WO2021197416A1 - 上行功率、调度信息确定方法、终端和网络侧设备 - Google Patents
上行功率、调度信息确定方法、终端和网络侧设备 Download PDFInfo
- Publication number
- WO2021197416A1 WO2021197416A1 PCT/CN2021/084906 CN2021084906W WO2021197416A1 WO 2021197416 A1 WO2021197416 A1 WO 2021197416A1 CN 2021084906 W CN2021084906 W CN 2021084906W WO 2021197416 A1 WO2021197416 A1 WO 2021197416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- uplink signal
- zero
- power
- zero antenna
- transmission
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 85
- 230000005540 biological transmission Effects 0.000 claims abstract description 574
- 239000011159 matrix material Substances 0.000 claims description 129
- 238000004590 computer program Methods 0.000 claims description 48
- 230000008054 signal transmission Effects 0.000 claims description 27
- 238000004891 communication Methods 0.000 abstract description 5
- 230000006870 function Effects 0.000 description 13
- 230000011664 signaling Effects 0.000 description 7
- 101150071746 Pbsn gene Proteins 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/247—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/362—Aspects of the step size
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1268—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present disclosure relates to the field of communication technologies, and in particular to a method for determining uplink power and scheduling information, a terminal, and a network side device.
- a network-side device indicates to a user equipment (User Equipment, UE) a broadband precoding matrix for PUSCH transmission.
- PUSCH uses the same precoding matrix on all physical resource blocks (PRB), and therefore has the same number of non-zero antenna ports. If the PUSCH is allowed to use different precoding matrices in different subbands, if the precoding matrices corresponding to different PRBs correspond to different numbers of non-zero antenna ports, the transmission power of the PUSCH cannot be clarified.
- PRB physical resource blocks
- the present disclosure provides a method for determining uplink power and scheduling information, a terminal, and a network side device, which solves the problem that the transmission power of the uplink signal cannot be determined when the uplink signal is subjected to frequency selective precoding in the related art.
- the embodiment of the present disclosure provides an uplink power determination method, which is applied to a terminal, and includes:
- the scheduling information indicates at least Q subband related information, and Q is a positive integer
- the method before the obtaining the scheduling information about the uplink signal, the method further includes:
- the determining the first power scaling factor according to the scheduling information includes:
- the determining the first power scaling factor according to the scheduling information includes:
- the first power scaling factor is determined according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q.
- the first power scaling coefficient includes at least one of the power scaling coefficients of Q subbands and the power scaling coefficient of the uplink signal.
- Determining the first power scaling factor includes:
- ⁇ sub is the power scaling factor of the Q subbands
- N is the number of non-zero antenna ports
- M sub is the number of said subbands
- M is the maximum number of SRS ports that can be included in a Sounding Reference Signal (SRS) resource supported by the terminal, the number of SRS ports included in the SRS resource indicated by the SRS Resource Indicator (SRS Resource Indicator, SRI), and the One of the number of SRS ports included in the SRS resource corresponding to the transmission mode of the uplink signal, the maximum number of antenna ports that can be supported by the uplink signal transmission, and the number of antenna ports corresponding to the uplink signal transmission.
- SRS Sounding Reference Signal
- the method further includes:
- the determining the power scaling coefficient of the uplink signal according to the power scaling coefficients of the Q subbands includes:
- the power scaling coefficient of the uplink signal is determined according to the power scaling coefficient of the specific subband in the Q subbands.
- the first power scaling factor includes the power scaling factor of the uplink signal, and Q>1
- the number of non-zero antenna ports is the number of non-zero antenna ports in each subband
- Determining the first power scaling factor for at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q includes:
- the power scaling factor of the uplink signal is determined according to the smallest number of non-zero antenna ports among the number of non-zero antenna ports of each subband.
- the determining the transmission power of the uplink signal according to the first power scaling factor includes:
- the transmit power of the first non-zero antenna port on a non-zero transmission RE is determined.
- the determining the transmission power of the uplink signal further includes:
- the transmit power of the first non-zero antenna port on a non-zero transmitted RE determine the transmit power of the first non-zero antenna port on all non-zero transmitted REs of the first non-zero antenna port ;or,
- the other non-zero antenna ports are non-zero antenna ports other than the non-zero antenna port with the largest number of REs.
- the determining the transmission power of the uplink signal according to the first power scaling factor includes:
- each non-zero antenna port corresponding to each sub-band in the Q sub-bands on each non-zero transmission RE it is determined that each non-zero antenna port corresponding to the Q sub-bands transmits at each non-zero antenna port.
- the transmit power on the RE it is determined that each non-zero antenna port corresponding to the Q sub-bands transmits at each non-zero antenna port.
- the determining the transmission power of the uplink signal further includes any one of the following:
- the total transmission power of the uplink signal and the number of non-zero antenna ports determine the transmission power of the uplink signal at each non-zero antenna port, where the number of non-zero antenna ports is multiple.
- the determining the transmission power of the uplink signal in each subband according to the total transmission power of the uplink signal and the number of subbands Q includes:
- the determining the transmission power of the uplink signal at each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports includes any one of the following:
- the uplink signal is at each non-zero antenna port. Transmit power;
- the uplink signal is The transmit power of each non-zero antenna port.
- the determining the transmit power of the uplink signal It also includes any of the following:
- the uplink signal is determined according to the transmission power of the uplink signal in the Q subbands and the proportion of the number of non-zero antenna ports corresponding to the Q subbands in the number of all non-zero antenna ports corresponding to the Q subbands
- Some embodiments of the present disclosure also provide a method for determining scheduling information, which is applied to a network side device, and includes:
- the transmission power control rule of the uplink signal includes:
- the terminal determines the first power scaling factor according to the scheduling information
- the terminal determines the transmit power of the uplink signal according to the first power scaling factor.
- the method before sending the scheduling information to the terminal, the method further includes:
- the terminal determining the first power scaling factor according to the scheduling information includes:
- the terminal determines the first power scaling factor according to the scheduling information and the transmission power control rule of the uplink signal.
- the terminal determining the first power scaling factor according to the scheduling information includes:
- the terminal determines at least one of a precoding matrix, the number of non-zero antenna ports, and the number of subbands Q for non-zero transmission of the uplink signal according to the scheduling information;
- the terminal determines the first power scaling factor according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q.
- the first power scaling coefficient includes at least one of the power scaling coefficients of Q subbands and the power scaling coefficient of the uplink signal.
- the terminal performs according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q Item, determining the first power scaling factor, including:
- the terminal determines the power scaling coefficients of the Q subbands according to any one of the following formulas:
- ⁇ sub is the power scaling factor of the Q subbands
- N is the number of non-zero antenna ports
- M sub is the number of said subbands
- M is the maximum number of SRS ports that can be included in a sounding reference signal SRS resource supported by the terminal, the number of SRS ports included in the SRS resource indicated by the SRS resource indicator SRI, and the SRS included in the SRS resource corresponding to the transmission mode of the uplink signal One of the number of ports, the maximum number of antenna ports that can be supported by the uplink signal transmission, and the number of antenna ports corresponding to the uplink signal transmission.
- the terminal performs according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q Item, after determining the first power scaling factor, the uplink signal transmit power control rule further includes:
- the terminal determines the power scaling coefficient of the uplink signal according to the power scaling coefficients of the Q subbands.
- the terminal determining the power scaling coefficient of the uplink signal according to the power scaling coefficients of the Q subbands includes:
- the terminal determines the power scaling coefficient of the uplink signal according to the smallest power scaling coefficient among the power scaling coefficients of the Q subbands; or,
- the terminal determines the power scaling coefficient of the uplink signal according to the power scaling coefficient of the specific subband in the Q subbands.
- the terminal According to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q, determining the first power scaling factor includes:
- the terminal determines the power scaling factor of the uplink signal according to the smallest number of non-zero antenna ports among the number of non-zero antenna ports of each subband.
- the terminal determining the transmission power of the uplink signal according to the first power scaling factor includes:
- the terminal determines the first non-zero antenna port according to the first power scaling factor and the number of resource units REs for non-zero transmission of the uplink signal corresponding to each non-zero antenna port;
- the terminal determines the transmit power of the first non-zero antenna port on a non-zero transmission RE according to the first power scaling factor.
- the terminal determining the transmission power of the uplink signal further includes:
- the terminal determines the transmission of the first non-zero antenna port on all non-zero transmission REs of the first non-zero antenna port Power; or,
- the terminal determines, according to the transmission power of the first non-zero antenna port on a non-zero transmission RE of the other non-zero antenna port, the transmission power of the other non-zero antenna port on each non-zero transmission RE of the other non-zero antenna port;
- the other non-zero antenna ports are non-zero antenna ports other than the non-zero antenna port with the largest number of REs.
- the terminal determining the transmission power of the uplink signal according to the first power scaling factor includes:
- the terminal determines the transmit power of each non-zero antenna port on each non-zero transmission RE of each non-zero antenna port according to the first power scaling factor
- the terminal determines the minimum transmit power of each non-zero antenna port corresponding to each sub-band in the Q sub-bands in each non-zero transmission RE on each non-zero antenna port.
- the terminal determining the transmission power of the uplink signal further includes any one of the following:
- the terminal determines the transmission power of the uplink signal in each subband according to the total transmission power of the uplink signal and the number of subbands Q, Q>1;
- the terminal determines the transmission power of the uplink signal at each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports, where the number of non-zero antenna ports is multiple.
- the terminal determining the transmission power of the uplink signal in each subband according to the total transmission power of the uplink signal and the number of subbands Q includes:
- the terminal equally divides the transmission power of the uplink signal into each subband according to the total transmission power of the uplink signal and the number of subbands Q;
- the terminal determining the transmission power of the uplink signal at each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports includes any one of the following:
- the terminal equally divides the transmission power of the uplink signal to each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports;
- the terminal determines that the uplink signal is at each non-zero antenna port.
- the transmit power of the port
- the terminal determines the uplink signal according to the total transmit power of the uplink signal and the proportion of the non-zero element corresponding to each non-zero antenna port in the precoding matrix corresponding to each subband among all the non-zero elements of the precoding matrix The transmit power at each non-zero antenna port.
- the terminal determines that the transmit power of the uplink signal is also Include any of the following:
- the terminal equally divides the transmission power of the uplink signal to each non-zero antenna port according to the transmission power of the uplink signal in the Q subbands and the number of non-zero antenna ports corresponding to the Q subbands;
- the terminal determines the uplink signal according to the transmission power of the uplink signal in the Q subbands and the proportion of the number of non-zero antenna ports corresponding to the Q subbands in the number of all non-zero antenna ports corresponding to the Q subbands.
- the terminal according to the transmission power of the uplink signal in the Q subbands and the proportion of the non-zero elements corresponding to each non-zero antenna port included in the precoding matrix corresponding to the Q subbands among all the non-zero elements of the precoding matrix To determine the transmit power of the uplink signal on each non-zero antenna port corresponding to the Q subbands.
- Some embodiments of the present disclosure also provide a terminal, including: a transceiver, a memory, a processor, and a computer program stored in the memory and running on the processor.
- a terminal including: a transceiver, a memory, a processor, and a computer program stored in the memory and running on the processor.
- the scheduling information indicates at least Q subband related information, and Q is a positive integer
- the processor implements the following steps when executing the computer program:
- the processor implements the following steps when executing the computer program:
- the first power scaling factor is determined according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q.
- the first power scaling coefficient includes at least one of the power scaling coefficients of Q subbands and the power scaling coefficient of the uplink signal.
- the processor implements the following steps when executing the computer program:
- the processor implements the following steps when executing the computer program:
- the first power scaling factor determine the transmit power of the first non-zero antenna port on a non-zero transmission RE.
- the processor implements the following steps when executing the computer program:
- the transmit power of the first non-zero antenna port on a non-zero transmission RE determine the transmission power of the first non-zero antenna port on all non-zero transmission REs of the first non-zero antenna port ;or,
- the other non-zero antenna ports are non-zero antenna ports other than the non-zero antenna port with the largest number of REs.
- the processor implements the following steps when executing the computer program:
- each non-zero antenna port corresponding to each sub-band in the Q sub-bands on each non-zero transmission RE it is determined that each non-zero antenna port corresponding to the Q sub-bands transmits at each non-zero antenna port.
- the transmit power on the RE it is determined that each non-zero antenna port corresponding to the Q sub-bands transmits at each non-zero antenna port.
- Some embodiments of the present disclosure also provide a network side device, including: a transceiver, a memory, a processor, and a computer program stored in the memory and running on the processor.
- a network side device including: a transceiver, a memory, a processor, and a computer program stored in the memory and running on the processor.
- the transmission power control rule of the uplink signal includes:
- the terminal determines the first power scaling factor according to the scheduling information
- the terminal determines the transmit power of the uplink signal according to the first power scaling factor.
- the method before sending the scheduling information to the terminal, the method further includes:
- the terminal determining the first power scaling factor according to the scheduling information includes:
- the terminal determines the first power scaling factor according to the scheduling information and the transmission power control rule of the uplink signal.
- the terminal determining the first power scaling factor according to the scheduling information includes:
- the terminal determines at least one of a precoding matrix, the number of non-zero antenna ports, and the number of subbands Q for non-zero transmission of the uplink signal according to the scheduling information;
- the terminal determines the first power scaling factor according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q.
- the first power scaling coefficient includes at least one of the power scaling coefficients of Q subbands and the power scaling coefficient of the uplink signal.
- the terminal performs according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q Item, after determining the first power scaling factor, the uplink signal transmit power control rule further includes:
- the terminal determines the power scaling coefficient of the uplink signal according to the power scaling coefficients of the Q subbands.
- the terminal determining the transmission power of the uplink signal according to the first power scaling factor includes:
- the terminal determines the first non-zero antenna port according to the first power scaling factor and the number of resource units REs for non-zero transmission of the uplink signal corresponding to each non-zero antenna port;
- the terminal determines the transmit power of the first non-zero antenna port on a non-zero transmission RE according to the first power scaling factor.
- the terminal determining the transmission power of the uplink signal further includes:
- the terminal determines the transmission of the first non-zero antenna port on all non-zero transmission REs of the first non-zero antenna port Power; or,
- the terminal determines, according to the transmission power of the first non-zero antenna port on a non-zero transmission RE of the other non-zero antenna port, the transmission power of the other non-zero antenna port on each non-zero transmission RE of the other non-zero antenna port;
- the other non-zero antenna ports are non-zero antenna ports other than the non-zero antenna port with the largest number of REs.
- the terminal determining the transmission power of the uplink signal according to the first power scaling factor includes:
- the terminal determines the transmit power of each non-zero antenna port on each non-zero transmission RE of each non-zero antenna port according to the first power scaling factor
- the terminal determines the minimum transmit power of each non-zero antenna port corresponding to each sub-band in the Q sub-bands in each non-zero transmission RE on each non-zero antenna port.
- Some embodiments of the present disclosure also provide a terminal, including:
- the first obtaining module is configured to obtain scheduling information about uplink signals, where the scheduling information indicates at least Q subband related information, and Q is a positive integer;
- a first determining module configured to determine a first power scaling factor according to the scheduling information
- the second determining module is configured to determine the transmission power of the uplink signal according to the first power scaling factor.
- Some embodiments of the present disclosure also provide a network side device, including:
- a third determining module configured to determine scheduling information about the uplink signal according to a preset transmission power control rule of the uplink signal, the scheduling information indicating at least Q subband related information, and Q is a positive integer;
- the first sending module is configured to send the scheduling information to the terminal
- the transmission power control rule of the uplink signal includes:
- the terminal determines the first power scaling factor according to the scheduling information
- the terminal determines the transmit power of the uplink signal according to the first power scaling factor.
- Some embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored.
- the steps of the method for determining the uplink power as described above are implemented, or the method for determining the uplink power as described above is implemented. Schedule information to determine the steps of the method.
- Obtain scheduling information about the uplink signal through the terminal where the scheduling information indicates at least Q subband related information, where Q is a positive integer, and according to the scheduling information, a first power scaling factor is determined, and according to the first power scaling factor , Determining the transmission power of the uplink signal solves the problem that the transmission power of the uplink signal cannot be determined when the uplink signal is subjected to frequency selective precoding in the related art.
- Fig. 1 shows a flowchart of an uplink power determination method according to some embodiments of the present disclosure
- FIG. 2 shows a flowchart of a method for determining scheduling information according to some embodiments of the present disclosure
- FIG. 3 shows a schematic structural diagram of a terminal according to some embodiments of the present disclosure
- FIG. 4 shows a schematic structural diagram of a network side device of some embodiments of the present disclosure
- FIG. 5 shows a schematic diagram of the implementation structure of a terminal according to some embodiments of the present disclosure
- FIG. 6 shows a schematic diagram of the implementation structure of a network side device according to some embodiments of the present disclosure.
- one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present disclosure. Therefore, the appearances of "in one embodiment” or “in an embodiment” in various places throughout the specification do not necessarily refer to the same embodiment. In addition, these specific features, structures or characteristics can be combined in one or more embodiments in any suitable manner.
- determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and other information.
- a includes B means that A can include B, and A can also include C and/or D, etc.
- a includes B means that A may include B, and A may also include C and/or D, etc.
- the wireless communication system includes terminals and network side equipment.
- the terminal can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal can be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), a personal digital assistant (Personal Digital Assistant, PDA). ), Mobile Internet Device (MID), Wearable Device (Wearable Device), or in-vehicle device and other terminal-side devices.
- UE User Equipment
- PDA Personal Digital Assistant
- MID Mobile Internet Device
- Wearable Device Wearable Device
- in-vehicle device and other terminal-side devices.
- the specific types of terminals are not limited in some embodiments of the present disclosure.
- the network-side equipment may be a base station or a core network, where the above-mentioned base station may be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN access point, Or other access points, etc.), where the base station can be called Node B, Evolved Node B, Access Point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (Basic Service Set) Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, or in the field
- B Basic Service Set
- BSS Basic Service Set
- ESS Extended Service Set
- Node B Evolved Node B
- eNB Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, or in the field
- the Multiple Input Multiple Output (MIMO) transmission of uplink signals only supports broadband Precoding, subband precoding is not supported.
- the network side device can only indicate broadband SRS resource indication information to the UE (for example, through the SRS resource indication field or radio resource in Downlink Control Information (DCI) Control (Radio Resource Control, RRC) signaling SRS-ResourceIndicator indication), transmission precoding index indicator (Transmission precoder index indicator, TPMI), and transmission stream number (for example, through the precoding information and layer number Precoding information and number in DCI) of layers field or RRC signaling precoding and layer number Precoding and number of layers indication).
- DCI Downlink Control Information
- RRC Radio Resource Control
- TPMI Transmission precoder index indicator
- transmission stream number for example, through the precoding information and layer number Precoding information and number in DCI
- the UE When the UE transmits PUSCH, it uses the same analog beamforming, precoding matrix and number of transmission streams on all scheduled frequency domain resources (the precoding matrix and the number of transmission streams are determined according to the broadband TPMI indicated by the network side device and the number of transmission streams). Number of transport streams).
- the network side device indicates a broadband SRI to the UE (for example, through the SRS resource indicator field in the DCI or the RRC signaling SRS-ResourceIndicator indication).
- the UE transmits the PUSCH, it uses the same analog beamforming, precoding matrix, and number of transmission streams on all scheduled frequency domain resources (determined according to the SRI indicated by the network side device).
- the existing PUSCH power control scheme is: if the PUSCH is a codebook-based transmission mode, and the SRS resource set corresponding to the transmission mode (the SRS resource set of which the high-level signaling parameter "usage" is "codebook") includes the SRS If the number of antenna ports contained in at least one SRS resource in the resource is greater than 1, the transmit power value of the PUSCH is the power value after scaling the power calculated according to the power control formula of the PUSCH; otherwise, the transmit power value of the PUSCH is based on the PUSCH The power value calculated by the power control formula; where the scaling ratio is a function of the number of non-zero antenna ports of the PUSCH, and the transmission power of the PUSCH is evenly distributed on the non-zero antenna ports of the PUSCH.
- Subband precoding can bring frequency domain selective precoding gain and improve the performance of uplink signal transmission. If subband precoding is performed on PUSCH, PUSCH may use different precoding matrices in different subbands, so that different subbands may have different numbers of non-zero antenna ports, which cannot be determined when PUSCH performs subband precoding Power distribution.
- the PUSCH is allowed to use different precoding matrices in different subbands, if the precoding matrices corresponding to different PRBs correspond to different numbers of non-zero antenna ports, if the PUSCH transmission power is still applied to all non-zero antennas Even sharing on the port will result in high transmit power on some PRBs and low transmit power on some PRBs, which may result in high error rates of some PRBs, and may increase the peak-to-average ratio of PUSCH and affect performance.
- the broadband corresponds to all frequency domain resources allocated to the uplink signal.
- Broadband-related information can also be referred to as broadband information, which can be understood as information applicable to all resources scheduled for uplink signals.
- the precoding matrix indication information as an example, if the network side device indicates a wideband precoding matrix indication information to the UE, the precoding matrix indicated by the indication information is used for all frequency domain resources of the uplink signal.
- the wideband precoding in some embodiments of the present disclosure refers to using the same precoding on all frequency domain resources of the uplink signal.
- a subband is P consecutive PRBs, or P consecutive virtual resource blocks (Virtual resource blocks, VRB), which are part of the frequency domain resources allocated for the uplink signal.
- the size of the subband and/or the subband division method may be indicated to the terminal by the network side device through signaling (for example, the network side device directly indicates the value of P to the terminal, or P can be obtained through other terminals), and It can be pre-arranged in the agreement.
- the subband information of different subbands can be the same or different.
- the network side device may indicate the subband information for each subband separately. For example, if the number of transmission streams is a piece of broadband information, all resources scheduled for uplink signals use the number of transmission streams.
- the information related to the subband may also be referred to as subband information, which may be understood as information applicable to the subband in which the uplink signal is scheduled.
- the subband information of a subband is information applicable to the subband.
- the precoding matrix indicated by the indication information is used for the frequency domain corresponding to the subband of the uplink signal. resource.
- the subband precoding in some embodiments of the present disclosure means that the uplink signal can use the precoding matrix in different subbands respectively, that is, the precoding matrix used by each subband can be the same or different. That is, the network side device may indicate the precoding matrix for each subband separately, instead of using the same precoding matrix for all frequency domain resources of the uplink signal.
- the embodiments of the present disclosure provide an uplink power, scheduling information determination method, terminal, and network side equipment, which solves the problem that the transmission power of the uplink signal cannot be determined when the uplink signal is frequency-selectively precoded in the related art. The problem.
- an embodiment of the present disclosure provides an uplink power determination method, which is applied to a terminal, and specifically includes the following steps:
- Step 11 Obtain scheduling information about the uplink signal, where the scheduling information indicates at least Q subband related information, and Q is a positive integer.
- the scheduling information is information indicating how the uplink signal should be transmitted, and the scheduling information may include but is not limited to at least one of the following information: precoding matrix indication information, transmission stream number indication information, and uplink signal Resource allocation information and SRS resource indication information.
- the related information of the Q subbands may be a precoding matrix corresponding to the subbands. It can also be the number of transport streams corresponding to the subband. It may also be SRS resource indication information corresponding to the subband. It may also be a combination of precoding matrix, number of transmission streams, SRS resource indication information, and so on.
- Q is a positive integer greater than or equal to 1.
- the number of transport streams is sometimes referred to as the number of layers, and the transport streams are sometimes referred to as layers.
- the uplink signal includes but is not limited to at least one of the following: PUSCH signal, demodulation reference signal (Demodulation Reference Signal, DMRS), physical uplink control channel (PUCCH) signal, physical random access Incoming Channel (Physical Random Access Channel, PRACH) signal, SRS, etc.
- PUSCH signal demodulation reference signal (Demodulation Reference Signal, DMRS), physical uplink control channel (PUCCH) signal, physical random access Incoming Channel (Physical Random Access Channel, PRACH) signal, SRS, etc.
- DMRS demodulation Reference Signal
- PUCCH physical uplink control channel
- PRACH Physical Random Access Channel
- SRS Physical Random Access Channel
- the scheduling information of the uplink signal may be indicated to the terminal by the network side device.
- the scheduling information of the uplink signal may also be obtained by the terminal according to a certain criterion.
- Step 12 Determine a first power scaling factor according to the scheduling information.
- the first power scaling coefficient includes at least one of the power scaling coefficients of Q subbands and the power scaling coefficient of the uplink signal.
- the terminal determines the power scaling coefficients of Q subbands according to the scheduling information, where Q is the number of subbands of the uplink signal, and the power scaling coefficients of the Q subbands are the respective powers corresponding to the respective subbands of the uplink signal being scheduled.
- the zoom factor. Q is a positive integer, when Q is equal to 1, the first power scaling factor is the power scaling factor of a subband; when Q is greater than 1, for example: Q is equal to 2, then the first subband corresponds to a power scaling factor , The second subband corresponds to a power scaling factor.
- the Q subbands may be all subbands of the uplink signal or part of the subbands of the uplink signal.
- the terminal may need to determine the power of the uplink signal in other subbands according to related information of these subbands.
- the terminal may also obtain related information of other subbands, and determine the power of the uplink signal in other subbands according to the related information of other subbands.
- the power scaling coefficient corresponding to a subband is not necessarily a coefficient for scaling the power of the uplink signal (for example, the power calculated according to the power control formula of the uplink signal) when the uplink signal is transmitted in the subband. That is to say, when the uplink signal is transmitted in a subband, it is possible to use the power scaling factor of the subband to scale the power of the uplink signal. It is also possible that when the uplink signal is transmitted in one subband, the power scaling factor of the subband is not used for power scaling, but the power scaling factor of another subband is used for power scaling. Another factor may be determined based on the power scaling factor of the uplink signal in one or more subbands.
- the power scaling coefficient of the uplink signal is a coefficient used to scale the power of the uplink signal, including but not limited to one or more of the following: a coefficient for scaling the total power of the uplink signal; The coefficient for scaling the power of the uplink signal; the coefficient for scaling the power of the antenna port of the uplink signal; the coefficient for scaling the resource unit RE of the uplink signal.
- Step 13 Determine the transmit power of the uplink signal according to the first power scaling factor.
- the step 13 includes:
- the first power is the power obtained by the terminal according to the parameters of the uplink signal and/or the reference signal corresponding to the uplink signal.
- the first power scaling factor is the power scaling factor of the uplink signal
- the total transmission power of the uplink signal is the power of the first power multiplied by the power scaling factor of the uplink signal.
- the transmission power of the Q subbands is the first power multiplied by the power scaling factor of the Q subbands.
- the transmit power of each subband is equal to the power scaling factor of the subband multiplied by the power value of the first power.
- the first power is the power calculated by the terminal according to the parameters (path loss, etc.) of the uplink signal and/or the reference signal corresponding to the uplink signal. For example, when the uplink signal is PUSCH, the first power is the power calculated by the PUSCH power control calculation formula.
- the transmission power of the uplink signal is the power scaled by the power of the uplink signal (for example, the power calculated according to the power control formula of the uplink signal) by the first power scaling factor.
- the transmission power of the uplink signal includes but is not limited to at least one of the following: total transmission power of the uplink signal, transmission power of the uplink signal in each subband, transmission power of the uplink signal in each non-zero antenna port , The transmit power of the first non-zero antenna port on a non-zero transmission RE, and the non-zero antenna port except the non-zero antenna port with the largest number of REs on each non-zero antenna port of the other non-zero antenna ports The transmit power on the transmitted RE, and the transmit power on each non-zero transmitted RE of each non-zero antenna port corresponding to the Q subbands.
- the transmit power of the uplink signal includes but is not limited to one or more of the following: the total transmit power of the uplink signal may be the power of the uplink signal after being scaled by the power scaling factor of the uplink signal .
- the transmit power of the uplink signal in each subband may be each power after the power of the uplink signal is scaled by the power scaling factor of each subband.
- the first subband determines the power according to the power scaling factor of the first subband.
- the transmit power of the uplink signal in the first subband, and the second subband determines the transmit power of the uplink signal in the second subband according to the power scaling factor of the second subband.
- the transmit power of the uplink signal at each non-zero antenna port may be each power after the power of the uplink signal is scaled by the power scaling factor of each non-zero antenna port.
- the transmit power of the uplink signal in each subband is not necessarily calculated from the transmit power of each subband.
- the transmit power of some subbands can also be calculated, and the transmit power of some subbands is used to determine the transmit power of other subbands.
- Transmission power. For example: multiple adjacent sub-bands are a group, and a power scaling factor is determined for each group of sub-bands. According to the power scaled by the power of the uplink signal through the power scaling factor determined by each group, each sub-band in this group is determined. The transmit power of a subband.
- the scheduling information about the uplink signal is acquired through the terminal, the scheduling information indicates at least Q subband related information, the first power scaling factor is determined according to the scheduling information, and the first power scaling factor is determined according to the first power
- the scaling factor is used to determine the transmit power of the uplink signal, which can solve the problem that when the uplink signal is frequency-selectively pre-coded (that is, sub-band pre-coding, the uplink signal is pre-coded in different frequency domain resources) in the related art, The problem of the transmission power of the uplink signal cannot be determined.
- the systems applicable to some embodiments of the present disclosure include, but are not limited to, NR systems, LTE systems, 6th-Generation (6G) mobile communication technology (6th-Generation, 6G) systems, and evolved version systems.
- the method further includes:
- the step 12 includes:
- the terminal may determine the first power scaling factor according to the transmission power control rule of the uplink signal.
- the transmission power control rule of the uplink signal may be agreed upon by agreement or obtained from the network side device, which is not specifically limited here.
- the transmission power control rule of the uplink signal is a rule for determining the transmission power of the uplink signal.
- the step 12 includes:
- the first power scaling factor is determined according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q.
- the non-zero antenna port refers to the antenna port through which the uplink signal is transmitted with non-zero power. That is, the transmission power of data on the non-zero antenna port is non-zero.
- the non-zero antenna port of the uplink signal corresponds to the antenna port corresponding to the non-zero element in the precoding matrix used by the uplink signal.
- the number of non-zero antenna ports is the total number of antenna ports through which the uplink signal is transmitted with non-zero power.
- the number of non-zero antenna ports is the number of non-zero antenna ports of the uplink signal in each subband (for example, for Q subbands, there are Q number of non-zero antenna ports).
- the number of non-zero antenna ports is the number of non-zero antenna ports of the uplink signal in a part of subbands (for example, the number of non-zero antenna ports of a part of subbands is the number of non-zero antenna ports of one subband) )
- the number of non-zero antenna ports is a combination of multiple items in the foregoing example.
- the number of subbands Q is the total number of subbands in which the uplink signal is transmitted with non-zero power. In other words, the transmission power of data on the subbands of non-zero transmission is non-zero.
- the number of subbands Q can be determined by scheduling information, or can be obtained according to subband configuration information.
- the precoding matrix may be a precoding matrix corresponding to each subband of the uplink signal.
- the power scaling factor of each subband is determined according to the number of non-zero antenna ports corresponding to each subband.
- the power scaling factor of each subband is proportional to the number of non-zero antenna ports of each subband.
- the power scaling factor of the uplink signal is determined according to the number of subbands Q.
- the number of subbands Q is inversely proportional to the power scaling factor of the uplink signal.
- the power scaling factor of the Q subbands is a function of the number of non-zero antenna ports corresponding to the Q subbands ;and / or,
- the power scaling factor of the uplink signal is a function of the number of non-zero antenna ports.
- the power scaling factor of each subband is a function of the number of non-zero antenna ports corresponding to each subband , That is, the power of the uplink signal is scaled by a function of the number of non-zero antenna ports corresponding to each subband, and the scaled power is the transmit power of the uplink signal in each subband.
- the power scaling factor of any subband may be corresponding to one of the subbands in each subband.
- a function of the number of non-zero antenna ports that is, the power scaling factor of each sub-band can be a function of the number of non-zero antenna ports corresponding to the sub-band, or a function of the number of non-zero antenna ports corresponding to other sub-bands .
- the power scaling factor of the subband may be a function of the number of subbands.
- the power scaling factor of the subband is inversely proportional to the number of subbands.
- the power scaling factor of the uplink signal is a function of the number of non-zero antenna ports, that is, the power of the uplink signal passes through the entire bandwidth All non-zero antenna ports are scaled as a function of the number of antenna ports, and the scaled power is the total transmission power of the uplink signal.
- the first power scaling coefficient includes power scaling coefficients of Q subbands, it is determined according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q
- the first power scaling factor includes:
- ⁇ sub is the power scaling factor of the Q subbands
- N is the number of non-zero antenna ports
- M sub is the number of said subbands
- M is the maximum number of SRS ports that can be included in a sounding reference signal SRS resource supported by the terminal, the number of SRS ports included in the SRS resource indicated by the SRS resource indicator SRI, and the SRS included in the SRS resource corresponding to the transmission mode of the uplink signal One of the number of ports, the maximum number of antenna ports that can be supported by the uplink signal transmission, and the number of antenna ports corresponding to the uplink signal transmission.
- the power scaling factor of the Q subbands is determined according to M, the number of non-zero antenna ports, and the number of subbands, that is, the value of the number of non-zero antenna ports of each subband divided by M
- the value obtained by dividing by the number of subbands is the power scaling factor of each subband.
- the power scaling coefficients of the Q subbands are determined according to the number of subbands, that is, the value of 1 divided by the number of subbands is the power scaling coefficient of each subband.
- the power scaling factor of the uplink signal in each subband is determined according to M and the number of non-zero antenna ports, that is, the number of non-zero antenna ports in each subband divided by M is the power of each subband The zoom factor.
- the power scaling factor of the Q subbands is determined according to the number of non-zero antenna ports and the number of subbands, that is, the value of the number of non-zero antenna ports of each subband divided by the number of subbands is the value of each subband The power scaling factor of the belt.
- the method further includes:
- the power scaling factor of the Q subbands is not the power scaling factor actually used when the uplink signal is transmitted in the Q subbands.
- the power scaling factor of the uplink signal may be the scaling factor used during actual transmission of the uplink signal.
- the power scaling factor of the uplink signal is one or more of the following: a coefficient for scaling the total power of the uplink signal; The coefficient for scaling the power of the subband; the coefficient for scaling the power of the uplink signal antenna port; the coefficient for scaling the resource unit RE of the uplink signal.
- the power scaling coefficients of the Q subbands are determined according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q, and then according to the power scaling coefficients of the Q subbands , Determining the power scaling factor of the uplink signal.
- the power scaling factor of each subband can also be determined according to the number of non-zero antenna ports of each subband, which is not specifically limited here.
- the power scaling coefficients of Q subbands are determined according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q, and then the power scaling coefficients of the Q subbands are determined The power scaling factor of the uplink signal.
- the determining the power scaling coefficient of the uplink signal according to the power scaling coefficients of the Q subbands includes:
- Manner 1 Determine the power scaling coefficient of the uplink signal according to the smallest power scaling coefficient among the power scaling coefficients of the Q subbands; or,
- Manner 2 Determine the power scaling coefficient of the uplink signal according to the power scaling coefficient of a specific subband in the Q subbands.
- the terminal calculates a power scaling factor for each subband in all subbands of the entire bandwidth, and then uses the smallest value among the multiple power scaling coefficients as the power scaling of the uplink signal coefficient.
- the power scaling factor of the uplink signal is equal to the minimum value among the power scaling coefficients of each subband
- the entire bandwidth of the uplink signal uses the minimum value among the power scaling coefficients of each subband, that is, the uplink signal.
- the signal used in each sub-band is the minimum value of the power scaling factor of each sub-band.
- the terminal uses the power scaling factor of a specific subband in the multiple subbands as the power scaling factor of the uplink signal.
- the power scaling factor of the uplink signal is equal to the power scaling factor of a specific subband, and the uplink signal uses the power scaling factor of the specific subband throughout the bandwidth, that is, the uplink signal is used in each subband. Is the power scaling factor of the specific subband.
- the specific subband includes but is not limited to any one of the following:
- the subband pre-appointed by the terminal and the network side device for example: the subband with the smallest label;
- the subband indicated by the network side device through the first signaling is the subband indicated by the network side device through the first signaling
- the terminal indicates the subband to the network side device through the second signaling.
- the first power scaling factor includes the power scaling factor of the uplink signal, and Q>1
- the number of non-zero antenna ports is the number of non-zero antenna ports in each subband
- Determining the first power scaling factor for at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q includes:
- the power scaling factor of the uplink signal is determined according to the smallest number of non-zero antenna ports among the number of non-zero antenna ports of each subband.
- the terminal determines the power scaling factor of the uplink signal according to the smallest number of non-zero antenna ports among the number of non-zero antenna ports of each subband.
- the power scaling factor of the uplink signal is proportional to the minimum number of non-zero antenna ports.
- the number of subbands Q is 2, respectively the first subband and the second subband, the number of non-zero antenna ports of the first subband is 1, and the number of non-zero antenna ports of the second subband is 2, then according to The number of non-zero antenna ports in the first subband determines the power scaling factor of the uplink signal.
- the determining the power scaling factor of the uplink signal according to the smallest number of non-zero antenna ports in the number of non-zero antenna ports of each subband includes:
- N min is the smallest number of non-zero antenna ports among the number of non-zero antenna ports in each subband
- ⁇ is the power scaling factor of the uplink signal
- M is the maximum number of SRS ports that can be included in a sounding reference signal SRS resource supported by the terminal, the number of SRS ports included in the SRS resource indicated by the SRS resource indicator SRI, and the number of SRS resources included in the SRS resource corresponding to the transmission mode of the uplink signal
- the number of subbands Q is 2, respectively the first subband and the second subband, the number of non-zero antenna ports of the first subband is 1, and the number of non-zero antenna ports of the second subband is 2, then N min is 1, and if the value of M is 2, the power scaling factor ⁇ of the uplink signal is 1/2.
- the determining the transmission power of the uplink signal according to the first power scaling factor includes:
- the first power scaling factor determine the transmit power of the first non-zero antenna port on a non-zero transmission RE.
- the first non-zero antenna port is a non-zero antenna port with the largest number of non-zero transmitted REs among the number of non-zero transmitted REs corresponding to each non-zero antenna port.
- the transmit power of the uplink signal includes the transmit power of the first non-zero antenna port on a non-zero transmission RE; the terminal needs to determine the number of non-zero transmission REs corresponding to each non-zero antenna port, and The first power scaling factor determines the transmit power of the first non-zero antenna port with the largest number of non-zero transmitted REs on one RE.
- each non-zero antenna port corresponds to multiple REs, including REs with zero power transmission of uplink signals and REs with non-zero power transmission of uplink signals.
- the number of REs with non-zero power transmission is the uplink corresponding to each non-zero antenna port.
- the RE corresponding to each antenna port may be understood as the time-frequency resource or frequency resource or time-domain resource corresponding to the antenna port.
- the above-mentioned number of REs refers to the number of REs on a time domain unit.
- the time domain unit may be a symbol or a slot.
- the determining the transmission power of the uplink signal further includes:
- Case 1 According to the transmit power of the first non-zero antenna port on a non-zero transmission RE, it is determined that the first non-zero antenna port is on all non-zero transmission REs of the first non-zero antenna port Transmit power; or,
- Case 2 According to the transmit power of the first non-zero antenna port on a non-zero transmission RE, determine the transmission power of other non-zero antenna ports on each non-zero transmission RE of the other non-zero antenna ports ;
- the other non-zero antenna ports are non-zero antenna ports other than the non-zero antenna port with the largest number of REs for the uplink signal.
- the transmit power of the uplink signal includes the transmit power of the first non-zero antenna port on all non-zero transmitted REs of the first non-zero antenna port; according to the first non-zero antenna port The transmit power of the port on a non-zero transmission RE.
- This transmission power can be used as the transmission power of the first non-zero antenna port on each non-zero transmission RE of the port.
- the first non-zero transmission power The transmit power of the zero antenna port on all non-zero transmission REs of the first non-zero antenna port is equal.
- the transmission power of the first non-zero antenna port on all non-zero transmission REs of the port that is, the total transmission power of the first non-zero antenna port is equal to the first non-zero antenna port The sum of the transmit power on each non-zero transmitted RE on this port.
- the uplink signal is a PUSCH signal
- the entire bandwidth of the PUSCH has only non-zero antenna port 0 and non-zero antenna port 1
- the number of REs for non-zero transmission of non-zero antenna port 0 is greater than that of non-zero antenna port 1
- the transmission power of non-zero antenna port 0 on a non-zero transmission RE is P1
- the non-zero antenna port 0 is in any non-zero antenna port 0.
- the transmit power on the RE with zero transmission is P1.
- the transmit power of the uplink signal includes the transmit power of other non-zero antenna ports on each non-zero transmitted RE of the other non-zero antenna ports;
- the transmit power on the non-zero transmission RE can be used as the transmit power of the other non-zero antenna ports on each of their respective non-zero transmission REs.
- the other non-zero antenna ports are on each of their respective REs.
- the transmit power on the REs of a non-zero transmission are all equal and equal to the transmit power of the first non-zero antenna port on the REs of the non-zero transmission.
- the number of the other non-zero antenna ports may be one or more.
- each of the other non-zero antenna ports is The transmit power on each RE of each non-zero transmission is the same.
- the uplink signal is a PUSCH signal
- the entire bandwidth of the PUSCH has only non-zero antenna port 0 and non-zero antenna port 1
- the number of REs for non-zero transmission of non-zero antenna port 0 is greater than that of non-zero antenna port 1
- the transmission power of the non-zero antenna port 0 on a non-zero transmission RE is P1
- the non-zero antenna port 1 is at any non-zero antenna port 0.
- the transmit power on the RE with zero transmission is P1.
- the determining the transmission power of the uplink signal further includes:
- the transmit power of the first non-zero antenna port on all non-zero transmitted REs of the first non-zero antenna port it is determined that other non-zero antenna ports included in the transmit power of the uplink signal are in the other non-zero antenna ports.
- the transmit power on all non-zero transmitted REs at the zero antenna port it is determined that other non-zero antenna ports included in the transmit power of the uplink signal are in the other non-zero antenna ports.
- the transmit power of the uplink signal includes the transmit power of other non-zero antenna ports on all non-zero transmitted REs of the other non-zero antenna ports; according to the first non-zero antenna port in the first
- the transmission power on all non-zero transmission REs of non-zero antenna ports is used as the transmission power of other non-zero antenna ports on all their respective non-zero transmission REs.
- the total transmission power of the uplink signal is equal to the sum of the transmission power on all non-zero transmission REs of each non-zero antenna port.
- the step 13 includes:
- each non-zero antenna port corresponding to each sub-band in the Q sub-bands on each non-zero transmission RE it is determined that each non-zero antenna port corresponding to the Q sub-bands transmits at each non-zero antenna port.
- the transmit power on the RE it is determined that each non-zero antenna port corresponding to the Q sub-bands transmits at each non-zero antenna port.
- the transmit power of the uplink signal includes the transmit power of each non-zero antenna port corresponding to the Q subbands on each non-zero transmission RE; the terminal separately determines the REs of each non-zero antenna port for each non-zero transmission In each subband, the smallest transmission power among the transmission powers of the non-zero transmission REs using the non-zero antenna ports of the subband is used as the transmission power of the non-zero antenna ports of the subband in their respective subbands.
- the transmit power on each RE it can be further determined that the total transmit power of a non-zero antenna port is equal to the sum of the transmit powers of all REs for non-zero transmission of this non-zero antenna port; it can be further determined that the total transmit power of the uplink signal The transmit power is equal to the sum of the total transmit power of each non-zero antenna port.
- the upper line signal is PUSCH as an example, assuming that the transmission power of each RE of non-zero antenna port 0 is p1, and the transmission power of per RE of non-zero antenna port 1 is p2, p1 ⁇ p2, assuming that PUSCH in subband 1
- the non-zero antenna ports are non-zero antenna port 0 and non-zero antenna port 1, so the transmission power of each RE with non-zero PUSCH transmission in subband 1 of non-zero antenna port 0 and non-zero antenna port 1 is p1.
- the antenna port for PUSCH non-zero transmission in subband 2 is non-zero antenna port 1
- the transmission power of non-zero antenna port 1 in subband 2 in each RE with PUSCH non-zero transmission is p2.
- the step 13 includes:
- the transmission power of the uplink signal includes the transmission power of the uplink signal in each subband; when Q is 1, the power scaling factor of the uplink signal in 1 subband is used to determine that the uplink signal is in the The transmit power of the subband. When Q>1, the transmit power of the uplink signal in the subband is determined according to the power scaling factor of the uplink signal in each subband. Wherein, the total transmission power of the uplink signal is equal to the sum of the transmission power of each subband in the subband.
- the step 13 further includes any one of the following:
- Item 1 Determine the transmit power of the uplink signal in each subband according to the total transmit power of the uplink signal and the number of subbands Q, Q>1;
- the second item determine the transmission power of the uplink signal at each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports, where the number of non-zero antenna ports is multiple.
- the transmit power of the uplink signal when Q>1, includes the transmit power of the uplink signal in each subband, and is based on the total transmit power of the uplink signal and all non-transmitting power of the entire bandwidth.
- the number of subbands for zero transmission determines the transmit power of the uplink signal in each subband.
- the sum of the transmission power of the uplink signal in each subband is equal to the total transmission power of the uplink signal.
- the transmit power of the uplink signal includes the transmit power of the uplink signal at each non-zero antenna port;
- the total transmission power and the number of all non-zero transmission antenna ports in the entire bandwidth determine the transmission power of the uplink signal at each non-zero antenna port.
- the sum of the transmission power of the uplink signal at each non-zero antenna port is equal to the total transmission power of the uplink signal.
- determining the transmission power of the uplink signal in each subband according to the total transmission power of the uplink signal and the number of subbands Q includes:
- the transmission power of the uplink signal is equally divided into each subband.
- the total transmission power of the uplink signal divided by the number of subbands Q is the transmission power of the uplink signal in each subband, that is, the transmission power of each subband is the same. If the number of non-zero antenna ports in a subband is different, the transmit power of each antenna port in each subband may be different.
- the precoding matrix of the first subband is The precoding matrix of the second subband is Then the number of non-zero antenna ports in the first subband of PUSCH is 1 (the first antenna port is a non-zero antenna port), and the number of non-zero antenna ports in the second subband is 2 (both antenna ports are non-zero).
- the UE determines the power scaling factor of the uplink signal according to the minimum of the number of non-zero antenna ports 1 and 2 of the two subbands (that is, according to the smallest non-zero antenna port number among the number of non-zero antenna ports in each subband)
- determining the transmission power of the uplink signal at each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports includes any one of the following:
- Case 1 According to the total transmission power of the uplink signal and the number of non-zero antenna ports, the transmission power of the uplink signal is evenly divided to each non-zero antenna port;
- Case 2 According to the total transmit power of the uplink signal and the proportion of the number of non-zero antenna ports corresponding to each subband to the number of all non-zero antenna ports corresponding to each subband, it is determined that the uplink signal is in each non-zero antenna port. The transmit power of the zero antenna port;
- Case 3 According to the total transmit power of the uplink signal and the proportion of the non-zero elements corresponding to each non-zero antenna port in the precoding matrix corresponding to each subband among all the non-zero elements of the precoding matrix, determine the The transmit power of the uplink signal at each non-zero antenna port.
- the total transmit power of the uplink signal is divided by the number of non-zero antenna ports to obtain the transmit power of each non-zero antenna port, that is, the transmit power of each non-zero antenna port is the same
- the transmission power of each sub-band is the sum of the transmission power of all non-zero antenna ports in the sub-band, and the transmission power of each sub-band is different.
- the precoding matrix of the first subband is The precoding matrix of the second subband is Then the number of non-zero antenna ports in the first subband of PUSCH is 1 (the first antenna port is a non-zero antenna port), and the number of non-zero antenna ports in the second subband is 2 (both antenna ports are non-zero).
- the UE determines the power scaling factor of the uplink signal according to the minimum of the number of non-zero antenna ports 1 and 2 of the two subbands (that is, according to the smallest non-zero antenna port number among the number of non-zero antenna ports in each subband)
- the precoding matrix of the first subband is The precoding matrix of the second subband is Then the number of non-zero antenna ports in the first subband of PUSCH is 1 (the first antenna port is a non-zero antenna port), and the number of non-zero antenna ports in the second subband is 2 (both antenna ports are non-zero).
- Antenna port according to formula three
- PUSCH contains 2 subbands (subband 1 and subband 2)
- the number of non-zero antenna ports in subband 1 is 4, which are 1 non-zero antenna port 0 and 3 non-zero antenna port 1 respectively
- the proportion of non-zero antenna port 0 in subband 1 is 1/4
- the proportion of non-zero antenna port 1 is 3/4
- the terminal is based on the total transmit power of the uplink signal and non-zero antenna port 0
- the proportion of 1/4 occupied is to determine the transmit power of the non-zero antenna port 0 of subband 1.
- the terminal determines subband 1 according to the total transmit power of the uplink signal and the 3/4 proportion of non-zero antenna port 1
- the transmit power of each non-zero antenna port 1 in sub-band 2; the transmit power of each non-zero antenna port in sub-band 2 is determined in sub-band 2 according to the above method.
- subband 1 corresponds to 4 non-zero antenna ports in the precoding matrix
- 4 non-zero antenna ports correspond to non-zero elements Are 1, 0, 0, and 1, then the proportion of non-zero element 0 contained in the precoding matrix corresponding to subband 1 is 1/2, and the proportion of non-zero element 1 is 1/2, then according to the uplink signal Determine the transmission power of the non-zero antenna port where the non-zero element is 0; determine the total transmission power of the uplink signal and the 1/2 ratio of the non-zero element 1
- the subband 2 determines the transmit power of each non-zero antenna port in the subband 2 according to the above method.
- determining the transmission power of the uplink signal at each non-zero antenna port is not limited to the above three cases.
- the step 13 further includes:
- the uplink signal included in the transmission power of the uplink signal corresponds to each non-zero antenna port in the Q subbands. Zero transmit power on the antenna port.
- the transmission power of the uplink signal includes the transmission power of the uplink signal on each non-zero antenna port corresponding to the Q subbands; when Q is 1, according to the transmission of the uplink signal in 1 subband Power, which determines the transmit power of the uplink signal on each non-zero antenna port of the subband. When Q is greater than 1, the transmission power of the uplink signal on each non-zero antenna port of the subband is determined according to the transmission power of the uplink signal in each subband.
- the transmit power of the uplink signal in the Q subbands and the number of non-zero antenna ports corresponding to the Q subbands determine the value of the uplink signal on each non-zero antenna port corresponding to the Q subbands Transmission power, including any of the following:
- the first method according to the transmission power of the uplink signal in the Q subbands and the number of non-zero antenna ports corresponding to the Q subbands, the transmission power of the uplink signal is equally divided among the non-zero antenna ports;
- the second type Determine according to the transmission power of the uplink signal in the Q subbands and the proportion of the number of non-zero antenna ports corresponding to the Q subbands in the number of all non-zero antenna ports corresponding to the Q subbands The transmit power of the uplink signal on each non-zero antenna port corresponding to each subband, Q>1;
- the third type according to the transmission power of the uplink signal in the Q subbands and the non-zero elements corresponding to each non-zero antenna port included in the precoding matrix corresponding to the Q subbands, all non-zero elements in the precoding matrix Determine the transmit power of the uplink signal on each non-zero antenna port corresponding to the Q subbands.
- the transmission power of the uplink signal in a subband is divided by the number of non-zero antenna ports in the subband to obtain the transmission power of each non-zero antenna port in the subband, namely The transmit power of each non-zero antenna port of the subband is the same.
- Q>1 divide the transmit power of the uplink signal in each subband by the number of non-zero antenna ports in the subband to obtain the transmit power of each non-zero antenna port in the subband, that is, the subband
- the transmit power of each non-zero antenna port is the same.
- the number of non-zero antenna ports in the subband is 4, which are 1 non-zero antenna port 0 and 3 non-zero antenna ports 1, respectively, and then non-zero antenna ports in this subband Antenna port 0 occupies 1/4, non-zero antenna port 1 occupies 3/4, then the terminal according to the uplink signal transmission power in this subband and non-zero antenna port 0 1/4 Ratio, determine the transmit power of the non-zero antenna port 0 of the subband; the terminal determines each of the subbands according to the transmit power of the uplink signal in the subband and the 3/4 proportion of the non-zero antenna port 1 Transmit power of non-zero antenna port 1.
- Q>1 the method for determining the transmit power of each non-zero antenna port of each subband is similar to the above method, and will not be repeated here.
- the subband corresponds to The ratio of the non-zero element 0 contained in the precoding matrix is 1/2, and the ratio of the non-zero element 1 is 1/2, then according to the transmission power of the uplink signal in the subband and 1/2 of the non-zero element 0 Ratio, determine the transmit power of the non-zero antenna port with a non-zero element of 0; determine the non-zero antenna with a non-zero element of 1 according to the transmission power of the uplink signal in the subband and the ratio of 1/2 of the non-zero element of 1 The transmit power of the port.
- the subband 2 determines the transmit power of each non-zero antenna port in the subband 2 according to the above method.
- Q>1 the method for determining the transmit power of each non-zero antenna port of each subband is similar to the above method, and will not be repeated here.
- the transmission power of the uplink signal in Q subbands is the transmission power of the uplink signal in each subband.
- the transmit power of the uplink signal in each subband may be determined according to the power scaling factor of the above signal in each subband, and the power scaling factor of each subband may be determined according to the number of non-zero antenna ports in each subband.
- the power scaling factor of the uplink signal in the Q subbands may specifically be the power scaling factor of the uplink signal in each subband.
- the embodiment of the present disclosure also provides a method for determining scheduling information, which is applied to a network side device, and specifically includes the following steps:
- Step 21 Determine scheduling information about the uplink signal according to a preset uplink signal transmission power control rule, where the scheduling information indicates at least Q subband related information, and Q is a positive integer.
- the scheduling information is information indicating how the uplink signal should be transmitted, and the scheduling information may include but is not limited to at least one of the following information: precoding matrix indication information, transmission stream number indication information, and uplink signal Resource allocation information and SRS resource indication information.
- the related information of the Q subbands may be a precoding matrix corresponding to the subbands. It can also be the number of transport streams corresponding to the subband. It may also be SRS resource indication information corresponding to the subband. It may also be a combination of precoding matrix, number of transmission streams, SRS resource indication information, and so on. Among them, Q is a positive integer greater than or equal to 1.
- the uplink signal includes but is not limited to at least one of the following: PUSCH signal, DMRS, PUCCH signal, PRACH signal, SRS, etc.
- Step 22 Send the scheduling information to the terminal
- the transmission power control rule of the uplink signal includes:
- the terminal determines the first power scaling factor according to the scheduling information
- the terminal determines the transmit power of the uplink signal according to the first power scaling factor.
- the network side device sends the scheduling information to the terminal, so that the terminal determines the first power scaling factor according to the scheduling information, and the terminal determines the transmission power of the uplink signal according to the first power scaling factor, In order to solve the problem that the transmission power of the uplink signal cannot be determined when the uplink signal is subjected to frequency selective precoding in the related art.
- the scheduling information about the uplink signal is determined according to the preset uplink signal transmission power control rule.
- the scheduling information indicates at least Q subband related information, and Q is a positive integer, and all
- the scheduling information is sent to the terminal, so that the terminal determines the first power scaling factor according to the scheduling information, and the terminal determines the transmission power of the uplink signal according to the first power scaling factor, so as to solve the problem of the uplink signal in the related technology.
- the issue of the transmission power of the uplink signal cannot be determined.
- the method before sending the scheduling information to the terminal, the method further includes:
- the terminal determining the first power scaling factor according to the scheduling information includes:
- the terminal determines the first power scaling factor according to the scheduling information and the transmission power control rule of the uplink signal.
- the terminal determining the first power scaling factor according to the scheduling information includes:
- the terminal determines at least one of a precoding matrix, the number of non-zero antenna ports, and the number of subbands Q for non-zero transmission of the uplink signal according to the scheduling information;
- the terminal determines the first power scaling factor according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q.
- the first power scaling coefficient includes at least one of the power scaling coefficients of Q subbands and the power scaling coefficient of the uplink signal.
- the terminal performs according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q Item, determining the first power scaling factor, including:
- the terminal determines the power scaling coefficients of the Q subbands according to any one of the following formulas:
- ⁇ sub is the power scaling factor of the Q subbands
- N is the number of non-zero antenna ports
- M sub is the number of said subbands
- M is the maximum number of SRS ports that can be included in a sounding reference signal SRS resource supported by the terminal, the number of SRS ports included in the SRS resource indicated by the SRS resource indicator SRI, and the SRS included in the SRS resource corresponding to the transmission mode of the uplink signal One of the number of ports, the maximum number of antenna ports that can be supported by the uplink signal transmission, and the number of antenna ports corresponding to the uplink signal transmission.
- the terminal performs according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q Item, after determining the first power scaling factor, the uplink signal transmit power control rule further includes:
- the terminal determines the power scaling coefficient of the uplink signal according to the power scaling coefficients of the Q subbands.
- the terminal determining the power scaling coefficient of the uplink signal according to the power scaling coefficients of the Q subbands includes:
- the terminal determines the power scaling coefficient of the uplink signal according to the smallest power scaling coefficient among the power scaling coefficients of the Q subbands; or,
- the terminal determines the power scaling coefficient of the uplink signal according to the power scaling coefficient of the specific subband in the Q subbands.
- the terminal According to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q, determining the first power scaling factor includes:
- the terminal determines the power scaling factor of the uplink signal according to the smallest number of non-zero antenna ports among the number of non-zero antenna ports of each subband.
- the terminal determining the transmission power of the uplink signal according to the first power scaling factor further includes:
- the terminal determines the first non-zero antenna port according to the first power scaling factor and the number of resource units REs for non-zero transmission of the uplink signal corresponding to each non-zero antenna port;
- the terminal determines the transmit power of the first non-zero antenna port on a non-zero transmission RE according to the first power scaling factor.
- the terminal determining the transmission power of the uplink signal further includes:
- the terminal determines the transmission of the first non-zero antenna port on all non-zero transmission REs of the first non-zero antenna port Power; or,
- the terminal determines, according to the transmission power of the first non-zero antenna port on a non-zero transmission RE of the other non-zero antenna port, the transmission power of the other non-zero antenna port on each non-zero transmission RE of the other non-zero antenna port;
- the other non-zero antenna ports are non-zero antenna ports other than the non-zero antenna port with the largest number of REs.
- the terminal determining the transmission power of the uplink signal according to the first power scaling factor includes:
- the terminal determines the transmit power of each non-zero antenna port on each non-zero transmission RE of each non-zero antenna port according to the first power scaling factor
- the terminal determines the minimum transmit power of each non-zero antenna port corresponding to each sub-band in the Q sub-bands in each non-zero transmission RE on each non-zero antenna port.
- the terminal determining the transmission power of the uplink signal further includes any one of the following:
- the terminal determines the transmission power of the uplink signal in each subband according to the total transmission power of the uplink signal and the number of subbands Q, Q>1;
- the terminal determines the transmission power of the uplink signal at each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports, where the number of non-zero antenna ports is multiple.
- the terminal determining the transmission power of the uplink signal in each subband according to the total transmission power of the uplink signal and the number of subbands Q includes:
- the terminal equally divides the transmission power of the uplink signal into each subband according to the total transmission power of the uplink signal and the number of subbands Q;
- the terminal determining the transmission power of the uplink signal at each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports includes any one of the following:
- the terminal equally divides the transmission power of the uplink signal to each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports;
- the terminal determines that the uplink signal is at each non-zero antenna port.
- the transmit power of the port
- the terminal determines the uplink signal according to the total transmit power of the uplink signal and the proportion of the non-zero element corresponding to each non-zero antenna port in the precoding matrix corresponding to each subband among all the non-zero elements of the precoding matrix The transmit power at each non-zero antenna port.
- the terminal determines that the transmit power of the uplink signal is also Include any of the following:
- the terminal equally divides the transmission power of the uplink signal to each non-zero antenna port according to the transmission power of the uplink signal in the Q subbands and the number of non-zero antenna ports corresponding to the Q subbands;
- the terminal determines the uplink signal according to the transmission power of the uplink signal in the Q subbands and the proportion of the number of non-zero antenna ports corresponding to the Q subbands in the number of all non-zero antenna ports corresponding to the Q subbands.
- the terminal according to the transmit power of the uplink signal in the Q subbands and the proportion of the non-zero elements corresponding to each non-zero antenna port included in the precoding matrix corresponding to the Q subbands among all the non-zero elements of the precoding matrix To determine the transmit power of the uplink signal on each non-zero antenna port corresponding to the Q subbands.
- the embodiment performed by the terminal in the uplink signal transmission power control rule is the same as that performed by the terminal in the above method for determining the uplink power applied to the terminal.
- all the implementation manners of the foregoing embodiment are applicable to the embodiment of the scheduling information determining method applied to the network side device, and can also achieve the same technical effect as it, which will not be repeated here.
- an embodiment of the present disclosure also provides a terminal 30, including:
- the first obtaining module 31 is configured to obtain scheduling information about uplink signals, where the scheduling information indicates at least Q subband related information, and Q is a positive integer;
- the first determining module 32 is configured to determine a first power scaling factor according to the scheduling information
- the second determining module 33 is configured to determine the transmission power of the uplink signal according to the first power scaling factor.
- the terminal 30 further includes:
- the second acquiring module is configured to acquire the transmission power control rule of the uplink signal
- the first determining module 32 includes:
- the first determining module 32 includes:
- a first determining unit configured to determine at least one of a precoding matrix, the number of non-zero antenna ports, and the number of subbands Q for non-zero transmission of the uplink signal according to the scheduling information;
- the second determining unit is configured to determine the first power scaling factor according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q.
- the first power scaling coefficient includes at least one of the power scaling coefficients of Q subbands and the power scaling coefficient of the uplink signal.
- the second determining unit includes:
- ⁇ sub is the power scaling factor of the Q subbands
- N is the number of non-zero antenna ports
- M sub is the number of said subbands
- M is the maximum number of SRS ports that can be included in a sounding reference signal SRS resource supported by the terminal, the number of SRS ports included in the SRS resource indicated by the SRS resource indicator SRI, and the SRS included in the SRS resource corresponding to the transmission mode of the uplink signal One of the number of ports, the maximum number of antenna ports that can be supported by the uplink signal transmission, and the number of antenna ports corresponding to the uplink signal transmission.
- the method further includes:
- the first processing module is configured to determine the power scaling coefficient of the uplink signal according to the power scaling coefficients of the Q subbands.
- the first processing module includes:
- the first processing unit is configured to determine the power scaling coefficient of the uplink signal according to the smallest power scaling coefficient among the power scaling coefficients of the Q subbands; or,
- the second processing unit is configured to determine the power scaling coefficient of the uplink signal according to the power scaling coefficient of a specific subband in the Q subbands.
- the first Two determining units including:
- the first determining subunit is configured to determine the power scaling factor of the uplink signal according to the smallest number of non-zero antenna ports among the number of non-zero antenna ports of each subband.
- the second determining module further includes:
- a third determining unit configured to determine the first non-zero antenna port according to the first power scaling factor and the number of resource units REs for non-zero transmission of the uplink signal corresponding to each non-zero antenna port;
- the fourth determining unit is configured to determine the transmit power of the first non-zero antenna port on a non-zero transmission RE according to the first power scaling factor.
- the second determining module 33 further includes:
- the fifth determining unit is configured to determine all the non-zero values of the first non-zero antenna port in the first non-zero antenna port according to the transmit power of the first non-zero antenna port on a non-zero transmission RE.
- the transmit power on the transmitted RE or,
- the sixth determining unit is configured to determine each non-zero transmission of the other non-zero antenna port on the other non-zero antenna port according to the transmit power of the first non-zero antenna port on a non-zero transmission RE The transmit power on the RE;
- the other non-zero antenna ports are non-zero antenna ports other than the non-zero antenna port with the largest number of REs.
- the second determining module 33 includes:
- a seventh determining unit configured to determine the transmit power of each non-zero antenna port on each non-zero transmission RE of each non-zero antenna port according to the first power scaling factor
- the eighth determining unit is configured to determine each non-zero corresponding to each of the Q sub-bands according to the smallest transmit power among the transmit powers of each non-zero antenna port corresponding to each of the Q sub-bands on each non-zero transmitted RE. The transmit power of the antenna port on each non-zero transmission RE.
- the second determining module 33 further includes any one of the following:
- the ninth determining unit is configured to determine the transmission power of the uplink signal in each subband according to the total transmission power of the uplink signal and the number of subbands Q, Q>1;
- the tenth determining unit is configured to determine the transmission power of the uplink signal at each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports, where the number of non-zero antenna ports is multiple .
- the ninth determining unit includes:
- a second determining subunit configured to equally divide the transmission power of the uplink signal into each subband according to the total transmission power of the uplink signal and the number of subbands Q;
- the tenth determining unit includes any one of the following:
- a third determining subunit configured to equally divide the transmission power of the uplink signal to each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports;
- the fourth determining subunit is used to determine the ratio of the total transmit power of the uplink signal and the number of non-zero antenna ports corresponding to each subband to the number of all non-zero antenna ports corresponding to each subband.
- the fifth determining subunit is used to determine whether the non-zero elements corresponding to each non-zero antenna port in the precoding matrix corresponding to each subband are among all the non-zero elements of the precoding matrix according to the total transmit power of the uplink signal and Ratio to determine the transmit power of the uplink signal at each non-zero antenna port.
- the second determining module 33 further includes any one of the following item:
- An eleventh determining unit configured to equally divide the transmission power of the uplink signal to each non-zero antenna port according to the transmission power of the uplink signal in the Q subbands and the number of non-zero antenna ports corresponding to the Q subbands ;
- the twelfth determining unit is used to determine the number of non-zero antenna ports corresponding to the Q subbands based on the transmission power of the uplink signal in the Q subbands and the number of non-zero antenna ports corresponding to the Q subbands. Determine the transmit power of the uplink signal on each non-zero antenna port corresponding to each subband, Q>1;
- the thirteenth determining unit is configured to display the non-zero elements corresponding to each non-zero antenna port included in the precoding matrix corresponding to the Q subbands and the transmission power of the uplink signal in the Q subbands in the precoding matrix The proportion of all non-zero elements determines the transmit power of the uplink signal on each non-zero antenna port corresponding to the Q subbands.
- this terminal embodiment is a terminal corresponding to the above-mentioned uplink power determination method applied to the terminal, and all the implementation manners of the above-mentioned embodiment are applicable to the terminal embodiment, and can achieve the same technical effect as that. I won't repeat them here.
- an embodiment of the present disclosure also provides a network side device 40, including:
- the third determining module 41 is configured to determine scheduling information about the uplink signal according to a preset transmission power control rule of the uplink signal, where the scheduling information indicates at least Q subband related information, and Q is a positive integer;
- the first sending module 42 is configured to send the scheduling information to the terminal;
- the transmission power control rule of the uplink signal includes:
- the terminal determines the first power scaling factor according to the scheduling information
- the terminal determines the transmit power of the uplink signal according to the first power scaling factor.
- it also includes:
- a second sending module configured to send the transmission power control rule of the uplink signal to the terminal
- the terminal determining the first power scaling factor according to the scheduling information includes:
- the terminal determines the first power scaling factor according to the scheduling information and the transmission power control rule of the uplink signal.
- the terminal determining the first power scaling factor according to the scheduling information includes:
- the terminal determines at least one of a precoding matrix, the number of non-zero antenna ports, and the number of subbands Q for non-zero transmission of the uplink signal according to the scheduling information;
- the terminal determines the first power scaling factor according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q.
- the first power scaling coefficient includes at least one of the power scaling coefficients of Q subbands and the power scaling coefficient of the uplink signal.
- the terminal performs according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q Item, determining the first power scaling factor, including:
- the terminal determines the power scaling coefficients of the Q subbands according to any one of the following formulas:
- ⁇ sub is the power scaling factor of the Q subbands
- N is the number of non-zero antenna ports
- M sub is the number of said subbands
- M is the maximum number of SRS ports that can be included in a sounding reference signal SRS resource supported by the terminal, the number of SRS ports included in the SRS resource indicated by the SRS resource indicator SRI, and the SRS included in the SRS resource corresponding to the transmission mode of the uplink signal One of the number of ports, the maximum number of antenna ports that can be supported by the uplink signal transmission, and the number of antenna ports corresponding to the uplink signal transmission.
- the terminal performs according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q Item, after determining the first power scaling factor, the uplink signal transmit power control rule further includes:
- the terminal determines the power scaling coefficient of the uplink signal according to the power scaling coefficients of the Q subbands.
- the terminal determining the power scaling coefficient of the uplink signal according to the power scaling coefficients of the Q subbands includes:
- the terminal determines the power scaling coefficient of the uplink signal according to the smallest power scaling coefficient among the power scaling coefficients of the Q subbands; or,
- the terminal determines the power scaling coefficient of the uplink signal according to the power scaling coefficient of the specific subband in the Q subbands.
- the terminal According to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q, determining the first power scaling factor includes:
- the terminal determines the power scaling factor of the uplink signal according to the smallest number of non-zero antenna ports among the number of non-zero antenna ports of each subband.
- the terminal determining the transmission power of the uplink signal according to the first power scaling factor further includes:
- the terminal determines the first non-zero antenna port according to the first power scaling factor and the number of resource units REs for non-zero transmission of the uplink signal corresponding to each non-zero antenna port;
- the terminal determines the transmit power of the first non-zero antenna port on a non-zero transmission RE according to the first power scaling factor.
- the terminal determining the transmission power of the uplink signal further includes:
- the terminal determines the transmission of the first non-zero antenna port on all non-zero transmission REs of the first non-zero antenna port Power; or,
- the terminal determines, according to the transmission power of the first non-zero antenna port on a non-zero transmission RE of the other non-zero antenna port, the transmission power of the other non-zero antenna port on each non-zero transmission RE of the other non-zero antenna port;
- the other non-zero antenna ports are non-zero antenna ports other than the non-zero antenna port with the largest number of REs.
- the terminal determining the transmission power of the uplink signal according to the first power scaling factor includes:
- the terminal determines the transmit power of each non-zero antenna port on each non-zero transmission RE of each non-zero antenna port according to the first power scaling factor
- the terminal determines the minimum transmit power of each non-zero antenna port corresponding to each sub-band in the Q sub-bands in each non-zero transmission RE on each non-zero antenna port.
- the terminal determining the transmission power of the uplink signal further includes any one of the following:
- the terminal determines the transmission power of the uplink signal in each subband according to the total transmission power of the uplink signal and the number of subbands Q, Q>1;
- the terminal determines the transmission power of the uplink signal at each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports, where the number of non-zero antenna ports is multiple.
- the terminal determining the transmission power of the uplink signal in each subband according to the total transmission power of the uplink signal and the number of subbands Q includes:
- the terminal equally divides the transmission power of the uplink signal into each subband according to the total transmission power of the uplink signal and the number of subbands Q;
- the terminal determining the transmission power of the uplink signal at each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports includes any one of the following:
- the terminal equally divides the transmission power of the uplink signal to each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports;
- the terminal determines that the uplink signal is at each non-zero antenna port.
- the transmit power of the port
- the terminal determines the uplink signal according to the total transmit power of the uplink signal and the proportion of the non-zero element corresponding to each non-zero antenna port in the precoding matrix corresponding to each subband among all the non-zero elements of the precoding matrix The transmit power at each non-zero antenna port.
- the terminal determines that the transmit power of the uplink signal is also Include any of the following:
- the terminal equally divides the transmission power of the uplink signal to each non-zero antenna port according to the transmission power of the uplink signal in the Q subbands and the number of non-zero antenna ports corresponding to the Q subbands;
- the terminal determines the uplink signal according to the transmission power of the uplink signal in the Q subbands and the proportion of the number of non-zero antenna ports corresponding to the Q subbands in the number of all non-zero antenna ports corresponding to the Q subbands.
- the terminal according to the transmit power of the uplink signal in the Q subbands and the proportion of the non-zero elements corresponding to each non-zero antenna port included in the precoding matrix corresponding to the Q subbands among all the non-zero elements of the precoding matrix To determine the transmit power of the uplink signal on each non-zero antenna port corresponding to the Q subbands.
- this embodiment of the network side device is a network side device corresponding to the foregoing scheduling information determination method applied to the network side device, and all the implementation manners of the foregoing embodiment are applicable to this embodiment of the network side device. It can achieve the same technical effect, so I won't repeat it here.
- an embodiment of the present disclosure also provides a terminal, including:
- the transceiver 54 is connected to the bus interface 52, and is used to receive and send data under the control of the processor 51, specifically:
- the scheduling information indicates at least Q subband related information, and Q is a positive integer
- the processor 51 implements the following steps when executing the computer program:
- the processor 51 implements the following steps when executing the computer program:
- the first power scaling factor is determined according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q.
- the first power scaling coefficient includes at least one of the power scaling coefficients of Q subbands and the power scaling coefficient of the uplink signal.
- the processor 51 implements the following steps when executing the computer program:
- ⁇ sub is the power scaling factor of the Q subbands
- N is the number of non-zero antenna ports
- M sub is the number of said subbands
- M is the maximum number of SRS ports that can be included in a sounding reference signal SRS resource supported by the terminal, the number of SRS ports included in the SRS resource indicated by the SRS resource indicator SRI, and the SRS included in the SRS resource corresponding to the transmission mode of the uplink signal One of the number of ports, the maximum number of antenna ports that can be supported by the uplink signal transmission, and the number of antenna ports corresponding to the uplink signal transmission.
- the processor 51 implements the following steps when executing the computer program:
- the processor 51 implements the following steps when executing the computer program:
- the power scaling coefficient of the uplink signal is determined according to the power scaling coefficient of the specific subband in the Q subbands.
- the processor 51 implements the following steps when executing the computer program:
- the power scaling factor of the uplink signal is determined according to the smallest number of non-zero antenna ports among the number of non-zero antenna ports of each subband.
- the processor 51 implements the following steps when executing the computer program:
- the first power scaling factor determine the transmit power of the first non-zero antenna port on a non-zero transmission RE.
- the processor 51 implements the following steps when executing the computer program:
- the transmit power of the first non-zero antenna port on a non-zero transmission RE determine the transmission power of the first non-zero antenna port on all non-zero transmission REs of the first non-zero antenna port ;or,
- the other non-zero antenna ports are non-zero antenna ports other than the non-zero antenna port with the largest number of REs.
- the processor 51 implements the following steps when executing the computer program:
- each non-zero antenna port corresponding to each sub-band in the Q sub-bands on each non-zero transmission RE it is determined that each non-zero antenna port corresponding to the Q sub-bands transmits at each non-zero antenna port.
- the transmit power on the RE it is determined that each non-zero antenna port corresponding to the Q sub-bands transmits at each non-zero antenna port.
- the processor 51 implements any one of the following steps when executing the computer program:
- the total transmission power of the uplink signal and the number of non-zero antenna ports determine the transmission power of the uplink signal at each non-zero antenna port, where the number of non-zero antenna ports is multiple.
- the processor 51 implements the following steps when executing the computer program:
- the uplink signal is at each non-zero antenna port. Transmit power;
- the uplink signal is The transmit power of each non-zero antenna port.
- the processor 51 executes the computer program When implementing any of the following steps:
- the uplink signal is determined according to the transmission power of the uplink signal in the Q subbands and the proportion of the number of non-zero antenna ports corresponding to the Q subbands in the number of all non-zero antenna ports corresponding to the Q subbands
- this terminal embodiment is a terminal corresponding to the above-mentioned uplink power determination method applied to the terminal, and all the implementation manners of the above-mentioned embodiment are applicable to the terminal embodiment, and can achieve the same technical effect as that. I won't repeat them here.
- the bus architecture may include any number of interconnected buses and bridges, and specifically one or more processors represented by the processor 51 and various circuits of the memory represented by the memory 53 are linked together.
- the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
- the bus interface provides the interface.
- the transceiver 54 may be a plurality of elements, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on the transmission medium.
- the user interface 55 may also be an interface capable of connecting externally and internally with required equipment.
- the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
- the processor 51 is responsible for managing the bus architecture and general processing, and the memory 53 can store data used by the processor 51 when performing operations.
- an embodiment of the present disclosure also provides a network side device, including: a processor 600; a memory 620 connected to the processor 600 through a bus interface, and a memory 620 connected to the processor 600 through the bus interface
- the transceiver 610 is connected; the memory 620 is used to store programs and data used by the processor when performing operations; the transceiver 610 sends data information or pilots, and the transceiver 610 also receives uplink Control channel; when the processor 600 calls and executes the programs and data stored in the memory 620, the following functional modules are implemented:
- the processor 600 is configured to read the program in the memory 620 and execute the following process:
- the transmission power control rule of the uplink signal includes:
- the terminal determines the first power scaling factor according to the scheduling information
- the terminal determines the transmit power of the uplink signal according to the first power scaling factor.
- the transceiver 610 is configured to receive and send data under the control of the processor 600.
- processor 600 implements any one of the following steps when executing the computer program:
- the terminal determining the first power scaling factor according to the scheduling information includes:
- the terminal determines the first power scaling factor according to the scheduling information and the transmission power control rule of the uplink signal.
- the terminal determining the first power scaling factor according to the scheduling information includes:
- the terminal determines at least one of a precoding matrix, the number of non-zero antenna ports, and the number of subbands Q for non-zero transmission of the uplink signal according to the scheduling information;
- the terminal determines the first power scaling factor according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q.
- the first power scaling coefficient includes at least one of the power scaling coefficients of Q subbands and the power scaling coefficient of the uplink signal.
- the terminal performs according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q Item, determining the first power scaling factor, including:
- the terminal determines the power scaling coefficients of the Q subbands according to any one of the following formulas:
- ⁇ sub is the power scaling factor of the Q subbands
- N is the number of non-zero antenna ports
- M sub is the number of said subbands
- M is the maximum number of SRS ports that can be included in a sounding reference signal SRS resource supported by the terminal, the number of SRS ports included in the SRS resource indicated by the SRS resource indicator SRI, and the SRS included in the SRS resource corresponding to the transmission mode of the uplink signal One of the number of ports, the maximum number of antenna ports that can be supported by the uplink signal transmission, and the number of antenna ports corresponding to the uplink signal transmission.
- the terminal performs according to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q Item, after determining the first power scaling factor, the uplink signal transmit power control rule further includes:
- the terminal determines the power scaling coefficient of the uplink signal according to the power scaling coefficients of the Q subbands.
- the terminal determining the power scaling coefficient of the uplink signal according to the power scaling coefficients of the Q subbands includes:
- the terminal determines the power scaling coefficient of the uplink signal according to the smallest power scaling coefficient among the power scaling coefficients of the Q subbands; or,
- the terminal determines the power scaling coefficient of the uplink signal according to the power scaling coefficient of the specific subband in the Q subbands.
- the terminal According to at least one of the precoding matrix, the number of non-zero antenna ports, and the number of subbands Q, determining the first power scaling factor includes:
- the terminal determines the power scaling factor of the uplink signal according to the smallest number of non-zero antenna ports among the number of non-zero antenna ports of each subband.
- the terminal determining the transmission power of the uplink signal according to the first power scaling factor further includes:
- the terminal determines the first non-zero antenna port according to the first power scaling factor and the number of resource units REs for non-zero transmission of the uplink signal corresponding to each non-zero antenna port;
- the terminal determines the transmit power of the first non-zero antenna port on a non-zero transmission RE according to the first power scaling factor.
- the terminal determining the transmission power of the uplink signal further includes:
- the terminal determines the transmission of the first non-zero antenna port on all non-zero transmission REs of the first non-zero antenna port Power; or,
- the terminal determines, according to the transmission power of the first non-zero antenna port on a non-zero transmission RE of the other non-zero antenna port, the transmission power of the other non-zero antenna port on each non-zero transmission RE of the other non-zero antenna port;
- the other non-zero antenna ports are non-zero antenna ports other than the non-zero antenna port with the largest number of REs.
- the terminal determining the transmission power of the uplink signal according to the first power scaling factor includes:
- the terminal determines the transmit power of each non-zero antenna port on each non-zero transmission RE of each non-zero antenna port according to the first power scaling factor
- the terminal determines the minimum transmit power of each non-zero antenna port corresponding to each sub-band in the Q sub-bands in each non-zero transmission RE on each non-zero antenna port.
- the terminal determining the transmission power of the uplink signal further includes any one of the following:
- the terminal determines the transmission power of the uplink signal in each subband according to the total transmission power of the uplink signal and the number of subbands Q, Q>1;
- the terminal determines the transmission power of the uplink signal at each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports, where the number of non-zero antenna ports is multiple.
- the terminal determining the transmission power of the uplink signal in each subband according to the total transmission power of the uplink signal and the number of subbands Q includes:
- the terminal equally divides the transmission power of the uplink signal into each subband according to the total transmission power of the uplink signal and the number of subbands Q;
- the terminal determining the transmission power of the uplink signal at each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports includes any one of the following:
- the terminal equally divides the transmission power of the uplink signal to each non-zero antenna port according to the total transmission power of the uplink signal and the number of non-zero antenna ports;
- the terminal determines that the uplink signal is at each non-zero antenna port.
- the transmit power of the port
- the terminal determines the uplink signal according to the total transmit power of the uplink signal and the proportion of the non-zero element corresponding to each non-zero antenna port in the precoding matrix corresponding to each subband among all the non-zero elements of the precoding matrix The transmit power at each non-zero antenna port.
- the terminal determines that the transmit power of the uplink signal is also Include any of the following:
- the terminal equally divides the transmission power of the uplink signal to each non-zero antenna port according to the transmission power of the uplink signal in the Q subbands and the number of non-zero antenna ports corresponding to the Q subbands;
- the terminal determines the uplink signal according to the transmission power of the uplink signal in the Q subbands and the proportion of the number of non-zero antenna ports corresponding to the Q subbands in the number of all non-zero antenna ports corresponding to the Q subbands.
- the terminal according to the transmit power of the uplink signal in the Q subbands and the proportion of the non-zero elements corresponding to each non-zero antenna port included in the precoding matrix corresponding to the Q subbands among all the non-zero elements of the precoding matrix To determine the transmit power of the uplink signal on each non-zero antenna port corresponding to the Q subbands.
- this embodiment of the network side device is a network side device corresponding to the foregoing scheduling information determination method applied to the network side device, and all the implementation manners of the foregoing embodiment are applicable to this embodiment of the network side device. It can achieve the same technical effect, so I won't repeat it here.
- the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
- the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
- the bus interface provides the interface.
- the transceiver 610 may be a plurality of elements, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on a transmission medium.
- the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
- Each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (ASIC), or one or more Microprocessor (digital signal processor, DSP), or, one or more Field Programmable Gate Array (Field Programmable Gate Array, FPGA), etc.
- ASIC application specific integrated circuits
- DSP digital signal processor
- FPGA Field Programmable Gate Array
- the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
- these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
- SOC system-on-a-chip
- each component or each step can be decomposed and/or recombined. These decomposition and/or recombination should be regarded as equivalent solutions of the present disclosure.
- the steps of performing the above series of processing can naturally be performed in chronological order in the order of description, but do not necessarily need to be performed in chronological order, and some steps can be performed in parallel or independently of each other.
- Those of ordinary skill in the art can understand that all or any of the steps or components of the method and device of the present disclosure can be used in any computing device (including a processor, storage medium, etc.) or a network of computing devices, using hardware and firmware. , Software, or a combination of them. This can be achieved by those of ordinary skill in the art using their basic programming skills after reading the description of the present disclosure.
- the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
- the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
- the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
- Small-Scale Networks (AREA)
Abstract
本公开提供了一种上行功率、调度信息确定方法、终端和网络侧设备,涉及通信技术领域,该上行功率确定方法包括: 获取关于上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数; 根据所述调度信息,确定第一功率缩放系数; 根据所述第一功率缩放系数,确定所述上行信号的发送功率。
Description
相关申请的交叉引用
本申请主张在2020年4月2日在中国提交的中国专利申请号No.202010254631.1的优先权,其全部内容通过引用包含于此。
本公开涉及通信技术领域,尤其涉及一种上行功率、调度信息确定方法、终端和网络侧设备。
在相关技术中,对于一个基于码本的物理下行共享信道(Physical uplink shared channel,PUSCH),网络侧设备向用户设备(User Equipment,UE)指示一个用于PUSCH传输的宽带的预编码矩阵。PUSCH在所有物理资源块(Physical resource block,PRB)上使用相同的预编码矩阵,因此有着相同的非零天线端口数。如果允许PUSCH在不同的子带使用不同的预编码矩阵,则如果不同的PRB对应的预编码矩阵对应于不同的非零天线端口数,则无法明确PUSCH的发送功率。
发明内容
本公开提供一种上行功率、调度信息确定方法、终端和网络侧设备,解决了相关技术中当上行信号进行频率选择性预编码时,无法确定上行信号的发送功率的问题。
本公开的实施例提供一种上行功率确定方法,应用于终端,包括:
获取关于上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;
根据所述调度信息,确定第一功率缩放系数;
根据所述第一功率缩放系数,确定所述上行信号的发送功率。
可选的,在所述获取关于上行信号的调度信息之前,所述方法还包括:
获取所述上行信号的发送功率控制规则;
所述根据所述调度信息,确定第一功率缩放系数,包括:
根据所述调度信息和所述上行信号的发送功率控制规则,确定第一功率缩放系数。
可选的,所述根据所述调度信息,确定第一功率缩放系数,包括:
根据所述调度信息,确定预编码矩阵、非零天线端口数目和所述上行信号非零传输的子带数目Q中的至少一项;
根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数。
可选的,所述第一功率缩放系数包括Q个子带的功率缩放系数和所述上行信号的功率缩放系数中的至少一个。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:
根据以下公式中的任意一个,确定所述Q个子带的功率缩放系数:
β
sub=N/M/M
sub,
β
sub=1/M
sub,
β
sub=N/M,
β
sub=N/M
sub,
其中,β
sub为所述Q个子带的功率缩放系数;
N为所述非零天线端口数目;
M
sub为所述子带数目;
M为所述终端支持的一个探测参考信号(Sounding Reference Signal,SRS)资源能够包含的最大SRS端口数、SRS资源指示(SRS Resource Indicator,SRI)指示的SRS资源包含的SRS端口数、与所述上行信号的传输模式对应的SRS资源包含的SRS端口数、所述上行信号传输可支持的最大天线端口数、所述上行信号传输对应的天线端口数中的一者。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数之后,所述方法还包括:
根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在Q>1时,所述根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数,包括:
根据所述Q个子带的功率缩放系数中最小的功率缩放系数,确定所述上行信号的功率缩放系数;或者,
根据所述Q个子带中的特定子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在所述第一功率缩放系数包括所述上行信号的功率缩放系数、且Q>1、且所述非零天线端口数目为各个子带的非零天线端口数目的情况下,根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:
根据各个子带的非零天线端口数目中最小的非零天线端口数目,确定所述上行信号的功率缩放系数。
可选的,在所述非零天线端口数目为多个的情况下,所述根据所述第一功率缩放系数,确定所述上行信号的发送功率,包括:
根据所述第一功率缩放系数以及各个非零天线端口对应的所述上行信号非零传输的资源单元(Resource Element,RE)数目确定第一非零天线端口;
根据所述第一功率缩放系数,确定所述第一非零天线端口在一个非零传 输的RE上的发送功率。
可选的,在确定所述第一非零天线端口在一个非零传输的RE上的发送功率之后,所述确定所述上行信号的发送功率,还包括:
根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;或者,
根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;
其中,所述其他非零天线端口为除所述RE数目最多的非零天线端口之外的非零天线端口。
可选的,在所述非零天线端口数目为多个的情况下,所述根据所述第一功率缩放系数,确定所述上行信号的发送功率,包括:
根据所述第一功率缩放系数,确定各个非零天线端口在所述各个非零天线端口的各个非零传输的RE上的发送功率;
根据Q个子带中各个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率中最小的发送功率,确定所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号的总发送功率的情况下,所述确定所述上行信号的发送功率,还包括以下任意一项:
根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,Q>1;
根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,所述非零天线端口数目为多个。
可选的,所述根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,包括:
根据所述上行信号的总发送功率和所述子带数目Q,将所述上行信号的发送功率均分至各个子带;
所述根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,包括以下任意一项:
根据所述上行信号的总发送功率和所述非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
根据所述上行信号的总发送功率和各个子带分别对应的各个非零天线端口数目在各个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个非零天线端口的发送功率;
根据所述上行信号的总发送功率和各个子带对应的预编码矩阵中各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在各个非零天线端口的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号在Q个子带的发 送功率、且所述非零天线端口数目为多个的情况下,所述确定所述上行信号的发送功率还包括以下任意一项:
根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的各个非零天线端口数目在所述Q个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个子带对应的各个非零天线端口上的发送功率,Q>1;
根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的预编码矩阵包含的各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在所述Q个子带对应的各个非零天线端口上的发送功率。
本公开的一些实施例还提供了一种调度信息确定方法,应用于网络侧设备,包括:
根据预设的上行信号的发送功率控制规则,确定关于所述上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;
将所述调度信息发送至终端;
所述上行信号的发送功率控制规则,包括:
终端根据所述调度信息,确定第一功率缩放系数;
终端根据所述第一功率缩放系数,确定所述上行信号的发送功率。
可选的,在将所述调度信息发送至终端之前,所述方法还包括:
将所述上行信号的发送功率控制规则发送至所述终端;
所述终端根据所述调度信息,确定第一功率缩放系数,包括:
终端根据所述调度信息和所述上行信号的发送功率控制规则,确定第一功率缩放系数。
可选的,所述终端根据所述调度信息,确定第一功率缩放系数,包括:
终端根据所述调度信息,确定预编码矩阵、非零天线端口数目和所述上行信号非零传输的子带数目Q中的至少一项;
终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数。
可选的,所述第一功率缩放系数包括Q个子带的功率缩放系数和所述上行信号的功率缩放系数中的至少一个。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:
终端根据以下公式中的任意一个,确定所述Q个子带的功率缩放系数:
β
sub=N/M/M
sub,
β
sub=1/M
sub,
β
sub=N/M,
β
sub=N/M
sub,
其中,β
sub为所述Q个子带的功率缩放系数;
N为所述非零天线端口数目;
M
sub为所述子带数目;
M为所述终端支持的一个探测参考信号SRS资源能够包含的最大SRS端口数、SRS资源指示SRI指示的SRS资源包含的SRS端口数、与所述上行信号的传输模式对应的SRS资源包含的SRS端口数、所述上行信号传输可支持的最大天线端口数、所述上行信号传输对应的天线端口数中的一者。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数之后,所述上行信号的发送功率控制规则还包括:
终端根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在Q>1时,所述终端根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数,包括:
终端根据所述Q个子带的功率缩放系数中最小的功率缩放系数,确定所述上行信号的功率缩放系数;或者,
终端根据所述Q个子带中的特定子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在所述第一功率缩放系数包括所述上行信号的功率缩放系数、且Q>1、且所述非零天线端口数目为各个子带的非零天线端口数目的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:
终端根据各个子带的非零天线端口数目中最小的非零天线端口数目,确定所述上行信号的功率缩放系数。
可选的,在所述非零天线端口数目为多个的情况下,所述终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,包括:
终端根据所述第一功率缩放系数以及各个非零天线端口对应的所述上行信号非零传输的资源单元RE数目确定第一非零天线端口;
终端根据所述第一功率缩放系数,确定所述第一非零天线端口在一个非零传输的RE上的发送功率。
可选的,在确定所述第一非零天线端口在一个非零传输的RE上的发送功率之后,终端确定所述上行信号的发送功率,还包括:
终端根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;或者,
终端根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;
其中,所述其他非零天线端口为除所述RE数目最多的非零天线端口之外的非零天线端口。
可选的,在所述非零天线端口数目为多个的情况下,所述终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,包括:
终端根据所述第一功率缩放系数,确定各个非零天线端口在所述各个非零天线端口的各个非零传输的RE上的发送功率;
终端根据Q个子带中各个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率中最小的发送功率,确定所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号的总发送功率的情况下,终端确定所述上行信号的发送功率,还包括以下任意一项:
终端根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,Q>1;
终端根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,所述非零天线端口数目为多个。
可选的,所述终端根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,包括:
终端根据所述上行信号的总发送功率和所述子带数目Q,将所述上行信号的发送功率均分至各个子带;
终端所述根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,包括以下任意一项:
终端根据所述上行信号的总发送功率和所述非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
终端根据所述上行信号的总发送功率和各个子带分别对应的各个非零天线端口数目在各个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个非零天线端口的发送功率;
终端根据所述上行信号的总发送功率和各个子带对应的预编码矩阵中各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在各个非零天线端口的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号在Q个子带的发送功率、且所述非零天线端口数目为多个的情况下,终端确定所述上行信号的发送功率还包括以下任意一项:
终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的各个非零天线端口数目在所述Q个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个子带对应的各个非零天线端口上的发送功率,Q>1;
终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的预 编码矩阵包含的各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在所述Q个子带对应的各个非零天线端口上的发送功率。
本公开的一些实施例还提供了一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取关于上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;
根据所述调度信息,确定第一功率缩放系数;
根据所述第一功率缩放系数,确定所述上行信号的发送功率。
可选的,所述处理器执行所述计算机程序时实现以下步骤:
获取所述上行信号的发送功率控制规则;
所述处理器执行所述计算机程序时实现以下步骤:
根据所述调度信息和所述上行信号的发送功率控制规则,确定第一功率缩放系数。
可选的,所述处理器执行所述计算机程序时实现以下步骤:
根据所述调度信息,确定预编码矩阵、非零天线端口数目和所述上行信号非零传输的子带数目Q中的至少一项;
根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数。
可选的,所述第一功率缩放系数包括Q个子带的功率缩放系数和所述上行信号的功率缩放系数中的至少一个。
可选的,在所述第一功率缩放系数包括Q个子带的功率缩放系数的情况下,所述处理器执行所述计算机程序时实现以下步骤:
根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在所述非零天线端口数目为多个的情况下,所述处理器执行所述计算机程序时实现以下步骤:
根据所述第一功率缩放系数以及各个非零天线端口对应的所述上行信号非零传输的资源单元RE数目确定第一非零天线端口;
根据所述第一功率缩放系数,确定所述第一非零天线端口在一个非零传输的RE上的发送功率。
可选的,所述处理器执行所述计算机程序时实现以下步骤:
根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;或者,
根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;
其中,所述其他非零天线端口为除所述RE数目最多的非零天线端口之 外的非零天线端口。
可选的,在所述非零天线端口数目为多个的情况下,所述处理器执行所述计算机程序时实现以下步骤:
根据所述第一功率缩放系数,确定各个非零天线端口在所述各个非零天线端口的各个非零传输的RE上的发送功率;
根据Q个子带中各个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率中最小的发送功率,确定所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
本公开的一些实施例还提供了一种网络侧设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
根据预设的上行信号的发送功率控制规则,确定关于所述上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;
将所述调度信息发送至终端;
所述上行信号的发送功率控制规则,包括:
终端根据所述调度信息,确定第一功率缩放系数;
终端根据所述第一功率缩放系数,确定所述上行信号的发送功率。
可选的,在将所述调度信息发送至终端之前,所述方法还包括:
将所述上行信号的发送功率控制规则发送至所述终端;
所述终端根据所述调度信息,确定第一功率缩放系数,包括:
终端根据所述调度信息和所述上行信号的发送功率控制规则,确定第一功率缩放系数。
可选的,所述终端根据所述调度信息,确定第一功率缩放系数,包括:
终端根据所述调度信息,确定预编码矩阵、非零天线端口数目和所述上行信号非零传输的子带数目Q中的至少一项;
终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数。
可选的,所述第一功率缩放系数包括Q个子带的功率缩放系数和所述上行信号的功率缩放系数中的至少一个。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数之后,所述上行信号的发送功率控制规则还包括:
终端根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在所述非零天线端口数目为多个的情况下,所述终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,包括:
终端根据所述第一功率缩放系数以及各个非零天线端口对应的所述上行信号非零传输的资源单元RE数目确定第一非零天线端口;
终端根据所述第一功率缩放系数,确定所述第一非零天线端口在一个非零传输的RE上的发送功率。
可选的,在确定所述第一非零天线端口在一个非零传输的RE上的发送功率之后,终端确定所述上行信号的发送功率,还包括:
终端根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;或者,
终端根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;
其中,所述其他非零天线端口为除所述RE数目最多的非零天线端口之外的非零天线端口。
可选的,在所述非零天线端口数目为多个的情况下,所述终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,包括:
终端根据所述第一功率缩放系数,确定各个非零天线端口在所述各个非零天线端口的各个非零传输的RE上的发送功率;
终端根据Q个子带中各个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率中最小的发送功率,确定所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
本公开的一些实施例还提供了一种终端,包括:
第一获取模块,用于获取关于上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;
第一确定模块,用于根据所述调度信息,确定第一功率缩放系数;
第二确定模块,用于根据所述第一功率缩放系数,确定所述上行信号的发送功率。
本公开的一些实施例还提供了一种网络侧设备,包括:
第三确定模块,用于根据预设的上行信号的发送功率控制规则,确定关于所述上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;
第一发送模块,用于将所述调度信息发送至终端;
所述上行信号的发送功率控制规则,包括:
终端根据所述调度信息,确定第一功率缩放系数;
终端根据所述第一功率缩放系数,确定所述上行信号的发送功率。
本公开的一些实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上所述的上行功率确定方法的步骤,或者实现如上所述的调度信息确定方法的步骤。
本公开的上述技术方案的有益效果是:
通过终端获取关于上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数,根据所述调度信息,确定第一功率缩放系数, 并根据所述第一功率缩放系数,确定所述上行信号的发送功率,解决了相关技术中当上行信号进行频率选择性预编码时,无法确定所述上行信号的发送功率的问题。
图1表示本公开的一些实施例的上行功率确定方法的流程图;
图2表示本公开的一些实施例的调度信息确定方法的流程图;
图3表示本公开的一些实施例的终端的结构示意图;
图4表示本公开的一些实施例的网络侧设备的结构示意图;
图5表示本公开的一些实施例的终端的实施结构示意图;
图6表示本公开的一些实施例的网络侧设备的实施结构示意图。
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。在下面的描述中,提供诸如具体的配置和组件的特定细节仅仅是为了帮助全面理解本公开的实施例。因此,本领域技术人员应该清楚,可以对这里描述的实施例进行各种改变和修改而不脱离本公开的范围和精神。另外,为了清楚和简洁,省略了对已知功能和构造的描述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本公开的各种实施例中,应理解,下述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常可互换使用。
在本申请所提供的实施例中,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和其它信息确定B。
在本申请所提供的实施例中,应理解,“A包含B”表示A可以包含B,A还可以包含C和/或D等。在本申请所提供的实施例中,应理解,“A包括B”表示A可以包括B,A还可以包括C和/或D等。
无线通信系统包括终端和网络侧设备。其中,终端也可以称作终端设备或者用户终端(User Equipment,UE),终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开的一些实施例中并不限定终端的具体类型。网络侧设备可以是基站 或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开的一些实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
为使本领域技术人员能够更好地理解本公开的一些实施例的技术方案,先进行如下说明。
在现有的长期演进(Long Term Evolution,LTE)系统、新空口(New Radio,NR)系统等无线通信系统中,上行信号的多输入多输出(Multiple Input Multiple Output,MIMO)传输都只支持宽带预编码,不支持子带预编码。例如,在基于码本的PUSCH上行传输方案下,网络侧设备只能向UE指示宽带的SRS资源指示信息(例如,通过下行控制信息(Downlink Control Information,DCI)中的SRS资源指示域或无线资源控制(Radio Resource Control,RRC)信令SRS-ResourceIndicator指示)、传输预编码索引指示(Transmission precoder index indicator,TPMI)和传输流数(例如,通过DCI中的预编码信息和层数Precoding information and number of layers域或RRC信令预编码和层数Precoding and number of layers指示)。UE在传输PUSCH时,在所有被调度的频域资源上使用相同的模拟波束赋形、预编码矩阵和传输流数(根据网络侧设备指示的宽带的TPMI和传输流数确定的预编码矩阵和传输流数)。
再例如,在基于非码本的PUSCH上行传输方案下,网络侧设备向UE指示一个宽带的SRI(例如,通过DCI中的SRS resource indicator域或RRC信令SRS-ResourceIndicator指示)。UE在传输PUSCH时,在所有被调度的频域资源上使用相同的模拟波束赋形、预编码矩阵和传输流数(根据网络侧设备指示的SRI确定)。
现有的PUSCH的功率控制方案为:如果PUSCH是基于码本的传输模式,且与该传输模式对应的SRS资源集合(高层信令参数“usage”为“codebook”的SRS资源集合)包含的SRS资源中至少一个SRS资源包含的天线端口数大于1,则PUSCH的发送功率值为根据PUSCH的功率控制公式计算出的功率进行比例缩放后的功率值,否则,PUSCH的发送功率值为根据PUSCH的功率控制公式计算出的功率值;其中,比例缩放的比值是PUSCH的非零天线端口数的函数,PUSCH的发送功率在PUSCH的非零天线端口上均匀分配。
子带预编码可以带来频域选择性预编码增益,提高上行信号传输的性能。如果对PUSCH进行子带预编码,则PUSCH可能在不同的子带使用不同的预编码矩阵,从而在不同的子带可能有不同的非零天线端口数,在PUSCH进行子带预编码时无法确定功率的分配。并且,如果允许PUSCH在不同的子 带使用不同的预编码矩阵,则如果不同的PRB对应的预编码矩阵对应于不同的非零天线端口数,如果仍然将PUSCH的发送功率在所有的非零天线端口上均分将导致有的PRB上发送功率高,有的PRB上发送功率低,有可能导致部分PRB错误率高,且有可能增加PUSCH的峰均比,影响性能。
在本公开的一些实施例中,宽带对应于上行信号被分配的所有频域资源。宽带相关的信息也可以被称为宽带信息,可以理解为适用于上行信号被调度的所有资源的信息。以预编码矩阵指示信息为例,如果网络侧设备向UE指示一个宽带预编码矩阵指示信息,则该指示信息指示的预编码矩阵被用于上行信号的所有频域资源。本公开的一些实施例中的宽带预编码是指在上行信号的所有频域资源使用相同的预编码。
一个子带为P个连续的PRB,或者,P个连续的虚拟资源块(Virtual resource block,VRB),是上行信号被分配的频域资源中的一部分。所述子带的大小和/或子带的划分方式可以是网络侧设备通过信令指示给终端的(例如,网络侧设备直接向终端指示P的数值,或者通过其他终端可以获得P),也可以是协议预先约定的。不同子带的子带信息可以相同或不同。网络侧设备可以为每个子带分别指示子带信息。例如,假如传输流数是一个宽带信息,则上行信号被调度的所有资源都使用该传输流数。子带相关的信息也可以被称为子带信息,可以理解为适用于上行信号被调度的子带的信息。一个子带的子带信息为适用于该子带的信息。仍以预编码矩阵指示信息为例,如果网络侧设备向UE指示关于某个子带的预编码矩阵指示信息,则该指示信息指示的预编码矩阵被用于上行信号在该子带对应的频域资源。本公开的一些实施例中的子带预编码是指上行信号在不同的子带可以分别使用预编码矩阵,即各个子带使用的预编码矩阵可以相同或不同。也就是说,网络侧设备可以为各个子带分别指示预编码矩阵,而不是上行信号的所有频域资源都使用同一个预编码矩阵。
因此,本公开的实施例提供了一种上行功率、调度信息确定方法、终端和网络侧设备,解决了相关技术中当上行信号进行频率选择性预编码时,无法确定所述上行信号的发送功率的问题。
具体地,如图1所示,本公开的实施例提供了一种上行功率确定方法,应用于终端,具体包括以下步骤:
步骤11,获取关于上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数。
具体的,所述调度信息为指示所述上行信号应如何传输的信息,所述调度信息可以包含但不限于以下信息中的至少一项:预编码矩阵指示信息、传输流数指示信息、上行信号的资源分配信息和SRS资源指示信息等。
需要说明的是,所述Q个子带的相关信息可以是子带对应的预编码矩阵。也可以是子带对应的传输流数。也可以是子带对应的SRS资源指示信息。也可以是预编码矩阵、传输流数、SRS资源指示信息的组合等。其中,Q为大于或等于1的正整数。需要说明的是,所述传输流数有时会被称为层数, 传输流有时会被称为层(layer)。
需要说明的是,所述上行信号包括但不限于以下至少一项:PUSCH信号、解调参考信号(Demodulation Reference Signal,DMRS)、物理上行控制信道(Physical uplink control channel,PUCCH)信号、物理随机接入信道(Physical Random Access Channel,PRACH)信号、SRS等。
所述上行信号的调度信息可以是网络侧设备指示给终端的。所述上行信号的调度信息也可以是终端根据一定的准则获得的。
步骤12,根据所述调度信息,确定第一功率缩放系数。
可选的,所述第一功率缩放系数包括Q个子带的功率缩放系数和所述上行信号的功率缩放系数中的至少一个。可选地,终端根据所述调度信息确定出Q个子带的功率缩放系数,Q为上行信号的子带个数,Q个子带的功率缩放系数为上行信号被调度的各个子带分别对应的功率缩放系数。Q为正整数,在Q等于1时,所述第一功率缩放系数为一个子带的功率缩放系数;在Q大于1时,例如:Q等于2,则第一个子带对应一个功率缩放系数,第二个子带对应一个功率缩放系数。
应当理解的是,Q个子带可以是上行信号的全部子带,也可以是上行信号的部分子带。当Q个子带为上行信号的部分子带时,终端可能需要根据这些子带的相关信息确定出上行信号在其他子带的功率。当然,终端也可能获取其他子带的相关信息,并根据其他子带的相关信息确定出上行信号在其他子带的功率。
应当理解的是,一个子带对应的功率缩放系数不一定是上行信号在该子带传输时对上行信号的功率(例如:根据上行信号的功率控制公式计算出的功率)进行缩放的系数。也就是说,上行信号在一个子带传输时有可能使用该子带的功率缩放系数对上行信号的功率进行缩放。也有可能上行信号在一个子带传输时不使用该子带的功率缩放系数进行功率缩放,而是通过另外一个子带的功率缩放系数进行功率缩放。另外一个系数可能是根据上行信号在一个或多个子带的功率缩放系数确定出来的。
所述上行信号的功率缩放系数为用于对上行信号的功率进行缩放的系数,包括但不限于以下中的一个或多个:对上行信号的总功率进行缩放的系数;对上行信号在子带的功率进行缩放的系数;对上行信号天线端口的功率进行缩放的系数;对上行信号的资源单元RE进行缩放的系数。
步骤13,根据所述第一功率缩放系数,确定所述上行信号的发送功率。
可选的,所述步骤13,包括:
根据所述第一功率缩放系数与第一功率的乘积,确定所述上行信号的发送功率;
其中,所述第一功率是所述终端根据所述上行信号的参数和/或所述上行信号对应的参考信号获取的功率。
具体的,在所述第一功率缩放系数为上行信号的功率缩放系数时,所述上行信号的总发送功率为第一功率乘以所述上行信号的功率缩放系数的功率。 在所述第一功率缩放系数为Q个子带的功率缩放系数,则Q个子带的发送功率为第一功率乘以所述Q个子带的功率缩放系数。特别的,在Q>1时,每一个子带的发送功率等于该子带的功率缩放系数乘以第一功率的功率值。其中,所述第一功率为所述终端根据所述上行信号的参数(路径损耗等)和/或所述上行信号对应的参考信号计算出的功率。例如,当上行信号为PUSCH时,第一功率为PUSCH功率控制计算公式计算出的功率。
可选的,所述上行信号的发送功率为对上行信号的功率(例如:根据上行信号的功率控制公式计算出的功率)通过第一功率缩放系数进行缩放后的功率。可选的,所述上行信号的发送功率包括但不限于以下至少一项:上行信号的总发送功率、上行信号在各个子带的发送功率、所述上行信号在各个非零天线端口的发送功率、第一非零天线端口在一个非零传输的RE上的发送功率、除所述RE数目最多的非零天线端口之外的非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率、所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
可选的,所述上行信号的发送功率包括但不限于以下中的一项或多项:所述上行信号的总发送功率可以为上行信号的功率通过上行信号的功率缩放系数进行缩放后的功率。所述上行信号在各个子带的发送功率可以为上行信号的功率通过各个子带的功率缩放系数进行缩放后的各个功率,例如,第一子带根据第一子带的功率缩放系数确定所述上行信号在第一子带的发送功率,第二子带根据第二子带的功率缩放系数确定所述上行信号在第二子带的发送功率。所述上行信号在各个非零天线端口的发送功率可以为上行信号的功率通过各个非零天线端口的功率缩放系数进行缩放后的各个功率。
需要理解的是,所述上行信号在各个子带的发送功率不一定是计算每一个子带的发送功率,还可以计算部分子带的发送功率,通过部分子带的发送功率确定其他子带的发送功率。例如:相邻的多个子带为一组,对每一组子带确定一个功率缩放系数,根据上行信号的功率通过每一组确定的功率缩放系数进行缩放后的功率,确定这一组的每一个子带的发送功率。
本公开上述实施例中,通过终端获取关于上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,根据所述调度信息,确定第一功率缩放系数,并根据所述第一功率缩放系数,确定所述上行信号的发送功率,可以解决在相关技术中当上行信号进行频率选择性预编码(即子带预编码,对上行信号在不同的频域资源分别进行预编码)时,无法确定所述上行信号的发送功率的问题。其中,本公开的一些实施例适用的系统包括但不限定为NR系统、LTE系统、第六代移动通信技术(6th-Generation,6G)系统以及演进版本的系统等。
可选的,在所述步骤11之前,所述方法还包括:
获取所述上行信号的发送功率控制规则;
所述步骤12,包括:
根据所述调度信息和所述上行信号的发送功率控制规则,确定第一功率 缩放系数。
具体的,终端根据所述调度信息,可以按照所述上行信号的发送功率控制规则确定所述第一功率缩放系数。其中,所述上行信号的发送功率控制规则可以协议约定或者从网络侧设备获取,在此不做具体限定。所述上行信号的发送功率控制规则为确定上行信号的发送功率的规则。
可选的,所述步骤12,包括:
根据所述调度信息,确定预编码矩阵、非零天线端口数目和所述上行信号非零传输的子带数目Q中的至少一项;
根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数。
在上述实施例中,非零天线端口是指上行信号以非零功率进行传输的天线端口。也就是说,非零天线端口上数据的传输功率非零。可选地,上行信号的非零天线端口对应于上行信号使用的预编码矩阵中的非零元素对应的天线端口。
可选地,所述非零天线端口数目为所述上行信号以非零功率进行传输的天线端口的总数目。可选地,所述非零天线端口数目为所述上行信号在各个子带的非零天线端口的数目(例如针对Q个子带,存在Q个非零天线端口数目)。可选地,所述非零天线端口数目为所述上行信号在部分子带的非零天线端口的数目(例如,部分子带的非零天线端口的数目为一个子带的非零天线端口数目)可选地,所述非零天线端口的数目为上述示例中的多项的组合。
可选地,所述子带数目Q为上述上行信号以非零功率进行传输的子带的总数目。也就是说,非零传输的子带上数据的传输功率非零。所述子带数目Q可以由调度信息确定,也可以根据子带配置信息获取。
可选的,在Q大于1时,所述预编码矩阵可以为上行信号在各个子带分别对应的预编码矩阵。
可选的,在所述第一功率缩放系数包括Q(Q>1)个子带的功率缩放系数的情况下,根据各个子带对应的非零天线端口数目,确定各个子带的功率缩放系数。可选的,各个子带的功率缩放系数与各个子带的非零天线端口数目成正比。
可选的,在所述第一功率缩放系数包括所述上行信号的功率缩放系数的情况下,根据所述子带数目Q确定所述上行信号的功率缩放系数。可选地,所述子带数目Q与所述上行信号的功率缩放系数成反比。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,所述Q个子带的功率缩放系数为所述Q个子带对应的非零天线端口数目的函数;和/或,
在所述第一功率缩放系数包括所述上行信号的功率缩放系数的情况下,所述上行信号的功率缩放系数为所述非零天线端口数目的函数。
可选的,在所述第一功率缩放系数包括Q个子带的功率缩放系数的情况下,如果Q大于1,则各个子带的功率缩放系数为各个子带对应的非零天线 端口数目的函数,即上行信号的功率通过各个子带对应的非零天线端口数目的函数进行缩放,缩放后的功率为所述上行信号在各个子带的发送功率。可选的,在所述第一功率缩放系数包括Q个子带的功率缩放系数的情况下,如果Q大于1,任意一个子带的功率缩放系数可以为各个子带中的其中一个子带对应的非零天线端口的数目的函数,即每一个子带的功率缩放系数可以为该子带对应的非零天线端口的数目的函数,也可以为其他子带对应的非零天线端口的数目的函数。特别的,所述子带的功率缩放系数可以为所述子带数目的函数,例如:子带的功率缩放系数与所述子带数目成反比。
可选的,所述第一功率缩放系数包括所述上行信号的功率缩放系数的情况下,则上行信号的功率缩放系数为所述非零天线端口数目的函数,即上行信号的功率通过整个带宽所有的非零天线端口数目的函数进行缩放,缩放后的功率为所述上行信号的总发送功率。
可选的,在所述第一功率缩放系数包括Q个子带的功率缩放系数的情况下,根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:
根据以下公式中的任意一个,确定所述Q个子带的功率缩放系数:
公式一:β
sub=N/M/M
sub,
公式二:β
sub=1/M
sub,
公式三:β
sub=N/M,
公式四:β
sub=N/M
sub,
其中,β
sub为所述Q个子带的功率缩放系数;
N为所述非零天线端口数目;
M
sub为所述子带数目;
M为所述终端支持的一个探测参考信号SRS资源能够包含的最大SRS端口数、SRS资源指示SRI指示的SRS资源包含的SRS端口数、与所述上行信号的传输模式对应的SRS资源包含的SRS端口数、所述上行信号传输可支持的最大天线端口数、所述上行信号传输对应的天线端口数中的一者。
具体的,在公式一中,根据M、所述非零天线端口数目和所述子带数目确定所述Q个子带的功率缩放系数,即各个子带的非零天线端口数目除以M的值再除以子带数目得到的值为各个子带的功率缩放系数。在公式二中,根据所述子带数目确定所述Q个子带的功率缩放系数,即1除以子带的数目的值为各个子带的功率缩放系数。在公式三中,根据M和所述非零天线端口数目确定所述上行信号在各个子带的功率缩放系数,即各个子带的非零天线端口数目除以M的值为各个子带的功率缩放系数。在公式四中,根据所述非零天线端口数目和所述子带数目确定所述Q个子带的功率缩放系数,即各个子带的非零天线端口数目除以子带数目的值为各个子带的功率缩放系数。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数之后,所述方法还包括:
根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
此时,Q个子带的功率缩放系数不是上行信号在Q个子带传输时实际使用的功率缩放系数。上行信号的功率缩放系数可以为上行信号实际传输时使用的缩放系数,例如:上行信号的功率缩放系数为以下中的一个或多个:对上行信号的总功率进行缩放的系数;对上行信号在子带的功率进行缩放的系数;对上行信号天线端口的功率进行缩放的系数;对上行信号的资源单元RE进行缩放的系数。
具体的,根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述Q个子带的功率缩放系数,再根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。其中,Q>1时,各个子带的功率缩放系数还可以根据各个子带的非零天线端口数目确定,在此不做具体限定。
需要理解的是,根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定Q个子带的功率缩放系数,然后根据Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在Q>1时,所述根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数,包括:
方式一:根据所述Q个子带的功率缩放系数中最小的功率缩放系数,确定所述上行信号的功率缩放系数;或者,
方式二:根据所述Q个子带中的特定子带的功率缩放系数,确定所述上行信号的功率缩放系数。
具体的,在Q>1时,在方式一中,终端将整个带宽的所有子带中各个子带计算出功率缩放系数,然后将多个功率缩放系数中最小值作为所述上行信号的功率缩放系数。可以理解为:所述上行信号的功率缩放系数等于各个子带的功率缩放系数中的最小值,所述上行信号在整个带宽都是用各个子带的功率缩放系数中的最小值,也就是上行信号在各个子带使用的是各个子带的功率缩放系数中的最小值。
在方式二中,终端将多个子带中特定子带的功率缩放系数作为所述上行信号的功率缩放系数。可以理解为:所述上行信号的功率缩放系数等于特定子带的功率缩放系数,所述上行信号在整个带宽都是用所述特定子带的功率缩放系数,也就是上行信号在各个子带使用的是所述特定子带的功率缩放系数。
进一步的,所述特定子带包括但不限于以下任意一项:
所述终端与网络侧设备预先约定的子带;例如:标号最小的子带;
所述网络侧设备通过第一信令指示的子带;
所述终端通过第二信令指示给所述网络侧设备的子带。
可选的,在所述第一功率缩放系数包括所述上行信号的功率缩放系数、且Q>1、且所述非零天线端口数目为各个子带的非零天线端口数目的情况下,根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项, 确定所述第一功率缩放系数,包括:
根据各个子带的非零天线端口数目中最小的非零天线端口数目,确定所述上行信号的功率缩放系数。
具体的,在子带数目为多个时,终端根据各个子带的非零天线端口数目中最小的非零天线端口数目,确定所述上行信号的功率缩放系数。例如:所述上行信号的功率缩放系数与所述最小的非零天线端口数目成正比。
例如:子带数目Q为2,分别为第一子带和第二子带,所述第一子带的非零天线端口数目为1,第二子带的非零天线端口为2,则根据第一子带的非零天线端口数目确定所述上行信号的功率缩放系数。
进一步的,所述根据各个子带的非零天线端口数目中最小的非零天线端口数目,确定所述上行信号的功率缩放系数,包括:
根据以下公式,确定所述上行信号的功率缩放系数:
β=N
min/M
其中,N
min为各个子带的非零天线端口数目中最小的非零天线端口数目;
β为所述上行信号的功率缩放系数;
M为所述终端支持的一个探测参考信号SRS资源能够包含的最大SRS端口数、SRS资源指示SRI指示的SRS资源包含的SRS端口数以及、与所述上行信号的传输模式对应的SRS资源包含的SRS端口数、所述上行信号传输可支持的最大天线端口数、所述上行信号传输对应的天线端口数中的一者。
例如:子带数目Q为2,分别为第一子带和第二子带,所述第一子带的非零天线端口数目为1,第二子带的非零天线端口为2,则N
min为1,如果M取值为2,则所述上行信号的功率缩放系数β为1/2。
可选的,在所述非零天线端口数目为多个的情况下,所述根据所述第一功率缩放系数,确定所述上行信号的发送功率,包括:
根据所述第一功率缩放系数以及各个非零天线端口对应的所述上行信号非零传输的资源单元RE数目确定第一非零天线端口;
根据所述第一功率缩放系数,确定所述第一非零天线端口在一个非零传输的RE上的发送功率。
可选的,所述第一非零天线端口为在各个非零天线端口对应的非零传输的RE数目中,所述非零传输的RE数目最多的非零天线端口。
可选的,所述上行信号的发送功率包含第一非零天线端口在一个非零传输的RE上的发送功率;终端需要确定每一个非零天线端口对应的非零传输的RE数目,根据所述第一功率缩放系数,确定多个非零传输的RE数目最多的第一非零天线端口在一个RE上的发送功率。
需要理解的是,各个非零天线端口对应有多个RE,包括上行信号零功率传输的RE以及上行信号非零功率传输的RE,非零功率传输的RE数目为各个非零天线端口对应的上行信号非零功率传输的RE的个数。可选的,每一个天线端口对应的RE可以理解为该天线端口对应的时频资源或者频率资源或者时域资源。可选地,上述RE数目是指一个时域单元上的RE的数目。所 述时域单元可以为符号(symbol)或者时隙(slot)等。
可选的,在确定所述第一非零天线端口在一个非零传输的RE上的发送功率之后,所述确定所述上行信号的发送功率,还包括:
情况一:根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;或者,
情况二:根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;
其中,所述其他非零天线端口为上行信号除所述RE数目最多的非零天线端口之外的非零天线端口。在情况一中,所述上行信号的发送功率包含所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;根据所述第一非零天线端口在一个非零传输的RE上的发送功率,将该发送功率可以作为第一非零天线端口在该端口的每一个非零传输的RE上的发送功率,换句话说,所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率都相等。可选的,进一步可以确定所述第一非零天线端口在该端口的所有非零传输的RE上的发送功率,即第一非零天线端口的总发送功率等于所述第一非零天线端口在该端口的每一非零传输的RE上的发送功率之和。
例如:所述上行信号为PUSCH信号,如果PUSCH的整个带宽只有非零天线端口0和非零天线端口1,非零天线端口0的非零传输的RE数目大于非零天线端口1的非零传输的RE数目,则所述第一非零天线端口为非零天线端口0;如果非零天线端口0在一个非零传输的RE上的发送功率为P1,则非零天线端口0在任意一个非零传输的RE上的发送功率均为P1。
在情况二中,所述上行信号的发送功率包含其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;根据所述第一非零天线端口在一个非零传输的RE上的发送功率,将该功率可以作为其他非零天线端口在它们各自的每一非零传输的RE上的发送功率,换句话说,其他非零天线端口在它们各自的每一非零传输的RE上的发送功率都相等,且等于第一非零天线端口在其非零传输的RE上的发送功率。
可选的,所述其他非零天线端口的数目可以为一个或多个,在所述其他非零天线端口的数目为多个时,其他非零天线端口中的每一个非零天线端口在其各自的每一非零传输的RE上的发送功率相同。
例如:所述上行信号为PUSCH信号,如果PUSCH的整个带宽只有非零天线端口0和非零天线端口1,非零天线端口0的非零传输的RE数目大于非零天线端口1的非零传输的RE数目,则所述第一非零天线端口为非零天线端口0;如果非零天线端口0在一个非零传输的RE上的发送功率为P1,则非零天线端口1在任意一个非零传输的RE上的发送功率均为P1。
可选的,在确定所述第一非零天线端口在所述第一非零天线端口的所有 非零传输的RE上的发送功率之后,所述确定所述上行信号的发送功率,还包括:
根据所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率,确定所述上行信号的发送功率包含的其他非零天线端口在所述其他非零天线端口的所有非零传输的RE上的发送功率。
具体的,所述上行信号的发送功率包含其他非零天线端口在所述其他非零天线端口的所有非零传输的RE上的发送功率;根据所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率,将该发送功率作为其他非零天线端口在它们各自的所有非零传输的RE上的发送功率。可选的,所述上行信号的总发送功率等于每一个非零天线端口的所有非零传输的RE上的发送功率之和。
可选的,在所述非零天线端口数目为多个的情况下,所述步骤13,包括:
根据所述第一功率缩放系数,确定各个非零天线端口在所述各个非零天线端口的各个非零传输的RE上的发送功率;
根据Q个子带中各个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率中最小的发送功率,确定所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
具体的,所述上行信号的发送功率包含所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率;终端分别确定各个非零天线端口在各个非零传输的RE上的发送功率,在每一个子带上,使用该子带的各个非零天线端口的各个非零传输的RE的发送功率中最小的发送功率作为该子带的各个非零天线端口在它们各自的每一个RE上的发送功率;进一步可以确定一个非零天线端口的总发送功率等于这个非零天线端口的非零传输的所有RE的发送功率之和;进一步可以确定,所述上行信号的总发送功率等于每一个非零天线端口的总发送功率之和。
例如:以上行信号为PUSCH为例,假设非零天线端口0的每一个per RE发送功率为p1,非零天线端口1的per RE的发送功率为p2,p1<p2,假设子带1中PUSCH非零天线端口为非零天线端口0和非零天线端口1,则非零天线端口0和非零天线端口1在子带1中每个有PUSCH非零传输的RE的发送功率都是p1。假设子带2中PUSCH非零传输的天线端口为非零天线端口1,则在子带2中非零天线端口1在每个有PUSCH非零传输的RE的发送功率都是p2。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数、且Q>1的情况下,所述步骤13,包括:
根据所述上行信号在所述Q个子带的功率缩放系数,确定所述上行信号的发送功率包含的所述上行信号在各个子带的发送功率。
具体的,所述上行信号的发送功率包含所述上行信号在各个子带的发送功率;在Q为1时,根据所述上行信号在1个子带的功率缩放系数,确定所述上行信号在该子带的发送功率。在Q>1时,根据所述上行信号在每一个子 带的功率缩放系数,确定所述上行信号在该子带的发送功率。其中,所述上行信号的总发送功率等于各个子带在该子带的发送功率之和。
例如:根据各个子带的功率缩放系数与第一功率的乘积,确定所述上行信号在各个子带的发送功率;可以理解为:每一个子带的功率缩放系数与第一功率的乘积的值为所述上行信号在该子带的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号的总发送功率的情况下,所述步骤13,还包括以下任意一项:
第一项:根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,Q>1;
第二项:根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,所述非零天线端口数目为多个。
可选的,在第一项中,Q>1时,所述上行信号的发送功率包含所述上行信号在各个子带的发送功率,根据所述上行信号的总发送功率和整个带宽的所有非零传输的子带数目,确定所述上行信号在各个子带的发送功率。所述上行信号在各个子带的发送功率之和等于所述上行信号的总发送功率。
可选的,在第二项中,所述非零天线端口数目为多个时,所述上行信号的发送功率包含所述上行信号在各个非零天线端口的发送功率;根据所述上行信号的总发送功率和整个带宽的所有非零传输的天线端口数目,确定所述上行信号在各个非零天线端口的发送功率。所述上行信号在各个非零天线端口的发送功率之和等于所述上行信号的总发送功率。
可选的,在第一项中,根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,包括:
根据所述上行信号的总发送功率和所述子带数目Q,将所述上行信号的发送功率均分至各个子带。
可以理解的是,所述上行信号的总发送功率除以所述子带数目Q即为所述上行信号在每一个子带的发送功率,即每一个子带的发送功率相同,此时如果每一个子带的非零天线端口数目不同,则每个子带的每一个天线端口的发送功率可能不同。
下面通过具体的实施例对上述相关的内容进行详细说明:
例如:假设PUSCH包含2个子带(子带数目Q为2),第一个子带的预编码矩阵为
第二个子带的预编码矩阵为
则PUSCH在第一个子带的非零天线端口数目为1(第1个天线端口为非零天线端口),第二个子带的非零天线端口数目为2(2个天线端口都为非零天线端口),则UE根据这两个子带的非零天线端口数目1和2的最小值确定所述上行信号的功率缩放系数(即根据各个子带的非零天线端口数目中最小的非零天线端口数目,确定所述上行信号的功率缩放系数),则N
min=1;假设M=2,则PUSCH的功率缩放系数(即上行信号的功率缩放系数)根据公式
β=N
min/M
得到β=1/2;由于PUSCH包含2个子带,第一功率乘以上行信号的功率缩放系数后的上行信号的总发送功率均匀分配到2个子带。
可选的,在第二项中,根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,包括以下任意一项:
情况1:根据所述上行信号的总发送功率和所述非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
情况2:根据所述上行信号的总发送功率和各个子带分别对应的各个非零天线端口数目在各个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个非零天线端口的发送功率;
情况3:根据所述上行信号的总发送功率和各个子带对应的预编码矩阵中各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在各个非零天线端口的发送功率。
可以理解的是,在情况1中,将所述上行信号的总发送功率除以所述非零天线端口数目得到每一个非零天线端口的发送功率,即每一个非零天线端口的发送功率相同,此时如果每一个子带的非零天线端口数目不同,则每个子带的发送功率为该子带所有的非零天线端口的发送功率之和,则每个子带的发送功率不同。
下面通过具体的实施例对情况1相关的内容进行详细说明:
例如:假设PUSCH包含2个子带(子带数目Q为2),第一个子带的预编码矩阵为
第二个子带的预编码矩阵为
则PUSCH在第一个子带的非零天线端口数目为1(第1个天线端口为非零天线端口),第二个子带的非零天线端口数目为2(2个天线端口都为非零天线端口),则UE根据这两个子带的非零天线端口数目1和2的最小值确定所述上行信号的功率缩放系数(即根据各个子带的非零天线端口数目中最小的非零天线端口数目,确定所述上行信号的功率缩放系数),则N
min=1;假设M=2,则PUSCH的缩放系数(即上行信号的功率缩放系数)根据公式
β=N
min/M
得出β=1/2;由于PUSCH在所有子带的非零端口数目为2,第一功率乘以上行信号的功率缩放系数后的上行信号的总发送功率均匀分配到2个非零端口上。
例如:假设PUSCH包含2个子带(子带数目Q为2),第一个子带的预编码矩阵为
第二个子带的预编码矩阵为
则PUSCH在第一个子带的非零天线端口数目为1(第1个天线端口为非零天线端口),第二个子带的非零天线端口数目为2(2个天线端口都为非零天线端口),则根据公式三
β
sub=N/M
第一个子带的N=1,第二个子带的N=2,假设M=2,则第一个子带的功率缩 放系数为1/2,第二个子带的功率缩放系数为1,则上行信号的功率缩放系数为第一个子带的功率缩放系数为1/2和第二个子带的功率缩放系数为1中的较小值1/2;第一功率乘1/2后的上行信号的总发送功率均匀分配到2个非零端口上。
下面通过具体的实施例对情况2相关的内容进行详细说明:
在情况2中,如果PUSCH包含2个子带(子带1和子带2),子带1的非零天线端口数目为4个,分别为1个非零天线端口0和3个非零天线端口1,则在子带1中非零天线端口0所占比例为1/4,非零天线端口1所占比例为3/4,则终端根据所述上行信号的总发送功率和非零天线端口0所占的1/4比例,确定子带1的非零天线端口0的发送功率;终端根据所述上行信号的总发送功率和非零天线端口1所占的3/4比例,确定子带1的每一个非零天线端口1的发送功率;子带2根据上述方式确定子带2中的各个非零天线端口的发送功率。
下面通过具体的实施例对情况3相关的内容进行详细说明:
在情况3中,如果PUSCH包含2个子带(子带1和子带2),子带1对应预编码矩阵中的非零天线端口数目为4个,4个非零天线端口所对应的非零元素分别为1、0、0、1,则子带1对应的预编码矩阵包含的非零元素0的比例为1/2,非零元素1的比例为1/2,则根据所述上行信号的总发送功率和非零元素0的1/2比例,确定非零元素为0的非零天线端口的发送功率;根据所述上行信号的总发送功率和非零元素1的1/2比例,确定非零元素为1的非零天线端口的发送功率。子带2根据上述方式确定子带2中的各个非零天线端口的发送功率。
需要说明的是,确定所述上行信号在各个非零天线端口的发送功率并不仅限于上述3种情况。
可选的,在所述上行信号的发送功率包含所述上行信号在Q个子带的发送功率、且所述非零天线端口数目为多个的情况下,所述步骤13还包括:
根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的非零天线端口数目,确定所述上行信号的发送功率包含的所述上行信号在所述Q个子带对应的各个非零天线端口上的发送功率。
具体的,所述上行信号的发送功率包含所述上行信号在所述Q个子带对应的各个非零天线端口上的发送功率;在Q为1时,根据所述上行信号在1个子带的发送功率,确定所述上行信号在该子带的各个非零天线端口上的发送功率。在Q大于1时,根据所述上行信号在每一个子带的发送功率,确定所述上行信号在该子带的各个非零天线端口上的发送功率。
可选的,根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的非零天线端口数目,确定所述上行信号在所述Q个子带对应的各个非零天线端口上的发送功率,包括以下任意一项:
第一种:根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
第二种:根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的各个非零天线端口数目在所述Q个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个子带对应的各个非零天线端口上的发送功率,Q>1;
第三种:根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的预编码矩阵包含的各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在所述Q个子带对应的各个非零天线端口上的发送功率。
在第一种中,Q为1时,将所述上行信号在1个子带的发送功率除以该子带的非零天线端口数目得到该子带的每一个非零天线端口的发送功率,即所述该子带的每一个非零天线端口的发送功率相同。Q>1时,将所述上行信号在每一个子带的发送功率除以该子带的非零天线端口数目得到该子带的每一个非零天线端口的发送功率,即所述该子带的每一个非零天线端口的发送功率相同。
在第二种中,Q为1时,该子带的非零天线端口数目为4个,分别为1个非零天线端口0和3个非零天线端口1,则在该子带中非零天线端口0所占比例为1/4,非零天线端口1所占比例为3/4,则终端根据所述上行信号在该子带的发送功率和非零天线端口0所占的1/4比例,确定该子带的非零天线端口0的发送功率;终端根据所述上行信号在该子带的发送功率和非零天线端口1所占的3/4比例,确定子带该的每一个非零天线端口1的发送功率。在Q>1时,每一个子带的每一个非零天线端口的发送功率确定方法与上述方法类似,在此不再赘述。
在第三种中,Q为1时,该子带的非零天线端口数目为4个,4个非零天线端口中的非零元素分别为1、0、0、1,则该子带对应的预编码矩阵包含的非零元素0的比例为1/2,非零元素1的比例为1/2,则根据所述上行信号在该子带的发送功率和非零元素0的1/2比例,确定非零元素为0的非零天线端口的发送功率;根据所述上行信号在该子带的发送功率和非零元素1的1/2比例,确定非零元素为1的非零天线端口的发送功率。子带2根据上述方式确定子带2中的各个非零天线端口的发送功率。在Q>1时,每一个子带的每一个非零天线端口的发送功率确定方法与上述方法类似,在此不再赘述。
例如:所述上行信号在Q个子带的发送功率为所述上行信号在各个子带的发送功率。所述上行信号在各个子带的发送功率可以根据上述信号在各个子带的功率缩放系数确定,各个子带的功率缩放系数可以根据各个子带的非零天线端口数目确定。
需要说明的是,上述任一实施例中,所述上行信号在Q个子带的功率缩放系数具体可以为所述上行信号在各个子带的功率缩放系数。
如图2所示,本公开的实施例还提供了一种调度信息确定方法,应用于网络侧设备,具体包括以下步骤:
步骤21,根据预设的上行信号的发送功率控制规则,确定关于所述上行 信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数。
具体的,所述调度信息为指示所述上行信号应如何传输的信息,所述调度信息可以包含但不限于以下信息中的至少一项:预编码矩阵指示信息、传输流数指示信息、上行信号的资源分配信息和SRS资源指示信息等。
需要说明的是,所述Q个子带的相关信息可以是子带对应的预编码矩阵。也可以是子带对应的传输流数。也可以是子带对应的SRS资源指示信息。也可以是预编码矩阵、传输流数、SRS资源指示信息的组合等。其中,Q为大于或等于1的正整数。
需要说明的是,所述上行信号包括但不限于以下至少一项:PUSCH信号、DMRS、PUCCH信号、PRACH信号、SRS等。
步骤22,将所述调度信息发送至终端;
所述上行信号的发送功率控制规则,包括:
终端根据所述调度信息,确定第一功率缩放系数;
终端根据所述第一功率缩放系数,确定所述上行信号的发送功率。
具体的,网络侧设备将所述调度信息发送至终端,以便终端根据所述调度信息,确定第一功率缩放系数,并终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,以解决相关技术中当上行信号进行频率选择性预编码时,无法确定所述上行信号的发送功率的问题。
本公开上述实施例中,通过根据预设的上行信号的发送功率控制规则,确定关于所述上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数,将所述调度信息发送至终端,以便终端根据所述调度信息,确定第一功率缩放系数,并终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,以解决相关技术中当上行信号进行频率选择性预编码时,无法确定所述上行信号的发送功率的问题。
可选的,在将所述调度信息发送至终端之前,所述方法还包括:
将所述上行信号的发送功率控制规则发送至所述终端;
所述终端根据所述调度信息,确定第一功率缩放系数,包括:
终端根据所述调度信息和所述上行信号的发送功率控制规则,确定第一功率缩放系数。
可选的,所述终端根据所述调度信息,确定第一功率缩放系数,包括:
终端根据所述调度信息,确定预编码矩阵、非零天线端口数目和所述上行信号非零传输的子带数目Q中的至少一项;
终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数。
可选的,所述第一功率缩放系数包括Q个子带的功率缩放系数和所述上行信号的功率缩放系数中的至少一个。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:
终端根据以下公式中的任意一个,确定所述Q个子带的功率缩放系数:
β
sub=N/M/M
sub,
β
sub=1/M
sub,
β
sub=N/M,
β
sub=N/M
sub,
其中,β
sub为所述Q个子带的功率缩放系数;
N为所述非零天线端口数目;
M
sub为所述子带数目;
M为所述终端支持的一个探测参考信号SRS资源能够包含的最大SRS端口数、SRS资源指示SRI指示的SRS资源包含的SRS端口数、与所述上行信号的传输模式对应的SRS资源包含的SRS端口数、所述上行信号传输可支持的最大天线端口数、所述上行信号传输对应的天线端口数中的一者。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数之后,所述上行信号的发送功率控制规则还包括:
终端根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在Q>1时,所述终端根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数,包括:
终端根据所述Q个子带的功率缩放系数中最小的功率缩放系数,确定所述上行信号的功率缩放系数;或者,
终端根据所述Q个子带中的特定子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在所述第一功率缩放系数包括所述上行信号的功率缩放系数、且Q>1、且所述非零天线端口数目为各个子带的非零天线端口数目的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:
终端根据各个子带的非零天线端口数目中最小的非零天线端口数目,确定所述上行信号的功率缩放系数。
可选的,在所述非零天线端口数目为多个的情况下,所述终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,还包括:
终端根据所述第一功率缩放系数以及各个非零天线端口对应的所述上行信号非零传输的资源单元RE数目确定第一非零天线端口;
终端根据所述第一功率缩放系数,确定所述第一非零天线端口在一个非零传输的RE上的发送功率。
可选的,在确定所述第一非零天线端口在一个非零传输的RE上的发送功率之后,终端确定所述上行信号的发送功率,还包括:
终端根据所述第一非零天线端口在一个非零传输的RE上的发送功率, 确定所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;或者,
终端根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;
其中,所述其他非零天线端口为除所述RE数目最多的非零天线端口之外的非零天线端口。
可选的,在所述非零天线端口数目为多个的情况下,所述终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,包括:
终端根据所述第一功率缩放系数,确定各个非零天线端口在所述各个非零天线端口的各个非零传输的RE上的发送功率;
终端根据Q个子带中各个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率中最小的发送功率,确定所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号的总发送功率的情况下,终端确定所述上行信号的发送功率,还包括以下任意一项:
终端根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,Q>1;
终端根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,所述非零天线端口数目为多个。
可选的,所述终端根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,包括:
终端根据所述上行信号的总发送功率和所述子带数目Q,将所述上行信号的发送功率均分至各个子带;
终端所述根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,包括以下任意一项:
终端根据所述上行信号的总发送功率和所述非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
终端根据所述上行信号的总发送功率和各个子带分别对应的各个非零天线端口数目在各个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个非零天线端口的发送功率;
终端根据所述上行信号的总发送功率和各个子带对应的预编码矩阵中各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在各个非零天线端口的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号在Q个子带的发送功率、且所述非零天线端口数目为多个的情况下,终端确定所述上行信号的发送功率还包括以下任意一项:
终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的各个非零天线端口数目在所述Q个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个子带对应的各个非零天线端口上的发送功率,Q>1;
终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的预编码矩阵包含的各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在所述Q个子带对应的各个非零天线端口上的发送功率。
需要说明的是,该应用于网络侧设备的调度信息确定方法的实施例中,所述上行信号的发送功率控制规则中终端执行的实施例是与上述应用于终端的上行功率确定方法中终端执行的实施例的内容相对应的,上述实施例的所有实现方式均适用于该应用于网络侧设备的调度信息确定方法的实施例中,也能达到与其相同的技术效果,在此不再赘述。
如图3所示,本公开的实施例还提供了一种终端30,包括:
第一获取模块31,用于获取关于上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;
第一确定模块32,用于根据所述调度信息,确定第一功率缩放系数;
第二确定模块33,用于根据所述第一功率缩放系数,确定所述上行信号的发送功率。
可选的,所述终端30还包括:
第二获取模块,用于获取所述上行信号的发送功率控制规则;
所述第一确定模块32,包括:
根据所述调度信息和所述上行信号的发送功率控制规则,确定第一功率缩放系数。
可选的,所述第一确定模块32,包括:
第一确定单元,用于根据所述调度信息,确定预编码矩阵、非零天线端口数目和所述上行信号非零传输的子带数目Q中的至少一项;
第二确定单元,用于根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数。
可选的,所述第一功率缩放系数包括Q个子带的功率缩放系数和所述上行信号的功率缩放系数中的至少一个。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,第二确定单元,包括:
根据以下公式中的任意一个,确定所述Q个子带的功率缩放系数:
β
sub=N/M/M
sub,
β
sub=1/M
sub,
β
sub=N/M,
β
sub=N/M
sub,
其中,β
sub为所述Q个子带的功率缩放系数;
N为所述非零天线端口数目;
M
sub为所述子带数目;
M为所述终端支持的一个探测参考信号SRS资源能够包含的最大SRS端口数、SRS资源指示SRI指示的SRS资源包含的SRS端口数、与所述上行信号的传输模式对应的SRS资源包含的SRS端口数、所述上行信号传输可支持的最大天线端口数、所述上行信号传输对应的天线端口数中的一者。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,还包括:
第一处理模块,用于根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在Q>1时,所述第一处理模块,包括:
第一处理单元,用于根据所述Q个子带的功率缩放系数中最小的功率缩放系数,确定所述上行信号的功率缩放系数;或者,
第二处理单元,用于根据所述Q个子带中的特定子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在所述第一功率缩放系数包括所述上行信号的功率缩放系数、且Q>1、且所述非零天线端口数目为各个子带的非零天线端口数目的情况下,第二确定单元,包括:
第一确定子单元,用于根据各个子带的非零天线端口数目中最小的非零天线端口数目,确定所述上行信号的功率缩放系数。
可选的,在所述非零天线端口数目为多个的情况下,所述第二确定模块,还包括:
第三确定单元,用于根据所述第一功率缩放系数以及各个非零天线端口对应的所述上行信号非零传输的资源单元RE数目确定第一非零天线端口;
第四确定单元,用于根据所述第一功率缩放系数,确定所述第一非零天线端口在一个非零传输的RE上的发送功率。
可选的,所述第二确定模块33,还包括:
第五确定单元,用于根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;或者,
第六确定单元,用于根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定所述其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;
其中,所述其他非零天线端口为除所述RE数目最多的非零天线端口之外的非零天线端口。
可选的,在所述非零天线端口数目为多个的情况下,所述第二确定模块33,包括:
第七确定单元,用于根据所述第一功率缩放系数,确定各个非零天线端口在所述各个非零天线端口的各个非零传输的RE上的发送功率;
第八确定单元,用于根据Q个子带中各个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率中最小的发送功率,确定所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号的总发送功率的情况下,所述第二确定模块33,还包括以下任意一项:
第九确定单元,用于根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,Q>1;
第十确定单元,用于根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,所述非零天线端口数目为多个。
可选的,所述第九确定单元,包括:
第二确定子单元,用于根据所述上行信号的总发送功率和所述子带数目Q,将所述上行信号的发送功率均分至各个子带;
所述第十确定单元,包括以下任意一项:
第三确定子单元,用于根据所述上行信号的总发送功率和所述非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
第四确定子单元,用于根据所述上行信号的总发送功率和各个子带分别对应的各个非零天线端口数目在各个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个非零天线端口的发送功率;
第五确定子单元,用于根据所述上行信号的总发送功率和各个子带对应的预编码矩阵中各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在各个非零天线端口的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号在Q个子带的发送功率、且所述非零天线端口数目为多个的情况下,第二确定模块33还包括以下任意一项:
第十一确定单元,用于根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
第十二确定单元,用于根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的各个非零天线端口数目在所述Q个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个子带对应的各个非零天线端口上的发送功率,Q>1;
第十三确定单元,用于根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的预编码矩阵包含的各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在所述Q个子带对应的各个非零天线端口上的发送功率。
需要说明的是,该终端实施例是与上述应用于终端的上行功率确定方法相对应的终端,上述实施例的所有实现方式均适用于该终端实施例中,也能达到与其相同的技术效果,在此不再赘述。
如图4所示,本公开的实施例还提供了一种网络侧设备40,包括:
第三确定模块41,用于根据预设的上行信号的发送功率控制规则,确定关于所述上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;
第一发送模块42,用于将所述调度信息发送至终端;
所述上行信号的发送功率控制规则,包括:
终端根据所述调度信息,确定第一功率缩放系数;
终端根据所述第一功率缩放系数,确定所述上行信号的发送功率。
可选的,还包括:
第二发送模块,用于将所述上行信号的发送功率控制规则发送至所述终端;
所述终端根据所述调度信息,确定第一功率缩放系数,包括:
终端根据所述调度信息和所述上行信号的发送功率控制规则,确定第一功率缩放系数。
可选的,所述终端根据所述调度信息,确定第一功率缩放系数,包括:
终端根据所述调度信息,确定预编码矩阵、非零天线端口数目和所述上行信号非零传输的子带数目Q中的至少一项;
终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数。
可选的,所述第一功率缩放系数包括Q个子带的功率缩放系数和所述上行信号的功率缩放系数中的至少一个。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:
终端根据以下公式中的任意一个,确定所述Q个子带的功率缩放系数:
β
sub=N/M/M
sub,
β
sub=1/M
sub,
β
sub=N/M,
β
sub=N/M
sub,
其中,β
sub为所述Q个子带的功率缩放系数;
N为所述非零天线端口数目;
M
sub为所述子带数目;
M为所述终端支持的一个探测参考信号SRS资源能够包含的最大SRS端口数、SRS资源指示SRI指示的SRS资源包含的SRS端口数、与所述上行信号的传输模式对应的SRS资源包含的SRS端口数、所述上行信号传输可支持的最大天线端口数、所述上行信号传输对应的天线端口数中的一者。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数之后,所述上行信号的发送功率控 制规则还包括:
终端根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在Q>1时,所述终端根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数,包括:
终端根据所述Q个子带的功率缩放系数中最小的功率缩放系数,确定所述上行信号的功率缩放系数;或者,
终端根据所述Q个子带中的特定子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在所述第一功率缩放系数包括所述上行信号的功率缩放系数、且Q>1、且所述非零天线端口数目为各个子带的非零天线端口数目的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:
终端根据各个子带的非零天线端口数目中最小的非零天线端口数目,确定所述上行信号的功率缩放系数。
可选的,在所述非零天线端口数目为多个的情况下,所述终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,还包括:
终端根据所述第一功率缩放系数以及各个非零天线端口对应的所述上行信号非零传输的资源单元RE数目确定第一非零天线端口;
终端根据所述第一功率缩放系数,确定所述第一非零天线端口在一个非零传输的RE上的发送功率。
可选的,在确定所述第一非零天线端口在一个非零传输的RE上的发送功率之后,终端确定所述上行信号的发送功率,还包括:
终端根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;或者,
终端根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;
其中,所述其他非零天线端口为除所述RE数目最多的非零天线端口之外的非零天线端口。
可选的,在所述非零天线端口数目为多个的情况下,所述终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,包括:
终端根据所述第一功率缩放系数,确定各个非零天线端口在所述各个非零天线端口的各个非零传输的RE上的发送功率;
终端根据Q个子带中各个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率中最小的发送功率,确定所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号的总发送功率的 情况下,终端确定所述上行信号的发送功率,还包括以下任意一项:
终端根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,Q>1;
终端根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,所述非零天线端口数目为多个。
可选的,所述终端根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,包括:
终端根据所述上行信号的总发送功率和所述子带数目Q,将所述上行信号的发送功率均分至各个子带;
终端所述根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,包括以下任意一项:
终端根据所述上行信号的总发送功率和所述非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
终端根据所述上行信号的总发送功率和各个子带分别对应的各个非零天线端口数目在各个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个非零天线端口的发送功率;
终端根据所述上行信号的总发送功率和各个子带对应的预编码矩阵中各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在各个非零天线端口的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号在Q个子带的发送功率、且所述非零天线端口数目为多个的情况下,终端确定所述上行信号的发送功率还包括以下任意一项:
终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的各个非零天线端口数目在所述Q个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个子带对应的各个非零天线端口上的发送功率,Q>1;
终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的预编码矩阵包含的各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在所述Q个子带对应的各个非零天线端口上的发送功率。
需要说明的是,该网络侧设备实施例是与上述应用于网络侧设备的调度信息确定方法相对应的网络侧设备,上述实施例的所有实现方式均适用于该网络侧设备实施例中,也能达到与其相同的技术效果,在此不再赘述。
如图5所示,本公开的实施例还提供一种终端,包括:
处理器51;以及通过总线接口52与所述处理器51相连接的存储器53,所述存储器53用于存储所述处理器51在执行操作时所使用的程序和数据,当处理器51调用并执行所述存储器53中所存储的程序和数据时,执行下列 过程。
其中,收发机54与总线接口52连接,用于在处理器51的控制下接收和发送数据,具体地:
获取关于上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;
根据所述调度信息,确定第一功率缩放系数;
根据所述第一功率缩放系数,确定所述上行信号的发送功率。
可选的,所述处理器51执行所述计算机程序时实现以下步骤:
获取所述上行信号的发送功率控制规则;
所述处理器执行所述计算机程序时实现以下步骤:
根据所述调度信息和所述上行信号的发送功率控制规则,确定第一功率缩放系数。
可选的,所述处理器51执行所述计算机程序时实现以下步骤:
根据所述调度信息,确定预编码矩阵、非零天线端口数目和所述上行信号非零传输的子带数目Q中的至少一项;
根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数。
可选的,所述第一功率缩放系数包括Q个子带的功率缩放系数和所述上行信号的功率缩放系数中的至少一个。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,所述处理器51执行所述计算机程序时实现以下步骤:
根据以下公式中的任意一个,确定所述Q个子带的功率缩放系数:
β
sub=N/M/M
sub,
β
sub=1/M
sub,
β
sub=N/M,
β
sub=N/M
sub,
其中,β
sub为所述Q个子带的功率缩放系数;
N为所述非零天线端口数目;
M
sub为所述子带数目;
M为所述终端支持的一个探测参考信号SRS资源能够包含的最大SRS端口数、SRS资源指示SRI指示的SRS资源包含的SRS端口数、与所述上行信号的传输模式对应的SRS资源包含的SRS端口数、所述上行信号传输可支持的最大天线端口数、所述上行信号传输对应的天线端口数中的一者。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,所述处理器51执行所述计算机程序时实现以下步骤:
根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在Q>1时,所述处理器51执行所述计算机程序时实现以下步骤:
根据所述Q个子带的功率缩放系数中最小的功率缩放系数,确定所述上 行信号的功率缩放系数;或者,
根据所述Q个子带中的特定子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在所述第一功率缩放系数包括所述上行信号的功率缩放系数、且Q>1、且所述非零天线端口数目为各个子带的非零天线端口数目的情况下,所述处理器51执行所述计算机程序时实现以下步骤:
根据各个子带的非零天线端口数目中最小的非零天线端口数目,确定所述上行信号的功率缩放系数。
可选的,在所述非零天线端口数目为多个的情况下,所述处理器51执行所述计算机程序时实现以下步骤:
根据所述第一功率缩放系数以及各个非零天线端口对应的所述上行信号非零传输的资源单元RE数目确定第一非零天线端口;
根据所述第一功率缩放系数,确定所述第一非零天线端口在一个非零传输的RE上的发送功率。
可选的,所述处理器51执行所述计算机程序时实现以下步骤:
根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;或者,
根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;
其中,所述其他非零天线端口为除所述RE数目最多的非零天线端口之外的非零天线端口。
可选的,在所述非零天线端口数目为多个的情况下,所述处理器51执行所述计算机程序时实现以下步骤:
根据所述第一功率缩放系数,确定各个非零天线端口在所述各个非零天线端口的各个非零传输的RE上的发送功率;
根据Q个子带中各个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率中最小的发送功率,确定所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号的总发送功率的情况下,所述处理器51执行所述计算机程序时实现以下步骤中的任意一项:
根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,Q>1;
根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,所述非零天线端口数目为多个。
可选的,所述处理器51执行所述计算机程序时实现以下步骤:
根据所述上行信号的总发送功率和所述子带数目Q,将所述上行信号的发送功率均分至各个子带;
所述处理器执行所述计算机程序时实现以下步骤中的任意一项:
根据所述上行信号的总发送功率和所述非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
根据所述上行信号的总发送功率和各个子带分别对应的各个非零天线端口数目在各个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个非零天线端口的发送功率;
根据所述上行信号的总发送功率和各个子带对应的预编码矩阵中各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在各个非零天线端口的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号在Q个子带的发送功率、且所述非零天线端口数目为多个的情况下,所述处理器51执行所述计算机程序时实现以下步骤中的任意一项:
根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的各个非零天线端口数目在所述Q个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个子带对应的各个非零天线端口上的发送功率,Q>1;
根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的预编码矩阵包含的各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在所述Q个子带对应的各个非零天线端口上的发送功率。
需要说明的是,该终端实施例是与上述应用于终端的上行功率确定方法相对应的终端,上述实施例的所有实现方式均适用于该终端实施例中,也能达到与其相同的技术效果,在此不再赘述。
需要说明的是,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器51代表的一个或多个处理器和存储器53代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机54可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,用户接口55还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器51负责管理总线架构和通常的处理,存储器53可以存储处理器51在执行操作时所使用的数据。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
如图6所示,本公开的实施例还提供了一种网络侧设备,包括:处理器 600;通过总线接口与所述处理器600相连接的存储器620,以及通过总线接口与处理器600相连接的收发机610;所述存储器620用于存储所述处理器在执行操作时所使用的程序和数据;通过所述收发机610发送数据信息或者导频,还通过所述收发机610接收上行控制信道;当处理器600调用并执行所述存储器620中所存储的程序和数据时,实现如下的功能模块:
处理器600用于读取存储器620中的程序,执行下列过程:
根据预设的上行信号的发送功率控制规则,确定关于所述上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;
将所述调度信息发送至终端;
所述上行信号的发送功率控制规则,包括:
终端根据所述调度信息,确定第一功率缩放系数;
终端根据所述第一功率缩放系数,确定所述上行信号的发送功率。
收发机610,用于在处理器600的控制下接收和发送数据。
可选的,所述处理器600执行所述计算机程序时实现以下步骤中的任意一项:
将所述上行信号的发送功率控制规则发送至所述终端;
所述终端根据所述调度信息,确定第一功率缩放系数,包括:
终端根据所述调度信息和所述上行信号的发送功率控制规则,确定第一功率缩放系数。
可选的,所述终端根据所述调度信息,确定第一功率缩放系数,包括:
终端根据所述调度信息,确定预编码矩阵、非零天线端口数目和所述上行信号非零传输的子带数目Q中的至少一项;
终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数。
可选的,所述第一功率缩放系数包括Q个子带的功率缩放系数和所述上行信号的功率缩放系数中的至少一个。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:
终端根据以下公式中的任意一个,确定所述Q个子带的功率缩放系数:
β
sub=N/M/M
sub,
β
sub=1/M
sub,
β
sub=N/M,
β
sub=N/M
sub,
其中,β
sub为所述Q个子带的功率缩放系数;
N为所述非零天线端口数目;
M
sub为所述子带数目;
M为所述终端支持的一个探测参考信号SRS资源能够包含的最大SRS端口数、SRS资源指示SRI指示的SRS资源包含的SRS端口数、与所述上行信 号的传输模式对应的SRS资源包含的SRS端口数、所述上行信号传输可支持的最大天线端口数、所述上行信号传输对应的天线端口数中的一者。
可选的,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数之后,所述上行信号的发送功率控制规则还包括:
终端根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在Q>1时,所述终端根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数,包括:
终端根据所述Q个子带的功率缩放系数中最小的功率缩放系数,确定所述上行信号的功率缩放系数;或者,
终端根据所述Q个子带中的特定子带的功率缩放系数,确定所述上行信号的功率缩放系数。
可选的,在所述第一功率缩放系数包括所述上行信号的功率缩放系数、且Q>1、且所述非零天线端口数目为各个子带的非零天线端口数目的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:
终端根据各个子带的非零天线端口数目中最小的非零天线端口数目,确定所述上行信号的功率缩放系数。
可选的,在所述非零天线端口数目为多个的情况下,所述终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,还包括:
终端根据所述第一功率缩放系数以及各个非零天线端口对应的所述上行信号非零传输的资源单元RE数目确定第一非零天线端口;
终端根据所述第一功率缩放系数,确定所述第一非零天线端口在一个非零传输的RE上的发送功率。
可选的,在确定所述第一非零天线端口在一个非零传输的RE上的发送功率之后,终端确定所述上行信号的发送功率,还包括:
终端根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;或者,
终端根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;
其中,所述其他非零天线端口为除所述RE数目最多的非零天线端口之外的非零天线端口。
可选的,在所述非零天线端口数目为多个的情况下,所述终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,包括:
终端根据所述第一功率缩放系数,确定各个非零天线端口在所述各个非 零天线端口的各个非零传输的RE上的发送功率;
终端根据Q个子带中各个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率中最小的发送功率,确定所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号的总发送功率的情况下,终端确定所述上行信号的发送功率,还包括以下任意一项:
终端根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,Q>1;
终端根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,所述非零天线端口数目为多个。
可选的,所述终端根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,包括:
终端根据所述上行信号的总发送功率和所述子带数目Q,将所述上行信号的发送功率均分至各个子带;
终端所述根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,包括以下任意一项:
终端根据所述上行信号的总发送功率和所述非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
终端根据所述上行信号的总发送功率和各个子带分别对应的各个非零天线端口数目在各个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个非零天线端口的发送功率;
终端根据所述上行信号的总发送功率和各个子带对应的预编码矩阵中各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在各个非零天线端口的发送功率。
可选的,在所述上行信号的发送功率包含所述上行信号在Q个子带的发送功率、且所述非零天线端口数目为多个的情况下,终端确定所述上行信号的发送功率还包括以下任意一项:
终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;
终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的各个非零天线端口数目在所述Q个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个子带对应的各个非零天线端口上的发送功率,Q>1;
终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的预编码矩阵包含的各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在所述Q个子带对应的各个非零天线端口上的发送功率。
需要说明的是,该网络侧设备实施例是与上述应用于网络侧设备的调度信息确定方法相对应的网络侧设备,上述实施例的所有实现方式均适用于该 网络侧设备实施例中,也能达到与其相同的技术效果,在此不再赘述。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执 行。某些步骤可以并行或彼此独立地执行。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。
Claims (47)
- 一种上行功率确定方法,应用于终端,包括:获取关于上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;根据所述调度信息,确定第一功率缩放系数;根据所述第一功率缩放系数,确定所述上行信号的发送功率。
- 根据权利要求1所述的方法,其中,在所述获取关于上行信号的调度信息之前,所述方法还包括:获取所述上行信号的发送功率控制规则;所述根据所述调度信息,确定第一功率缩放系数,包括:根据所述调度信息和所述上行信号的发送功率控制规则,确定第一功率缩放系数。
- 根据权利要求1或2所述的方法,其中,所述根据所述调度信息,确定第一功率缩放系数,包括:根据所述调度信息,确定预编码矩阵、非零天线端口数目和所述上行信号非零传输的子带数目Q中的至少一项;根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数。
- 根据权利要求3所述的方法,其中,所述第一功率缩放系数包括Q个子带的功率缩放系数和所述上行信号的功率缩放系数中的至少一个。
- 根据权利要求4所述的方法,其中,在所述第一功率缩放系数包括Q个子带的功率缩放系数的情况下,根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:根据以下公式中的任意一个,确定所述Q个子带的功率缩放系数:β sub=N/M/M sub,β sub=1/M sub,β sub=N/M,β sub=N/M sub,其中,β sub为所述Q个子带的功率缩放系数;N为所述非零天线端口数目;M sub为所述子带数目;M为所述终端支持的一个探测参考信号SRS资源能够包含的最大SRS端口数、SRS资源指示SRI指示的SRS资源包含的SRS端口数、与所述上行信号的传输模式对应的SRS资源包含的SRS端口数、所述上行信号传输可支持的最大天线端口数、所述上行信号传输对应的天线端口数中的一者。
- 根据权利要求4所述的方法,其中,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,根据所述预编码矩阵、非零天线端口 数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数之后,所述方法还包括:根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
- 根据权利要求6所述的方法,其中,在Q>1时,所述根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数,包括:根据所述Q个子带的功率缩放系数中最小的功率缩放系数,确定所述上行信号的功率缩放系数;或者,根据所述Q个子带中的特定子带的功率缩放系数,确定所述上行信号的功率缩放系数。
- 根据权利要求4所述的方法,其中,在所述第一功率缩放系数包括所述上行信号的功率缩放系数、且Q>1、且所述非零天线端口数目为各个子带的非零天线端口数目的情况下,根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:根据各个子带的非零天线端口数目中最小的非零天线端口数目,确定所述上行信号的功率缩放系数。
- 根据权利要求3所述的方法,其中,在所述非零天线端口数目为多个的情况下,所述根据所述第一功率缩放系数,确定所述上行信号的发送功率,包括:根据所述第一功率缩放系数以及各个非零天线端口对应的所述上行信号非零传输的资源单元RE数目确定第一非零天线端口;根据所述第一功率缩放系数,确定所述第一非零天线端口在一个非零传输的RE上的发送功率。
- 根据权利要求9所述的方法,其中,在确定所述第一非零天线端口在一个非零传输的RE上的发送功率之后,所述确定所述上行信号的发送功率,还包括:根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;或者,根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;其中,所述其他非零天线端口为除所述RE数目最多的非零天线端口之外的非零天线端口。
- 根据权利要求3所述的方法,其中,在所述非零天线端口数目为多个的情况下,所述根据所述第一功率缩放系数,确定所述上行信号的发送功率,包括:根据所述第一功率缩放系数,确定各个非零天线端口在所述各个非零天线端口的各个非零传输的RE上的发送功率;根据Q个子带中各个子带对应的各个非零天线端口在各个非零传输的 RE上的发送功率中最小的发送功率,确定所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
- 根据权利要求3所述的方法,其中,在所述上行信号的发送功率包含所述上行信号的总发送功率的情况下,所述确定所述上行信号的发送功率,还包括以下任意一项:根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,Q>1;根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,所述非零天线端口数目为多个。
- 根据权利要求12所述的方法,其中,所述根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,包括:根据所述上行信号的总发送功率和所述子带数目Q,将所述上行信号的发送功率均分至各个子带;所述根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,包括以下任意一项:根据所述上行信号的总发送功率和所述非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;根据所述上行信号的总发送功率和各个子带分别对应的各个非零天线端口数目在各个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个非零天线端口的发送功率;根据所述上行信号的总发送功率和各个子带对应的预编码矩阵中各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在各个非零天线端口的发送功率。
- 根据权利要求3所述的方法,其中,在所述上行信号的发送功率包含所述上行信号在Q个子带的发送功率、且所述非零天线端口数目为多个的情况下,所述确定所述上行信号的发送功率还包括以下任意一项:根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的各个非零天线端口数目在所述Q个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个子带对应的各个非零天线端口上的发送功率,Q>1;根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的预编码矩阵包含的各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在所述Q个子带对应的各个非零天线端口上的发送功率。
- 一种调度信息确定方法,应用于网络侧设备,包括:根据预设的上行信号的发送功率控制规则,确定关于所述上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;将所述调度信息发送至终端;所述上行信号的发送功率控制规则,包括:终端根据所述调度信息,确定第一功率缩放系数;终端根据所述第一功率缩放系数,确定所述上行信号的发送功率。
- 根据权利要求15所述的方法,其中,在将所述调度信息发送至终端之前,所述方法还包括:将所述上行信号的发送功率控制规则发送至所述终端;所述终端根据所述调度信息,确定第一功率缩放系数,包括:终端根据所述调度信息和所述上行信号的发送功率控制规则,确定第一功率缩放系数。
- 根据权利要求15或16所述的方法,其中,所述终端根据所述调度信息,确定第一功率缩放系数,包括:终端根据所述调度信息,确定预编码矩阵、非零天线端口数目和所述上行信号非零传输的子带数目Q中的至少一项;终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数。
- 根据权利要求17所述的方法,其中,所述第一功率缩放系数包括Q个子带的功率缩放系数和所述上行信号的功率缩放系数中的至少一个。
- 根据权利要求18所述的方法,其中,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:终端根据以下公式中的任意一个,确定所述Q个子带的功率缩放系数:β sub=N/M/M sub,β sub=1/M sub,β sub=N/M,β sub=N/M sub,其中,β sub为所述Q个子带的功率缩放系数;N为所述非零天线端口数目;M sub为所述子带数目;M为所述终端支持的一个探测参考信号SRS资源能够包含的最大SRS端口数、SRS资源指示SRI指示的SRS资源包含的SRS端口数、与所述上行信号的传输模式对应的SRS资源包含的SRS端口数、所述上行信号传输可支持的最大天线端口数、所述上行信号传输对应的天线端口数中的一者。
- 根据权利要求18所述的方法,其中,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数之后,所述上行信号的发送功率控制规则还包括:终端根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
- 根据权利要求20所述的方法,其中,在Q>1时,所述终端根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数,包括:终端根据所述Q个子带的功率缩放系数中最小的功率缩放系数,确定所述上行信号的功率缩放系数;或者,终端根据所述Q个子带中的特定子带的功率缩放系数,确定所述上行信号的功率缩放系数。
- 根据权利要求18所述的方法,其中,在所述第一功率缩放系数包括所述上行信号的功率缩放系数、且Q>1、且所述非零天线端口数目为各个子带的非零天线端口数目的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数,包括:终端根据各个子带的非零天线端口数目中最小的非零天线端口数目,确定所述上行信号的功率缩放系数。
- 根据权利要求17所述的方法,其中,在所述非零天线端口数目为多个的情况下,所述终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,还包括:终端根据所述第一功率缩放系数以及各个非零天线端口对应的所述上行信号非零传输的资源单元RE数目确定第一非零天线端口;终端根据所述第一功率缩放系数,确定所述第一非零天线端口在一个非零传输的RE上的发送功率。
- 根据权利要求23所述的方法,其中,在确定所述第一非零天线端口在一个非零传输的RE上的发送功率之后,终端确定所述上行信号的发送功率,还包括:终端根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;或者,终端根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;其中,所述其他非零天线端口为除所述RE数目最多的非零天线端口之外的非零天线端口。
- 根据权利要求17所述的方法,其中,在所述非零天线端口数目为多个的情况下,所述终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,包括:终端根据所述第一功率缩放系数,确定各个非零天线端口在所述各个非零天线端口的各个非零传输的RE上的发送功率;终端根据Q个子带中各个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率中最小的发送功率,确定所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
- 根据权利要求17所述的方法,其中,在所述上行信号的发送功率包 含所述上行信号的总发送功率的情况下,终端确定所述上行信号的发送功率,还包括以下任意一项:终端根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,Q>1;终端根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,所述非零天线端口数目为多个。
- 根据权利要求26所述的方法,其中,所述终端根据所述上行信号的总发送功率和所述子带数目Q,确定所述上行信号在各个子带的发送功率,包括:终端根据所述上行信号的总发送功率和所述子带数目Q,将所述上行信号的发送功率均分至各个子带;终端所述根据所述上行信号的总发送功率和所述非零天线端口数目,确定所述上行信号在各个非零天线端口的发送功率,包括以下任意一项:终端根据所述上行信号的总发送功率和所述非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;终端根据所述上行信号的总发送功率和各个子带分别对应的各个非零天线端口数目在各个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个非零天线端口的发送功率;终端根据所述上行信号的总发送功率和各个子带对应的预编码矩阵中各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在各个非零天线端口的发送功率。
- 根据权利要求17所述的方法,其中,在所述上行信号的发送功率包含所述上行信号在Q个子带的发送功率、且所述非零天线端口数目为多个的情况下,终端确定所述上行信号的发送功率还包括以下任意一项:终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的非零天线端口数目,将所述上行信号的发送功率均分至各个非零天线端口;终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的各个非零天线端口数目在所述Q个子带对应的所有非零天线端口数目所占的比例,确定所述上行信号在各个子带对应的各个非零天线端口上的发送功率,Q>1;终端根据所述上行信号在Q个子带的发送功率和所述Q个子带对应的预编码矩阵包含的各个非零天线端口所对应的非零元素在所述预编码矩阵所有非零元素中的比例,确定所述上行信号在所述Q个子带对应的各个非零天线端口上的发送功率。
- 一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现以下步骤:获取关于上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;根据所述调度信息,确定第一功率缩放系数;根据所述第一功率缩放系数,确定所述上行信号的发送功率。
- 根据权利要求29所述的终端,其中,所述处理器执行所述计算机程序时实现以下步骤:获取所述上行信号的发送功率控制规则;所述处理器执行所述计算机程序时实现以下步骤:根据所述调度信息和所述上行信号的发送功率控制规则,确定第一功率缩放系数。
- 根据权利要求29或30所述的终端,其中,所述处理器执行所述计算机程序时实现以下步骤:根据所述调度信息,确定预编码矩阵、非零天线端口数目和所述上行信号非零传输的子带数目Q中的至少一项;根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数。
- 根据权利要求31所述的终端,其中,所述第一功率缩放系数包括Q个子带的功率缩放系数和所述上行信号的功率缩放系数中的至少一个。
- 根据权利要求32所述的终端,其中,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,所述处理器执行所述计算机程序时实现以下步骤:根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
- 根据权利要求31所述的终端,其中,在所述非零天线端口数目为多个的情况下,所述处理器执行所述计算机程序时实现以下步骤:根据所述第一功率缩放系数以及各个非零天线端口对应的所述上行信号非零传输的资源单元RE数目确定第一非零天线端口;根据所述第一功率缩放系数,确定所述第一非零天线端口在一个非零传输的RE上的发送功率。
- 根据权利要求34所述的终端,其中,所述处理器执行所述计算机程序时实现以下步骤:根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;或者,根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;其中,所述其他非零天线端口为除所述RE数目最多的非零天线端口之外的非零天线端口。
- 根据权利要求31所述的终端,其中,在所述非零天线端口数目为多个的情况下,所述处理器执行所述计算机程序时实现以下步骤:根据所述第一功率缩放系数,确定各个非零天线端口在所述各个非零天 线端口的各个非零传输的RE上的发送功率;根据Q个子带中各个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率中最小的发送功率,确定所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
- 一种网络侧设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现以下步骤:根据预设的上行信号的发送功率控制规则,确定关于所述上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;将所述调度信息发送至终端;所述上行信号的发送功率控制规则,包括:终端根据所述调度信息,确定第一功率缩放系数;终端根据所述第一功率缩放系数,确定所述上行信号的发送功率。
- 根据权利要求37所述的网络侧设备,其中,所述处理器执行所述计算机程序时实现以下步骤中的任意一项:将所述上行信号的发送功率控制规则发送至所述终端;所述终端根据所述调度信息,确定第一功率缩放系数,包括:终端根据所述调度信息和所述上行信号的发送功率控制规则,确定第一功率缩放系数。
- 根据权利要求37或38所述的网络侧设备,其中,所述终端根据所述调度信息,确定第一功率缩放系数,包括:终端根据所述调度信息,确定预编码矩阵、非零天线端口数目和所述上行信号非零传输的子带数目Q中的至少一项;终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数。
- 根据权利要求39所述的网络侧设备,其中,所述第一功率缩放系数包括Q个子带的功率缩放系数和所述上行信号的功率缩放系数中的至少一个。
- 根据权利要求40所述的网络侧设备,其中,在所述第一功率缩放系数包括所述Q个子带的功率缩放系数的情况下,终端根据所述预编码矩阵、非零天线端口数目和所述子带数目Q中的至少一项,确定所述第一功率缩放系数之后,所述上行信号的发送功率控制规则还包括:终端根据所述Q个子带的功率缩放系数,确定所述上行信号的功率缩放系数。
- 根据权利要求39所述的网络侧设备,其中,在所述非零天线端口数目为多个的情况下,所述终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,还包括:终端根据所述第一功率缩放系数以及各个非零天线端口对应的所述上行信号非零传输的资源单元RE数目确定第一非零天线端口;终端根据所述第一功率缩放系数,确定所述第一非零天线端口在一个非 零传输的RE上的发送功率。
- 根据权利要求42所述的网络侧设备,其中,在确定所述第一非零天线端口在一个非零传输的RE上的发送功率之后,终端确定所述上行信号的发送功率,还包括:终端根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定所述第一非零天线端口在所述第一非零天线端口的所有非零传输的RE上的发送功率;或者,终端根据所述第一非零天线端口在一个非零传输的RE上的发送功率,确定其他非零天线端口在所述其他非零天线端口的每一非零传输的RE上的发送功率;其中,所述其他非零天线端口为除所述RE数目最多的非零天线端口之外的非零天线端口。
- 根据权利要求39所述的网络侧设备,其中,在所述非零天线端口数目为多个的情况下,所述终端根据所述第一功率缩放系数,确定所述上行信号的发送功率,包括:终端根据所述第一功率缩放系数,确定各个非零天线端口在所述各个非零天线端口的各个非零传输的RE上的发送功率;终端根据Q个子带中各个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率中最小的发送功率,确定所述Q个子带对应的各个非零天线端口在各个非零传输的RE上的发送功率。
- 一种终端,包括:第一获取模块,用于获取关于上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;第一确定模块,用于根据所述调度信息,确定第一功率缩放系数;第二确定模块,用于根据所述第一功率缩放系数,确定所述上行信号的发送功率。
- 一种网络侧设备,包括:第三确定模块,用于根据预设的上行信号的发送功率控制规则,确定关于所述上行信号的调度信息,所述调度信息至少指示Q个子带的相关信息,Q为正整数;第一发送模块,用于将所述调度信息发送至终端;所述上行信号的发送功率控制规则,包括:终端根据所述调度信息,确定第一功率缩放系数;终端根据所述第一功率缩放系数,确定所述上行信号的发送功率。
- 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求1至14中任一项所述的上行功率确定方法的步骤,或者实现如权利要求15至28中所述的调度信息确定方法的步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21782402.8A EP4131792A4 (en) | 2020-04-02 | 2021-04-01 | METHODS FOR DETERMINING UPLINK POWER INFORMATION AND SCHEDULING, TERMINAL AND NETWORK-SIDE DEVICE |
US17/916,301 US20230142271A1 (en) | 2020-04-02 | 2021-04-01 | Method for determining uplink power, method for determining scheduling information, terminal and network side device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010254631.1A CN113498201B (zh) | 2020-04-02 | 2020-04-02 | 上行功率、调度信息确定方法、终端和网络侧设备 |
CN202010254631.1 | 2020-04-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021197416A1 true WO2021197416A1 (zh) | 2021-10-07 |
Family
ID=77929828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/084906 WO2021197416A1 (zh) | 2020-04-02 | 2021-04-01 | 上行功率、调度信息确定方法、终端和网络侧设备 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230142271A1 (zh) |
EP (1) | EP4131792A4 (zh) |
CN (1) | CN113498201B (zh) |
TW (1) | TWI784462B (zh) |
WO (1) | WO2021197416A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101674642A (zh) * | 2009-09-29 | 2010-03-17 | 中兴通讯股份有限公司 | 一种多天线终端发射功率的控制方法和系统 |
US20130128833A1 (en) * | 2010-05-20 | 2013-05-23 | Lg Electronics Inc. | Uplink power control method and user equipment |
CN104812043A (zh) * | 2014-01-29 | 2015-07-29 | 北京三星通信技术研究有限公司 | 一种用于基站间载波聚合的上行发射功率缩放方法 |
CN109644027A (zh) * | 2017-06-16 | 2019-04-16 | 联发科技股份有限公司 | 用于移动通信中的上行链路传输的方法和设备 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102355817B1 (ko) * | 2017-01-17 | 2022-01-26 | 삼성전자 주식회사 | 이동 통신 시스템에서의 반영속적 채널 상태 보고 방법 및 장치 |
WO2018143667A1 (ko) * | 2017-01-31 | 2018-08-09 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 제어 정보를 주기적으로 송신하는 방법 및 이를 위한 장치 |
SG11201906429TA (en) * | 2017-03-31 | 2019-08-27 | Lg Electronics Inc | Method for transmitting uplink data in wireless communication system and apparatus therefor |
US10924163B2 (en) * | 2017-06-06 | 2021-02-16 | Apple Inc. | Codebook subset restriction for CSI |
MX2019015586A (es) * | 2017-06-29 | 2020-02-26 | Guangdong Oppo Mobile Telecommunications Corp Ltd | Procedimiento, dispositivo terminal y dispositivo de red para transmitir se?ales. |
US10952151B2 (en) * | 2018-04-19 | 2021-03-16 | Samsung Electronics Co., Ltd. | Uplink power control for advanced wireless communication systems |
EP3644657B1 (en) * | 2018-08-18 | 2021-04-07 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Power control method and device, and terminal |
CN110971275B (zh) * | 2018-09-28 | 2021-11-23 | 大唐移动通信设备有限公司 | 一种上行传输方法、上行传输的调度方法和设备 |
-
2020
- 2020-04-02 CN CN202010254631.1A patent/CN113498201B/zh active Active
-
2021
- 2021-04-01 TW TW110112025A patent/TWI784462B/zh active
- 2021-04-01 US US17/916,301 patent/US20230142271A1/en active Pending
- 2021-04-01 EP EP21782402.8A patent/EP4131792A4/en active Pending
- 2021-04-01 WO PCT/CN2021/084906 patent/WO2021197416A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101674642A (zh) * | 2009-09-29 | 2010-03-17 | 中兴通讯股份有限公司 | 一种多天线终端发射功率的控制方法和系统 |
US20130128833A1 (en) * | 2010-05-20 | 2013-05-23 | Lg Electronics Inc. | Uplink power control method and user equipment |
CN104812043A (zh) * | 2014-01-29 | 2015-07-29 | 北京三星通信技术研究有限公司 | 一种用于基站间载波聚合的上行发射功率缩放方法 |
CN109644027A (zh) * | 2017-06-16 | 2019-04-16 | 联发科技股份有限公司 | 用于移动通信中的上行链路传输的方法和设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4131792A4 * |
Also Published As
Publication number | Publication date |
---|---|
TW202139618A (zh) | 2021-10-16 |
TWI784462B (zh) | 2022-11-21 |
CN113498201B (zh) | 2024-10-15 |
EP4131792A4 (en) | 2023-09-20 |
US20230142271A1 (en) | 2023-05-11 |
CN113498201A (zh) | 2021-10-12 |
EP4131792A1 (en) | 2023-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110601733B (zh) | 预编码矩阵的配置方法、装置及计算机可读存储介质 | |
TWI718686B (zh) | 上行傳輸方法、上行傳輸的調度方法、終端及基地台 | |
WO2017152785A1 (zh) | 一种csi反馈方法、预编码方法及装置 | |
WO2021068149A1 (en) | Port selection for channel state feedback with analog feedforward | |
WO2020020017A1 (zh) | 信道估计方法和装置 | |
WO2018177229A1 (zh) | 信令的发送方法,装置和系统 | |
US11233549B2 (en) | Information transmission method and apparatus | |
WO2017152747A1 (zh) | 一种csi反馈方法、预编码方法及装置 | |
WO2020155119A1 (zh) | 上报信道状态信息的方法和装置 | |
CN112398518B (zh) | 一种信息传输方法、装置及通信设备 | |
WO2020221152A1 (zh) | 上行信号传输方法、调度信息确定方法和相关设备 | |
CN113169785A (zh) | 针对非连续的频率资源的经压缩的csi反馈 | |
CN113454926A (zh) | 具有频率压缩的类型ii csi码本的非零系数数目报告 | |
WO2021129768A1 (zh) | 指示消息传输方法和通信设备 | |
WO2022028578A1 (zh) | 信号传输方法、终端和网络设备 | |
CN108809503A (zh) | 一种参考信号图样的传输方法及其装置 | |
CN116368744B (zh) | 一种信息指示方法及装置 | |
WO2019047946A1 (zh) | 一种码本子集限制的方法 | |
WO2021197416A1 (zh) | 上行功率、调度信息确定方法、终端和网络侧设备 | |
WO2020118728A1 (zh) | 通信方法及装置 | |
WO2022111119A1 (zh) | 一种数据检测方法及通信装置 | |
JP2024530013A (ja) | チャネル情報フィードバック方法および通信装置 | |
WO2024169583A1 (zh) | 信息传输方法及装置 | |
WO2022206374A1 (zh) | 数据传输方法、装置、设备以及存储介质 | |
CN112715009B (zh) | 预编码矩阵的指示方法、通信装置及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21782402 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021782402 Country of ref document: EP Effective date: 20221102 |