WO2021197378A1 - 信号测量、测量间隔配置、测量上报方法、终端、网络设备及位置管理设备 - Google Patents

信号测量、测量间隔配置、测量上报方法、终端、网络设备及位置管理设备 Download PDF

Info

Publication number
WO2021197378A1
WO2021197378A1 PCT/CN2021/084440 CN2021084440W WO2021197378A1 WO 2021197378 A1 WO2021197378 A1 WO 2021197378A1 CN 2021084440 W CN2021084440 W CN 2021084440W WO 2021197378 A1 WO2021197378 A1 WO 2021197378A1
Authority
WO
WIPO (PCT)
Prior art keywords
interval
measurement
configuration information
terminal
measurement interval
Prior art date
Application number
PCT/CN2021/084440
Other languages
English (en)
French (fr)
Inventor
司晔
邬华明
王园园
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020227038402A priority Critical patent/KR20220164019A/ko
Priority to EP21778857.9A priority patent/EP4132072A4/en
Publication of WO2021197378A1 publication Critical patent/WO2021197378A1/zh
Priority to US17/957,620 priority patent/US20230038050A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technology, in particular to a signal measurement, measurement interval configuration, measurement reporting method, terminal, network equipment and location management equipment.
  • the measurement interval has a maximum length of 6ms.
  • the actual user equipment User Equipment, UE, also called terminal
  • the measurement gap switching time the actual user equipment (User Equipment, UE, also called terminal) can use approximately 5ms in the interval gap for measurement.
  • Signal. In New Radio (NR) positioning, there are a lot of cases where measurement gaps are used to measure positioning reference signals (Positioning Reference Signal, PRS).
  • PRS Positioning Reference Signal
  • the measurement interval configuration does not match the PRS configuration. Using the existing measurement gap configuration will limit the UE's PRS configuration. Measurement.
  • the embodiment of the present invention provides a signal measurement, measurement interval configuration, measurement reporting method, and related equipment to solve the problem that the existing measurement interval configuration limits the measurement of the PRS by the terminal.
  • the present invention adopts the following technical solutions:
  • an embodiment of the present invention provides a signal measurement method applied to a terminal, including:
  • the measurement interval configuration information includes at least one of the first measurement interval configuration information and the second measurement interval configuration information, and the interval mode configuration information indicated by the second measurement interval configuration information and the first measurement interval configuration information 1.
  • the interval mode configuration information indicated by the measurement interval configuration information is different;
  • the signal measurement is performed in the measurement interval.
  • an embodiment of the present invention also provides a measurement interval configuration method, which is applied to a network device, and includes:
  • the measurement interval configuration information is sent to the terminal, the measurement interval configuration information includes at least one of the first measurement interval configuration information and the second measurement interval configuration information, and the interval mode configuration information indicated by the second measurement interval configuration information is the same as the interval mode configuration information indicated by the second measurement interval configuration information.
  • the interval mode configuration information indicated by the first measurement interval configuration information is different.
  • an embodiment of the present invention also provides a terminal, including:
  • the first obtaining module is configured to obtain measurement interval configuration information, where the measurement interval configuration information includes at least one of the first measurement interval configuration information and the second measurement interval configuration information, and the interval indicated by the second measurement interval configuration information Mode configuration information is different from the interval mode configuration information indicated by the first measurement interval configuration information;
  • the first measurement module is configured to perform signal measurement in the measurement interval according to the measurement interval configuration information.
  • an embodiment of the present invention also provides a terminal, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • a terminal including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • an embodiment of the present invention also provides a network device, including:
  • the first sending module is configured to send measurement interval configuration information to the terminal, where the measurement interval configuration information includes at least one of first measurement interval configuration information and second measurement interval configuration information, and the second measurement interval configuration information
  • the indicated interval mode configuration information is different from the interval mode configuration information indicated by the first measurement interval configuration information.
  • the embodiments of the present invention also provide a measurement report method, which is applied to a network device, and includes:
  • the discontinuous reception DRX status and the channel sounding reference signal SRS transmission determine or report the reason information for the signal measurement failure.
  • an embodiment of the present invention also provides a measurement report method, which is applied to a location management device, and includes:
  • the reason for the measurement failure is determined or the location request information is determined.
  • an embodiment of the present invention also provides a network device, including:
  • the reporting module is used to determine or report the reason information for the signal measurement failure according to at least one of the relationship information between the discontinuous reception DRX status and the channel sounding reference signal SRS transmission, DRX configuration information, and SRS configuration information.
  • an embodiment of the present invention also provides a location management device, including:
  • the fourth receiving module is used to receive information about the reason for the signal measurement failure sent by the network device;
  • the determining module is configured to determine the cause of the measurement failure or determine the location request information according to the information of the cause of the signal measurement failure.
  • an embodiment of the present invention also provides a network device, including a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the computer program implements the foregoing when executed by the processor. The steps of the measurement interval configuration method or the steps of the measurement report method applied to the network device as described above.
  • an embodiment of the present invention also provides a location management device, including: a memory, a processor, and a computer program stored on the memory and running on the processor, the computer program being executed by the processor When realizing the steps of the measurement report method applied to the location management device as described above.
  • an embodiment of the present invention also provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the above-mentioned signal measurement method or the above-mentioned The steps of the measurement interval configuration method or the steps of the above measurement report method.
  • the embodiments of the present invention also provide a computer program product, which is stored in a computer-readable storage medium, and the computer program product is executed by at least one processor to implement the steps of the above-mentioned signal measurement method or the above-mentioned measurement interval configuration The steps of the method or the steps of the measurement reporting method described above.
  • an embodiment of the present invention also provides a terminal, which is configured to perform the steps of the signal measurement method described above.
  • the embodiments of the present invention also provide a network device configured to execute the steps of the measurement interval configuration method described above or the steps of the measurement reporting method applied to the network device as described above.
  • an embodiment of the present invention also provides a location management device, which is configured to execute the steps of the measurement report method applied to the location management device as described above.
  • the terminal since the interval mode configuration information indicated by the second measurement interval configuration information is different from the interval mode configuration information indicated by the first measurement interval configuration information, the terminal can use more interval modes for positioning signal measurement, which increases The degree of matching between the measurement interval configuration and the positioning signal configuration can effectively reduce the limitation when using the measurement interval to measure positioning.
  • Figure 1 shows a structural diagram of a network system applicable to an embodiment of the present invention
  • FIG. 2 shows a schematic flowchart of a signal measurement method according to an embodiment of the present invention
  • FIG. 3 shows a schematic flowchart of a measurement interval configuration method according to an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of modules of a terminal according to an embodiment of the present invention
  • FIG. 5 shows a structural block diagram of a terminal according to an embodiment of the present invention
  • FIG. 6 shows one of the schematic diagrams of the modules of the network device according to the embodiment of the present invention.
  • FIG. 7 shows one of the schematic flowcharts of the measurement report method according to the embodiment of the present invention.
  • FIG. 8 shows the second schematic flowchart of the measurement report method according to the embodiment of the present invention.
  • FIG. 9 shows the second schematic diagram of the module of the network device according to the embodiment of the present invention.
  • FIG. 10 shows a schematic diagram of modules of a location management device according to an embodiment of the present invention.
  • Fig. 11 shows a structural block diagram of a network device according to an embodiment of the present invention.
  • the wireless communication system includes a terminal 11 and a network device 12.
  • the terminal 11 may also be referred to as a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), or a personal digital assistant (Personal Digital Assistant).
  • PDA mobile Internet device
  • MID mobile Internet Device
  • Wearable Device wearable Device
  • in-vehicle equipment and other terminal side devices it should be noted that the specific type of terminal 11 is not limited in the embodiment of the present invention .
  • the network device 12 may be a base station or a core network, where the above-mentioned base station may be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN access point, Or other access points, etc.), where the base station can be called Node B, Evolved Node B, Access Point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (Basic Service Set) Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, or in the field
  • B Basic Service Set
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Node B Evolved Node B
  • eNB Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, or in the field
  • an embodiment of the present invention provides a signal measurement method, which is applied to a terminal, and includes:
  • Step 201 Obtain measurement interval configuration information, where the measurement interval configuration information includes at least one of the first measurement interval configuration information and the second measurement interval configuration information, and the interval mode configuration information indicated by the second measurement interval configuration information is the same as the interval mode configuration information indicated by the second measurement interval configuration information.
  • the interval mode configuration information indicated by the first measurement interval configuration information is different.
  • the foregoing interval mode configuration information includes at least one of the following:
  • Interval length (measurement interval length);
  • Interval repetition period (interval period).
  • the above-mentioned gap pattern configuration information may be agreed in multiple by the agreement.
  • the agreement stipulates a table, and the table contains multiple interval mode configurations.
  • the network device sends the measurement interval configuration information to the terminal, the network device determines the content of the interval mode (combination of interval length and interval repetition period) or interval mode used by the terminal according to the request of the terminal or the network device itself.
  • different gap patterns corresponding to different gap pattern configuration information are different.
  • the foregoing first measurement interval configuration information includes: first interval mode configuration information; the foregoing second measurement interval configuration information includes: second interval mode configuration information, or, the second measurement interval configuration information includes extended Factor, the interval mode configuration information indicated by the second measurement interval configuration information is determined according to the first measurement interval configuration information and the expansion factor.
  • the foregoing first measurement interval configuration information and the second measurement interval configuration information may respectively include at least one of an interval pattern identifier, an interval length, and an interval repetition period.
  • the foregoing first measurement interval configuration information or second measurement interval configuration information may explicitly include interval mode configuration information, that is, directly include interval mode configuration information, or may be implicitly included by including at least one of interval length and interval repetition period.
  • the foregoing first measurement interval configuration information may include: interval mode configuration information including at least one of interval length, interval pattern identifier, and interval repetition period (explicit); or the foregoing first measurement interval
  • the configuration information includes the interval mode identifier, but does not include the interval length and interval repetition period (explicit).
  • the foregoing first measurement interval configuration information may include at least one of the interval length and the interval repetition period (implicit), that is, the first measurement interval configuration information includes the content (length, period) in the interval mode configuration. , Without explicitly reflecting the concept of interval mode.
  • the interval pattern configuration information indicated by the second measurement interval configuration information may also be expressed as interval pattern configuration information included in the second measurement interval configuration information
  • the interval pattern configuration information indicated by the first measurement interval configuration information may also be expressed as Interval mode configuration information included in the first measurement interval configuration information
  • the aforementioned expansion factor may include a period expansion factor and/or a length expansion factor.
  • the foregoing measurement interval configuration information is also related to a period scaling factor or a length scaling factor.
  • the period expansion factor is used to indicate the expansion multiple of the interval repetition period indicated by the first measurement interval configuration information or the second measurement interval configuration information.
  • the length expansion factor is used to indicate an expansion multiple of the interval length indicated by the first measurement interval configuration information or the second measurement interval configuration information.
  • the expanded interval length is less than or equal to the interval period, or the expanded interval length is less than or equal to the expanded period.
  • the value of the aforementioned length expansion factor is an integer, which may be one of ⁇ 2, 3, 4...10 ⁇ . Taking the GAP length of 6ms as an example, if the expansion factor is configured as 2, the gap length becomes 12ms.
  • the expansion factor can also be referred to as the repetition factor.
  • the period expansion factor is an integer, which can be one of ⁇ 2,4,8,16,32,64 ⁇ . Taking the GAP period of 160ms as an example, if the expansion factor is configured as 2, the gap length becomes 320ms. When the expansion factor is not configured on the network side, the terminal performs measurement according to the indicated gap period.
  • the foregoing measurement interval configuration information is used for positioning signal measurement, for example, reference signal time difference (Reference Signal Time Difference, RSTD), reference signal receiving power (Reference Signal Receiving Power, RSRP) measurement, and so on.
  • the measurement interval configuration information can be configured through radio resource control (Radio Resource Control, RRC) signaling.
  • the above-mentioned first measurement interval configuration information and the second measurement interval configuration information may further include a gap offset (gap offset) and a gap timing advance (gap TA), respectively.
  • the interval pattern configuration information indicated by the first measurement interval configuration information may be the existing interval pattern configuration information (such as the gap pattern of TS38.133 9.1.2-1), as shown in Table 1, the interval pattern identification The value can be 0 to 23, the value of the interval length can be ⁇ 1.5,3,3.5,4,5.5,6 ⁇ ms, and the value of the interval repetition period is ⁇ 20,40,80,160 ⁇ ms.
  • the interval pattern configuration information indicated by the second measurement interval configuration information may be obtained by expanding the interval pattern configuration information indicated by the first measurement interval configuration information, such as expanding the interval pattern identifier, interval length, and/or interval repetition period.
  • the interval mode configuration information indicated by the foregoing second measurement configuration information may also be newly introduced interval mode configuration information.
  • Step 202 Perform signal measurement in the measurement interval according to the measurement interval configuration information.
  • the signal measurement may be a positioning signal measurement or a radio resource management (Radio Resource Management, RRM) measurement.
  • RRM Radio Resource Management
  • the terminal can use more interval modes to perform
  • the positioning signal measurement increases the matching degree between the measurement interval configuration and the positioning signal configuration, thereby effectively reducing the limitation when using the measurement interval to measure positioning.
  • interval mode configuration information indicated by the first measurement interval configuration information and the interval mode configuration information indicated by the second measurement interval configuration information satisfy at least one of the following:
  • the interval length indicated by the second measurement interval configuration information is greater than the interval length indicated by the first measurement interval configuration information
  • the interval repetition period indicated by the second measurement interval configuration information is greater than the interval repetition period indicated by the first measurement interval configuration information
  • the interval pattern identifier indicated by the second measurement interval configuration information is greater than the interval pattern identifier indicated by the first measurement interval configuration information.
  • interval length, interval repetition period, or interval pattern identifier indicated by the first or second measurement interval configuration information may be interpreted as the interval length indicated in the interval pattern configuration information indicated by the first or second measurement interval configuration information, Interval repeat period or interval pattern identification.
  • interval length, interval repetition period or interval pattern identifier indicated by the first measurement interval configuration information may be interpreted as the maximum interval length, maximum interval repetition period or maximum interval pattern identifier indicated by the first measurement interval configuration information.
  • the first measurement interval configuration information may also satisfy at least one of the following:
  • At least one of the interval lengths indicated by the second measurement interval configuration information is different from the interval length indicated by the first measurement interval configuration information
  • At least one interval repetition period indicated by the second measurement interval configuration information is different from the interval repetition period indicated by the first measurement interval configuration information
  • At least one interval pattern identifier indicated by the second measurement interval configuration information is different from the interval pattern identifier indicated by the first measurement interval configuration information
  • At least one interval pattern identifier indicated by the second measurement interval configuration information is different from the interval pattern identifier indicated by the first measurement interval configuration information can also be interpreted as: the interval pattern indicated by the second measurement interval configuration information At least one identifier is greater than the maximum interval mode identifier indicated by the first measurement interval configuration information.
  • the interval mode configuration information indicated by the first measurement interval configuration information and the interval mode configuration information indicated by the second measurement interval configuration information satisfy at least one of the following:
  • the interval length indicated by the foregoing second measurement interval configuration information is greater than 6 ms
  • the interval repetition period indicated by the foregoing second measurement interval configuration information is greater than 160 ms;
  • the interval mode identifier indicated by the foregoing second measurement interval configuration information is greater than 23.
  • the interval mode configuration information indicated by the second measurement interval configuration information is obtained by extending the interval mode configuration information indicated by the first measurement interval configuration information. For example, if the interval pattern identifier is greater than 23 and the interval length is greater than 6 ms, the existing period configuration is not changed. As shown in Table 2, the interval pattern identifier indicated by the second measurement interval configuration information is 23 to 31, and the interval length is The value is ⁇ 10,14 ⁇ ms, and the value of the interval repetition period is ⁇ 20,40,80,160 ⁇ ms.
  • the interval mode identifier indicated by the second measurement interval configuration information has a value of 23 to 31
  • the interval length has a value of ⁇ 10 ⁇ ms
  • the interval repetition period has a value of ⁇ 20,40, 80,160,320,640,1280,2560 ⁇ ms. That is, when the interval mode identifier and interval length are expanded, the existing period configuration is changed at the same time.
  • the interval repetition period indicated by the second measurement interval configuration information is associated with the PRS period.
  • Interval mode identification Interval length (ms)
  • Interval repetition period (ms) 0 6 40 1 6 80 2 3 40 3 3 80 4 6 20 5 6 160 6 4 20 7 4 40 8 4 80 9 4 160 10 3 20 11 3 160 12 5.5 20 13 5.5 40 14 5.5 80 15 5.5 160 16 3.5 20 17 3.5 40 18 3.5 80 19 3.5 160 20 1.5 20 twenty one 1.5 40 twenty two 1.5 80 twenty three 1.5 160 twenty four 10 20
  • Interval mode identification Interval length (ms)
  • Interval repetition period (ms) 0 6 40 1 6 80 2 3 40 3 3 80 4 6 20 5 6 160 6 4 20 7 4 40 8 4 80 9 4 160 10 3 20 11 3 160 12 5.5 20 13 5.5 40 14 5.5 80 15 5.5 160 16 3.5 20 17 3.5 40 18 3.5 80 19 3.5 160
  • the interval pattern configuration information indicated by the second measurement interval configuration information is expanded on the basis of the interval pattern configuration information indicated by the first measurement interval configuration information, and may also be newly introduced interval pattern (additional gap pattern) configuration information.
  • the additional gap pattern configuration information is only used for positioning measurement; optionally, the additional gap pattern configuration information is related to the UE type, for example, it is used for UEs with relatively low data rate requirements.
  • the content of the additional gap pattern configuration information is shown in Table 4.
  • the interval length in the interval pattern configuration information indicated by the second measurement interval configuration information is greater than the length in the interval pattern configuration information indicated by the first measurement interval configuration information, so that the interval length of the measurement interval is equal to that of the positioning signal.
  • the configuration is more matched, which effectively solves the problem of insufficient measurement gap length, which causes the inability to measure PRS.
  • the measurement interval configuration can be extended by the current measurement interval configuration, as shown in the measurement interval configuration information element (MeasGapConfig information element):
  • “gapoffset” represents the offset of the gap
  • “mgl” represents the length of the gap
  • “mgrp” represents the gap repetition period
  • “mgta” represents the timing advance of the gap.
  • the measurement interval configuration can also be a new measurement interval configuration (such as measgapconfig-add).
  • MeasGapConfig-add information element is as follows:
  • MeasGapConfig-add information element is as follows:
  • the "add N" in the “gapoffset add” can correspond to the gap offset of the gap pattern whose ID (gap pattern ID) is N in the new measurement interval pattern (additional gap pattern configuration).
  • the number of gap patterns that can be configured in this implementation is consistent with the number of gap patterns in the new measurement interval mode given above.
  • the configuration of the new measurement interval may also be a configuration specifically used for positioning measurement, such as "measgapconfig-pos".
  • the "add” in the above IE can also be modified to "pos” accordingly.
  • the measurement interval mode table and the configuration parameters of the measurement interval mode are given as an example of the solution of the present invention.
  • the values of parameters such as the gap pattern ID, gap length, gap repetition period, and gap offset in the measurement interval mode and the measurement interval configuration may not be limited to the parameters given above.
  • the value of the gap length in the measurement interval mode table and the measurement interval mode configuration may include, but is not limited to, one of the following values:
  • the value of the gap repetition period in the measurement interval mode table and the measurement interval mode configuration can include one of the following values:
  • the above gap offset value is (0 to period-1).
  • the measurement interval configuration is also related to the positioning frequency layer.
  • the measurement interval configuration should also include the location frequency layer identification.
  • at least one parameter of the measurement interval configuration such as interval length, period, offset, timing advance, etc., can be grouped according to the frequency layer identifier.
  • one frequency layer identifier corresponds to a set of parameters for the measurement interval configuration.
  • the method further includes:
  • the first request signaling is used to indicate to the network device that the terminal will start to use the measurement interval corresponding to the first measurement interval configuration information or the measurement interval corresponding to the second measurement interval configuration information to perform signal measurement.
  • the above-mentioned first request signaling includes at least one of the following:
  • Terminal expectation (UE Expect/prefer) interval mode identifier UE Expect/prefer
  • the frequency point information that the terminal expects to perform the measurement is the frequency point information that the terminal expects to perform the measurement.
  • the method further includes:
  • the second request signaling is used to indicate to the network device that the terminal will stop using the measurement interval corresponding to the first measurement interval configuration information or the measurement interval corresponding to the second measurement interval configuration information to perform signal measurement.
  • the second request signaling includes at least one of the following:
  • the gap offset expected by the terminal (gap offset);
  • interval timing advance (gap TA) expected by the terminal
  • the frequency point information that the terminal expects to perform the measurement is the frequency point information that the terminal expects to perform the measurement.
  • the gap pattern (gap pattern) expected by the terminal is also equivalent to the gap type.
  • the gap pattern type can be a general gap pattern (such as the gap pattern of TS38.133 9.1.2-1) and an additional gap pattern (such as a special gap pattern). Position the introduced new gap pattern table) or on-demand gap pattern (on demand gap pattern).
  • the frequency point information for performing the measurement may be the positioning frequency layer (positioning frequency layer) or the absolute frequency of the center frequency point of the PRS.
  • the frequency point information for performing the measurement may be at least one of the reference point A (point A) of the positioning frequency layer, the subcarrier spacing (SCS), the starting PRB position (starting PRB), and the bandwidth (bandwidth).
  • point A the reference point A of the positioning frequency layer
  • SCS subcarrier spacing
  • starting PRB starting PRB
  • bandwidth bandwidth
  • the frequency point information for performing the measurement is at least one of a positioning frequency layer or the absolute frequency of the center frequency point of the PRS, the bandwidth that the UE expects to measure, and the SCS.
  • the above-mentioned first request signaling and second request signaling may be carried in RRC signaling. If the signal measured by the terminal is a positioning signal, the first request signaling or the second request signaling is associated with the positioning frequency layer. layer).
  • At least one parameter carried in the first request signaling or the second request signaling is grouped according to a positioning frequency layer.
  • a frequency layer corresponds to a set of gap pattern ID, gap offset, gap TA, gap length/period expansion factor, frequency point information and other parameters.
  • the first request signaling or the second request signaling is associated with a positioning frequency layer
  • the first request signaling (start signaling) or the second request signaling (stop signaling) It is related to the frequency layer, that is, the parameter or signaling is used to control the start/stop of the measurement gap associated with the positioning frequency layer. If the start or stop signaling has nothing to do with the frequency layer, that is, this parameter is used to start or stop all measurement gaps.
  • Pos-FreqInfoList can represent a list of parameters grouped by frequency layer. In other words, these parameters are related to Positioning frequency layer; Pos-FreqInfo represents some parameters associated with a frequency layer; a configuration of carrierFreq is direct configuration: The position of the center frequency point corresponding to the positioning frequency layer, and another configuration can be: positioning frequency layer's point A, SCS, starting PRB, bandwidth at least one of them, and another configuration: positioning frequency layer or PRS center frequency At least one of the absolute frequency of the point, the bandwidth that the UE expects to measure, and the SCS; measPRS-Offset represents the gap pattern ID and gap offset that the UE expects.
  • the method further includes:
  • Receiving trigger signaling where the trigger signaling is used to trigger an on-demand measurement gap (on-demand measurement gap), and the on-demand measurement gap may also be referred to as an aperiodic measurement interval;
  • the on-demand measurement interval is used for signal measurement.
  • the first measurement interval configuration information or the second measurement interval configuration information includes at least one of the following:
  • the preset time interval is an offset value of the start time of the on-demand measurement interval with respect to the receiving moment of the trigger signaling.
  • the acquiring the start time of the on-demand measurement interval according to the trigger signaling includes:
  • the preset time interval is an offset value of the start time of the on-demand measurement interval with respect to the receiving moment of the trigger signaling.
  • the preset time interval includes:
  • the absolute time offset value in the unit of preset time for example, the absolute time offset value in the unit of ms.
  • At least one of the preset time interval, interval mode identifier, interval length, interval advance, and length expansion factor can be obtained in the following manner:
  • the protocol stipulates more than one or is included in the measurement gap configuration, and one of them is indicated by the trigger signaling.
  • the protocol stipulates multiple or multiple included in the measurement gap configuration, a part of which is activated by the MAC CE, and then one of the activated parts is indicated by the DCI signaling.
  • the above trigger signaling is downlink control information DCI signaling or media access control layer control unit MAC CE signaling.
  • the terminal may not need to receive the on-demand measurement interval configuration and only receive the trigger signaling.
  • the method before acquiring measurement interval configuration information or before receiving trigger signaling or before performing signal measurement in the measurement interval, the method further includes:
  • the third request signaling is used to request an on-demand measurement interval.
  • the third request signaling includes at least one of the following:
  • the frequency point information that the terminal expects to perform the measurement is the frequency point information that the terminal expects to perform the measurement
  • the desired interval time domain position of the terminal is the desired interval time domain position of the terminal.
  • Interval mode identification Interval length (ms) 0 6 1 3 2 4 3 5.5 4 3.5 5 1.5 6 10 7 14 8 twenty four 9 32
  • the use of the measurement interval is more flexible.
  • the performing signal measurement according to the measurement interval configuration information includes:
  • the measurement interval corresponding to the measurement interval configuration information it is only expected to send a target signal to or receive a target signal from the network device;
  • the target signal includes a signal used for positioning measurement
  • the target signal includes a signal used for positioning measurement and a signal in a random access process
  • the target signal includes a signal used for positioning measurement and a signal used for radio resource management RRM measurement;
  • the target signal includes a signal used for positioning measurement, a signal used in a random access process, and a signal used for RRM measurement.
  • the signal used for positioning measurement may be a downlink positioning reference signal received from a network node.
  • the terminal in addition to receiving signals for RRM measurement, random access process, and positioning measurement, in the measurement gap, the terminal does not need to send or receive other signals (such as data, etc.) to or from the network device. . (UE is not required to conduct reception/transmission from/to the corresponding Network devices except the reception of signals used for RRM measurements(s), the signals used for random access and the procedures used.
  • the aforementioned terminal behavior can be instructed by the network device, terminal selection or protocol agreement.
  • the above-mentioned network equipment may be the primary cell (E-UTRAN PCell) in the evolved UMTS terrestrial radio access network, the secondary cell (E-UTRAN SCell(s)) in the evolved UMTS terrestrial radio access network, and the E-UTRAN SCell(s).
  • NR serving cells for UTRA-NR dual connectivity NR serving cells for E-UTRA-NR dual connectivity
  • NR serving cells for independent networking NR serving cells for SA (with single carrier or CA configured
  • NR-E- UTRA dual-connected primary cell, secondary cell, and E-UTRAN serving cells PCell, SCell(s) and E-UTRAN serving cells for NR-E-UTRA dual connectivity
  • NR-DC NR serving cells NR serving cells for NR-DC.
  • the network device is a network device of the corresponding frequency range.
  • the UE does not need to send the data to the network equipment in the corresponding frequency range. Receive signals from network device nodes.
  • the performing signal measurement according to the measurement interval configuration information includes:
  • the measured signal is the positioning reference signal PRS
  • the duration of the PRS is greater than the length of the measurement interval, and the terminal expects to measure the PRS outside the measurement interval length corresponding to the measurement interval configuration information, then the target PRS is measured;
  • the target PRS refers to the PRS in the PRS that is outside the interruption time of the measurement interval and is in the activated downlink bandwidth part, and the numerical configuration of the PRS is the same as the activated downlink bandwidth part.
  • the aforementioned terminal behavior can be instructed by the network device, terminal selection or protocol agreement.
  • the above-mentioned PRS can also be interpreted as: PRS resources, PRS resources in the PRS resource set, continuous PRS resources, continuous PRS resources in the PRS resource set, or one of the PRS resource sets.
  • the terminal is configured with a measurement interval
  • the terminal after the terminal performs signal measurement, it reports the measurement result to the network device, and the measurement result further includes: whether the measurement result is related to the measurement interval.
  • the measurement result is associated with a certain PRS resource (that is, the reported measurement result is the measurement result of a certain PRS resource), and when reporting the measurement result of the PRS resource, the terminal reports whether the measurement result is related to the measurement interval, that is, When the terminal measures the PRS resource, whether it is measured in the measurement interval.
  • the terminal only reports information that the measurement result is not related to the measurement interval when the measurement result is not related to the measurement interval. That is, when the terminal reports the measurement result of a certain PRS resource, if the PRS resource is not measured in the measurement interval, it will report the information “not measured in the measurement interval or not related to the measurement interval”; if the PRS resource is measured in the measurement interval , The information related to the measurement interval is not reported.
  • the terminal only reports information related to the measurement result and the measurement interval when the measurement result is related to the measurement interval. That is, when the terminal reports the measurement result of a certain PRS resource, if the PRS resource is measured in the measurement interval, the information “measured in the measurement interval or related to the measurement interval” is reported; if the PRS resource is not measured in the measurement interval, Information about whether to measure the interval is not reported.
  • the terminal when reporting the information'whether the measurement result is related to the measurement interval', can also directly report which measurement results are related or not related to the measurement interval, that is, directly report the identification of the measurement result related or not related to the measurement interval.
  • the identification of the measurement result is related to the identification of the PRS resource
  • the identification of the PRS resource includes at least one of the PRS resource ID, the PRS resource set ID, and the TRP (transmit and receive point) ID.
  • the method further includes:
  • the capability information includes at least one of the following:
  • the capability information includes at least one of the following:
  • the measurement interval or measurement interval mode type may include at least one of the following:
  • Normal measurement interval (such as the gap pattern of TS38.133 9.1.2-1);
  • the terminal can use more interval modes to perform
  • the positioning signal measurement increases the matching degree between the measurement interval configuration and the positioning signal configuration, thereby effectively reducing the limitation when using the measurement interval to measure positioning.
  • an embodiment of the present invention also provides a measurement interval configuration method, which is applied to network equipment, and includes:
  • Step 301 Send measurement interval configuration information to the terminal, where the measurement interval configuration information includes at least one of the first measurement interval configuration information and the second measurement interval configuration information, and the interval mode indicated by the second measurement interval configuration information
  • the configuration information is different from the interval mode configuration information indicated by the first measurement interval configuration information.
  • the foregoing interval mode configuration information includes at least one of the following:
  • the above-mentioned interval mode configuration information can be agreed in multiple by the agreement.
  • the agreement stipulates a table, and the table contains multiple interval mode configurations.
  • the network device determines the content of the interval mode (combination of interval length and interval repetition period) or interval mode used by the terminal according to the request of the terminal or the network device itself.
  • different gap patterns corresponding to different gap pattern configuration information are different.
  • the foregoing first measurement interval configuration information includes: first interval mode configuration information; the foregoing second measurement interval configuration information includes: second interval mode configuration information, or, the second measurement interval configuration information includes extended Factor, the interval mode configuration information indicated by the second measurement interval configuration information is determined according to the first measurement interval configuration information and the expansion factor.
  • the foregoing first measurement interval configuration information and the second measurement interval configuration information may respectively include at least one of an interval pattern identifier, an interval length, and an interval repetition period.
  • the foregoing first measurement interval configuration information or second measurement interval configuration information may explicitly include interval mode configuration information, that is, directly include interval mode configuration information, or may be implicitly included by including at least one of interval length and interval repetition period.
  • the foregoing first measurement interval configuration information may include: interval mode configuration information including at least one of interval length, interval pattern identifier, and interval repetition period (explicit); or the foregoing first measurement interval
  • the configuration information includes the interval mode identifier, but does not include the interval length and interval repetition period (explicit).
  • the foregoing first measurement interval configuration information may include at least one of the interval length and the interval repetition period (implicit), that is, the first measurement interval configuration information includes the content (length, period) in the interval mode configuration. , Without explicitly reflecting the concept of interval mode.
  • the interval pattern configuration information indicated by the second measurement interval configuration information may also be expressed as interval pattern configuration information included in the second measurement interval configuration information
  • the interval pattern configuration information indicated by the first measurement interval configuration information may also be expressed as Interval mode configuration information included in the first measurement interval configuration information
  • the aforementioned expansion factor may include a period expansion factor and/or a length expansion factor.
  • the foregoing measurement interval configuration information is also related to a period scaling factor or a length scaling factor.
  • the period expansion factor is used to indicate the expansion multiple of the interval repetition period indicated by the first measurement interval configuration information or the second measurement interval configuration information.
  • the length expansion factor is used to indicate an expansion multiple of the interval length indicated by the first measurement interval configuration information or the second measurement interval configuration information.
  • the expanded interval length is less than or equal to the interval period, or the expanded interval length is less than or equal to the expanded period.
  • the foregoing measurement interval configuration information is used for positioning signal measurement, for example, reference signal time difference (Reference Signal Time Difference, RSTD), reference signal receiving power (Reference Signal Receiving Power, RSRP) measurement, and so on.
  • the measurement interval configuration information can be configured through radio resource control (Radio Resource Control, RRC) signaling.
  • the foregoing first measurement interval configuration information and the second measurement interval configuration information may further include a gap offset (gap offset) and a gap timing advance (gap TA), respectively.
  • the interval pattern configuration information indicated by the foregoing first measurement interval configuration information may be existing interval pattern configuration information (such as the gap pattern of TS38.133 9.1.2-1), and the interval indicated by the foregoing second measurement interval configuration information
  • the mode configuration information may be obtained by expanding the interval pattern configuration information indicated by the first measurement interval configuration information, such as expanding the interval pattern identifier, interval length, and/or interval repetition period.
  • the interval mode configuration information indicated by the foregoing second measurement configuration information may also be newly introduced interval mode configuration information.
  • the terminal can use more interval modes to Performing positioning signal measurement increases the matching degree between the measurement interval configuration and the positioning signal configuration, thereby effectively reducing the limitation when using the measurement interval to measure positioning.
  • interval mode configuration information indicated by the first measurement interval configuration information and the interval mode configuration information indicated by the second measurement interval configuration information satisfy at least one of the following:
  • the interval length indicated by the second measurement interval configuration information is greater than the interval length indicated by the first measurement interval configuration information
  • the interval repetition period indicated by the second measurement interval configuration information is greater than the interval repetition period indicated by the first measurement interval configuration information
  • the interval pattern identifier indicated by the second measurement interval configuration information is greater than the interval pattern identifier indicated by the first measurement interval configuration information.
  • the method further includes:
  • the first request signaling is used to indicate to the network device that the terminal will start to use the measurement interval corresponding to the first measurement interval configuration information or the second measurement interval configuration information to perform signal measurement.
  • the first request signaling includes at least one of the following:
  • the frequency point information that the terminal expects to perform the measurement is the frequency point information that the terminal expects to perform the measurement.
  • the method further includes:
  • the second request signaling is used to indicate to the network device that the terminal will stop using the first measurement interval configuration information or the measurement interval corresponding to the second measurement interval configuration information to perform signal measurement.
  • the second request signaling includes at least one of the following:
  • the frequency point information that the terminal expects to perform the measurement is the frequency point information that the terminal expects to perform the measurement.
  • the above-mentioned first request signaling and second request signaling may be carried in RRC signaling. If the signal measured by the terminal is a positioning signal, the first request signaling or the second request signaling is associated with the positioning frequency layer. layer).
  • the method further includes:
  • Send trigger signaling which is used to trigger the on-demand measurement interval.
  • the network device sends trigger signaling, and the terminal obtains the start time of the on-demand measurement interval according to the trigger signaling, and uses the on-demand measurement interval to perform signal measurement according to the start time of the on-demand measurement interval.
  • the foregoing first measurement interval configuration information or the second measurement interval configuration information includes at least one of the following:
  • the preset time interval is an offset value of the start time of the on-demand measurement interval with respect to the receiving moment of the trigger signaling.
  • the method further includes:
  • the third request signaling is used to request an on-demand measurement interval.
  • the third request signaling includes at least one of the following:
  • the frequency point information that the terminal expects to perform the measurement is the frequency point information that the terminal expects to perform the measurement
  • the desired interval time domain position of the terminal is the desired interval time domain position of the terminal.
  • the use of the measurement interval is more flexible.
  • the method further includes:
  • the capability information includes at least one of the following:
  • the capability information includes at least one of the following:
  • the measurement interval or measurement interval mode type may include at least one of the following:
  • Normal measurement interval (such as the gap pattern of TS38.133 9.1.2-1);
  • the terminal can use more interval modes to Performing positioning signal measurement increases the matching degree between the measurement interval configuration and the positioning signal configuration, thereby effectively reducing the limitation when using the measurement interval to measure positioning.
  • an embodiment of the present invention provides a terminal 400, including:
  • the first obtaining module 401 is configured to obtain measurement interval configuration information, where the measurement interval configuration information includes at least one of the first measurement interval configuration information and the second measurement interval configuration information, and the second measurement interval configuration information indicates The interval mode configuration information is different from the interval mode configuration information indicated by the first measurement interval configuration information;
  • the first measurement module 402 is configured to perform signal measurement in the measurement interval according to the measurement interval configuration information.
  • the interval mode configuration information includes at least one of the following:
  • the interval mode configuration information indicated by the first measurement interval configuration information and the interval mode configuration information indicated by the second measurement interval configuration information satisfy at least one of the following:
  • the interval length indicated by the second measurement interval configuration information is greater than the interval length indicated by the first measurement interval configuration information
  • the interval repetition period indicated by the second measurement interval configuration information is greater than the interval repetition period indicated by the first measurement interval configuration information
  • the interval pattern identifier indicated by the second measurement interval configuration information is greater than the interval pattern identifier indicated by the first measurement interval configuration information.
  • the second sending module is configured to send the first request signaling before the first acquiring module acquires the measurement interval configuration information
  • the first request signaling is used to indicate to the network device that the terminal will start to use the measurement interval corresponding to the first measurement interval configuration information or the measurement interval corresponding to the second measurement interval configuration information to perform signal measurement.
  • the first request signaling includes at least one of the following:
  • the frequency point information that the terminal expects to perform the measurement is the frequency point information that the terminal expects to perform the measurement.
  • the first request signaling is associated with the positioning frequency layer.
  • the third sending module is configured to send the second request signaling after the first measurement module performs signal measurement according to the measurement interval configuration information
  • the second request signaling is used to indicate to the network device that the terminal will stop using the measurement interval corresponding to the first measurement interval configuration information or the measurement interval corresponding to the second measurement interval configuration information to perform signal measurement.
  • the second request signaling includes at least one of the following:
  • the frequency point information that the terminal expects to perform the measurement is the frequency point information that the terminal expects to perform the measurement.
  • the second request signaling is associated with the positioning frequency layer.
  • the first receiving module is configured to receive trigger signaling after the first acquiring module acquires the measurement interval configuration information or before the first measurement module performs signal measurement, where the trigger signaling is used to trigger the on-demand measurement interval;
  • the second acquiring module is configured to acquire the start time of the on-demand measurement interval according to the trigger signaling
  • the second measurement module is configured to perform signal measurement using the on-demand measurement interval according to the start time of the on-demand measurement interval.
  • the second acquiring module is configured to acquire the start time of the on-demand measurement interval according to the receiving moment of the trigger signaling and the preset time interval;
  • the preset time interval is an offset value of the start time of the on-demand measurement interval with respect to the receiving moment of the trigger signaling.
  • the preset time interval includes:
  • the absolute time offset value in units of preset time.
  • the trigger signaling is downlink control information DCI signaling or media access control layer control unit MAC CE signaling.
  • the fourth sending module is configured to send the third request signaling before the first obtaining module obtains the measurement interval configuration information or before the first receiving module receives the trigger signaling or before the first measurement module performs signal measurement;
  • the third request signaling is used to request an on-demand measurement interval.
  • the third request signaling includes at least one of the following:
  • the frequency point information that the terminal expects to perform the measurement is the frequency point information that the terminal expects to perform the measurement
  • the desired interval time domain position of the terminal is the desired interval time domain position of the terminal.
  • the first measurement module is configured to only expect to send a target signal to a network device or receive a target signal from the network device in a measurement interval corresponding to the measurement interval configuration information;
  • the target signal includes a signal used for positioning measurement
  • the target signal includes a signal used for positioning measurement and a signal in a random access process
  • the target signal includes a signal used for positioning measurement and a signal used for radio resource management RRM measurement;
  • the target signal includes a signal used for positioning measurement, a signal used in a random access process, and a signal used for RRM measurement.
  • the network device is a network device in the corresponding frequency range.
  • the first measurement module is configured to, in the case that the measured signal is the positioning reference signal PRS, if the duration of the PRS is greater than the length of the measurement interval, and the terminal expects to measure in the measurement interval configuration information If the corresponding PRS is outside the measurement interval length, the target PRS is measured;
  • the target PRS refers to a PRS in the PRS that is outside the interruption time of the measurement interval and is in the activated downlink bandwidth part, and the numerical configuration numerology is the same as the activated downlink bandwidth part.
  • the fifth sending module is configured to send capability information to the network device before the first acquiring module acquires the measurement interval configuration information
  • the capability information includes at least one of the following:
  • the terminal because the interval pattern configuration information indicated by the second measurement interval configuration information is different from the interval pattern configuration information indicated by the first measurement interval configuration information, the terminal can use more interval patterns for positioning signals.
  • the measurement increases the matching degree between the measurement interval configuration and the positioning signal configuration, which can effectively reduce the limitation when using the measurement interval to measure positioning.
  • the terminal embodiment is a terminal corresponding to the above-mentioned signal measurement method applied to the terminal, and all the implementation manners of the above-mentioned embodiment are applicable to the terminal embodiment, and the same technical effect can be achieved.
  • Fig. 5 is a schematic diagram of the hardware structure of a terminal for implementing an embodiment of the present invention.
  • the terminal 50 includes but is not limited to: a radio frequency unit 510, a network module 520, an audio output unit 530, an input unit 540, a sensor 550, a display unit 560, a user input unit 570, an interface unit 580, a memory 590, a processor 511, and a power supply 512 and other parts.
  • a radio frequency unit 510 includes but is not limited to: a radio frequency unit 510, a network module 520, an audio output unit 530, an input unit 540, a sensor 550, a display unit 560, a user input unit 570, an interface unit 580, a memory 590, a processor 511, and a power supply 512 and other parts.
  • the terminal structure shown in FIG. 5 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer
  • the processor 511 is configured to obtain measurement interval configuration information, where the measurement interval configuration information includes at least one of the first measurement interval configuration information and the second measurement interval configuration information, and the interval indicated by the second measurement interval configuration information
  • the mode configuration information is different from the interval mode configuration information indicated by the first measurement interval configuration information; the signal measurement is performed in the measurement interval according to the measurement interval configuration information.
  • the terminal because the interval pattern configuration information indicated by the second measurement interval configuration information is different from the interval pattern configuration information indicated by the first measurement interval configuration information, the terminal can use more interval patterns for positioning signals.
  • the measurement increases the matching degree between the interval mode configuration and the positioning signal configuration, which can effectively reduce the limitation when using the measurement interval to measure positioning.
  • the terminal of the embodiment of the present invention can implement all the implementation manners in the above-mentioned signal measurement method embodiment applied to the terminal, and can achieve the same effect, which will not be repeated here.
  • the radio frequency unit 510 can be used for receiving and sending signals during the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the network side device, it is processed by the processor 511; in addition, , Send the uplink data to the network side device.
  • the radio frequency unit 510 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 510 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 520, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 530 may convert the audio data received by the radio frequency unit 510 or the network module 520 or stored in the memory 590 into an audio signal and output it as sound. Moreover, the audio output unit 530 may also provide audio output related to a specific function performed by the terminal 50 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 530 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 540 is used to receive audio or video signals.
  • the input unit 540 may include a graphics processing unit (GPU) 541 and a microphone 542, and the graphics processor 541 is configured to respond to still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 560.
  • the image frames processed by the graphics processor 541 may be stored in the memory 590 (or other storage medium) or sent via the radio frequency unit 510 or the network module 520.
  • the microphone 542 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication network side device via the radio frequency unit 510 for output in the case of a telephone call mode.
  • the terminal 50 also includes at least one sensor 550, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 561 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 561 and/or when the terminal 50 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 550 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 560 is used to display information input by the user or information provided to the user.
  • the display unit 560 may include a display panel 561, and the display panel 561 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 570 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 570 includes a touch panel 571 and other input devices 572.
  • the touch panel 571 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 571 or near the touch panel 571. operate).
  • the touch panel 571 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 511, the command sent by the processor 511 is received and executed.
  • the touch panel 571 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 570 may also include other input devices 572.
  • other input devices 572 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 571 can cover the display panel 561.
  • the touch panel 571 detects a touch operation on or near it, it transmits it to the processor 511 to determine the type of touch event, and then the processor 511 determines the type of the touch event according to the touch The type of event provides corresponding visual output on the display panel 561.
  • the touch panel 571 and the display panel 561 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 571 and the display panel 561 can be integrated Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 580 is an interface for connecting an external device and the terminal 50.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 580 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 50 or may be used to communicate between the terminal 50 and the external device. Transfer data between.
  • the memory 590 can be used to store software programs and various data.
  • the memory 590 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 590 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 511 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 511 may include one or more processing units; preferably, the processor 511 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface and application programs, etc., the modem
  • the processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 511.
  • the terminal 50 may also include a power source 512 (such as a battery) for supplying power to various components.
  • a power source 512 such as a battery
  • the power source 512 may be logically connected to the processor 511 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. Function.
  • the terminal 50 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present invention further provides a terminal, including: a memory, a processor, and a computer program stored in the memory and running on the processor, and when the computer program is executed by the processor, a signal applied to the terminal is implemented.
  • a terminal including: a memory, a processor, and a computer program stored in the memory and running on the processor, and when the computer program is executed by the processor, a signal applied to the terminal is implemented.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk, or optical disk, etc.
  • an embodiment of the present invention provides a network device 600, including:
  • the first sending module 601 is configured to send measurement interval configuration information to the terminal, where the measurement interval configuration information includes at least one of the first measurement interval configuration information and the second measurement interval configuration information, and the second measurement interval configuration
  • the interval mode configuration information indicated by the information is different from the interval mode configuration information indicated by the first measurement interval configuration information.
  • the interval mode configuration information includes at least one of the following:
  • the interval mode configuration information indicated by the first measurement interval configuration information and the interval mode configuration information indicated by the second measurement interval configuration information satisfy at least one of the following:
  • the interval length indicated by the second measurement interval configuration information is greater than the interval length indicated by the first measurement interval configuration information
  • the interval repetition period indicated by the second measurement interval configuration information is greater than the interval repetition period indicated by the first measurement interval configuration information
  • the interval pattern identifier indicated by the second measurement interval configuration information is greater than the interval pattern identifier indicated by the first measurement interval configuration information.
  • the third acquiring module is configured to acquire the first request signaling sent by the terminal before the first sending module sends the measurement interval configuration information to the terminal;
  • the first request signaling is used to indicate to the network device that the terminal will start to use the measurement interval corresponding to the first measurement interval configuration information or the second measurement interval configuration information to perform signal measurement.
  • the first request signaling includes at least one of the following:
  • the frequency point information that the terminal expects to perform the measurement is the frequency point information that the terminal expects to perform the measurement.
  • the first request signaling is associated with the positioning frequency layer.
  • the fourth obtaining module is configured to obtain the second request signaling sent by the terminal after the third obtaining module obtains the first request signaling sent by the terminal;
  • the second request signaling is used to indicate to the network device that the terminal will stop using the first measurement interval configuration information or the measurement interval corresponding to the second measurement interval configuration information to perform signal measurement.
  • the second request signaling includes at least one of the following:
  • the frequency point information that the terminal expects to perform the measurement is the frequency point information that the terminal expects to perform the measurement.
  • the second request signaling is associated with the positioning frequency layer.
  • the sixth sending module is configured to send trigger signaling after the first sending module sends the measurement interval configuration information to the terminal or before the terminal performs measurement in the measurement interval.
  • the trigger signaling is used to trigger the on-demand measurement interval.
  • the first measurement interval configuration information or the second measurement interval configuration information includes at least one of the following:
  • the preset time interval is an offset value of the start time of the on-demand measurement interval with respect to the receiving moment of the trigger signaling.
  • the second receiving module is configured to receive the third request signaling sent by the terminal before the sixth sending module sends the trigger signaling;
  • the third request signaling is used to request an on-demand measurement interval.
  • the third request signaling includes at least one of the following:
  • the frequency point information that the terminal expects to perform the measurement is the frequency point information that the terminal expects to perform the measurement
  • the desired interval time domain position of the terminal is the desired interval time domain position of the terminal.
  • the third receiving module is configured to receive the capability information sent by the terminal before the first sending module sends the measurement interval configuration information to the terminal;
  • the capability information includes at least one of the following:
  • the terminal can use more interval modes for positioning.
  • the signal measurement increases the matching degree between the measurement interval configuration and the positioning signal configuration, thereby effectively reducing the limitation when using the measurement interval to measure positioning.
  • the network device embodiment is a network device corresponding to the measurement interval configuration method applied to the network device, and all the implementation methods of the foregoing embodiment are applicable to the network device embodiment, and can also achieve the same. Technical effect.
  • a reporting method is also provided to solve the problem of uplink positioning resource allocation.
  • the location management device in uplink positioning, lacks sufficient auxiliary information (such as information on the cause of measurement failure provided by the network device), and the location management device cannot recommend or determine the allocation of uplink positioning resources (such as for positioning). SRS).
  • an embodiment of the present invention also provides a measurement report method, which is applied to a network device.
  • the network device can be a serving gNB or a neighboring gNB, or a serving cell or a neighboring cell.
  • the method includes :
  • Step 701 According to at least one of the relationship information between the discontinuous reception DRX status and the channel sounding reference signal SRS transmission, the DRX configuration information, and the SRS configuration information, determine or report the reason information for the signal measurement failure.
  • the Discontinuous Reception (DRX) cycle (cycle) is composed of "On Duration” and "Opportunity for DRX”:
  • the UE monitors and receives the physical downlink control channel ( Physical Downlink Control Channel, PDCCH) (that is, the DRX activation time, which can also be called the activation period);
  • the UE does not receive downlink channel data to save power consumption (that is, the DRX inactive time, or it can be This is called the dormant period).
  • the foregoing information about the relationship between the DRX state and the channel sounding reference signal SRS transmission or not includes: sending the SRS only during the DRX active time, or sending the SRS during the DRX inactive time.
  • the SRS for positioning is sent only during the DRX active time (Active Time), or the SRS for positioning is sent during the DRX non-active time (no Active Time).
  • the SRS for positioning is only sent during the DRX active time, that is, the SRS for positioning is not sent during the DRX inactive time.
  • sending the SRS for positioning during the DRX inactive time may include: sending the SRS for positioning only during the DRX inactive time, or sending the SRS for positioning during the DRX inactive time and the DRX active time.
  • sending the SRS only during the DRX inactive time includes: if the SRS sending time window partially overlaps the DRX active time window, canceling the sending of the overlapping part of the SRS.
  • sending or not sending the SRS during the DRX inactive time and/or how to send the SRS may be determined by the network device and instructed to the terminal.
  • sending or not sending the SRS during the DRX inactive time and/or how to send the SRS may be determined by the terminal.
  • sending or not sending the SRS during the DRX inactive time and/or how to send the SRS may also be agreed upon by the agreement.
  • the behavior when the measurement fails or the signal measurement and transmission is not performed due to the DRX configuration is clarified.
  • the SRS includes at least one of the following: aperiodic SRS, periodic SRS, and semi-static SRS.
  • the aperiodic SRS may behave differently from the periodic SRS and the semi-static SRS.
  • the SRS for positioning is sent during the DRX active time and the DRX inactive time.
  • report the reason information of the signal measurement failure including:
  • the location management device may be located in the core network.
  • the location management device may be a location management function (LMF, E-SLMC), and the like.
  • the location management device may also be located in the access network.
  • the information about the reason for the measurement failure may be sent to the location management device through the LTE positioning protocol (LPPA) or the evolved NRPPA or other evolutions.
  • LTE positioning protocol LPPA
  • the evolved NRPPA evolved NRPPA
  • the location management device before the present invention, obtains the following information: the current period of the SRS, and the DRX configuration information.
  • the current period of the SRS is determined according to the function of the configuration period of the SRS and/or the function of the DRX period.
  • the current period of the SRS is determined by the configuration of DRX. Increase.
  • the function includes one of the following:
  • the least common multiple (A, B).
  • A is a value determined according to the function of the configuration period of the SRS
  • B is a value determined according to the function of the period of DRX.
  • the value determined according to the function of the configuration period of the SRS may also include the configuration period of the SRS itself.
  • the value determined according to the function of the DRX cycle may also include the DRX cycle itself.
  • the current period of the SRS is one of the following:
  • the current period of the SRS is T2;
  • the current cycle of the SRS is T3;
  • the current period of the SRS is T1;
  • T1, T2 and T3 are all different.
  • the DRX configuration information includes at least one of the following: DRX cycle, DRX duration timer configuration information, DRX inactive timer configuration information, DRX downlink retransmission timer DRX uplink retransmission timer configuration information, DRX long cycle start offset timer configuration information, DRX short cycle configuration information, DRX short cycle timer configuration information, DRX downlink HARQ round-trip transmission time timer
  • DRX cycle DRX duration timer configuration information
  • DRX inactive timer configuration information DRX downlink retransmission timer
  • DRX uplink retransmission timer configuration information DRX long cycle start offset timer configuration information
  • DRX short cycle configuration information DRX short cycle timer configuration information
  • DRX downlink HARQ round-trip transmission time timer The configuration information of the DRX uplink HARQ round-trip transmission time timer and the configuration information of the DRX command MAC CE.
  • the DRX duration timer (drx-onDurationTimer): the duration of the UE monitoring the PDCCH in a DRX cycle. Once started, restart is not allowed in the middle.
  • DRX inactivity timer (drx-InactivityTimer): The length of time that PDCCH needs to be monitored after receiving a PDCCH indicating a new transmission. The Timer starts at the first symbol after the end of the reception of the PDCCH indicating the new transmission (UL or DL) Or reboot. Stop this timer when DRX command MAC CE is received.
  • DRX downlink retransmission timing/DRX uplink retransmission timer (drx-RetransmissionTimerDL/drx-RetransmissionTimerUL): This timer is the per HARQ Process parameter, indicating the maximum PDCCH time slot that the UE needs to continuously monitor in order to receive the desired downlink retransmission data (slot) number. The timer is started on the first symbol after the drx-HARQ-RTT-Timer expires. This timer is stopped when the PDCCH indicating downlink retransmission is received.
  • DRX Long Cycle Start Offset Timer (drx-LongCycleStartOffset): It can mean longDRX-Cycle and drxStartOffset at the same time. If the short cycle (ShortDrx-Cycle) parameter is also configured on the network side, the long cycle must be configured as an integer multiple of the short cycle.
  • DRX short cycle (drx-ShortCycle): the cycle length of the short cycle DRX.
  • DRX short cycle timer (drx-ShortCycleTimer): how many short cycles it lasts before entering the long cycle without receiving the PDCCH. Start when the drx-inactivityTimer expires and a short period is configured. The length of the Timer is an integer multiple of the short period.
  • DRX downlink HARQ round-trip transmission time timer/DRX uplink HARQ round-trip transmission time timer (drx-HARQ-RTT-TimerDL/drx-HARQ-RTT-TimerUL): This timer is the Per HARQ Process parameter, indicating the minimum waiting time for retransmission time interval. The timer is started at the first symbol after the end of ACK/NACK transmission. During the running of the timer, the corresponding MAC does not monitor the PDCCH. When the Timer times out, the drx-RetransmissionTimerDL corresponding to the HARQ process is started.
  • the (Long) DRX command MAC CE ((Long) DRX Command MAC CE) is introduced to make the UE enter the sleep state as quickly as possible.
  • Long CE can be used to stop drx-ShortCycleTimer and enter Long DRX; while CE is used to stop drx-InactivityTimer, if short period DRX is configured, then short period DRX is entered, otherwise, long period DRX is entered. Further, before or after determining or reporting the reason information for the signal measurement failure, the method further includes:
  • the location request includes a measurement period or a reporting period
  • the measurement period or reporting period is the current period of the SRS or a period determined by the location management device.
  • the reason information for the signal measurement failure includes at least one of the following:
  • the DRX configuration does not have enough indication information for signal measurement.
  • the information about the reason for the signal measurement failure is sent to the location management device through the LPPA or NRPPa or its evolution. Further, the information about the reason for the signal measurement failure may be included in the following content, which is listed in the enumeration information. Once the measurement fails, it is Due to the corresponding reasons mentioned above, it is reported.
  • the network device reports the information about the cause of the measurement failure to the location management device, and the location management device can better recommend or determine the uplink positioning resources (such as used for positioning) after obtaining this information.
  • the allocation of SRS reduces unnecessary waste of uplink resources and improves the efficiency of uplink resource use.
  • an embodiment of the present invention also provides a measurement report method, which is applied to a location management device, and includes:
  • Step 801 Receive information about the reason for the signal measurement failure sent by the network device.
  • the location management device may be located in a core network, for example, the location management device may be a location management function (LMF, E-SLMC), etc.
  • the location management device may also be located in the access network.
  • the reason information for the signal measurement failure includes at least one of the following:
  • the DRX configuration does not have enough indication information for signal measurement.
  • Step 802 Determine the cause of the measurement failure or determine the location request information according to the information about the cause of the signal measurement failure.
  • the method further includes:
  • the location request includes a measurement period or a reporting period
  • the measurement period or reporting period is the current period of the SRS or a period determined by the location management device.
  • the location server when it receives target information (including at least one of the following: DRX configuration information, SRS configuration information, information about the relationship between DRX status and SRS transmission, and information about the reason for signal measurement failure), it can cancel the serving cell Or the neighboring cell requests the measurement or location information of the SRS, or reconfigures or updates the service cell or neighboring cell's measurement or location request information of the SRS.
  • target information including at least one of the following: DRX configuration information, SRS configuration information, information about the relationship between DRX status and SRS transmission, and information about the reason for signal measurement failure
  • the location request includes a measurement period or a reporting period
  • the measurement period or reporting period is the current period of the SRS or a period determined by the location management device.
  • the network device reports the information about the cause of the measurement failure to the location management device, and the location management device can better recommend or determine the uplink positioning resources (such as used for positioning) after obtaining this information.
  • the allocation of SRS reduces unnecessary waste of uplink resources and improves the efficiency of uplink resource use.
  • an embodiment of the present invention also provides a network device 900, including:
  • the reporting module 901 is configured to determine or report the reason information for the signal measurement failure according to at least one of the relationship information between the discontinuous reception DRX status and the channel sounding reference signal SRS transmission, DRX configuration information, and SRS configuration information.
  • the information about the reason for the signal measurement failure includes at least one of the following:
  • the DRX configuration does not have enough indication information for signal measurement.
  • the reporting module is configured to send information about the reason for the signal measurement failure to the location management device.
  • the fifth receiving module is used to receive location request information sent by the location management device before or after the reporting module determines or reports the reason information for the signal measurement failure.
  • the location request information is used to cancel or reconfigure or re-request the network device to pair Measurement of said signal;
  • the location request includes a measurement period or a reporting period
  • the measurement period or reporting period is the current period of the SRS or a period determined by the location management device.
  • the network device of the embodiment of the present invention reports the information about the cause of the measurement failure to the location management device, and the location management device can better recommend or determine the allocation of uplink positioning resources (such as SRS for positioning) after obtaining this information.
  • uplink positioning resources such as SRS for positioning
  • an embodiment of the present invention also provides a location management device 1000, including:
  • the fourth receiving module 1001 is configured to receive information about the reason for the signal measurement failure sent by the network device;
  • the determining module 1002 is configured to determine the cause of the measurement failure or determine the location request information according to the information of the cause of the signal measurement failure.
  • the seventh sending module is configured to send location request information to a network device, where the location request information is used to cancel or reconfigure or re-request the network device to measure the signal;
  • the location request includes a measurement period or a reporting period
  • the measurement period or reporting period is the current period of the SRS or a period determined by the location management device.
  • the location management device in the embodiment of the present invention obtains the information about the cause of the measurement failure reported by the network device, and the location management device can better recommend or decide the allocation of uplink positioning resources (such as SRS for positioning) according to the information about the cause of the measurement failure.
  • uplink positioning resources such as SRS for positioning
  • FIG. 11 is a structural diagram of a network device according to an embodiment of the present invention, which can realize the details of the measurement interval configuration method or the measurement report method described above, and achieve the same effect.
  • the network device 1100 includes: a processor 1101, a transceiver 1102, a memory 1103, and a bus interface, where the processor 1101 is used for:
  • the measurement interval configuration information is sent to the terminal through the transceiver 1102, the measurement interval configuration information includes at least one of the first measurement interval configuration information and the second measurement interval configuration information, and the interval indicated by the second measurement interval configuration information
  • the mode configuration information is different from the interval mode configuration information indicated by the first measurement interval configuration information.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1101 and various circuits of the memory represented by the memory 1103 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described in this article.
  • the bus interface provides the interface.
  • the transceiver 1102 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the above-mentioned processor 1101 is configured to: determine or report information on the cause of the signal measurement failure according to at least one of the relationship information between the discontinuous reception DRX status and the channel sounding reference signal SRS transmission, DRX configuration information, and SRS configuration information .
  • the network device of the embodiment of the present invention can implement the various procedures of the above-mentioned measurement interval configuration method embodiment applied to the network device or the various procedures of the measurement reporting method embodiment applied to the network device, and can achieve the same technical effect. In order to avoid Repeat, I won’t repeat it here.
  • the embodiment of the present invention also provides a network device, including a processor, a memory, and a computer program stored in the memory and running on the processor.
  • the computer program is applied to the network device when the computer program is executed by the processor.
  • Each process of the measurement interval configuration method embodiment or the implementation of each process of the measurement reporting method embodiment applied to a network device can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • the embodiment of the present invention also provides a location management device, including: a memory, a processor, and a computer program stored in the memory and running on the processor, and the computer program is implemented when the processor is executed The steps of the measurement report method applied to the location management device as described above.
  • a location management device including: a memory, a processor, and a computer program stored in the memory and running on the processor, and the computer program is implemented when the processor is executed The steps of the measurement report method applied to the location management device as described above.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process or implementation of the method for configuring a measurement interval applied to a network device is realized.
  • Each process of the measurement reporting method embodiment applied to the location management device can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk, or optical disk, etc.
  • the network side equipment can be the base station (Base Transceiver Station, referred to as BTS) in Global System of Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, referred to as CDMA), or it can be broadband
  • BTS Base Transceiver Station
  • GSM Global System of Mobile Communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • eNB or eNodeB for short can also be the Evolutional Node B (eNB or eNodeB for short) in LTE, or a relay station or an access point , Or base stations in the future 5G network, etc., are not limited here.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes a number of instructions to enable an electronic device (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the method described in each embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种信号测量、测量间隔配置、测量上报方法及相关设备。其中,信号测量方法包括:获取测量间隔配置信息,测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,第二测量间隔配置信息指示的间隔模式配置信息与第一测量间隔配置信息指示的间隔模式配置信息不同;根据测量间隔配置信息,在测量间隔中进行信号测量。

Description

信号测量、测量间隔配置、测量上报方法、终端、网络设备及位置管理设备
相关申请的交叉引用
本申请主张在2020年04月03日在中国提交的中国专利申请号No.202010258720.3的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,特别涉及一种信号测量、测量间隔配置、测量上报方法、终端、网络设备及位置管理设备。
背景技术
相关技术中,测量间隔(measurement gap)的长度最长为6ms,同时考虑到measurement gap的切换时间,实际用户设备(User Equipment,UE,也称终端)可以使用间隔gap中大约5ms的时间进行测量信号。新空口(New Radio,NR)定位中,存在大量使用measurement gap测量定位参考信号(Positioning Reference Signal,PRS)的情况。但是考虑到PRS配置中允许配置连续的PRS(比如配置PRS重复,或者多个PRS resource)超过5ms,从而造成测量间隔配置与PRS配置不匹配,使用现有的measurement gap配置会限制UE对PRS的测量。
发明内容
本发明实施例提供一种信号测量、测量间隔配置、测量上报方法及相关设备,以解决现有的测量间隔配置会限制终端对PRS的测量的问题。
为了解决上述技术问题,本发明采用如下技术方案:
第一方面,本发明实施例提供了一种信号测量方法,应用于终端,包括:
获取测量间隔配置信息,所述测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,所述第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同;
根据所述测量间隔配置信息,在测量间隔中进行信号测量。
第二方面,本发明实施例还提供一种测量间隔配置方法,应用于网络设备,包括:
将测量间隔配置信息发送给终端,所述测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,所述第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同。
第三方面,本发明实施例还提供一种终端,包括:
第一获取模块,用于获取测量间隔配置信息,所述测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,所述第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同;
第一测量模块,用于根据所述测量间隔配置信息,在测量间隔中进行信号测量。
第四方面,本发明实施例还提供一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的信号测量方法的步骤。
第五方面,本发明实施例还提供一种网络设备,包括:
第一发送模块,用于将测量间隔配置信息发送给终端,所述测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,所述第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同。
第六方面,本发明实施例还提供了一种测量上报方法,应用于网络设备,包括:
根据非连续接收DRX状态与信道探测参考信号SRS发射与否的关系信息、DRX配置信息和SRS配置信息中的至少一项,确定或上报信号测量失败的原因信息。
第七方面,本发明实施例还提供了一种测量上报方法,应用于位置管理设备,包括:
接收网络设备发送的信号测量失败的原因信息;
根据所述信号测量失败的原因信息,确定测量失败原因或确定位置请求信息。
第八方面,本发明实施例还提供了一种网络设备,包括:
上报模块,用于根据非连续接收DRX状态与信道探测参考信号SRS发射与否的关系信息、DRX配置信息和SRS配置信息中的至少一项,确定或上报信号测量失败的原因信息。
第九方面,本发明实施例还提供了一种位置管理设备,包括:
第四接收模块,用于接收网络设备发送的信号测量失败的原因信息;
确定模块,用于根据所述信号测量失败的原因信息,确定测量失败原因或确定位置请求信息。
第十方面,本发明实施例还提供一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述测量间隔配置方法的步骤或如上所述的应用于网络设备的测量上报方法的步骤。
第十一方面,本发明实施例还提供了一种位置管理设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的应用于位置管理设备的测量上报方法的步骤。
第十二方面,本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述信号测量方法的步骤或上述测量间隔配置方法的步骤或上述测量上报方法的步骤。
第十三方面,本发明实施例还提供一种计算机程序产品,存储在计算机可读存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述信号测量方法的步骤或上述测量间隔配置方法的步骤或上述测量上报方法的步骤。
第十四方面,本发明实施例还提供一种终端,所述终端用于执行如上所述的信号测量方法的步骤。
第十五方面,本发明实施例还提供一种网络设备,所述网络设备用于执行如上所述测量间隔配置方法的步骤或如上所述的应用于网络设备的测量上报方法的步骤。
第十六方面,本发明实施例还提供一种位置管理设备,所述位置管理设备用于执行如上所述的应用于位置管理设备的测量上报方法的步骤。
本发明的有益效果是:
上述方案,由于第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同,使得终端可以使用更多的间隔模式来进行定位信号测量,增加了测量间隔配置与定位信号配置的匹配度,进而能够有效减少使用测量间隔测量定位时的限制。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1表示本发明实施例可应用的一种网络系统的结构图;
图2表示本发明实施例的信号测量方法的流程示意图;
图3表示本发明实施例的测量间隔配置方法的流程示意图;
图4表示本发明实施例的终端的模块示意图;
图5表示本发明实施例的终端的结构框图;
图6表示本发明实施例的网络设备的模块示意图之一;
图7表示本发明实施例的测量上报方法的流程示意图之一;
图8表示本发明实施例的测量上报方法的流程示意图之二;
图9表示本发明实施例的网络设备的模块示意图之二;
图10表示本发明实施例的位置管理设备的模块示意图;
图11表示本发明实施例的网络设备的结构框图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本发明实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本发明实施例中并不限定终端11的具体类型。网络设备12可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进 型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本发明实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本发明进行详细描述。
如图2所示,本发明实施例提供一种信号测量方法,应用于终端,包括:
步骤201,获取测量间隔配置信息,所述测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,所述第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同。
上述间隔模式配置信息包括以下至少一项:
间隔模式标识;
间隔长度(测量间隔长度);
间隔重复周期(间隔周期)。
上述间隔模式配置信息(gap pattern configuration)可以由协议约定多个。比如,协议约定一个表格,表格中包含多个间隔模式配置。在网络设备发送上述测量间隔配置信息给终端时,由网络设备根据终端的请求或者由网络设备本身决定终端使用的间隔模式的内容(间隔长度与间隔重复周期的组合)或间隔模式。本发明实施例中,不同的间隔模式配置信息对应的间隔模式(gap pattern)不同。
本发明实施例中,上述第一测量间隔配置信息包括:第一间隔模式配置信息;上述第二测量间隔配置信息包括:第二间隔模式配置信息,或者,所述第二测量间隔配置信息包括扩展因子,所述第二测量间隔配置信息指示的间隔模式配置信息是根据所述第一测量间隔配置信息和所述扩展因子确定的。在本发明的具体实施例中,上述第一测量间隔配置信息和第二测量间隔配置信息可以分别包括间隔模式标识、间隔长度和间隔重复周期中的至少一项。上述第一测量间隔配置信息或第二测量间隔配置信息可以显式地包含间隔模式配置信息,即直接包括间隔模式配置信息,也可以通过包含间隔长度和间 隔重复周期中的至少一项的方式隐式地包含间隔模式配置信息。例如,上述第一测量间隔配置信息中可以包括:间隔模式配置信息,该间隔模式配置信息包括间隔长度、间隔模式标识和间隔重复周期中的至少一项(显式);或上述第一测量间隔配置信息中包括间隔模式标识,不包括间隔长度和间隔重复周期(显式)。又例如,上述第一测量间隔配置信息中可以包括间隔长度和间隔重复周期中的至少一项(隐式),即第一测量间隔配置信息中包含了间隔模式配置中的内容(长度、周期),而不显式地体现间隔模式的概念。该实施例中,第二测量间隔配置信息指示的间隔模式配置信息也可以表示为第二测量间隔配置信息包含的间隔模式配置信息,第一测量间隔配置信息指示的间隔模式配置信息也可表示为第一测量间隔配置信息包含的间隔模式配置信息。
进一步地,上述扩展因子可以包括周期扩展因子和/或长度扩展因子。也就是说,上述测量间隔配置信息还与周期扩展因子(period scaling factor)或长度扩展因子(length scaling factor)有关。所述周期扩展因子用于表示所述第一测量间隔配置信息或第二测量间隔配置信息指示的间隔重复周期的扩展倍数。所述长度扩展因子用于表示所述第一测量间隔配置信息或第二测量间隔配置信息指示的间隔长度的扩展倍数。
本发明实施例中扩展后的间隔长度小于或等于间隔周期,或者扩展后的间隔长度小于或等于扩展后的周期。
在本发明的具体实施例中,上述长度扩展因子取值为整数,可以为{2,3,4…10}其中之一。以GAP长度6ms为例,若扩展因子配置为2,则gap长度变为12ms。扩展因子也可以称为重复因子。当网络侧没有配置扩展因子,终端按照指示的gap长度执行测量。周期扩展因子取值为整数,可以为{2,4,8,16,32,64}其中之一。以GAP周期160ms为例,若扩展因子配置为2,则gap长度变为的320ms。当网络侧没有配置扩展因子,终端按照指示的gap周期执行测量。
上述测量间隔配置信息用于定位信号测量,例如,参考信号时间差(Reference Signal Time Difference,RSTD),参考信号接收功率(Reference Signal Receiving Power,RSRP)测量等。该测量间隔配置信息可通过无线资源控制(Radio Resource Control,RRC)信令配置。上述第一测量间隔配置信 息和第二测量间隔配置信息还可以分别包括间隔偏移(gap offset)和间隔定时提前量(gap TA)。
进一步地,上述第一测量间隔配置信息指示的间隔模式配置信息可以为现有的间隔模式配置信息(如TS38.133 9.1.2-1的gap pattern),如表1所示,间隔模式标识的取值可以为0至23,间隔长度的取值可以为{1.5,3,3.5,4,5.5,6}ms,间隔重复周期的取值为{20,40,80,160}ms。
表1
Figure PCTCN2021084440-appb-000001
Figure PCTCN2021084440-appb-000002
上述第二测量间隔配置信息指示的间隔模式配置信息可以是对第一测量间隔配置信息指示的间隔模式配置信息进行扩展得到的,如对间隔模式标识、间隔长度和/或间隔重复周期进行扩展。上述第二测量配置信息指示的间隔模式配置信息也可以是新引入的间隔模式配置信息。
步骤202,根据所述测量间隔配置信息,在测量间隔中进行信号测量。
这里,信号测量可以是定位信号测量,也可以是无线资源管理(Radio Resource Management,RRM)测量。
本发明实施例的信号测量方法,由于第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同,使得终端可以使用更多的间隔模式来进行定位信号测量,增加了测量间隔配置与定位信号配置的匹配度,进而能够有效减少使用测量间隔测量定位时的限制。
进一步地,所述第一测量间隔配置信息指示的间隔模式配置信息与所述第二测量间隔配置信息指示的间隔模式配置信息满足以下至少一项:
所述第二测量间隔配置信息指示的间隔长度大于所述第一测量间隔配置信息指示的间隔长度;
所述第二测量间隔配置信息指示的间隔重复周期大于所述第一测量间隔配置信息指示的间隔重复周期;
所述第二测量间隔配置信息指示的间隔模式标识大于所述第一测量间隔配置信息指示的间隔模式标识。
进一步地,所述第一或第二测量间隔配置信息指示的间隔长度、间隔重复周期或间隔模式标识可以解释为第一或第二测量间隔配置信息指示的间隔模式配置信息中指示的间隔长度、间隔重复周期或间隔模式标识。
进一步地,所述第一测量间隔配置信息指示的间隔长度、间隔重复周期或间隔模式标识可以解释为第一测量间隔配置信息指示的最大间隔长度、最 大间隔重复周期或最大间隔模式标识。
可选的,作为另外一种表示“第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同”的方式,所述第一测量间隔配置信息指示的间隔模式配置信息与所述第二测量间隔配置信息指示的间隔模式配置信息还可以满足以下至少一项:
所述第二测量间隔配置信息指示的间隔长度至少一个不同于所述第一测量间隔配置信息指示的间隔长度;
所述第二测量间隔配置信息指示的间隔重复周期至少一个不同于所述第一测量间隔配置信息指示的间隔重复周期;
所述第二测量间隔配置信息指示的间隔模式标识至少一个不同于所述第一测量间隔配置信息指示的间隔模式标识;
进一步地,所述第二测量间隔配置信息指示的间隔模式标识至少一个不同于所述第一测量间隔配置信息指示的间隔模式标识还可以解释为:所述第二测量间隔配置信息指示的间隔模式标识至少一个大于所述第一测量间隔配置信息指示的最大间隔模式标识。
作为一种具体的实现方式,所述第一测量间隔配置信息指示的间隔模式配置信息与所述第二测量间隔配置信息指示的间隔模式配置信息满足以下至少一项:
上述第二测量间隔配置信息指示的间隔长度大于6ms;
上述第二测量间隔配置信息指示的间隔重复周期大于160ms;
上述第二测量间隔配置信息指示的间隔模式标识大于23。
该实现方式中,上述第二测量间隔配置信息指示的间隔模式配置信息是对第一测量间隔配置信息指示的间隔模式配置信息进行扩展得到的。例如,间隔模式标识大于23,间隔长度大于6ms,不改变现有周期配置,如表2所示,第二测量间隔配置信息指示的间隔模式标识为的取值为23至31,间隔长度的取值为{10,14}ms,间隔重复周期的取值为{20,40,80,160}ms。又如表3所示,第二测量间隔配置信息指示的间隔模式标识为的取值为23至31,间隔长度的取值为{10}ms,间隔重复周期的取值为{20,40,80,160,320,640,1280,2560}ms。即在扩展间隔模式标识和间隔长度时, 同时改变现有周期配置。可选的,第二测量间隔配置信息指示的间隔重复周期与PRS周期关联。
表2
间隔模式标识 间隔长度(ms) 间隔重复周期(ms)
0 6 40
1 6 80
2 3 40
3 3 80
4 6 20
5 6 160
6 4 20
7 4 40
8 4 80
9 4 160
10 3 20
11 3 160
12 5.5 20
13 5.5 40
14 5.5 80
15 5.5 160
16 3.5 20
17 3.5 40
18 3.5 80
19 3.5 160
20 1.5 20
21 1.5 40
22 1.5 80
23 1.5 160
24 10 20
25 10 40
26 10 80
27 10 160
28 14 20
29 14 40
30 14 80
31 14 160
表3
间隔模式标识 间隔长度(ms) 间隔重复周期(ms)
0 6 40
1 6 80
2 3 40
3 3 80
4 6 20
5 6 160
6 4 20
7 4 40
8 4 80
9 4 160
10 3 20
11 3 160
12 5.5 20
13 5.5 40
14 5.5 80
15 5.5 160
16 3.5 20
17 3.5 40
18 3.5 80
19 3.5 160
20 1.5 20
21 1.5 40
22 1.5 80
23 1.5 160
24 10 20
25 10 40
26 10 80
27 10 160
28 10 320
29 10 640
30 10 1280
31 10 2560
第二测量间隔配置信息指示的间隔模式配置信息除了是在第一测量间隔配置信息指示的间隔模式配置信息的基础上进行扩展得到的,还可以是新引入的间隔模式(additional gap pattern)配置信息。可选的,该additional gap pattern配置信息只用于定位测量;可选的,该additional gap pattern配置信息与UE类型有关,比如:用于对数据速率相对要求较低的UE。可选的,该additional gap pattern配置信息的内容如表4所示。
表4
Figure PCTCN2021084440-appb-000003
Figure PCTCN2021084440-appb-000004
Figure PCTCN2021084440-appb-000005
本发明实施例中,第二测量间隔配置信息指示的间隔模式配置信息中的间隔长度大于第一测量间隔配置信息指示的间隔模式配置信息中的长度,从而使得测量间隔的间隔长度与定位信号的配置更加匹配,有效解决measurement gap长度不够,造成无法测量PRS的问题。
对应的,测量间隔配置可以由当前测量间隔配置扩展,如测量间隔配置信息元素(MeasGapConfig information element)所示:
MeasGapConfig information element
Figure PCTCN2021084440-appb-000006
Figure PCTCN2021084440-appb-000007
其中,“measgapconfig”IE中,“gapoffset”表示gap的偏移,“mgl”表示gap的长度,“mgrp”表示gap重复周期,“mgta”表示gap的定时提前量。
测量间隔配置也可以是新的测量间隔配置(如measgapconfig-add)。
作为一种可选的实现方式,MeasGapConfig-add information element如下所示:
MeasGapConfig-add information element
Figure PCTCN2021084440-appb-000008
Figure PCTCN2021084440-appb-000009
作为另一种可选的实现方式,MeasGapConfig-add information element如下所示:
MeasGapConfig-add information element
Figure PCTCN2021084440-appb-000010
Figure PCTCN2021084440-appb-000011
其中,“gapoffset add”中的‘add N’可以对应新的测量间隔模式(additional gap pattern configuration)中标识(gap pattern ID)为N的间隔模式的gap偏移。该实现方式中可以配置的gap pattern的数目与上面给出的新的测量间隔模式中gap pattern的数目一致。
可选的,新的测量间隔的配置也可以是专门用于定位测量的配置,如“measgapconfig-pos”。上述IE中的“add”也可以对应修改为“pos”。
本发明实施例中,给出的测量间隔模式表格与测量间隔模式配置的参数为本发明方案的一个举例说明。测量间隔模式以及测量间隔配置中的gap pattern ID,gap length,gap repetition period,gap offset等参数的取值可以不限于上述给出的参数。
可选的,上述测量间隔模式表格与测量间隔模式配置中的gap length的取值可以包含但不限于以下数值之一:
{1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,7,8,8.5,9,10,14 16.5,17,32,33,54,64,80}。
可选的,上述测量间隔模式表格与测量间隔模式配置中的gap repetition period的取值可以包含以下数值之一:
{20,80,160,320,640,1280,2560,5120,10240}。
对应的,上述gap offset取值为(0至period-1)。
作为另外一种可选的实施方式,若终端使用的测量间隔测量的信号为定位参考信号,那么测量间隔配置还与定位频率层(positioning frequency layer)有关。测量间隔配置中还应包含定位频率层标识。比如,测量间隔配置的至少一个参数如:间隔长度、周期、偏移、定时提前等可以按照频率层标识分组,换句话说,一个频率层标识对应一组测量间隔配置的参数。
进一步地,所述获取测量间隔配置信息之前,所述方法还包括:
发送第一请求信令;
所述第一请求信令用于向网络设备指示终端将开始使用所述第一测量间隔配置信息对应的测量间隔或所述第二测量间隔配置信息对应的测量间隔进行信号测量。
其中,上述第一请求信令包括以下至少一项:
开始参数;
终端期望(UE expect/prefer)的间隔模式标识;
终端期望的间隔偏移;
终端期望的间隔定时提前量;
终端期望的间隔长度扩展因子;
终端期望的间隔周期扩展因子;
终端期望的间隔模式类型;
终端期望的执行测量的频点信息。
进一步地,所述根据所述测量间隔配置信息,进行信号测量之后,所述方法还包括:
发送第二请求信令;
所述第二请求信令用于向网络设备指示终端将停止使用所述第一测量间隔配置信息对应的测量间隔或所述第二测量间隔配置信息对应的测量间隔进行信号测量。
其中,所述第二请求信令包括以下至少一项:
停止参数;
终端期望的间隔模式标识;
终端期望的间隔偏移(gap offset);
终端期望的间隔定时提前量(gap TA);
终端期望的间隔长度扩展因子;
终端期望的间隔周期扩展因子;
终端期望的间隔模式类型;
终端期望的执行测量的频点信息。
其中,上述终端期望的间隔模式(Gap pattern)类型也等价于间隔类型, Gap pattern类型可以为一般gap pattern(如TS38.133 9.1.2-1的gap pattern),additional gap pattern(如专门为定位引入的新的gap pattern表格)或按需间隔模式(on demand gap pattern)。
若测量信号为定位信号PRS,执行测量的频点信息可以为定位频率层(positioning frequency layer)或PRS的中心频点的绝对频率。
或者,执行测量的频点信息可以为positioning frequency layer的参考点A(point A),子载波间隔(SCS),起始PRB位置(starting PRB)和带宽(bandwidth)中的至少一项。
或者,执行测量的频点信息为positioning frequency layer或PRS的中心频点的绝对频率、UE期望测量的bandwidth和SCS中的至少一项。
上述第一请求信令和第二请求信令可以携带在RRC信令中,若终端测量的信号为定位信号,所述第一请求信令或第二请求信令与定位频率层关联(positioning frequency layer)。
作为一种可选的实现方式,UE的请求信令对应的参数表中,上述第一请求信令或第二请求信令携带的至少一个参数按照positioning frequency layer分组。
例如:一个frequency layer对应一组gap pattern ID,gap offset,gap TA,gap长度/周期扩展因子,频点信息等参数。
作为另一种可选的实现方式,若第一请求信令或第二请求信令与positioning frequency layer关联,则第一请求信令(开始信令)或第二请求信令(停止信令)与frequency layer有关,即该参数或信令用于控制positioning frequency layer关联的measurement gap的开始/停止。若开始或停止信令与frequency layer无关,即该参数用于所有的measurement gap的开始或停止。
下面结合具体实施例对上述请求信令进行说明。
下面给出了一种请求信令的IE:“PosMeasurementIndication”,该IE由RRC信令携带。
PosMeasurementIndication message
Figure PCTCN2021084440-appb-000012
Figure PCTCN2021084440-appb-000013
Figure PCTCN2021084440-appb-000014
其中,Pos-FreqInfoList可以表示按照frequency layer分组的参数的列表list,换句话说,这些参数与Positioning frequency layer有关;Pos-FreqInfo表示一个frequency layer关联的一些参数;carrierFreq的一种配置是直接配置:positioning frequency layer对应的中心频点的位置,还有一种配置可以为:positioning frequency layer的point A,SCS,starting PRB,bandwidth其中至少之一,还有一种配置为:positioning frequency layer或PRS的中心频点的绝对频率、UE期望测量的bandwidth、SCS至少其中之一;measPRS-Offset表示UE期望的Gap pattern ID以及gap offset。
进一步地,所述获取测量间隔配置信息之后或在测量间隔中进行信号测量之前,所述方法还包括:
接收触发信令,所述触发信令用于触发按需测量间隔(on-demand measurement gap),按需测量间隔也可以称为非周期测量间隔;
根据所述触发信令,获取按需测量间隔的开始时间;
根据所述按需测量间隔的开始时间,使用按需测量间隔进行信号测量。
此时,所述第一测量间隔配置信息或所述第二测量间隔配置信息包括以下至少一项:
间隔长度;
间隔定时提前量;
间隔长度扩展因子;
预设时间间隔;
间隔模式标识;
其中,所述预设时间间隔为所述按需测量间隔的开始时间相对于所述触发信令的接收时刻的偏移值。
进一步地,所述根据所述触发信令,获取按需测量间隔的开始时间,包括:
根据所述触发信令的接收时刻和预设时间间隔,获取所述按需测量间隔的开始时间;
其中,所述预设时间间隔为所述按需测量间隔的开始时间相对于所述触发信令的接收时刻的偏移值。
进一步地,所述预设时间间隔包括:
时隙偏移值;
或者,时隙偏移值与时隙内的符号偏移值;
或者,以预设时间为单位的绝对时间偏移值,例如,以ms为单位的绝对时间偏移值。
可选的,预设时间间隔、间隔模式标识、间隔长度、间隔提前量、长度扩展因子的至少一项可以由以下方式得到:
(1)协议约定或包含在Measurement gap配置中;
(2)协议约定多个或包含在measurement gap配置中多个,由触发信令指示其中的一个。
(3)协议约定多个或包含在measurement gap配置中多个,由MAC CE激活其中的一部分,再由DCI信令指示激活的部分中的一个。
本发明实施例中,上述触发信令为下行控制信息DCI信令或媒体接入控 制层控制单元MAC CE信令。
可选的,使用按需测量间隔测量信号,终端可以不用接收按需测量间隔配置,只接收触发信令。
进一步地,在获取测量间隔配置信息之前或者接收触发信令之前或者在测量间隔中进行信号测量之前,所述方法还包括:
发送第三请求信令;
其中,所述第三请求信令用于请求按需测量间隔。
所述第三请求信令包括以下至少一项:
终端期望的间隔模式标识;
终端期望的间隔长度;
终端期望的间隔定时提前量;
终端期望的间隔长度扩展因子;
终端期望的间隔模式类型;
终端期望的执行测量的频点信息;
终端期望的间隔时域位置。
在本发明的具体实施例中,如表5所示,考虑到按需测量间隔的非周期性,表5中只给出了按需测量间隔的间隔模式配置信息中的间隔长度。
表5
间隔模式标识 间隔长度(ms)
0 6
1 3
2 4
3 5.5
4 3.5
5 1.5
6 10
7 14
8 24
9 32
10 54
11 64
12 80
本发明实施例中,通过引入按需测量间隔,使测量间隔的使用更加灵活。
进一步地,所述根据所述测量间隔配置信息,进行信号测量,包括:
在所述测量间隔配置信息对应的测量间隔中,仅期望向网络设备发送目标信号或者从网络设备接收目标信号;
其中,所述目标信号包括用于定位测量的信号;
或者,所述目标信号包括用于定位测量的信号和随机接入过程中的信号;
或者,所述目标信号包括用于定位测量的信号和用于无线资源管理RRM测量的信号;
或者,所述目标信号包括用于定位测量的信号、随机接入过程中的信号和用于RRM测量的信号。这里,用于定位测量的信号可以为从网络节点接收的下行定位参考信号。
也就是说,除了接收用于RRM测量、用于随机接入过程和用于定位测量的信号,在measurement gap中,终端不需要向网络设备发送或者从网络设备接收其他信号(如数据等等)。(UE is not required to conduct reception/transmission from/to the corresponding Network devices except the reception of signals used for RRM measurements(s),the signals used for random access procedure and the signals used for positioning measurement(s))。
上述终端行为可以由网络设备指示,终端选择或协议约定。
其中,上述网络设备可以为演进的UMTS陆地无线接入网中的主小区(E-UTRAN PCell)、演进的UMTS陆地无线接入网中的辅小区(E-UTRAN SCell(s))、E-UTRA-NR双连接中的NR服务小区(NR serving cells for E-UTRA-NR dual connectivity)、独立组网的NR服务小区(NR serving cells for SA(with single carrier or CA configured)、NR-E-UTRA双连接的主小区、辅小区及E-UTRAN服务小区(PCell,SCell(s)and E-UTRAN serving cells for NR-E-UTRA dual connectivity)、NR-DC的NR服务小区(NR serving cells for NR-DC)。
进一步地,若所述测量间隔配置信息对应的测量间隔的间隔类型为针对 每个频率范围的测量间隔(per-FR measurement),所述网络设备为相应频率范围的网络设备。
具体的,若measurement gap类型为per-FR measurement,除了用于RRM测量的信号,用于随机接入过程的信号及用于定位测量的信号,UE不需要向相应frequency range中的网络设备发送以及从网络设备节点接收信号。
进一步地,所述根据所述测量间隔配置信息,进行信号测量,包括:
在测量的信号为定位参考信号PRS的情况下,若PRS的持续时间大于测量间隔的长度,且终端期望测量位于所述测量间隔配置信息对应的测量间隔长度之外的PRS,则测量目标PRS;
其中,所述目标PRS是指所述PRS中位于测量间隔的中断时间(interruption time)之外且处于激活的下行带宽部分内,且数值配置numerology与激活的下行带宽部分相同的PRS。
上述终端行为可以由网络设备指示,终端选择或协议约定。
上述PRS还可以解释为:PRS资源,PRS资源集中的PRS资源,连续的PRS资源,PRS资源集中连续的PRS资源,PRS资源集其中之一。
进一步地,如果终端被配置了测量间隔,终端进行信号测量之后,向网络设备上报测量结果,所述测量结果还包含:该测量结果是否与测量间隔有关。
可选的,测量结果与某个PRS资源关联(即上报的测量结果为某个PRS资源的测量结果),终端在上报该PRS资源的测量结果时,上报该测量结果是否与测量间隔有关,即终端在测量该PRS资源时,是否是在测量间隔中测量的。
可选的,终端仅在测量结果与测量间隔无关的情况下,上报测量结果与测量间隔无关的信息。即终端上报某个PRS资源的测量结果时,若该PRS资源未在测量间隔中测量,则上报‘未在测量间隔中测量或与测量间隔无关’这个信息;若该PRS资源在测量间隔中测量,则不上报是否与测量间隔有关的信息。
可选的,终端仅在测量结果与测量间隔有关的情况下,上报测量结果与测量间隔有关的信息。即终端上报某个PRS资源的测量结果时,若该PRS资 源在测量间隔中测量,则上报‘在测量间隔中测量或与测量间隔有关’这个信息;若该PRS资源未在测量间隔中测量,则不上报是否测量间隔有关的信息。
可选的,终端在上报‘测量结果是否与测量间隔有关’这个信息时,还可以直接上报哪些测量结果与测量间隔有关或无关,即直接上报与测量间隔有关或无关的测量结果的标识。其中,测量结果的标识与PRS资源的标识有关,PRS资源的标识包括PRS资源ID,PRS资源集ID,TRP(发送接收点)ID至少之一。
进一步地,所述获取测量间隔配置信息之前,所述方法还包括:
向网络设备发送能力信息;
其中,所述能力信息包括以下至少一项:
是否支持测量间隔;
是否支持扩展的测量间隔;
是否支持按需测量间隔。
换种方式来说,所述能力信息包括以下至少一项:
是否支持测量间隔;
支持哪种测量间隔或者测量间隔模式类型;
其中,测量间隔或者测量间隔模式类型可以包括以下至少一项:
正常的测量间隔(如TS38.133 9.1.2-1的gap pattern);
扩展的测量间隔;
按需测量间隔。
本发明实施例的信号测量方法,由于第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同,使得终端可以使用更多的间隔模式来进行定位信号测量,增加了测量间隔配置与定位信号配置的匹配度,进而能够有效减少使用测量间隔测量定位时的限制。
如图3所示,本发明实施例还提供了一种测量间隔配置方法,应用于网络设备,包括:
步骤301,将测量间隔配置信息发送给终端,所述测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,所述第二测 量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同。
上述间隔模式配置信息包括以下至少一项:
间隔模式标识;
间隔长度;
间隔重复周期。
上述间隔模式配置信息可以由协议约定多个。比如,协议约定一个表格,表格中包含多个间隔模式配置。在网络设备发送上述测量间隔配置信息给终端时,由网络设备根据终端的请求或者由网络设备本身决定终端使用的间隔模式的内容(间隔长度与间隔重复周期的组合)或间隔模式。本发明实施例中,不同的间隔模式配置信息对应的间隔模式(gap pattern)不同。
本发明实施例中,上述第一测量间隔配置信息包括:第一间隔模式配置信息;上述第二测量间隔配置信息包括:第二间隔模式配置信息,或者,所述第二测量间隔配置信息包括扩展因子,所述第二测量间隔配置信息指示的间隔模式配置信息是根据所述第一测量间隔配置信息和所述扩展因子确定的。在本发明的具体实施例中,上述第一测量间隔配置信息和第二测量间隔配置信息可以分别包括间隔模式标识、间隔长度和间隔重复周期中的至少一项。上述第一测量间隔配置信息或第二测量间隔配置信息可以显式地包含间隔模式配置信息,即直接包括间隔模式配置信息,也可以通过包含间隔长度和间隔重复周期中的至少一项的方式隐式地包含间隔模式配置信息。例如,上述第一测量间隔配置信息中可以包括:间隔模式配置信息,该间隔模式配置信息包括间隔长度、间隔模式标识和间隔重复周期中的至少一项(显式);或上述第一测量间隔配置信息中包括间隔模式标识,不包括间隔长度和间隔重复周期(显式)。又例如,上述第一测量间隔配置信息中可以包括间隔长度和间隔重复周期中的至少一项(隐式),即第一测量间隔配置信息中包含了间隔模式配置中的内容(长度、周期),而不显式地体现间隔模式的概念。该实施例中,第二测量间隔配置信息指示的间隔模式配置信息也可以表示为第二测量间隔配置信息包含的间隔模式配置信息,第一测量间隔配置信息指示的间隔模式配置信息也可表示为第一测量间隔配置信息包含的间隔模式配置信息。
进一步地,上述扩展因子可以包括周期扩展因子和/或长度扩展因子。也就是说,上述测量间隔配置信息还与周期扩展因子(period scaling factor)或长度扩展因子(length scaling factor)有关。所述周期扩展因子用于表示所述第一测量间隔配置信息或第二测量间隔配置信息指示的间隔重复周期的扩展倍数。所述长度扩展因子用于表示所述第一测量间隔配置信息或第二测量间隔配置信息指示的间隔长度的扩展倍数。
本发明实施例中扩展后的间隔长度小于或等于间隔周期,或者扩展后的间隔长度小于或等于扩展后的周期。
上述测量间隔配置信息用于定位信号测量,例如,参考信号时间差(Reference Signal Time Difference,RSTD),参考信号接收功率(Reference Signal Receiving Power,RSRP)测量等。该测量间隔配置信息可通过无线资源控制(Radio Resource Control,RRC)信令配置。上述第一测量间隔配置信息和第二测量间隔配置信息还可以分别包括间隔偏移(gap offset)和间隔定时提前量(gap TA)。
进一步地,上述第一测量间隔配置信息指示的间隔模式配置信息可以为现有的间隔模式配置信息(如TS38.133 9.1.2-1的gap pattern),上述第二测量间隔配置信息指示的间隔模式配置信息可以是对第一测量间隔配置信息指示的间隔模式配置信息进行扩展得到的,如对间隔模式标识、间隔长度和/或间隔重复周期进行扩展。上述第二测量配置信息指示的间隔模式配置信息也可以是新引入的间隔模式配置信息。
本发明实施例的测量间隔配置方法,由于第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同,使得终端可以使用更多的间隔模式来进行定位信号测量,增加了测量间隔配置与定位信号配置的匹配度,进而能够有效减少使用测量间隔测量定位时的限制。
进一步地,所述第一测量间隔配置信息指示的间隔模式配置信息与所述第二测量间隔配置信息指示的间隔模式配置信息满足以下至少一项:
所述第二测量间隔配置信息指示的间隔长度大于所述第一测量间隔配置信息指示的间隔长度;
所述第二测量间隔配置信息指示的间隔重复周期大于所述第一测量间隔配置信息指示的间隔重复周期;
所述第二测量间隔配置信息指示的间隔模式标识大于所述第一测量间隔配置信息指示的间隔模式标识。
进一步地,所述将测量间隔配置信息发送给终端之前,还包括:
获取终端发送的第一请求信令;
所述第一请求信令用于向网络设备指示终端将开始使用所述第一测量间隔配置信息或者所述第二测量间隔配置信息对应的测量间隔进行信号测量。
其中,所述第一请求信令包括以下至少一项:
开始参数;
终端期望的间隔模式标识;
终端期望的间隔偏移;
终端期望的间隔定时提前量;
终端期望的间隔长度扩展因子;
终端期望的间隔周期扩展因子;
终端期望的间隔模式类型;
终端期望的执行测量的频点信息。
进一步地,所述获取终端发送的第一请求信令之后,所述方法还包括:
获取终端发送的第二请求信令;
所述第二请求信令用于向网络设备指示终端将停止使用所述第一测量间隔配置信息或者所述第二测量间隔配置信息对应的测量间隔进行信号测量。
其中,所述第二请求信令包括以下至少一项:
停止参数;
终端期望的间隔模式标识;
终端期望的间隔偏移;
终端期望的间隔定时提前量;
终端期望的间隔长度扩展因子;
终端期望的间隔周期扩展因子;
终端期望的间隔模式类型;
终端期望的执行测量的频点信息。
上述第一请求信令和第二请求信令可以携带在RRC信令中,若终端测量的信号为定位信号,所述第一请求信令或第二请求信令与定位频率层关联(positioning frequency layer)。
进一步地,所述将测量间隔配置信息发送给终端之后或在终端在测量间隔中进行测量之前,所述方法还包括:
发送触发信令,所述触发信令用于触发按需测量间隔。
这里,网络设备发送触发信令,终端根据该触发信令,获取按需测量间隔的开始时间,并根据所述按需测量间隔的开始时间,使用按需测量间隔进行信号测量。
此时,上述第一测量间隔配置信息或所述第二测量间隔配置信息包括以下至少一项:
间隔长度;
间隔定时提前量;
间隔长度扩展因子;
预设时间间隔;
间隔模式标识;
其中,所述预设时间间隔为所述按需测量间隔的开始时间相对于所述触发信令的接收时刻的偏移值。
进一步地,所述发送触发信令之前,所述方法还包括:
接收终端发送的第三请求信令;
所述第三请求信令用于请求按需测量间隔。
其中,所述第三请求信令包括以下至少一项:
终端期望的间隔模式标识;
终端期望的间隔长度;
终端期望的间隔定时提前量;
终端期望的间隔长度扩展因子;
终端期望的间隔模式类型;
终端期望的执行测量的频点信息;
终端期望的间隔时域位置。
本发明实施例中,通过引入按需测量间隔,使测量间隔的使用更加灵活。
进一步地,所述将测量间隔配置信息发送给终端之前,所述方法还包括:
接收终端发送的能力信息;
其中,所述能力信息包括以下至少一项:
是否支持测量间隔;
是否支持扩展的测量间隔;
是否支持按需测量间隔。
换种方式来说,所述能力信息包括以下至少一项:
是否支持测量间隔;
支持哪种测量间隔或者测量间隔模式类型;
其中,测量间隔或者测量间隔模式类型可以包括以下至少一项:
正常的测量间隔(如TS38.133 9.1.2-1的gap pattern);
扩展的测量间隔;
按需测量间隔。
本发明实施例的测量间隔配置方法,由于第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同,使得终端可以使用更多的间隔模式来进行定位信号测量,增加了测量间隔配置与定位信号配置的匹配度,进而能够有效减少使用测量间隔测量定位时的限制。
如图4所示,本发明实施例提供一种终端400,包括:
第一获取模块401,用于获取测量间隔配置信息,所述测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,所述第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同;
第一测量模块402,用于根据所述测量间隔配置信息,在测量间隔中进行信号测量。
本发明实施例的终端,所述间隔模式配置信息包括以下至少一项:
间隔模式标识;
间隔长度;
间隔重复周期。
本发明实施例的终端,所述第一测量间隔配置信息指示的间隔模式配置信息与所述第二测量间隔配置信息指示的间隔模式配置信息满足以下至少一项:
所述第二测量间隔配置信息指示的间隔长度大于所述第一测量间隔配置信息指示的间隔长度;
所述第二测量间隔配置信息指示的间隔重复周期大于所述第一测量间隔配置信息指示的间隔重复周期;
所述第二测量间隔配置信息指示的间隔模式标识大于所述第一测量间隔配置信息指示的间隔模式标识。
本发明实施例的终端,还包括:
第二发送模块,用于第一获取模块获取测量间隔配置信息之前,发送第一请求信令;
所述第一请求信令用于向网络设备指示终端将开始使用所述第一测量间隔配置信息对应的测量间隔或所述第二测量间隔配置信息对应的测量间隔进行信号测量。
本发明实施例的终端,所述第一请求信令包括以下至少一项:
开始参数;
终端期望的间隔模式标识;
终端期望的间隔偏移;
终端期望的间隔定时提前量;
终端期望的间隔长度扩展因子;
终端期望的间隔周期扩展因子;
终端期望的间隔模式类型;
终端期望的执行测量的频点信息。
本发明实施例的终端,若终端测量的信号为定位信号,所述第一请求信令与定位频率层关联。
本发明实施例的终端,还包括:
第三发送模块,用于第一测量模块根据所述测量间隔配置信息,进行信号测量之后,发送第二请求信令;
所述第二请求信令用于向网络设备指示终端将停止使用所述第一测量间隔配置信息对应的测量间隔或所述第二测量间隔配置信息对应的测量间隔进行信号测量。
本发明实施例的终端,所述第二请求信令包括以下至少一项:
停止参数;
终端期望的间隔模式标识;
终端期望的间隔偏移;
终端期望的间隔定时提前量;
终端期望的间隔长度扩展因子;
终端期望的间隔周期扩展因子;
终端期望的间隔模式类型;
终端期望的执行测量的频点信息。
本发明实施例的终端,若终端测量的信号为定位信号,所述第二请求信令与定位频率层关联。
本发明实施例的终端,还包括:
第一接收模块,用于第一获取模块获取测量间隔配置信息之后或者第一测量模块进行信号测量之前,接收触发信令,所述触发信令用于触发按需测量间隔;
第二获取模块,用于根据所述触发信令,获取按需测量间隔的开始时间;
第二测量模块,用于根据所述按需测量间隔的开始时间,使用按需测量间隔进行信号测量。
本发明实施例的终端,所述第二获取模块用于根据所述触发信令的接收时刻和预设时间间隔,获取所述按需测量间隔的开始时间;
其中,所述预设时间间隔为所述按需测量间隔的开始时间相对于所述触发信令的接收时刻的偏移值。
本发明实施例的终端,所述预设时间间隔包括:
时隙偏移值;
或者,时隙偏移值与时隙内的符号偏移值;
或者,以预设时间为单位的绝对时间偏移值。
本发明实施例的终端,所述触发信令为下行控制信息DCI信令或媒体接入控制层控制单元MAC CE信令。
本发明实施例的终端,还包括:
第四发送模块,用于在第一获取模块获取测量间隔配置信息之前或者第一接收模块接收触发信令之前或者第一测量模块进行信号测量之前,发送第三请求信令;
其中,所述第三请求信令用于请求按需测量间隔。
本发明实施例的终端,所述第三请求信令包括以下至少一项:
终端期望的间隔模式标识;
终端期望的间隔长度;
终端期望的间隔定时提前量;
终端期望的间隔长度扩展因子;
终端期望的间隔模式类型;
终端期望的执行测量的频点信息;
终端期望的间隔时域位置。
本发明实施例的终端,所述第一测量模块用于在所述测量间隔配置信息对应的测量间隔中,仅期望向网络设备发送目标信号或者从网络设备接收目标信号;
其中,所述目标信号包括用于定位测量的信号;
或者,所述目标信号包括用于定位测量的信号和随机接入过程中的信号;
或者,所述目标信号包括用于定位测量的信号和用于无线资源管理RRM测量的信号;
或者,所述目标信号包括用于定位测量的信号、随机接入过程中的信号和用于RRM测量的信号。
本发明实施例的终端,若所述测量间隔配置信息对应的测量间隔的间隔类型为针对每个频率范围的测量间隔,所述网络设备为相应频率范围的网络设备。
本发明实施例的终端,所述第一测量模块用于在测量的信号为定位参考信号PRS的情况下,若PRS的持续时间大于测量间隔的长度,且终端期望测量位于所述测量间隔配置信息对应的测量间隔长度之外的PRS,则测量目标PRS;
其中,所述目标PRS是指所述PRS中位于测量间隔的中断时间之外且处于激活的下行带宽部分内,且数值配置numerology与激活的下行带宽部分相同的PRS。
本发明实施例的终端,还包括:
第五发送模块,用于第一获取模块获取测量间隔配置信息之前,向网络设备发送能力信息;
其中,所述能力信息包括以下至少一项:
是否支持测量间隔;
是否支持扩展的测量间隔;
是否支持按需测量间隔。
本发明实施例的终端,由于第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同,使得终端可以使用更多的间隔模式来进行定位信号测量,增加了测量间隔配置与定位信号配置的匹配度,进而能够有效减少使用测量间隔测量定位时的限制。
需要说明的是,该终端实施例是与上述应用于终端的信号测量方法相对应的终端,上述实施例的所有实现方式均适用于该终端实施例中,也能达到与其相同的技术效果。
图5为实现本发明实施例的一种终端的硬件结构示意图。
该终端50包括但不限于:射频单元510、网络模块520、音频输出单元530、输入单元540、传感器550、显示单元560、用户输入单元570、接口单元580、存储器590、处理器511、以及电源512等部件。本领域技术人员可以理解,图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器511用于获取测量间隔配置信息,所述测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,所述第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同;根据所述测量间隔配置信息,在测量间隔中进行信号测量。
本发明实施例的终端,由于第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同,使得终端可以使用更多的间隔模式来进行定位信号测量,增加了间隔模式配置与定位信号配置的匹配度,进行能够有效减少使用测量间隔测量定位时的限制。
本发明实施例的终端,能够实现上述应用于终端的信号测量方法实施例中的所有实现方式,且能达到相同的效果,此处不再赘述。
应理解的是,本发明实施例中,射频单元510可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自网络侧设备的下行数据接收后,给处理器511处理;另外,将上行的数据发送给网络侧设备。通常,射频单元510包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元510还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块520为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元530可以将射频单元510或网络模块520接收的或者在存储器590中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元530还可以提供与终端50执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元530包括扬声器、蜂鸣器以及受话器等。
输入单元540用于接收音频或视频信号。输入单元540可以包括图形处理器(Graphics Processing Unit,GPU)541和麦克风542,图形处理器541对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元560上。经图形处理器541处理后的图像帧可以存储在存储器590(或其它存储 介质)中或者经由射频单元510或网络模块520进行发送。麦克风542可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元510发送到移动通信网络侧设备的格式输出。
终端50还包括至少一种传感器550,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板561的亮度,接近传感器可在终端50移动到耳边时,关闭显示面板561和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器550还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元560用于显示由用户输入的信息或提供给用户的信息。显示单元560可包括显示面板561,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板561。
用户输入单元570可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元570包括触控面板571以及其他输入设备572。触控面板571,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板571上或在触控面板571附近的操作)。触控面板571可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器511,接收处理器511发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板571。除了触控面板571,用户输入单元570还可以包括其他输入设备572。具体地,其他输入设备572可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨 迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板571可覆盖在显示面板561上,当触控面板571检测到在其上或附近的触摸操作后,传送给处理器511以确定触摸事件的类型,随后处理器511根据触摸事件的类型在显示面板561上提供相应的视觉输出。虽然在图5中,触控面板571与显示面板561是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板571与显示面板561集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元580为外部装置与终端50连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元580可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端50内的一个或多个元件或者可以用于在终端50和外部装置之间传输数据。
存储器590可用于存储软件程序以及各种数据。存储器590可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器590可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器511是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器590内的软件程序和/或模块,以及调用存储在存储器590内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器511可包括一个或多个处理单元;优选的,处理器511可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器511中。
终端50还可以包括给各个部件供电的电源512(比如电池),优选的,电源512可以通过电源管理系统与处理器511逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端50包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,该计算机程序被处理器执行时实现应用于终端侧的信号测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现应用于终端侧的信号测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
如图6所示,本发明实施例提供一种网络设备600,包括:
第一发送模块601,用于将测量间隔配置信息发送给终端,所述测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,所述第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同。
本发明实施例的网络设备,所述间隔模式配置信息包括以下至少一项:
间隔模式标识;
间隔长度;
间隔重复周期。
本发明实施例的网络设备,所述第一测量间隔配置信息指示的间隔模式配置信息与所述第二测量间隔配置信息指示的间隔模式配置信息满足以下至少一项:
所述第二测量间隔配置信息指示的间隔长度大于所述第一测量间隔配置信息指示的间隔长度;
所述第二测量间隔配置信息指示的间隔重复周期大于所述第一测量间隔配置信息指示的间隔重复周期;
所述第二测量间隔配置信息指示的间隔模式标识大于所述第一测量间隔配置信息指示的间隔模式标识。
本发明实施例的网络设备,还包括:
第三获取模块,用于第一发送模块将测量间隔配置信息发送给终端之前,获取终端发送的第一请求信令;
所述第一请求信令用于向网络设备指示终端将开始使用所述第一测量间隔配置信息或者所述第二测量间隔配置信息对应的测量间隔进行信号测量。
本发明实施例的网络设备,所述第一请求信令包括以下至少一项:
开始参数;
终端期望的间隔模式标识;
终端期望的间隔偏移;
终端期望的间隔定时提前量;
终端期望的间隔长度扩展因子;
终端期望的间隔周期扩展因子;
终端期望的间隔模式类型;
终端期望的执行测量的频点信息。
本发明实施例的网络设备,若终端测量的信号为定位信号,所述第一请求信令与定位频率层关联。
本发明实施例的网络设备,还包括:
第四获取模块,用于第三获取模块获取终端发送的第一请求信令之后,获取终端发送的第二请求信令;
所述第二请求信令用于向网络设备指示终端将停止使用所述第一测量间隔配置信息或者所述第二测量间隔配置信息对应的测量间隔进行信号测量。
本发明实施例的网络设备,所述第二请求信令包括以下至少一项:
停止参数;
终端期望的间隔模式标识;
终端期望的间隔偏移;
终端期望的间隔定时提前量;
终端期望的间隔长度扩展因子;
终端期望的间隔周期扩展因子;
终端期望的间隔模式类型;
终端期望的执行测量的频点信息。
本发明实施例的网络设备,若终端测量的信号为定位信号,所述第二请求信令与定位频率层关联。
本发明实施例的网络设备,还包括:
第六发送模块,用于第一发送模块将测量间隔配置信息发送给终端之后或在终端在测量间隔中进行测量之前,发送触发信令,所述触发信令用于触发按需测量间隔。
本发明实施例的网络设备,所述第一测量间隔配置信息或所述第二测量间隔配置信息包括以下至少一项:
间隔长度;
间隔定时提前量;
间隔长度扩展因子;
预设时间间隔;
间隔模式标识;
其中,所述预设时间间隔为所述按需测量间隔的开始时间相对于所述触发信令的接收时刻的偏移值。
本发明实施例的网络设备,还包括:
第二接收模块,用于第六发送模块发送触发信令之前,接收终端发送的第三请求信令;
所述第三请求信令用于请求按需测量间隔。
本发明实施例的网络设备,所述第三请求信令包括以下至少一项:
终端期望的间隔模式标识;
终端期望的间隔长度;
终端期望的间隔定时提前量;
终端期望的间隔长度扩展因子;
终端期望的间隔模式类型;
终端期望的执行测量的频点信息;
终端期望的间隔时域位置。
本发明实施例的网络设备,还包括:
第三接收模块,用于第一发送模块将测量间隔配置信息发送给终端之前,接收终端发送的能力信息;
其中,所述能力信息包括以下至少一项:
是否支持测量间隔;
是否支持扩展的测量间隔;
是否支持按需测量间隔。
本发明实施例的网络设备,由于第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同,使得终端可以使用更多的间隔模式来进行定位信号测量,增加了测量间隔配置与定位信号配置的匹配度,进而能够有效减少使用测量间隔测量定位时的限制。
需要说明的是,该网络设备实施例是与上述应用于网络设备的测量间隔配置方法相对应的网络设备,上述实施例的所有实现方式均适用于该网络设备实施例中,也能达到与其相同的技术效果。
在本发明的另一些实施例中,还提供了一种上报方法,以解决上行定位资源分配的问题。
相关技术中,上行定位中,位置管理设备缺少某方面足够的辅助信息(如网络设备提供的测量失败原因信息),位置管理设备不能很好地推荐或决定上行定位资源的分配(如用于定位的SRS)的分配。
基于此,如图7所示,本发明实施例还提供了一种测量上报方法,应用于网络设备,该网络设备可以是服务gNB或邻gNB,也可以是服务小区或邻小区,该方法包括:
步骤701:根据非连续接收DRX状态与信道探测参考信号SRS发射与否的关系信息、DRX配置信息和SRS配置信息中的至少一项,确定或上报信号测量失败的原因信息。
本发明实施例中,非连续接收(Discontinuous Reception,DRX)周期(cycle)由“On Duration”和“Opportunity for DRX”组成:在“On Duration”的时间内,UE监听并接收物理下行控制信道(Physical Downlink Control Channel,PDCCH)(即DRX激活时间,也可以称为激活期);在“Opportunity for DRX”时间内,UE不接收下行信道的数据以节省功耗(即DRX非激活时间,也可以称为休 眠期)。
上述DRX状态与信道探测参考信号SRS发射与否的关系信息包括:仅在DRX激活时间发送SRS,或者,在DRX非激活时间发送SRS。
在本发明的具体实施例中,仅在DRX激活时间(Active Time)发送用于定位的SRS,或者,在DRX非激活时间(no Active Time)发送用于定位的SRS。
其中,仅在DRX激活时间发送用于定位的SRS,也就是说,在DRX非激活时间不发送用于定位的SRS。
而,在DRX非激活时间发送用于定位的SRS可以包括:仅在DRX非激活时间发送用于定位的SRS,或者,在DRX非激活时间和DRX激活时间发送用于定位的SRS。
本发明实施例中,可选的,所述仅在所述DRX非激活时间发送SRS包括:若SRS的发送时间窗与DRX的激活时间的时间窗有部分重叠,取消重叠部分的SRS的发送。
在本发明的一些实施例中,在DRX非激活时间发送或不发送所述SRS和/或如何发送所述SRS可以由网络设备决定,并指示给所述终端。
在本发明的其他一些实施例中,在DRX非激活时间发送或不发送所述SRS和/或如何发送所述SRS可以由终端决定。
当然,在DRX非激活时间发送或不发送所述SRS和/或如何发送所述SRS也可以由协议约定。
本发明实施例中,明确了当测量失败或由于DRX配置未进行信号测量和发送的情况下的行为。
本发明实施例中,可选的,所述SRS包括以下至少之一:非周期SRS、周期SRS和半静态SRS。
进一步可选的,非周期SRS可与周期SRS和半静态SRS行为不同,如:对于非周期SRS,在DRX激活时间和DRX非激活时间发送用于定位的SRS。
进一步地,上报信号测量失败的原因信息,包括:
向位置管理设备发送所述信号测量失败的原因信息。
本发明实施例中,所述位置管理设备可以位于核心网,例如,所述位置 管理设备可以为位置管理功能(LMF、E-SLMC)等。所述位置管理设备也可以位于接入网中。
本发明实施例中,可通过LTE定位协议(LPPA)或者演进的NRPPA或其它演进向所述位置管理设备发送所述测量失败的原因信息。
下面举例进行说明。
在本发明的一些实施例中,在本发明之前,位置管理设备获取到以下信息:所述SRS的当前周期、所述DRX配置信息。
上述实施例中,可选的,所述SRS的当前周期根据所述SRS的配置周期的函数和/或DRX的周期的函数确定,例如,进一步的,所述SRS的当前周期因DRX的配置而增大。
举例来说,所述函数包括以下之一:
Max(A,B);
最小公倍数(A,B)。
其中,A是根据所述SRS的配置周期的函数确定的值,B是根据DRX的周期的函数的确定的值。
其中,上述根据所述SRS的配置周期的函数确定的值也可以包括所述SRS的配置周期本身。根据DRX的周期的函数确定的值也可以包括DRX的周期本身。
上述各实施例中,可选的,所述SRS的当前周期为以下之一:
在配置DRX之后,所述SRS的当前周期为T2;
若DRX的周期发生变化或者DRX变为长DRX,所述SRS的当前周期为T3;
在取消DRX配置之后,所述SRS的当前周期为T1;
其中,T1、T2和T3均不同。
上述各实施例中,可选的,所述DRX的配置信息包括以下至少之一:DRX的周期、DRX持续时间定时器的配置信息、DRX非激活定时器的配置信息、DRX下行重传定时器的配置信息、DRX上行重传定时器的配置信息、DRX长周期启动偏移定时器的配置信息、DRX短周期的配置信息、DRX短周期定时器的配置信息、DRX下行HARQ往返传输时间定时器的配置信息、 DRX上行HARQ往返传输时间定时器的配置信息和DRX命令MAC CE的配置信息。
下面对上述各DRX的定时器进行说明。
其中,DRX持续时间定时器(drx-onDurationTimer):一个DRX周期内UE监听PDCCH的持续时间。一旦启动中途不允许重启。
DRX非激活定时器(drx-InactivityTimer):在接收到一个指示新传的PDCCH后还需要监听PDCCH的时长,该Timer在指示新传(UL或DL)的PDCCH接收结束后的第一个符号启动或重启。当收到DRX command MAC CE时停止该定时器。
DRX下行重传定时/DRX上行重传定时器(drx-RetransmissionTimerDL/drx-RetransmissionTimerUL):该定时器为per HARQ Process参数,表示UE为了接收期望的下行重传数据,需要连续监测的最大PDCCH时隙(slot)个数。该定时器在drx-HARQ-RTT-Timer超时后第一个符号启动。当接收到指示下行重传的PDCCH时停止该定时器。
DRX长周期启动偏移定时器(drx-LongCycleStartOffset):可以同时表示longDRX-Cycle和drxStartOffset这两层含义。如果网络侧同时也配置了短周期(ShortDrx-Cycle)参数,那么长周期必须配置成短周期的整数倍。
DRX短周期(drx-ShortCycle):短周期DRX的周期长度。
DRX短周期定时器(drx-ShortCycleTimer):持续多少个短周期没有收到PDCCH就进入长周期。当drx-inactivityTimer超时且配置了短周期时启动。Timer长度为短周期的整数倍。
DRX下行HARQ往返传输时间定时器/DRX上行HARQ往返传输时间定时器(drx-HARQ-RTT-TimerDL/drx-HARQ-RTT-TimerUL):该定时器为Per HARQ Process参数,表示等待重传的最小时间间隔。在ACK/NACK发送结束后的第一个符号启动该定时器,在该定时器运行期间,对应MAC不监听PDCCH。当该Timer超时时,启动对应HARQ进程的drx-RetransmissionTimerDL。
(长)DRX命令MAC CE((Long)DRX Command MAC CE)都是为了尽量快速的让UE进入睡眠状态而引入。Long CE可用于停止drx- ShortCycleTimer并进入Long DRX;而CE是用于停止drx-InactivityTimer的,如果配置了短周期DRX,那么进入短周期DRX,否则进入长周期DRX。进一步地,确定或上报信号测量失败的原因信息之前或之后,所述方法还包括:
接收位置管理设备发送的位置请求信息,所述位置请求信息用于取消或重新配置或重新请求网络设备对所述信号的测量;
和/或
接收位置管理设备发送的位置请求,所述位置请求中包括测量周期或上报周期,所述测量周期或上报周期为所述SRS的当前周期或由所述位置管理设备确定的周期。
其中,所述信号测量失败的原因信息包括以下至少一项:
测量错误或失败指示信息;
没有信号测量的指示信息;
没有足够信号测量的指示信息;
由于DRX配置导致的无法测量;
由于DRX配置没有信号测量的指示信息;
由于DRX配置没有足够信号测量的指示信息。
所述信号测量失败的原因信息通过所述LPPA或NRPPa或其演进发送给位置管理设备,进一步的所述信号测量失败的原因信息可以包括在如下内容,列举在枚举信息中,一旦测量失败是由于对应的上述原因,则上报。
列举如表6所示:
Figure PCTCN2021084440-appb-000015
Figure PCTCN2021084440-appb-000016
表6
本发明实施例的测量上报方法,在上行定位中,网络设备将测量失败的原因信息上报给位置管理设备,位置管理设备获得了这个信息可以更好地推荐或决定上行定位资源(如用于定位的SRS)的分配,减少了上行资源不必要的浪费,提高了上行资源使用的效率。
如图8所示,本发明实施例还提供了一种测量上报方法,应用于位置管理设备,包括:
步骤801,接收网络设备发送的信号测量失败的原因信息。
本发明实施例中,所述位置管理设备可以位于核心网,例如,所述位置管理设备可以为位置管理功能(LMF、E-SLMC)等。所述位置管理设备也可以位于接入网中。
其中,所述信号测量失败的原因信息包括以下至少一项:
测量错误或失败指示信息;
没有信号测量的指示信息;
没有足够信号测量的指示信息;
由于DRX配置导致的无法测量;
由于DRX配置没有信号测量的指示信息;
由于DRX配置没有足够信号测量的指示信息。
步骤802,根据所述信号测量失败的原因信息,确定测量失败原因或确定位置请求信息。
进一步地,所述方法还包括:
向网络设备发送位置请求信息,所述位置请求信息用于取消或重新配置或重新请求网络设备对所述信号的测量;
和/或
向网络设备发送位置请求,所述位置请求中包括测量周期或上报周期,所述测量周期或上报周期为所述SRS的当前周期或由所述位置管理设备确定的周期。
本发明实施例中,位置服务器接收到目标信息(包括以下至少一项:DRX配置信息、SRS配置信息、DRX状态与SRS发射与否的关系信息、信号测量失败原因信息)时,可以取消服务小区或邻区对所述SRS的测量或位置请求信息,或者,重配置或更新服务小区或邻区对所述SRS的测量或位置请求信息。
具体的:向邻区或服务小区发送位置请求信息,所述位置请求信息用于取消或重新配置或重新请求邻区或服务小区对所述信号的测量;
和/或
向邻区或服务小区发送位置请求,所述位置请求中包括测量周期或上报周期,所述测量周期或上报周期为所述SRS的当前周期或由所述位置管理设 备确定的周期。
本发明实施例的测量上报方法,在上行定位中,网络设备将测量失败的原因信息上报给位置管理设备,位置管理设备获得了这个信息可以更好地推荐或决定上行定位资源(如用于定位的SRS)的分配,减少了上行资源不必要的浪费,提高了上行资源使用的效率。
如图9所示,本发明实施例还提供了一种网络设备900,包括:
上报模块901,用于根据非连续接收DRX状态与信道探测参考信号SRS发射与否的关系信息、DRX配置信息和SRS配置信息中的至少一项,确定或上报信号测量失败的原因信息。
本发明实施例的网络设备,所述信号测量失败的原因信息包括以下至少一项:
测量错误或失败指示信息;
没有信号测量的指示信息;
没有足够信号测量的指示信息;
由于DRX配置导致的无法测量;
由于DRX配置没有信号测量的指示信息;
由于DRX配置没有足够信号测量的指示信息。
本发明实施例的网络设备,所述上报模块用于向位置管理设备发送所述信号测量失败的原因信息。
本发明实施例的网络设备,还包括:
第五接收模块,用于在上报模块确定或上报信号测量失败的原因信息之前或之后,接收位置管理设备发送的位置请求信息,所述位置请求信息用于取消或重新配置或重新请求网络设备对所述信号的测量;
和/或
接收位置管理设备发送的位置请求,所述位置请求中包括测量周期或上报周期,所述测量周期或上报周期为所述SRS的当前周期或由所述位置管理设备确定的周期。
本发明实施例的网络设备,将测量失败的原因信息上报给位置管理设备,位置管理设备获得了这个信息可以更好地推荐或决定上行定位资源(如用于 定位的SRS)的分配,减少了上行资源不必要的浪费,提高了上行资源使用的效率。
如图10所示,本发明实施例还提供了一种位置管理设备1000,包括:
第四接收模块1001,用于接收网络设备发送的信号测量失败的原因信息;
确定模块1002,用于根据所述信号测量失败的原因信息,确定测量失败原因或确定位置请求信息。
本发明实施例的位置管理设备,还包括:
第七发送模块,用于向网络设备发送位置请求信息,所述位置请求信息用于取消或重新配置或重新请求网络设备对所述信号的测量;
和/或
向网络设备发送位置请求,所述位置请求中包括测量周期或上报周期,所述测量周期或上报周期为所述SRS的当前周期或由所述位置管理设备确定的周期。
本发明实施例的位置管理设备,获取网络设备上报的测量失败的原因信息,位置管理设备根据测量失败的原因信息可以更好地推荐或决定上行定位资源(如用于定位的SRS)的分配,减少了上行资源不必要的浪费,提高了上行资源使用的效率。
图11是本发明一实施例的网络设备的结构图,能够实现上述的测量间隔配置方法或测量上报方法的细节,并达到相同的效果。如图11所示,网络设备1100包括:处理器1101、收发机1102、存储器1103和总线接口,其中,所述处理器1101用于:
通过收发机1102将测量间隔配置信息发送给终端,所述测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,所述第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同。
在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1101代表的一个或多个处理器和存储器1103代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对 其进行进一步描述。总线接口提供接口。收发机1102可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
或者,上述处理器1101用于:根据非连续接收DRX状态与信道探测参考信号SRS发射与否的关系信息、DRX配置信息和SRS配置信息中的至少一项,确定或上报信号测量失败的原因信息。
本发明实施例的网络设备能够实现上述应用于网络设备的测量间隔配置方法实施例的各个过程或者实现应用于网络设备的测量上报方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
优选的,本发明实施例还提供一种网络设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的计算机程序,该计算机程序被处理器执行时实现应用于网络设备的测量间隔配置方法实施例的各个过程或者实现应用于网络设备的测量上报方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
优选的,本发明实施例还提供了一种位置管理设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述应用于位置管理设备的测量上报方法的步骤。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现应用于网络设备的测量间隔配置方法实施例的各个过程或者实现应用于位置管理设备的测量上报方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
其中,网络侧设备可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等, 在此并不限定。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台电子设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。

Claims (55)

  1. 一种信号测量方法,其特征在于,包括:
    终端获取测量间隔配置信息,所述测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,所述第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同;
    终端根据所述测量间隔配置信息,在测量间隔中进行信号测量。
  2. 根据权利要求1所述的方法,其中,所述第二测量间隔配置信息指示的间隔模式配置信息是对所述第一测量间隔配置信息指示的间隔模式配置信息进行扩展得到的。
  3. 根据权利要求1或2所述的方法,其中,所述间隔模式配置信息包括以下至少一项:
    间隔模式标识;
    间隔长度;
    间隔重复周期。
  4. 根据权利要求3所述的方法,其中,所述第一测量间隔配置信息指示的间隔模式配置信息与所述第二测量间隔配置信息指示的间隔模式配置信息满足以下至少一项:
    所述第二测量间隔配置信息指示的间隔长度大于所述第一测量间隔配置信息指示的间隔长度;
    所述第二测量间隔配置信息指示的间隔重复周期大于所述第一测量间隔配置信息指示的间隔重复周期;
    所述第二测量间隔配置信息指示的间隔模式标识大于所述第一测量间隔配置信息指示的间隔模式标识。
  5. 根据权利要求3或4所述的方法,其中,所述第二测量间隔配置信息指示的间隔长度为10ms,所述第二测量间隔配置信息指示的间隔重复周期为20ms、40ms、80ms或160ms。
  6. 根据权利要求1所述的方法,其中,所述获取测量间隔配置信息之前, 所述方法还包括:
    发送第一请求信令;
    所述第一请求信令用于向网络设备指示终端将开始使用所述第一测量间隔配置信息对应的测量间隔或所述第二测量间隔配置信息对应的测量间隔进行信号测量。
  7. 根据权利要求6所述的方法,其中,所述第一请求信令包括以下至少一项:
    开始参数;
    终端期望的间隔模式标识;
    终端期望的间隔偏移;
    终端期望的间隔定时提前量;
    终端期望的间隔长度扩展因子;
    终端期望的间隔周期扩展因子;
    终端期望的间隔模式类型;
    终端期望的执行测量的频点信息,其中,所述执行测量的频点信息包括定位频率层的参考点A,子载波间隔,起始PRB位置和带宽中的至少一项。
  8. 根据权利要求6所述的方法,其中,若终端测量的信号为定位信号,所述第一请求信令与定位频率层关联。
  9. 根据权利要求1所述的方法,其中,所述根据所述测量间隔配置信息,进行信号测量之后,所述方法还包括:
    发送第二请求信令;
    所述第二请求信令用于向网络设备指示终端将停止使用所述第一测量间隔配置信息对应的测量间隔或所述第二测量间隔配置信息对应的测量间隔进行信号测量。
  10. 根据权利要求9所述的方法,其中,所述第二请求信令包括以下至少一项:
    停止参数;
    终端期望的间隔模式标识;
    终端期望的间隔偏移;
    终端期望的间隔定时提前量;
    终端期望的间隔长度扩展因子;
    终端期望的间隔周期扩展因子;
    终端期望的间隔模式类型;
    终端期望的执行测量的频点信息。
  11. 根据权利要求9所述的方法,其中,若终端测量的信号为定位信号,所述第二请求信令与定位频率层关联。
  12. 根据权利要求1所述的方法,其中,所述获取测量间隔配置信息之后或者在测量间隔中进行信号测量之前,所述方法还包括:
    接收触发信令,所述触发信令用于触发按需测量间隔;
    根据所述触发信令,获取按需测量间隔的开始时间;
    根据所述按需测量间隔的开始时间,使用按需测量间隔进行信号测量。
  13. 根据权利要求12所述的方法,其中,所述根据所述触发信令,获取按需测量间隔的开始时间,包括:
    根据所述触发信令的接收时刻和预设时间间隔,获取所述按需测量间隔的开始时间;
    其中,所述预设时间间隔为所述按需测量间隔的开始时间相对于所述触发信令的接收时刻的偏移值。
  14. 根据权利要求13所述的方法,其中,所述预设时间间隔包括:
    时隙偏移值;
    或者,时隙偏移值与时隙内的符号偏移值;
    或者,以预设时间为单位的绝对时间偏移值。
  15. 根据权利要求12所述的方法,其中,所述触发信令为下行控制信息DCI信令或媒体接入控制层控制单元MAC CE信令。
  16. 根据权利要求12所述的方法,其中,在获取测量间隔配置信息之前或者接收触发信令之前或者在测量间隔中进行信号测量之前,所述方法还包括:
    发送第三请求信令;
    其中,所述第三请求信令用于请求按需测量间隔。
  17. 根据权利要求16所述的方法,其中,所述第三请求信令包括以下至少一项:
    终端期望的间隔模式标识;
    终端期望的间隔长度;
    终端期望的间隔定时提前量;
    终端期望的间隔长度扩展因子;
    终端期望的间隔模式类型;
    终端期望的执行测量的频点信息;
    终端期望的间隔时域位置。
  18. 根据权利要求1所述的方法,其中,所述根据所述测量间隔配置信息,进行信号测量,包括:
    在所述测量间隔配置信息对应的测量间隔中,仅期望向网络设备发送目标信号或者从网络设备接收目标信号;
    其中,所述目标信号包括用于定位测量的信号;
    或者,所述目标信号包括用于定位测量的信号和随机接入过程中的信号;
    或者,所述目标信号包括用于定位测量的信号和用于无线资源管理RRM测量的信号;
    或者,所述目标信号包括用于定位测量的信号、随机接入过程中的信号和用于RRM测量的信号。
  19. 根据权利要求18所述的方法,其中,若所述测量间隔配置信息对应的测量间隔的间隔类型为针对每个频率范围的测量间隔,所述网络设备为相应频率范围的网络设备。
  20. 根据权利要求1所述的方法,其中,所述根据所述测量间隔配置信息,进行信号测量,包括:
    在测量的信号为定位参考信号PRS的情况下,若PRS的持续时间大于测量间隔的长度,且终端期望测量位于所述测量间隔配置信息对应的测量间隔长度之外的PRS,则测量目标PRS;
    其中,所述目标PRS是指所述PRS中位于测量间隔的中断时间之外且处于激活的下行带宽部分内,且数值配置numerology与激活的下行带宽部分相 同的PRS。
  21. 根据权利要求1所述的方法,其中,所述获取测量间隔配置信息之前,所述方法还包括:
    向网络设备发送能力信息;
    其中,所述能力信息包括以下至少一项:
    是否支持测量间隔;
    是否支持扩展的测量间隔;
    是否支持按需测量间隔。
  22. 一种测量间隔配置方法,应用于网络设备,包括:
    将测量间隔配置信息发送给终端,所述测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,所述第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同。
  23. 根据权利要求22所述的方法,其中,所述第二测量间隔配置信息指示的间隔模式配置信息是对所述第一测量间隔配置信息指示的间隔模式配置信息进行扩展得到的。
  24. 根据权利要求22或23所述的方法,其中,所述间隔模式配置信息包括以下至少一项:
    间隔模式标识;
    间隔长度;
    间隔重复周期。
  25. 根据权利要求24所述的方法,其中,所述第一测量间隔配置信息指示的间隔模式配置信息与所述第二测量间隔配置信息指示的间隔模式配置信息满足以下至少一项:
    所述第二测量间隔配置信息指示的间隔长度大于所述第一测量间隔配置信息指示的间隔长度;
    所述第二测量间隔配置信息指示的间隔重复周期大于所述第一测量间隔配置信息指示的间隔重复周期;
    所述第二测量间隔配置信息指示的间隔模式标识大于所述第一测量间隔 配置信息指示的间隔模式标识。
  26. 根据权利要求24或25所述的方法,其中,所述第二测量间隔配置信息指示的间隔长度为10ms,所述第二测量间隔配置信息指示的间隔重复周期为20ms、40ms、80ms或160ms。
  27. 根据权利要求22所述的方法,其中,所述将测量间隔配置信息发送给终端之前,还包括:
    获取终端发送的第一请求信令;
    所述第一请求信令用于向网络设备指示终端将开始使用所述第一测量间隔配置信息或者所述第二测量间隔配置信息对应的测量间隔进行信号测量。
  28. 根据权利要求27所述的方法,其中,所述第一请求信令包括以下至少一项:
    开始参数;
    终端期望的间隔模式标识;
    终端期望的间隔偏移;
    终端期望的间隔定时提前量;
    终端期望的间隔长度扩展因子;
    终端期望的间隔周期扩展因子;
    终端期望的间隔模式类型;
    终端期望的执行测量的频点信息,其中,所述执行测量的频点信息包括定位频率层的参考点A,子载波间隔,起始PRB位置和带宽中的至少一项。
  29. 根据权利要求27所述的方法,其中,若终端测量的信号为定位信号,所述第一请求信令与定位频率层关联。
  30. 根据权利要求27所述的方法,其中,所述获取终端发送的第一请求信令之后,所述方法还包括:
    获取终端发送的第二请求信令;
    所述第二请求信令用于向网络设备指示终端将停止使用所述第一测量间隔配置信息或者所述第二测量间隔配置信息对应的测量间隔进行信号测量。
  31. 根据权利要求30所述的方法,其中,所述第二请求信令包括以下至少一项:
    停止参数;
    终端期望的间隔模式标识;
    终端期望的间隔偏移;
    终端期望的间隔定时提前量;
    终端期望的间隔长度扩展因子;
    终端期望的间隔周期扩展因子;
    终端期望的间隔模式类型;
    终端期望的执行测量的频点信息。
  32. 根据权利要求30所述的方法,其中,若终端测量的信号为定位信号,所述第二请求信令与定位频率层关联。
  33. 根据权利要求22所述的方法,其中,所述将测量间隔配置信息发送给终端之后或在终端在测量间隔中进行测量之前,所述方法还包括:
    发送触发信令,所述触发信令用于触发按需测量间隔。
  34. 根据权利要求33所述的方法,其中,所述第一测量间隔配置信息或所述第二测量间隔配置信息包括以下至少一项:
    间隔长度;
    间隔定时提前量;
    间隔长度扩展因子;
    预设时间间隔;
    间隔模式标识;
    其中,所述预设时间间隔为所述按需测量间隔的开始时间相对于所述触发信令的接收时刻的偏移值。
  35. 根据权利要求33所述的方法,其中,所述发送触发信令之前,所述方法还包括:
    接收终端发送的第三请求信令;
    所述第三请求信令用于请求按需测量间隔。
  36. 根据权利要求35所述的方法,其中,所述第三请求信令包括以下至少一项:
    终端期望的间隔模式标识;
    终端期望的间隔长度;
    终端期望的间隔定时提前量;
    终端期望的间隔长度扩展因子;
    终端期望的间隔模式类型;
    终端期望的执行测量的频点信息;
    终端期望的间隔时域位置。
  37. 根据权利要求22所述的方法,其中,所述将测量间隔配置信息发送给终端之前,所述方法还包括:
    接收终端发送的能力信息;
    其中,所述能力信息包括以下至少一项:
    是否支持测量间隔;
    是否支持扩展的测量间隔;
    是否支持按需测量间隔。
  38. 一种终端,包括:
    第一获取模块,用于获取测量间隔配置信息,所述测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,所述第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同;
    第一测量模块,用于根据所述测量间隔配置信息,在测量间隔中进行信号测量。
  39. 一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至21中任一项所述的信号测量方法的步骤。
  40. 一种网络设备,包括:
    第一发送模块,用于将测量间隔配置信息发送给终端,所述测量间隔配置信息包括第一测量间隔配置信息和第二测量间隔配置信息中的至少一项,所述第二测量间隔配置信息指示的间隔模式配置信息与所述第一测量间隔配置信息指示的间隔模式配置信息不同。
  41. 一种测量上报方法,应用于网络设备,包括:
    根据非连续接收DRX状态与信道探测参考信号SRS发射与否的关系信息、DRX配置信息和SRS配置信息中的至少一项,确定或上报信号测量失败的原因信息。
  42. 根据权利要求41所述的方法,其中,所述信号测量失败的原因信息包括以下至少一项:
    测量错误或失败指示信息;
    没有信号测量的指示信息;
    没有足够信号测量的指示信息;
    由于DRX配置导致的无法测量;
    由于DRX配置没有信号测量的指示信息;
    由于DRX配置没有足够信号测量的指示信息。
  43. 根据权利要求41或42所述的方法,其中,上报信号测量失败的原因信息,包括:
    向位置管理设备发送所述信号测量失败的原因信息。
  44. 根据权利要求41所述的方法,其中,确定或上报信号测量失败的原因信息之前或之后,所述方法还包括:
    接收位置管理设备发送的位置请求信息,所述位置请求信息用于取消或重新配置或重新请求网络设备对信号的测量;
    和/或
    接收位置管理设备发送的位置请求,所述位置请求中包括测量周期或上报周期,所述测量周期或上报周期为所述SRS的当前周期或由所述位置管理设备确定的周期。
  45. 一种测量上报方法,应用于位置管理设备,包括:
    接收网络设备发送的信号测量失败的原因信息;
    根据所述信号测量失败的原因信息,确定测量失败原因或确定位置请求信息。
  46. 根据权利要求45所述的方法,还包括:
    向网络设备发送位置请求信息,所述位置请求信息用于取消或重新配置或重新请求网络设备对所述信号的测量;
    和/或
    向网络设备发送位置请求,所述位置请求中包括测量周期或上报周期,所述测量周期或上报周期为信道探测参考信号SRS的当前周期或由所述位置管理设备确定的周期。
  47. 一种网络设备,包括:
    上报模块,用于根据非连续接收DRX状态与信道探测参考信号SRS发射与否的关系信息、DRX配置信息和SRS配置信息中的至少一项,确定或上报信号测量失败的原因信息。
  48. 一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求22至37中任一项所述的测量间隔配置方法的步骤或如权利要求41至44中任一项所述的测量上报方法的步骤。
  49. 一种位置管理设备,包括:
    第四接收模块,用于接收网络设备发送的信号测量失败的原因信息;
    确定模块,用于根据所述信号测量失败的原因信息,确定测量失败原因或确定位置请求信息。
  50. 一种位置管理设备,,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求45至46中任一项所述的测量上报方法的步骤。
  51. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至21中任一项所述的信号测量方法的步骤或如权利要求22至37中任一项所述的测量间隔配置方法的步骤或如权利要求41至44中任一项所述的测量上报方法的步骤或如权利要求45至46任一项所述的测量上报方法的步骤。
  52. 一种计算机程序产品,存储在计算机可读存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至21中任一项所述的信号测量方法的步骤或如权利要求22至37中任一项所述的测量间隔配置方法的步骤或如权利要求41至44中任一项所述的测量上报方法的步骤或如权利要求45至46任一项所述的测量上报方法的步骤。
  53. 一种终端,所述终端用于执行如权利要求1至21中任一项所述的信号测量方法的步骤。
  54. 一种网络设备,所述网络设备用于执行如权利要求22至37中任一项所述的测量间隔配置方法的步骤或如权利要求41至44中任一项所述的测量上报方法的步骤。
  55. 一种位置管理设备,所述位置管理设备用于执行如权利要求45至46任一项所述的测量上报方法的步骤。
PCT/CN2021/084440 2020-04-03 2021-03-31 信号测量、测量间隔配置、测量上报方法、终端、网络设备及位置管理设备 WO2021197378A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227038402A KR20220164019A (ko) 2020-04-03 2021-03-31 신호 측정, 측정 간격 설정 방법, 단말, 및 네트워크 장치
EP21778857.9A EP4132072A4 (en) 2020-04-03 2021-03-31 SIGNAL MEASUREMENT METHOD, MEASUREMENT GAP CONFIGURATION METHOD, MEASUREMENT REPORTING METHOD, TERMINAL DEVICE, NETWORK DEVICE AND POSITION MANAGEMENT DEVICE
US17/957,620 US20230038050A1 (en) 2020-04-03 2022-09-30 Signal measurement method, measurement gap configuration method, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010258720.3A CN113498092B (zh) 2020-04-03 2020-04-03 信号测量、测量间隔配置、测量上报方法及相关设备
CN202010258720.3 2020-04-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/957,620 Continuation US20230038050A1 (en) 2020-04-03 2022-09-30 Signal measurement method, measurement gap configuration method, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2021197378A1 true WO2021197378A1 (zh) 2021-10-07

Family

ID=77929632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084440 WO2021197378A1 (zh) 2020-04-03 2021-03-31 信号测量、测量间隔配置、测量上报方法、终端、网络设备及位置管理设备

Country Status (5)

Country Link
US (1) US20230038050A1 (zh)
EP (1) EP4132072A4 (zh)
KR (1) KR20220164019A (zh)
CN (1) CN113498092B (zh)
WO (1) WO2021197378A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220046748A1 (en) * 2020-08-05 2022-02-10 Apple Inc. Positioning SRS Transmissions During a Discontinuous Reception Cycle
US20220069962A1 (en) * 2020-08-27 2022-03-03 Qualcomm Incorporated Dynamic bandwidth configuration for positioning reference signal (prs) operation
CN114629605A (zh) * 2020-12-10 2022-06-14 维沃移动通信有限公司 定位测量窗指示方法、终端和网络侧设备
CN116017491A (zh) * 2021-10-21 2023-04-25 华为技术有限公司 一种测量间隔的配置方法及装置
CN116074857A (zh) * 2021-11-01 2023-05-05 中国电信股份有限公司 无线通信网络场景中的定位测量方法、装置、设备和介质
CN116155460A (zh) * 2021-11-19 2023-05-23 维沃移动通信有限公司 Gap配置方法、装置、设备及介质
CN116601992A (zh) * 2021-12-10 2023-08-15 北京小米移动软件有限公司 测量间隔指示方法及装置
WO2023221044A1 (zh) * 2022-05-19 2023-11-23 北京小米移动软件有限公司 一种测量间隙的配置方法、装置及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106416350A (zh) * 2014-02-24 2017-02-15 英特尔Ip公司 测量间隙模式
WO2019014850A1 (zh) * 2017-07-18 2019-01-24 Oppo广东移动通信有限公司 用于异频/异系统测量的方法、终端设备和网络设备
CN109803303A (zh) * 2017-11-16 2019-05-24 中国移动通信有限公司研究院 一种频点测量方法、测量配置方法、终端及基站
WO2020083121A1 (en) * 2018-10-22 2020-04-30 Qualcomm Incorporated On-demand measurement gap for inter-frequency rrm measurements

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2009130406A (ru) * 2007-01-08 2011-02-20 Интердиджитал Текнолоджи Корпорейшн (Us) Планирование структуры промежутков измерений для поддержания
ES2615895T3 (es) * 2011-01-19 2017-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Soporte de configuración de intervalos de medición mejorada para aplicaciones relacionadas con el posicionamiento
CN110663269A (zh) * 2017-03-24 2020-01-07 瑞典爱立信有限公司 用于控制不同类型的频内测量之间的间隙共享的方法和系统
WO2019014920A1 (zh) * 2017-07-21 2019-01-24 Oppo广东移动通信有限公司 无线资源管理测量的方法、终端设备和网络设备
CN111132220A (zh) * 2017-10-28 2020-05-08 Oppo广东移动通信有限公司 配置测量间隔的方法、终端设备和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106416350A (zh) * 2014-02-24 2017-02-15 英特尔Ip公司 测量间隙模式
WO2019014850A1 (zh) * 2017-07-18 2019-01-24 Oppo广东移动通信有限公司 用于异频/异系统测量的方法、终端设备和网络设备
CN109803303A (zh) * 2017-11-16 2019-05-24 中国移动通信有限公司研究院 一种频点测量方法、测量配置方法、终端及基站
WO2020083121A1 (en) * 2018-10-22 2020-04-30 Qualcomm Incorporated On-demand measurement gap for inter-frequency rrm measurements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4132072A4 *

Also Published As

Publication number Publication date
KR20220164019A (ko) 2022-12-12
EP4132072A1 (en) 2023-02-08
CN113498092B (zh) 2023-06-02
US20230038050A1 (en) 2023-02-09
EP4132072A4 (en) 2023-08-09
CN113498092A (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2021197378A1 (zh) 信号测量、测量间隔配置、测量上报方法、终端、网络设备及位置管理设备
US20220046541A1 (en) Channel monitoring method, terminal, and network device
US20210360736A1 (en) Discontinuous reception drx configuration method and terminal
WO2019179261A1 (zh) 信息传输方法、终端及网络设备
US11509444B2 (en) Method for receiving aperiodic tracking reference signal and terminal
WO2021185276A1 (zh) Srs的发送、配置及测量方法、定位方法及设备
WO2020156074A1 (zh) 节能信号检测方法、资源确定方法及相关设备
WO2019154269A1 (zh) 信息检测方法、信息传输方法、终端及网络设备
WO2019179317A1 (zh) 信息传输方法、终端及网络设备
KR102557251B1 (ko) 보조 정보 보고 방법 및 단말
US20210076245A1 (en) Measurement control method, terminal, and network-side device
WO2021052420A1 (zh) 信道监听控制方法和终端
WO2021129504A1 (zh) Scell休眠指示处理方法、终端及网络设备
WO2021169939A1 (zh) Ps-pdcch配置方法、终端设备和网络侧设备
WO2021129508A1 (zh) 唤醒信号处理方法、唤醒信号配置方法及相关设备
WO2021129507A1 (zh) 唤醒信号配置方法、唤醒信号处理方法及相关设备
WO2021083104A1 (zh) 节能信号检测方法和终端
WO2021109954A1 (zh) 波束失败恢复方法、终端及网络侧设备
WO2021057647A1 (zh) 节能信号接收方法、节能信号发送方法及相关设备
WO2021027680A1 (zh) 数据接收方法、发送方法、终端及网络设备
WO2019154066A1 (zh) 下行信道的接收方法、发送方法、终端和基站
WO2021197123A1 (zh) 休眠行为处理方法、指示方法、终端及网络设备
WO2021213265A1 (zh) 节能模式切换方法、终端及网络侧设备
WO2021036649A1 (zh) 模式切换方法、终端和网络设备
WO2020221125A1 (zh) 配置信息获取、发送方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21778857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227038402

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021778857

Country of ref document: EP

Effective date: 20221103