜铝复合电能传输系统的拉拔力和电压降的影响
Figure PCTCN2021084920-appb-000010
Figure PCTCN2021084920-appb-000011
表7的结果表明:当铜铝过渡层的厚度小于0.01μm时,铜铝复合电能传输系统的拉拔力值明显下降,铜铝复合电能传输系统的电压降值明显升高,得到的铜铝复合电能传输系统的力学性能和电学性能都比较差。并且,铜铝复合电能传输系统在盐雾实验后,力学性能和电学性能减低的更多,极大地降低了铜铝复合电能传输系统的性能和使用寿命。
当铜铝过渡层的厚度大于6000μm时,铜铝复合电能传输系统的力学性能和电学性能出现了下降趋势,相对应的,为了获得厚度大于6000μm的铜铝过渡层,设备所施加的压力和时间大幅度增长,因此,发明人选择铜铝过渡层的厚度为0.01μm~6000μm。
实施例9
如以上的实施例的铜铝复合电能传输系统的加工方法,还包括焊接平台制作步骤:使用机械加工装置,在所述铜端子的端面上加工出焊接平台。
进一步的,所采用的机械加工装置可以为车削装置,焊接前,使用所述车削装置上的车刀,在旋转的铜端子的端面上车削出焊接平台。
进一步的,所采用的机械加工装置可以为铣削装置,焊接前,使用所述铣削装置上的铣刀,将固定的铜端子的端面上铣削出焊接平台。
进一步的,所采用的机械加工装置可以为锯切装置,焊接前,使用所述锯切装置上的锯片,将固定的铜端子的端面上锯切出焊接平台。
进一步的,所采用的机械加工装置可以为磨削装置,焊接前,使用所述磨削装置上的磨轮,将固定的铜端子的端面上磨削出焊接平台。
进一步的,所采用的机械加工装置可以为刨削装置,焊接前,使用所述刨削装置上的刨刀,将固定的铜端子的端面上刨削出焊接平台。
本发明的所述机械加工装置,包括但不限于以上加工装置和加工方式。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (16)

  1. 一种铜铝复合电能传输系统,包括铜端子和铝线缆,所述铝线缆包括铝导体和包覆在所述铝导体外围的绝缘层,其中,还包括电能传输铝件,剥除绝缘层的一段铝导体被包裹在所述电能传输铝件内形成连接件;所述铜端子上用于与所述连接件焊接的端部设置有焊接平台,所述焊接平台与所述连接件之间形成以金属原子互相渗透或金属原子相互结合的过渡层。
  2. 根据权利要求1所述的铜铝复合电能传输系统,其中,所述连接件的前端具有熔融层。
  3. 根据权利要求2所述的铜铝复合电能传输系统,其中,所述熔融层在所述焊接平台端面四周向铜端子方向形成延伸包覆层。
  4. 根据权利要求3所述的铜铝复合电能传输系统,其中,所述延伸包覆层至少包覆至铜端子端部。
  5. 根据权利要求2-4任一项所述的铜铝复合电能传输系统,其中,所述熔融层的厚度为0.01cm-15cm。
  6. 根据权利要求1所述的铜铝复合电能传输系统,其中,所述焊接平台包括与连接件焊接的端面和与铜端子端部连接的根部,所述端面的横截面积小于所述根部的横截面积。
  7. 根据权利要求1所述的铜铝复合电能传输系统,其中,所述焊接平台端面的横截面积至少为根部横截面积的50%。
  8. 根据权利要求1所述的铜铝复合电能传输系统,其中,所述焊接平台高度为0.01cm-15cm。
  9. 根据权利要求1所述的铜铝复合电能传输系统,其中,所述过渡层包含不少于10wt%的铜铝固溶体。
  10. 根据权利要求1所述的铜铝复合电能传输系统,其中,所述过渡层的厚度为0.01μm~6000μm。
  11. 根据权利要求1所述的铜铝复合电能传输系统,其中,所述铜端子表面设置金属镀层。
  12. 根据权利要求1所述的铜铝复合电能传输系统,其中,所述金属镀层材质至少含有镍、镉、锆、铬、钴、锰、铝、锡、钛、锌、铜、银或金中的一种。
  13. 根据权利要求1所述的铜铝复合电能传输系统,其中,所述铝线缆还包括包覆 在所述绝缘层外围用于屏蔽电磁干扰的屏蔽层。
  14. 一种铜铝复合电能传输系统的加工方法,其中,包括:
    预装步骤:将剥除绝缘层的铝导体套入电能传输铝件内,使用压紧装置将所述铝导体压入所述电能传输铝件内形成被电能传输铝件包裹的连接件;
    焊接步骤:带有焊接平台的铜端子与所述连接件进行焊接,所述焊接平台与所述连接件之间形成以金属原子互相渗透或金属原子相互结合的过渡层。
  15. 根据权利要求14所述铜铝复合电能传输系统的加工方法,其中,所述焊接步骤中还包括在连接件前端形成熔融层。
  16. 根据权利要求14-15任一项所述铜铝复合电能传输系统的加工方法,其中,还包括焊接平台制作步骤:使用机械加工装置,在所述铜端子的端面上加工出焊接平台。
PCT/CN2021/084920 2020-04-01 2021-04-01 一种铜铝复合电能传输系统及其加工方法 WO2021197423A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112022019787A BR112022019787A2 (pt) 2020-04-01 2021-04-01 Sistema de transmissão de energia elétrica compósito de cobre-alumínio e método de processamento do mesmo
EP21780071.3A EP4131662A4 (en) 2020-04-01 2021-04-01 COPPER-ALUMINUM COMPOUND POWER TRANSMISSION SYSTEM AND PROCESSING METHOD THEREOF
MX2022012399A MX2022012399A (es) 2020-04-01 2021-04-01 Sistema de transmision de energia de compuesto de cobre-aluminio y metodo de procesamiento de eso.
CA3173470A CA3173470A1 (en) 2020-04-01 2021-04-01 Copper-aluminum composite electric energy transmission system and processing method therefor
US17/915,672 US20230112646A1 (en) 2020-04-01 2021-04-01 Copper-aluminum composite electric energy transmission system and processing method therefor
JP2022560265A JP7350194B2 (ja) 2020-04-01 2021-04-01 銅アルミ複合電気エネルギー伝送システム及びその加工方法
KR1020227038123A KR20220161463A (ko) 2020-04-01 2021-04-01 구리 알루미늄 복합 전기에너지 수송시스템 및 그 가공 방법
ZA2022/11112A ZA202211112B (en) 2020-04-01 2022-10-11 Copper-aluminum composite electric energy transmission system and processing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010250067.6A CN111462946A (zh) 2020-04-01 2020-04-01 一种铜铝复合电能传输系统及其加工方法
CN202010250067.6 2020-04-01

Publications (1)

Publication Number Publication Date
WO2021197423A1 true WO2021197423A1 (zh) 2021-10-07

Family

ID=71681564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084920 WO2021197423A1 (zh) 2020-04-01 2021-04-01 一种铜铝复合电能传输系统及其加工方法

Country Status (10)

Country Link
US (1) US20230112646A1 (zh)
EP (1) EP4131662A4 (zh)
JP (1) JP7350194B2 (zh)
KR (1) KR20220161463A (zh)
CN (1) CN111462946A (zh)
BR (1) BR112022019787A2 (zh)
CA (1) CA3173470A1 (zh)
MX (1) MX2022012399A (zh)
WO (1) WO2021197423A1 (zh)
ZA (1) ZA202211112B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230011924A1 (en) * 2019-12-26 2023-01-12 Autonetworks Technologies, Ltd. Wire harness, power storage module, and method of producing wire harness

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111462946A (zh) * 2020-04-01 2020-07-28 吉林省中赢高科技有限公司 一种铜铝复合电能传输系统及其加工方法
CN112531360A (zh) * 2020-12-16 2021-03-19 长春捷翼汽车零部件有限公司 一种端子组件及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201862928U (zh) * 2010-11-17 2011-06-15 国家电网公司直流建设分公司 电网直流工程接地极设施的放热焊接构件
CN103354308A (zh) * 2013-06-25 2013-10-16 欧托凯勃汽车线束(太仓)有限公司 一种铜铝接头及其制造方法
CN203312469U (zh) * 2013-06-25 2013-11-27 欧托凯勃汽车线束(太仓)有限公司 一种铜铝接头
CN106207499A (zh) * 2016-07-05 2016-12-07 昆山徳可汽车配件有限公司 一种汽车连接线及其摩擦焊接工艺
CN109494498A (zh) * 2018-11-26 2019-03-19 金杯电工股份有限公司 一种电缆接线端子及一种电缆
CN110832713A (zh) * 2017-07-05 2020-02-21 利萨·德雷克塞迈尔有限责任公司 用于制造电线路装置的方法
CN111462946A (zh) * 2020-04-01 2020-07-28 吉林省中赢高科技有限公司 一种铜铝复合电能传输系统及其加工方法
CN211980234U (zh) * 2020-04-01 2020-11-20 吉林省中赢高科技有限公司 一种铜铝复合电能传输系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011018353A1 (de) * 2011-04-20 2012-10-25 Auto-Kabel Managementgesellschaft Mbh Schweißhülse mit Kontaktteil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201862928U (zh) * 2010-11-17 2011-06-15 国家电网公司直流建设分公司 电网直流工程接地极设施的放热焊接构件
CN103354308A (zh) * 2013-06-25 2013-10-16 欧托凯勃汽车线束(太仓)有限公司 一种铜铝接头及其制造方法
CN203312469U (zh) * 2013-06-25 2013-11-27 欧托凯勃汽车线束(太仓)有限公司 一种铜铝接头
CN106207499A (zh) * 2016-07-05 2016-12-07 昆山徳可汽车配件有限公司 一种汽车连接线及其摩擦焊接工艺
CN110832713A (zh) * 2017-07-05 2020-02-21 利萨·德雷克塞迈尔有限责任公司 用于制造电线路装置的方法
CN109494498A (zh) * 2018-11-26 2019-03-19 金杯电工股份有限公司 一种电缆接线端子及一种电缆
CN111462946A (zh) * 2020-04-01 2020-07-28 吉林省中赢高科技有限公司 一种铜铝复合电能传输系统及其加工方法
CN211980234U (zh) * 2020-04-01 2020-11-20 吉林省中赢高科技有限公司 一种铜铝复合电能传输系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230011924A1 (en) * 2019-12-26 2023-01-12 Autonetworks Technologies, Ltd. Wire harness, power storage module, and method of producing wire harness

Also Published As

Publication number Publication date
US20230112646A1 (en) 2023-04-13
MX2022012399A (es) 2022-10-27
EP4131662A1 (en) 2023-02-08
CA3173470A1 (en) 2021-10-07
JP7350194B2 (ja) 2023-09-25
BR112022019787A2 (pt) 2022-11-16
JP2023515892A (ja) 2023-04-14
ZA202211112B (en) 2023-05-31
KR20220161463A (ko) 2022-12-06
EP4131662A4 (en) 2023-10-18
CN111462946A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2021197423A1 (zh) 一种铜铝复合电能传输系统及其加工方法
JP7274763B2 (ja) 銅端子とアルミ導線との継手及びその超音波溶接方法
JP6616058B2 (ja) 端子及び該端子のアルミ電線接続構造
WO2018223887A1 (zh) 一种铜端子和铝导线的接头及其等离子焊接方法
WO2021197414A1 (zh) 一种电能传输接头及其制备方法
WO2024056046A1 (zh) 一种新型铜铝复合端子
US9960502B2 (en) Wire harness assembly
JP2010027453A (ja) 圧着端子付ケーブルおよびその製造方法
TWI520361B (zh) Solar battery interconnector and solar module (1)
WO2024056048A1 (zh) 一种新型铝端子
WO2023160408A1 (zh) 一种线缆连接结构
CN211980234U (zh) 一种铜铝复合电能传输系统
WO2024056047A1 (zh) 一种新型铜铝复合端子
WO2024056071A1 (zh) 一种新型铜铝电连接装置
CN204834074U (zh) 一种汽车铝合金电瓶线
CN109396623A (zh) 一种适用于空间用超薄铜层与导线连接的电阻焊接方法
CN211507944U (zh) 一种电能传输接头
CN104200902A (zh) 一种环保节能防火铜铝合金电线电缆及其制造方法
CN207069073U (zh) 一种铝芯电缆连接管
CN219163742U (zh) 一种电传输结构
CN109687252A (zh) 一种采用低熔点液态金属的铜-铜电连接的连接方法
CN108682497A (zh) 一种高压导线
CN202712648U (zh) 铝线电瓶线束
CN107498162A (zh) 一种接触器接线柱组件及钎焊连接方法
CN202084652U (zh) 一种液压型铜铝复合线夹

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3173470

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022560265

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022019787

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227038123

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021780071

Country of ref document: EP

Effective date: 20221102

ENP Entry into the national phase

Ref document number: 112022019787

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220930