WO2020221152A1 - 上行信号传输方法、调度信息确定方法和相关设备 - Google Patents

上行信号传输方法、调度信息确定方法和相关设备 Download PDF

Info

Publication number
WO2020221152A1
WO2020221152A1 PCT/CN2020/086973 CN2020086973W WO2020221152A1 WO 2020221152 A1 WO2020221152 A1 WO 2020221152A1 CN 2020086973 W CN2020086973 W CN 2020086973W WO 2020221152 A1 WO2020221152 A1 WO 2020221152A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs resource
codebook
transmission
terminal
antenna ports
Prior art date
Application number
PCT/CN2020/086973
Other languages
English (en)
French (fr)
Inventor
黄秋萍
陈润华
高秋彬
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2020221152A1 publication Critical patent/WO2020221152A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to an uplink signal transmission method, a scheduling information determination method, and related equipment.
  • the network-side equipment can configure the terminal to perform codebook-based uplink signal transmission.
  • the network-side equipment can configure the terminal to transmit the codebook-based uplink signal.
  • the network side device will configure the terminal for channel state information (Channel State Information, CSI) measurement (or called acquisition) channel sounding reference signal (Sounding Reference Signal, SRS) Resource, where the CSI is the CSI transmitted by the uplink signal based on the codebook.
  • CSI Channel State Information
  • SRS Sounding Reference Signal
  • the embodiments of the present disclosure provide an uplink signal transmission method, a scheduling information determination method, and related equipment to solve the problem of relatively poor uplink transmission performance of a terminal.
  • Some embodiments of the present disclosure provide an uplink signal transmission method, including:
  • the terminal receives the uplink signal scheduling information sent by the network side device;
  • the terminal evenly allocates the first power to the antenna ports with non-zero signal transmission for uplink signal transmission;
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included SRS resources or second pre-configured SRS resources whose number of antenna ports meets the second preset condition;
  • the first power is the uplink channel transmission power, or the first power is the transmission power after the uplink channel transmission power is scaled by using a first scaling factor.
  • Some embodiments of the present disclosure also provide an uplink signal transmission method, including:
  • the terminal receives the uplink signal scheduling information sent by the network side device;
  • the transmission codebook is the first codebook; or, in the uplink signal scheduling information In a case where the indicated SRS resource is the second SRS resource, or the SRS resource indicated by the uplink signal scheduling information is an SRS resource other than the first SRS resource, the transmission codebook is a second codebook;
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included The SRS resource or the second pre-configured SRS resource whose number of antenna ports meets the second preset condition.
  • Some embodiments of the present disclosure also provide a method for determining scheduling information, including:
  • the network side device configures the terminal with the first SRS resource
  • the network side device allocates the first power to the terminal evenly for signal non-zero transmission based on the transmission power control method of the uplink signal corresponding to the first SRS resource
  • the uplink signal transmission assumption is performed on the antenna port of the antenna port, and the uplink signal scheduling information of the uplink signal is determined;
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included SRS resources or second pre-configured SRS resources whose number of antenna ports meets the second preset condition;
  • the first power is the uplink channel transmission power, or the first power is the transmission power after the uplink channel transmission power is scaled by using a first scaling factor.
  • Some embodiments of the present disclosure also provide an uplink signal transmission method, including:
  • the network-side device determines the transmission codebook for uplink transmission, where, when the first SRS resource is configured for the terminal, the transmission codebook of the first SRS resource is the first codebook; or, when the first SRS resource is configured for the terminal Two SRS resources, or in the case that the terminal is configured with SRS resources other than the first SRS resource, the second transmission resource or the transmission codebook of the SRS resource other than the first SRS resource is the second code this;
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included The SRS resource or the second pre-configured SRS resource whose number of antenna ports meets the second preset condition.
  • Some embodiments of the present disclosure also provide a terminal, including:
  • the receiving module is used to receive uplink signal scheduling information sent by the network side device;
  • the first transmission module is configured to, when the sounding reference signal SRS resource indicated by the uplink signal scheduling information is the first SRS resource, evenly allocate the first power to the antenna ports with signal non-zero transmission for uplink signal transmission ;
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included SRS resources or second pre-configured SRS resources whose number of antenna ports meets the second preset condition;
  • the first power is the uplink channel transmission power, or the first power is the transmission power after the uplink channel transmission power is scaled by using a first scaling factor.
  • Some embodiments of the present disclosure also provide a terminal, including:
  • the receiving module is used to receive uplink signal scheduling information sent by the network side device;
  • the determining module is configured to determine a transmission codebook for uplink transmission, wherein, when the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, the transmission codebook is the first codebook; or In the case where the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, or the SRS resource indicated by the uplink signal scheduling information is an SRS resource other than the first SRS resource, the transmission codebook is Second codebook
  • a transmission module configured to perform uplink signal transmission based on the transmission codebook
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included The SRS resource or the second pre-configured SRS resource whose number of antenna ports meets the second preset condition.
  • Some embodiments of the present disclosure also provide a network side device, including:
  • the first determining module is configured to: when the network side device configures the terminal with the first SRS resource, the transmission power control method based on the uplink signal corresponding to the first SRS resource is that the terminal evenly allocates the first power to the non-signal The assumption of uplink signal transmission on the antenna port with zero transmission is used to determine the uplink signal scheduling information of the uplink signal;
  • a sending module configured to send the uplink signal scheduling information to the terminal
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included SRS resources or second pre-configured SRS resources whose number of antenna ports meets the second preset condition;
  • the first power is the uplink channel transmission power, or the first power is the transmission power after the uplink channel transmission power is scaled by using a first scaling factor.
  • Some embodiments of the present disclosure also provide a network side device, including:
  • the first determining module is configured to determine the transmission codebook for uplink transmission, where, in the case where the first SRS resource is configured for the terminal, the transmission codebook for the first SRS resource is the first codebook; or When the terminal is configured with a second SRS resource or is configured with an SRS resource other than the first SRS resource, the second transmission resource or the transmission codebook of the SRS resource other than the first SRS resource Is the second codebook;
  • the second determining module is configured to determine the uplink signal scheduling information of the uplink signal based on the transmission codebook
  • a sending module configured to send the uplink signal scheduling information to the terminal
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included The SRS resource or the second pre-configured SRS resource whose number of antenna ports meets the second preset condition.
  • Some embodiments of the present disclosure also provide a terminal, including: a transceiver, a memory, a processor, and a program stored on the memory and running on the processor,
  • the transceiver is used to receive uplink signal scheduling information sent by a network side device
  • the transceiver is further configured to evenly allocate the first power to the antenna ports with non-zero signal transmission for uplink signal transmission when the SRS resource indicated by the uplink signal scheduling information is the first SRS resource;
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included SRS resources or second pre-configured SRS resources whose number of antenna ports meets the second preset condition;
  • the first power is the uplink channel transmission power, or the first power is the transmission power after the uplink channel transmission power is scaled by using a first scaling factor.
  • Some embodiments of the present disclosure also provide a terminal, including: a transceiver, a memory, a processor, and a program stored on the memory and running on the processor,
  • the transceiver is used to receive uplink signal scheduling information sent by a network side device
  • the transceiver or the processor is configured to determine a transmission codebook for uplink transmission, where, in the case that the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, the transmission codebook is the first Codebook; or, in the case where the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, or the SRS resource indicated by the uplink signal scheduling information is an SRS resource other than the first SRS resource ,
  • the transmission codebook is the second codebook;
  • the transceiver is also used to perform uplink signal transmission based on the transmission codebook
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included The SRS resource or the second pre-configured SRS resource whose number of antenna ports meets the second preset condition.
  • Some embodiments of the present disclosure also provide a network-side device, including: a transceiver, a memory, a processor, and a program stored on the memory and running on the processor,
  • the transceiver or the processor is configured to, when the network-side device configures the terminal with the first SRS resource, the network-side device uses the terminal to control the transmit power of the uplink signal corresponding to the first SRS resource.
  • the assumption that the first power is evenly allocated to the antenna ports with non-zero signal transmission for uplink signal transmission, and the uplink signal scheduling information of the uplink signal is determined;
  • the transceiver is configured to send the uplink signal scheduling information to the terminal;
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included SRS resources or second pre-configured SRS resources whose number of antenna ports meets the second preset condition;
  • the first power is the uplink channel transmission power, or the first power is the transmission power after the uplink channel transmission power is scaled by using a first scaling factor.
  • Some embodiments of the present disclosure also provide a network-side device, including: a transceiver, a memory, a processor, and a program stored on the memory and running on the processor,
  • the transceiver or the processor is configured to determine a transmission codebook for uplink transmission, where the transmission codebook of the first SRS resource is the first codebook when the first SRS resource is configured for the terminal Or, in the case that a second SRS resource is configured for the terminal, or an SRS resource other than the first SRS resource is configured for the terminal, the second transmission resource or the SRS other than the first SRS resource
  • the transmission codebook of the resource is the second codebook
  • the transceiver or the processor is further configured to determine the uplink signal scheduling information of the uplink signal based on the transmission codebook;
  • the transceiver is further configured to send the uplink signal scheduling information to the terminal;
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included The SRS resource or the second pre-configured SRS resource whose number of antenna ports meets the second preset condition.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored, where the program is executed by a processor to implement the first uplink signal transmission on the terminal side provided by some embodiments of the present disclosure Steps in the method, or when the program is executed by the processor, implement the steps in the second uplink signal transmission method on the terminal side provided by some embodiments of the present disclosure, or when the program is executed by the processor, implement some implementations of the present disclosure
  • the steps in the first scheduling information determining method provided in the example, or the steps in the first scheduling information determining method on the network side device side provided by some embodiments of the present disclosure are implemented when the program is executed by the processor.
  • the terminal receives uplink signal scheduling information sent by the network side device; in the case that the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, the terminal evenly allocates the first power to Uplink signal transmission is performed on the antenna ports with non-zero signal transmission; wherein, the first SRS resource is: SRS resources with the number of antenna ports that meet the first preset condition, the first pre-configured SRS resource, or the second SRS resource External SRS resource; the second SRS resource is an SRS resource or a second pre-configured SRS resource whose number of antenna ports included meets the second preset condition; the first power is the uplink channel transmit power, or the first The first power is the transmit power after scaling the uplink channel transmit power by using the first scaling factor.
  • the first SRS resource is: SRS resources with the number of antenna ports that meet the first preset condition, the first pre-configured SRS resource, or the second SRS resource External SRS resource
  • the second SRS resource is an SRS resource or a second pre-configured SRS resource
  • the uplink channel transmit power is used or the transmit power after scaling the uplink channel transmit power with the first scaling factor is evenly distributed to the antenna ports with signal non-zero transmission.
  • Uplink signal transmission can improve the uplink transmission performance of the terminal.
  • FIG. 1 is a schematic diagram of a network structure applicable to some embodiments of the present disclosure
  • FIG. 2 is a flowchart of an uplink signal transmission method provided by some embodiments of the present disclosure
  • FIG. 3 is another flowchart of an uplink signal transmission method provided by some embodiments of the present disclosure.
  • FIG. 4 is a flowchart of a method for determining scheduling information provided by some embodiments of the present disclosure
  • FIG. 5 is another flowchart of a method for determining scheduling information provided by some embodiments of the present disclosure
  • FIG. 6 is a structural diagram of a terminal provided by some embodiments of the present disclosure.
  • FIG. 7 is another structural diagram of a terminal provided by some embodiments of the present disclosure.
  • FIG. 8 is another structural diagram of a terminal provided by some embodiments of the present disclosure.
  • FIG. 9 is a structural diagram of a network side device provided by some embodiments of the present disclosure.
  • FIG. 10 is another structural diagram of a network side device provided by some embodiments of the present disclosure.
  • FIG. 11 is another structural diagram of a network side device provided by some embodiments of the present disclosure.
  • FIG. 12 is another structural diagram of a terminal provided by some embodiments of the present disclosure.
  • FIG. 13 is another structural diagram of a network side device provided by some embodiments of the present disclosure.
  • Fig. 1 is a schematic diagram of a network structure applicable to some embodiments of the present disclosure. As shown in Fig. 1, it includes a terminal 11 and a network-side device 12, where the terminal 11 may be a User Equipment (UE) or Other terminal devices, such as: mobile phones, tablet computers (Tablet Personal Computer), laptop computers (Laptop Computer), personal digital assistant (personal digital assistant, PDA), mobile Internet device (Mobile Internet Device, MID) or wearable
  • UE User Equipment
  • Other terminal devices such as: mobile phones, tablet computers (Tablet Personal Computer), laptop computers (Laptop Computer), personal digital assistant (personal digital assistant, PDA), mobile Internet device (Mobile Internet Device, MID) or wearable
  • UE User Equipment
  • PDA personal digital assistant
  • mobile Internet device Mobile Internet Device, MID
  • wearable terminal-side devices such as wearable devices, it should be noted that in some embodiments of the present disclosure, the specific types of terminals are not limited.
  • the network side equipment 12 may be a base station, such as a macro station, LTE eNB, 5G NR NB, etc.; the network side equipment may also be a small station, such as a low power node (LPN: low power node), pico, femto, etc., or
  • the network side device may be an access point (AP, access point); the base station may also be a network node composed of a central unit (CU, central unit) and multiple transmission reception points (TRP, Transmission Reception Points) managed and controlled by it. It should be noted that in some embodiments of the present disclosure, the specific type of the network side device is not limited.
  • FIG. 2 is a flowchart of an uplink signal transmission method provided by some embodiments of the present disclosure. As shown in FIG. 2, it includes the following steps:
  • a terminal receives uplink signal scheduling information sent by a network side device
  • the terminal evenly allocates the first power to the antenna ports with non-zero signal transmission for uplink signal transmission;
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included SRS resources or second pre-configured SRS resources whose number of antenna ports meets the second preset condition;
  • the first power is the uplink channel transmission power, or the first power is the transmission power after the uplink channel transmission power is scaled by using a first scaling factor.
  • the above-mentioned terminal uniformly allocates the first power to the antenna ports with signal non-zero transmission for uplink signal transmission may be: uniformly allocates the first power to the signal non-zero corresponding to the precoding matrix used to transmit the uplink signal Uplink signal transmission is performed on the transmitting antenna port.
  • the above-mentioned antenna port with non-zero signal transmission is not limited to the antenna port with non-zero signal transmission corresponding to the precoding matrix used for transmitting the uplink signal, for example: it may be the terminal itself
  • the determined antenna virtualization mode corresponds to an antenna port with non-zero signal transmission, or a virtual antenna port with non-zero signal transmission when the terminal performs the uplink signal transmission in the antenna virtualization mode, and so on.
  • the antenna port with non-zero signal transmission corresponding to the precoding matrix may be an antenna port with non-zero elements in the precoding matrix.
  • the uplink signal is PUSCH
  • the antenna ports included in the SRS resource indicated by the uplink signal scheduling information are 1000, 1001, 1002, and 1003, respectively
  • the precoding matrix indicated by the uplink signal scheduling information is [1 0 1 0] T
  • the antenna ports with non-zero data transmission corresponding to this precoding matrix are the first and third antenna ports.
  • the terminal uses this precoding matrix for PUSCH transmission.
  • the antenna port of the PUSCH is the same as the antenna port of the SRS resource indicated by the uplink signal scheduling information.
  • the antenna port with non-zero signal transmission corresponds to the precoding matrix used to transmit the PUSCH
  • the antenna ports with non-zero signal transmission are PUSCH ports 1000 and 1002.
  • first SRS resource and second SRS resource may be different SRS resources defined in advance.
  • the above-mentioned first preset condition may be defined in the protocol, or configured by the network side device to the terminal, or negotiated in advance between the terminal and the network side device, or determined by the terminal itself.
  • the aforementioned second preset condition may also be defined in the protocol, or configured by the network side device to the terminal, or pre-negotiation between the terminal and the network side device, or determined by the terminal itself.
  • the first preset condition and the second preset condition are different conditions.
  • the foregoing second pre-configured SRS resource may also be a protocol Defined in, or the network side device is configured to the terminal, or the terminal and the network side device negotiate in advance, or the terminal decides on its own.
  • the first pre-configured SRS resource and the second pre-configured SRS resource are different SRS resources.
  • the above-mentioned first SRS resource may be a first pre-configured SRS resource whose number of antenna ports included meets a first preset condition, or may be referred to as, the first SRS resource is an antenna included in the above-mentioned first pre-configured SRS resource SRS resources whose number of ports meets the first preset condition.
  • the first SRS resource and the second SRS resource are different SRS resources, where the first SRS resource can be understood as a specific SRS resource, and the specific SRS resource can be It is determined by directly defining the first SRS resource, or it can be determined by defining the second SRS resource. If the second SRS resource is defined, the SRS resource other than the second SRS resource is the above-mentioned first SRS resource, that is, the specific SRS resource .
  • the foregoing first SRS resource may represent one, multiple, or a group of first SRS resources.
  • the SRS resource indicated by the foregoing uplink signal scheduling information is The first SRS resource may be understood as the SRS resource in the plurality of SRS resources or a group of first SRS resources indicated by the uplink signal scheduling information.
  • the foregoing uplink channel transmission power may be the transmission power of a physical uplink shared channel (Physical uplink shared channel, PUSCH), for example, the transmission power of a PUSCH that has been defined in the protocol or newly defined in a subsequent protocol version.
  • PUSCH Physical uplink shared channel
  • the above uplink channel transmit power may be the uplink channel transmit power calculated using a power calculation formula, where the power calculation formula may be a power calculation formula defined in the protocol.
  • the power calculation formula is not limited. It can be a power calculation formula defined in the protocol or a newly defined power calculation formula in a subsequent protocol version.
  • the uplink channel transmit power calculated by the power calculation formula can be the power P PUSCH, b, f calculated according to the formula in section 7.1.1 of TS38.213 ,c (i,j,q d ,l).
  • the above-mentioned first scaling factor may be a real number equal to or less than 1.
  • it is equal to 1, that is, without scaling, the uplink channel transmission power is directly distributed evenly to the precoding matrix used to transmit the uplink signal. Uplink signal transmission is performed on the antenna port with zero transmission.
  • the uplink signal may be a PUSCH signal.
  • PUSCH physical uplink control channel
  • the SRS resource is the first SRS resource
  • the uplink channel transmission power is used or the transmission power after the uplink channel transmission power is scaled by the first scaling factor is evenly allocated to the signal.
  • the present disclosure can improve the uplink transmission performance of the terminal.
  • the SRS resource is not the first SRS resource or the second SRS resource
  • other power rules may be used to transmit the uplink signal, which will be described in detail below.
  • the SRS resource whose number of antenna ports included above meets the first preset condition refers to:
  • the number of antenna ports included is the SRS resource of the first antenna port number, where the first antenna port number includes at least one of the following:
  • the number of antenna ports indicated by the network side device is the number of antenna ports indicated by the network side device
  • the number of antenna ports is smaller than the number of antenna ports of the SRS resource with the largest number of antenna ports included in the SRS resource configured by the network side device for the terminal;
  • the number of antenna ports determined according to the transmit power capability of the terminal.
  • the predefined number of antenna ports may be agreed upon by the protocol, or may be configured by the network side for the terminal.
  • the number of antenna ports indicated by the network-side device may be a value indicated by the base station to the terminal through signaling.
  • the above positive integer may be indicated through RRC signaling, MAC-CE, or DCI signaling.
  • the number of antenna ports mentioned above is smaller than the number of antenna ports of the SRS resource with the largest number of antenna ports included in the SRS resources configured by the network side device for the terminal.
  • the SRS resource with the largest number of antenna ports included in the SRS resource of the PUSCH transmission CSI measurement has a small number of antenna ports.
  • the number of antenna ports included in the multiple SRS resources configured by the network side device for the terminal is not a maximum SRS resource.
  • the terminal can use a PA that can reach a larger transmission power to transmit according to its own PA capability or use multiple PAs for virtualized transmission, which can increase the transmission power of each antenna port of the PUSCH and further improve PUSCH transmit power, thereby improving performance.
  • the number of antenna ports determined according to the signaling reported by the terminal may be the number of antenna ports determined according to the signaling used to indicate the number of specific antenna ports reported by the terminal.
  • the upstream signal is PUSCH as an example, the terminal can report how many antenna ports the terminal can transmit PUSCH with greater transmission power, so the network side device can transmit based on the assumption of greater PUSCH transmission power PUSCH, improve the transmission performance of PUSCH.
  • the number of antenna ports determined according to the transmit power capability of the terminal may be the number of antenna ports determined according to the maximum transmit power capability of the PA of the terminal. For example: if the maximum transmit power that each PA of the terminal can reach is 1/r of the maximum transmit power supported by the terminal, the maximum number of antenna ports that can be included in one SRS resource supported by the terminal is M 1 , and the number of antenna ports is less than Or the number of antenna ports equal to M 1 /r.
  • the first pre-configured SRS resource includes at least one of the following:
  • the SRS resource pre-configured by the network side device for the terminal may be indicated to the terminal by the network side device through signaling, for example: the signaling may be RRC signaling, MAC-CE, DCI signaling, and so on.
  • the foregoing SRS resource determined according to the transmit power capability of the terminal may be an SRS resource determined according to the maximum transmit power capability of the terminal's PA. For example, if the maximum transmit power that each PA of the terminal can reach is 1/r of the maximum transmit power supported by the terminal, the maximum number of antenna ports that can be included in one SRS resource supported by the terminal is M 1 , and the specific SRS resource is SRS resources whose number of antenna ports is less than or equal to M 1 /r.
  • the foregoing indication message is used to indicate the number of one or a group of SRS antenna ports, and the first pre-configured SRS resource is an SRS resource whose number of antenna ports included belongs to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource whose number of antenna ports included is less than or equal to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource with a number of antenna ports greater than or equal to M 1 /X, where X is indicated by the indication message
  • M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the terminal can be implemented to send an indication message for determining which SRS resources are the first SRS resources (that is, specific SRS resources) to the network side device. For example, the number of SRS antenna ports may be used to indicate the first SRS resource.
  • full power transmission may mean that the terminal transmits an uplink signal with uplink channel transmission power.
  • the SRS resource can be indicated by indicating the number of SRS antenna ports.
  • the SRS resource indicated by the SRI belongs to the first SRS resource;
  • the SRS resource indicated by the SRI includes When the number of antenna ports is greater than or equal to the number of antenna ports reported by the terminal, the SRS resource does not belong to the first SRS resource.
  • the terminal sends one number of SRS antenna port X to the base station.
  • the SRS resource belongs to the first SRS resource; when the number of antenna ports included in the SRS resource indicated by the SRI is less than or equal to M 1 /X, The SRS resource does not belong to the first SRS resource.
  • the information or instructions or signaling sent by the terminal to the network-side device may be combined and sent, that is, the above indication message may be the same as that provided by some embodiments of the present disclosure. Combining other messages or other methods, one message indicates multiple behaviors of the terminal. Or the above indication message and other messages or signaling or instructions are different instructions. Moreover, the above-mentioned indication message and other messages or signaling terminals may only send one of them.
  • the terminal sends one or a group of SRS antenna port numbers to the network side device.
  • each port in the SRS resource can be The PUSCH is transmitted at full power, that is, no matter which single-stream precoding matrix is indicated by the terminal by the transmission precoding matrix indicator (Transmit Precoding Matrix Indicator, TPMI), the terminal can transmit the PUSCH at full power.
  • TPMI Transmission Precoding Matrix Indicator
  • the terminal sends a number of SRS antenna ports to the network side device.
  • each port in the SRS resource can be full Power transmission PUSCH, that is, no matter which single-stream precoding matrix TPMI indicates for the terminal, the terminal can transmit PUSCH with full power; when the SRS resource indicated by SRI contains more antenna ports than the number of antenna ports reported by the terminal, The SRS resource does not belong to the aforementioned first SRS resource.
  • the terminal sends a number of SRS antenna ports to the base station.
  • each port in the SRS resource can transmit PUSCH with full power That is, no matter which single-stream precoding matrix the TPMI indicates for the terminal, the terminal can transmit the PUSCH at full power.
  • the terminal sends an SRS antenna port number X to the base station.
  • the number of antenna ports included in the SRS resource indicated by the SRI is less than or equal to M 1 /X
  • each port in the SRS resource can transmit PUSCH with full power
  • M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the included SRS resource whose number of antenna ports meets the second preset condition refers to:
  • the network-side device configures m SRS resources that include the largest number of antenna ports for the terminal, or the number of included antenna ports is equal to the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • m can be determined in any of the following ways:
  • m is a predefined positive integer, for example, m is agreed upon in the agreement;
  • the network side device may indicate the value of m to the terminal through signaling, and the signaling may be RRC signaling, MAC-CE, DCI signaling, etc.;
  • the network-side device may configure the terminal for the number of SRS resources with the largest number of antenna ports included in the SRS resources used for codebook-based PUSCH transmission CSI measurement, and the number is the foregoing m;
  • the network-side device may configure the terminal for the minimum value between the number of SRS resources with the largest number of antenna ports included in the SRS resources used for codebook-based PUSCH transmission CSI measurement and an integer indicated by the network-side device through signaling,
  • the minimum value is the above m;
  • the network-side device can configure the terminal for the minimum value between the number of SRS resources with the largest number of antenna ports and a predefined integer in the SRS resources used for codebook-based PUSCH transmission CSI measurement, and the minimum value is the foregoing m.
  • the m SRS resources with the largest number of antenna ports configured by the network-side device for the terminal may be the number of antenna ports included in the SRS resource configured for the terminal by the network-side device for PUSCH transmission CSI measurement based on the codebook.
  • the most m SRS resources if the network-side device configures the terminal for the terminal for PUSCH transmission CSI measurement based on the codebook, the m SRS resources with the largest number of antenna ports included in the SRS resources are greater than m, and the m SRS resources are in accordance with The network side device configures the terminal to select the indication sequence of SRS resources used for codebook-based PUSCH transmission CSI measurement. For example, select the first m indicated SRS resources.
  • the network-side device configures the terminal for the terminal and uses the m SRS resources with the largest number of antenna ports in the SRS resources used for codebook-based PUSCH transmission CSI measurement. If the network-side device configures the terminal for the codebook-based PUSCH The number of m SRS resources with the largest number of antenna ports included in the SRS resources for transmitting CSI measurement is greater than m, and these m SRS resources are based on the number of SRS resources configured by the network side device for the terminal for the codebook-based PUSCH transmission CSI measurement Sequential selection, for example, select m SRS resources with the highest number.
  • the second pre-configured SRS resource includes:
  • the m is an integer greater than or equal to 1.
  • the aforementioned m predefined SRS resources may be m SRS resources determined according to a predefined rule.
  • the network side device configures the first m resources for the terminal when transmitting the SRS resources for CSI measurement based on the codebook-based PUSCH.
  • the first power is the uplink channel transmit power; otherwise, the first The power is the transmit power after the uplink channel transmit power is scaled by using the first scaling factor.
  • the aforementioned precoding matrix is a precoding matrix of an uplink signal.
  • the power required by the maximum power may be the maximum output power required by the terminal power level.
  • the maximum transmit power requirement is a maximum output power of 23 dBm.
  • the terminal directly distributes the uplink channel transmission power evenly to the antenna with non-zero signal transmission.
  • the terminal uses the first scaling factor to scale the transmit power of the uplink channel. For example: multiply the uplink channel transmit power by the ratio of the number of antenna ports with non-zero signal transmission in the precoding matrix to the maximum number of ports contained in one SRS resource supported by the terminal, and then evenly distribute this power to the precoding matrix with signals Non-zero transmission on the antenna port.
  • multiply the uplink channel transmit power by the ratio of the number of antenna ports with signal non-zero transmission in the precoding matrix to the number of antenna ports contained in the SRS resource indicated by the SRI, and then evenly distribute this power to the precoding matrix with signal non-zero transmission. On the antenna port with zero transmission.
  • the transmission power of the uplink signal of the terminal can be increased, for example, full power transmission can be realized.
  • the terminal does not scale the transmission power of PUSCH according to the number of non-zero ports with signal transmission in the precoding matrix, but directly distributes the transmission power of PUSCH to the precoding matrix evenly.
  • the antenna port with non-zero signal transmission in order to increase the transmission power of the terminal uplink signal.
  • the first scaling factor is N/M or r ⁇ N/M or r ⁇ N/M 1 , or the scaling factor is r ⁇ N/M And the minimum value of 1, or the scaling factor is the minimum value of r ⁇ N/M 1 and 1;
  • the N is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the M is the number of antenna ports included in the SRS resource indicated by the SRI
  • the M 1 is one SRS resource supported by the terminal The maximum number of antenna ports that can be included
  • the r is an integer greater than 1.
  • the above r may be defined in the protocol, or configured by the network side device to the terminal.
  • the transmission power of the uplink signal of the terminal can be increased, for example, full power transmission can be realized.
  • the uplink channel transmit power can be multiplied by the ratio of the number of antenna ports with non-zero signal transmission in the precoding matrix to the number of antenna ports included in the SRS resource indicated by the SRI, and then this power can be evenly distributed to the precoding matrix.
  • Signal non-zero transmission on the antenna port to increase the transmission power of the terminal's uplink signal, for example, to achieve full power transmission.
  • the first scaling factor in some embodiments of the present disclosure is a scaling factor corresponding to the precoding matrix determined by the terminal.
  • the terminal can determine the scaling factor used by each precoding matrix to adjust the uplink channel transmit power, and use the scaling factor to scale the uplink channel transmit power after the uplink channel transmit power is evenly distributed to On the antenna port with non-zero signal transmission.
  • the first power is the transmit power obtained by scaling the uplink channel transmit power using the first scaling factor, and
  • the first scaling factor is: the minimum of ⁇ 0 / ⁇ and ⁇ /R; or
  • the first power is the transmit power after scaling the uplink channel transmit power using the first scaling factor, and the first scaling factor is: ⁇ 0 The minimum of / ⁇ and ⁇ /2R;
  • the first power is the uplink channel transmit power
  • the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the ⁇ is the number of antenna ports included in the sounding reference signal SRS resource indicated by the uplink signal scheduling information
  • the R is the uplink signal The number of transport streams.
  • the above-mentioned precoding matrix may be the above-mentioned uplink signal precoding matrix.
  • the first scaling factor (or called the power control scaling factor) is:
  • the first scaling factor is: the minimum value of ⁇ /G and 1, where ⁇ is the antenna port included in the sounding reference signal SRS resource indicated by the uplink signal scheduling information Number, the G is a coefficient related to the power capability of the terminal.
  • the power required by the maximum power may be the maximum output power required by the terminal power level.
  • the first scaling factor can be realized as:
  • the first scaling factor is:
  • K/R and 1 The maximum value of K/R and 1 is multiplied by ⁇ 0 / ⁇ , where the K is a coefficient, the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix, and the ⁇ is the uplink The number of antenna ports included in the sounding reference signal SRS resource indicated by the signal scheduling information, and the R is the number of transmission streams of the uplink signal.
  • the K may be:
  • the first scaling factor can be realized as:
  • R is the number of transmission streams of the uplink signal
  • K is the coefficient
  • ⁇ 0 is the number of non-zero transmission ports corresponding to the precoding matrix of the uplink signal
  • is the sounding reference signal SRS resource indicated by the uplink signal scheduling information.
  • Number of antenna ports is a coefficient related to the number of antenna ports of the uplink signal and the codebook subset restriction type corresponding to the uplink signal.
  • K is a coefficient related to the power capability of the terminal equipment.
  • the above K may be a coefficient related to the number of antenna ports of the uplink signal and the codebook subset restriction type corresponding to the uplink signal.
  • the value of K can be as shown in Table 1.
  • the power control scaling factor of the uplink signal indicated by each precoding matrix is as shown in Table 2 below:
  • Non-coherent TPMI is a non-coherent transmission codeword
  • Partial coherent TPMI is a partially coherent transmission codeword
  • Fully coherent TPMI is a fully coherent transmission codeword.
  • the terminal device when the power capability reported by the terminal device to the network device or the default power capability of the terminal device is that the transmit power of each antenna port (or each AC, or each PA) of the terminal device can reach the maximum power requirement When the terminal equipment can realize the uplink full power transmission, the terminal can directly distribute the uplink channel transmission power evenly to the antenna ports with non-zero signal transmission.
  • the value of K is related to the power capability of the terminal device.
  • the power capability of the terminal device is that the transmit power of each antenna port (or each AC, or each PA) of the terminal device can reach the power required by the maximum power
  • the value of K in Table 1 above is used .
  • the power capability reported by the terminal device to the network device or the default power capability of the terminal device is that the transmit power of each antenna port of the terminal device can reach one-half of the power requirement, or the terminal device The sum of the transmit power of any two antenna ports can reach the maximum transmit power requirement.
  • the value of K is shown in Table 3.
  • the power control scaling factor of the uplink signal under the indication of each precoding matrix for 4 antenna ports is shown in Table 4.
  • Non-coherent TPMI is a non-coherent transmission codeword
  • Partial coherent TPMI is a partially coherent transmission codeword
  • Fully coherent TPMI is a fully coherent transmission codeword.
  • the value of K is fixed to 1.
  • the first scaling factor is:
  • G 1 /G 0 is multiplied by ⁇ 0 / ⁇ , where the G 0 is the number of coherent transmission antenna groups corresponding to the precoding matrix, and G 1 is the codebook corresponding to the codebook subset restriction type corresponding to the uplink signal The maximum number of coherent transmission antenna groups corresponding to all codewords, the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix, and the ⁇ is the sounding reference signal SRS resource indicated by the uplink signal scheduling information. Number of antenna ports.
  • the first scaling factor can be realized as G 1 /G 0 multiplied by ⁇ 0 / ⁇ .
  • the value of G 0 can be as shown in Table 5 below.
  • ULCodebookSubset in Table 5 is the uplink signal corresponding to the terminal device indicated by the network device to the terminal device
  • the codebook subset restriction type indication parameter (indicated by the RRC signaling parameter ULCodebookSubset in the NR system).
  • the first scaling factor of the uplink signal indicated by each precoding matrix in the case of 4 antenna ports is as shown in Table 6 below.
  • Non-coherent TPMI is a non-coherent transmission codeword
  • Partial coherent TPMI is a partially coherent transmission codeword
  • Fully coherent TPMI is a fully coherent transmission codeword.
  • the terminal device when the power capability reported by the terminal device to the network device or the default power capability of the terminal device is that the transmit power of each antenna port (or each AC, or each PA) of the terminal device can reach the maximum power requirement When the terminal equipment can realize the uplink full power transmission, the terminal can directly distribute the uplink signal transmission power evenly to the antenna ports with non-zero signal transmission.
  • the foregoing terminal reports to the network side device that the terminal has a full power transmission capability.
  • the full power transmission capability includes at least one of the following:
  • the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, or the SRS resource indicated by the uplink signal scheduling information is other than the first SRS resource.
  • the terminal evenly allocates the second power to the antenna ports with non-zero signal transmission for uplink signal transmission, where the second power is the result of scaling the uplink channel transmit power using the second scaling factor Transmit power, the second scaling factor is N/M 1 ;
  • the N is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the second power can be evenly allocated to the antenna ports with non-zero signal transmission for uplink signal transmission.
  • the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, perform uplink signal transmission based on the first codebook; and/or,
  • the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, perform uplink signal transmission based on the second codebook.
  • the transmission codebook for uplink signal transmission, where the SRS resource indicated by the uplink signal scheduling information is the first In the case of SRS resources, the transmission codebook is the first codebook; or, the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, or the SRS resource indicated by the uplink signal scheduling information is In the case of SRS resources other than the first SRS resource, the transmission codebook is a second codebook;
  • uplink signal transmission is performed based on the transmission codebook.
  • the coherent transmission types of the first codebook and the second codebook are the same, and the coherent transmission type is non-coherent transmission;
  • the first codebook is the codebook for non-coherent transmission
  • the second codebook is the codebook subset restriction indicated by the network side device for the terminal. Codebook; or
  • the first codebook is a codebook for coherent transmission
  • the second codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal Codebook
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission
  • the second codebook is a codebook for the network side device.
  • the codebook corresponding to the codebook subset indicated by the terminal is restricted; or
  • both the first codebook and the second codebook are codebooks corresponding to the codebook subset restriction indicated by the network side device for the terminal;
  • the first codebook and the second codebook are codebooks corresponding to the codebook subset restriction corresponding to the SRS resource; or
  • the first codebook and the second codebook are codebooks corresponding to a codebook subset restriction corresponding to the number of antenna ports included in the SRS resource.
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission;
  • the first codebook is a codebook for non-coherent transmission
  • the first codebook is a codebook for fully coherent transmission
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission;
  • the first codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • the second codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • the codebook corresponding to the codebook subset restriction corresponding to the SRS resource is a codebook corresponding to the SRS resource among multiple codebook subset restrictions configured by the network side device for the terminal The codebook corresponding to the subset restriction; or
  • the codebook corresponding to the codebook subset restriction corresponding to the number of antenna ports included in the SRS resource is the antenna included in the SRS resource among the multiple codebook subset restrictions configured by the network side device for the terminal.
  • the codebook subset corresponding to the number of ports limits the corresponding codebook.
  • the uplink scheduling information includes transmission precoding matrix information and a stream number indicator field, and the transmission precoding matrix information and stream number indicator field are used to indicate a precoding matrix used by the terminal to send the uplink signal
  • the transmission precoding matrix information and the length of the stream number field are:
  • log 2 (S) or the smallest positive integer greater than the log 2 (S), where S is the number of codewords contained in the transmission codebook.
  • the network-side device configures multiple SRS resources for the terminal for PUSCH transmission CSI measurement based on the codebook (for example, in the NR system Rel-15, the usage is configured as the SRS of the'codebook' SRS resources in the SRS resource set in the resource set).
  • the terminal may use the power transmission rule corresponding to the first power Transmission is performed to achieve full power transmission of the PUSCH; when the SRI indicates that the SRS resource is another SRS resource, the power transmission rule corresponding to the first power is used for transmission, that is, the PUSCH is not transmitted at full power.
  • the uplink signal scheduling information may include an SRI indication to indicate SRS resources through the SRI, and of course, it may not include indicating SRS resources through other content in the uplink signal scheduling information. .
  • the terminal can transmit PUSCH at full power means that the terminal can use the PUSCH transmit power adjustment rule for full power transmission (that is, the power transmission rule corresponding to the first power) to transmit PUSCH; the terminal cannot transmit PUSCH at full power, which means that the terminal cannot use full power.
  • the PUSCH transmission power adjustment rule during power transmission transmits the PUSCH. That is, when the SRS resource indicates that the SRS resource indicated by the SRI belongs to a specific group of SRS resources, the terminal uses the PUSCH transmit power adjustment rule for full power transmission to transmit the PUSCH; when the SRI indicates that the SRS resource is another SRS resource, The terminal uses other PUSCH transmission power adjustment rules to transmit the PUSCH.
  • the inability of the terminal to transmit the PUSCH at full power means that the terminal can adopt the following PUSCH transmission power adjustment rule: the transmission power of the PUSCH is scaled using N/M1, and then evenly distributed to the antenna ports of each PUSCH non-zero transmission.
  • N is the number of antenna ports with PUSCH non-zero transmission in the precoding matrix.
  • M1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the precoding matrix is determined according to the precoding matrix indicated by the DCI.
  • the precoding matrix is 1.
  • the terminal can Full power transmission of PUSCH refers to other PUSCH transmission power adjustment rules.
  • the terminal can transmit PUSCH at full power means that the terminal uses the PUSCH transmission scheme when sending PUSCH at full power to transmit PUSCH (for example, small Delay CDD, etc.); the terminal cannot transmit PUSCH at full power means that the terminal uses the conventional codebook-based PUSCH transmission mode Send PUSCH (for example, no small DelayCDD transmission).
  • the terminal uses the PUSCH transmission scheme when the PUSCH is sent at full power to send the PUSCH (for example, small Delay CDD, etc.); when the SRI indicates that the SRS resource is For other SRS resources, the terminal uses the conventional codebook-based PUSCH transmission mode to transmit the PUSCH (for example, small DelayCDD transmission is not performed).
  • the terminal receives uplink signal scheduling information sent by the network side device; in the case that the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, the terminal evenly allocates the first power to Uplink signal transmission is performed on the antenna ports with non-zero signal transmission in the precoding matrix used for transmitting the uplink signal; wherein, the first SRS resource is: the number of antenna ports included meets the first preset condition of the SRS resource, the first Pre-configured SRS resources or SRS resources other than the second SRS resource; the second SRS resource is an SRS resource or a second pre-configured SRS resource whose number of antenna ports included meets a second preset condition; the first power Is the uplink channel transmit power, or the first power is the transmit power after the uplink channel transmit power is scaled by using a first scaling factor.
  • the uplink channel transmit power is used or the transmit power after scaling the uplink channel transmit power with the first scaling factor is evenly distributed to the antenna ports with signal non-zero transmission.
  • Uplink signal transmission can improve the uplink transmission performance of the terminal.
  • FIG. 3 is a flowchart of an uplink signal transmission method provided by some embodiments of the present disclosure. As shown in FIG. 3, it includes the following steps:
  • a terminal receives uplink signal scheduling information sent by a network side device
  • the 302. Determine a transmission codebook for uplink transmission, where, in a case where the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, the transmission codebook is the first codebook; or, in the uplink signal When the SRS resource indicated by the scheduling information is the second SRS resource, or the SRS resource indicated by the uplink signal scheduling information is an SRS resource other than the first SRS resource, the transmission codebook is the second code this;
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included The SRS resource or the second pre-configured SRS resource whose number of antenna ports meets the second preset condition.
  • the transmission mode in the uplink signal transmission based on the transmission codebook in step 303 can refer to the related description in the embodiment shown in FIG. 2, for example: the uplink signal transmission based on the transmission codebook includes :
  • the terminal evenly allocates the first power to the antenna ports with signal non-zero transmission to perform uplink based on the transmission codebook Signal transmission;
  • the terminal sets the second power Evenly allocated to the antenna ports with non-zero signal transmission for uplink signal transmission based on the transmission codebook.
  • the first power is an uplink channel transmit power, or the first power is a transmit power obtained by scaling the uplink channel transmit power using a first scaling factor.
  • the first power is the uplink channel transmission power; otherwise, the first power is the use of the
  • the first scaling factor is the transmit power after scaling the uplink channel transmit power.
  • the first scaling factor is N/M or r ⁇ N/M or r ⁇ N/M 1 , or the scaling factor is the minimum value of r ⁇ N/M and 1, or the The scaling factor is the minimum of r ⁇ N/M 1 and 1;
  • the N is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the M is the number of antenna ports included in the SRS resource indicated by the SRI
  • the M 1 is one SRS resource supported by the terminal The maximum number of antenna ports that can be included
  • the r is an integer greater than 1.
  • the first scaling factor is a scaling factor corresponding to a precoding matrix determined by the terminal.
  • the first power is the transmit power after the uplink channel transmit power is scaled by using the first scaling factor, and the first scaling factor Is: the minimum of ⁇ 0 / ⁇ and ⁇ /R; or
  • the first power is the transmit power after scaling the uplink channel transmit power using the first scaling factor, and the first scaling factor is: ⁇ 0 The minimum of / ⁇ and ⁇ /2R;
  • the first power is the uplink channel transmit power
  • the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the ⁇ is the number of antenna ports included in the sounding reference signal SRS resource indicated by the uplink signal scheduling information
  • the R is the uplink signal The number of transport streams.
  • the first scaling factor is: the minimum value of ⁇ /G and 1, where ⁇ is the number of antenna ports included in the sounding reference signal SRS resource indicated by the uplink signal scheduling information, and the G Is a coefficient related to the power capability of the terminal.
  • the first scaling factor is:
  • K/R and 1 The maximum value of K/R and 1 is multiplied by ⁇ 0 / ⁇ , where the K is a coefficient, the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix, and the ⁇ is the uplink The number of antenna ports included in the sounding reference signal SRS resource indicated by the signal scheduling information, where R is the number of transmission streams of the uplink signal; or
  • G 1 /G 0 is multiplied by ⁇ 0 / ⁇ , where the G 0 is the number of coherent transmission antenna groups corresponding to the precoding matrix, and G 1 is the codebook corresponding to the codebook subset restriction type corresponding to the uplink signal The maximum number of coherent transmission antenna groups corresponding to all codewords, the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix, and the ⁇ is the sounding reference signal SRS resource indicated by the uplink signal scheduling information. Number of antenna ports.
  • the K is:
  • the precoding matrix is the precoding matrix indicated by the uplink scheduling information
  • the precoding matrix is 1.
  • the terminal reports to the network side device that the terminal has a full power transmission capability.
  • the full power transmission capability includes at least one of the following:
  • the second power is the transmit power obtained by scaling the uplink channel transmit power using a second scaling factor, and the second scaling factor is N/M 1 ;
  • the N is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the first codebook and the second codebook have the same coherent transmission type, and the coherent transmission type is non-coherent transmission.
  • a method for determining the transmission codebook is: no matter which SRS resource is indicated, the codebook only contains the codewords for non-coherent transmission, for example: codebook The codebook when the codebook subset is restricted to'nonCoherent' for the number of antenna ports included in the indicated SRS resource.
  • the terminal when the number of antenna ports included in the SRS resource is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal, the terminal can perform antenna virtualization for each SRS antenna port, so that each antenna port can be implemented. Each antenna port uses more transmit power. For example, the terminal supports a maximum of 4 SRS ports. When 4 antenna ports are configured in the SRS resource, each antenna port uses one PA to transmit, and the maximum transmission power is P; when the SRS resource of 2 SRS ports is configured, each The antenna port is the antenna port of 2 PAs after antenna virtualization, and the maximum transmission power can be 2P.
  • the first codebook is a codebook for non-coherent transmission
  • the second codebook is that the network side device is the The codebook subset indicated by the terminal restricts the corresponding codebook.
  • a method for determining the transmission codebook is: when the number of antenna ports included in the SRS resource is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the codebook only includes the codebook for non-coherent transmission (for example, the codebook is the codebook when the codebook subset is limited to'nonCoherent' under the number of antenna ports included in the SRS resource indicated by the SRI).
  • the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI.
  • the base station corresponds to the codebook subset limit indicated by the terminal Codebook.
  • the terminal when the number of antenna ports included in the SRS resource is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal, the terminal can perform antenna virtualization for each SRS antenna port, so that each antenna port can be implemented.
  • Each antenna port uses more transmit power.
  • the terminal supports a maximum of 4 SRS ports.
  • each antenna port uses one PA to transmit, and the maximum transmission power is P;
  • each The antenna port can be the antenna port of two PAs that can be coherently transmitted after antenna virtualization, and the maximum transmission power can be 2P.
  • this solution uses more precoding methods for coherent transmission antennas through antenna virtualization during 2-port SRS transmission. Perform transmission, so as to have better performance.
  • the first codebook is a codebook for coherent transmission
  • the second codebook is that the network-side device is the terminal
  • the indicated codebook subset restricts the corresponding codebook
  • a method for determining the transmission codebook is: when the number of antenna ports included in the SRS resource is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the codebook is a codebook for coherent transmission (for example, the codebook is a codebook when the codebook subset is limited to'fullyAndPartialAndNonCoherent' under the number of antenna ports included in the SRS resource indicated by the SRI).
  • the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI.
  • the base station corresponds to the codebook subset limit indicated by the terminal Codebook.
  • the terminal when the terminal transmits an SRS resource whose number of antenna ports is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal, the terminal can use the CDD transmission mode between different antenna ports.
  • the terminal can use the CDD transmission mode between different antenna ports.
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission
  • the first The second codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • a method for determining the transmission codebook is: when the number of antenna ports included in the SRS resource is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal
  • the codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission
  • the codebook is the codebook when the codebook subset is restricted to'fullyAndPartialAndNonCoherent' with the number of antenna ports included in the SRS resource;
  • the codebook for 2 antenna ports is all single-stream incoherent codebooks plus one antenna port with a phase relationship of [1 1] T (precoding codewords) in single-stream mode.
  • the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI.
  • the base station corresponds to the codebook subset limit indicated by the terminal Codebook.
  • the terminal when the number of antenna ports included in the SRS resource is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal, the terminal can implement antenna virtualization for each SRS antenna port, so that each The antenna port uses more transmit power.
  • the terminal supports a maximum of 4 SRS ports.
  • each antenna port uses one PA to transmit, and the maximum transmission power is P;
  • each The antenna port is the antenna port of 2 PAs after antenna virtualization, and the maximum transmission power can be 2P.
  • the first codebook and the second codebook are both codebook subsections indicated by the network side device for the terminal The codebook corresponding to the set restriction.
  • a PUSCH transmission codebook determination method is: no matter which SRS resource is indicated, the codebook is the number of antenna ports contained in the indicated SRS resource, and the base station is the terminal The indicated codebook subset restricts the corresponding codebook.
  • the base station indicates a codebook subset restriction to the terminal, and this codebook subset restriction applies to all SRS resources.
  • the network side device can flexibly configure a codebook for the terminal according to the channel and interference conditions, etc., so as to obtain better system performance.
  • the first codebook and the second codebook are codebooks corresponding to the codebook subset restriction corresponding to the SRS resource.
  • the codebook corresponding to the codebook subset restriction corresponding to the SRS resource is the codebook subset restriction corresponding to the SRS resource among the multiple codebook subset restrictions configured by the network side device for the terminal The corresponding codebook.
  • the network side device may also configure a codebook subset restriction for the terminal to correspond to multiple SRS resources.
  • the signaling sent by the network side device to the terminal may include multiple codebook subset restriction messages, and these codebook subset restriction messages correspond to the SRS resources configured by the base station for the terminal in a one-to-one correspondence.
  • the terminal can determine the codebook corresponding to the SRS resource indicated by the SRI according to the signaling, so as to further determine the precoding corresponding to the TPMI/TRI indication sent by the base station.
  • the configuration of the base station is more flexible, and the terminal can use a more flexible solution to transmit SRS and PUSCH.
  • the terminal can transmit SRS and PUSCH every two PAs. (Or Tx chain) is virtualized into one port, and cyclic delay diversity (CDD) transmission is used between two antenna ports to ensure the performance of uplink transmission as much as possible.
  • CDD cyclic delay diversity
  • the codebook subset of the SRS containing 2 antenna ports indicated by the base station to the terminal is restricted to non-coherent codebooks, when the terminal transmits SRS and PUSCH, every two PAs (or Tx chain) that can be coherently transmitted can be virtualized into Send after one port.
  • the first codebook and the second codebook are codebooks corresponding to a codebook subset restriction corresponding to the number of antenna ports included in the SRS resource.
  • the codebook corresponding to the codebook subset restriction corresponding to the number of antenna ports included in the SRS resource is the codebook included in the SRS resource among the multiple codebook subset restrictions configured by the network side device for the terminal
  • the codebook subset corresponding to the number of antenna ports limits the corresponding codebook.
  • the network side device can also configure a codebook subset for the terminal to limit the number of corresponding multiple antenna ports.
  • the signaling sent by the network side device to the terminal includes multiple codebook subset restriction messages.
  • One codebook subset restriction message corresponds to one antenna port number, and all SRS resources containing this antenna port number correspond to
  • the codebooks correspond to the codebook subset restriction indicated by the codebook subset restriction message.
  • the terminal can determine the codebook corresponding to the SRS resource indicated by the network-side device according to the signaling, so as to further determine the precoding corresponding to the TPMI/TRI indication sent by the base station.
  • the base station configures a 4-port SRS resource and two 2-port SRS resources for the terminal.
  • the base station indicates two codebook subset restriction messages to the terminal.
  • One codebook subset restriction message corresponds to 4 ports, which is non-coherent.
  • Codebook subset restriction; a codebook subset restriction message corresponds to 2 ports, which is a fully coherent codebook subset restriction. Then the terminal can determine, according to the above codebook subset restriction message, that the codebook corresponding to the 4-port SRS is the codebook corresponding to the 4-port incoherent codebook subset restriction, and the codebook corresponding to the 2-port SRS is the full range of the 2-port SRS.
  • Coherent codebook subsets limit the corresponding codebooks.
  • one antenna port number corresponds to one codebook subset restriction indication message
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission;
  • the first codebook is a codebook for non-coherent transmission
  • the first codebook is a codebook for fully coherent transmission
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission;
  • the first codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • the foregoing second codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • the codebook is the code for coherent transmission.
  • This may be a codebook that contains coherent transmission codewords (for example, the codebook is the codebook when the number of antenna ports contained in the SRS resource indicated by the SRI is limited to'fullyAndPartialAndNonCoherent'; for another example, the codebook for 2 antenna ports
  • the codebook is single-stream, it is all single-stream non-coherent codebooks plus a precoding codeword with a phase relationship between antenna ports of [1 1] T ).
  • the terminal when the terminal transmits an SRS resource whose number of antenna ports is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal, the terminal can use the CDD transmission mode between different antenna ports.
  • the base station instructs the terminal to perform single-stream transmission and use multiple antenna ports for simultaneous transmission, the terminal can use the CDD transmission mode between different antenna ports.
  • a method for determining the transmission codebook is: no matter which SRS resource is indicated by the network side device, the codebook only contains the codewords for incoherent transmission (for example, , The codebook is the codebook when the codebook subset is limited to'nonCoherent' under the number of antenna ports included in the SRS resource indicated by the network side device).
  • the terminal can implement antenna virtualization for each SRS antenna port, so that the use of each antenna port can be increased. Large transmission power.
  • the terminal supports a maximum of 4 SRS ports.
  • each antenna port is 2 PA antenna ports after antenna virtualization, and the maximum transmission power can be 2P.
  • a method for determining the transmission codebook is: the codebook only contains the codebook for non-coherent transmission (for example, the codebook is indicated by SRI).
  • the codebook when the codebook subset is restricted to'nonCoherent' under the number of antenna ports included in the SRS resource).
  • the terminal can implement antenna virtualization for each SRS antenna port, so that the use of each antenna port can be increased.
  • Large transmission power For example, the terminal supports a maximum of 4 SRS ports, and the maximum transmission power of each PA is P.
  • each antenna port can be two PAs that can be coherently transmitted after antenna virtualization.
  • Antenna port the maximum transmission power can be 2P.
  • this solution uses more precoding methods for coherent transmission antennas during 2-port SRS transmission. Perform transmission, so as to have better performance.
  • the codebook is the codebook for fully coherent transmission (for example, the codebook is indicated by SRI).
  • the codebook subset is limited to the codebook when the number of antenna ports included in the SRS resource is'fullyAndPartialAndNonCoherent').
  • the terminal transmits an SRS resource whose number of antenna ports is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal, the terminal can use the CDD transmission mode between different antenna ports.
  • the base station instructs the terminal to perform single-stream transmission and use multiple antenna ports for simultaneous transmission, the terminal can use the CDD transmission mode between different antenna ports.
  • a method for determining the PUSCH transmission codebook is: the codebook is a codebook for fully coherent transmission or a codebook containing fully coherent transmission codewords.
  • Codebook (for example, the codebook is the codebook when the codebook subset is restricted to the number of antenna ports contained in the SRS resource indicated by the SRI as'fullyAndPartialAndNonCoherent'; for another example, the codebook with 2 antenna ports is all single stream The phase relationship between the stream incoherent codebook plus one antenna port is [1 1] T precoding codeword).
  • the terminal can implement antenna virtualization for each SRS antenna port, so that each antenna port can be used Greater transmission power.
  • the terminal supports a maximum of 4 SRS ports, and the maximum transmission power of each PA is P.
  • each antenna port can be two PAs that can be coherently transmitted after antenna virtualization.
  • Antenna port the maximum transmission power can be 2P.
  • a method for determining the PUSCH transmission codebook is: no matter which SRS resource is indicated by the SRI, the codebook is the antenna contained in the SRS resource indicated by the SRI
  • the base station limits the codebook corresponding to the codebook subset indicated by the terminal under the number of ports.
  • the base station indicates a codebook subset restriction to the terminal, and this codebook subset restriction applies to all SRS resources.
  • the network side device can flexibly configure the codebook for the terminal according to the channel and interference conditions, so as to obtain better system performance.
  • the included SRS resource whose number of antenna ports meets the first preset condition refers to:
  • the number of antenna ports included is the SRS resource of the first antenna port number, where the first antenna port number includes at least one of the following:
  • the number of antenna ports indicated by the network side device is the number of antenna ports indicated by the network side device
  • the number of antenna ports is smaller than the number of antenna ports of the SRS resource with the largest number of antenna ports included in the SRS resource configured by the network side device for the terminal;
  • the number of antenna ports determined according to the transmit power capability of the terminal.
  • the first pre-configured SRS resource includes at least one of the following:
  • the indication message is used to indicate the number of one or a group of SRS antenna ports, and the first pre-configured SRS resource is the number of antenna ports included in the number of antenna ports indicated by the indication message.
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource that includes the number of antenna ports less than or equal to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource with a number of antenna ports greater than or equal to M 1 /X, where X is indicated by the indication message
  • M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the included SRS resource whose number of antenna ports meets the second preset condition refers to:
  • the network-side equipment configures m SRS resources with the largest number of antenna ports for the terminal, or SRS resources with the number of antenna ports equal to the maximum number of antenna ports that can be included in one SRS resource supported by the terminal; and/or,
  • the second pre-configured SRS resource includes:
  • the m is an integer greater than or equal to 1.
  • the foregoing uplink scheduling information includes transmission precoding matrix information and a stream number indicator field, and the transmission precoding matrix information and stream number indicator field are used to instruct the terminal to send the uplink signal using
  • the length of the transmission precoding matrix information and the number of streams field is:
  • log 2 (S) or the smallest positive integer greater than the log 2 (S), where S is the number of codewords contained in the transmission codebook.
  • the aforementioned transmission precoding matrix information and stream number fields may be used to indicate precoding matrix information and stream number information fields.
  • the bit length of the TPMI/TRI indication in the DCI is the maximum value of the bit length of the TPMI/TRI corresponding to the codebook indicated by all possible network side devices.
  • the bit length of the TPMI/TRI corresponding to the codebook is the smallest integer greater than or equal to log 2 (S).
  • the terminal receives the uplink signal scheduling information sent by the network side device; determines the transmission codebook for uplink transmission, where, in the case that the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, the transmission The codebook is the first codebook; or, the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, or the SRS resource indicated by the uplink signal scheduling information is other than the first SRS resource In the case of SRS resources, the transmission codebook is the second codebook; uplink signal transmission is performed based on the transmission codebook.
  • the uplink signal transmission is performed based on the first codebook, and the second SRS resource or SRS resources other than the first SRS resource are transmitted based on the first codebook.
  • the uplink transmission performance of the terminal can be improved.
  • FIG. 4 is a flowchart of a method for determining scheduling information provided by some embodiments of the present disclosure. As shown in FIG. 4, it includes the following steps:
  • Step 401 In the case that the network side device configures the terminal with the first SRS resource, the network side device allocates the first power evenly to the signal with the first power based on the transmission power control method of the uplink signal corresponding to the first SRS resource. The assumption of uplink signal transmission on the antenna port of non-zero transmission is used to determine the uplink signal scheduling information of the uplink signal;
  • Step 401 The network side device sends the uplink signal scheduling information to the terminal.
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included SRS resources or second pre-configured SRS resources whose number of antenna ports meets the second preset condition;
  • the first power is the uplink channel transmission power, or the first power is the transmission power after the uplink channel transmission power is scaled by using a first scaling factor.
  • the method for determining the uplink signal scheduling information of the uplink signal is not limited.
  • the method defined in the protocol or newly defined in the subsequent version of the protocol can be used. Determine the way.
  • the first power is the uplink channel transmission power; otherwise, the first power is the use of the
  • the first scaling factor is the transmit power after scaling the uplink channel transmit power.
  • the first scaling factor is N/M or r ⁇ N/M or r ⁇ N/M 1 , or the scaling factor is the minimum value of r ⁇ N/M and 1, or the The scaling factor is the minimum of r ⁇ N/M 1 and 1;
  • the N is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the M is the number of antenna ports included in the SRS resource indicated by the SRI
  • the M 1 is one SRS resource supported by the terminal The maximum number of antenna ports that can be included
  • the r is an integer greater than 1.
  • the first scaling factor is a scaling factor corresponding to a precoding matrix determined by the terminal.
  • the first power is the transmit power after the uplink channel transmit power is scaled by using the first scaling factor, and the first scaling factor Is: the minimum of ⁇ 0 / ⁇ and ⁇ /R; or
  • the first power is the transmit power after scaling the uplink channel transmit power using the first scaling factor, and the first scaling factor is: ⁇ 0 The minimum of / ⁇ and ⁇ /2R; or
  • the first power is the uplink channel transmit power
  • the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the ⁇ is the number of antenna ports included in the sounding reference signal SRS resource indicated by the uplink signal scheduling information
  • the R is the uplink signal The number of transport streams.
  • the first scaling factor is: the minimum value of ⁇ /G and 1, where ⁇ is the number of antenna ports included in the sounding reference signal SRS resource indicated by the uplink signal scheduling information, and the G Is a coefficient related to the power capability of the terminal.
  • the first scaling factor is:
  • K/R and 1 The maximum value of K/R and 1 is multiplied by ⁇ 0 / ⁇ , where the K is a coefficient, the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix, and the ⁇ is the uplink The number of antenna ports included in the sounding reference signal SRS resource indicated by the signal scheduling information, where R is the number of transmission streams of the uplink signal; or
  • G 1 /G 0 is multiplied by ⁇ 0 / ⁇ , where the G 0 is the number of coherent transmission antenna groups corresponding to the precoding matrix, and G 1 is the codebook corresponding to the codebook subset restriction type corresponding to the uplink signal The maximum number of coherent transmission antenna groups corresponding to all codewords, the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix, and the ⁇ is the sounding reference signal SRS resource indicated by the uplink signal scheduling information. Number of antenna ports.
  • the K is:
  • the included SRS resource whose number of antenna ports meets the first preset condition refers to:
  • the number of antenna ports included is the SRS resource of the first antenna port number, where the first antenna port number includes at least one of the following:
  • the number of antenna ports indicated by the network side device is the number of antenna ports indicated by the network side device
  • the number of antenna ports is smaller than the number of antenna ports of the SRS resource with the largest number of antenna ports included in the SRS resource configured by the network side device for the terminal;
  • the number of antenna ports determined according to the transmit power capability of the terminal.
  • the first pre-configured SRS resource includes at least one of the following:
  • the indication message is used to indicate the number of one or a group of SRS antenna ports, and the first pre-configured SRS resource is an SRS resource whose number of antenna ports included belongs to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource that includes the number of antenna ports less than or equal to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource with a number of antenna ports greater than or equal to M 1 /X, where X is indicated by the indication message
  • M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the included SRS resource whose number of antenna ports meets the second preset condition refers to:
  • the network-side equipment configures m SRS resources with the largest number of antenna ports for the terminal, or SRS resources with the number of antenna ports equal to the maximum number of antenna ports that can be included in one SRS resource supported by the terminal; and/or,
  • the second pre-configured SRS resource includes:
  • the m is an integer greater than or equal to 1.
  • the precoding matrix is the precoding matrix indicated by the uplink scheduling information
  • the precoding matrix is 1.
  • the terminal reports to the network side device that the terminal has a full power transmission capability.
  • the full power transmission capability includes at least one of the following:
  • the method before the network-side device sends the uplink signal scheduling information to the terminal, the method further includes:
  • the network-side device configures the terminal with a second SRS resource or an SRS resource other than the first SRS resource
  • the network-side device is based on the second SRS resource or the first SRS resource
  • the transmission power control method of the uplink signal corresponding to the SRS resource is based on the assumption that the terminal evenly allocates the second power to the antenna port with non-zero signal transmission for uplink signal transmission, and determines the uplink signal scheduling information of the uplink signal ;
  • the second power is the transmit power after the uplink channel transmit power is scaled using a second scaling factor, and the second scaling factor is N/M 1 ;
  • the N is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, perform uplink signal transmission based on the first codebook; and/or,
  • the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, perform uplink signal transmission based on the second codebook.
  • this embodiment is used as an implementation manner of the network-side device corresponding to the embodiment shown in FIG. 2.
  • FIG. 5 is a flowchart of an uplink signal transmission method provided by some embodiments of the present disclosure. As shown in FIG. 5, it includes the following steps:
  • the network-side device determines the transmission codebook for uplink transmission, where, in the case where the first SRS resource is configured for the terminal, the transmission codebook of the first SRS resource is the first codebook; or, when configuring the terminal When a second SRS resource is used, or an SRS resource other than the first SRS resource is configured for the terminal, the transmission codebook of the second transmission resource or the SRS resource other than the first SRS resource is the first Two codebook
  • the network side device determines uplink signal scheduling information of the uplink signal based on the transmission codebook.
  • the network side device sends the uplink signal scheduling information to the terminal;
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included The SRS resource or the second pre-configured SRS resource whose number of antenna ports meets the second preset condition.
  • the coherent transmission types of the first codebook and the second codebook are the same, and the coherent transmission type is non-coherent transmission;
  • the first codebook is the codebook for non-coherent transmission
  • the second codebook is the codebook subset restriction indicated by the network side device for the terminal. Codebook; or
  • the first codebook is a codebook for coherent transmission
  • the second codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal Codebook
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission
  • the second codebook is a codebook for the network side device.
  • the codebook corresponding to the codebook subset indicated by the terminal is restricted; or
  • both the first codebook and the second codebook are codebooks corresponding to the codebook subset restriction indicated by the network side device for the terminal;
  • the first codebook and the second codebook are codebooks corresponding to the codebook subset restriction corresponding to the SRS resource; or
  • the first codebook and the second codebook are codebooks corresponding to a codebook subset restriction corresponding to the number of antenna ports included in the SRS resource.
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission;
  • the first codebook is a codebook for non-coherent transmission
  • the first codebook is a codebook for fully coherent transmission
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission;
  • the first codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • the second codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • the codebook corresponding to the codebook subset restriction corresponding to the SRS resource is a codebook corresponding to the SRS resource among multiple codebook subset restrictions configured by the network side device for the terminal The codebook corresponding to the subset restriction; or
  • the codebook corresponding to the codebook subset restriction corresponding to the number of antenna ports included in the SRS resource is the antenna included in the SRS resource among the multiple codebook subset restrictions configured by the network side device for the terminal.
  • the codebook subset corresponding to the number of ports limits the corresponding codebook.
  • the included SRS resource whose number of antenna ports meets the first preset condition refers to:
  • the number of antenna ports included is the SRS resource of the first antenna port number, where the first antenna port number includes at least one of the following:
  • the number of antenna ports indicated by the network side device is the number of antenna ports indicated by the network side device
  • the number of antenna ports is smaller than the number of antenna ports of the SRS resource with the largest number of antenna ports included in the SRS resource configured by the network side device for the terminal;
  • the number of antenna ports determined according to the transmit power capability of the terminal.
  • the first pre-configured SRS resource includes at least one of the following:
  • the indication message is used to indicate the number of one or a group of SRS antenna ports, and the first pre-configured SRS resource is an SRS resource whose number of antenna ports included belongs to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource that includes the number of antenna ports less than or equal to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource with a number of antenna ports greater than or equal to M 1 /X, where X is indicated by the indication message
  • M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the included SRS resource whose number of antenna ports meets the second preset condition refers to:
  • the network-side equipment configures m SRS resources with the largest number of antenna ports for the terminal, or SRS resources with the number of antenna ports equal to the maximum number of antenna ports that can be included in one SRS resource supported by the terminal; and/or,
  • the second pre-configured SRS resource includes:
  • the m is an integer greater than or equal to 1.
  • the uplink scheduling information includes transmission precoding matrix information and a stream number indicator field, and the transmission precoding matrix information and stream number indicator field are used to indicate a precoding matrix used by the terminal to send the uplink signal
  • the transmission precoding matrix information and the length of the stream number field are:
  • log 2 (S) or the smallest positive integer greater than the log 2 (S), where S is the number of codewords contained in the transmission codebook.
  • the performing uplink signal transmission based on the transmission codebook includes:
  • the terminal evenly allocates the first power to the antenna ports with signal non-zero transmission to perform uplink based on the transmission codebook Signal transmission;
  • the terminal sets the second power Evenly allocated to the antenna ports with non-zero signal transmission for uplink signal transmission based on the transmission codebook.
  • this embodiment is used as an implementation manner of the network side device corresponding to the embodiment shown in FIG. 3, and for specific implementation manners, please refer to the related description of the embodiment shown in FIG. 3. To avoid repetitive description, This embodiment will not be repeated, and the same beneficial effects can be achieved.
  • the following takes the network-side device as the base station and the uplink signal as the PUSCH as an example, and the uplink signal transmission methods provided by some embodiments of the present disclosure are illustrated through multiple embodiments:
  • the base station configures multiple SRS resources for the terminal for PUSCH transmission CSI measurement based on the codebook (for example, in the NR system Rel-15, the usage is configured as SRS resources in the SRS resource set of the codebook), of which one or more The number of antenna ports contained in each SRS resource is equal to the maximum number of antenna ports that can be contained in one SRS resource supported by the terminal, and the number of antenna ports contained in the remaining SRS resources (which can be one or more) is less than that of one SRS resource supported by the terminal. Maximum number of antenna ports.
  • the terminal can use antenna virtualization to use multiple transmit chains (Tx chain) and/or PA to transmit the same SRS Antenna port.
  • Tx chain multiple transmit chains
  • PA PA
  • the terminal uses the following PUSCH transmit power adjustment rules:
  • the transmission power of the PUSCH is scaled using N/M, and then evenly distributed to the antenna ports of each PUSCH non-zero transmission.
  • N is the number of antenna ports with PUSCH non-zero transmission in the precoding matrix.
  • M is the number of antenna ports included in the SRS resource indicated by the SRS resource indication information SRI.
  • the precoding matrix is determined according to the precoding matrix indicated by the DCI, and when the number of antenna ports included in the SRS resource indicated by the SRI is equal to 1, the precoding matrix is 1.
  • SRI is used to instruct the terminal to determine SRS resources such as PUSCH precoding and RI.
  • the terminal determines PUSCH precoding, RI, etc. according to the SRS resource indicated by the SRI.
  • the SRS resource indicated by the SRI includes different numbers of antenna ports, and PUSCH transmission corresponds to different codebooks.
  • a method for determining the PUSCH transmission codebook is: no matter which SRS resource is indicated by the SRI, the codebook contains only non-coherent transmission codewords (for example, the codebook is SRI The number of antenna ports included in the indicated SRS resource is the codebook when the codebook subset is restricted to'nonCoherent').
  • the bit length of the TPMI/TRI indication in the DCI is the maximum value of the bit length of the TPMI/TRI corresponding to the codebook for all possible SRI indications.
  • the bit length of the TPMI/TRI corresponding to the codebook is the smallest integer greater than or equal to log 2 (S). It should be noted that in the four embodiments, TPMI/TRI can all adopt this solution, and no details will be given elsewhere.
  • the terminal can perform antenna virtualization for each SRS antenna port, so that each The antenna port uses more transmit power.
  • the terminal supports a maximum of 4 SRS ports.
  • each antenna port uses one PA to transmit, and the maximum transmission power is P;
  • each The antenna port is the antenna port of 2 PAs after antenna virtualization, and the maximum transmission power can be 2P.
  • a method for determining the PUSCH transmission codebook is: when the number of antenna ports contained in the SRS resource indicated by the SRI is less than the maximum number of antenna ports that can be contained in one SRS resource supported by the terminal At this time, the codebook only includes the codebook for non-coherent transmission (for example, the codebook is the codebook when the codebook subset is limited to'nonCoherent' under the number of antenna ports included in the SRS resource indicated by the SRI).
  • the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI
  • the base station is the codebook subset indicated by the terminal Restrict the corresponding codebook.
  • the terminal can perform antenna virtualization for each SRS antenna port, so that each The antenna port uses more transmit power.
  • the terminal supports a maximum of 4 SRS ports.
  • each antenna port uses one PA to transmit, and the maximum transmission power is P;
  • each The antenna port can be the antenna port of two PAs that can be coherently transmitted after antenna virtualization, and the maximum transmission power can be 2P.
  • this solution uses more precoding methods for coherent transmission antennas through antenna virtualization during 2-port SRS transmission. Perform transmission, so as to have better performance.
  • a method for determining the PUSCH transmission codebook is: when the number of antenna ports contained in the SRS resource indicated by the SRI is less than the maximum number of antenna ports that can be contained in one SRS resource supported by the terminal.
  • the codebook is a codebook for coherent transmission (for example, the codebook is a codebook when the codebook subset is limited to'fullyAndPartialAndNonCoherent' under the number of antenna ports included in the SRS resource indicated by the SRI).
  • the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI
  • the base station is the codebook subset indicated by the terminal Restrict the corresponding codebook.
  • the terminal when the terminal transmits an SRS resource whose number of antenna ports is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal, the terminal can use the CDD transmission mode between different antenna ports.
  • the terminal can use the CDD transmission mode between different antenna ports.
  • a method for determining the PUSCH transmission codebook is: when the number of antenna ports contained in the SRS resource indicated by the SRI is less than the maximum number of antenna ports that can be contained in one SRS resource supported by the terminal.
  • the codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission (for example, the codebook is the number of antenna ports included in the SRS resource indicated by the SRI when the codebook subset is limited to'fullyAndPartialAndNonCoherent'Codebook;
  • the codebook for 2 antenna ports is all single-stream incoherent codebooks plus one antenna port with a phase relationship of [1 1] T precoding codewords for single stream).
  • the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI
  • the base station is the codebook subset indicated by the terminal Restrict the corresponding codebook.
  • the terminal can perform antenna virtualization for each SRS antenna port, so that each The antenna port uses more transmit power.
  • the terminal supports a maximum of 4 SRS ports.
  • each antenna port uses one PA to transmit, and the maximum transmission power is P;
  • each The antenna port is the antenna port of 2 PAs after antenna virtualization, and the maximum transmission power can be 2P.
  • a PUSCH transmission codebook determination method is: no matter which SRS resource is indicated by the SRI, the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI, and the base station indicates the terminal The codebook subset of is limited to the corresponding codebook.
  • the base station indicates a codebook subset restriction to the terminal, and this codebook subset restriction applies to all SRS resources.
  • the base station can flexibly configure the codebook for the terminal according to the channel and interference conditions, so as to obtain better system performance.
  • the signaling sent by the base station to the terminal includes multiple codebook subset restriction messages, and these codebook subset restriction messages have a one-to-one correspondence with SRS resources configured by the base station for the terminal.
  • the terminal can determine the codebook corresponding to the SRS resource indicated by the SRI according to the signaling, so as to further determine the precoding corresponding to the TPMI/TRI indication sent by the base station.
  • the terminal can transmit SRS and PUSCH every two A PA (or Tx chain) is virtualized into one port, and the cyclic delay diversity (CDD) transmission method is used between the two antenna ports to transmit, in order to ensure the performance of uplink transmission as much as possible.
  • CDD cyclic delay diversity
  • the codebook subset of the SRS containing 2 antenna ports indicated by the base station to the terminal is restricted to non-coherent codebooks, when the terminal transmits SRS and PUSCH, every two PAs (or Tx chain) that can be coherently transmitted can be virtualized into Send after one port.
  • the signaling sent by the base station to the terminal includes multiple codebook subset restriction messages, one codebook subset restriction message corresponds to one antenna port number, and all codes corresponding to the SRS resource containing this antenna port number Both correspond to the codebook subset restriction indicated by the codebook subset restriction message.
  • the terminal can determine the codebook corresponding to the SRS resource indicated by the SRI according to the signaling, so as to further determine the precoding corresponding to the TPMI/TRI indication sent by the base station.
  • the base station configures a 4-port SRS resource and two 2-port SRS resources for the terminal.
  • the base station indicates two codebook subset restriction messages to the terminal.
  • One codebook subset restriction message corresponds to 4 ports, which is non-coherent.
  • Codebook subset restriction a codebook subset restriction message corresponds to 2 ports, which is a fully coherent codebook subset restriction. Then the terminal can determine, according to the above codebook subset restriction message, that the codebook corresponding to the 4-port SRS is the codebook corresponding to the 4-port incoherent codebook subset restriction, and the codebook corresponding to the 2-port SRS is the full range of the 2-port SRS. Coherent codebook subsets limit the corresponding codebooks.
  • a method for determining the PUSCH transmission codebook is: no matter which SRS resource is indicated by the SRI, when the number of antenna ports contained in the SRS resource indicated by the SRI is less than the maximum number of antenna ports that can be contained in one SRS resource supported by the terminal, the codebook It is a codebook for coherent transmission or a codebook containing codewords for coherent transmission (for example, the codebook is the codebook when the codebook subset is limited to the number of antenna ports included in the SRS resource indicated by the SRI as'fullyAndPartialAndNonCoherent'; for another example, The codebook for 2 antenna ports is all single-stream incoherent codebooks plus one antenna port with a phase relationship of [1 1] T (precoding codewords) in single stream. (Note: The difference with (1) lies in the codebook)
  • the terminal when the terminal transmits an SRS resource whose number of antenna ports is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal, the terminal can use the CDD transmission mode between different antenna ports.
  • the terminal can use the CDD transmission mode between different antenna ports.
  • the transmit power of the PUSCH is scaled using the minimum value of rN/M and 1, and then evenly distributed to the antenna ports of each PUSCH non-zero transmission.
  • N is the number of antenna ports with PUSCH non-zero transmission in the precoding matrix.
  • M is the number of antenna ports included in the SRS resource indicated by the SRS resource indication information SRI.
  • the precoding matrix is determined according to the precoding matrix indicated by the DCI.
  • the precoding matrix is 1.r An integer greater than 1.
  • the specific capability is: the maximum transmit power of each PA of the terminal is 1/r of the maximum transmit power supported by the terminal.
  • the base station configures multiple SRS resources for the terminal for PUSCH transmission CSI measurement based on the codebook (for example, in the NR system Rel-15, the usage is configured as the SRS resource in the SRS resource set of the codebook), all SRS resources
  • the number of antenna ports included may be one or more is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the terminal can use antenna virtualization to use multiple transmit chains (Txchain) and/or PA to transmit the same SRS antenna port.
  • Txchain transmit chains
  • PA PA
  • the terminal can also send an SRS port through a Tx chain or PA.
  • the terminal uses the following PUSCH transmit power adjustment rules:
  • the transmission power of the PUSCH is scaled using N/M, and then evenly distributed to the antenna ports of each PUSCH non-zero transmission.
  • N is the number of antenna ports with PUSCH non-zero transmission in the precoding matrix.
  • M is the number of antenna ports included in the SRS resource indicated by the SRS resource indication information SRI.
  • the precoding matrix is determined according to the precoding matrix indicated by the DCI, and when the number of antenna ports included in the SRS resource indicated by the SRI is equal to 1, the precoding matrix is 1.
  • this solution can increase the PUSCH transmission power.
  • the terminal does not multiply the PUSCH transmission power by a coefficient less than 1, so that full power transmission is possible.
  • SRI is used to instruct the terminal to determine SRS resources such as PUSCH precoding and RI.
  • the terminal determines PUSCH precoding, RI, etc. according to the SRS resource indicated by the SRI.
  • the SRS resource indicated by the SRI includes different numbers of antenna ports, and PUSCH transmission corresponds to different codebooks.
  • Some possible methods are (note that the difference between this part and Embodiment 1 is that in Embodiment 2 the base station does not configure SRS resources with the number of antenna ports equal to the maximum number of antenna ports that can be contained in one SRS resource supported by the terminal):
  • a method for determining the PUSCH transmission codebook is: no matter which SRS resource is indicated by the SRI, the codebook contains only non-coherent transmission codewords (for example, the codebook is SRI The number of antenna ports included in the indicated SRS resource is the codebook when the codebook subset is restricted to'nonCoherent').
  • the terminal can perform antenna virtualization for each SRS antenna port, so that each The antenna port uses more transmit power.
  • the terminal supports a maximum of 4 SRS ports.
  • each antenna port is 2 PA antenna ports after antenna virtualization, and the maximum transmission power can be 2P.
  • a method for determining the PUSCH transmission codebook is: the codebook only contains the codebook for non-coherent transmission (for example, the codebook is the antenna port included in the SRS resource indicated by the SRI Count the codebook when the codebook subset is restricted to'nonCoherent').
  • the terminal can perform antenna virtualization for each SRS antenna port, so that each The antenna port uses more transmit power.
  • the terminal supports a maximum of 4 SRS ports, and the maximum transmission power of each PA is P.
  • each antenna port can be two PAs that can be coherently transmitted after antenna virtualization.
  • Antenna port the maximum transmission power can be 2P.
  • this solution uses more precoding methods for coherent transmission antennas through antenna virtualization during 2-port SRS transmission. Perform transmission, so as to have better performance.
  • a PUSCH transmission codebook determination method is: the codebook is the codebook for coherent transmission (for example, the codebook is the number of antenna ports included in the SRS resource indicated by the SRI The codebook subset is restricted to the codebook when'fullyAndPartialAndNonCoherent').
  • the terminal when the terminal transmits an SRS resource whose number of antenna ports is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal, the terminal can use the CDD transmission mode between different antenna ports.
  • the terminal can use the CDD transmission mode between different antenna ports.
  • a method for determining the PUSCH transmission codebook is: the codebook is a codebook for fully coherent transmission or a codebook containing fully coherent transmission codewords (for example, codebook
  • the number of antenna ports contained in the SRS resource indicated by the SRI is the codebook when the codebook subset is restricted to'fullyAndPartialAndNonCoherent'; for another example, the codebook for 2 antenna ports is one for all single-stream non-coherent codebooks when it is single-stream
  • the phase relationship between antenna ports is [1 1] T (precoding codeword).
  • the terminal can perform antenna virtualization for each SRS antenna port, so that each The antenna port uses more transmit power.
  • the terminal supports a maximum of 4 SRS ports, and the maximum transmission power of each PA is P.
  • each antenna port can be two PAs that can be coherently transmitted after antenna virtualization.
  • Antenna port the maximum transmission power can be 2P.
  • a PUSCH transmission codebook determination method is: no matter which SRS resource is indicated by the SRI, the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI, and the base station indicates the terminal The codebook subset of is limited to the corresponding codebook.
  • the base station indicates a codebook subset restriction to the terminal, and this codebook subset restriction applies to all SRS resources.
  • the base station can flexibly configure the codebook for the terminal according to the channel and interference conditions, so as to obtain better system performance.
  • the signaling sent by the base station to the terminal includes multiple codebook subset restriction messages, and these codebook subset restriction messages have a one-to-one correspondence with SRS resources configured by the base station for the terminal.
  • the terminal can determine the codebook corresponding to the SRS resource indicated by the SRI according to the signaling, so as to further determine the precoding corresponding to the TPMI/TRI indication sent by the base station.
  • the terminal can transmit SRS and PUSCH every two A PA (or Tx chain) is virtualized into one port, and the cyclic delay diversity (CDD) transmission method is used between the two antenna ports to transmit, in order to ensure the performance of uplink transmission as much as possible.
  • CDD cyclic delay diversity
  • the codebook subset of the SRS containing 2 antenna ports indicated by the base station to the terminal is restricted to non-coherent codebooks, when the terminal transmits SRS and PUSCH, every two PAs (or Tx chain) that can be coherently transmitted can be virtualized into Send after one port.
  • the signaling sent by the base station to the terminal includes multiple codebook subset restriction messages, one codebook subset restriction message corresponds to one antenna port number, and all codes corresponding to the SRS resource containing this antenna port number Both correspond to the codebook subset restriction indicated by the codebook subset restriction message.
  • the terminal can determine the codebook corresponding to the SRS resource indicated by the SRI according to the signaling, so as to further determine the precoding corresponding to the TPMI/TRI indication sent by the base station.
  • the base station configures a 4-port SRS resource and two 2-port SRS resources for the terminal.
  • the base station indicates two codebook subset restriction messages to the terminal.
  • One codebook subset restriction message corresponds to 4 ports, which is non-coherent.
  • Codebook subset restriction a codebook subset restriction message corresponds to 2 ports, which is a fully coherent codebook subset restriction. Then the terminal can determine, according to the above codebook subset restriction message, that the codebook corresponding to the 4-port SRS is the codebook corresponding to the 4-port incoherent codebook subset restriction, and the codebook corresponding to the 2-port SRS is the full range of the 2-port SRS. Coherent codebook subsets limit the corresponding codebooks.
  • a method for determining the PUSCH transmission codebook is: no matter which SRS resource is indicated by the SRI, the codebook is a codebook for coherent transmission or a codebook containing coherent transmission codewords (for example, the codebook is an SRS resource indicated by SRI)
  • the number of antenna ports included is the codebook when the codebook subset is restricted to'fullyAndPartialAndNonCoherent'; for another example, the codebook with 2 antenna ports is all single-stream non-coherent codebooks plus one antenna port phase relationship in the case of single stream Is the precoding codeword of [1 1] T ).
  • the terminal when the terminal transmits an SRS resource whose number of antenna ports is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal, the terminal can use the CDD transmission mode between different antenna ports.
  • the terminal can use the CDD transmission mode between different antenna ports.
  • the transmit power of the PUSCH is scaled using the minimum value of rN/M and 1, and then evenly distributed to the antenna ports of each PUSCH non-zero transmission.
  • N is the number of antenna ports with PUSCH non-zero transmission in the precoding matrix.
  • M is the number of antenna ports included in the SRS resource indicated by the SRS resource indication information SRI.
  • the precoding matrix is determined according to the precoding matrix indicated by the DCI.
  • the precoding matrix is 1.r An integer greater than 1.
  • the specific capability is: the maximum transmit power of each PA of the terminal is 1/r of the maximum transmit power supported by the terminal.
  • the base station configures a plurality of SRS resources for the terminal for PUSCH transmission CSI measurement based on the codebook (for example, in the NR system Rel-15, the usage is configured as the SRS resource in the SRS resource set of the "codebook").
  • the terminal can use antenna virtualization to use multiple transmit chains (Tx chain) and/or PA to transmit the same SRS Antenna port.
  • the terminal uses the following PUSCH transmit power adjustment rules:
  • the terminal scales the transmission power of the PUSCH using N/M 1 , and then evenly allocates it to the antenna ports of each PUSCH non-zero transmission ;
  • the terminal scales the transmission power of the PUSCH using N/M, and then evenly allocates it to the antenna ports of each PUSCH non-zero transmission.
  • N is the number of antenna ports with PUSCH non-zero transmission in the precoding matrix.
  • M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • M is the number of antenna ports included in the SRS resource indicated by the SRS resource indication information SRI.
  • the precoding matrix is determined according to the precoding matrix indicated by DCI.
  • the precoding matrix is 1.
  • m is less than Or equal to the number of SRS resources configured by the base station for the terminal to be used for codebook-based PUSCH transmission CSI measurement.
  • SRI is used to instruct the terminal to determine SRS resources such as PUSCH precoding and RI.
  • the terminal determines PUSCH precoding, RI, etc. according to the SRS resource indicated by the SRI.
  • m and the number of m SRS can refer to the second SRS resource in the embodiment shown in FIG. 2, and details are not described here.
  • the SRS resource indicated by the SRI includes different numbers of antenna ports, and PUSCH transmission corresponds to different codebooks.
  • a method for determining the PUSCH transmission codebook is: when the SRS resource indicated by the SRI is a resource other than the m SRS resources, the codebook only includes non-coherent transmission (For example, the codebook is the codebook when the codebook subset is limited to'nonCoherent' under the number of antenna ports included in the SRS resource indicated by the SRI).
  • the codebook is the number of antenna ports included in the SRS resource indicated by the SRI, and the base station limits the codebook corresponding to the codebook subset indicated by the terminal.
  • the terminal can perform antenna virtualization for each SRS antenna port, so that each The antenna port uses more transmit power.
  • the terminal supports a maximum of 4 SRS ports.
  • each antenna port uses one PA to transmit, and the maximum transmission power is P;
  • each The antenna port can be the antenna port of two PAs that can be coherently transmitted after antenna virtualization, and the maximum transmission power can be 2P.
  • this solution uses more precoding methods for coherent transmission antennas through antenna virtualization during 2-port SRS transmission. Perform transmission, so as to have better performance.
  • a method for determining the PUSCH transmission codebook is: when the SRS resource indicated by the SRI is a resource other than the m SRS resources, the codebook is the code for coherent transmission (For example, the codebook is the codebook when the codebook subset is restricted to'fullyAndPartialAndNonCoherent' under the number of antenna ports included in the SRS resource indicated by the SRI).
  • the codebook is the codebook corresponding to the codebook subset indicated by the base station for the terminal under the number of antenna ports included in the SRS resource indicated by the SRI.
  • the terminal when the terminal transmits an SRS resource whose number of antenna ports is less than the maximum number of antenna ports that can be included in one SRS resource supported by the terminal, the terminal can use the CDD transmission mode between different antenna ports.
  • the terminal can use the CDD transmission mode between different antenna ports.
  • a PUSCH transmission codebook determination method is: when the SRS resource indicated by the SRI is a resource other than the m SRS resources, the codebook is fully coherent transmission
  • the codebook may be a codebook containing fully coherent transmission codewords (for example, the codebook is the codebook when the number of antenna ports contained in the SRS resource indicated by the SRI is limited to'fullyAndPartialAndNonCoherent'; for example, 2 antenna ports
  • the codebook is single-stream, the phase relationship between all single-stream incoherent codebooks plus one antenna port is [1 1] T (precoding codeword).
  • the codebook is the codebook corresponding to the codebook subset indicated by the base station for the terminal under the number of antenna ports included in the SRS resource indicated by the SRI.
  • the terminal can perform antenna virtualization for each SRS antenna port, so that each The antenna port uses more transmit power.
  • the terminal supports a maximum of 4 SRS ports.
  • each antenna port uses one PA to transmit, and the maximum transmission power is P;
  • each The antenna port is the antenna port of 2 PAs after antenna virtualization, and the maximum transmission power can be 2P.
  • a method for determining the PUSCH transmission codebook is: no matter which SRS resource is indicated by the SRI, the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI, and the base station indicates the terminal The codebook subset of is limited to the corresponding codebook.
  • the base station indicates a codebook subset restriction to the terminal, and this codebook subset restriction applies to all SRS resources.
  • the base station can flexibly configure the codebook for the terminal according to the channel and interference conditions, so as to obtain better system performance.
  • the signaling sent by the base station to the terminal includes multiple codebook subset restriction messages, and these codebook subset restriction messages have a one-to-one correspondence with SRS resources configured by the base station for the terminal.
  • the terminal can determine the codebook corresponding to the SRS resource indicated by the SRI according to the signaling, so as to further determine the precoding corresponding to the TPMI/TRI indication sent by the base station.
  • the terminal can transmit SRS and PUSCH every two A PA (or Tx chain) is virtualized into one port, and the cyclic delay diversity (CDD) transmission method is used between the two antenna ports to transmit, in order to ensure the performance of uplink transmission as much as possible.
  • CDD cyclic delay diversity
  • the codebook subset of the SRS containing 2 antenna ports indicated by the base station to the terminal is restricted to non-coherent codebooks, when the terminal transmits SRS and PUSCH, every two PAs (or Tx chain) that can be coherently transmitted can be virtualized into Send after one port.
  • the signaling sent by the base station to the terminal includes multiple codebook subset restriction messages, one codebook subset restriction message corresponds to one antenna port number, and all codes corresponding to the SRS resource containing this antenna port number Both correspond to the codebook subset restriction indicated by the codebook subset restriction message.
  • the terminal can determine the codebook corresponding to the SRS resource indicated by the SRI according to the signaling, so as to further determine the precoding corresponding to the TPMI/TRI indication sent by the base station.
  • the base station configures a 4-port SRS resource and two 2-port SRS resources for the terminal.
  • the base station indicates two codebook subset restriction messages to the terminal.
  • One codebook subset restriction message corresponds to 4 ports, which is non-coherent.
  • Codebook subset restriction a codebook subset restriction message corresponds to 2 ports, which is a fully coherent codebook subset restriction. Then the terminal can determine, according to the above codebook subset restriction message, that the codebook corresponding to the 4-port SRS is the codebook corresponding to the 4-port incoherent codebook subset restriction, and the codebook corresponding to the 2-port SRS is the full range of the 2-port SRS. Coherent codebook subsets limit the corresponding codebooks.
  • the terminal uses the following PUSCH transmission power adjustment rules:
  • the terminal scales the transmission power of the PUSCH using rN/M 1 , and then evenly distributes it to the antenna ports of each PUSCH non-zero transmission ;
  • the terminal scales the transmission power of the PUSCH using rN/M, and then evenly allocates it to the antenna ports of each PUSCH non-zero transmission.
  • N is the number of antenna ports with PUSCH non-zero transmission in the precoding matrix.
  • M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • M is the number of antenna ports included in the SRS resource indicated by the SRS resource indication information SRI.
  • the precoding matrix is determined according to the precoding matrix indicated by the DCI, and when the number of antenna ports included in the SRS resource indicated by the SRI is equal to 1, the precoding matrix is 1.
  • r is an integer greater than 1.
  • the specific capability is: the maximum transmit power of each PA of the terminal is 1/r of the maximum transmit power supported by the terminal.
  • the base station configures the terminal with multiple SRS resources for PUSCH transmission CSI measurement based on the codebook (for example, in the NR system Rel-15, usage is configured as SRS resources in the SRS resource set of the "codebook").
  • the codebook for example, in the NR system Rel-15, usage is configured as SRS resources in the SRS resource set of the "codebook").
  • the terminal can use antenna virtualization to use multiple transmit chains (Tx chain) and/or PA to transmit the same SRS Antenna port.
  • the terminal uses the following PUSCH transmit power adjustment rules:
  • the terminal transmits the PUSCH in a PUSCH power control mode in which each antenna port can be transmitted with full power.
  • SRI is used to instruct the terminal to determine SRS resources such as PUSCH precoding and RI.
  • the terminal determines PUSCH precoding, RI, etc. according to the SRS resource indicated by the SRI.
  • the PUSCH power control mode that each antenna port can transmit at full power is:
  • the specific SRS resource is an SRS resource whose number of antenna ports included is some specific antenna ports.
  • Some possible methods for determining the codebook corresponding to a specific SRS resource are:
  • the codebook only contains codewords for non-coherent transmission (for example, the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI, and the codebook subset is limited to'nonCoherent' Time codebook).
  • the codebook only contains the codebook for non-coherent transmission (for example, the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI, and the codebook subset is limited to'nonCoherent' Time codebook).
  • the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI
  • the base station is the codebook subset indicated by the terminal Restrict the corresponding codebook.
  • the codebook is the codebook for coherent transmission (for example, the codebook is the number of antenna ports included in the SRS resource indicated by the SRI when the codebook subset is limited to'fullyAndPartialAndNonCoherent' Codebook).
  • the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI
  • the base station is the codebook subset indicated by the terminal Restrict the corresponding codebook.
  • the codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission (for example, the codebook is the number of antenna ports included in the SRS resource indicated by the SRI).
  • the following codebook subset is restricted to the codebook when'fullyAndPartialAndNonCoherent'; for another example, the codebook with 2 antenna ports is all single-stream non-coherent codebooks plus one antenna port. The phase relationship between the two antenna ports is [1 1] The precoding codeword of T ).
  • the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI
  • the base station is the codebook subset indicated by the terminal Restrict the corresponding codebook.
  • the codebook is the codebook corresponding to the number of antenna ports included in the SRS resource indicated by the SRI and the base station limits the codebook subset indicated by the terminal.
  • the base station indicates a codebook subset restriction to the terminal, and this codebook subset restriction applies to all SRS resources.
  • the signaling sent by the base station to the terminal includes multiple codebook subset restriction messages, and these codebook subset restriction messages have a one-to-one correspondence with SRS resources configured by the base station for the terminal.
  • the terminal can determine the codebook corresponding to the SRS resource indicated by the SRI according to the signaling, so as to further determine the precoding corresponding to the TPMI/TRI indication sent by the base station.
  • the terminal can transmit SRS and PUSCH every two A PA (or Tx chain) is virtualized into one port, and the cyclic delay diversity (CDD) transmission method is used between the two antenna ports to transmit, in order to ensure the performance of uplink transmission as much as possible.
  • CDD cyclic delay diversity
  • the codebook subset of the SRS containing 2 antenna ports indicated by the base station to the terminal is restricted to non-coherent codebooks, when the terminal transmits SRS and PUSCH, every two PAs (or Tx chain) that can be coherently transmitted can be virtualized into Send after one port.
  • the signaling sent by the base station to the terminal includes multiple codebook subset restriction messages, one codebook subset restriction message corresponds to one antenna port number, and all codes corresponding to the SRS resource containing this antenna port number Both correspond to the codebook subset restriction indicated by the codebook subset restriction message.
  • the terminal can determine the codebook corresponding to the SRS resource indicated by the SRI according to the signaling, so as to further determine the precoding corresponding to the TPMI/TRI indication sent by the base station.
  • the base station configures a 4-port SRS resource and two 2-port SRS resources for the terminal.
  • the base station indicates two codebook subset restriction messages to the terminal.
  • One codebook subset restriction message corresponds to 4 ports, which is non-coherent.
  • Codebook subset restriction a codebook subset restriction message corresponds to 2 ports, which is a fully coherent codebook subset restriction. Then the terminal can determine, according to the above codebook subset restriction message, that the codebook corresponding to the 4-port SRS is the codebook corresponding to the 4-port incoherent codebook subset restriction, and the codebook corresponding to the 2-port SRS is the full range of the 2-port SRS. Coherent codebook subsets limit the corresponding codebooks.
  • the bit length of the TPMI/TRI indication in the DCI is the maximum value of the bit length of the TPMI/TRI corresponding to the codebook for all possible SRI indications.
  • the bit length of the TPMI/TRI corresponding to the codebook is the smallest integer greater than or equal to log 2 (S).
  • the codebook is the codebook for coherent transmission or the codebook containing coherent transmission codewords (for example, the codebook is the number of antenna ports contained in the SRS resource indicated by the SRI under the codebook subset limit It is the codebook when it is'fullyAndPartialAndNonCoherent'; for another example, the codebook for 2 antenna ports is all single-stream non-coherent codebooks plus one precoding codeword with a phase relationship between antenna ports at the time of single stream [1 1] T ).
  • the terminal can use the CDD transmission mode between different antenna ports.
  • the terminal can use the CDD transmission mode between different antenna ports.
  • the terminal uses rN/M (or rN/M 1 , or N/M, or N/M 1 ) to scale the transmit power of PUSCH, and then evenly distributes it to the antenna ports of each PUSCH non-zero transmission.
  • the behavior can be that the terminal directly The transmit power of the PUSCH is evenly distributed to the antenna ports of each PUSCH non-zero transmission.
  • uplink signal scheduling information or SRI may have multiple indication modes, which are not limited in the present disclosure.
  • it may be a single SRS resource indication signaling (for example, the SRI field in DCI). It may also be indicated jointly by the SRS resource set and the SRS resource indication, that is, one message is used to indicate the SRS resource set where the SRS resource is located, and another message indicates the SRS resource in the SRS resource set indicated by the one message.
  • the method provided by some embodiments of the present disclosure can be used in the current uplink transmission scheme and power control scheme, when the SRS resource configured by the network side device for the terminal for CSI acquisition contains more than one antenna port and less than one supported by the terminal. With the maximum number of ports in the SRS resource, the terminal can use the transmission power of the PUSCH for full power transmission. Some of the schemes can also achieve that when the number of antenna ports included in the SRS resource configured by the base station for the UE for CSI acquisition is equal to the maximum number of ports in one SRS resource supported by the terminal, the terminal can use the PUSCH transmission power for full power transmission. effect.
  • the solution of determining the power control adjustment rule according to the PA transmission capability of the terminal can achieve the effect of making full use of the PA transmission capability of the terminal.
  • FIG. 6 is a structural diagram of a terminal provided by some embodiments of the present disclosure. As shown in FIG. 6, a terminal 600 includes:
  • the receiving module 601 is configured to receive uplink signal scheduling information sent by the network side device;
  • the first transmission module 602 is configured to, when the sounding reference signal SRS resource indicated by the uplink signal scheduling information is the first SRS resource, evenly allocate the first power to the antenna ports with signal non-zero transmission for uplink signal transmission;
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included SRS resources or second pre-configured SRS resources whose number of antenna ports meets the second preset condition;
  • the first power is the uplink channel transmission power, or the first power is the transmission power after the uplink channel transmission power is scaled by using a first scaling factor.
  • the first power is the uplink channel transmission power; otherwise, the first power is the use of the
  • the first scaling factor is the transmit power after scaling the uplink channel transmit power.
  • the first scaling factor is N/M or r ⁇ N/M or r ⁇ N/M 1 , or the scaling factor is the minimum value of r ⁇ N/M and 1, or the The scaling factor is the minimum of r ⁇ N/M 1 and 1;
  • the N is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the M is the number of antenna ports included in the SRS resource indicated by the SRI
  • the M 1 is one SRS resource supported by the terminal The maximum number of antenna ports that can be included
  • the r is an integer greater than 1.
  • the first scaling factor is a scaling factor corresponding to a precoding matrix determined by the terminal.
  • the first power is the transmit power after the uplink channel transmit power is scaled by using the first scaling factor, and the first scaling factor Is: the minimum of ⁇ 0 / ⁇ and ⁇ /R; or
  • the first power is the transmit power after scaling the uplink channel transmit power using the first scaling factor, and the first scaling factor is: ⁇ 0 The minimum of / ⁇ and ⁇ /2R;
  • the first power is the uplink channel transmit power
  • the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the ⁇ is the number of antenna ports included in the sounding reference signal SRS resource indicated by the uplink signal scheduling information
  • the R is the uplink signal The number of transport streams.
  • the first scaling factor is: the minimum value of ⁇ /G and 1, where ⁇ is the number of antenna ports included in the sounding reference signal SRS resource indicated by the uplink signal scheduling information, and the G Is a coefficient related to the power capability of the terminal.
  • the first scaling factor is:
  • K/R and 1 The maximum value of K/R and 1 is multiplied by ⁇ 0 / ⁇ , where the K is a coefficient, the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix, and the ⁇ is the uplink The number of antenna ports included in the sounding reference signal SRS resource indicated by the signal scheduling information, where R is the number of transmission streams of the uplink signal; or
  • G 1 /G 0 is multiplied by ⁇ 0 / ⁇ , where the G 0 is the number of coherent transmission antenna groups corresponding to the precoding matrix, and G 1 is the codebook corresponding to the codebook subset restriction type corresponding to the uplink signal The maximum number of coherent transmission antenna groups corresponding to all codewords, the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix, and the ⁇ is the sounding reference signal SRS resource indicated by the uplink signal scheduling information. Number of antenna ports.
  • the K is:
  • the included SRS resource whose number of antenna ports meets the first preset condition refers to:
  • the number of antenna ports included is the SRS resource of the first antenna port number, where the first antenna port number includes at least one of the following:
  • the number of antenna ports indicated by the network side device is the number of antenna ports indicated by the network side device
  • the number of antenna ports is smaller than the number of antenna ports of the SRS resource with the largest number of antenna ports included in the SRS resource configured by the network side device for the terminal;
  • the number of antenna ports determined according to the transmit power capability of the terminal.
  • the first pre-configured SRS resource includes at least one of the following:
  • the indication message is used to indicate the number of one or a group of SRS antenna ports, and the first pre-configured SRS resource is an SRS resource whose number of antenna ports included belongs to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource that includes the number of antenna ports less than or equal to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource with a number of antenna ports greater than or equal to M 1 /X, where X is indicated by the indication message
  • M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the included SRS resource whose number of antenna ports meets the second preset condition refers to:
  • the network-side equipment configures m SRS resources with the largest number of antenna ports for the terminal, or SRS resources with the number of antenna ports equal to the maximum number of antenna ports that can be included in one SRS resource supported by the terminal; and/or,
  • the second pre-configured SRS resource includes:
  • the m is an integer greater than or equal to 1.
  • the precoding matrix is the precoding matrix indicated by the uplink scheduling information
  • the precoding matrix is 1.
  • the terminal reports to the network side device that the terminal has a full power transmission capability.
  • the full power transmission capability includes at least one of the following:
  • the terminal 600 further includes:
  • the second transmission module 603 is configured to indicate when the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, or the SRS resource indicated by the uplink signal scheduling information is an SRS resource other than the first SRS resource
  • the second power is evenly distributed to the antenna ports with non-zero signal transmission for uplink signal transmission, where the second power is the transmission power after scaling the uplink channel transmission power using the second scaling factor,
  • the second scaling factor is N/M 1 ;
  • the N is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, perform uplink signal transmission based on the first codebook; and/or,
  • the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, perform uplink signal transmission based on the second codebook.
  • the above-mentioned terminal 600 in this embodiment may be a terminal of any implementation manner in the method embodiments in some embodiments of the present disclosure.
  • any implementation manner of the terminal in the method embodiments may be used by the present disclosure.
  • the foregoing terminal 600 in the embodiment realizes and achieves the same beneficial effects, which will not be repeated here.
  • FIG. 8 is a structural diagram of a terminal provided by some embodiments of the present disclosure. As shown in FIG. 8, the terminal 800 includes:
  • the receiving module 801 is configured to receive uplink signal scheduling information sent by the network side device;
  • the determining module 802 is configured to determine a transmission codebook for uplink transmission, where, when the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, the transmission codebook is the first codebook; or When the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, or the SRS resource indicated by the uplink signal scheduling information is an SRS resource other than the first SRS resource, the transmission codebook Is the second codebook;
  • the transmission module 803 is configured to perform uplink signal transmission based on the transmission codebook
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included SRS resources or second pre-configured SRS resources meeting the second preset condition of the number of antenna ports.
  • the coherent transmission types of the first codebook and the second codebook are the same, and the coherent transmission type is non-coherent transmission;
  • the first codebook is the codebook for non-coherent transmission
  • the second codebook is the codebook subset restriction indicated by the network side device for the terminal. Codebook; or
  • the first codebook is a codebook for coherent transmission
  • the second codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal Codebook
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission
  • the second codebook is a codebook for the network side device.
  • the codebook corresponding to the codebook subset indicated by the terminal is restricted; or
  • both the first codebook and the second codebook are codebooks corresponding to the codebook subset restriction indicated by the network side device for the terminal;
  • the first codebook and the second codebook are codebooks corresponding to the codebook subset restriction corresponding to the SRS resource; or
  • the first codebook and the second codebook are codebooks corresponding to a codebook subset restriction corresponding to the number of antenna ports included in the SRS resource.
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission;
  • the first codebook is a codebook for non-coherent transmission
  • the first codebook is a codebook for fully coherent transmission
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission;
  • the first codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • the second codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • the codebook corresponding to the codebook subset restriction corresponding to the SRS resource is a codebook corresponding to the SRS resource among multiple codebook subset restrictions configured by the network side device for the terminal The codebook corresponding to the subset restriction; or
  • the codebook corresponding to the codebook subset restriction corresponding to the number of antenna ports included in the SRS resource is the antenna included in the SRS resource among the multiple codebook subset restrictions configured by the network side device for the terminal.
  • the codebook subset corresponding to the number of ports limits the corresponding codebook.
  • the included SRS resource whose number of antenna ports meets the first preset condition refers to:
  • the number of antenna ports included is the SRS resource of the first antenna port number, where the first antenna port number includes at least one of the following:
  • the number of antenna ports indicated by the network side device is the number of antenna ports indicated by the network side device
  • the number of antenna ports is smaller than the number of antenna ports of the SRS resource with the largest number of antenna ports included in the SRS resource configured by the network side device for the terminal;
  • the number of antenna ports determined according to the transmit power capability of the terminal.
  • the first pre-configured SRS resource includes at least one of the following:
  • the indication message is used to indicate the number of one or a group of SRS antenna ports, and the first pre-configured SRS resource is an SRS resource whose number of antenna ports included belongs to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource that includes the number of antenna ports less than or equal to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource with a number of antenna ports greater than or equal to M 1 /X, where X is indicated by the indication message
  • M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the included SRS resource whose number of antenna ports meets the second preset condition refers to:
  • the network-side equipment configures m SRS resources with the largest number of antenna ports for the terminal, or SRS resources with the number of antenna ports equal to the maximum number of antenna ports that can be included in one SRS resource supported by the terminal; and/or,
  • the second pre-configured SRS resource includes:
  • the m is an integer greater than or equal to 1.
  • the uplink scheduling information includes transmission precoding matrix information and a stream number indicator field, and the transmission precoding matrix information and stream number indicator field are used to indicate a precoding matrix used by the terminal to send the uplink signal ,
  • the transmission precoding matrix information and the length of the stream number field are:
  • log 2 (S) or the smallest positive integer greater than the log 2 (S), where S is the number of codewords contained in the transmission codebook.
  • the performing uplink signal transmission based on the transmission codebook includes:
  • the terminal evenly allocates the first power to the antenna ports with signal non-zero transmission to perform uplink based on the transmission codebook Signal transmission;
  • the terminal sets the second power Evenly allocated to the antenna ports with non-zero signal transmission for uplink signal transmission based on the transmission codebook.
  • the above-mentioned terminal 800 in this embodiment may be a terminal of any implementation manner in the method embodiments in some embodiments of the present disclosure.
  • any implementation manner of the terminal in the method embodiments may be used by the present disclosure.
  • the foregoing terminal 800 in the embodiment realizes and achieves the same beneficial effects, which will not be repeated here.
  • FIG. 9 is a structural diagram of a network side device provided by some embodiments of the present disclosure.
  • the network side device 900 includes:
  • the first determining module 901 is configured to, when the network side device configures the terminal with the first SRS resource, based on the transmission power control method of the uplink signal corresponding to the first SRS resource, the terminal evenly allocates the first power to the signal.
  • the assumption of uplink signal transmission on the antenna port of non-zero transmission is used to determine the uplink signal scheduling information of the uplink signal;
  • the sending module 902 is configured to send the uplink signal scheduling information to the terminal;
  • the first SRS resource is: SRS resources that meet the first preset condition, the first pre-configured SRS resources, or SRS resources other than the second SRS resources, and the second SRS resources include SRS resources or second pre-configured SRS resources meeting the second preset condition of the number of antenna ports;
  • the first power is the uplink channel transmission power, or the first power is the transmission power after the uplink channel transmission power is scaled by using a first scaling factor.
  • the first power is the uplink channel transmission power; otherwise, the first power is the use of the
  • the first scaling factor is the transmit power after scaling the uplink channel transmit power.
  • the first scaling factor is N/M or r ⁇ N/M or r ⁇ N/M 1 , or the scaling factor is the minimum value of r ⁇ N/M and 1, or the The scaling factor is the minimum of r ⁇ N/M 1 and 1;
  • the N is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the M is the number of antenna ports included in the SRS resource indicated by the SRI
  • the M 1 is one SRS resource supported by the terminal The maximum number of antenna ports that can be included
  • the r is an integer greater than 1.
  • the first scaling factor is a scaling factor corresponding to a precoding matrix determined by the terminal.
  • the first power is the transmit power after the uplink channel transmit power is scaled by using the first scaling factor, and the first scaling factor Is: the minimum of ⁇ 0 / ⁇ and ⁇ /R; or
  • the first power is the transmit power after scaling the uplink channel transmit power using the first scaling factor, and the first scaling factor is: ⁇ 0 The minimum of / ⁇ and ⁇ /2R; or
  • the first power is the uplink channel transmit power
  • the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the ⁇ is the number of antenna ports included in the sounding reference signal SRS resource indicated by the uplink signal scheduling information
  • the R is the uplink signal The number of transport streams.
  • the first scaling factor is: the minimum value of ⁇ /G and 1, where ⁇ is the number of antenna ports included in the sounding reference signal SRS resource indicated by the uplink signal scheduling information, and the G Is a coefficient related to the power capability of the terminal.
  • the first scaling factor is:
  • K/R and 1 The maximum value of K/R and 1 is multiplied by ⁇ 0 / ⁇ , where the K is a coefficient, the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix, and the ⁇ is the uplink The number of antenna ports included in the sounding reference signal SRS resource indicated by the signal scheduling information, where R is the number of transmission streams of the uplink signal; or
  • G 1 /G 0 is multiplied by ⁇ 0 / ⁇ , where the G 0 is the number of coherent transmission antenna groups corresponding to the precoding matrix, and G 1 is the codebook corresponding to the codebook subset restriction type corresponding to the uplink signal The maximum number of coherent transmission antenna groups corresponding to all codewords, the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix, and the ⁇ is the sounding reference signal SRS resource indicated by the uplink signal scheduling information. Number of antenna ports.
  • the K is:
  • the included SRS resource whose number of antenna ports meets the first preset condition refers to:
  • the number of antenna ports included is the SRS resource of the first antenna port number, where the first antenna port number includes at least one of the following:
  • the number of antenna ports indicated by the network side device is the number of antenna ports indicated by the network side device
  • the number of antenna ports is smaller than the number of antenna ports of the SRS resource with the largest number of antenna ports included in the SRS resource configured by the network side device for the terminal;
  • the number of antenna ports determined according to the transmit power capability of the terminal.
  • the first pre-configured SRS resource includes at least one of the following:
  • the indication message is used to indicate the number of one or a group of SRS antenna ports, and the first pre-configured SRS resource is an SRS resource whose number of antenna ports included belongs to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource that includes the number of antenna ports less than or equal to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource with a number of antenna ports greater than or equal to M 1 /X, where X is indicated by the indication message
  • M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the included SRS resources that meet the second preset condition and include the number of antenna ports refer to:
  • the network-side equipment configures m SRS resources with the largest number of antenna ports for the terminal, or SRS resources with the number of antenna ports equal to the maximum number of antenna ports that can be included in one SRS resource supported by the terminal; and/or,
  • the second pre-configured SRS resource includes:
  • the m is an integer greater than or equal to 1.
  • the precoding matrix is the precoding matrix indicated by the uplink scheduling information
  • the precoding matrix is 1.
  • the terminal reports to the network side device that the terminal has a full power transmission capability.
  • the full power transmission capability includes at least one of the following:
  • the network side device further includes:
  • the second determining module 903 is configured to be based on the second SRS resource or the first SRS resource when the network side device configures the terminal with a second SRS resource or has SRS resources other than the first SRS resource
  • the transmission power control method of the uplink signal corresponding to the SRS resource other than the resource is based on the assumption that the terminal evenly allocates the second power to the antenna port with non-zero signal transmission for uplink signal transmission, and determines the uplink signal of the uplink signal.
  • Signal scheduling information
  • the second power is the transmit power after the uplink channel transmit power is scaled using a second scaling factor, and the second scaling factor is N/M 1 ;
  • the N is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, perform uplink signal transmission based on the first codebook; and/or,
  • the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, perform uplink signal transmission based on the second codebook.
  • the above-mentioned network-side device 900 in this embodiment may be a terminal of any implementation manner in the method embodiments in some embodiments of the present disclosure.
  • any implementation manner of the network-side device in the method embodiments is All of them can be implemented by the above-mentioned network side device 900 in this embodiment and achieve the same beneficial effects, which will not be repeated here.
  • FIG. 11 is a structural diagram of another network side device provided by some embodiments of the present disclosure. As shown in FIG. 11, the network side device 1100 includes:
  • the first determining module 1101 is configured to determine the transmission codebook for uplink transmission, where, in the case where the first SRS resource is configured for the terminal, the transmission codebook for the first SRS resource is the first codebook; or When a second SRS resource is configured for the terminal, or an SRS resource other than the first SRS resource is configured for the terminal, the transmission code of the second transmission resource or the SRS resource other than the first SRS resource This is the second codebook;
  • the second determining module 1102 is configured to determine uplink signal scheduling information of the uplink signal based on the transmission codebook
  • the sending module 1103 is configured to send the uplink signal scheduling information to the terminal;
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included SRS resources or second pre-configured SRS resources meeting the second preset condition of the number of antenna ports.
  • the coherent transmission types of the first codebook and the second codebook are the same, and the coherent transmission type is non-coherent transmission;
  • the first codebook is the codebook for non-coherent transmission
  • the second codebook is the codebook subset restriction indicated by the network side device for the terminal. Codebook; or
  • the first codebook is a codebook for coherent transmission
  • the second codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal Codebook
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission
  • the second codebook is a codebook for the network side device.
  • the codebook corresponding to the codebook subset indicated by the terminal is restricted; or
  • both the first codebook and the second codebook are codebooks corresponding to the codebook subset restriction indicated by the network side device for the terminal;
  • the first codebook and the second codebook are codebooks corresponding to the codebook subset restriction corresponding to the SRS resource; or
  • the first codebook and the second codebook are codebooks corresponding to a codebook subset restriction corresponding to the number of antenna ports included in the SRS resource.
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission;
  • the first codebook is a codebook for non-coherent transmission
  • the first codebook is a codebook for fully coherent transmission
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission;
  • the first codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • the second codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • the codebook corresponding to the codebook subset restriction corresponding to the SRS resource is a codebook corresponding to the SRS resource among multiple codebook subset restrictions configured by the network side device for the terminal The codebook corresponding to the subset restriction; or
  • the codebook corresponding to the codebook subset restriction corresponding to the number of antenna ports included in the SRS resource is the antenna included in the SRS resource among the multiple codebook subset restrictions configured by the network side device for the terminal.
  • the codebook subset corresponding to the number of ports limits the corresponding codebook.
  • the included SRS resource whose number of antenna ports meets the first preset condition refers to:
  • the number of antenna ports included is the SRS resource of the first antenna port number, where the first antenna port number includes at least one of the following:
  • the number of antenna ports indicated by the network side device is the number of antenna ports indicated by the network side device
  • the number of antenna ports is smaller than the number of antenna ports of the SRS resource with the largest number of antenna ports included in the SRS resource configured by the network side device for the terminal;
  • the number of antenna ports determined according to the transmit power capability of the terminal.
  • the first pre-configured SRS resource includes at least one of the following:
  • the indication message is used to indicate the number of one or a group of SRS antenna ports, and the first pre-configured SRS resource is an SRS resource whose number of antenna ports included belongs to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource that includes the number of antenna ports less than or equal to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource with a number of antenna ports greater than or equal to M 1 /X, where X is indicated by the indication message
  • M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the included SRS resources that meet the second preset condition and include the number of antenna ports refer to:
  • the network-side equipment configures m SRS resources with the largest number of antenna ports for the terminal, or SRS resources with the number of antenna ports equal to the maximum number of antenna ports that can be included in one SRS resource supported by the terminal; and/or,
  • the second pre-configured SRS resource includes:
  • the m is an integer greater than or equal to 1.
  • the uplink scheduling information includes transmission precoding matrix information and a stream number indicator field, and the transmission precoding matrix information and stream number indicator field are used to indicate a precoding matrix used by the terminal to send the uplink signal ,
  • the transmission precoding matrix information and the length of the stream number field are:
  • log 2 (S) or the smallest positive integer greater than the log 2 (S), where S is the number of codewords contained in the transmission codebook.
  • the performing uplink signal transmission based on the transmission codebook includes:
  • the terminal evenly allocates the first power to the antenna ports with signal non-zero transmission to perform uplink based on the transmission codebook Signal transmission;
  • the terminal sets the second power Evenly allocated to the antenna ports with non-zero signal transmission for uplink signal transmission based on the transmission codebook.
  • the above-mentioned network-side device 1100 in this embodiment may be a terminal of any implementation manner in the method embodiments in some embodiments of the present disclosure.
  • any implementation manner of the network-side device in the method embodiments is All of them can be implemented by the above-mentioned network side device 1100 in this embodiment and achieve the same beneficial effects, which will not be repeated here.
  • FIG. 12 is a structural diagram of another terminal provided by some embodiments of the present disclosure.
  • the terminal includes: a transceiver 1210, a memory 1220, a processor 1200, and storage in the memory A program running on the processor 1200 on 1220, wherein:
  • the transceiver 1210 is configured to receive uplink signal scheduling information sent by a network side device;
  • the transceiver 1210 or the processor 1200 is configured to determine a transmission codebook for uplink transmission, where in the case where the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, the transmission codebook is The first codebook; or, the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, or the SRS resource indicated by the uplink signal scheduling information is the SRS resource other than the first SRS resource In this case, the transmission codebook is the second codebook;
  • the transceiver 1210 is also configured to perform uplink signal transmission based on the transmission codebook
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included SRS resources or second pre-configured SRS resources meeting the second preset condition of the number of antenna ports.
  • the transceiver 1210 can be used to receive and send data under the control of the processor 1200.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1200 and various circuits of the memory represented by the memory 1220 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 1210 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1220 can store data used by the processor 1200 when performing operations.
  • the memory 1220 is not limited to being only on the terminal, and the memory 1220 and the processor 1200 can be separated in different geographic locations.
  • the first power is the uplink channel transmission power; otherwise, the first power is the use of the
  • the first scaling factor is the transmit power after scaling the uplink channel transmit power.
  • the first scaling factor is N/M or r ⁇ N/M or r ⁇ N/M 1 , or the scaling factor is the minimum value of r ⁇ N/M and 1, or the The scaling factor is the minimum of r ⁇ N/M 1 and 1;
  • the N is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the M is the number of antenna ports included in the SRS resource indicated by the SRI
  • the M 1 is one SRS resource supported by the terminal The maximum number of antenna ports that can be included
  • the r is an integer greater than 1.
  • the first scaling factor is a scaling factor corresponding to a precoding matrix determined by the terminal.
  • the first power is the transmit power after the uplink channel transmit power is scaled by using the first scaling factor, and the first scaling factor Is: the minimum of ⁇ 0 / ⁇ and ⁇ /R; or
  • the first power is the transmit power after scaling the uplink channel transmit power using the first scaling factor, and the first scaling factor is: ⁇ 0 The minimum of / ⁇ and ⁇ /2R;
  • the first power is the uplink channel transmit power
  • the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the ⁇ is the number of antenna ports included in the sounding reference signal SRS resource indicated by the uplink signal scheduling information
  • the R is the uplink signal The number of transport streams.
  • the first scaling factor is: the minimum value of ⁇ /G and 1, where ⁇ is the number of antenna ports included in the sounding reference signal SRS resource indicated by the uplink signal scheduling information, and the G Is a coefficient related to the power capability of the terminal.
  • the first scaling factor is:
  • K/R and 1 The maximum value of K/R and 1 is multiplied by ⁇ 0 / ⁇ , where the K is a coefficient, the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix, and the ⁇ is the uplink The number of antenna ports included in the sounding reference signal SRS resource indicated by the signal scheduling information, where R is the number of transmission streams of the uplink signal; or
  • G 1 /G 0 is multiplied by ⁇ 0 / ⁇ , where the G 0 is the number of coherent transmission antenna groups corresponding to the precoding matrix, and G 1 is the codebook corresponding to the codebook subset restriction type corresponding to the uplink signal The maximum number of coherent transmission antenna groups corresponding to all codewords, the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix, and the ⁇ is the sounding reference signal SRS resource indicated by the uplink signal scheduling information. Number of antenna ports.
  • the K is:
  • the included SRS resource whose number of antenna ports meets the first preset condition refers to:
  • the number of antenna ports included is the SRS resource of the first antenna port number, where the first antenna port number includes at least one of the following:
  • the number of antenna ports indicated by the network side device is the number of antenna ports indicated by the network side device
  • the number of antenna ports is smaller than the number of antenna ports of the SRS resource with the largest number of antenna ports included in the SRS resource configured by the network side device for the terminal;
  • the number of antenna ports determined according to the transmit power capability of the terminal.
  • the first pre-configured SRS resource includes at least one of the following:
  • the indication message is used to indicate the number of one or a group of SRS antenna ports, and the first pre-configured SRS resource is an SRS resource whose number of antenna ports included belongs to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource that includes the number of antenna ports less than or equal to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource with a number of antenna ports greater than or equal to M 1 /X, where X is indicated by the indication message
  • M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the included SRS resource whose number of antenna ports meets the second preset condition refers to:
  • the network-side equipment configures m SRS resources with the largest number of antenna ports for the terminal, or SRS resources with the number of antenna ports equal to the maximum number of antenna ports that can be included in one SRS resource supported by the terminal; and/or,
  • the second pre-configured SRS resource includes:
  • the m is an integer greater than or equal to 1.
  • the precoding matrix is the precoding matrix indicated by the uplink scheduling information
  • the precoding matrix is 1.
  • the terminal reports to the network side device that the terminal has a full power transmission capability.
  • the full power transmission capability includes at least one of the following:
  • the transceiver 1210 is also used to include:
  • the terminal sets the second SRS resource
  • the power is evenly distributed to the antenna ports with non-zero signal transmission for uplink signal transmission, the second power is the transmit power after the uplink channel transmit power is scaled using a second scaling factor, and the second scaling factor is N/M 1 ;
  • the N is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, perform uplink signal transmission based on the first codebook; and/or,
  • the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, perform uplink signal transmission based on the second codebook.
  • the transceiver 1210 is configured to receive uplink signal scheduling information sent by a network side device;
  • the transceiver 1210 or the processor 1200 is configured to determine a transmission codebook for uplink transmission, where in the case where the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, the transmission codebook is The first codebook; or, the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, or the SRS resource indicated by the uplink signal scheduling information is the SRS resource other than the first SRS resource In this case, the transmission codebook is the second codebook;
  • the transceiver 1210 is also configured to perform uplink signal transmission based on the transmission codebook
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included SRS resources or second pre-configured SRS resources meeting the second preset condition of the number of antenna ports.
  • the coherent transmission types of the first codebook and the second codebook are the same, and the coherent transmission type is non-coherent transmission;
  • the first codebook is the codebook for non-coherent transmission
  • the second codebook is the codebook subset restriction indicated by the network side device for the terminal. Codebook; or
  • the first codebook is a codebook for coherent transmission
  • the second codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal Codebook
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission
  • the second codebook is a codebook for the network side device.
  • the codebook corresponding to the codebook subset indicated by the terminal is restricted; or
  • both the first codebook and the second codebook are codebooks corresponding to the codebook subset restriction indicated by the network side device for the terminal;
  • the first codebook and the second codebook are codebooks corresponding to the codebook subset restriction corresponding to the SRS resource; or
  • the first codebook and the second codebook are codebooks corresponding to the codebook subset restriction corresponding to the number of antenna ports included in the SRS resource.
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission;
  • the first codebook is a codebook for non-coherent transmission
  • the first codebook is a codebook for fully coherent transmission
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission;
  • the first codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • the second codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • the codebook corresponding to the codebook subset restriction corresponding to the SRS resource is a codebook corresponding to the SRS resource among multiple codebook subset restrictions configured by the network side device for the terminal The codebook corresponding to the subset restriction; or
  • the codebook corresponding to the codebook subset restriction corresponding to the number of antenna ports included in the SRS resource is the antenna included in the SRS resource among the multiple codebook subset restrictions configured by the network side device for the terminal.
  • the codebook subset corresponding to the number of ports limits the corresponding codebook.
  • the included SRS resource whose number of antenna ports meets the first preset condition refers to:
  • the number of antenna ports included is the SRS resource of the first antenna port number, where the first antenna port number includes at least one of the following:
  • the number of antenna ports indicated by the network side device is the number of antenna ports indicated by the network side device
  • the number of antenna ports is smaller than the number of antenna ports of the SRS resource with the largest number of antenna ports included in the SRS resource configured by the network side device for the terminal;
  • the number of antenna ports determined according to the transmit power capability of the terminal.
  • the first pre-configured SRS resource includes at least one of the following:
  • the indication message is used to indicate the number of one or a group of SRS antenna ports, and the first pre-configured SRS resource is an SRS resource whose number of antenna ports included belongs to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource that includes the number of antenna ports less than or equal to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource with a number of antenna ports greater than or equal to M 1 /X, where X is indicated by the indication message
  • M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the included SRS resource whose number of antenna ports meets the second preset condition refers to:
  • the network-side equipment configures m SRS resources with the largest number of antenna ports for the terminal, or SRS resources with the number of antenna ports equal to the maximum number of antenna ports that can be included in one SRS resource supported by the terminal; and/or,
  • the second pre-configured SRS resource includes:
  • the m is an integer greater than or equal to 1.
  • the uplink scheduling information includes transmission precoding matrix information and a stream number indicator field, and the transmission precoding matrix information and stream number indicator field are used to indicate a precoding matrix used by the terminal to send the uplink signal ,
  • the transmission precoding matrix information and the length of the stream number field are:
  • log 2 (S) or the smallest positive integer greater than the log 2 (S), where S is the number of codewords contained in the transmission codebook.
  • the performing uplink signal transmission based on the transmission codebook includes:
  • the terminal evenly allocates the first power to the antenna ports with signal non-zero transmission to perform uplink based on the transmission codebook Signal transmission;
  • the terminal sets the second power Evenly allocated to the antenna ports with non-zero signal transmission for uplink signal transmission based on the transmission codebook.
  • the above-mentioned terminal in this embodiment may be a terminal of any implementation manner in the method embodiment in some embodiments of the present disclosure.
  • any implementation manner of the terminal in the method embodiment may be used in this implementation.
  • the foregoing terminal in the example achieves and achieves the same beneficial effects, which will not be repeated here.
  • FIG. 13 is a structural diagram of another network-side device provided by some embodiments of the present disclosure.
  • the network-side device includes a transceiver 1310, a memory 1320, a processor 1300, and a storage device.
  • a program that is on the memory 1320 and can run on the processor, wherein:
  • the transceiver 1310 or the processor 1300 is configured to control the transmit power of the uplink signal corresponding to the first SRS resource by the network-side device when the network-side device configures the terminal with the first SRS resource. According to the assumption that the terminal evenly allocates the first power to the antenna ports with non-zero signal transmission for uplink signal transmission, the uplink signal scheduling information of the uplink signal is determined;
  • the transceiver 1310 is configured to send the uplink signal scheduling information to the terminal;
  • the first SRS resource is: SRS resources that meet the first preset condition, the first pre-configured SRS resources, or SRS resources other than the second SRS resources, and the second SRS resources include SRS resources or second pre-configured SRS resources meeting the second preset condition of the number of antenna ports;
  • the first power is the uplink channel transmission power, or the first power is the transmission power after the uplink channel transmission power is scaled by using a first scaling factor.
  • the transceiver 1310 can be used to receive and send data under the control of the processor 1300.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1300 and various circuits of the memory represented by the memory 1320 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 1310 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 1300 is responsible for managing the bus architecture and general processing, and the memory 1320 can store data used by the processor 1300 when performing operations.
  • the memory 1320 is not limited to being only on the network side device, and the memory 1320 and the processor 1300 may be separated in different geographic locations.
  • the first power is the uplink channel transmission power; otherwise, the first power is the use of the
  • the first scaling factor is the transmit power after scaling the uplink channel transmit power.
  • the first scaling factor is N/M or r ⁇ N/M or r ⁇ N/M 1 , or the scaling factor is the minimum value of r ⁇ N/M and 1, or the The scaling factor is the minimum of r ⁇ N/M 1 and 1;
  • the N is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the M is the number of antenna ports included in the SRS resource indicated by the SRI
  • the M 1 is one SRS resource supported by the terminal The maximum number of antenna ports that can be included
  • the r is an integer greater than 1.
  • the first scaling factor is a scaling factor corresponding to a precoding matrix determined by the terminal.
  • the first power is the transmit power after the uplink channel transmit power is scaled by using the first scaling factor, and the first scaling factor Is: the minimum of ⁇ 0 / ⁇ and ⁇ /R; or
  • the first power is the transmit power after scaling the uplink channel transmit power using the first scaling factor, and the first scaling factor is: ⁇ 0 The minimum of / ⁇ and ⁇ /2R; or
  • the first power is the uplink channel transmit power
  • the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the ⁇ is the number of antenna ports included in the sounding reference signal SRS resource indicated by the uplink signal scheduling information
  • the R is the uplink signal The number of transport streams.
  • the first scaling factor is: the minimum value of ⁇ /G and 1, where ⁇ is the number of antenna ports included in the sounding reference signal SRS resource indicated by the uplink signal scheduling information, and the G Is a coefficient related to the power capability of the terminal.
  • the first scaling factor is:
  • K/R and 1 The maximum value of K/R and 1 is multiplied by ⁇ 0 / ⁇ , where the K is a coefficient, the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix, and the ⁇ is the uplink The number of antenna ports included in the sounding reference signal SRS resource indicated by the signal scheduling information, where R is the number of transmission streams of the uplink signal; or
  • G 1 /G 0 is multiplied by ⁇ 0 / ⁇ , where the G 0 is the number of coherent transmission antenna groups corresponding to the precoding matrix, and G 1 is the codebook corresponding to the codebook subset restriction type corresponding to the uplink signal The maximum number of coherent transmission antenna groups corresponding to all codewords, the ⁇ 0 is the number of antenna ports with non-zero signal transmission in the precoding matrix, and the ⁇ is the sounding reference signal SRS resource indicated by the uplink signal scheduling information. Number of antenna ports.
  • the K is:
  • the included SRS resource whose number of antenna ports meets the first preset condition refers to:
  • the number of antenna ports included is the SRS resource of the first antenna port number, where the first antenna port number includes at least one of the following:
  • the number of antenna ports indicated by the network side device is the number of antenna ports indicated by the network side device
  • the number of antenna ports is smaller than the number of antenna ports of the SRS resource with the largest number of antenna ports included in the SRS resource configured by the network side device for the terminal;
  • the number of antenna ports determined according to the transmit power capability of the terminal.
  • the first pre-configured SRS resource includes at least one of the following:
  • the indication message is used to indicate the number of one or a group of SRS antenna ports, and the first pre-configured SRS resource is an SRS resource whose number of antenna ports included belongs to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource that includes the number of antenna ports less than or equal to the number of antenna ports indicated by the indication message; or
  • the indication message is used to indicate the number of one SRS antenna port, and the first pre-configured SRS resource is an SRS resource with a number of antenna ports greater than or equal to M 1 /X, where X is indicated by the indication message
  • M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the included SRS resource whose number of antenna ports meets the second preset condition refers to:
  • the network-side equipment configures m SRS resources with the largest number of antenna ports for the terminal, or SRS resources with the number of antenna ports equal to the maximum number of antenna ports that can be included in one SRS resource supported by the terminal; and/or,
  • the second pre-configured SRS resource includes:
  • the m is an integer greater than or equal to 1.
  • the precoding matrix is the precoding matrix indicated by the uplink scheduling information
  • the precoding matrix is 1.
  • the terminal reports to the network side device that the terminal has a full power transmission capability.
  • the full power transmission capability includes at least one of the following:
  • the transceiver 1310 or the processor 1300 is further configured to:
  • the network side device configures the terminal with a second SRS resource or an SRS resource other than the first SRS resource, based on the second SRS resource or the SRS resource other than the first SRS resource corresponding
  • the transmission power control mode of the uplink signal is based on the assumption that the terminal evenly allocates the second power to the antenna ports with non-zero signal transmission for uplink signal transmission, and determines the uplink signal scheduling information of the uplink signal;
  • the second power is the transmit power after the uplink channel transmit power is scaled using a second scaling factor, and the second scaling factor is N/M 1 ;
  • the N is the number of antenna ports with non-zero signal transmission in the precoding matrix
  • the M 1 is the maximum number of antenna ports that can be included in one SRS resource supported by the terminal.
  • the SRS resource indicated by the uplink signal scheduling information is the first SRS resource, perform uplink signal transmission based on the first codebook; and/or,
  • the SRS resource indicated by the uplink signal scheduling information is the second SRS resource, perform uplink signal transmission based on the second codebook.
  • the transceiver 1310 or the processor 1300 is configured to determine a transmission codebook for uplink transmission, where, in the case where the first SRS resource is configured for the terminal, the transmission codebook of the first SRS resource is the first Codebook; or, when a second SRS resource is configured for the terminal, or an SRS resource other than the first SRS resource is configured for the terminal, the second transmission resource or the first SRS resource
  • the transmission codebook of the SRS resource is the second codebook
  • the transceiver 1310 or the processor 1300 is further configured to determine the uplink signal scheduling information of the uplink signal based on the transmission codebook;
  • the transceiver 1310 is further configured to send the uplink signal scheduling information to the terminal;
  • the first SRS resource is: the SRS resource, the first pre-configured SRS resource, or the SRS resource other than the second SRS resource, the number of antenna ports included meets the first preset condition;
  • the second SRS resource is included The SRS resource or the second pre-configured SRS resource whose number of antenna ports meets the second preset condition.
  • the coherent transmission types of the first codebook and the second codebook are the same, and the coherent transmission type is non-coherent transmission;
  • the first codebook is the codebook for non-coherent transmission
  • the second codebook is the codebook subset restriction indicated by the network side device for the terminal. Codebook; or
  • the first codebook is a codebook for coherent transmission
  • the second codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal Codebook
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission
  • the second codebook is a codebook for the network side device.
  • the codebook corresponding to the codebook subset indicated by the terminal is restricted; or
  • both the first codebook and the second codebook are codebooks corresponding to the codebook subset restriction indicated by the network side device for the terminal;
  • the first codebook and the second codebook are codebooks corresponding to the codebook subset restriction corresponding to the SRS resource; or
  • the first codebook and the second codebook are codebooks corresponding to a codebook subset restriction corresponding to the number of antenna ports included in the SRS resource.
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission;
  • the first codebook is a codebook for non-coherent transmission
  • the first codebook is a codebook for fully coherent transmission
  • the first codebook is a codebook for fully coherent transmission or a codebook containing codewords for fully coherent transmission;
  • the first codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • the second codebook is a codebook corresponding to the codebook subset restriction indicated by the network side device for the terminal.
  • the codebook corresponding to the codebook subset restriction corresponding to the SRS resource is a codebook corresponding to the SRS resource among multiple codebook subset restrictions configured by the network side device for the terminal The codebook corresponding to the subset restriction; or
  • the codebook corresponding to the codebook subset restriction corresponding to the number of antenna ports included in the SRS resource is the antenna included in the SRS resource among the multiple codebook subset restrictions configured by the network side device for the terminal.
  • the codebook subset corresponding to the number of ports limits the corresponding codebook.
  • the included SRS resource whose number of antenna ports meets the first preset condition refers to:
  • the number of antenna ports included is the SRS resource of the first antenna port number, where the first antenna port number includes at least one of the following:
  • the number of antenna ports indicated by the network side device is the number of antenna ports indicated by the network side device
  • the number of antenna ports is smaller than the number of antenna ports of the SRS resource with the largest number of antenna ports included in the SRS resource configured by the network side device for the terminal;
  • the number of antenna ports determined according to the transmit power capability of the terminal.
  • the first pre-configured SRS resource includes at least one of the following:

Abstract

本公开实施例提供一种上行信号传输方法、调度信息确定方法和相关设备,该方法包括:终端接收网络侧设备发送的上行信号调度信息;在上行信号调度信息指示的SRS资源为第一SRS资源的情况下,终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输;第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;第一功率为上行信道发送功率,或者,第一功率为使用第一缩放因子对上行信道发送功率进行缩放后的发送功率。

Description

上行信号传输方法、调度信息确定方法和相关设备
相关申请的交叉引用
本申请主张在2019年4月30日在中国提交的中国专利申请号No.201910364576.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种上行信号传输方法、调度信息确定方法和相关设备。
背景技术
在通信系统中网络侧设备可以配置终端进行基于码本的上行信号传输,例如:在新空口(New Radio,NR)系统中,网络侧设备可以配置终端基于码本的上行信号传输。且在基于码本的上行信号传输技术中,网络侧设备会为终端配置用于信道状态信息(Channel State Information,CSI)测量(或者称作获取)的信道探测参考信号(Sounding Reference Signal,SRS)资源,其中,该CSI为基于码本的上行信号传输的CSI。然而,通信系统中无论配置什么样的SRS资源,终端的行为都是一样的,例如:采用相同码本或者采用相同的功率发送方式,这样导致终端的上行传输性能比较差。
发明内容
本公开实施例提供一种上行信号传输方法、调度信息确定方法和相关设备,以解决终端的上行传输性能比较差的问题。
本公开的一些实施例提供一种上行信号传输方法,包括:
终端接收网络侧设备发送的上行信号调度信息;
在所述上行信号调度信息指示的探测参考信号SRS资源为第一SRS资源的情况下,所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;
所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
本公开的一些实施例还提供一种上行信号传输方法,包括:
终端接收网络侧设备发送的上行信号调度信息;
确定上行传输的传输码本,其中,在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述传输码本为第一码本;或者,在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调 度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述传输码本为第二码本;
基于所述传输码本进行上行信号传输;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源。
本公开的一些实施例还提供一种调度信息确定方法,包括:
在网络侧设备为终端配置有第一SRS资源情况下,所述网络侧设备基于第一SRS资源对应的上行信号的发送功率控制方式为所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输的假设,确定上行信号的上行信号调度信息;
所述网络侧设备向所述终端发送所述上行信号调度信息;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;
所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
本公开的一些实施例还提供一种上行信号传输方法,包括:
网络侧设备确定上行传输的传输码本,其中,在为终端配置了第一SRS资源的情况下,所述第一SRS资源的传输码本为第一码本;或者,在为终端配置了第二SRS资源,或者为终端配置了所述第一SRS资源之外的SRS资源的情况下,所述第二传输资源或所述第一SRS资源之外的SRS资源的传输码本为第二码本;
所述网络侧设备基于所述传输码本确定上行信号的上行信号调度信息;
所述网络侧设备向终端发送所述上行信号调度信息;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源。
本公开的一些实施例还提供一种终端,包括:
接收模块,用于接收网络侧设备发送的上行信号调度信息;
第一传输模块,用于在所述上行信号调度信息指示的探测参考信号SRS资源为第一SRS资源的情况下,将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置 SRS资源;
所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
本公开的一些实施例还提供一种终端,包括:
接收模块,用于接收网络侧设备发送的上行信号调度信息;
确定模块,用于确定上行传输的传输码本,其中,在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述传输码本为第一码本;或者,在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述传输码本为第二码本;
传输模块,用于基于所述传输码本进行上行信号传输;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源。
本公开的一些实施例还提供一种网络侧设备,包括:
第一确定模块,用于在网络侧设备为终端配置有第一SRS资源情况下,基于第一SRS资源对应的上行信号的发送功率控制方式为所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输的假设,确定上行信号的上行信号调度信息;
发送模块,用于向所述终端发送所述上行信号调度信息;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;
所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
本公开的一些实施例还提供一种网络侧设备,包括:
第一确定模块,用于确定上行传输的传输码本,其中,在为终端配置了第一SRS资源的情况下,所述第一SRS资源的传输码本为第一码本;或者,在为终端配置了第二SRS资源,或者为终端配置了所述第一SRS资源之外的SRS资源的情况下,所述第二传输资源或所述第一SRS资源之外的SRS资源的传输码本为第二码本;
第二确定模块,用于基于所述传输码本确定上行信号的上行信号调度信息;
发送模块,用于向终端发送所述上行信号调度信息;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置 SRS资源。
本公开的一些实施例还提供一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
所述收发机,用于接收网络侧设备发送的上行信号调度信息;
所述收发机,还用于在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;
所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
本公开的一些实施例还提供一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
所述收发机,用于接收网络侧设备发送的上行信号调度信息;
所述收发机或者所述处理器,用于确定上行传输的传输码本,其中,在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述传输码本为第一码本;或者,在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述传输码本为第二码本;
所述收发机还用于基于所述传输码本进行上行信号传输;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源。
本公开的一些实施例还提供一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
所述收发机或者所述处理器,用于在网络侧设备为终端配置有第一SRS资源情况下,所述网络侧设备基于第一SRS资源对应的上行信号的发送功率控制方式为所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输的假设,确定上行信号的上行信号调度信息;
所述收发机,用于向所述终端发送所述上行信号调度信息;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;
所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
本公开的一些实施例还提供一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
所述收发机或者所述处理器,用于确定上行传输的传输码本,其中,在为终端配置了第一SRS资源的情况下,所述第一SRS资源的传输码本为第一码本;或者,在为终端配置了第二SRS资源,或者为终端配置了所述第一SRS资源之外的SRS资源的情况下,所述第二传输资源或所述第一SRS资源之外的SRS资源的传输码本为第二码本;
所述收发机或者所述处理器,还用于基于所述传输码本确定上行信号的上行信号调度信息;
所述收发机还用于,向终端发送所述上行信号调度信息;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源。
本公开的一些实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现本公开的一些实施例提供的终端侧的第一种上行信号传输方法中的步骤,或者该程序被处理器执行时实现本公开的一些实施例提供的终端侧的第二种上行信号传输方法中的步骤,或者该程序被处理器执行时实现本公开的一些实施例提供的第一种调度信息确定方法中的步骤,或者该程序被处理器执行时实现本公开的一些实施例提供的网络侧设备侧的第一种调度信息确定方法中的步骤。
本公开的一些实施例中,终端接收网络侧设备发送的上行信号调度信息;在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输;其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。由于在SRS资源为第一SRS资源的情况下,使用上行信道发送功率或者使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率均匀分配到有信号非零传输的天线端口上进行上行信号传输,从而可以提高终端的上行传输性能。
附图说明
图1是本公开的一些实施例可应用的网络结构示意图;
图2是本公开的一些实施例提供的上行信号传输方法的流程图;
图3是本公开的一些实施例提供的上行信号传输方法的另一流程图;
图4是本公开的一些实施例提供的调度信息确定方法的流程图;
图5是本公开的一些实施例提供的调度信息确定方法的另一流程图;
图6是本公开的一些实施例提供的终端的结构图;
图7是本公开的一些实施例提供的终端的另一结构图;
图8是本公开的一些实施例提供的终端的另一结构图;
图9是本公开的一些实施例提供的网络侧设备的结构图;
图10是本公开的一些实施例提供的网络侧设备的另一结构图;
图11是本公开的一些实施例提供的网络侧设备的另一结构图;
图12是本公开的一些实施例提供的终端的另一结构图;以及
图13是本公开的一些实施例提供的网络侧设备的另一结构图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
参见图1,图1是本公开的一些实施例可应用的网络结构示意图,如图1所示,包括终端11和网络侧设备12,其中,终端11可以是用户终端(User Equipment,UE)或者其他终端设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开的一些实施例中并不限定终端的具体类型。网络侧设备12可以是基站,例如:宏站、LTE eNB、5G NR NB等;网络侧设备也可以是小站,如低功率节点(LPN:low power node)、pico、femto等小站,或者网络侧设备可以接入点(AP,access point);基站也可以是中央单元(CU,central unit)与其管理和控制的多个传输接收点(TRP,Transmission Reception Point)共同组成的网络节点。需要说明的是,在本公开的一些实施例中并不限定网络侧设备的具体类型。
请参见图2,图2是本公开的一些实施例提供的一种上行信号传输方法的流程图,如图2所示,包括以下步骤:
201、终端接收网络侧设备发送的上行信号调度信息;
202、在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;
所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
其中,上述终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输可以是,将第一功率均匀分配到传输所述上行信号使用的预 编码矩阵对应的有信号非零传输的天线端口上进行上行信号传输。当然,本公开的一些实施例中,上述有信号非零传输的天线端口并不限定为传输所述上行信号使用的预编码矩阵对应的有信号非零传输的天线端口,例如:可以是终端自己确定的天线虚拟化方式下对应有信号非零传输的天线端口,或者终端以天线虚拟化的方式进行所述上行信号传输时有信号非零传输的虚拟化的天线端口,等等。
预编码矩阵对应的有信号非零传输的天线端口可以是预编码矩阵中存在非零元素的天线端口。举例来说,所述上行信号为PUSCH,所述上行信号调度信息指示的SRS资源包含的天线端口分别为1000,1001,1002,1003,所述上行信号调度信息指示的预编码矩阵为[1 0 1 0] T,这个预编码矩阵对应的有数据非零传输的天线端口为第一个和第三个天线端口。终端使用这个预编码矩阵进行PUSCH的传输。在基于码本的PUSCH传输下,PUSCH的天线端口与上行信号调度信息指示的SRS资源的天线端口相同,此时,在有信号非零传输的天线端口为传输所述PUSCH使用的预编码矩阵对应的非零天线端口时,所述有信号非零传输的天线端口为PUSCH端口1000和1002.
其中,上述第一SRS资源和第二SRS资源可以预先定义的不同的SRS资源。
进一步的,上述第一预设条件可以是协议中定义的,或者网络侧设备配置给终端的,或者终端与网络侧设备预先协商的,或者终端自行决定的等。同理,上述第二预设条件也可以是协议中定义的,或者网络侧设备配置给终端的,或者终端与网络侧设备预先协商的,或者终端自行决定的等。但第一预设条件和第二预设条件为不同的条件。
另外,第一预配置SRS资源协议中定义的,或者网络侧设备配置给终端的,或者终端与网络侧设备预先协商的,或者终端自行决定的等,上述第二预配置SRS资源也可以是协议中定义的,或者网络侧设备配置给终端的,或者终端与网络侧设备预先协商的,或者终端自行决定的等。但第一预配置SRS资源和第二预配置SRS资源为不同的SRS资源。
进一步的,上述第一SRS资源可以为包含的天线端口数满足第一预设条件的第一预配置SRS资源,或者可以称作,第一SRS资源为上述第一预配置SRS资源中包含的天线端口数满足第一预设条件的SRS资源。
需要说明的是,本公开的一些实施例中,上述第一SRS资源和第二SRS资源为不同的SRS资源,其中,上述第一SRS资源可以理解为特定的SRS资源,该特定的SRS资源可以通过直接定义第一SRS资源来确定,也可以通过定义第二SRS资源来确定,如果定义第二SRS资源,则第二SRS资源之外的SRS资源为上述第一SRS资源,即特定的SRS资源。
另外,上述第一SRS资源可以表示一个、多个或者一组第一SRS资源,在第一SRS资源为多个或者一组第一SRS资源的情况下,上述上行信号调度信息指示的SRS资源为第一SRS资源可以理解为,上述上行信号调度信息指示的SRS资源这多个或者一组第一SRS资源中的SRS资源。
上述上行信道发送功率可以是物理上行共享信道(Physical uplink shared channel,PUSCH)的发送功率,例如:协议中已定义或者后续协议版本新定义的PUSCH的发送功率。或者上述上行信道发送功率可以是采用功率计算公式计算出的上行信道发送功率,其中,功率计算公式可以是协议中定义的功率计算公式,本公开的一些实施例中,对功率计算公式不作限定,可以是协议中已定义的功率计算公式也可以是后续协议版本中新定义的功率计算公式。举例来说,在NR系统Rel-15版本的协议中,采用功率计算公式计算出的上行信道发送功率可以为根据TS38.213的第7.1.1节的公式计算出的功率P PUSCH,b,f,c(i,j,q d,l)。
上述第一缩放因子可以是等于1或者小于的实数,其中,在等于1的情况下,即不进行缩放直接将上行信道发送功率均匀分配到传输所述上行信号使用的预编码矩阵中有信号非零传输的天线端口上进行上行信号传输。
本公开的一些实施例中,上行信号可以是PUSCH信号,当然,对此不作限定,例如:还可以是物理上行控制信道(Physical Uplink Control channel,PUCCH)信号。
本公开的一些实施例中,由于在SRS资源为第一SRS资源的情况下,使用上行信道发送功率或者使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率均匀分配到有信号非零传输的天线端口上进行上行信号传输,由于不对上行信道发送功率进行缩放或者使用的第一缩放因子小于相关技术中的功率缩放因子,本公开可以提高终端的上行传输性能。
需要说明的是,在上述SRS资源不为上述第一SRS资源,或者上述第二SRS资源的情况下,可以采用其他功率规则来发送上行信号,具体在下面详细说明。
作为一种可选的实施方式,上述包含的天线端口数满足第一预设条件的SRS资源是指:
包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
预定义的天线端口数;
网络侧设备指示的天线端口数;
比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
根据所述终端上报信令确定的天线端口数;
根据所述终端的发送功率能力确定的天线端口数。
其中,预定义的天线端口数可以是协议约定的,或者可以是网络侧配置给终端的。
网络侧设备指示的天线端口数可以是基站通过信令向终端指示的数值,例如:可以通过RRC信令、MAC-CE、DCI信令指示上述正整数。
上述比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数可以是,比网络侧设备为终端配置的用于基于码本的PUSCH传输CSI测量的SRS资源中包含的天线端口数最多的SRS资源的天线端口数小的天线端口数的集合。例如:网络侧设备为所述终端配置的多个SRS资源中包含的天线端口数不是最大值的SRS资源。在第一SRS资源为网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数对应的SRS资源时,对于该SRS资源中的每个天线端口对应的PUSCH,终端可以根据自己的PA能力采用可以达到较大发送功率的PA发送或者使用多个PA进行虚拟化后发送,从而可以提高PUSCH每个天线端口的发送功率,并进一步提高PUSCH的发送功率,从而提高性能。
上述根据所述终端上报信令确定的天线端口数可以是,根据终端上报的用于指示所述特定天线端口数的信令确定的天线端口数。在这种方式下,以上行信号为PUSCH为例,终端可以上报在多少个天线端口数时终端可以以更大的发送功率发送PUSCH,从而网络侧设备可以基于更大的PUSCH发送功率的假设发送PUSCH,提高PUSCH的传输性能。
上述根据所述终端的发送功率能力确定的天线端口数可以是,根据终端的PA的最大发送功率能力确定的天线端口数。例如:如果终端的每个PA可以达到的最大发送功率为终端支持的最大发送功率的1/r,终端支持的一个SRS资源可包含的最大天线端口数为M 1,所述天线端口数为小于或等于M 1/r的天线端口数。
作为一种可选的实施方式,所述第一预配置SRS资源包括如下至少一项:
网络侧设备根据所述终端发送的指示消息确定的SRS资源;
网络侧设备为所述终端预先配置的SRS资源;或者
根据所述终端的发送功率能力确定的SRS资源;
协议约定的SRS资源。
上述网络侧设备为所述终端预先配置的SRS资源可以是,网络侧设备通过信令向终端指示的,例如:该信令可以为RRC信令、MAC-CE、DCI信令等。
上述根据所述终端的发送功率能力确定的SRS资源可以是,根据终端的PA的最大发送功率能力确定的SRS资源。例如,如果终端的每个PA可以达到的最大发送功率为终端支持的最大发送功率的1/r,终端支持的一个SRS资源可包含的最大天线端口数为M 1,所述特定的SRS资源为天线端口数小于或等于M 1/r的SRS资源。
可选的,上述所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资 源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
该实施方式中,可以实现终端向网络侧设备发送用于确定哪些SRS资源为第一SRS资源(即特定的SRS资源)的指示消息。例如:可以通过SRS天线端口数指示第一SRS资源。
本公开的一些实施例中,满功率发送可以指终端以上行信道发送功率发送上行信号。
通过上述指示一个或一组SRS天线端口数可以实现:当SRI指示的SRS资源包含的天线端口数属于终端上报的上述天线端口数时,所述SRS资源属于第一SRS资源;当SRI指示的SRS资源包含的天线端口数不属于终端上报的上述天线端口数时,所述SRS资源不属于第一SRS资源。
通过上述指示一个SRS天线端口数可以实现:当SRI指示的SRS资源包含的天线端口数小于或等于终端上报的上述天线端口数时,所述SRS资源属于第一SRS资源;当SRI指示的SRS资源包含的天线端口数大于终端上报的上述天线端口数时,所述SRS资源不第一SRS资源。
另外,通过指示一个SRS天线端口数可以实现,当SRI指示的SRS资源包含的天线端口数小于终端上报的上述天线端口数时,所述SRS资源属于第一SRS资源;当SRI指示的SRS资源包含的天线端口数大于或等于终端上报的上述天线端口数时,所述SRS资源不属于第一SRS资源。
另外,通过上述指示一个SRS天线端口数可以实现:终端向基站发送一个SRS天线端口数X。当SRI指示的SRS资源包含的天线端口数小于或等于M 1/X时,所述SRS资源属于第一SRS资源;当SRI指示的SRS资源包含的天线端口数小于或等于M 1/X时,所述SRS资源不属于第一SRS资源。
需要说明的是,本公开的一些实施例中,终端向网络侧设备发送的信息或者指令或者信令可以是结合一起发送的,也就是说,上述指示消息可以与本公开的一些实施例提供的其他消息或者其他方式结合起来,一个消息指示终端的多个行为。或者上述指示消息和其他消息或者信令或者指令为不同的指令。且上述指示消息和其他消息或者信令终端可以只发送其中的一种。
可选的,终端向网络侧设备发送一个或一组SRS天线端口数,当SRI指示的SRS资源包含的天线端口数属于终端上报的上述天线端口数时,该SRS资源中的每一个端口都可以满功率发送PUSCH,即,无论传输预编码矩阵指示(Transmit Precoding Matrix Indicator,TPMI)为终端指示哪个单流的预编码矩阵,终端都可以满功率发送PUSCH。
可选的,终端向网络侧设备发送一个SRS天线端口数,当SRI指示的SRS资源包含的天线端口数小于或等于终端上报的上述天线端口数时,该SRS资源中的每一个端口都可以满功率发送PUSCH,即,无论TPMI为终端指示哪 个单流的预编码矩阵,终端都可以满功率发送PUSCH;当SRI指示的SRS资源包含的天线端口数大于终端上报的上述天线端口数时,所述SRS资源不属于上述第一SRS资源。
可选的,终端向基站发送一个SRS天线端口数,当SRI指示的SRS资源包含的天线端口数小于终端上报的上述天线端口数时,所述SRS资源中的每一个端口都可以满功率发送PUSCH,即,无论TPMI为终端指示哪个单流的预编码矩阵,终端都可以满功率发送PUSCH。
可选的,终端向基站发送一个SRS天线端口数X,当SRI指示的SRS资源包含的天线端口数小于或等于M 1/X时,所述SRS资源中的每一个端口都可以满功率发送PUSCH,其中,M 1是终端支持的一个SRS资源可包含的最大天线端口数。
作为一种可选的实施方式,所述包含的天线端口数满足第二预设条件的SRS资源是指:
网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源。
其中,上述m的取值可以通过如下任意一方式确定:
上述m为预定义的正整数,例如,m是协议约定的;
网络侧设备可以通过信令向终端指示上述m的数值,该信令可以为RRC信令、MAC-CE、DCI信令等;
网络侧设备可以为终端配置的用于基于码本的PUSCH传输CSI测量的SRS资源中包含的天线端口数最多的SRS资源的个数,该个数为上述m;
网络侧设备可以为终端配置的用于基于码本的PUSCH传输CSI测量的SRS资源中包含的天线端口数最多的SRS资源的个数与网络侧设备通过信令指示的一个整数间的最小值,该最小值为上述m;
网络侧设备可以为终端配置的用于基于码本的PUSCH传输CSI测量的SRS资源中包含的天线端口数最多的SRS资源的个数与一个预定义的整数间的最小值,该最小值为上述m。
上述网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源可以是,网络侧设备为终端配置的用于基于码本的PUSCH传输CSI测量的SRS资源中包含的天线端口数最多的m个SRS资源,若网络侧设备为终端配置的用于基于码本的PUSCH传输CSI测量的SRS资源中包含的天线端口数最多的m个SRS资源数大于m,这m个SRS资源按照网络侧设备为终端配置的用于基于码本的PUSCH传输CSI测量的SRS资源的指示顺序选择。例如,选择前m个被指示的SRS资源。或者,网络侧设备为终端配置的用于基于码本的PUSCH传输CSI测量的SRS资源中包含的天线端口数最多的m个SRS资源,若网络侧设备为终端配置的用于基于码本的PUSCH传输CSI测量的SRS资源中包含的天线端口数最多的m个SRS资源数大于m,这m个SRS资源按照网络侧设备为终端配置的用于基于码本的PUSCH传输CSI 测量的SRS资源的编号顺序选择,例如,选择编号最靠前的m个SRS资源。
作为一种可选的实施方式,所述第二预配置SRS资源包括:
网络侧设备通过信令向所述终端指示的m个SRS资源;或者
预先定义的m个SRS资源;
其中,所述m为大于或者等于1的整数。
上述预先定义的m个SRS资源可以是,按照预定义的规则确定的m个SRS资源。例如,网络侧设备为终端配置的用于基于码本的PUSCH传输CSI测量的SRS资源时的前m个资源等。
作为一种可选的实施方式,若预编码矩阵中有信号非零传输的天线端口能够达到最大功率要求的功率,则所述第一功率为所述上行信道发送功率,否则,所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
本公开的一些实施例中,上述预编码矩阵为上行信号的预编码矩阵。
其中,上述最大功率要求的功率可以是终端功率等级所要求的最大输出功率。例如,在NR系统Rel-15版本中,对于Power class 3的UE,最大发送功率要求(最大输出功率要求)为最大输出功率为23dBm。
该实施方式中,可以实现若预编码矩阵中有信号非零传输的天线端口均支持终端功率等级所要求的最大输出功率,则终端直接将上行信道发送功率均匀分配到有信号非零传输的天线端口上;否则,终端使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。例如:将上行信道发送功率乘以预编码矩阵中有信号非零传输的天线端口数与终端支持的一个SRS资源包含的最大端口数的比值,然后将此功率均匀分配到预编码矩阵中有信号非零传输的天线端口上。例如:将上行信道发送功率乘以预编码矩阵中有信号非零传输的天线端口数与SRI指示的SRS资源包含的天线端口数的比值,然后将此功率均匀分配到预编码矩阵中有信号非零传输的天线端口上。
该实施方式中,可以提高终端上行信号的发送功率,例如,实现满功率发送。
当然,本公开的一些实施例中,也可以是终端不根据预编码矩阵中有信号传输的非零端口数对PUSCH的发送功率进行缩放,而是直接将PUSCH的发送功率均匀分配到预编码矩阵中的有信号非零传输的天线端口上,以提高终端上行信号的发送功率。
作为一种可选的实施方式中,本公开的一些实施例中第一缩放因子为N/M或者r×N/M或者r×N/M 1,或者所述缩放因子为r×N/M和1中的最小值,或者,所述缩放因子为r×N/M 1和1中的最小值;
其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M为所述SRI指示的SRS资源包含的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数,所述r为大于1的整数。
其中,上述r可以是协议中定义的,或者网络侧设备配置给终端的等。
该实施方式中,可以提高终端上行信号的发送功率,例如,实现满功率 发送。
例如:可以实现将上行信道发送功率乘以预编码矩阵中有信号非零传输的天线端口数与SRI指示的SRS资源包含的天线端口数的比值,然后将此功率均匀分配到预编码矩阵中有信号非零传输的天线端口上,以提高终端上行信号的发送功率,例如,实现满功率发送。
作为一种可选的实施方式,本公开的一些实施例中的第一缩放因子为所述终端确定的与预编码矩阵对应的缩放因子。
该实施方式中,可以实现终端自己确定每个预编码矩阵使用的用来调整上行信道发送功率的缩放系数,并使上述用缩放因子对上行信道发送功率进行缩放后将上行信道发送功率均匀分配到有信号非零传输的天线端口上。
作为一种可选的实施方式,若预编码矩阵为非相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/R中的最小值;或者
若预编码矩阵为部分相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/2R中的最小值;
若预编码矩阵为部分相干传输码字,则所述第一功率为所述上行信道发送功率;
其中,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数。
其中,上述预编码矩阵可以是上述上行信号的预编码矩阵。
该实施方式中,可以如果上行信号的预编码矩阵为非相干传输码字时,则第一缩放因子(或者称作功率控制缩放系数)为:
Figure PCTCN2020086973-appb-000001
如果上行信号的预编码矩阵为部分相干传输码字时,则第一缩放因子为:
Figure PCTCN2020086973-appb-000002
否则,β=1。
作为一种可选的实施方式,所述第一缩放因子为:ρ/G和1中的最小值,其中,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述G为与所述终端的功率能力相关的系数。
可选的,若所述终端的功率能力为每个天线端口能够达到最大功率要求的功率,则G=1;或者
若所述终端的功率能力为每个功率放大器PA的发射功率能够达到最大功率要求的功率,则G=1;或者
若所述终端的功率能力为所述终端的任意两个天线端口的发射功率之和 能够达到最大功率要求的功率,则G=2;或者若所述终端的功率能力为所述终端的任意两个PA的发射功率之和能够达到最大功率要求的功率,则G=2。
其中,上述最大功率要求的功率可以是终端功率等级所要求的最大输出功率。
该实施方式中,可以实现第一缩放因子为:
Figure PCTCN2020086973-appb-000003
且当终端设备的功率能力为终端设备的每个天线端口(或每个AC,或每个PA)的发射功率都可以达到最大功率要求的功率,或终端设备可以实现上行满功率发送时,G=1。当终端设备的功率能力为终端设备的任意两个天线端口(或任意两个AC,或任意两个PA)的发射功率之和可以达到最大功率要求的功率,G=2。
作为一种可选的实施方式,所述第一缩放因子为:
K/R和1中的最大值乘以ρ 0/ρ,其中,所述K为系数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数。
其中,所述K可以为:
与所述上行信号的天线端口数和所述上行信号对应的码本子集限制类型相关的系数;或者
与所述终端的功率能力相关的系数。
该实施方式中,可以实现第一缩放因子为:
Figure PCTCN2020086973-appb-000004
其中,R是上行信号的传输流数,其中,K为系数,ρ 0是上行信号的预编码矩阵对应的非零传输的端口数,ρ是上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数。具体地,K是与上行信号的天线端口数和上行信号对应的码本子集限制类型相关的系数。K是与终端设备的功率能力相关的系数。
可选的,上述K可以是与上行信号的天线端口数和上行信号对应的码本子集限制类型相关的系数。在上行信号的传输为2天线端口和4天线端口时,K的取值可以如表1所示。
表1:
Figure PCTCN2020086973-appb-000005
Figure PCTCN2020086973-appb-000006
在这种规则下,各个预编码矩阵指示下的上行信号的功率控制缩放系数为如下表2所示:
Figure PCTCN2020086973-appb-000007
其中,表2中,Non-coherent TPMI为非相干传输的码字,Partial coherent TPMI为部分相干传输码字,Fully coherent TPMI为全相干传输码字。
可选的,当终端设备向网络设备上报的功率能力或默认的终端设备的功率能力为终端设备的每个天线端口(或每个AC,或每个PA)的发射功率都可以达到最大功率要求的功率或终端设备可以实现上行满功率发送时,终端可以直接将上行信道发送功率均匀分配到有信号非零传输的天线端口上。
可选的,K的取值与终端设备的功率能力有关。例如,在终端设备的功率能力为终端设备的每个天线端口(或每个AC,或每个PA)的发射功率都可以达到最大功率要求的功率时,采用上述表1中的K的取值。
可选的,如果终端设备向网络设备上报的功率能力或默认的终端设备的功率能力为终端设备的每个天线端口的发射功率都可以达到功率要求的二分之一的能力,或者,终端设备的任意两个天线端口的发射功率之和可以达到最大发射功率要求的能力,在上行信号的传输为2天线端口和4天线端口时,K的取值如表3所示。
表3
Figure PCTCN2020086973-appb-000008
Figure PCTCN2020086973-appb-000009
另外,在这种情况下,4天线端口时各个预编码矩阵指示下的上行信号的功率控制缩放系数如表4所示。
表4
Figure PCTCN2020086973-appb-000010
表4中,Non-coherent TPMI为非相干传输的码字,Partial coherent TPMI为部分相干传输码字,Fully coherent TPMI为全相干传输码字。
可选的,当终端设备的单个天线端口或AC无需达到特定的功率要求时,K的取值固定为1。
作为一种可选的实施方式,所述第一缩放因子为:
G 1/G 0乘以ρ 0/ρ,其中,所述G 0为预编码矩阵对应的相干传输天线组数,G 1为上行信号对应的码本子集限制类型所对应的码本中的所有码字对应的最多相干传输天线组数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数。
该实施方式中,可以实现第一缩放因子为G 1/G 0乘以ρ 0/ρ。
可选的,在上行信号的传输为2天线端口和4天线端口时,G 0的取值可以如下表5所示,表5中的ULCodebookSubset为网络设备向终端设备指示的终端设备的上行信号对应的码本子集限制类型指示参数(在NR系统中通过RRC信令参数ULCodebookSubset指示)。
表5
Figure PCTCN2020086973-appb-000011
Figure PCTCN2020086973-appb-000012
在该实施方式中,4天线端口时各个预编码矩阵指示下的上行信号的第一缩放因子为如下表6所示。
表6
Figure PCTCN2020086973-appb-000013
表6中,Non-coherent TPMI为非相干传输的码字,Partial coherent TPMI为部分相干传输码字,Fully coherent TPMI为全相干传输码字。
可选的,当终端设备向网络设备上报的功率能力或默认的终端设备的功率能力为终端设备的每个天线端口(或每个AC,或每个PA)的发射功率都可以达到最大功率要求的功率或终端设备可以实现上行满功率发送时时,终端可以直接将上行信号发送功率均匀分配到有信号非零传输的天线端口上。
作为一种可选的实施方式,上述终端向网络侧设备上报所述终端具备满功率发送能力。
其中,所述满功率发送能力包括如下至少一项:
支持满功率发送,但任意一个PA都不能达到所述终端的最大发送功率;
支持使用全相干的码字发送上行信号;
支持进行循环延迟分集(Cyclic Delay Diversity,CDD)传输上行信号;
支持满功率发送的码本。
作为一种可选的实施方式,上述在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,终端将第二功率均匀分配到有信号非零传输的天线端口上进行上行信号传输,所述第二功率为使用第二缩放因 子对所述上行信道发送功率进行缩放后的发送功率,所述第二缩放因子为N/M 1
其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
该实施方式中,可以实现在为第二SRS资源,或者第一SRS资源之外的SRS资源的情况下,将第二功率均匀分配到有信号非零传输的天线端口上进行上行信号传输。
作为一种可选的实施方式,在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,进行基于第一码本的上行信号传输;和/或,
在所述上行信号调度信息指示的SRS资源为所述第二SRS资源的情况下,进行基于第二码本的上行信号传输。
其中,上述上行信号传输的传输码本的确定方式中参见图3所示的实施例中,例如:确定上行传输的传输码本,其中,在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述传输码本为第一码本;或者,在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述传输码本为第二码本;
从而在传输时,基于所述传输码本进行上行信号传输。
可选的,所述第一码本和所述第二码本的相干传输类型相同,且所述相干传输类型为非相干传输;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本和所述第二码本均为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
所述第一码本和所述第二码本为与所述SRS资源对应的码本子集限制对应的码本;或者
所述第一码本和所述第二码本为与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
可选的,所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为全相干传输的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
可选的,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
可选的,所述与所述SRS资源对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源对应的码本子集限制对应的码本;或者
所述与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
可选的,所述上行调度信息中包含传输预编码矩阵信息和流数指示域,所述传输预编码矩阵信息和流数指示域用于指示所述终端发送所述上行信号使用的预编码矩阵和传输流数,所述传输预编码矩阵信息和流数域的长度为:
所述网络侧设备为终端配置的多个SRS资源对应的传输预编码矩阵信息和流数域的长度中的最大值;或者
log 2(S)或者大于所述log 2(S)的最小正整数,其中,所述S为所述传输码本包含的码字数目。
本公开的一些实施例中,可以实现网络侧设备为终端配置多个用于基于码本的PUSCH传输CSI测量的SRS资源(例如,在NR系统Rel-15,usage被配置为‘codebook’的SRS资源集内的SRS资源集内的SRS资源)。
当上行信号调度信息(或者SRS资源(SRS resource indicator,SRI)指示)的SRS资源属于一组特定的SRS资源(即上述第一SRS资源)时,终端可以采用上述第一功率对应的功率发送规则进行发送,以实现满功率发送PUSCH;当SRI指示SRS资源为其他的SRS资源时,采用上述第一功率对应的功率发送规则进行发送,即不进行满功率发送PUSCH。
需要说明的是,本公开的一些实施例中,上行信号调度信息可以包括SRI指示,以通过该SRI来指示SRS资源,当然,也可以不包括通过上行信号调度信息中的其他内容来指示SRS资源。
另外,终端可以满功率发送PUSCH是指终端可以采用满功率发送时的PUSCH的发送功率调整规则(即上述第一功率对应的功率发送规则)发送PUSCH;终端不能满功率发送PUSCH为终端不能使用满功率发送时的PUSCH的发送功率调整规则发送PUSCH。也就是说,当SRS资源指示SRI指示的SRS资源属于一组特定的SRS资源时,终端采用满功率发送时的PUSCH的发送功率调整规则发送PUSCH;当SRI指示SRS资源为其他的SRS资源时,终端采用其他的PUSCH的发送功率调整规则发送PUSCH。
另外,终端不能满功率发送PUSCH是指终端可以采用如下的PUSCH发送功率调整规则:将PUSCH的发送功率使用N/M1进行缩放,然后均匀分配到各个PUSCH非零传输的天线端口上。其中N是预编码矩阵中存在PUSCH非零传输的天线端口数。M1是终端支持的一个SRS资源可包含的最大天线端口数。当SRI指示的SRS资源包含的天线端口数大于1时,预编码矩阵根据DCI指示的预编码矩阵确定,当SRI指示的SRS资源包含的天线端口数等于1时,预编码矩阵为1.终端可以满功率发送PUSCH是指其他的PUSCH发送功率调整规则。
另外,终端可以满功率发送PUSCH指终端采用满功率发送PUSCH时的PUSCH传输方案发送PUSCH(例如,small Delay CDD等);终端不能满功率发送PUSCH是指终端使用常规的基于码本的PUSCH传输模式发送PUSCH(例如,不进行small DelayCDD传输)。也就是说,当SRS资源指示SRI指示的SRS资源属于一组特定的SRS资源时,终端采用满功率发送PUSCH时的PUSCH传输方案发送PUSCH(例如,small Delay CDD等);当SRI指示SRS资源为其他的SRS资源时,终端使用常规的基于码本的PUSCH传输模式发送PUSCH(例如,不进行small DelayCDD传输)。
本公开的一些实施例中,终端接收网络侧设备发送的上行信号调度信息;在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述终端将第一功率均匀分配到传输所述上行信号使用的预编码矩阵中有信号非零传输的天线端口上进行上行信号传输;其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。由于在SRS资源为第一SRS资源的情况下,使用上行信道发送功率或者使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率均匀分配到有信号非零传输的天线端口上进行上行信号传输,从而可以提高终端的上行传输性能。
请参见图3,图3是本公开的一些实施例提供的一种上行信号传输方法的流程图,如图3所示,包括以下步骤:
301、终端接收网络侧设备发送的上行信号调度信息;
302、确定上行传输的传输码本,其中,在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述传输码本为第一码本;或者,在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述传输码本为第二码本;
303、基于所述传输码本进行上行信号传输;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二 SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源。
其中,上述第一SRS资源和第二SRS资源可以参见图2所示的实施例中的相关描述,此处不作限定。
需要说明的是,步骤303中基于所述传输码本进行上行信号传输中传输方式可以参见图2所示的实施例中相关描述,例如:所述基于所述传输码本进行上行信号传输,包括:
在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输;或者
在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述SRI指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述终端将第二功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输。
可选的,所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
可选的,若预编码矩阵中有信号非零传输的天线端口能够达到最大功率要求的功率,则所述第一功率为所述上行信道发送功率,否则,所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
可选的,所述第一缩放因子为N/M或者r×N/M或者r×N/M 1,或者所述缩放因子为r×N/M和1中的最小值,或者,所述缩放因子为r×N/M 1和1中的最小值;
其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M为所述SRI指示的SRS资源包含的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数,所述r为大于1的整数。
可选的,所述第一缩放因子为所述终端确定的与预编码矩阵对应的缩放因子。
可选的,若预编码矩阵为非相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/R中的最小值;或者
若预编码矩阵为部分相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/2R中的最小值;
若预编码矩阵为部分相干传输码字,则所述第一功率为所述上行信道发送功率;
其中,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数。
可选的,所述第一缩放因子为:ρ/G和1中的最小值,其中,所述ρ为 所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述G为与所述终端的功率能力相关的系数。
可选的,若所述终端的功率能力为每个天线端口能够达到最大功率要求的功率,则G=1;或者
若所述终端的功率能力为每个功率放大器PA的发射功率能够达到最大功率要求的功率,则G=1;或者
若所述终端的功率能力为所述终端的任意两个天线端口的发射功率之和能够达到最大功率要求的功率,则G=2;或者若所述终端的功率能力为所述终端的任意两个PA的发射功率之和能够达到最大功率要求的功率,则G=2。
可选的,所述第一缩放因子为:
K/R和1中的最大值乘以ρ 0/ρ,其中,所述K为系数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数;或者
G 1/G 0乘以ρ 0/ρ,其中,所述G 0为预编码矩阵对应的相干传输天线组数,G 1为上行信号对应的码本子集限制类型所对应的码本中的所有码字对应的最多相干传输天线组数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数。
可选的,所述K为:
与所述上行信号的天线端口数和所述上行信号对应的码本子集限制类型相关的系数;或者
与所述终端的功率能力相关的系数。
可选的,若所述SRS资源包含的天线端口数大于1,则所述预编码矩阵为所述上行调度信息指示的预编码矩阵;或者
若所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数等于1,则所述预编码矩阵为1。
可选的,所述终端向网络侧设备上报所述终端具备满功率发送能力。
可选的,所述满功率发送能力包括如下至少一项:
支持满功率发送,但任意一个PA都不能达到所述终端的最大发送功率;
支持使用全相干的码字发送上行信号;
支持进行循环延迟分集CDD传输上行信号;
支持满功率发送的码本。
可选的,所述第二功率为使用第二缩放因子对所述上行信道发送功率进行缩放后的发送功率,所述第二缩放因子为N/M 1
其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
作为一种可选的实施方式,上述第一码本和所述第二码本的相干传输类型相同,且所述相干传输类型为非相干传输。
该实施方式中,可以实现若终端的相干传输能力为非相干传输,一种传输码本的确定方法为:无论指示哪个SRS资源,码本都只包含非相干传输的码字,例如:码本为指示的SRS资源包含的天线端口数下码本子集限制为'nonCoherent'时的码本。
在实施方式中,可以实现在SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,对于每个SRS天线端口,终端都可以进行天线虚拟化,从而可以实现每个天线端口使用更大的发送功率。例如,终端最多支持4个SRS端口,当SRS资源中配置了4个天线端口时,每个天线端口使用一个PA发送,最大发送功率为P;当配置了2个SRS端口的SRS资源,每个天线端口为2个PA经过天线虚拟化后的天线端口,最大发送功率可以为2P。
作为一种可选的实施方式,若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
该实施方式中,可以实现若终端的相干传输能力为部分相干传输,一种传输码本的确定方法为:当SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,码本只包含非相干传输的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'nonCoherent'时的码本)。当SRS资源包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数时,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。
在实施方式中,可以实现在SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,对于每个SRS天线端口,终端都可以进行天线虚拟化,从而可以实现每个天线端口使用更大的发送功率。例如,终端最多支持4个SRS端口,当SRS资源中配置了4个天线端口时,每个天线端口使用一个PA发送,最大发送功率为P;当配置了2个SRS端口的SRS资源,每个天线端口可以为2个可以相干传输的PA经过天线虚拟化后的天线端口,最大发送功率可以为2P。另外,相对于相关的配置4个天线端口使用相干传输码字进行PUSCH传输的方式,本方案在2端口的SRS传输时对于相干传输的天线通过天线虚拟化的方式,使用更多的预编码方式进行传输,从而有更好的性能。
作为一种可选的实施方式,若所述终端的相干传输能力为部分相干传输,则所述第一码本为相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
该实施方式中,可以实现若终端的相干传输能力为部分相干传输,一种传输码本的确定方法为:当SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,码本为相干传输的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本)。当SRS资源包含的天线端口数 等于终端支持的一个SRS资源可包含的最大天线端口数时,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。
进一步的,终端在发送天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源时,终端可以在不同的天线端口间使用CDD的传输方式。当网络侧设备指示终端单流传输且使用多个天线端口同时传输时,终端可以在不同的天线端口间使用CDD的传输方式。
作为一种可选的实施方式,若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
该实施方式中,可以实现若终端的相干传输能力为全相干传输,一种传输码本的确定方法为:当SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,码本为全相干传输的码本或为包含全相干传输码字的码本(例如,码本为SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本;再例如,2天线端口时的码本在单流时为所有单流非相干码本加一个天线端口间的相位关系为[1 1] T的预编码码字)。当SRS资源包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数时,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。
在该实施方式中,在SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,对于每个SRS天线端口,终端都可以进行天线虚拟化,从而可以实现每个天线端口使用更大的发送功率。例如,终端最多支持4个SRS端口,当SRS资源中配置了4个天线端口时,每个天线端口使用一个PA发送,最大发送功率为P;当配置了2个SRS端口的SRS资源,每个天线端口为2个PA经过天线虚拟化后的天线端口,最大发送功率可以为2P。
作为一种可选的实施方式,若所述终端的相干传输能力为全相干传输,则所述第一码本和所述第二码本均为网络侧设备为所述终端指示的码本子集限制对应的码本。
在该实施方式中,若终端的相干传输能力为全相干传输,一种PUSCH传输码本的确定方法为:无论指示哪个SRS资源,码本为指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。在本方案中,基站向终端指示一个码本子集限制,这个码本子集限制适用于所有的SRS资源。
该实施方式中,网络侧设备可以通过根据信道和干扰情况等灵活地为终端配置码本,从而获得更好的系统性能。
作为一种可选的实施方式,所述第一码本和所述第二码本为与所述SRS资源对应的码本子集限制对应的码本。
其中,上述与所述SRS资源对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源对应的码本子集 限制对应的码本。当然,对此不作出限定,网络侧设备也可以是为终端配置一个码本子集限制可以对应多个SRS资源。
该实施方式中,可以实现网络侧设备向终端发送的信令中包含多个码本子集限制消息,这些码本子集限制消息与基站为终端配置的SRS资源一一对应。终端根据所述信令可以确定SRI指示的SRS资源对应的码本,从而进一步确定基站发送的TPMI/TRI指示对应的预编码。
该实施方式中,由于通过多个消息分别指示各个SRS资源的码本,从而使得基站的配置更加灵活,终端可以使用更加灵活的方案进行SRS和PUSCH的传输。
例如:若终端为部分相干传输能力的终端,基站向终端指示的包含2个天线端口的SRS的码本子集限制为全相干码本,则终端在发送SRS和PUSCH时,可以每两个PA(或Tx chain)虚拟化成一个端口,并在两个天线端口间使用循环延迟分集CDD(Cyclic Delay Diversity)的发送方式发送,以尽量保证上行传输的性能。如果基站向终端指示的包含2个天线端口的SRS的码本子集限制为非相干码本,则终端在发送SRS和PUSCH时,可以每两个可以相干传输的PA(或Tx chain)虚拟化成一个端口后进行发送。
作为一种可选的实施方式,所述第一码本和所述第二码本为与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
其中,上述与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。当然,对此不作出限定,网络侧设备也可以是为终端配置一个码本子集限制可以对应多个天线端口数。
该实施方式中,可以实现网络侧设备向终端发送的信令中包含多个码本子集限制消息,一个码本子集限制消息对应一个天线端口数,所有包含这个天线端口数的SRS资源对应的码本都对应于该码本子集限制消息指示的码本子集限制。终端根据所述信令可以确定网络侧设备指示的SRS资源对应的码本,从而进一步确定基站发送的TPMI/TRI指示对应的预编码。例如,基站为终端配置了一个4端口的SRS资源和两个2端口的SRS资源,基站向终端指示两个码本子集限制消息,一个码本子集限制消息对应于4端口,为非相干码本子集限制;一个码本子集限制消息对应于2端口,为全相干码本子集限制。则终端根据上述码本子集限制消息可以确定出4端口的SRS对应的码本为4端口的非相干码本子集限制对应的码本,2端口的SRS对应的码本味2端口的全相干码本子集限制对应的码本。
该实施方式中,由于网络侧设备为终端配置了较多的SRS资源时,一个天线端口数对应于一个码本子集限制指示消息
作为一种可选的实施方式,所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干 传输的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为全相干传输的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
可选的,该实施方式中,上述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
上述实施方式中,可以实现无论网络侧设备指示哪个SRS资源,当SRI指示的SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,码本为相干传输的码本或为包含相干传输码字的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本;再例如,2天线端口时的码本在单流时为所有单流非相干码本加一个天线端口间的相位关系为[1 1] T的预编码码字)。
进一步的,终端在发送天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源时,终端可以在不同的天线端口间使用CDD的传输方式。当基站指示终端单流传输且使用多个天线端口同时传输时,终端可以在不同的天线端口间使用CDD的传输方式。
上述实施方式中,可以实现若终端的相干传输能力为非相干传输,一种传输码本的确定方法为:无论网络侧设备指示哪个SRS资源,码本都只包含非相干传输的码字(例如,码本为网络侧设备指示的SRS资源包含的天线端口数下码本子集限制为'nonCoherent'时的码本)。这样,在SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,对于每个SRS天线端口,终端都可以进行天线虚拟化,从而可以实现每个天线端口使用更大的发送功率。例如,终端最多支持4个SRS端口,当SRS资源配置了2个SRS端口时,每个天线端口为2个PA经过天线虚拟化后的天线端口,最大发送功率可以为2P。
另外,上述实施方式中,还可以实现若终端的相干传输能力为部分相干传输,一种传输码本的确定方法为:码本只包含非相干传输的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'nonCoherent'时的码本)。这样,在SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,对于每个SRS天线端口,终端都可以进行天线虚拟化,从而可以实现每个天线端口使用更大的发送功率。例如,终端最多支持4个SRS端口,每个PA最大发送功率为P,当SRS资源中配置了2个SRS端口时,每个天线端口可以为2个可以相干传输的PA经过天线虚拟化后的天线端口,最大发送功率可以为2P。另外,相对于相关的配置4个天线端口使用相干传输码字进行PUSCH传输的方式,本方案在2 端口的SRS传输时对于相干传输的天线通过天线虚拟化的方式,使用更多的预编码方式进行传输,从而有更好的性能。
另外,上述实施方式中,还可以实现若终端的相干传输能力为部分相干传输,一种PUSCH传输码本的确定方法为:码本为全相干传输的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本)。进一步的,终端在发送天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源时,终端可以在不同的天线端口间使用CDD的传输方式。当基站指示终端单流传输且使用多个天线端口同时传输时,终端可以在不同的天线端口间使用CDD的传输方式。
另外,上述实施方式中,还可以实现若终端的相干传输能力为全相干传输,一种PUSCH传输码本的确定方法为:码本为全相干传输的码本或为包含全相干传输码字的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本;再例如,2天线端口时的码本在单流时为所有单流非相干码本加一个天线端口间的相位关系为[1 1] T的预编码码字)。这样,可以在SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,对于每个SRS天线端口,终端都可以进行天线虚拟化,从而可以实现每个天线端口使用更大的发送功率。例如,终端最多支持4个SRS端口,每个PA最大发送功率为P,当SRS资源中配置了2个SRS端口时,每个天线端口可以为2个可以相干传输的PA经过天线虚拟化后的天线端口,最大发送功率可以为2P。
另外,上述实施方式中,还可以实现若终端的相干传输能力为全相干传输,一种PUSCH传输码本的确定方法为:无论SRI指示哪个SRS资源,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。在本方案中,基站向终端指示一个码本子集限制,这个码本子集限制适用于所有的SRS资源。这样可以实现网络侧设备通过根据信道和干扰情况等灵活地为终端配置码本,从而获得更好的系统性能。
作为一种可选的实施方式,所述包含的天线端口数满足第一预设条件的SRS资源是指:
包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
预定义的天线端口数;
网络侧设备指示的天线端口数;
比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
根据所述终端上报信令确定的天线端口数;
根据所述终端的发送功率能力确定的天线端口数。
作为一种可选的实施方式,所述第一预配置SRS资源包括如下至少一项:
网络侧设备根据所述终端发送的指示消息确定的SRS资源;
网络侧设备为所述终端预先配置的SRS资源;或者
根据所述终端的发送功率能力确定的SRS资源;
协议约定的SRS资源。
作为一种可选的实施方式,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
作为一种可选的实施方式,所述包含的天线端口数满足第二预设条件的SRS资源是指:
网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
所述第二预配置SRS资源包括:
网络侧设备通过信令向所述终端指示的m个SRS资源;或者
预先定义的m个SRS资源;
其中,所述m为大于或者等于1的整数。
需要说明的是,上述关于第一SRS资源和第二SRS资源可以参见图2所示的实施例中相关的说明,此处不作赘述。
作为一种可选的实施方式,上述上行调度信息中包含传输预编码矩阵信息和流数指示域,所述传输预编码矩阵信息和流数指示域用于指示所述终端发送所述上行信号使用的预编码矩阵和传输流数,所述传输预编码矩阵信息和流数域的长度为:
所述网络侧设备为终端配置的多个SRS资源对应的传输预编码矩阵信息和流数域的长度中的最大值;或者
log 2(S)或者大于所述log 2(S)的最小正整数,其中,所述S为所述传输码本包含的码字数目。
其中,上述传输预编码矩阵信息和流数域可以用于指示预编码矩阵信息和流数的信息域。以TPMI/TRI为例,可以实现TPMI/TRI指示在DCI中的比特(bit)长度为所有可能的网络侧设备指示对应的码本所对应的TPMI/TRI的比特长度的最大值。或者,如果一个码本共包含S个码字,该码本对应的TPMI/TRI的比特长度为大于或等于log 2(S)的最小整数。
本实施例中,终端接收网络侧设备发送的上行信号调度信息;确定上行传输的传输码本,其中,在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述传输码本为第一码本;或者,在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述传输码本为第二码本;基于所述传输码本进行上行信号传输。由于在SRS资源为第一SRS资源的情况下,基于第一码本进行上行信号传输,在第二SRS资源或者第一SRS资源之外的SRS资源,基于第一码本进行上行信号传输,从而可以提高终端的上行传输性能。
请参见图4,图4是本公开的一些实施例提供的一种调度信息确定方法的流程图,如图4所示,包括以下步骤:
步骤401、在网络侧设备为终端配置有第一SRS资源情况下,所述网络侧设备基于第一SRS资源对应的上行信号的发送功率控制方式为所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输的假设,确定上行信号的上行信号调度信息;
步骤401、所述网络侧设备向所述终端发送所述上行信号调度信息;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;
所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
需要说明的是,本公开的一些实施例中,当上述假设确定之后,如何确定上行信号的上行信号调度信息的确定方式不作限定,例如:可以采用协议中定义的或者协议后续版本中新定义的确定方式。
可选的,若预编码矩阵中有信号非零传输的天线端口能够达到最大功率要求的功率,则所述第一功率为所述上行信道发送功率,否则,所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
可选的,所述第一缩放因子为N/M或者r×N/M或者r×N/M 1,或者所述缩放因子为r×N/M和1中的最小值,或者,所述缩放因子为r×N/M 1和1中的最小值;
其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M为所述SRI指示的SRS资源包含的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数,所述r为大于1的整数。
可选的,所述第一缩放因子为所述终端确定的与预编码矩阵对应的缩放因子。
可选的,若预编码矩阵为非相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/R中的最小值;或者
若预编码矩阵为部分相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/2R中的最小值;或者
若预编码矩阵为部分相干传输码字,则所述第一功率为所述上行信道发送功率;
其中,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数。
可选的,所述第一缩放因子为:ρ/G和1中的最小值,其中,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述G为与所述终端的功率能力相关的系数。
可选的,若所述终端的功率能力为每个天线端口能够达到最大功率要求的功率,则G=1;或者
若所述终端的功率能力为每个功率放大器PA的发射功率能够达到最大功率要求的功率,则G=1;或者
若所述终端的功率能力为所述终端的任意两个天线端口的发射功率之和能够达到最大功率要求的功率,则G=2;或者若所述终端的功率能力为所述终端的任意两个PA的发射功率之和能够达到最大功率要求的功率,则G=2。
可选的,所述第一缩放因子为:
K/R和1中的最大值乘以ρ 0/ρ,其中,所述K为系数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数;或者
G 1/G 0乘以ρ 0/ρ,其中,所述G 0为预编码矩阵对应的相干传输天线组数,G 1为上行信号对应的码本子集限制类型所对应的码本中的所有码字对应的最多相干传输天线组数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数。
可选的,所述K为:
与所述上行信号的天线端口数和所述上行信号对应的码本子集限制类型相关的系数;或者
与所述终端的功率能力相关的系数。
可选的,所述包含的天线端口数满足第一预设条件的SRS资源是指:
包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
预定义的天线端口数;
网络侧设备指示的天线端口数;
比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
根据所述终端上报信令确定的天线端口数;
根据所述终端的发送功率能力确定的天线端口数。
可选的,所述第一预配置SRS资源包括如下至少一项:
网络侧设备根据所述终端发送的指示消息确定的SRS资源;
网络侧设备为所述终端预先配置的SRS资源;或者
根据所述终端的发送功率能力确定的SRS资源;
协议约定的SRS资源。
可选的,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,所述包含的天线端口数满足第二预设条件的SRS资源是指:
网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
所述第二预配置SRS资源包括:
网络侧设备通过信令向所述终端指示的m个SRS资源;或者
预先定义的m个SRS资源;
其中,所述m为大于或者等于1的整数。
可选的,若所述SRS资源包含的天线端口数大于1,则所述预编码矩阵为所述上行调度信息指示的预编码矩阵;或者
若所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数等于1,则所述预编码矩阵为1。
可选的,所述终端向网络侧设备上报所述终端具备满功率发送能力。
可选的,所述满功率发送能力包括如下至少一项:
支持满功率发送,但任意一个PA都不能达到所述终端的最大发送功率;
支持使用全相干的码字发送上行信号;
支持进行循环延迟分集CDD传输上行信号;
支持满功率发送的码本。
可选的,所述网络侧设备向所述终端发送所述上行信号调度信息之前,所述方法还包括:
在网络侧设备为终端配置有第二SRS资源或者有所述第一SRS资源之外的SRS资源的情况下情况下,所述网络侧设备基于第二SRS资源或者所述第一SRS资源之外的SRS资源对应的上行信号的发送功率控制方式,为所述终端将第二功率均匀分配到有信号非零传输的天线端口上进行上行信号传输的假设,确定上行信号的所述上行信号调度信息;
其中,所述第二功率为使用第二缩放因子对所述上行信道发送功率进行缩放后的发送功率,所述第二缩放因子为N/M 1
其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,进行基于第一码本的上行信号传输;和/或,
在所述上行信号调度信息指示的SRS资源为所述第二SRS资源的情况下,进行基于第二码本的上行信号传输。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络侧设备的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
请参见图5,图5是本公开的一些实施例提供的一种上行信号传输方法的流程图,如图5所示,包括以下步骤:
501、网络侧设备确定上行传输的传输码本,其中,在为终端配置了第一SRS资源的情况下,所述第一SRS资源的传输码本为第一码本;或者,在为终端配置了第二SRS资源,或者为终端配置了所述第一SRS资源之外的SRS资源的情况下,所述第二传输资源或所述第一SRS资源之外的SRS资源的传输码本为第二码本;
502、所述网络侧设备基于所述传输码本确定上行信号的上行信号调度信息;
503所述网络侧设备向终端发送所述上行信号调度信息;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源。
可选的,所述第一码本和所述第二码本的相干传输类型相同,且所述相干传输类型为非相干传输;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传 输的码本或者包含全相干传输码字的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本和所述第二码本均为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
所述第一码本和所述第二码本为与所述SRS资源对应的码本子集限制对应的码本;或者
所述第一码本和所述第二码本为与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
可选的,所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为全相干传输的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
可选的,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
可选的,所述与所述SRS资源对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源对应的码本子集限制对应的码本;或者
所述与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
可选的,所述包含的天线端口数满足第一预设条件的SRS资源是指:
包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
预定义的天线端口数;
网络侧设备指示的天线端口数;
比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
根据所述终端上报信令确定的天线端口数;
根据所述终端的发送功率能力确定的天线端口数。
可选的,所述第一预配置SRS资源包括如下至少一项:
网络侧设备根据所述终端发送的指示消息确定的SRS资源;
网络侧设备为所述终端预先配置的SRS资源;或者
根据所述终端的发送功率能力确定的SRS资源;
协议约定的SRS资源。
可选的,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,所述包含的天线端口数满足第二预设条件的SRS资源是指:
网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
所述第二预配置SRS资源包括:
网络侧设备通过信令向所述终端指示的m个SRS资源;或者
预先定义的m个SRS资源;
其中,所述m为大于或者等于1的整数。
可选的,所述上行调度信息中包含传输预编码矩阵信息和流数指示域,所述传输预编码矩阵信息和流数指示域用于指示所述终端发送所述上行信号使用的预编码矩阵和传输流数,所述传输预编码矩阵信息和流数域的长度为:
所述网络侧设备为终端配置的多个SRS资源对应的传输预编码矩阵信息和流数域的长度中的最大值;或者
log 2(S)或者大于所述log 2(S)的最小正整数,其中,所述S为所述传输码本包含的码字数目。
可选的,所述基于所述传输码本进行上行信号传输,包括:
在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输;或者
在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述SRI指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述终端将第二功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输。
需要说明的是,本实施例作为与图3所示的实施例中对应的网络侧设备的实施方式,其具体的实施方式可以参见图3所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
下面以网络侧设备为基站,上行信号为PUSCH进行举例,通过多个实施例中对本公开的一些实施例提供的上行信号传输方法进行举例说明:
实施例1:
基站为终端配置多个用于基于码本的PUSCH传输CSI测量的SRS资源(例如,在NR系统Rel-15,usage被配置为‘codebook’的SRS资源集内的SRS资源),其中一个或多个SRS资源包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数,其余的SRS资源(可以是一个或多个)包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数。可选地,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源是一个,包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源也是一个。
对于包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源,终端可以使用天线虚拟化的方式,使用多个发送链(Tx chain)和/或PA发送同一个SRS天线端口。需要说明的是,本公开实施中,对于所有第一SRS资源均可以使用天线虚拟化的方式,使用多个发送链(Tx chain)和/或PA发送同一个SRS天线端口。
在基于码本的PUSCH传输通过DCI format 0_1调度时,终端使用如下PUSCH的发送功率调整规则:
将PUSCH的发送功率使用N/M进行缩放,然后均匀分配到各个PUSCH非零传输的天线端口上。其中N是预编码矩阵中存在PUSCH非零传输的天线端口数。M是SRS资源指示信息SRI指示的SRS资源包含的天线端口数。当SRI指示的SRS资源包含的天线端口数大于1时,预编码矩阵根据DCI指示的预编码矩阵确定,当SRI指示的SRS资源包含的天线端口数等于1时,预编码矩阵为1。
SRI用于指示终端确定PUSCH的预编码、RI等的SRS资源。终端根据所述SRI指示的SRS资源确定PUSCH的预编码、RI等。SRI指示的SRS资源包含的天线端口数不同,PUSCH传输对应不同的码本。一些可能的方法为:
(1)若终端的相干传输能力为非相干传输,一种PUSCH传输码本的确定方法为:无论SRI指示哪个SRS资源,码本都只包含非相干传输的码字(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'nonCoherent'时的码本)。
可选地,TPMI/TRI指示在DCI中的比特(bit)长度为所有可能的SRI指示对应的码本所对应的TPMI/TRI的比特长度的最大值。可选地,如果一个码本共包含S个码字,该码本对应的TPMI/TRI的比特长度为大于或等于log 2(S)的最小整数。需要说明的,在4个实施例中,TPMI/TRI均可以采用该方案,其他地方不作赘述。
在这种方案下,在SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,对于每个SRS天线端口,终端都可以进行天线虚拟化,从而可以实现每个天线端口使用更大的发送功率。例如, 终端最多支持4个SRS端口,当SRS资源中配置了4个天线端口时,每个天线端口使用一个PA发送,最大发送功率为P;当配置了2个SRS端口的SRS资源,每个天线端口为2个PA经过天线虚拟化后的天线端口,最大发送功率可以为2P。
(2)若终端的相干传输能力为部分相干传输,一种PUSCH传输码本的确定方法为:当SRI指示的SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,码本只包含非相干传输的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'nonCoherent'时的码本)。当SRI指示的SRS资源包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数时,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。
在这种方案下,在SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,对于每个SRS天线端口,终端都可以进行天线虚拟化,从而可以实现每个天线端口使用更大的发送功率。例如,终端最多支持4个SRS端口,当SRS资源中配置了4个天线端口时,每个天线端口使用一个PA发送,最大发送功率为P;当配置了2个SRS端口的SRS资源,每个天线端口可以为2个可以相干传输的PA经过天线虚拟化后的天线端口,最大发送功率可以为2P。另外,相对于相关的配置4个天线端口使用相干传输码字进行PUSCH传输的方式,本方案在2端口的SRS传输时对于相干传输的天线通过天线虚拟化的方式,使用更多的预编码方式进行传输,从而有更好的性能。
(3)若终端的相干传输能力为部分相干传输,一种PUSCH传输码本的确定方法为:当SRI指示的SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,码本为相干传输的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本)。当SRI指示的SRS资源包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数时,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。
在这种方案下,可选地,终端在发送天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源时,终端可以在不同的天线端口间使用CDD的传输方式。当基站指示终端单流传输且使用多个天线端口同时传输时,终端可以在不同的天线端口间使用CDD的传输方式。
(4)若终端的相干传输能力为全相干传输,一种PUSCH传输码本的确定方法为:当SRI指示的SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,码本为全相干传输的码本或为包含全相干传输码字的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本;再例如,2天线端口时的码本在单流时为所有单流非相干码本加一个天线端口间的相位关 系为[1 1] T的预编码码字)。当SRI指示的SRS资源包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数时,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。
在这种方案下,在SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,对于每个SRS天线端口,终端都可以进行天线虚拟化,从而可以实现每个天线端口使用更大的发送功率。例如,终端最多支持4个SRS端口,当SRS资源中配置了4个天线端口时,每个天线端口使用一个PA发送,最大发送功率为P;当配置了2个SRS端口的SRS资源,每个天线端口为2个PA经过天线虚拟化后的天线端口,最大发送功率可以为2P。
(5)若终端的相干传输能力为全相干传输,一种PUSCH传输码本的确定方法为:无论SRI指示哪个SRS资源,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。在本方案中,基站向终端指示一个码本子集限制,这个码本子集限制适用于所有的SRS资源。
这种方式下,基站通过根据信道和干扰情况等灵活地为终端配置码本,从而获得更好的系统性能。
(6)可选地,基站向终端发送的信令中包含多个码本子集限制消息,这些码本子集限制消息与基站为终端配置的SRS资源一一对应。终端根据所述信令可以确定SRI指示的SRS资源对应的码本,从而进一步确定基站发送的TPMI/TRI指示对应的预编码。
本方案与(5)的区别在于通过多个消息分别指示各个SRS资源的码本,从而使得基站的配置更加灵活,终端可以使用更加灵活的方案进行SRS和PUSCH的传输。
举例来说,若终端为部分相干传输能力的终端,基站向终端指示的包含2个天线端口的SRS的码本子集限制为全相干码本,则终端在发送SRS和PUSCH时,可以每两个PA(或Tx chain)虚拟化成一个端口,并在两个天线端口间使用循环延迟分集CDD(Cyclic Delay Diversity)的发送方式发送,以尽量保证上行传输的性能。如果基站向终端指示的包含2个天线端口的SRS的码本子集限制为非相干码本,则终端在发送SRS和PUSCH时,可以每两个可以相干传输的PA(或Tx chain)虚拟化成一个端口后进行发送。
(7)可选地,基站向终端发送的信令中包含多个码本子集限制消息,一个码本子集限制消息对应一个天线端口数,所有包含这个天线端口数的SRS资源对应的码本都对应于该码本子集限制消息指示的码本子集限制。终端根据所述信令可以确定SRI指示的SRS资源对应的码本,从而进一步确定基站发送的TPMI/TRI指示对应的预编码。例如,基站为终端配置了一个4端口的SRS资源和两个2端口的SRS资源,基站向终端指示两个码本子集限制消息,一个码本子集限制消息对应于4端口,为非相干码本子集限制;一个码本子集限制消息对应于2端口,为全相干码本子集限制。则终端根据上述码本子集限制消息可以确定出4端口的SRS对应的码本为4端口的非相干码本 子集限制对应的码本,2端口的SRS对应的码本味2端口的全相干码本子集限制对应的码本。
本方案与(6)的区别在于在基站为终端配置了较多的SRS资源时,一个天线端口数对应于一个码本子集限制指示消息,而不是每个SRS资源都对应一个码本子集限制指示消息,这样可以节省一些信令开销。
(8)一种PUSCH传输码本的确定方法为:无论SRI指示哪个SRS资源,当SRI指示的SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,码本为相干传输的码本或为包含相干传输码字的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本;再例如,2天线端口时的码本在单流时为所有单流非相干码本加一个天线端口间的相位关系为[1 1] T的预编码码字)。(注:与(1)的区别在于码本不同)
在这种方案下,可选地,终端在发送天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源时,终端可以在不同的天线端口间使用CDD的传输方式。当基站指示终端单流传输且使用多个天线端口同时传输时,终端可以在不同的天线端口间使用CDD的传输方式。
(9)若终端具备满功率发送的能力,且上报了特定的能力,在基于码本的PUSCH传输通过DCI format 0_1调度时,终端使用如下PUSCH的发送功率调整规则:
将PUSCH的发送功率使用rN/M和1的最小值进行缩放,然后均匀分配到各个PUSCH非零传输的天线端口上。其中N是预编码矩阵中存在PUSCH非零传输的天线端口数。M是SRS资源指示信息SRI指示的SRS资源包含的天线端口数。当SRI指示的SRS资源包含的天线端口数大于1时,预编码矩阵根据DCI指示的预编码矩阵确定,当SRI指示的SRS资源包含的天线端口数等于1时,预编码矩阵为1.r是一个大于1的整数。
可选地,特定的能力为:终端的每个PA的最大发送功率为终端支持的最大发送功率的1/r。
注意具体的方案可能是上述方法中的一种或多种的结合。
实施例2:
基站为终端配置多个用于基于码本的PUSCH传输CSI测量的SRS资源(例如,在NR系统Rel-15,为usage被配置为‘codebook’的SRS资源集内的SRS资源),所有SRS资源(可以是一个或多个)包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数。
对于一个包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源,终端可以使用天线虚拟化的方式,使用多个发送链(Tx chain)和/或PA发送同一个SRS天线端口。当然,终端也可以将一个SRS端口通过一个Tx chain或者PA发送。
在基于码本的PUSCH传输通过DCI format 0_1调度时,终端使用如下PUSCH的发送功率调整规则:
将PUSCH的发送功率使用N/M进行缩放,然后均匀分配到各个PUSCH非零传输的天线端口上。其中N是预编码矩阵中存在PUSCH非零传输的天线端口数。M是SRS资源指示信息SRI指示的SRS资源包含的天线端口数。当SRI指示的SRS资源包含的天线端口数大于1时,预编码矩阵根据DCI指示的预编码矩阵确定,当SRI指示的SRS资源包含的天线端口数等于1时,预编码矩阵为1。
相对于相关的基于码本的PUSCH的发送功率调整规则,本方案可以提高PUSCH的发送功率。当基站指示的预编码矩阵中存在PUSCH非零传输的天线端口数等于SRI指示的SRS资源包含的天线端口数时,终端不对PUSCH的发送功率乘以小于1的系数,从而可以满功率发送。
SRI用于指示终端确定PUSCH的预编码、RI等的SRS资源。终端根据所述SRI指示的SRS资源确定PUSCH的预编码、RI等。
SRI指示的SRS资源包含的天线端口数不同,PUSCH传输对应不同的码本。一些可能的方法为(注意这部分与实施例1的区别在于,实施例2中基站没有为终端配置天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源):
(1)若终端的相干传输能力为非相干传输,一种PUSCH传输码本的确定方法为:无论SRI指示哪个SRS资源,码本都只包含非相干传输的码字(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'nonCoherent'时的码本)。
在这种方案下,在SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,对于每个SRS天线端口,终端都可以进行天线虚拟化,从而可以实现每个天线端口使用更大的发送功率。例如,终端最多支持4个SRS端口,当SRS资源配置了2个SRS端口时,每个天线端口为2个PA经过天线虚拟化后的天线端口,最大发送功率可以为2P。
(2)若终端的相干传输能力为部分相干传输,一种PUSCH传输码本的确定方法为:码本只包含非相干传输的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'nonCoherent'时的码本)。
在这种方案下,在SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,对于每个SRS天线端口,终端都可以进行天线虚拟化,从而可以实现每个天线端口使用更大的发送功率。例如,终端最多支持4个SRS端口,每个PA最大发送功率为P,当SRS资源中配置了2个SRS端口时,每个天线端口可以为2个可以相干传输的PA经过天线虚拟化后的天线端口,最大发送功率可以为2P。另外,相对于相关的配置4个天线端口使用相干传输码字进行PUSCH传输的方式,本方案在2端口的SRS传输时对于相干传输的天线通过天线虚拟化的方式,使用更多的预编码方式进行传输,从而有更好的性能。
(3)若终端的相干传输能力为部分相干传输,一种PUSCH传输码本的确定方法为:码本为相干传输的码本(例如,码本为SRI指示的SRS资源包 含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本)。
在这种方案下,可选地,终端在发送天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源时,终端可以在不同的天线端口间使用CDD的传输方式。当基站指示终端单流传输且使用多个天线端口同时传输时,终端可以在不同的天线端口间使用CDD的传输方式。
(4)若终端的相干传输能力为全相干传输,一种PUSCH传输码本的确定方法为:码本为全相干传输的码本或为包含全相干传输码字的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本;再例如,2天线端口时的码本在单流时为所有单流非相干码本加一个天线端口间的相位关系为[1 1] T的预编码码字)。
在这种方案下,在SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,对于每个SRS天线端口,终端都可以进行天线虚拟化,从而可以实现每个天线端口使用更大的发送功率。例如,终端最多支持4个SRS端口,每个PA最大发送功率为P,当SRS资源中配置了2个SRS端口时,每个天线端口可以为2个可以相干传输的PA经过天线虚拟化后的天线端口,最大发送功率可以为2P。
(5)若终端的相干传输能力为全相干传输,一种PUSCH传输码本的确定方法为:无论SRI指示哪个SRS资源,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。在本方案中,基站向终端指示一个码本子集限制,这个码本子集限制适用于所有的SRS资源。
这种方式下,基站通过根据信道和干扰情况等灵活地为终端配置码本,从而获得更好的系统性能。
(6)可选地,基站向终端发送的信令中包含多个码本子集限制消息,这些码本子集限制消息与基站为终端配置的SRS资源一一对应。终端根据所述信令可以确定SRI指示的SRS资源对应的码本,从而进一步确定基站发送的TPMI/TRI指示对应的预编码。
本方案与(5)的区别在于通过多个消息分别指示各个SRS资源的码本,从而使得基站的配置更加灵活,终端可以使用更加灵活的方案进行SRS和PUSCH的传输。
举例来说,若终端为部分相干传输能力的终端,基站向终端指示的包含2个天线端口的SRS的码本子集限制为全相干码本,则终端在发送SRS和PUSCH时,可以每两个PA(或Tx chain)虚拟化成一个端口,并在两个天线端口间使用循环延迟分集CDD(Cyclic Delay Diversity)的发送方式发送,以尽量保证上行传输的性能。如果基站向终端指示的包含2个天线端口的SRS的码本子集限制为非相干码本,则终端在发送SRS和PUSCH时,可以每两个可以相干传输的PA(或Tx chain)虚拟化成一个端口后进行发送。
(7)可选地,基站向终端发送的信令中包含多个码本子集限制消息,一 个码本子集限制消息对应一个天线端口数,所有包含这个天线端口数的SRS资源对应的码本都对应于该码本子集限制消息指示的码本子集限制。终端根据所述信令可以确定SRI指示的SRS资源对应的码本,从而进一步确定基站发送的TPMI/TRI指示对应的预编码。例如,基站为终端配置了一个4端口的SRS资源和两个2端口的SRS资源,基站向终端指示两个码本子集限制消息,一个码本子集限制消息对应于4端口,为非相干码本子集限制;一个码本子集限制消息对应于2端口,为全相干码本子集限制。则终端根据上述码本子集限制消息可以确定出4端口的SRS对应的码本为4端口的非相干码本子集限制对应的码本,2端口的SRS对应的码本味2端口的全相干码本子集限制对应的码本。
本方案与(6)的区别在于在基站为终端配置了较多的SRS资源时,一个天线端口数对应于一个码本子集限制指示消息,而不是每个SRS资源都对应一个码本子集限制指示消息,这样可以节省一些信令开销。
(8)一种PUSCH传输码本的确定方法为:无论SRI指示哪个SRS资源,码本为相干传输的码本或为包含相干传输码字的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本;再例如,2天线端口时的码本在单流时为所有单流非相干码本加一个天线端口间的相位关系为[1 1] T的预编码码字)。
在这种方案下,可选地,终端在发送天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源时,终端可以在不同的天线端口间使用CDD的传输方式。当基站指示终端单流传输且使用多个天线端口同时传输时,终端可以在不同的天线端口间使用CDD的传输方式。
(9)若终端具备满功率发送的能力,且上报了特定的能力,在基于码本的PUSCH传输通过DCI format 0_1调度时,终端使用如下PUSCH的发送功率调整规则:
将PUSCH的发送功率使用rN/M和1的最小值进行缩放,然后均匀分配到各个PUSCH非零传输的天线端口上。其中N是预编码矩阵中存在PUSCH非零传输的天线端口数。M是SRS资源指示信息SRI指示的SRS资源包含的天线端口数。当SRI指示的SRS资源包含的天线端口数大于1时,预编码矩阵根据DCI指示的预编码矩阵确定,当SRI指示的SRS资源包含的天线端口数等于1时,预编码矩阵为1.r是一个大于1的整数。
可选地,特定的能力为:终端的每个PA的最大发送功率为终端支持的最大发送功率的1/r。
注意具体的方案可能是上述方法中的一种或多种的结合。
实施例3:
基站为终端配置多个用于基于码本的PUSCH传输CSI测量的SRS资源(例如,在NR系统Rel-15,为usage被配置为‘codebook’的SRS资源集内的SRS资源)。
对于包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源,终端可以使用天线虚拟化的方式,使用多个发送链(Tx chain)和/或PA发送同一个SRS天线端口。
在基于码本的PUSCH传输通过DCI format 0_1调度时,终端使用如下PUSCH的发送功率调整规则:
对于m个SRS资源,当SRI指示的SRS资源为这m个资源中的任意一个时,终端将PUSCH的发送功率使用N/M 1进行缩放,然后均匀分配到各个PUSCH非零传输的天线端口上;
当SRI指示的SRS资源为其他SRS资源时,终端将PUSCH的发送功率使用N/M进行缩放,然后均匀分配到各个PUSCH非零传输的天线端口上。
其中N是预编码矩阵中存在PUSCH非零传输的天线端口数。M 1是终端支持的一个SRS资源可包含的最大天线端口数。M是SRS资源指示信息SRI指示的SRS资源包含的天线端口数。当SRI指示的SRS资源包含的天线端口数大于1时,预编码矩阵根据DCI指示的预编码矩阵确定,当SRI指示的SRS资源包含的天线端口数等于1时,预编码矩阵为1.m小于或等于基站为终端配置用于基于码本的PUSCH传输CSI测量的SRS资源数。
SRI用于指示终端确定PUSCH的预编码、RI等的SRS资源。终端根据所述SRI指示的SRS资源确定PUSCH的预编码、RI等。
需要说明的是,m的取值,以及m个SRS可以参见图2所示的实施例中第二SRS资源,此处不作赘述。
SRI指示的SRS资源包含的天线端口数不同,PUSCH传输对应不同的码本。一些可能的方法为:
(1)若终端的相干传输能力为部分相干传输,一种PUSCH传输码本的确定方法为:当SRI指示的SRS资源为所述m个SRS资源以外的资源时,码本只包含非相干传输的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'nonCoherent'时的码本)。当SRI指示的SRS资源为所述m个SRS资源内的资源时,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。
在这种方案下,在SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,对于每个SRS天线端口,终端都可以进行天线虚拟化,从而可以实现每个天线端口使用更大的发送功率。例如,终端最多支持4个SRS端口,当SRS资源中配置了4个天线端口时,每个天线端口使用一个PA发送,最大发送功率为P;当配置了2个SRS端口的SRS资源,每个天线端口可以为2个可以相干传输的PA经过天线虚拟化后的天线端口,最大发送功率可以为2P。另外,相对于相关的配置4个天线端口使用相干传输码字进行PUSCH传输的方式,本方案在2端口的SRS传输时对于相干传输的天线通过天线虚拟化的方式,使用更多的预编码方式进行传输,从而有更好的性能。
(2)若终端的相干传输能力为部分相干传输,一种PUSCH传输码本的 确定方法为:当SRI指示的SRS资源为所述m个SRS资源以外的资源时,码本为相干传输的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本)。当SRI指示的SRS资源为所述m个SRS资源以内的资源时,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。
在这种方案下,可选地,终端在发送天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源时,终端可以在不同的天线端口间使用CDD的传输方式。当基站指示终端单流传输且使用多个天线端口同时传输时,终端可以在不同的天线端口间使用CDD的传输方式。
(3)若终端的相干传输能力为全相干传输,一种PUSCH传输码本的确定方法为:当SRI指示的SRS资源为所述m个SRS资源以外的资源时,码本为全相干传输的码本或为包含全相干传输码字的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本;再例如,2天线端口时的码本在单流时为所有单流非相干码本加一个天线端口间的相位关系为[1 1] T的预编码码字)。当SRI指示的SRS资源为所述m个SRS资源以内的资源时,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。
在这种方案下,在SRS资源包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数时,对于每个SRS天线端口,终端都可以进行天线虚拟化,从而可以实现每个天线端口使用更大的发送功率。例如,终端最多支持4个SRS端口,当SRS资源中配置了4个天线端口时,每个天线端口使用一个PA发送,最大发送功率为P;当配置了2个SRS端口的SRS资源,每个天线端口为2个PA经过天线虚拟化后的天线端口,最大发送功率可以为2P。
(4)若终端的相干传输能力为全相干传输,一种PUSCH传输码本的确定方法为:无论SRI指示哪个SRS资源,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。在本方案中,基站向终端指示一个码本子集限制,这个码本子集限制适用于所有的SRS资源。
这种方式下,基站通过根据信道和干扰情况等灵活地为终端配置码本,从而获得更好的系统性能。
(5)可选地,基站向终端发送的信令中包含多个码本子集限制消息,这些码本子集限制消息与基站为终端配置的SRS资源一一对应。终端根据所述信令可以确定SRI指示的SRS资源对应的码本,从而进一步确定基站发送的TPMI/TRI指示对应的预编码。
本方案与(5)的区别在于通过多个消息分别指示各个SRS资源的码本,从而使得基站的配置更加灵活,终端可以使用更加灵活的方案进行SRS和PUSCH的传输。
举例来说,若终端为部分相干传输能力的终端,基站向终端指示的包含 2个天线端口的SRS的码本子集限制为全相干码本,则终端在发送SRS和PUSCH时,可以每两个PA(或Tx chain)虚拟化成一个端口,并在两个天线端口间使用循环延迟分集CDD(Cyclic Delay Diversity)的发送方式发送,以尽量保证上行传输的性能。如果基站向终端指示的包含2个天线端口的SRS的码本子集限制为非相干码本,则终端在发送SRS和PUSCH时,可以每两个可以相干传输的PA(或Tx chain)虚拟化成一个端口后进行发送。
(6)可选地,基站向终端发送的信令中包含多个码本子集限制消息,一个码本子集限制消息对应一个天线端口数,所有包含这个天线端口数的SRS资源对应的码本都对应于该码本子集限制消息指示的码本子集限制。终端根据所述信令可以确定SRI指示的SRS资源对应的码本,从而进一步确定基站发送的TPMI/TRI指示对应的预编码。例如,基站为终端配置了一个4端口的SRS资源和两个2端口的SRS资源,基站向终端指示两个码本子集限制消息,一个码本子集限制消息对应于4端口,为非相干码本子集限制;一个码本子集限制消息对应于2端口,为全相干码本子集限制。则终端根据上述码本子集限制消息可以确定出4端口的SRS对应的码本为4端口的非相干码本子集限制对应的码本,2端口的SRS对应的码本味2端口的全相干码本子集限制对应的码本。
本方案与(5)的区别在于在基站为终端配置了较多的SRS资源时,一个天线端口数对应于一个码本子集限制指示消息,而不是每个SRS资源都对应一个码本子集限制指示消息,这样可以节省一些信令开销。
(7)若终端具备满功率发送的能力,且上报了特定的能力,在基于码本的PUSCH传输通过DCI format 0_1调度时,终端使用如下PUSCH的发送功率调整规则:
对于m个SRS资源,当SRI指示的SRS资源为这m个资源中的任意一个时,终端将PUSCH的发送功率使用rN/M 1进行缩放,然后均匀分配到各个PUSCH非零传输的天线端口上;
当SRI指示的SRS资源为其他SRS资源时,终端将PUSCH的发送功率使用rN/M进行缩放,然后均匀分配到各个PUSCH非零传输的天线端口上。
其中N是预编码矩阵中存在PUSCH非零传输的天线端口数。M 1是端支持的一个SRS资源可包含的最大天线端口数。M是SRS资源指示信息SRI指示的SRS资源包含的天线端口数。当SRI指示的SRS资源包含的天线端口数大于1时,预编码矩阵根据DCI指示的预编码矩阵确定,当SRI指示的SRS资源包含的天线端口数等于1时,预编码矩阵为1。r是一个大于1的整数。
可选地,特定的能力为:终端的每个PA的最大发送功率为终端支持的最大发送功率的1/r。
注意具体的方案可能是上述方法中的一种或多种的结合。
实施例4:
基站为终端配置多个用于基于码本的PUSCH传输CSI测量的SRS资源(例如,在NR系统Rel-15,usage被配置为‘codebook’的SRS 资源集内的SRS资源)。
对于包含的天线端口数小于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源,终端可以使用天线虚拟化的方式,使用多个发送链(Tx chain)和/或PA发送同一个SRS天线端口。
在基于码本的PUSCH传输通过DCI format 0_1调度时,终端使用如下PUSCH的发送功率调整规则:
当SRS资源指示信息SRI指示的SRS资源为特定的SRS资源时,终端按照每个天线端口都可以满功率发送的PUSCH功率控制方式发送PUSCH。
SRI用于指示终端确定PUSCH的预编码、RI等的SRS资源。终端根据所述SRI指示的SRS资源确定PUSCH的预编码、RI等。
可选地,所述每个天线端口都可以满功率发送的PUSCH功率控制方式为:
将PUSCH的发送功率乘以系数1,然后均匀分配到预编码矩阵对应的各个PUSCH非零传输的天线端口上;或者,将PUSCH的发送功率直接均匀分配到预编码矩阵对应的各个PUSCH非零传输的天线端口。
可选地,特定的SRS资源为包含的天线端口数为一些特定的天线端口数的SRS资源。
需要说明的是,上述特定的SRS资源可以参见图2所示的实施例中的第一SRS资源的相应说明,此处不作赘述。
一些可能确定特定的SRS资源对应的码本的方法为:
(1)若终端的相干传输能力为非相干传输,码本只包含非相干传输的码字(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'nonCoherent'时的码本)。
(2)若终端的相干传输能力为部分相干传输,码本只包含非相干传输的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'nonCoherent'时的码本)。当SRI指示的SRS资源包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数时,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。
(3)若终端的相干传输能力为部分相干传输,码本为相干传输的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本)。当SRI指示的SRS资源包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数时,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。
(4)若终端的相干传输能力为全相干传输,码本为全相干传输的码本或为包含全相干传输码字的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本;再例如,2天线端口时的码本在单流时为所有单流非相干码本加一个天线端口间的相位关系为[1 1] T的预编码码字)。当SRI指示的SRS资源包含 的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数时,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。
(5)若终端的相干传输能力为全相干传输,码本为SRI指示的SRS资源包含的天线端口数下基站为终端指示的码本子集限制对应的码本。在本方案中,基站向终端指示一个码本子集限制,这个码本子集限制适用于所有的SRS资源。
(6)可选地,基站向终端发送的信令中包含多个码本子集限制消息,这些码本子集限制消息与基站为终端配置的SRS资源一一对应。终端根据所述信令可以确定SRI指示的SRS资源对应的码本,从而进一步确定基站发送的TPMI/TRI指示对应的预编码。
本方案与(5)的区别在于通过多个消息分别指示各个SRS资源的码本,从而使得基站的配置更加灵活,终端可以使用更加灵活的方案进行SRS和PUSCH的传输。
举例来说,若终端为部分相干传输能力的终端,基站向终端指示的包含2个天线端口的SRS的码本子集限制为全相干码本,则终端在发送SRS和PUSCH时,可以每两个PA(或Tx chain)虚拟化成一个端口,并在两个天线端口间使用循环延迟分集CDD(Cyclic Delay Diversity)的发送方式发送,以尽量保证上行传输的性能。如果基站向终端指示的包含2个天线端口的SRS的码本子集限制为非相干码本,则终端在发送SRS和PUSCH时,可以每两个可以相干传输的PA(或Tx chain)虚拟化成一个端口后进行发送。
(7)可选地,基站向终端发送的信令中包含多个码本子集限制消息,一个码本子集限制消息对应一个天线端口数,所有包含这个天线端口数的SRS资源对应的码本都对应于该码本子集限制消息指示的码本子集限制。终端根据所述信令可以确定SRI指示的SRS资源对应的码本,从而进一步确定基站发送的TPMI/TRI指示对应的预编码。例如,基站为终端配置了一个4端口的SRS资源和两个2端口的SRS资源,基站向终端指示两个码本子集限制消息,一个码本子集限制消息对应于4端口,为非相干码本子集限制;一个码本子集限制消息对应于2端口,为全相干码本子集限制。则终端根据上述码本子集限制消息可以确定出4端口的SRS对应的码本为4端口的非相干码本子集限制对应的码本,2端口的SRS对应的码本味2端口的全相干码本子集限制对应的码本。
可选地,TPMI/TRI指示在DCI中的比特(bit)长度为所有可能的SRI指示对应的码本所对应的TPMI/TRI的比特长度的最大值。可选地,如果一个码本共包含S个码字,该码本对应的TPMI/TRI的比特长度为大于或等于log 2(S)的最小整数。
本方案与(6)的区别在于在基站为终端配置了较多的SRS资源时,一个天线端口数对应于一个码本子集限制指示消息,而不是每个SRS资源都对应一个码本子集限制指示消息,这样可以节省一些信令开销。
(8)无论终端的相干传输能力,码本为相干传输的码本或为包含相干传输码字的码本(例如,码本为SRI指示的SRS资源包含的天线端口数下码本子集限制为'fullyAndPartialAndNonCoherent'时的码本;再例如,2天线端口时的码本在单流时为所有单流非相干码本加一个天线端口间的相位关系为[1 1] T的预编码码字)。
在这种方案下,可选地,终端可以在不同的天线端口间使用CDD的传输方式。当基站指示终端单流传输且使用多个天线端口同时传输时,终端可以在不同的天线端口间使用CDD的传输方式。
注意具体的方案可能是上述方法中的一种或多种的结合。
需要说明的是,本公开的一些实施例中,上述各个实施例中,当rN/M=1,或rN/M 1=1,或N/M=1,或N/M 1=1时,终端将PUSCH的发送功率使用rN/M(或rN/M 1,或N/M,或N/M 1)进行缩放,然后均匀分配到各个PUSCH非零传输的天线端口上的行为可以是终端直接将PUSCH的发送功率均匀分配到各个PUSCH非零传输的天线端口上。
需要说明的是,本公开的一些实施例中,上行信号调度信息或者SRI可以有多种指示方式,本公开并不限定。例如,可以是单一的SRS资源指示信令(例如DCI中的SRI域)。也可以是通过SRS资源集和SRS资源指示共同指示的,即有一个消息用来指示SRS资源所在的SRS资源集,另外一个消息指示所述一个消息指示的SRS资源集内的SRS资源。
本公开的一些实施例提供的方法可以在当前的上行传输方案和功率控制方案下,当网络侧设备为终端配置的用于CSI获取的SRS资源包含的天线端口数大于1且小于终端支持的一个SRS资源里的最大端口数时,终端可以使用PUSCH的发送功率进行满功率发送。其中部分方案还可以起到基站为UE配置的用于CSI获取的SRS资源包含的天线端口数等于终端支持的一个SRS资源里的最大端口数时,终端可以使用PUSCH的发送功率进行满功率发送的效果。其中根据终端的PA发送能力确定功率控制调整规则的方案可以起到充分利用终端的PA发送能力的效果。
请参见图6,图6是本公开的一些实施例提供的一种终端的结构图,如图6所示,终端600,包括:
接收模块601,用于接收网络侧设备发送的上行信号调度信息;
第一传输模块602,用于在所述上行信号调度信息指示的探测参考信号SRS资源为第一SRS资源的情况下,将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;
所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
可选的,若预编码矩阵中有信号非零传输的天线端口能够达到最大功率要求的功率,则所述第一功率为所述上行信道发送功率,否则,所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
可选的,所述第一缩放因子为N/M或者r×N/M或者r×N/M 1,或者所述缩放因子为r×N/M和1中的最小值,或者,所述缩放因子为r×N/M 1和1中的最小值;
其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M为所述SRI指示的SRS资源包含的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数,所述r为大于1的整数。
可选的,所述第一缩放因子为所述终端确定的与预编码矩阵对应的缩放因子。
可选的,若预编码矩阵为非相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/R中的最小值;或者
若预编码矩阵为部分相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/2R中的最小值;
若预编码矩阵为部分相干传输码字,则所述第一功率为所述上行信道发送功率;
其中,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数。
可选的,所述第一缩放因子为:ρ/G和1中的最小值,其中,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述G为与所述终端的功率能力相关的系数。
可选的,若所述终端的功率能力为每个天线端口能够达到最大功率要求的功率,则G=1;或者
若所述终端的功率能力为每个功率放大器PA的发射功率能够达到最大功率要求的功率,则G=1;或者
若所述终端的功率能力为所述终端的任意两个天线端口的发射功率之和能够达到最大功率要求的功率,则G=2;或者若所述终端的功率能力为所述终端的任意两个PA的发射功率之和能够达到最大功率要求的功率,则G=2。
可选的,所述第一缩放因子为:
K/R和1中的最大值乘以ρ 0/ρ,其中,所述K为系数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数;或者
G 1/G 0乘以ρ 0/ρ,其中,所述G 0为预编码矩阵对应的相干传输天线组数,G 1为上行信号对应的码本子集限制类型所对应的码本中的所有码字对应 的最多相干传输天线组数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数。
可选的,所述K为:
与所述上行信号的天线端口数和所述上行信号对应的码本子集限制类型相关的系数;或者
与所述终端的功率能力相关的系数。
可选的,所述包含的天线端口数满足第一预设条件的SRS资源是指:
包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
预定义的天线端口数;
网络侧设备指示的天线端口数;
比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
根据所述终端上报信令确定的天线端口数;
根据所述终端的发送功率能力确定的天线端口数。
可选的,所述第一预配置SRS资源包括如下至少一项:
网络侧设备根据所述终端发送的指示消息确定的SRS资源;
网络侧设备为所述终端预先配置的SRS资源;或者
根据所述终端的发送功率能力确定的SRS资源;
协议约定的SRS资源。
可选的,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,所述包含的天线端口数满足第二预设条件的SRS资源是指:
网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
所述第二预配置SRS资源包括:
网络侧设备通过信令向所述终端指示的m个SRS资源;或者
预先定义的m个SRS资源;
其中,所述m为大于或者等于1的整数。
可选的,若所述SRS资源包含的天线端口数大于1,则所述预编码矩阵为所述上行调度信息指示的预编码矩阵;或者
若所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数等于1,则所述预编码矩阵为1。
可选的,所述终端向网络侧设备上报所述终端具备满功率发送能力。
可选的,所述满功率发送能力包括如下至少一项:
支持满功率发送,但任意一个PA都不能达到所述终端的最大发送功率;
支持使用全相干的码字发送上行信号;
支持进行循环延迟分集CDD传输上行信号;
支持满功率发送的码本。
可选的,如图7所示,所述终端600还包括:
第二传输模块603,用于在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,将第二功率均匀分配到有信号非零传输的天线端口上进行上行信号传输,所述第二功率为使用第二缩放因子对所述上行信道发送功率进行缩放后的发送功率,所述第二缩放因子为N/M 1
其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,进行基于第一码本的上行信号传输;和/或,
在所述上行信号调度信息指示的SRS资源为所述第二SRS资源的情况下,进行基于第二码本的上行信号传输。
需要说明的是,本实施例中上述终端600可以是本公开的一些实施例中方法实施例中任意实施方式的终端本公开的一些实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端600所实现,以及达到相同的有益效果,此处不再赘述。
请参见图8,图8是本公开的一些实施例提供一种终端的结构图,如图8所示,终端800包括:
接收模块801,用于接收网络侧设备发送的上行信号调度信息;
确定模块802,用于确定上行传输的传输码本,其中,在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述传输码本为第一码本;或者,在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述传输码本为第二码本;
传输模块803,用于基于所述传输码本进行上行信号传输;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二 SRS资源为包含的天线端口数的满足第二预设条件的SRS资源或者第二预配置SRS资源。
可选的,所述第一码本和所述第二码本的相干传输类型相同,且所述相干传输类型为非相干传输;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本和所述第二码本均为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
所述第一码本和所述第二码本为与所述SRS资源对应的码本子集限制对应的码本;或者
所述第一码本和所述第二码本为与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
可选的,所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为全相干传输的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
可选的,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
可选的,所述与所述SRS资源对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源对应的码本子集限制对应的码本;或者
所述与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
可选的,所述包含的天线端口数满足第一预设条件的SRS资源是指:
包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线 端口数的SRS资源;或者
包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
预定义的天线端口数;
网络侧设备指示的天线端口数;
比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
根据所述终端上报信令确定的天线端口数;
根据所述终端的发送功率能力确定的天线端口数。
可选的,所述第一预配置SRS资源包括如下至少一项:
网络侧设备根据所述终端发送的指示消息确定的SRS资源;
网络侧设备为所述终端预先配置的SRS资源;或者
根据所述终端的发送功率能力确定的SRS资源;
协议约定的SRS资源。
可选的,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,所述包含的天线端口数满足第二预设条件的SRS资源是指:
网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
所述第二预配置SRS资源包括:
网络侧设备通过信令向所述终端指示的m个SRS资源;或者
预先定义的m个SRS资源;
其中,所述m为大于或者等于1的整数。
可选的,所述上行调度信息中包含传输预编码矩阵信息和流数指示域,所述传输预编码矩阵信息和流数指示域用于指示所述终端发送所述上行信号使用的预编码矩阵,所述传输预编码矩阵信息和流数域的长度为:
所述网络侧设备为终端配置的多个SRS资源对应的传输预编码矩阵信息和流数域的长度中的最大值;或者
log 2(S)或者大于所述log 2(S)的最小正整数,其中,所述S为所述传输码本包含的码字数目。
可选的,所述基于所述传输码本进行上行信号传输,包括:
在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输;或者
在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述SRI指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述终端将第二功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输。
需要说明的是,本实施例中上述终端800可以是本公开的一些实施例中方法实施例中任意实施方式的终端本公开的一些实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端800所实现,以及达到相同的有益效果,此处不再赘述。
请参见图9,图9是本公开的一些实施例提供的一种网络侧设备的结构图,如图9所示,网络侧设备900包括:
第一确定模块901,用于在网络侧设备为终端配置有第一SRS资源情况下,基于第一SRS资源对应的上行信号的发送功率控制方式为所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输的假设,确定上行信号的上行信号调度信息;
发送模块902,用于向所述终端发送所述上行信号调度信息;
其中,第一SRS资源为:包含的天线端口数的满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源,所述第二SRS资源为包含的天线端口数的满足第二预设条件的SRS资源或者第二预配置SRS资源;
所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
可选的,若预编码矩阵中有信号非零传输的天线端口能够达到最大功率要求的功率,则所述第一功率为所述上行信道发送功率,否则,所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
可选的,所述第一缩放因子为N/M或者r×N/M或者r×N/M 1,或者所述缩放因子为r×N/M和1中的最小值,或者,所述缩放因子为r×N/M 1和1中的最小值;
其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M为所述SRI指示的SRS资源包含的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数,所述r为大于1的整数。
可选的,所述第一缩放因子为所述终端确定的与预编码矩阵对应的缩放因子。
可选的,若预编码矩阵为非相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/R中的最小值;或者
若预编码矩阵为部分相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/2R中的最小值;或者
若预编码矩阵为部分相干传输码字,则所述第一功率为所述上行信道发送功率;
其中,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数。
可选的,所述第一缩放因子为:ρ/G和1中的最小值,其中,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述G为与所述终端的功率能力相关的系数。
可选的,若所述终端的功率能力为每个天线端口能够达到最大功率要求的功率,则G=1;或者
若所述终端的功率能力为每个功率放大器PA的发射功率能够达到最大功率要求的功率,则G=1;或者
若所述终端的功率能力为所述终端的任意两个天线端口的发射功率之和能够达到最大功率要求的功率,则G=2;或者若所述终端的功率能力为所述终端的任意两个PA的发射功率之和能够达到最大功率要求的功率,则G=2。
可选的,所述第一缩放因子为:
K/R和1中的最大值乘以ρ 0/ρ,其中,所述K为系数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数;或者
G 1/G 0乘以ρ 0/ρ,其中,所述G 0为预编码矩阵对应的相干传输天线组数,G 1为上行信号对应的码本子集限制类型所对应的码本中的所有码字对应的最多相干传输天线组数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数。
可选的,所述K为:
与所述上行信号的天线端口数和所述上行信号对应的码本子集限制类型相关的系数;或者
与所述终端的功率能力相关的系数。
可选的,所述包含的天线端口数满足第一预设条件的SRS资源是指:
包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
预定义的天线端口数;
网络侧设备指示的天线端口数;
比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
根据所述终端上报信令确定的天线端口数;
根据所述终端的发送功率能力确定的天线端口数。
可选的,所述第一预配置SRS资源包括如下至少一项:
网络侧设备根据所述终端发送的指示消息确定的SRS资源;
网络侧设备为所述终端预先配置的SRS资源;或者
根据所述终端的发送功率能力确定的SRS资源;
协议约定的SRS资源。
可选的,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,所述包含的天线端口数的满足第二预设条件的SRS资源是指:
网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
所述第二预配置SRS资源包括:
网络侧设备通过信令向所述终端指示的m个SRS资源;或者
预先定义的m个SRS资源;
其中,所述m为大于或者等于1的整数。
可选的,若所述SRS资源包含的天线端口数大于1,则所述预编码矩阵为所述上行调度信息指示的预编码矩阵;或者
若所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数等于1,则所述预编码矩阵为1。
可选的,所述终端向网络侧设备上报所述终端具备满功率发送能力。
可选的,所述满功率发送能力包括如下至少一项:
支持满功率发送,但任意一个PA都不能达到所述终端的最大发送功率;
支持使用全相干的码字发送上行信号;
支持进行循环延迟分集CDD传输上行信号;
支持满功率发送的码本。
可选的,如图10所示,所述网络侧设备还包括:
第二确定模块903,用于在网络侧设备为终端配置有第二SRS资源或者 有所述第一SRS资源之外的SRS资源的情况下情况下,基于第二SRS资源或者所述第一SRS资源之外的SRS资源对应的上行信号的发送功率控制方式,为所述终端将第二功率均匀分配到有信号非零传输的天线端口上进行上行信号传输的假设,确定上行信号的所述上行信号调度信息;
其中,所述第二功率为使用第二缩放因子对所述上行信道发送功率进行缩放后的发送功率,所述第二缩放因子为N/M 1
其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,进行基于第一码本的上行信号传输;和/或,
在所述上行信号调度信息指示的SRS资源为所述第二SRS资源的情况下,进行基于第二码本的上行信号传输。
需要说明的是,本实施例中上述网络侧设备900可以是本公开的一些实施例中方法实施例中任意实施方式的终端本公开的一些实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备900所实现,以及达到相同的有益效果,此处不再赘述。
请参见图11,图11是本公开的一些实施例提供的另一种网络侧设备的结构图,如图11所示,网络侧设备1100包括:
第一确定模块1101,用于确定上行传输的传输码本,其中,在为终端配置了第一SRS资源的情况下,所述第一SRS资源的传输码本为第一码本;或者,在为终端配置了第二SRS资源,或者为终端配置了所述第一SRS资源之外的SRS资源的情况下,所述第二传输资源或所述第一SRS资源之外的SRS资源的传输码本为第二码本;
第二确定模块1102,用于基于所述传输码本确定上行信号的上行信号调度信息;
发送模块1103,用于向终端发送所述上行信号调度信息;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数的满足第二预设条件的SRS资源或者第二预配置SRS资源。
可选的,所述第一码本和所述第二码本的相干传输类型相同,且所述相干传输类型为非相干传输;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传 输的码本或者包含全相干传输码字的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本和所述第二码本均为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
所述第一码本和所述第二码本为与所述SRS资源对应的码本子集限制对应的码本;或者
所述第一码本和所述第二码本为与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
可选的,所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为全相干传输的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
可选的,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
可选的,所述与所述SRS资源对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源对应的码本子集限制对应的码本;或者
所述与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
可选的,所述包含的天线端口数满足第一预设条件的SRS资源是指:
包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
预定义的天线端口数;
网络侧设备指示的天线端口数;
比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
根据所述终端上报信令确定的天线端口数;
根据所述终端的发送功率能力确定的天线端口数。
可选的,所述第一预配置SRS资源包括如下至少一项:
网络侧设备根据所述终端发送的指示消息确定的SRS资源;
网络侧设备为所述终端预先配置的SRS资源;或者
根据所述终端的发送功率能力确定的SRS资源;
协议约定的SRS资源。
可选的,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,所述包含的天线端口数的满足第二预设条件的SRS资源是指:
网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
所述第二预配置SRS资源包括:
网络侧设备通过信令向所述终端指示的m个SRS资源;或者
预先定义的m个SRS资源;
其中,所述m为大于或者等于1的整数。
可选的,所述上行调度信息中包含传输预编码矩阵信息和流数指示域,所述传输预编码矩阵信息和流数指示域用于指示所述终端发送所述上行信号使用的预编码矩阵,所述传输预编码矩阵信息和流数域的长度为:
所述网络侧设备为终端配置的多个SRS资源对应的传输预编码矩阵信息和流数域的长度中的最大值;或者
log 2(S)或者大于所述log 2(S)的最小正整数,其中,所述S为所述传输码本包含的码字数目。
可选的,所述基于所述传输码本进行上行信号传输,包括:
在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输;或者
在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述SRI指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述终端将第二功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输。
需要说明的是,本实施例中上述网络侧设备1100可以是本公开的一些实施例中方法实施例中任意实施方式的终端本公开的一些实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备1100 所实现,以及达到相同的有益效果,此处不再赘述。
请参见图12,图12是本公开的一些实施例提供的另一种终端的结构图,如图12所示,该终端包括:收发机1210、存储器1220、处理器1200及存储在所述存储器1220上并可在所述处理器1200上运行的程序,其中:
所述收发机1210,用于接收网络侧设备发送的上行信号调度信息;
所述收发机1210或者所述处理器1200,用于确定上行传输的传输码本,其中,在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述传输码本为第一码本;或者,在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述传输码本为第二码本;
所述收发机1210还用于基于所述传输码本进行上行信号传输;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数的满足第二预设条件的SRS资源或者第二预配置SRS资源。
其中,收发机1210,可以用于在处理器1200的控制下接收和发送数据。
在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1200代表的一个或多个处理器和存储器1220代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1210可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1200负责管理总线架构和通常的处理,存储器1220可以存储处理器1200在执行操作时所使用的数据。
需要说明的是,存储器1220并不限定只在终端上,可以将存储器1220和处理器1200分离处于不同的地理位置。
可选的,若预编码矩阵中有信号非零传输的天线端口能够达到最大功率要求的功率,则所述第一功率为所述上行信道发送功率,否则,所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
可选的,所述第一缩放因子为N/M或者r×N/M或者r×N/M 1,或者所述缩放因子为r×N/M和1中的最小值,或者,所述缩放因子为r×N/M 1和1中的最小值;
其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M为所述SRI指示的SRS资源包含的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数,所述r为大于1的整数。
可选的,所述第一缩放因子为所述终端确定的与预编码矩阵对应的缩放因子。
可选的,若预编码矩阵为非相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一 缩放因子为:ρ 0/ρ和ρ/R中的最小值;或者
若预编码矩阵为部分相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/2R中的最小值;
若预编码矩阵为部分相干传输码字,则所述第一功率为所述上行信道发送功率;
其中,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数。
可选的,所述第一缩放因子为:ρ/G和1中的最小值,其中,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述G为与所述终端的功率能力相关的系数。
可选的,若所述终端的功率能力为每个天线端口能够达到最大功率要求的功率,则G=1;或者
若所述终端的功率能力为每个功率放大器PA的发射功率能够达到最大功率要求的功率,则G=1;或者
若所述终端的功率能力为所述终端的任意两个天线端口的发射功率之和能够达到最大功率要求的功率,则G=2;或者若所述终端的功率能力为所述终端的任意两个PA的发射功率之和能够达到最大功率要求的功率,则G=2。
可选的,所述第一缩放因子为:
K/R和1中的最大值乘以ρ 0/ρ,其中,所述K为系数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数;或者
G 1/G 0乘以ρ 0/ρ,其中,所述G 0为预编码矩阵对应的相干传输天线组数,G 1为上行信号对应的码本子集限制类型所对应的码本中的所有码字对应的最多相干传输天线组数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数。
可选的,所述K为:
与所述上行信号的天线端口数和所述上行信号对应的码本子集限制类型相关的系数;或者
与所述终端的功率能力相关的系数。
可选的,所述包含的天线端口数满足第一预设条件的SRS资源是指:
包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
预定义的天线端口数;
网络侧设备指示的天线端口数;
比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
根据所述终端上报信令确定的天线端口数;
根据所述终端的发送功率能力确定的天线端口数。
可选的,所述第一预配置SRS资源包括如下至少一项:
网络侧设备根据所述终端发送的指示消息确定的SRS资源;
网络侧设备为所述终端预先配置的SRS资源;或者
根据所述终端的发送功率能力确定的SRS资源;
协议约定的SRS资源。
可选的,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,所述包含的天线端口数满足第二预设条件的SRS资源是指:
网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
所述第二预配置SRS资源包括:
网络侧设备通过信令向所述终端指示的m个SRS资源;或者
预先定义的m个SRS资源;
其中,所述m为大于或者等于1的整数。
可选的,若所述SRS资源包含的天线端口数大于1,则所述预编码矩阵为所述上行调度信息指示的预编码矩阵;或者
若所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数等于1,则所述预编码矩阵为1。
可选的,所述终端向网络侧设备上报所述终端具备满功率发送能力。
可选的,所述满功率发送能力包括如下至少一项:
支持满功率发送,但任意一个PA都不能达到所述终端的最大发送功率;
支持使用全相干的码字发送上行信号;
支持进行循环延迟分集CDD传输上行信号;
支持满功率发送的码本。
可选的,收发机1210还用于括:
在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,终端将第二功率均匀分配到有信号非零传输的天线端口上进行上行信号传输,所述第二功率为使用第二缩放因子对所述上行信道发送功率进行缩放后的发送功率,所述第二缩放因子为N/M 1
其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,进行基于第一码本的上行信号传输;和/或,
在所述上行信号调度信息指示的SRS资源为所述第二SRS资源的情况下,进行基于第二码本的上行信号传输。
需要说明的是,在另一个实施例中,
所述收发机1210,用于接收网络侧设备发送的上行信号调度信息;
所述收发机1210或者所述处理器1200,用于确定上行传输的传输码本,其中,在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述传输码本为第一码本;或者,在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述传输码本为第二码本;
所述收发机1210还用于基于所述传输码本进行上行信号传输;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数的满足第二预设条件的SRS资源或者第二预配置SRS资源。
可选的,所述第一码本和所述第二码本的相干传输类型相同,且所述相干传输类型为非相干传输;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本和所述第二码本均为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
所述第一码本和所述第二码本为与所述SRS资源对应的码本子集限制对应的码本;或者
所述第一码本和所述第二码本为与所述SRS资源包含的天线端口数对应 的码本子集限制对应的码本。
可选的,所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为全相干传输的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
可选的,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
可选的,所述与所述SRS资源对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源对应的码本子集限制对应的码本;或者
所述与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
可选的,所述包含的天线端口数满足第一预设条件的SRS资源是指:
包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
预定义的天线端口数;
网络侧设备指示的天线端口数;
比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
根据所述终端上报信令确定的天线端口数;
根据所述终端的发送功率能力确定的天线端口数。
可选的,所述第一预配置SRS资源包括如下至少一项:
网络侧设备根据所述终端发送的指示消息确定的SRS资源;
网络侧设备为所述终端预先配置的SRS资源;或者
根据所述终端的发送功率能力确定的SRS资源;
协议约定的SRS资源。
可选的,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源 为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,所述包含的天线端口数满足第二预设条件的SRS资源是指:
网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
所述第二预配置SRS资源包括:
网络侧设备通过信令向所述终端指示的m个SRS资源;或者
预先定义的m个SRS资源;
其中,所述m为大于或者等于1的整数。
可选的,所述上行调度信息中包含传输预编码矩阵信息和流数指示域,所述传输预编码矩阵信息和流数指示域用于指示所述终端发送所述上行信号使用的预编码矩阵,所述传输预编码矩阵信息和流数域的长度为:
所述网络侧设备为终端配置的多个SRS资源对应的传输预编码矩阵信息和流数域的长度中的最大值;或者
log 2(S)或者大于所述log 2(S)的最小正整数,其中,所述S为所述传输码本包含的码字数目。
可选的,所述基于所述传输码本进行上行信号传输,包括:
在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输;或者
在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述SRI指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述终端将第二功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输。
需要说明的是,本实施例中上述终端可以是本公开的一些实施例中方法实施例中任意实施方式的终端本公开的一些实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端所实现,以及达到相同的有益效果,此处不再赘述。
请参见图13,图13是本公开的一些实施例提供的另一种网络侧设备的结构图,如图13所示,该网络侧设备包括:收发机1310、存储器1320、处理器1300及存储在所述存储器1320上并可在所述处理器上运行的程序,其中:
所述收发机1310或者所述处理器1300,用于在网络侧设备为终端配置有第一SRS资源情况下,所述网络侧设备基于第一SRS资源对应的上行信号 的发送功率控制方式为所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输的假设,确定上行信号的上行信号调度信息;
所述收发机1310,用于向所述终端发送所述上行信号调度信息;
其中,第一SRS资源为:包含的天线端口数的满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源,所述第二SRS资源为包含的天线端口数的满足第二预设条件的SRS资源或者第二预配置SRS资源;
所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
其中,收发机1310,可以用于在处理器1300的控制下接收和发送数据。
在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1300代表的一个或多个处理器和存储器1320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1310可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1300负责管理总线架构和通常的处理,存储器1320可以存储处理器1300在执行操作时所使用的数据。
需要说明的是,存储器1320并不限定只在网络侧设备上,可以将存储器1320和处理器1300分离处于不同的地理位置。
可选的,若预编码矩阵中有信号非零传输的天线端口能够达到最大功率要求的功率,则所述第一功率为所述上行信道发送功率,否则,所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
可选的,所述第一缩放因子为N/M或者r×N/M或者r×N/M 1,或者所述缩放因子为r×N/M和1中的最小值,或者,所述缩放因子为r×N/M 1和1中的最小值;
其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M为所述SRI指示的SRS资源包含的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数,所述r为大于1的整数。
可选的,所述第一缩放因子为所述终端确定的与预编码矩阵对应的缩放因子。
可选的,若预编码矩阵为非相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/R中的最小值;或者
若预编码矩阵为部分相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/2R中的最小值;或者
若预编码矩阵为部分相干传输码字,则所述第一功率为所述上行信道发送功率;
其中,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数。
可选的,所述第一缩放因子为:ρ/G和1中的最小值,其中,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述G为与所述终端的功率能力相关的系数。
可选的,若所述终端的功率能力为每个天线端口能够达到最大功率要求的功率,则G=1;或者
若所述终端的功率能力为每个功率放大器PA的发射功率能够达到最大功率要求的功率,则G=1;或者
若所述终端的功率能力为所述终端的任意两个天线端口的发射功率之和能够达到最大功率要求的功率,则G=2;或者若所述终端的功率能力为所述终端的任意两个PA的发射功率之和能够达到最大功率要求的功率,则G=2。
可选的,所述第一缩放因子为:
K/R和1中的最大值乘以ρ 0/ρ,其中,所述K为系数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数;或者
G 1/G 0乘以ρ 0/ρ,其中,所述G 0为预编码矩阵对应的相干传输天线组数,G 1为上行信号对应的码本子集限制类型所对应的码本中的所有码字对应的最多相干传输天线组数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数。
可选的,所述K为:
与所述上行信号的天线端口数和所述上行信号对应的码本子集限制类型相关的系数;或者
与所述终端的功率能力相关的系数。
可选的,所述包含的天线端口数满足第一预设条件的SRS资源是指:
包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
预定义的天线端口数;
网络侧设备指示的天线端口数;
比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
根据所述终端上报信令确定的天线端口数;
根据所述终端的发送功率能力确定的天线端口数。
可选的,所述第一预配置SRS资源包括如下至少一项:
网络侧设备根据所述终端发送的指示消息确定的SRS资源;
网络侧设备为所述终端预先配置的SRS资源;或者
根据所述终端的发送功率能力确定的SRS资源;
协议约定的SRS资源。
可选的,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,所述包含的天线端口数满足第二预设条件的SRS资源是指:
网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
所述第二预配置SRS资源包括:
网络侧设备通过信令向所述终端指示的m个SRS资源;或者
预先定义的m个SRS资源;
其中,所述m为大于或者等于1的整数。
可选的,若所述SRS资源包含的天线端口数大于1,则所述预编码矩阵为所述上行调度信息指示的预编码矩阵;或者
若所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数等于1,则所述预编码矩阵为1。
可选的,所述终端向网络侧设备上报所述终端具备满功率发送能力。
可选的,所述满功率发送能力包括如下至少一项:
支持满功率发送,但任意一个PA都不能达到所述终端的最大发送功率;
支持使用全相干的码字发送上行信号;
支持进行循环延迟分集CDD传输上行信号;
支持满功率发送的码本。
可选的,所述网络侧设备向所述终端发送所述上行信号调度信息之前,收发机1310或者处理器1300还用于:
在网络侧设备为终端配置有第二SRS资源或者有所述第一SRS资源之外的SRS资源的情况下情况下,基于第二SRS资源或者所述第一SRS资源之外的SRS资源对应的上行信号的发送功率控制方式,为所述终端将第二功率均匀分配到有信号非零传输的天线端口上进行上行信号传输的假设,确定上行信号的所述上行信号调度信息;
其中,所述第二功率为使用第二缩放因子对所述上行信道发送功率进行缩放后的发送功率,所述第二缩放因子为N/M 1
其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,进行基于第一码本的上行信号传输;和/或,
在所述上行信号调度信息指示的SRS资源为所述第二SRS资源的情况下,进行基于第二码本的上行信号传输。
需要说明的是,在另一个实施例中,
所述收发机1310或者所述处理器1300,用于确定上行传输的传输码本,其中,在为终端配置了第一SRS资源的情况下,所述第一SRS资源的传输码本为第一码本;或者,在为终端配置了第二SRS资源,或者为终端配置了所述第一SRS资源之外的SRS资源的情况下,所述第二传输资源或所述第一SRS资源之外的SRS资源的传输码本为第二码本;
所述收发机1310或者所述处理器1300,还用于基于所述传输码本确定上行信号的上行信号调度信息;
所述收发机1310还用于,向终端发送所述上行信号调度信息;
其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源。
可选的,所述第一码本和所述第二码本的相干传输类型相同,且所述相干传输类型为非相干传输;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本和所述第二码本均为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
所述第一码本和所述第二码本为与所述SRS资源对应的码本子集限制对应的码本;或者
所述第一码本和所述第二码本为与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
可选的,所述第一码本为全相干传输的码本或者包含全相干传输码字的 码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本;或者
若所述终端的相干传输能力为部分相干传输,则所述第一码本为全相干传输的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
若所述终端的相干传输能力为全相干传输,则所述第一码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
可选的,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
可选的,所述与所述SRS资源对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源对应的码本子集限制对应的码本;或者
所述与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
可选的,所述包含的天线端口数满足第一预设条件的SRS资源是指:
包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
预定义的天线端口数;
网络侧设备指示的天线端口数;
比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
根据所述终端上报信令确定的天线端口数;
根据所述终端的发送功率能力确定的天线端口数。
可选的,所述第一预配置SRS资源包括如下至少一项:
网络侧设备根据所述终端发送的指示消息确定的SRS资源;
网络侧设备为所述终端预先配置的SRS资源;或者
根据所述终端的发送功率能力确定的SRS资源;
协议约定的SRS资源。
可选的,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资源;或者
所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
可选的,所述包含的天线端口数满足第二预设条件的SRS资源是指:
网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
所述第二预配置SRS资源包括:
网络侧设备通过信令向所述终端指示的m个SRS资源;或者
预先定义的m个SRS资源;
其中,所述m为大于或者等于1的整数。
可选的,所述上行调度信息中包含传输预编码矩阵信息和流数指示域,所述传输预编码矩阵信息和流数指示域用于指示所述终端发送所述上行信号使用的预编码矩阵和传输流数,所述传输预编码矩阵信息和流数域的长度为:
所述网络侧设备为终端配置的多个SRS资源对应的传输预编码矩阵信息和流数域的长度中的最大值;或者
log 2(S)或者大于所述log 2(S)的最小正整数,其中,所述S为所述传输码本包含的码字数目。
可选的,所述基于所述传输码本进行上行信号传输,包括:
在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输;或者
在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述SRI指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述终端将第二功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输。
需要说明的是,本实施例中上述网络侧设备可以是本公开的一些实施例中方法实施例中任意实施方式的网络侧设备,本公开的一些实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备所实现,以及达到相同的有益效果,此处不再赘述。
本公开的一些实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现本公开的一些实施例提供的终端侧的第一种上行信号传输方法中的步骤,或者该程序被处理器执行时实现本公开的一些实施例提供的终端侧的第二种上行信号传输方法中的步骤,或者该程序被处理器执行时实现本公开的一些实施例提供的第一种调度信息确定方法中的步骤,或者该程序被处理器执行时实现本公开的一些实施例提供的网络侧设备侧的第一种调度信息确定方法中的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可 以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述信息数据块的处理方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通 技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (73)

  1. 一种上行信号传输方法,包括:
    终端接收网络侧设备发送的上行信号调度信息;
    在所述上行信号调度信息指示的探测参考信号SRS资源为第一SRS资源的情况下,所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输;
    其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;
    所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
  2. 如权利要求1所述的方法,其中,若预编码矩阵中有信号非零传输的天线端口能够达到最大功率要求的功率,则所述第一功率为所述上行信道发送功率,否则,所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
  3. 如权利要求1或2所述的方法,其中,所述第一缩放因子为N/M或者r×N/M或者r×N/M 1,或者所述缩放因子为r×N/M和1中的最小值,或者,所述缩放因子为r×N/M 1和1中的最小值;
    其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M为所述SRI指示的SRS资源包含的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数,所述r为大于1的整数。
  4. 如权利要求1或2所述的方法,其中,所述第一缩放因子为所述终端确定的与预编码矩阵对应的缩放因子。
  5. 如权利要求1所述的方法,其中,
    若预编码矩阵为非相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/R中的最小值;或者
    若预编码矩阵为部分相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/2R中的最小值;或者
    若预编码矩阵为部分相干传输码字,则所述第一功率为所述上行信道发送功率;
    其中,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数。
  6. 如权利要求1所述的方法,其中,所述第一缩放因子为:ρ/G和1中的最小值,其中,所述ρ为所述上行信号调度信息指示的探测参考信号SRS 资源包含的天线端口数,所述G为与所述终端的功率能力相关的系数。
  7. 如权利要求6所述的方法,其中,若所述终端的功率能力为每个天线端口能够达到最大功率要求的功率,则G=1;或者
    若所述终端的功率能力为每个功率放大器PA的发射功率能够达到最大功率要求的功率,则G=1;或者
    若所述终端的功率能力为所述终端的任意两个天线端口的发射功率之和能够达到最大功率要求的功率,则G=2;或者
    若所述终端的功率能力为所述终端的任意两个PA的发射功率之和能够达到最大功率要求的功率,则G=2。
  8. 如权利要求1所述的方法,其中,所述第一缩放因子为:
    K/R和1中的最大值乘以ρ 0/ρ,其中,所述K为系数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数;或者
    G 1/G 0乘以ρ 0/ρ,其中,所述G 0为预编码矩阵对应的相干传输天线组数,G 1为上行信号对应的码本子集限制类型所对应的码本中的所有码字对应的最多相干传输天线组数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数。
  9. 如权利要求8所述的方法,其中,所述K为:
    与所述上行信号的天线端口数和所述上行信号对应的码本子集限制类型相关的系数;或者
    与所述终端的功率能力相关的系数。
  10. 如权利要求1或2所述的方法,其中,所述包含的天线端口数满足第一预设条件的SRS资源是指:
    包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
    包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
    预定义的天线端口数;
    网络侧设备指示的天线端口数;
    比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
    根据所述终端上报信令确定的天线端口数;
    根据所述终端的发送功率能力确定的天线端口数。
  11. 如权利要求1或2所述的方法,其中,所述第一预配置SRS资源包括如下至少一项:
    网络侧设备根据所述终端发送的指示消息确定的SRS资源;
    网络侧设备为所述终端预先配置的SRS资源;
    根据所述终端的发送功率能力确定的SRS资源;
    协议约定的SRS资源。
  12. 如权利要求11所述的方法,其中,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
    所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资源;或者
    所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
  13. 如权利要求1或2所述的方法,其中,所述包含的天线端口数满足第二预设条件的SRS资源是指:
    网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
    所述第二预配置SRS资源包括:
    网络侧设备通过信令向所述终端指示的m个SRS资源;或者
    预先定义的m个SRS资源;
    其中,所述m为大于或者等于1的整数。
  14. 如权利要求3所述的方法,其中,若所述SRS资源包含的天线端口数大于1,则所述预编码矩阵为所述上行调度信息指示的预编码矩阵;或者若所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数等于1,则所述预编码矩阵为1。
  15. 如权利要求1或2所述的方法,所述终端向网络侧设备上报所述终端具备满功率发送能力。
  16. 如权利要求15所述的方法,其中,所述满功率发送能力包括如下至少一项:
    支持满功率发送,但任意一个PA都不能达到所述终端的最大发送功率;
    支持使用全相干的码字发送上行信号;
    支持进行循环延迟分集CDD传输上行信号;
    支持满功率发送的码本。
  17. 如权利要求1或2所述的方法,还包括:
    在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,终端将第二功率均匀分配到有信号非零传输的天线端口上进行上行信号传输,所述第二功率为使用第二缩放因子对所述上行信道发送功率进行缩放后的发送功率,所述第二缩放因子为N/M 1
    其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
  18. 如权利要求1或2所述的方法,其中,在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,进行基于第一码本的上行信号传输;和/或,
    在所述上行信号调度信息指示的SRS资源为所述第二SRS资源的情况下,进行基于第二码本的上行信号传输。
  19. 一种上行信号传输方法,包括:
    终端接收网络侧设备发送的上行信号调度信息;
    确定上行传输的传输码本,其中,在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述传输码本为第一码本;和/或,在所述上行信号调度信息指示的SRS资源为所述第二SRS资源或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述传输码本为第二码本;
    基于所述传输码本进行上行信号传输;
    其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;
    所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源。
  20. 如权利要求19所述的方法,其中,所述第一码本和所述第二码本的相干传输类型相同,且所述相干传输类型为非相干传输;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本和所述第二码本均为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    所述第一码本和所述第二码本为与所述SRS资源对应的码本子集限制对应的码本;或者
    所述第一码本和所述第二码本为与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
  21. 如权利要求19所述的方法,其中,
    所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为全相干传输的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
  22. 如权利要求21所述的方法,其中,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
  23. 如权利要求20所述的方法,其中,所述与所述SRS资源对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源对应的码本子集限制对应的码本;或者
    所述与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
  24. 如权利要求19所述的方法,其中,所述包含的天线端口数满足第一预设条件的SRS资源是指:
    包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
    包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
    预定义的天线端口数;
    网络侧设备指示的天线端口数;
    比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
    根据所述终端上报信令确定的天线端口数;
    根据所述终端的发送功率能力确定的天线端口数。
  25. 如权利要求19所述的方法,其中,所述第一预配置SRS资源包括如下至少一项:
    网络侧设备根据所述终端发送的指示消息确定的SRS资源;
    网络侧设备为所述终端预先配置的SRS资源;或者
    根据所述终端的发送功率能力确定的SRS资源;
    协议约定的SRS资源。
  26. 如权利要求25所述的方法,其中,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
    所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资 源;或者
    所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
  27. 如权利要求19所述的方法,其中,所述包含的天线端口数满足第二预设条件的SRS资源是指:
    网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
    所述第二预配置SRS资源包括:
    网络侧设备通过信令向所述终端指示的m个SRS资源;或者
    预先定义的m个SRS资源;
    其中,所述m为大于或者等于1的整数。
  28. 如权利要求19至27中任一项所述的方法,其中,所述上行调度信息中包含传输预编码矩阵信息和流数指示域,所述传输预编码矩阵信息和流数指示域用于指示所述终端发送所述上行信号使用的预编码矩阵和传输流数,所述传输预编码矩阵信息和流数域的长度为:
    所述网络侧设备为终端配置的多个SRS资源对应的传输预编码矩阵信息和流数域的长度中的最大值;或者
    log 2(S)或者大于所述log 2(S)的最小正整数,其中,所述S为所述传输码本包含的码字数目。
  29. 如权利要求19至27中任一项所述的方法,其中,所述基于所述传输码本进行上行信号传输,包括:
    在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输;和/或
    在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述SRI指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述终端将第二功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输。
  30. 一种调度信息确定方法,包括:
    在网络侧设备为终端配置有第一SRS资源情况下,所述网络侧设备基于第一SRS资源对应的上行信号的发送功率控制方式为所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输的假设,确定上行信号的上行信号调度信息;
    所述网络侧设备向所述终端发送所述上行信号调度信息;
    其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二 SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;
    所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
  31. 如权利要求30所述的方法,其中,若预编码矩阵中有信号非零传输的天线端口能够达到最大功率要求的功率,则所述第一功率为所述上行信道发送功率,否则,所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
  32. 如权利要求30或31所述的方法,其中,所述第一缩放因子为N/M或者r×N/M或者r×N/M 1,或者所述缩放因子为r×N/M和1中的最小值,或者,所述缩放因子为r×N/M 1和1中的最小值;
    其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M为所述SRI指示的SRS资源包含的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数,所述r为大于1的整数。
  33. 如权利要求30或31所述的方法,其中,所述第一缩放因子为所述终端确定的与预编码矩阵对应的缩放因子。
  34. 如权利要求30所述的方法,其中,
    若预编码矩阵为非相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/R中的最小值;或者
    若预编码矩阵为部分相干传输码字,则所述第一功率为使用所述第一缩放因子对所述上行信道发送功率进行缩放后的发送功率,且所述第一缩放因子为:ρ 0/ρ和ρ/2R中的最小值;或者
    若预编码矩阵为部分相干传输码字,则所述第一功率为所述上行信道发送功率;
    其中,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数。
  35. 如权利要求30所述的方法,其中,所述第一缩放因子为:ρ/G和1中的最小值,其中,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述G为与所述终端的功率能力相关的系数。
  36. 如权利要求35所述的方法,其中,若所述终端的功率能力为每个天线端口能够达到最大功率要求的功率,则G=1;或者
    若所述终端的功率能力为每个功率放大器PA的发射功率能够达到最大功率要求的功率,则G=1;或者
    若所述终端的功率能力为所述终端的任意两个天线端口的发射功率之和能够达到最大功率要求的功率,则G=2;或者若所述终端的功率能力为所述终端的任意两个PA的发射功率之和能够达到最大功率要求的功率,则G=2。
  37. 如权利要求30所述的方法,其中,所述第一缩放因子为:
    K/R和1中的最大值乘以ρ 0/ρ,其中,所述K为系数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数,所述R为上行信号的传输流数;或者
    G 1/G 0乘以ρ 0/ρ,其中,所述G 0为预编码矩阵对应的相干传输天线组数,G 1为上行信号对应的码本子集限制类型所对应的码本中的所有码字对应的最多相干传输天线组数,所述ρ 0为预编码矩阵中有信号非零传输的天线端口数,所述ρ为所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数。
  38. 如权利要求37所述的方法,其中,所述K为:
    与所述上行信号的天线端口数和所述上行信号对应的码本子集限制类型相关的系数;或者
    与所述终端的功率能力相关的系数。
  39. 如权利要求30或31所述的方法,其中,所述包含的天线端口数满足第一预设条件的SRS资源是指:
    包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
    包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
    预定义的天线端口数;
    网络侧设备指示的天线端口数;
    比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
    根据所述终端上报信令确定的天线端口数;
    根据所述终端的发送功率能力确定的天线端口数。
  40. 如权利要求30或31所述的方法,其中,所述第一预配置SRS资源包括如下至少一项:
    网络侧设备根据所述终端发送的指示消息确定的SRS资源;
    网络侧设备为所述终端预先配置的SRS资源;
    根据所述终端的发送功率能力确定的SRS资源;
    协议约定的SRS资源。
  41. 如权利要求40所述的方法,其中,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
    所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资源;或者
    所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述 指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
  42. 如权利要求30所述的方法,其中,所述包含的天线端口数满足第二预设条件的SRS资源是指:
    网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
    所述第二预配置SRS资源包括:
    网络侧设备通过信令向所述终端指示的m个SRS资源;或者
    预先定义的m个SRS资源;
    其中,所述m为大于或者等于1的整数。
  43. 如权利要求32所述的方法,其中,若所述SRS资源包含的天线端口数大于1,则所述预编码矩阵为所述上行调度信息指示的预编码矩阵;或者
    若所述上行信号调度信息指示的探测参考信号SRS资源包含的天线端口数等于1,则所述预编码矩阵为1。
  44. 如权利要求30或31所述的方法,其中,所述终端向网络侧设备上报所述终端具备满功率发送能力。
  45. 如权利要求44所述的方法,其中,所述满功率发送能力包括如下至少一项:
    支持满功率发送,但任意一个PA都不能达到所述终端的最大发送功率;
    支持使用全相干的码字发送上行信号;
    支持进行循环延迟分集CDD传输上行信号;
    支持满功率发送的码本。
  46. 如权利要求30或31所述的方法,其中,所述网络侧设备向所述终端发送所述上行信号调度信息之前,所述方法还包括:
    在网络侧设备为终端配置有第二SRS资源或者有所述第一SRS资源之外的SRS资源的情况下情况下,所述网络侧设备基于第二SRS资源或者所述第一SRS资源之外的SRS资源对应的上行信号的发送功率控制方式,为所述终端将第二功率均匀分配到有信号非零传输的天线端口上进行上行信号传输的假设,确定上行信号的所述上行信号调度信息;
    其中,所述第二功率为使用第二缩放因子对所述上行信道发送功率进行缩放后的发送功率,所述第二缩放因子为N/M 1
    其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
  47. 如权利要求30或31所述的方法,其中,在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,进行基于第一码本的上行信号传输;和/或,
    在所述上行信号调度信息指示的SRS资源为所述第二SRS资源的情况下, 进行基于第二码本的上行信号传输。
  48. 一种调度信息确定方法,包括:
    网络侧设备确定上行传输的传输码本,其中,在为终端配置了第一SRS资源的情况下,所述第一SRS资源的传输码本为第一码本;和/或,在为终端配置了第二SRS资源或者为终端配置了所述第一SRS资源之外的SRS资源的情况下,所述第二传输资源或所述第一SRS资源之外的SRS资源的传输码本为第二码本;
    所述网络侧设备基于所述传输码本确定上行信号的上行信号调度信息;
    所述网络侧设备向终端发送所述上行信号调度信息;
    其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源。
  49. 如权利要求48所述的方法,其中,所述第一码本和所述第二码本的相干传输类型相同,且所述相干传输类型为非相干传输;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本和所述第二码本均为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    所述第一码本和所述第二码本为与所述SRS资源对应的码本子集限制对应的码本;或者
    所述第一码本和所述第二码本为与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
  50. 如权利要求48所述的方法,其中,
    所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为全相干传输的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
  51. 如权利要求50所述的方法,其中,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
  52. 如权利要求49所述的方法,其中,所述与所述SRS资源对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源对应的码本子集限制对应的码本;或者
    所述与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本为,网络侧设备为所述终端配置的多个码本子集限制中与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
  53. 如权利要求48所述的方法,其中,所述包含的天线端口数满足第一预设条件的SRS资源是指:
    包含的天线端口数小于所述终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;或者
    包含的天线端口数为第一天线端口数的SRS资源,其中,所述第一天线端口数包括如下至少一项:
    预定义的天线端口数;
    网络侧设备指示的天线端口数;
    比网络侧设备为所述终端配置的SRS资源中包含的天线端口数最多的SRS资源的天线端口数要小的天线端口数;
    根据所述终端上报信令确定的天线端口数;
    根据所述终端的发送功率能力确定的天线端口数。
  54. 如权利要求48所述的方法,其中,所述第一预配置SRS资源包括如下至少一项:
    网络侧设备根据所述终端发送的指示消息确定的SRS资源;
    网络侧设备为所述终端预先配置的SRS资源;
    根据所述终端的发送功率能力确定的SRS资源;
    协议约定的SRS资源。
  55. 如权利要求54所述的方法,其中,所述指示消息用于指示一个或一组SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数属于所述指示消息指示的天线端口数的SRS资源;或者
    所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数小于或者等于所述指示消息指示的天线端口数的SRS资源;或者
    所述指示消息用于指示一个SRS天线端口数,所述第一预配置SRS资源为包含的天线端口数大于或者等于M 1/X的SRS资源,其中,所述X为所述指示消息指示的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
  56. 如权利要求48所述的方法,其中,所述包含的天线端口数满足第二 预设条件的SRS资源是指:
    网络侧设备为所述终端配置的包含的天线端口数最多的m个SRS资源,或者,包含的天线端口数等于终端支持的一个SRS资源可包含的最大天线端口数的SRS资源;和/或,
    所述第二预配置SRS资源包括:
    网络侧设备通过信令向所述终端指示的m个SRS资源;或者
    预先定义的m个SRS资源;
    其中,所述m为大于或者等于1的整数。
  57. 如权利要求48至56中任一项所述的方法,其中,所述上行调度信息中包含传输预编码矩阵信息和流数指示域,所述传输预编码矩阵信息和流数指示域用于指示所述终端发送所述上行信号使用的预编码矩阵和传输流数,所述传输预编码矩阵信息和流数域的长度为:
    所述网络侧设备为终端配置的多个SRS资源对应的传输预编码矩阵信息和流数域的长度中的最大值;或者
    log 2(S)或者大于所述log 2(S)的最小正整数,其中,所述S为所述传输码本包含的码字数目。
  58. 如权利要求48至56中任一项所述的方法,其中,所述基于所述传输码本进行上行信号传输,包括:
    在所述上行信号调度信息指示的SRS资源为所述第一SRS资源的情况下,所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输;和/或
    在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述SRI指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述终端将第二功率均匀分配到有信号非零传输的天线端口上进行基于所述传输码本的上行信号传输。
  59. 一种终端,包括:
    接收模块,用于接收网络侧设备发送的上行信号调度信息;
    第一传输模块,用于在所述上行信号调度信息指示的探测参考信号SRS资源为第一SRS资源的情况下,将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输;
    其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;
    所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
  60. 如权利要求59所述的终端,还包括:
    第二传输模块,用于在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调度信息指示的SRS资源为所述第一SRS 资源之外的SRS资源的情况下,将第二功率均匀分配到有信号非零传输的天线端口上进行上行信号传输,所述第二功率为使用第二缩放因子对所述上行信道发送功率进行缩放后的发送功率,所述第二缩放因子为N/M 1
    其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
  61. 一种终端,包括:
    接收模块,用于接收网络侧设备发送的上行信号调度信息;
    确定模块,用于确定上行传输的传输码本,其中,在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述传输码本为第一码本;和/或,在所述上行信号调度信息指示的SRS资源为所述第二SRS资源或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述传输码本为第二码本;
    传输模块,用于基于所述传输码本进行上行信号传输;
    其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源。
  62. 一种网络侧设备,包括:
    第一确定模块,用于在网络侧设备为终端配置有第一SRS资源情况下,基于第一SRS资源对应的上行信号的发送功率控制方式为所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输的假设,确定上行信号的上行信号调度信息;
    发送模块,用于向所述终端发送所述上行信号调度信息;
    其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;
    所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
  63. 一种网络侧设备,包括:
    第一确定模块,用于确定上行传输的传输码本,其中,在为终端配置了第一SRS资源的情况下,所述第一SRS资源的传输码本为第一码本;和/或,在为终端配置了第二SRS资源或者为终端配置了所述第一SRS资源之外的SRS资源的情况下,所述第二传输资源或所述第一SRS资源之外的SRS资源的传输码本为第二码本;
    第二确定模块,用于基于所述传输码本确定上行信号的上行信号调度信息;
    发送模块,用于向终端发送所述上行信号调度信息;
    其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资 源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源。
  64. 一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,
    所述收发机,用于接收网络侧设备发送的上行信号调度信息;
    所述收发机,还用于在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输;
    其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;
    所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
  65. 如权利要求64所述的终端,其中,所述收发机还用于:
    在所述上行信号调度信息指示的SRS资源为所述第二SRS资源,或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,将第二功率均匀分配到有信号非零传输的天线端口上进行上行信号传输,所述第二功率为使用第二缩放因子对所述上行信道发送功率进行缩放后的发送功率,所述第二缩放因子为N/M 1
    其中,所述N为预编码矩阵中有信号非零传输的天线端口数,所述M 1为所述终端支持的一个SRS资源可包含的最大天线端口数。
  66. 一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,
    所述收发机,用于接收网络侧设备发送的上行信号调度信息;
    所述收发机或者所述处理器,用于确定上行传输的传输码本,其中,在所述上行信号调度信息指示的SRS资源为第一SRS资源的情况下,所述传输码本为第一码本;和/或,在所述上行信号调度信息指示的SRS资源为所述第二SRS资源或者所述上行信号调度信息指示的SRS资源为所述第一SRS资源之外的SRS资源的情况下,所述传输码本为第二码本;
    所述收发机还用于基于所述传输码本进行上行信号传输;
    其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源。
  67. 如权利要求66所述的终端,其中,所述第一码本和所述第二码本的相干传输类型相同,且所述相干传输类型为非相干传输;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干 传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本和所述第二码本均为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    所述第一码本和所述第二码本为与所述SRS资源对应的码本子集限制对应的码本;或者
    所述第一码本和所述第二码本为与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
  68. 如权利要求66所述的终端,其中,所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为全相干传输的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本为网络侧设备为所述终端指示的码本子集限制对应的码本。
  69. 一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,
    所述收发机或者所述处理器,用于在网络侧设备为终端配置有第一SRS资源情况下,所述网络侧设备基于第一SRS资源对应的上行信号的发送功率控制方式为所述终端将第一功率均匀分配到有信号非零传输的天线端口上进行上行信号传输的假设,确定上行信号的上行信号调度信息;
    所述收发机,用于向所述终端发送所述上行信号调度信息;
    其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源;
    所述第一功率为上行信道发送功率,或者,所述第一功率为使用第一缩放因子对所述上行信道发送功率进行缩放后的发送功率。
  70. 一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,
    所述收发机或者所述处理器,用于确定上行传输的传输码本,其中,在为终端配置了第一SRS资源的情况下,所述第一SRS资源的传输码本为第一码本;和/或,在为终端配置了第二SRS资源或者为终端配置了所述第一SRS资源之外的SRS资源的情况下,所述第二传输资源或所述第一SRS资源之外的SRS资源的传输码本为第二码本;
    所述收发机或者所述处理器,还用于基于所述传输码本确定上行信号的上行信号调度信息;
    所述收发机还用于,向终端发送所述上行信号调度信息;
    其中,第一SRS资源为:包含的天线端口数满足第一预设条件的SRS资源、第一预配置SRS资源或者除第二SRS资源之外的SRS资源;所述第二SRS资源为包含的天线端口数满足第二预设条件的SRS资源或者第二预配置SRS资源。
  71. 如权利要求70所述的网络侧设备,其中,所述第一码本和所述第二码本的相干传输类型相同,且所述相干传输类型为非相干传输;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为相干传输的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本,所述第二码本为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本和所述第二码本均为网络侧设备为所述终端指示的码本子集限制对应的码本;或者
    所述第一码本和所述第二码本为与所述SRS资源对应的码本子集限制对应的码本;或者
    所述第一码本和所述第二码本为与所述SRS资源包含的天线端口数对应的码本子集限制对应的码本。
  72. 如权利要求70所述的网络侧设备,其中,
    所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为非相干传输的码本;或者
    若所述终端的相干传输能力为部分相干传输,则所述第一码本为全相干传输的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本为全相干传输的码本或者包含全相干传输码字的码本;或者
    若所述终端的相干传输能力为全相干传输,则所述第一码本为网络侧设 备为所述终端指示的码本子集限制对应的码本。
  73. 一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如权利要求1至18中任一项所述的上行信号传输方法中的步骤,或者该程序被处理器执行时实现如权利要求19至29中任一项所述的上行信号传输方法中的步骤,或者该程序被处理器执行时实现如权利要求30至47中任一项所述的调度信息确定方法中的步骤,或者该程序被处理器执行时实现如权利要求48至58中任一项所述的调度信息确定方法中的步骤。
PCT/CN2020/086973 2019-04-30 2020-04-26 上行信号传输方法、调度信息确定方法和相关设备 WO2020221152A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910364576.9A CN111867078B (zh) 2019-04-30 2019-04-30 上行信号传输方法、调度信息确定方法和相关设备
CN201910364576.9 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020221152A1 true WO2020221152A1 (zh) 2020-11-05

Family

ID=72965737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086973 WO2020221152A1 (zh) 2019-04-30 2020-04-26 上行信号传输方法、调度信息确定方法和相关设备

Country Status (3)

Country Link
CN (1) CN111867078B (zh)
TW (1) TWI800724B (zh)
WO (1) WO2020221152A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116073972A (zh) * 2021-11-04 2023-05-05 展讯通信(上海)有限公司 资源配置方法、装置及设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114765845A (zh) * 2021-01-15 2022-07-19 维沃移动通信有限公司 功率控制方法、装置及用户设备
CN117643135A (zh) * 2022-06-28 2024-03-01 北京小米移动软件有限公司 一种上行mimo传输的天线全相干传输码字的确定方法及其装置
CN117856838A (zh) * 2022-09-30 2024-04-09 大唐移动通信设备有限公司 信息传输方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018182381A1 (ko) * 2017-03-31 2018-10-04 엘지전자(주) 무선 통신 시스템에서 상향링크 데이터 전송 방법 및 이를 위한 장치
CN109152035A (zh) * 2017-06-16 2019-01-04 电信科学技术研究院 一种发送下行控制信息dci的方法及装置
CN109495879A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种资源配置方法、基站和终端
CN109644468A (zh) * 2018-09-27 2019-04-16 Oppo广东移动通信有限公司 功率分配的方法、终端设备和网络设备
CN111050390A (zh) * 2018-10-12 2020-04-21 电信科学技术研究院有限公司 一种上行功率控制方法、终端设备及网络设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190044141A (ko) * 2011-09-30 2019-04-29 인터디지탈 패튼 홀딩스, 인크 감소된 채널 대역폭을 사용하는 장치 통신
CN103905104B (zh) * 2012-12-28 2017-12-19 中兴通讯股份有限公司 一种根据探测参考信号的多天线发送方法及终端及基站
EP3644657B1 (en) * 2018-08-18 2021-04-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power control method and device, and terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018182381A1 (ko) * 2017-03-31 2018-10-04 엘지전자(주) 무선 통신 시스템에서 상향링크 데이터 전송 방법 및 이를 위한 장치
CN109152035A (zh) * 2017-06-16 2019-01-04 电信科学技术研究院 一种发送下行控制信息dci的方法及装置
CN109495879A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种资源配置方法、基站和终端
CN109644468A (zh) * 2018-09-27 2019-04-16 Oppo广东移动通信有限公司 功率分配的方法、终端设备和网络设备
CN111050390A (zh) * 2018-10-12 2020-04-21 电信科学技术研究院有限公司 一种上行功率控制方法、终端设备及网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Corrections for Full Power UL Transmission", 3GPP DRAFT; R1-2002368, 30 April 2020 (2020-04-30), pages 1 - 11, XP051875577 *
ERICSSON; VERIZON; T-MOBILE USA; SPRINT; NTT DOCOMO; ORANGE; NOKIA; INTEL; QUALCOMM; SAMSUNG; ZTE: "Correction on one port PUSCH power scaling", 3GPP DRAFT; R1-1905855, 12 April 2019 (2019-04-12), Xi’an, China, pages 1 - 3, XP051707900 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116073972A (zh) * 2021-11-04 2023-05-05 展讯通信(上海)有限公司 资源配置方法、装置及设备

Also Published As

Publication number Publication date
CN111867078B (zh) 2023-09-29
TWI800724B (zh) 2023-05-01
TW202044892A (zh) 2020-12-01
CN111867078A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2020221152A1 (zh) 上行信号传输方法、调度信息确定方法和相关设备
WO2020156103A1 (zh) 信息反馈方法及装置
TWI692261B (zh) 資料傳輸方法、基地台和終端
WO2018228571A1 (zh) 通信方法和通信装置
JP7283705B2 (ja) 端末デバイスの能力を報告する方法および通信装置
US8289917B1 (en) Method and apparatus for defining resource elements for the provision of channel state information reference signals
WO2019237983A1 (zh) 预编码矩阵的配置方法和装置
TWI751648B (zh) 一種上行調度資訊確定方法、使用者設備、基地台及電腦可讀存儲介質
US9225490B2 (en) Method and apparatus for configuring resource elements for the provision of channel state information reference signals
WO2018228228A1 (zh) 信息传输方法及装置
WO2021031949A1 (zh) 上行发送方法、终端及网络侧设备
WO2020063974A1 (zh) 功率指示方法及装置
WO2022083605A1 (zh) 信道状态信息的处理方法及装置、终端
WO2020020017A1 (zh) 信道估计方法和装置
WO2020155119A1 (zh) 上报信道状态信息的方法和装置
WO2021129768A1 (zh) 指示消息传输方法和通信设备
WO2020143805A1 (zh) 一种通信方法及装置
JP2021530161A (ja) 通信方法及び通信機器
WO2019047946A1 (zh) 一种码本子集限制的方法
US20240057071A1 (en) Panel selection for uplink transmission
CN111436107B (zh) 上行信号的发送方法、信道质量确定方法和相关设备
TWI765400B (zh) 傳輸方法、使用者設備及基地台
TWI784462B (zh) 上行功率、調度資訊確定方法、終端和網路側設備
US11968140B2 (en) Transmission method and apparatus
WO2022206504A1 (zh) Csi反馈方法、相关设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20799076

Country of ref document: EP

Kind code of ref document: A1