WO2021197226A1 - 一种电池充放电电路的控制方法及相关装置 - Google Patents

一种电池充放电电路的控制方法及相关装置 Download PDF

Info

Publication number
WO2021197226A1
WO2021197226A1 PCT/CN2021/083260 CN2021083260W WO2021197226A1 WO 2021197226 A1 WO2021197226 A1 WO 2021197226A1 CN 2021083260 W CN2021083260 W CN 2021083260W WO 2021197226 A1 WO2021197226 A1 WO 2021197226A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
circuit
charging
battery
impedance
Prior art date
Application number
PCT/CN2021/083260
Other languages
English (en)
French (fr)
Inventor
许建军
康月增
汤瑞超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021197226A1 publication Critical patent/WO2021197226A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the technical field of electronic circuits, and in particular to a method for controlling battery charging and discharging circuits and related devices.
  • foldable electronic devices such as folding screen mobile phones
  • the Industrial Design (ID) form of the folding screen mobile phone is generally larger and more power-consuming than the candy bar, and the internal structural space of the mobile phone is relatively scattered, and there may not be a large space reserved for the battery.
  • ID Industrial Design
  • a folding screen mobile phone if a single battery design is adopted, it will not be able to meet the standby needs of users.
  • the embodiments of the present application provide a method for controlling battery charging and discharging circuits and related devices, which can improve battery charging and discharging efficiency and protect battery performance without limiting the capacity/internal resistance of two or more batteries. .
  • the present application provides a battery charging and discharging circuit.
  • the battery charging and discharging circuit includes: at least two parallel branches formed by at least two batteries, and charging modules respectively connected to the at least two batteries; wherein, The charging module is used to provide a charging voltage for the at least two parallel branches; at least one of the at least two parallel branches specifically includes a battery, a first current detection circuit, and an impedance adjustment circuit; wherein : The first current detection circuit is used to detect the charging or discharging current of the at least one branch; the impedance adjustment circuit is used to gradually adjust the current in the at least one branch according to the difference between the current and a preset threshold. In order to change the current tends to a preset threshold.
  • the battery capacities of the at least two batteries may be different, for example, may include a large battery and a small battery, and the impedance adjustment circuit is arranged on the branch where the small battery is located. That is to say, the charging terminal in the embodiment of the present application can be directly connected to the battery.
  • the charging module can be directly connected to the small battery and the large battery.
  • the impedance adjusting circuit is not directly connected to the charging module, that is, the impedance adjusting circuit charges the small battery.
  • the control of the discharge current belongs to the negative terminal control mode.
  • the impedance in the embodiment of the present application may gradually adjust the impedance of the branch based on the comparison between the current and the preset threshold, that is, the impedance is gradually and dynamically adjustable, so that the charging and discharging current is dynamically adjustable.
  • the embodiment of the present application can make full use of the internal space of the mobile terminal to place at least two batteries of different sizes and at least two circuit boards of different sizes.
  • the solution of two batteries in parallel is adopted, and the two batteries are charged simultaneously.
  • the impedance adjustment circuit is used to adjust the impedance to control the maximum charge and discharge current, avoid overdischarge and overcharge of the small battery, extend the life of the small battery, achieve the best balance between the charging speed and the life, and improve the entire charge
  • the safety performance of the discharging system in addition, during the discharging process, the two batteries are discharged at the same time to maximize the discharging capacity of the mobile terminal.
  • the capacity of the battery in the at least one branch is smaller than the capacity of the battery in other branches except the at least one branch.
  • the battery capacities of the at least two batteries may be different, for example, they may include a large battery and a small battery, and the impedance adjustment circuit is arranged on the branch where the small battery is located.
  • the above-mentioned embodiments of the present application make full use of the mobile phone space separated into two parts by the device to place at least two batteries.
  • the batteries can be connected in parallel, and the total capacity of these batteries can be added to maximize the overall capacity.
  • the impedance adjustment circuit when the first current detection circuit detects that the current is greater than a preset threshold, the impedance adjustment circuit is configured to gradually increase the impedance in the at least one branch , To reduce the current.
  • the impedance adjustment circuit can be controlled to increase the impedance in the small battery path, so that the current in the small battery path gradually moves toward the preset threshold. Reduced to avoid damage to the battery due to current overcharge and improve charging safety.
  • the impedance adjustment circuit is used to gradually reduce the impedance in the at least one branch to increase the current.
  • the impedance adjustment circuit can be controlled to reduce the impedance in the small battery path so that the current in the small battery path is toward the preset threshold. Gradually increase, thereby increasing the charging speed.
  • the charging and discharging system in the embodiment of the present application is a closed loop system, which automatically performs impedance control according to the current in the battery parallel branch, and dynamically adjusts the charging and discharging current to achieve a balance between the charging and discharging speed and safety performance.
  • the two batteries are charged at the same time, and the maximum charge and discharge current is controlled by controlling the impedance adjustment circuit to adjust the impedance during the charging and discharging process, avoiding overdischarge and overcharging of the small battery, extending the life of the small battery, and reaching the charging speed and lifespan.
  • the best balance improves the safety performance of the entire charging and discharging system; in addition, during the discharging process, the two batteries are discharged at the same time to maximize the discharge capacity of the mobile terminal.
  • the charging module when the first current detection circuit detects that the current is less than the preset threshold, the charging module is specifically configured to increase the charging voltage to increase the Current.
  • the implementation of this embodiment can realize a dynamically adaptive charging process.
  • the charging module can be adaptively instructed to increase the voltage to adjust the total current of the total path, and the impedance adjustment circuit can be instructed to adjust the circuit impedance, thereby achieving simultaneous charging of at least two batteries of different sizes to avoid overcharging of small batteries. Extend the battery life, improve the charging speed of the two batteries, and achieve the best balance between the charging speed and the life, and improve the safety performance of the entire charging and discharging system.
  • the first current detection circuit includes a fuel gauge and a precision resistor, and the precision resistance is connected in series with the battery in the at least one branch; the first current detection circuit is used for The charge or discharge current of the at least one branch is obtained by detecting the amount of electricity flowing through the precision resistor.
  • the current information on the branch can be accurately obtained, so as to provide accurate data support for the control of the charge and discharge current.
  • the impedance adjustment circuit specifically includes: a level control module, an operational amplifier module, a comparator module, and an impedance adjustment module; wherein, the level control module and the operational amplifier The modules are respectively connected to the input terminals of the comparator module, and the output terminals of the comparator module are connected to the impedance adjustment module;
  • the impedance adjustment module includes a metal-oxide semiconductor field effect transistor (MOS tube), and the MOS The tube is connected in series with the battery in the at least one branch;
  • the level control module is used to gradually output a variable voltage to the input of the comparator module;
  • the operational amplifier module is used to obtain the two precision resistors And amplify the voltage at the terminal and output the amplified voltage to the input terminal of the comparator module;
  • the comparator module is used to compare the respective output voltages of the level control module and the operational amplifier module to output a target voltage To the impedance adjustment module;
  • the impedance adjustment module is used to adjust the impedance of the MOS tube in
  • the data collected by the ammeter can be fully utilized in the embodiment of the present application to control the charging module and the impedance adjusting circuit according to the charging and discharging strategy, so that the large battery and the small battery can be safely charged and discharged at the same time.
  • the MOS tube of the impedance adjusting circuit is connected in series on the small battery path, so the impedance of the small battery path can be controlled according to the current in the charging and discharging process of the small battery to adjust the charging and discharging current of the small battery.
  • the impedance of the small battery path or the charging voltage of the charging module can be adjusted in real time according to the total current of the two parallel branches, and the cooling strategy can be implemented according to the battery temperature to improve the safety of the battery charging and discharging process.
  • the voltage output by the level control module of the impedance adjustment circuit may be fixed or variable.
  • the controller controls the duty cycle of the MOS tube (MOS1) of the level control module in the impedance adjustment circuit according to the current limit requirement of the current flowing through the small battery, so as to output the dynamically demanded voltage, which can meet the current limit of different currents. Require.
  • the current limit can also be adapted according to the life characteristics of the battery, and the charging and discharging current can be further limited to achieve the purpose of safe use of the battery.
  • the battery charging and discharging circuit further includes a second current detection circuit, and the second current detection circuit is configured to detect the total current of the at least two parallel branches;
  • the total current information on all branches can be accurately obtained, thereby providing accurate data support for the control of charging and discharging currents.
  • the charging module is specifically configured to increase the charging voltage to increase the total current; or, the impedance adjustment circuit is specifically configured to reduce The impedance in the at least one branch to increase the current in the at least one branch.
  • the controller can continuously detect the total current of the total path and the current of the small battery path, adaptively instruct the charging module to adjust the total current of the total path and instruct the impedance adjustment circuit to adjust the circuit impedance, thereby realizing at least two different Charge large and small batteries at the same time to avoid overcharging of small batteries, extend battery life, improve the charging speed of the two batteries, and achieve the best balance between charging speed and life, and improve the safety performance of the entire charging and discharging system.
  • the battery charging and discharging circuit further includes a thermistor, and the thermistor is used to detect the temperature of the battery of the at least one circuit;
  • the impedance adjustment circuit is specifically configured to increase the impedance in the at least one branch to reduce the current.
  • the embodiment of the present application can also adopt a related cooling strategy by detecting the temperature of the battery, which further improves the safety of the charging and discharging process and improves the user experience.
  • At least two parallel branches formed by the at least two batteries are used to jointly supply power to at least two circuit boards of different sizes.
  • the mobile terminal includes two or more circuit boards and two or more batteries.
  • These circuit boards can be represented by a first circuit board, a second circuit board, a third circuit board, etc.
  • these batteries can be represented by a first battery, a second battery, a third battery, etc., respectively.
  • the larger circuit board when there are two circuit boards, one large and one small, the larger circuit board can be called the main board, and the small circuit board can be called the small board.
  • the large size (or large internal resistance, or capacity) battery can also be called a large battery, and a small size (or small internal resistance) , Or small capacity) batteries are small batteries.
  • the embodiment of the present application can arrange the charging module on a small board. Since the charging module and the large battery are close together, the charging path is the shortest and the path loss is low, which is beneficial to increase the charging speed.
  • an embodiment of the present application provides a method for controlling a battery charging and discharging circuit
  • the battery charging and discharging circuit includes: at least two parallel branches formed by at least two batteries, respectively connected to the at least two batteries The charging module; wherein the charging module is used to provide the charging voltage for the at least two parallel branches; at least one of the at least two parallel branches specifically includes a battery and a first current detection circuit And an impedance adjusting circuit; wherein, in the case where the at least two batteries are charged or discharged at the same time, the method includes: acquiring first current information from the first current detection circuit, and the first current information Indicates the charging or discharging current of the at least one branch; according to the difference between the current and the preset threshold, the impedance adjustment circuit is controlled to gradually adjust the impedance in the at least one branch so that the current Towards a preset threshold.
  • the execution subject of the method may be a controller, and the controller is used to control the charging and discharging process of the battery charging and discharging circuit.
  • the battery capacities of the at least two batteries may be different, for example, may include a large battery and a small battery, and the impedance adjustment circuit is arranged on the branch where the small battery is located. That is to say, the charging terminal in the embodiment of the present application can be directly connected to the battery.
  • the charging module can be directly connected to the small battery and the large battery.
  • the impedance adjusting circuit is not directly connected to the charging module, that is, the impedance adjusting circuit charges the small battery.
  • the control of the discharge current belongs to the negative terminal control mode.
  • the impedance in the embodiment of the present application may gradually adjust the impedance of the branch based on the comparison between the current and the preset threshold, that is, the impedance is gradually and dynamically adjustable, so that the charging and discharging current is dynamically adjustable.
  • the embodiment of the present application can make full use of the internal space of the mobile terminal to place at least two batteries of different sizes and at least two circuit boards of different sizes.
  • the solution of two batteries in parallel is adopted, and the two batteries are charged simultaneously.
  • the impedance adjustment circuit is used to adjust the impedance to control the maximum charge and discharge current, avoid overdischarge and overcharge of the small battery, extend the life of the small battery, achieve the best balance between the charging speed and the life, and improve the entire charge
  • the safety performance of the discharging system in addition, during the discharging process, the two batteries are discharged at the same time to maximize the discharging capacity of the mobile terminal.
  • the impedance adjustment circuit is controlled to gradually adjust the impedance in the at least one branch according to the difference between the current and a preset threshold, so that the current tends to
  • the preset threshold includes: when the current is greater than the preset threshold, controlling the impedance adjusting circuit to gradually increase the impedance in the at least one branch to reduce the current.
  • the impedance adjustment circuit is controlled to gradually adjust the impedance in the at least one branch according to the difference between the current and a preset threshold, so that the current tends to
  • the preset threshold includes: when the current is less than the preset threshold, controlling the impedance adjusting circuit to gradually reduce the impedance in the at least one branch to increase the current.
  • the method further includes: when the first current detection circuit detects that the current is less than the preset threshold, controlling the charging module to increase the charging voltage, To increase the current.
  • the first current detection circuit includes a fuel gauge and a precision resistor, and the precision resistance is connected in series with the battery in the at least one branch; the first current detection circuit is used for The charge or discharge current of the at least one branch is obtained by detecting the amount of electricity flowing through the precision resistor.
  • the impedance adjustment circuit specifically includes a level control module, an operational amplifier module, a comparator module, and an impedance adjustment module;
  • the impedance adjustment module includes a metal-oxide semiconductor field effect transistor (MOS tube), the MOS tube is connected in series with the battery in the at least one branch;
  • the level control module is used to gradually output voltage to the input terminal of the comparator module;
  • the operational amplifier module is used to obtain And amplify the voltage at both ends of the precision resistor, and output the amplified voltage to the input terminal of the comparator module;
  • the comparator module is used to compare the respective outputs of the level control module and the operational amplifier module Voltage, outputting a target voltage to the impedance adjustment module;
  • the impedance adjustment module is used to adjust the impedance of the MOS tube in the at least one branch according to the target voltage.
  • controlling the impedance adjustment circuit to reduce the impedance in the at least one branch includes: when the current is less than a preset threshold When setting the threshold, send a first pulse width adjustment PWM signal to the level control module, where the first PWM signal is used to instruct the level control module to output a voltage smaller than the amplified voltage;
  • the impedance adjustment module is specifically configured to gradually reduce the impedance in the at least one branch according to the output voltage of the comparator module.
  • controlling the impedance adjustment circuit to increase the impedance in the at least one branch includes: when the current is greater than a preset threshold When setting the threshold, send a second pulse width adjustment PWM signal to the level control module, where the second PWM signal is used to instruct the level control module to output a voltage smaller than the amplified voltage;
  • the impedance adjustment module is specifically configured to gradually increase the impedance in the at least one branch according to the output voltage of the comparator module.
  • the battery charging and discharging circuit further includes a second current detection circuit, and the second current detection circuit is used to detect the charging or discharging of the at least two parallel branches.
  • Total current the method further includes: acquiring second current information from the second current detection circuit, the second current information indicating the total current; when the total current is less than a threshold value, controlling the The charging module increases the charging voltage, and controls the impedance adjusting circuit to reduce the impedance in the at least one branch; when the total current is greater than a threshold value, controls the charging module to decrease the charging voltage.
  • the battery charging and discharging circuit further includes a thermistor, and the thermistor is used to detect the temperature of the battery of the at least one circuit; the method further includes: The thermistor obtains the temperature; when the temperature is higher than a temperature threshold, the impedance adjustment circuit is controlled to increase the impedance in the at least one branch to reduce the current.
  • the capacity of the battery in the at least one branch is smaller than the capacity of the battery in other branches except the at least one branch.
  • an embodiment of the present application provides a controller, the controller includes an input and output interface and a logic circuit; the input and output interface is used to send and receive data; the logic circuit is used to control the controller to perform such as The method described in any embodiment of the second aspect.
  • an embodiment of the present application provides a system.
  • the system includes a controller and a battery charging and discharging circuit.
  • the battery charging and discharging circuit is the circuit described in any of the embodiments of the first aspect, and the controller may It is the controller described in the third aspect.
  • an embodiment of the present application provides a mobile terminal that includes at least two circuit boards and the system described in the fourth aspect, and the system is used to supply power to the at least two circuit boards.
  • an embodiment of the present invention provides a non-volatile computer-readable storage medium; the computer-readable storage medium is used to store implementation code of any method embodiment of the second aspect.
  • an embodiment of the present invention provides a computer program (product), the computer program (product) includes program instructions, and when the computer program product is executed, it is used to execute any method described in the foregoing second aspect. Methods.
  • the embodiment of the present application makes full use of the space of the mobile phone separated into two parts by the device to place two batteries of different capacities, and adopts the solution of charging and discharging two batteries in parallel to maximize the overall space utilization of the battery and the maximum overall capacity.
  • the two batteries can be charged at the same time, which not only improves the charging speed, but also avoids overcharging and ensures the safety of the charging process.
  • the two batteries can be discharged at the same time, which improves the discharge capacity and avoids over-discharge, ensuring the safety of the discharging process.
  • the charging and discharging current is gradually and dynamically adjustable during the charging and discharging process, achieving the best balance between charging speed and life, and improving the safety performance of the entire charging and discharging system.
  • related cooling strategies can be adopted by detecting the temperature of the battery, which further improves the safety of the charging and discharging process and enhances the user experience.
  • FIG. 1 is a schematic diagram of a system architecture of internal devices of a mobile terminal according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a system architecture of another internal device of a mobile terminal according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a system architecture of another internal device of a mobile terminal according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a system architecture of another internal device of a mobile terminal according to an embodiment of the present application.
  • FIG. 5 is an example circuit diagram of a battery charging and discharging system provided by an embodiment of the present application.
  • FIG. 6 is a circuit example diagram of yet another battery charging and discharging system provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an impedance adjusting circuit provided by an embodiment of the present application.
  • FIG. 8 is a circuit example diagram of yet another battery charging and discharging system provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for controlling a battery charging and discharging circuit provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of yet another method for controlling a battery charging and discharging circuit provided by an embodiment of the present application.
  • At least one refers to one or more
  • at least two refers to two or more
  • “And/or” is used to describe the association relationship of the associated objects, which means that there can be three kinds of relationships.
  • a and/or B can mean: there is only A, only B, and both A and B. Among them, A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • the method or device described in this application can be applied to a mobile terminal.
  • the mobile terminal can be, for example, a mobile phone (such as a foldable mobile phone, a sliding cover mobile phone, a single-board mobile phone, etc.), a tablet computer, and a wearable device (such as a smart bracelet, Smart watches, smart glasses, etc.), etc., this application does not make specific restrictions.
  • a mobile terminal usually consists of an external casing and internal components, and the internal components usually include a circuit board and a battery.
  • the circuit board is, for example, a printed circuit board (Printed Circuit Board, PCB), and various microelectronic devices, chips, circuits, etc. are soldered/carried on the circuit board.
  • the mobile terminal in the embodiment of the present application includes two or more circuit boards and two or more batteries. These circuit boards can be represented by a first circuit board, a second circuit board, a third circuit board, etc., and these batteries can be represented by a first battery, a second battery, a third battery, etc., respectively.
  • the large circuit board when there are two circuit boards, one large and one small in size, the large circuit board can also be called the main board, and the small circuit board can be called the small board.
  • the large size (or large internal resistance, or capacity) battery can also be called a large battery, and a small size (or small internal resistance) , Or small capacity) batteries are small batteries.
  • FIG. 1 is a schematic diagram of a possible system architecture of internal devices of a mobile terminal according to an embodiment of the present application.
  • the system architecture takes two circuit boards and two batteries as an example, and can be applied to foldable mobile phones, for example.
  • the system architecture includes a first circuit board (1), a second circuit board (2), a first battery (3), and a second battery (4). These devices can be connected to each other through the FPC (5) , FPC stands for Flexible Printed Circuit (FPC).
  • the first circuit board (1) is a main board
  • the second circuit board (2) is a small board
  • the first battery (3) is a small battery
  • the second battery (4) is a large battery.
  • the internal space of the mobile phone can be fully utilized and separated into two parts.
  • One part includes a first circuit board (1) and a first battery (3) that are compactly arranged together in space, and the other part includes a second circuit board (2) and a second battery (4) that are compactly arranged together in space.
  • the internal space of the mobile phone is divided into two parts based on the folding requirements of the folding area.
  • the first circuit board (1) and the first battery (3) are located in the upper half of the folding area, and the second circuit board (2) And the second battery (4) is located in the lower half of the folding area.
  • the two parts can be joined together through the folding area (such as the position of the dotted line in the middle in the figure), so as to make full use of the internal space of the foldable mobile phone to place the battery and maximize the battery capacity of the mobile phone.
  • the controller (11), the impedance adjusting circuit (12), the current detection circuit (13), and the current detection circuit (14) can be welded/carried on the first circuit board (1).
  • the controller (11) is responsible for the charge/discharge control of the two batteries.
  • the impedance adjustment circuit (12) is constructed by a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET, MOS tube for short), operational amplifiers, resistors, capacitors and other components to achieve adjustment at least The impedance of the branch where a battery (such as the first battery) is located.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the current detection circuit (13) and the current detection circuit (14) are used to detect the currents of the branches where the two batteries are located.
  • the first circuit board (1) may include a variety of power-consuming systems, such as a system on chip (SOC), a radio frequency (RF) communication module, and so on.
  • SOC system on chip
  • RF radio frequency
  • one or more of the above-mentioned controller (11), impedance adjustment circuit (12), current detection circuit (13), current detection circuit (14), etc. can be deployed in the SOC, so that the SOC is responsible for charging and discharging the battery
  • at least the controller (11) can be deployed to the SOC.
  • These power-consuming systems take up a lot of space, resulting in a larger scale of the first circuit board (1) compared to the second circuit board (2), but it is still possible to squeeze out some space in the upper half of the folding area to place small batteries (that is, the second circuit board).
  • the small battery can be snap-fitted to the first circuit board (1) through a connector, and power is supplied to the first circuit board (1) and the second circuit board (2) through the impedance adjusting circuit (12).
  • one or more of the impedance adjustment circuit (12), the current detection circuit (13), the current detection circuit (14), etc. can also be deployed in the FPC5, so that the FPC5 is responsible for charging and discharging the battery. Function.
  • the current detection circuit (13) can also be referred to as the first current detection circuit, and the current detection circuit (14) can also be referred to as the second current detection circuit.
  • a charging module 21 and a USB interface can be soldered/carried on the second circuit board (2), and the charging module can be used to charge/discharge the battery.
  • the charging module can be connected to an external power source through a USB interface, for example, to charge the battery.
  • the charging module may include a power management chip (Scharge), an overvoltage protection circuit (OVP MOS), and an adapter (Adapter).
  • the adapter is connected to the USB interface as an interface converter, and the USB is connected with an external charging line to connect to an external power source.
  • the overvoltage protection circuit is used to limit the input voltage within a safe range.
  • the power management chip is used to control the charging voltage to charge the battery, and to manage the battery discharge voltage to supply power to the first circuit board (1) and/or the second circuit board (2).
  • the embodiment of the present application arranges the charging module 21 on the second circuit board (2). Since the charging module and the large battery are close to each other, the charging path is the shortest and the path loss is low. Conducive to improving the charging speed.
  • the large battery can be snap-fitted to the second circuit board (2) through the connector to supply power to the first circuit board (1) and/or the second circuit board (2).
  • the first battery (3) and the second battery (4) are charged and discharged in parallel.
  • the internal device of the mobile terminal further includes one or more Negative Temperature Coefficient (NTC) thermistors.
  • NTC15 and NTC22 can be included, wherein NTC15 can measure the temperature at the first battery (3), that is, it can be used to measure the temperature of the first battery (3) during the charging and discharging process.
  • NTC22 can measure the temperature of the second battery (4), that is, it can be used to measure the temperature of the second battery (4) during the charging and discharging process.
  • circuit board in the embodiment of the present application can also be soldered/carry other more micro electronic devices, application chips, circuits, modules, etc., which is not limited in the present application.
  • FIG. 1 takes the two-part space of the internal device folded up and down as an example to describe the solution, this application is not limited thereto. In a specific implementation, there can also be other folding methods and space allocation methods.
  • FIG. 2 is a schematic diagram of another possible system architecture of internal devices of a mobile terminal according to an embodiment of the present application. The difference between this embodiment and the aforementioned Figure 1 is that the two parts of the internal device can be folded left and right, that is, the two parts of the internal device can be joined together through the folding area (such as the position of the middle dotted line in the figure), which can also be realized Make full use of the internal space to place the battery to maximize the battery capacity of the phone.
  • the folding area such as the position of the middle dotted line in the figure
  • both the first circuit board and the second circuit board are rectangular boards in the description of the solutions in FIGS. 1 and 2, this application is not limited thereto.
  • the circuit board can also be designed into any shape according to actual needs.
  • FIG. 3 is a schematic diagram of another possible system architecture of internal devices of a mobile terminal according to an embodiment of the present application.
  • the first circuit board (1) is designed into an irregular shape
  • the first battery (3) can be designed based on the shape of the first circuit board (1), so that the first circuit board (1) and The first batteries (3) are arranged compactly, so as to maximize the use of the internal space of the mobile phone.
  • the second circuit board (2) can also be designed into an irregular shape, and the second battery (4) can be designed based on the shape of the second circuit board (2), so that the second circuit The board (2) and the second battery (4) are arranged compactly, so as to maximize the use of the internal space of the mobile phone.
  • FIG. 4 is a schematic diagram of another possible system architecture of internal devices of a mobile terminal according to an embodiment of the present application.
  • the system architecture takes two circuit boards and three batteries as an example, which can be applied to foldable mobile phones, for example.
  • the system architecture includes a first circuit board (1), a second circuit board (2), a first battery (3), a second battery (4), and a third battery (6). These devices are also Can be connected to each other via FPC (5).
  • the first circuit board (1) is a main board
  • the second circuit board (2) is a small board.
  • the third battery (6) has the smallest battery size or capacity or internal resistance
  • the second battery (4) has the largest battery size or capacity or internal resistance.
  • the internal space of the mobile phone can be fully utilized and separated into two parts.
  • One part includes the first circuit board (1), the first battery (3) and the third battery (6) which are compactly arranged together in space, and the other part includes the second circuit board (2) and the second circuit board (2) and The second battery (4).
  • the two parts can be joined together through the folding area (such as the position of the dotted line in the middle in the figure), so as to make full use of the internal space of the foldable mobile phone to place the battery and maximize the battery capacity of the mobile phone.
  • the charging module 21 and the USB interface can also be soldered/carried on the second circuit board (2).
  • the controller (11), impedance adjustment circuit (12), impedance adjustment circuit (18), current detection circuit (13), current detection circuit (14), current detection can be welded/carried on the first circuit board (1) Circuit (16).
  • the controller (11) is responsible for the charge/discharge control of the three batteries.
  • the impedance adjusting circuit (12) and the impedance adjusting circuit (18) can be respectively used to adjust the impedance of the branch where one battery (such as the first battery and the third battery) is located.
  • the current detection circuit (13), the current detection circuit (14) and the current detection circuit (16) are used to detect the currents of the branches where the three batteries are located.
  • the internal device of the mobile terminal also includes one or more NTC thermistors, as shown in the figure, it may include NTC15, NTC17 and NTC22, where NTC15 can measure the temperature at the first battery (3), NTC17 The temperature at the third battery (6) can be measured, and the NTC22 can measure the temperature at the second battery (4).
  • circuit board in the embodiment of the present application can also be soldered/carry other more micro electronic devices, application chips, circuits, modules, etc., which is not limited in the present application.
  • the above-mentioned embodiments of the present application make full use of the mobile phone space separated into two parts by the device to place at least two batteries.
  • the batteries can be connected in parallel, and the total capacity of these batteries can be added to maximize the overall capacity.
  • FIG. 5 is an example diagram of a battery charging and discharging system provided by an embodiment of the present application.
  • the system can be applied to mobile terminals.
  • the system includes a controller (11) and a battery charging and discharging circuit controlled by the controller (11) (the battery charging and discharging circuit in this article can be referred to as the charging and discharging circuit).
  • the charging and discharging circuit includes: a charging module (21), at least two parallel branches formed by a small battery (3) and a large battery (4), the branch where the small battery (3) is located specifically includes the small battery (3) , Impedance adjustment circuit (12) and current detection circuit (13); among them:
  • the current detection circuit (13) further includes a fuel gauge (131) and a first precision resistor (132), the first precision resistor (132) and the small battery (3) are connected in series, and the fuel gauge (131) is connected through the SRP terminal and the SRN terminal, respectively Both ends of the first precision resistor (132) and the VBAT end of the fuel gauge (131) are connected to the charging module (21).
  • the fuel gauge (131) obtains the charge and discharge current of the small battery (3) by detecting the power flowing through the first precision resistor (132), that is, the current of the branch where the small battery (3) is located.
  • the output end of the parallel branch of the small battery (3) and the large battery (4) is connected to a current detection circuit (14).
  • the current detection circuit (14) further includes a fuel gauge (141) and a second precision resistor (142). One end of the second precision resistor (142) is connected to the output end of the parallel branch, and the other end is configured to be grounded.
  • the fuel gauge (141) is connected to both ends of the second precision resistor (142) through the SRP1 terminal and the SRN1 terminal, respectively, and the VBAT terminal of the fuel gauge (141) is connected to the charging module (21).
  • the fuel gauge (141) obtains the total charge and discharge current of the two parallel branches by detecting the amount of electricity flowing through the second precision resistor (142), that is, to count the current of the branch where the small battery (3) is located and the current of the large battery (4). ) The current of the branch where it is located.
  • the resistance value of the second precision resistor (142) may be the same as or different from the resistance value of the first precision resistor (132), which is not limited here.
  • the impedance adjustment circuit (12) is used to adjust the impedance of the branch where the small battery (3) is located; when the current is less than the preset threshold, the impedance adjustment circuit (12) can reduce the location of the small battery (3). So that the current of the impedance of the branch where the small battery (3) is located gradually meets the preset threshold, thereby increasing the charging and discharging speed of the small battery (3).
  • the impedance adjustment circuit (12) can increase the impedance of the branch where the small battery (3) is located, so that the current of the branch where the small battery (3) is located gradually meets the preset threshold, thereby avoiding Small battery (3) is overcharged or overdischarged during charging and discharging.
  • the charging module (21) may include, for example, a power management chip (Scharge), an overvoltage protection circuit (OVP MOS), and an adapter (Adapter).
  • the adapter is connected to the USB interface as an interface converter, and the USB is connected with an external charging line to connect to an external power source.
  • the overvoltage protection circuit is used to limit the input voltage within a safe range. When an over-voltage phenomenon occurs, the over-voltage protection circuit protects it to prevent damage to the subsequent electrical devices.
  • the power management chip is connected to the input end of the parallel circuit of the two batteries. The power management chip can be used to control the charging voltage to charge the battery.
  • the power management chip can also be connected to the circuit board through the FPC, such as the first circuit board (1) and the second circuit board (2), supplying power to the first circuit board (1) and/or the second circuit board (2) by managing the battery discharge voltage.
  • the controller (11) can be any type of electronic device that can process electronic instructions and realize circuit control functions, including but not limited to central processing unit (CPU), microprocessor, microcontroller, main processor, ASIC (Application Specific Integrated Circuit, application specific integrated circuit) and so on.
  • the controller (11) can collect the current detection results of the fuel gauge (131)/the fuel gauge (141) through the I2C bus respectively.
  • the current detection results in this article can also be referred to as current information, and the current information indicates the magnitude of the current value.
  • the current information detected by the fuel gauge (131) may be called first current information
  • the current information detected by the fuel gauge (141) may be called second current information.
  • the controller (11) can also realize the control of the impedance adjusting circuit (12) through a general Purpose Input Output (GPIO).
  • the controller (11) may also be connected to the charging module (21) through a connecting wire to instruct the charging module (for example, a voltage management chip or an adapter) to adjust the output charging voltage.
  • the system also includes one or more NTC thermistors, as shown in the figure, it may include NTC (15) and NTC (22), where NTC (15) can measure the temperature at the small battery (3) , NTC22 can measure the temperature at the large battery (4).
  • the controller (11) can collect the temperature detection results of the NTC (15) and the NTC (22), for example, through an analog-to-digital converter (Analog to Digital Converter, ADC) interface, respectively.
  • ADC Analog to Digital Converter
  • the charging module (21) starts to be a small on the parallel circuit under the control of the controller (11).
  • the battery (3) and the large battery (4) are charged.
  • the large battery (4) has a relatively large capacity, a large charging current, and no control of the path.
  • the path of the small battery (3) is restricted by the impedance adjusting circuit (12), and the current can be controlled within the maximum receiving current of the small battery (3) by adjusting the impedance of the impedance adjusting circuit (12).
  • the current in the path of the small battery (3) can be detected in real time by the current detection circuit (13).
  • the current detection circuit (14) can detect the total current of the charging path of the small battery (3) and the large battery (4) in real time, and then the total current and the current of the small battery (3) path can be used to calculate the path of the large battery (4) Current.
  • the controller (11) collects the current detection results of the current detection circuit (13) and the current detection circuit (14) in real time through related control lines.
  • NTC (15) and NTC (22) can also collect the small battery (3) in real time.
  • the controller (11) dynamically adjusts the charging current of the small battery (3) path and the large battery (4) path according to the current detection result and the temperature collection result, so that both the small battery (3) and the large battery (4) reach The fastest charging speed, and can ensure the safety of the charging process.
  • the controller (11) controls the impedance adjustment circuit (12) to decrease The impedance of the path of the small battery (3) is reduced, so that the current of the path of the small battery (3) gradually increases toward the preset threshold, thereby increasing the charging speed.
  • the controller (11) detects that the charging current is greater than the preset threshold through the current detection circuit (13)
  • the controller (11) controls the impedance adjustment circuit (12) to increase the impedance in the path of the small battery (3) so that the small battery (3) The current in the path decreases toward the preset threshold, thereby avoiding damage to the battery due to overcharging and improving charging safety.
  • the controller (11) controls the impedance adjusting circuit (12) to reduce the impedance in the path of the small battery (3), so that the current in the path of the small battery (3) gradually increases, thereby increasing the charging current of the total path.
  • the controller (11) When the controller (11) detects that the charging current reaches or exceeds the total current threshold through the current detection circuit (14), the controller (11) controls the impedance adjustment circuit (12) to increase the impedance in the small battery (3) path to make The current of the small battery (3) path is reduced, or the charging module (21) is instructed to reduce the charging voltage, so that the charging current of the total path is reduced, so as to avoid damage to the battery by current overcharge and improve charging safety.
  • the controller (11) controls the impedance adjustment circuit (12)
  • the impedance of the path of the small battery (3) is reduced, so that the current in the path of the small battery (3) is reduced, and the path of the small battery (3) is even closed, thereby cooling the small battery (3) and improving the safety of the battery charging process.
  • the controller (11) When the controller (11) detects through the NTC (22) that the temperature of the large battery (4) exceeds the threshold value, the controller (11) can instruct the charging module (21) to reduce the charging voltage to make the small battery large battery (4) The current of the path is reduced, and the path of the large battery (4) is even closed, so that the temperature of the large battery (4) is lowered, and the safety of the battery charging process is improved.
  • the power management chip is connected to the first circuit board (1) and the second circuit board (2) through the FPC, and the parallel circuit composed of the charging of the small battery (3) and the large battery (4) is controlled by the controller (11) Discharging at the same time, and supplying power to the first circuit board (1) and the second circuit board (2) through the power management chip.
  • the discharge path of the small battery (3) is restricted by the impedance adjustment circuit (12), and the discharge current can be controlled within the maximum discharge current of the small battery (3) by adjusting the impedance of the impedance adjustment circuit (12).
  • the current in the path of the small battery (3) can be detected in real time by the current detection circuit (13).
  • the current detection circuit (14) can detect the total current of the charging path of the small battery (3) and the large battery (4) in real time, and then the total current and the current of the small battery (3) path can be used to calculate the path of the large battery (4) Discharge current.
  • the controller (11) collects the current detection results of the current detection circuit (13) and the current detection circuit (14) in real time through related control lines.
  • NTC (15) and NTC (22) can also collect the small battery (3) in real time.
  • the controller (11) dynamically adjusts the discharge current of the small battery (3) path and the large battery (4) path according to the current detection result and the temperature collection result, so that the small battery (3) and the large battery (4) can be balanced Ground discharge, and can ensure the safety of the charging process.
  • the controller (11) when the controller (11) detects through the current detection circuit (13) that the discharge current is greater than the preset threshold (the preset threshold of the discharge process may be different from the preset threshold of the charge process) Threshold), the controller (11) controls the impedance adjustment circuit (12) to increase the impedance in the path of the small battery (3), so that the current in the path of the small battery (3) decreases toward the preset threshold, thereby avoiding excessive current Discharge and damage the battery or circuit board components to improve discharge safety.
  • the preset threshold of the discharge process may be different from the preset threshold of the charge process
  • the controller (11) controls the impedance adjusting circuit (12) to increase the impedance in the path of the small battery (3) so that the small battery (3) is connected The current is reduced, so that the discharge current of the total path is reduced, thereby avoiding the damage of the battery or circuit board components by the current over discharge, and improving the charging safety.
  • the controller (11) controls the impedance adjustment circuit (12) Reduce the impedance in the path of the small battery (3) to reduce the current in the path of the small battery (3), or even close the path of the small battery (3), thereby cooling the small battery (3) and improving the battery discharge process Security.
  • the charging module 21 can be directly connected to the small battery (3) and the large battery (4), that is, the impedance adjusting circuit (12) is not directly connected to the charging module 21, that is, the impedance adjusting circuit (12) is
  • the control of the charge and discharge current of the small battery (3) belongs to the negative terminal control mode.
  • the circuit positions of the small battery (3) and the impedance adjustment circuit (12) can also be swapped, that is, the small battery (3) is designed not to be directly connected to the charging module 21, but to adjust the impedance
  • the circuit (12) is designed such that one end is connected to the charging module 21, and the other end is connected to the small battery (3).
  • the impedance adjusting circuit (12) controls the charging and discharging current of the small battery (3) in a positive control mode.
  • the embodiment of the present application makes full use of the space of the mobile phone separated into two parts by the device to place two batteries of different capacities, and adopts the solution of charging and discharging two batteries in parallel to maximize the overall space utilization of the battery and the maximum overall capacity.
  • the two batteries can be charged at the same time, which not only improves the charging speed, but also avoids overcharging and ensures the safety of the charging process.
  • the two batteries can be discharged at the same time, which improves the discharge capacity and avoids over-discharge, ensuring the safety of the discharging process.
  • related cooling strategies can be adopted by detecting the temperature of the battery, which further improves the safety of the charging and discharging process and improves the user experience.
  • an impedance adjustment circuit can also be provided in the branch where the large battery (4) is located, to adjust the impedance in the branch where the large battery (4) is located;
  • the branch where the battery (3) is located and the branch where the large battery (4) is located are respectively equipped with impedance adjustment circuits to adjust the impedance of the branch where the small battery (3) is located and the impedance of the branch where the large battery (4) is located, and adjust each impedance
  • the circuits are controlled by the controller. In this way, the path current of the large battery (4) can be controlled independently, which further improves the safety of the charging and discharging process of the two batteries and reduces heat loss.
  • FIG. 5 uses the current detection circuit (14) to detect the total path current of the parallel circuit as an example for description, the application is not limited to this. In a possible embodiment, a current detection circuit can also be designed to detect the path current of the large battery (4).
  • FIG. 6 is an example diagram of yet another battery charging and discharging system provided by an embodiment of the present application.
  • the branch where the large battery (4) is located specifically includes the large battery (4) and a current detection circuit (14), and the current detection circuit (14) further includes a fuel gauge (141) and The third precision resistor (143), the third precision resistor (143) and the large battery (4) are connected in series, the fuel gauge (141) is connected to both ends of the third precision resistor (143) through the SRP1 terminal and the SRN1 terminal, respectively, and the fuel gauge ( The VBAT terminal of 141) is connected to the charging module (21).
  • the fuel gauge (141) obtains the charge and discharge current of the large battery (4) by detecting the power flowing through the third precision resistor (143), that is, the current of the branch where the large battery (4) is located.
  • the controller can collect the current detection result of the fuel gauge (141) to realize the control of the current of the large battery (4). Or the controller can also obtain the total path current of the parallel branch according to the current detection result of the fuel gauge (131) and the current detection result of the fuel gauge (141), so as to realize the control of the total path current.
  • the resistance of the third precision resistor (143) may be the same as or different from the resistance of the second precision resistor (142), which is not limited here.
  • the impedance adjustment circuit in the embodiment of the present application will be described in detail below.
  • FIG. 7 shows a schematic structural diagram of an impedance adjusting circuit 12 provided by an embodiment of the present application.
  • the impedance adjusting circuit (12) specifically includes a level control module (123) and an operational amplifier. Module (121), comparator module (122) and impedance adjustment module (124).
  • the level control module (123) and the operational amplifier module (121) are respectively connected to the input end of the comparator module (122), and the output end of the comparator module (122) is connected to the impedance adjustment module (124).
  • the level control module (123) is controlled by the controller, and the input terminals of the operational amplifier module (121) are respectively connected to both ends of the precision resistor to obtain the voltage across the precision resistor.
  • the impedance adjustment module (124) is connected to the battery.
  • the impedance adjusting circuit (12) is arranged in the branch where the aforementioned small battery (3) is located, the battery is the small battery (3), and the precision resistor is the first precision resistor (132).
  • the impedance adjusting circuit (12) is arranged in the branch where the aforementioned large battery (4) is located, the battery is the large battery (4), and the precision resistor is the third precision resistor (143).
  • the operational amplifier module (121) is used to obtain and amplify the voltage across the first precision resistor, and output the amplified The voltage to the negative input terminal of the comparator module (122).
  • the level control module (123) is used to output voltage to the positive input terminal of the comparator module (122) under the control of the controller.
  • the comparator module (122) compares The level control module (123) and the operational amplifier module (121) respectively output voltages to output voltages to the impedance adjustment module (124).
  • the voltage output from the comparator module (122) to the impedance adjustment module (124) may also be referred to as a target voltage.
  • the impedance adjustment module (124) is used for adjusting the impedance in the branch where the small battery (3) is located according to the voltage (ie the target voltage) output by the comparator module (122).
  • the controller sends a first pulse width modulation (Pulse Width Modulation, PWM) signal to the level control module (123), and the first PWM The signal instructs the level control module (123) to output a higher voltage than the output voltage of the operational amplifier module (121) by specifying the duty ratio of the MOS tube (MOS1) in the level control module (123)
  • PWM Pulse Width Modulation
  • the impedance adjustment module (124) is used to reduce the impedance in the branch where the small battery (3) is located according to the output voltage of the comparator module (122), thereby prompting the branch where the small battery (3) is located The current increases.
  • the controller sends a second PWM signal to the level control module (123), and the second PWM signal passes through the designated level control module ( 123) the duty cycle of the MOS tube (MOS1) to instruct the level control module (123) to output a voltage smaller than the output voltage of the operational amplifier module (121), so that the impedance adjustment module (124) is used to increase the impedance in the branch where the small battery (3) is located according to the output voltage of the comparator module (122), thereby causing the current in the branch where the small battery (3) is located to decrease.
  • the impedance adjustment module (124) is used to increase the impedance in the branch where the small battery (3) is located according to the output voltage of the comparator module (122), thereby causing the current in the branch where the small battery (3) is located to decrease.
  • FIG. 8 is a schematic diagram of a detailed circuit structure of another battery charging and discharging system provided by an embodiment of the present application.
  • the difference between the embodiment in FIG. 8 and the embodiment in FIG. 5 is that the embodiment in FIG. 8 further refines the impedance adjustment circuit 12.
  • the impedance adjustment circuit 12 includes a level control module (123), an operational amplifier module (121), a comparator module (122), and an impedance adjustment module (124). in:
  • the level control module (123) is further constructed by multiple resistors (R1, R2, R3, R4), multiple capacitors (C1, C2) and MOS transistors (MOS1), and the specific circuit connection topology has been Shown in Figure 8.
  • MOS1 may be, for example, an NMOS transistor, and the first electrode (gate) of MOS1 is controlled by a signal from the controller (11).
  • R1 is connected between the first electrode (gate) and the second electrode (source) of MOS1
  • the third electrode (drain) of MOS1 is connected to R2 and R3 respectively
  • R2 is connected to the voltage input terminal U to obtain a fixed or flexible Variable input voltage.
  • R3 is also connected to one end of C1 and one end of R4, respectively, and C2 is connected to the other end of C1 and the other end of R4, respectively.
  • the output terminal of R4 can be used as the voltage output terminal of the level control module (123).
  • the operational amplifier module (121) is further constructed by multiple resistors (R5, R6, R7, R8) and an operational amplifier (OP1), and the specific circuit connection topology is shown in FIG. 8.
  • R5 and one end of R6 are respectively connected to the two ends (SRP/SRN) of the first precision resistor (132), the other end of R5 and the other end of R6 are respectively connected to the positive input terminal and the negative input terminal of OP1 .
  • R7 is respectively connected to the ground terminal and the positive input terminal of OP1
  • R8 is respectively connected to the negative input terminal of OP1 and the output terminal of OP1.
  • the output terminal of OP1 can be used as the voltage output terminal of the operational amplifier module (121).
  • the comparator module (122) is further constructed by a resistor (R9), an operational amplifier (OP2) and a capacitor (C3).
  • the specific circuit connection topology is shown in FIG. 8.
  • the positive input terminal of OP2 is connected to the voltage output terminal of the level control module (123), the negative input terminal of OP2 is connected to one end of R9, and the other end of R9 is connected to the voltage output terminal of the operational amplifier module (121).
  • C3 is connected to the negative input terminal of OP2 and the output terminal of OP2 respectively.
  • the output terminal of OP2 can be used as the voltage output terminal of the comparator module (122).
  • the impedance adjustment module (124) is further constructed by resistors (R10, R11) and MOS transistors (MOS2), and the specific circuit connection topology is shown in FIG. 8.
  • MOS2 may be, for example, an NMOS transistor, one end of R10 is connected to the voltage output terminal of the comparator module (122), and the other end is connected to the first electrode (gate) of MOS2.
  • the third electrode (drain) of MOS2 is connected to one end of the small battery (3), the second electrode (source) of MOS1 is connected to one end (SRP) of the first precision resistor (132), and R11 is connected to the first end of MOS2.
  • SRP the second electrode
  • R11 is connected to the first end of MOS2.
  • the impedance adjustment module (124) can adjust the impedance of the MOS2 based on the output voltage of the comparator module (122). Since MOS2 is arranged in the branch where the small battery (3) is located, it is also equivalent to adjusting the impedance of the branch where the small battery (3) is located.
  • the charging module (21) After the charging module (21) is connected to an external power source (for example, plugged into a charger, USB power supply, mobile power supply, etc.), the charging module (21) starts to be a small on the parallel circuit under the control of the controller (11). The battery (3) and the large battery (4) are charged. The controller (11) can detect the current in the path of the small battery (3) in real time through the current detection circuit (13).
  • an external power source for example, plugged into a charger, USB power supply, mobile power supply, etc.
  • this part of the current flowing through the first precision resistor can be converted into voltage (that is, the voltage between SNP and SRN), which is input to the operational amplifier module (121), and the operational amplifier module (121) is in accordance with the required ratio
  • the ratio is determined by the specific resistance of each resistor in the operational amplifier module (121).
  • the input voltage can be amplified by 100 times.
  • the amplified voltage is output to the negative input terminal of the comparator module (122) through the output terminal of the operational amplifier module (121).
  • the controller (11) can send a PWM signal to the level control module (123) through the GPIO interface based on the current detected by the current detection circuit (13), and the PWM signal carries square wave duty cycle information.
  • the level control module (123) outputs an appropriate voltage to the positive input terminal of the comparator module (122) through the output terminal according to the PWM signal and the voltage provided by the voltage input terminal U. For example, the greater the duty cycle of the square wave in the PWM signal, the greater the voltage output by the level control module (123).
  • the controller (11) when the controller (11) detects that the current of the branch where the small battery (3) is located is less than the preset threshold, it can instruct the level control module (123) to output a fixed voltage or output a stepwise output through the GPIO interface. Increased voltage.
  • the output voltage of the output terminal of the level control module (123) is greater than the output voltage of the output terminal of the operational amplifier module (121).
  • the output voltage After processing by the comparator module (122), the output voltage is higher than before to the impedance adjustment Module (124).
  • the impedance adjusting module (124) reduces the drain-source impedance of the MOS tube (MOS2) as the output voltage of the comparator module (122) acts on the gate. In this way, the current of the branch where the small battery (3) is located will increase as the impedance decreases, thereby increasing the charging speed of the small battery.
  • the controller (11) detects that the current of the branch where the small battery (3) is located is greater than the preset threshold, it can indicate through the GPIO interface that the voltage output from the output terminal of the level control module (123) is higher than that of the operational amplifier module (121). )
  • the output voltage of the output terminal is small.
  • the comparator module (122) acts quickly to output a relatively low voltage to the impedance adjustment module (124).
  • the impedance adjustment module (124) increases the drain-source impedance of the MOS tube (MOS2) as the output voltage of the comparator module (122) acts on the gate, that is, the control increases the resistance of the branch where the small battery (3) is located. impedance. In this way, the current of the branch where the small battery (3) is located will be reduced as the impedance increases, thereby realizing the limitation of the charging current of the small battery (3), avoiding overcharging of the small battery (3), and improving battery charging safety .
  • the controller (11) can detect the total current of the charging path of the small battery (3) and the large battery (4) in real time through the current detection circuit (14), and can also pass the total current and the small battery ( 3) Calculate the current of the path of the large battery (4).
  • the controller (11) detects that the charging current of the total path is relatively small through the current detection circuit (14), the controller (11) uses GPIO
  • the output voltage of the interface indicating level control module (123) is smaller than the output voltage of the operational amplifier module (121), thereby increasing the output voltage of the comparator module (122) and reducing the drain-source of the MOS tube (MOS2) Impedance, so that the current of the small battery (3) path gradually increases, thereby increasing the charging current of the total path.
  • the controller (11) detects that the charging current reaches or exceeds the total current threshold through the current detection circuit (14), the controller (11) instructs the level control module (123) through the GPIO interface to indicate that the output voltage of the level control module (123) is higher than the operational amplifier
  • the output voltage of the module (121) is small, thereby reducing the output voltage of the comparator module (122), increasing the impedance between the drain and the source of the MOS tube (MOS2), and reducing the current in the small battery (3) path, thereby reducing Minimize the charging current of the total path to avoid damage to the battery due to current overcharge and improve charging safety.
  • the controller (11) controls the impedance adjusting circuit (12) Reduce the impedance between the drain and source of the MOS tube (MOS2) to reduce the current in the small battery (3) path, and even close the small battery (3) path, so as to cool the small battery (3) and improve the battery charging process Security.
  • MOS2 MOS tube
  • the controller (11) can also control the level control module (123) of the impedance adjusting circuit (12), thereby adjusting the drain-source impedance of the MOS tube (MOS2).
  • the related process is similar to the implementation details of the reference charging process, which will not be repeated here.
  • the controller in the embodiment of the application makes full use of the data collected by the ammeter and NTC to control the charging module and the impedance adjustment circuit according to the charging and discharging strategy, so as to realize the safe charging and discharging of the large battery and the small battery at the same time.
  • the MOS tube of the impedance adjusting circuit is connected in series on the small battery path, so the impedance of the small battery path can be controlled according to the current in the charging and discharging process of the small battery to adjust the charging and discharging current of the small battery.
  • the impedance of the small battery path or the charging voltage of the charging module can be adjusted in real time according to the total current of the two parallel branches, and the cooling strategy can be implemented according to the battery temperature to improve the safety of the battery charging and discharging process.
  • the charging and discharging system in the embodiment of the present application is a closed loop system, which automatically performs impedance control according to the current in the battery parallel branch, and dynamically adjusts the charging and discharging current to achieve a balance between the charging and discharging speed and safety performance.
  • the voltage output by the level control module of the impedance adjustment circuit may be fixed or variable.
  • the controller controls the duty cycle of the MOS tube (MOS1) of the level control module in the impedance adjustment circuit according to the current limit requirement of the current flowing through the small battery, so as to output the dynamically demanded voltage, which can meet the current limit of different currents. Require.
  • the current limit can also be adapted according to the life characteristics of the battery, and the charging and discharging current can be further limited to achieve the purpose of safe use of the battery.
  • the charging and discharging circuit can be applied to a mobile terminal, the charging and discharging system includes a controller and a charging and discharging circuit, the charging and discharging circuit includes: at least two parallel branches formed by at least two batteries; at least one of the branches Specifically, it includes a battery, a first current detection circuit, and an impedance adjustment circuit; the first current detection circuit is used to detect the charging or discharging current of the at least one branch, and the impedance adjustment circuit is used to adjust the The impedance in the branch.
  • the impedance adjustment circuit specifically includes a level control module, an operational amplifier module, a comparator module, and an impedance adjustment module;
  • the impedance adjustment module includes a metal-oxide semiconductor field effect transistor (MOS tube), and the The MOS tube is connected in series with the battery in the at least one branch;
  • the level control module is used to output voltage to the input terminal of the comparator module;
  • the operational amplifier module is used to obtain the voltage across the precision resistor and Amplify and output the amplified voltage to the input terminal of the comparator module;
  • the comparator module is used to compare the respective output voltages of the level control module and the operational amplifier module to output a target voltage to the Impedance adjustment module;
  • the impedance adjustment module is used to adjust the impedance of the MOS tube in the at least one branch according to the target voltage.
  • FIG. 9 is a control method of a charging and discharging circuit provided by the present application.
  • the method can be applied to a controller in a charging and discharging system.
  • the controller may be the controller 11 described in any of the preceding embodiments.
  • the method includes but is not limited to the following steps:
  • the controller may obtain the first current information from the first current detection circuit, where the first current information indicates the charging or discharging current value of the at least one branch.
  • the first current detection circuit specifically includes a fuel gauge and a precision resistor, and the precision resistor is connected in series with the battery in the at least one branch; the first current detection circuit is used to detect the amount of power flowing through the precision resistor. Obtain the charging or discharging current value of the at least one branch.
  • the battery in the at least one branch may be the first battery 3 (or small battery 3) described in any of the foregoing embodiments
  • the first current detection circuit may be the current detection circuit 13 described in any of the foregoing embodiments.
  • the fuel gauge may be the fuel gauge 13 described in any of the foregoing embodiments
  • the precision resistor may be the first precision resistor (132) described in any of the foregoing embodiments.
  • the capacity of the battery in the at least one branch is smaller than the capacity of the battery in other branches except the at least one branch.
  • the battery of the other branch may be the second battery 4 (or the large battery 4) described in any of the foregoing embodiments.
  • At least two parallel branches formed by the at least two batteries are used to jointly supply power to at least two circuit boards of different sizes.
  • the at least two circuit boards with different scales may be, for example, the first circuit board 1 and the second circuit board 2 described in any of the foregoing embodiments.
  • the controller may send a first pulse width adjustment PWM signal to the level control module through a GPIO interface, and the first PWM signal is used to instruct the power
  • the level control module outputs a smaller voltage than the amplified voltage; thus, the output of the comparator module is larger than the previous voltage, and the impedance adjustment module specifically decreases the output voltage of the comparator module according to the output voltage of the comparator module.
  • the impedance adjustment circuit When the current is greater than the preset threshold, control the impedance adjustment circuit to increase the impedance in the at least one branch, so that the current of the at least one branch is reduced, and the reduced current is less than or Equal to the preset threshold.
  • the impedance may be gradually increased to gradually reduce the current and thus tend to the preset threshold, or the impedance may be changed sharply so that the current is rapidly reduced to the preset threshold or below the preset threshold.
  • a second pulse width adjustment PWM signal is sent to the level control module, and the second PWM signal is used to instruct the level control module to output a higher output than the
  • the amplified voltage is a smaller voltage; thus, the output of the comparator module is smaller than the previous voltage, and the impedance adjustment module specifically increases the voltage in the at least one branch according to the output voltage of the comparator module. impedance.
  • the battery charging and discharging circuit further includes at least one thermistor, and the thermistor is used to detect the temperature of the battery of the at least one circuit.
  • the thermistor can be the NTC15 described in any of the foregoing embodiments, and the controller can also detect whether the small battery reaches the temperature threshold during the charging and discharging process, so as to perform real-time current adjustment based on the temperature information, and improve the safety and performance of the battery.
  • the specific implementation details have been described in the previous article, so I won't repeat them here.
  • the embodiment of the present application can make full use of the internal space of the mobile terminal to place at least two batteries of different sizes and at least two circuit boards of different sizes.
  • the solution of two batteries in parallel is adopted, and the two batteries are charged simultaneously.
  • the maximum charging and discharging current is controlled by controlling the impedance of the MOS tube of the impedance adjusting circuit, avoiding overdischarge and overcharging of small batteries, extending the life of small batteries, achieving the best balance between charging speed and life, and improving This improves the safety performance of the entire charging and discharging system; in addition, during the discharging process, the two batteries are discharged at the same time to maximize the discharge capacity of the mobile terminal.
  • FIG. 10 is another method for controlling a charging and discharging circuit provided by the present application.
  • the charging and discharging circuit can be applied to a mobile terminal.
  • the charging and discharging system includes a controller and a charging and discharging circuit. It includes: a charging module, at least two parallel branches formed by at least two batteries, and a second current detection circuit; wherein the charging module is used to provide a charging voltage for the at least two parallel branches, and at least one branch
  • the circuit specifically includes a battery, a first current detection circuit, and an impedance adjustment circuit; the first current detection circuit is used to detect the charging or discharging current of the at least one branch, and the impedance adjustment circuit is used to adjust the The impedance in a branch.
  • the second current detection circuit is used to detect the total current of the at least two parallel branches, and the battery in the at least one branch may be the first battery 3 (or small battery 3) described in any of the preceding embodiments.
  • the first current detection circuit may be the current detection circuit 13 described in any of the foregoing embodiments.
  • the second current detection circuit may be the current detection circuit 14 described in any of the foregoing embodiments.
  • the method can be applied to the controller in the charging and discharging system, and the controller can be the controller 12 described in any of the preceding embodiments.
  • the method includes but is not limited to the following steps:
  • the total path formed by all parallel branches can be charged with a relatively small current (that is, the safety threshold current).
  • the voltage output by the comparator module can also be kept the highest, so that the impedance of the small battery path is minimized, so that the system quickly enters the charging state.
  • the charging module may be the charging module 21 described in any of the foregoing embodiments.
  • the charging module may include a power management chip (Scharge), an overvoltage protection circuit (OVP MOS), and an adapter (Adapter).
  • the adapter is connected to the USB interface as an interface converter, and the USB is connected with an external charging line to connect to an external power source.
  • the overvoltage protection circuit is used to limit the input voltage within a safe range. When an over-voltage phenomenon occurs, the over-voltage protection circuit protects it to prevent damage to the subsequent electrical devices.
  • the power management chip is used to control the charging voltage to charge the battery.
  • the controller is connected to the charging module through a connecting wire, and the controller sends information to the charging module to instruct the charging module to increase the charging voltage by a small margin, thereby increasing the current of the total path.
  • the so-called "small amplitude" may be a step size for increasing the voltage to a smaller extent, which is not limited in this application.
  • step 303 Determine whether the total current of the total path is less than the threshold of the total path. Specifically, the controller can detect the total current value of the total path in real time through the second current detection circuit. If the total current of the total path is less than the threshold of the total path, step 304 is continued subsequently; if the total current of the total path is greater than the threshold of the total path, step 307 is continued subsequently.
  • step 304 Determine whether the current of the small battery path is less than a preset threshold of the small battery path. Specifically, the controller can detect the total current value of the small battery path in real time through the first current detection circuit. If the current of the small battery path is less than the preset threshold of the small battery path, step 305 is continued subsequently; if the current of the small battery path is greater than the preset threshold of the small battery path, step 306 is continued subsequently.
  • step 305 Control the impedance adjustment circuit to reduce the impedance of the small battery path, so that the current of the small battery path increases, and the increased current can be controlled to be less than or equal to a preset threshold. Then continue to return to step 302, that is, continue to increase the charging voltage of the charging module so that the current in the total path increases slightly.
  • step 306 Control the impedance adjustment circuit to increase the impedance of the small battery path, so that the current of the small battery path is reduced, that is, the current after the reduced control is less than the preset threshold, and then continue to return to step 302, that is, continue to increase the charging voltage of the charging module to make the total The current in the path increases slightly.
  • the impedance adjusting circuit may be the impedance adjusting circuit 12 described in any of the preceding embodiments.
  • the detailed structure of the impedance adjusting circuit and the method for the controller to control the impedance adjusting circuit to reduce or increase the impedance of the small battery path have been described above. For the sake of brevity of the manual, it will not be repeated here.
  • Step 307. Reduce the current of the total path for charging. Specifically, the controller sends information to the charging module to instruct the charging module to reduce the charging voltage, thereby reducing the current in the total path. Step 303 is subsequently performed to determine whether the reduced current of the total path is less than the threshold value.
  • the controller can continuously detect the total current of the total path and the current of the small battery path, adaptively instruct the charging module to adjust the total current of the total path and instruct the impedance adjustment circuit to adjust the circuit impedance, thereby realizing at least two different Charge large and small batteries at the same time to avoid overcharging of small batteries, extend battery life, improve the charging speed of the two batteries, and achieve the best balance between charging speed and life, and improve the safety performance of the entire charging and discharging system.
  • this application also provides a controller that includes an input and output interface and a logic circuit; the input and output interface is used to send and receive data; the logic circuit is used to control the controller
  • the method described in the embodiment of FIG. 9 or FIG. 10 is executed.
  • the controller may be the controller (11) described in any of the preceding embodiments.
  • the present application also provides a system that includes a controller and a battery charging and discharging circuit.
  • the battery charging and discharging circuit may be the charging and discharging circuit described in any of the preceding embodiments, and the controller may be The controller described in any of the previous embodiments, such as the controller (11).
  • the present application also provides a mobile terminal including at least two circuit boards and the charging and discharging circuit as described in any of the preceding embodiments, and the system is used to provide the at least two circuit boards. powered by.
  • Part or all of the circuits, components, modules, etc. in the charging and discharging circuit can be deployed on any circuit board of the at least two circuit boards, and the at least two circuit boards include, for example, the first circuit board (1) And the second circuit board (2).

Abstract

本申请实施例提供一种电池充放电电路的控制方法及相关装置,该电池充放电电路包括:至少两个电池形成的至少两个并联的支路、分别连接至少两个电池的充电模块;其中,充电模块为至少两个并联的支路提供充电电压;至少一个支路具体包括电池、第一电流检测电路和阻抗调节电路;其中:第一电流检测电路用于检测至少一个支路的充电或放电的电流;阻抗调节电路用于根据电流与预设阈值的差距逐步调节在至少一个支路中的阻抗,以改变电流趋向预设阈值。实施本申请实施例能够实现在不限制两个或更多个电池的容量大小的情况下,提高电池充放电的效率,保护电池性能。

Description

一种电池充放电电路的控制方法及相关装置
本申请要求于2020年03月28日提交中国专利局,申请号为202010232965.9,申请名称“一种电池充放电电路的控制方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子电路技术领域,尤其涉及一种电池充放电电路的控制方法及相关装置。
背景技术
现如今,随着电子技术的创新发展,可折叠电子设备(如折叠屏手机)正在替代传统的直板机成为一种趋势。折叠屏手机的工业设计(Industrial Design,ID)形态相对直板机而言,通常屏幕更大而更加耗电,而且手机内部的结构空间比较分散,可能没有预留较大的空间给电池。这样,对于折叠屏手机,如果采用单电池设计的话,将不能满足用户的待机需求。为了充分利用好折叠屏手机的空间,增加电池容量,延长待机时间,使用两个电池进行并联是一种不错的解决方案。
现有的双电池充放电方案通常是将两个电池直接进行简单的电路并联,不同电池的内阻不同时,在充放电过程中将出现电流不均衡现象。当电池内阻差别较大时,可能由于电流过大而出现电池过充或过放现象以及出现显著的热损耗,从而损害电池性能。为了避免这种弊端,现有方案通常采用内阻相近的电池,从而限制了折叠屏手机的ID形态;或者在充电过程中先充满一个电池,在对另一块电池充电,从而导致充电时间较长。
发明内容
本申请实施例提供一种电池充放电电路的控制方法及相关装置,能够实现在不限制两个或更多个电池的容量/内阻大小的情况下,提高电池充放电的效率,保护电池性能。
第一方面,本申请提供了一种电池充放电电路,该电池充放电电路包括:至少两个电池形成的至少两个并联的支路、分别连接所述至少两个电池的充电模块;其中,所述充电模块用于为所述至少两个并联的支路提供充电电压;所述至少两个并联的支路中的至少一个支路具体包括电池、第一电流检测电路和阻抗调节电路;其中:所述第一电流检测电路用于检测所述至少一个支路的充电或放电的电流;所述阻抗调节电路用于根据所述电流与预设阈值的差距逐步调节在所述至少一个支路中的阻抗,以改变所述电流趋向预设阈值。
其中,所述至少两个电池的电池容量可以不同,例如可以包括一个大电池和一个小电池,阻抗调节电路设置在小电池所在的支路上。也就是说,本申请实施例中充电端可以直接连接到电池,如充电模块可以分别直接连接小电池和大电池,此时阻抗调节电路不直接连接充电模块,即阻抗调节电路对小电池的充放电电流的控制属于负端控制模式。
另外,本申请实施例中阻抗可以基于电流与预设阈值的比较关系来逐步调节支路的阻抗,即阻抗是逐步、动态可调的,进而使得充放电电流动态可调。
可以看到,本申请实施例可充分利用移动终端的内部空间放置至少两个不同大小的电池和至少两个不同大小的电路板,采用两个电池并联的方案,充电池过程中两个电池同时充电,且充放电过程中通过控制阻抗调节电路调节阻抗来控制充放电电流最大值,避免小电池过放 和过充,延长小电池寿命,在充电速度和寿命达到最佳平衡,提高了整个充放电系统的安全性能;此外在放电过程中,两个电池同时放电,使移动终端的放电能力达到最大。
基于第一方面,在可能的实施例中,所述至少一个支路中的电池的容量小于除所述至少一个支路外的其他支路的电池的容量。也就说说,所述至少两个电池的电池容量可以不同,例如可以包括一个大电池和一个小电池,阻抗调节电路设置在小电池所在的支路上。
可以看到,本申请上述实施例充分利用了被器件隔离成两部分的手机空间来放置至少两个电池,所述至少两个电池容量可以不等,甚至可以相差较大,所述至少两个电池可以采用并联的方式连接,这些电池容量相加可以使整体容量最大化。
基于第一方面,在可能的实施例中,当所述第一电流检测电路检测到所述电流大于预设阈值时,所述阻抗调节电路用于逐步增加在所述至少一个支路中的阻抗,以降低所述电流。
也就是说,对于小电池通路,通过电流检测电路检测到充电电流大于预设阈值时,可控制阻抗调节电路增加在小电池通路的阻抗,以使小电池通路的电流朝所述预设阈值逐步减小,从而避免电流过充损坏电池,提高充电安全性。
当所述第一电流检测电路检测到所述电流小于所述预设阈值时,所述阻抗调节电路用于逐步减少在所述至少一个支路中的阻抗,以提高所述电流。
也就是说,对于小电池通路,通过电流检测电路检测到充电电流小于预设阈值时,可控制阻抗调节电路减小在小电池通路的阻抗,以使小电池通路的电流朝所述预设阈值逐步增大,从而提高充电速度。
可以看到,本申请实施例中充放电系统是一个闭环系统,自动根据电池并联支路中的电流进行阻抗控制,动态调整充放电的电流,达到充放电的速度和安全性能的均衡。充电池过程中两个电池同时充电,且充放电过程中通过控制阻抗调节电路调节阻抗来控制充放电电流最大值,避免小电池过放和过充,延长小电池寿命,在充电速度和寿命达到最佳平衡,提高了整个充放电系统的安全性能;此外,在放电过程中,两个电池同时放电,使移动终端的放电能力达到最大。
基于第一方面,在可能的实施例中,当所述第一电流检测电路检测到所述电流小于所述预设阈值时,所述充电模块具体用于增加所述充电电压,以提高所述电流。
可以看到,实施本实施例可以实现动态自适应的充电过程。充电过程中可以自适应地指示充电模块提高电压,以调整总通路的总电流,以及指示阻抗调节电路调整电路阻抗,从而实现了对至少两个不同大小的电池同时充电,避免小电池过充,延长电池寿命,提升了两个电池的充电速度,并且在充电速度和寿命之间达到最佳平衡,提高了整个充放电系统的安全性能。
基于第一方面,在可能的实施例中,所述第一电流检测电路包括电量计和精密电阻,所述精密电阻与所述至少一个支路中的电池串联;所述第一电流检测电路用于检测流经所述精密电阻的电量来获得所述至少一个支路的充电或放电的电流。
通过实施本实施例能够精确获得支路上的电流信息,从而为充放电电流的控制提供准确的数据支持。
基于第一方面,在可能的实施例中,所述阻抗调节电路具体包括:电平控制模块、运算放大器模块、比较器模块和阻抗调节模块;其中,所述电平控制模块和所述运算放大器模块分别连接到所述比较器模块的输入端,所述比较器模块的输出端连接所述阻抗调节模块;所述阻抗调节模块包括金属-氧化物半导体场效应晶体管(MOS管),所述MOS管与所述至少 一个支路中的电池串联;所述电平控制模块用于逐步输出可变的电压到所述比较器模块的输入端;所述运算放大器模块用于获取所述精密电阻两端的电压并放大,输出经放大后的电压到所述比较器模块的输入端;所述比较器模块用于通过比较所述电平控制模块和所述运算放大器模块各自的输出电压,输出目标电压到所述阻抗调节模块;所述阻抗调节模块用于根据所述目标电压调节所述MOS管在所述至少一个支路中的阻抗。
可以看到,本申请实施例中可充分利用电流计所采集的数据,根据充放电策略对充电模块和阻抗调节电路进行控制,实现了安全地对大电池和小电池同时进行充放电。阻抗调节电路的MOS管串联在小电池通路上,因此可以根据小电池的充放电过程的电流控制小电池通路的阻抗,以调节小电池充放电的电流。另外还可以根据两个并联支路的总电流实时调整小电池通路的阻抗或者调整充电模块的充电电压,以及根据电池温度来执行降温策略,提高电池充放电过程的安全性。
此外,本申请实施例中,阻抗调节电路的电平控制模块输出的电压可以是固定的,也可以是可变的。控制器根据流过小电池的电流限流的需求,控制阻抗调节电路中的电平控制模块的MOS管(MOS1)的占空比,从而输出动态需求的电压,这样可以满足不同电流的限流要求。此外,如果电池长时间使用后老化,还可以根据电池的寿命特征进行电流限流适配,把充放电的电流进一步限制小一点,达到电池安全使用的目的。
基于第一方面,在可能的实施例中,所述电池充放电电路还包括第二电流检测电路,所述第二电流检测电路用于检测所述至少两个并联的支路的总电流;
通过实施本实施例能够精确获得所有支路上的总电流信息,从而为充放电电流的控制提供准确的数据支持。
当所述第二电流检测电路检测到所述总电流小于门限值时,所述充电模块具体用于增加所述充电电压以提高所述总电流;或者,所述阻抗调节电路具体用于减少在所述至少一个支路中的阻抗,以提高所述至少一个支路中的电流。
可以看到,通过上述过程的循环反复,可以实现动态自适应的充电过程。充电过程中控制器可以不断地检测总通路的总电流和小电池通路的电流,自适应地指示充电模块调整总通路的总电流以及指示阻抗调节电路调整电路阻抗,从而实现了对至少两个不同大小的电池同时充电,避免小电池过充,延长电池寿命,提升了两个电池的充电速度,并且在充电速度和寿命之间达到最佳平衡,提高了整个充放电系统的安全性能。
基于第一方面,在可能的实施例中,所述电池充放电电路还包括热敏电阻,所述热敏电阻用于检测所述至少一个电路的电池的温度;
当所述热敏电阻检测到所述至少一个电路的电池的温度高于温度门限时,所述阻抗调节电路具体用于增加在所述至少一个支路中的阻抗,以降低所述电流。
可以看到,本申请实施例还可以通过检测电池处的温度来采取相关的降温策略,进一步提升了充放电过程的安全性,提升用户使用体验。
基于第一方面,在可能的实施例中,所述至少两个电池形成的至少两个并联的支路用于共同为至少两个规模不同的电路板供电。
本申请实施例中,移动终端包括两块或两块以上电路板和两块或两块以上的电池。这些电路板可以分别以第一电路板、第二电路板、第三电路板…等等予以代表,这些电池可以分别以第一电池、第二电池、第三电池…等等予以代表。
为了描述方便,当存在尺寸一大一小的两块电路板时,还可以称大的电路板为主板,称 小的电路板为小板。当存在尺寸(或内阻,或容量)一大一小的两块电池时,还可以称大尺寸(或大内阻,或大容量)的电池为大电池,称小尺寸(或小内阻,或小容量)的电池为小电池。
小板上的器件相对少,从而使移动终端能够腾出大量空间放置大电池。由于大电池容量较大,充放电电流均较大,本申请实施例可将充电模块布置在小板上,由于充电模块和大电池挨近,充电路径最短,路径损耗低,有利于提高充电速度。
第二方面,本申请实施例提供了一种电池充放电电路的控制方法,所述电池充放电电路包括:至少两个电池形成的至少两个并联的支路、分别连接所述至少两个电池的充电模块;其中,所述充电模块用于为所述至少两个并联的支路提供充电电压;所述至少两个并联的支路中的至少一个支路具体包括电池、第一电流检测电路和阻抗调节电路;其特征在于,在所述至少两个电池同时充电或同时放电的情况下,所述方法包括:从所述第一电流检测电路获取第一电流信息,所述第一电流信息指示了所述至少一个支路的充电或放电的电流;根据所述电流与预设阈值的差距,控制所述阻抗调节电路逐步调节在所述至少一个支路中的阻抗,以使所述电流趋向预设阈值。
其中,本方法的执行主体可以控制器,控制器用于对所述电池充放电电路的充放电过程进行控制。
其中,所述至少两个电池的电池容量可以不同,例如可以包括一个大电池和一个小电池,阻抗调节电路设置在小电池所在的支路上。也就是说,本申请实施例中充电端可以直接连接到电池,如充电模块可以分别直接连接小电池和大电池,此时阻抗调节电路不直接连接充电模块,即阻抗调节电路对小电池的充放电电流的控制属于负端控制模式。
另外,本申请实施例中阻抗可以基于电流与预设阈值的比较关系来逐步调节支路的阻抗,即阻抗是逐步、动态可调的,进而使得充放电电流动态可调。
可以看到,本申请实施例可充分利用移动终端的内部空间放置至少两个不同大小的电池和至少两个不同大小的电路板,采用两个电池并联的方案,充电池过程中两个电池同时充电,且充放电过程中通过控制阻抗调节电路调节阻抗来控制充放电电流最大值,避免小电池过放和过充,延长小电池寿命,在充电速度和寿命达到最佳平衡,提高了整个充放电系统的安全性能;此外在放电过程中,两个电池同时放电,使移动终端的放电能力达到最大。
基于第二方面,在可能的实施例中,所述根据所述电流与预设阈值的差距,控制所述阻抗调节电路逐步调节在所述至少一个支路中的阻抗,以使所述电流趋向预设阈值,包括:当所述电流大于预设阈值时,控制所述阻抗调节电路逐步增加在所述至少一个支路中的阻抗,以降低所述电流。
基于第二方面,在可能的实施例中,所述根据所述电流与预设阈值的差距,控制所述阻抗调节电路逐步调节在所述至少一个支路中的阻抗,以使所述电流趋向预设阈值,包括:当所述电流小于所述预设阈值时,控制所述阻抗调节电路逐步减小在所述至少一个支路中的阻抗,以提高所述电流。
基于第二方面,在可能的实施例中,所述方法还包括:当所述第一电流检测电路检测到所述电流小于所述预设阈值时,控制所述充电模块增加所述充电电压,以提高所述电流。
基于第二方面,在可能的实施例中,所述第一电流检测电路包括电量计和精密电阻,所述精密电阻与所述至少一个支路中的电池串联;所述第一电流检测电路用于检测流经所述精密电阻的电量来获得所述至少一个支路的充电或放电的电流。
基于第二方面,在可能的实施例中,所述阻抗调节电路具体包括电平控制模块、运算放大器模块、比较器模块和阻抗调节模块;所述阻抗调节模块包括金属-氧化物半导体场效应晶体管(MOS管),所述MOS管与所述至少一个支路中的电池串联;所述电平控制模块用于逐步输出电压到所述比较器模块的输入端;所述运算放大器模块用于获取所述精密电阻两端的电压并放大,输出经放大后的电压到所述比较器模块的输入端;所述比较器模块用于通过比较所述电平控制模块和所述运算放大器模块各自的输出电压,输出目标电压到所述阻抗调节模块;所述阻抗调节模块用于根据所述目标电压调节所述MOS管在所述至少一个支路中的阻抗。
基于第二方面,在可能的实施例中,所述当所述电流小于预设阈值时,控制所述阻抗调节电路减少在所述至少一个支路中的阻抗,包括:当所述电流小于预设阈值时,向所述电平控制模块发送第一脉冲宽度调节PWM信号,所述第一PWM信号用于指示所述电平控制模块输出比所述经放大后的电压更小的电压;所述阻抗调节模块具体用于根据所述比较器模块的输出电压逐步减少在所述至少一个支路中的阻抗。
基于第二方面,在可能的实施例中,所述当所述电流大于预设阈值时,控制所述阻抗调节电路增加在所述至少一个支路中的阻抗,包括:当所述电流大于预设阈值时,向所述电平控制模块发送第二脉冲宽度调节PWM信号,所述第二PWM信号用于指示所述电平控制模块输出比所述经放大后的电压更小的电压;所述阻抗调节模块具体用于根据所述比较器模块的输出电压逐步增加在所述至少一个支路中的阻抗。
基于第二方面,在可能的实施例中,所述电池充放电电路还包括第二电流检测电路,所述第二电流检测电路用于检测所述至少两个并联的支路的充电或放电的总电流;所述方法还包括:从所述第二电流检测电路获取第二电流信息,所述第二电流信息指示了所述总电流;当所述总电流小于门限值时,控制所述充电模块增加所述充电电压,以及控制所述阻抗调节电路减少在所述至少一个支路中的阻抗;当所述总电流大于门限值时,控制所述充电模块减小所述充电电压。
基于第二方面,在可能的实施例中,所述电池充放电电路还包括热敏电阻,所述热敏电阻用于检测所述至少一个电路的电池的温度;所述方法还包括:从所述热敏电阻获取所述温度;当所述温度高于温度门限时,控制所述阻抗调节电路增加在所述至少一个支路中的阻抗,以降低所述电流。
基于第二方面,在可能的实施例中,所述至少一个支路中的电池的容量小于除所述至少一个支路外的其他支路的电池的容量。
第三方面,本申请实施例提供了一种控制器,所述控制器包括输入输出接口和逻辑电路;所述输入输出接口用于收发数据;所述逻辑电路用于控制所述控制器执行如第二方面任意实施例所描述的方法。
第四方面,本申请实施例提供了一种系统,所述系统包括控制器和电池充放电电路,所述电池充放电电路为如第一方面任意实施例所描述的电路,所述控制器可以是第三方面所描述的控制器。
第五方面,本申请实施例提供了一种移动终端,所述移动终端包括至少两个电路板以及如第四方面所描述的系统,所述系统用于为所述至少两个电路板供电。
第六方面,本发明实施例提供了一种非易失性计算机可读存储介质;所述计算机可读存储介质用于存储第二方面的任意方法实施例的实现代码。
第七方面,本发明实施例提供了一种计算机程序(产品),该计算机程序(产品)包括程序指令,当该计算机程序产品被执行时,用于执行前述第二方面的任意方法实施例描述的方法。
可以看到,本申请实施例充分利用了被器件隔离成两部分的手机空间放置两个不同容量的电池,采用两个电池并联充放电的方案使电池整体空间利用率最高,整体容量最大。在充电过程两个电池可以同时充电,既提高了充电速度,又能避免过充,保证了充电过程的安全性。在放电过程两个电池可以同时放电,提高了放电能力,又能避免过放,保证了放电过程的安全性。且充放电过程中充放电电流是逐步、动态可调的,在充电速度和寿命达到最佳平衡,提高了整个充放电系统的安全性能。此外,还可以通过检测电池处的温度来采取相关的降温策略,进一步提升了充放电过程的安全性,提升用户使用体验。
附图说明
图1是本申请实施例提供的一种移动终端内部器件的系统架构示意图;
图2是本申请实施例提供的又一种移动终端内部器件的系统架构示意图;
图3是本申请实施例提供的又一种移动终端内部器件的系统架构示意图;
图4是本申请实施例提供的又一种移动终端内部器件的系统架构示意图;
图5本申请实施例提供的一种电池充放电系统的电路示例图;
图6本申请实施例提供的又一种电池充放电系统的电路示例图;
图7本申请实施例提供的阻抗调节电路的结构示意图;
图8本申请实施例提供的又一种电池充放电系统的电路示例图;
图9本申请实施例提供的一种电池充放电电路的控制方法的流程示意图;
图10本申请实施例提供的又一种电池充放电电路的控制方法的流程示意图。
具体实施方式
本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个”是指一个或者多个,“至少两个”或“多个”是指两个或两个以上。“和/或”用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本申请所描述的方法或装置可应用于移动终端,所述移动终端例如可以是手机(例如可 折叠手机,滑盖手机,单板手机等),平板电脑,可穿戴设备(例如智能手环,智能手表,智能眼镜等)等等,本申请不做具体限制。
移动终端通常由外部壳体和内部器件组成,内部器件通常包括电路板和电池。所述电路板例如为印制电路板(Printed Circuit Board,PCB),在电路板上焊接/承载有各种微型电子器件、芯片、电路等。
本申请实施例中的移动终端包括两块或两块以上电路板和两块或两块以上的电池。这些电路板可以分别以第一电路板、第二电路板、第三电路板…等等予以代表,这些电池可以分别以第一电池、第二电池、第三电池…等等予以代表。
为了描述方便,当存在尺寸一大一小的两块电路板时,还可以称大的电路板为主板,称小的电路板为小板。当存在尺寸(或内阻,或容量)一大一小的两块电池时,还可以称大尺寸(或大内阻,或大容量)的电池为大电池,称小尺寸(或小内阻,或小容量)的电池为小电池。
参见图1,图1是本申请实施例提供的一种可能的移动终端内部器件的系统架构示意图。该系统架构以两块电路板和两块电池为例,例如可应用于可折叠手机。如图1所示,该系统架构包括第一电路板(1)、第二电路板(2)、第一电池(3)、第二电池(4),这些器件可通过FPC(5)相互连接,FPC表示柔性电路板(Flexible Printed Circuit,FPC)。其中第一电路板(1)为主板,第二电路板(2)为小板,第一电池(3)为小电池,第二电池(4)为大电池。手机的内部空间可被充分利用,隔离成两部分。其中一部分包括在空间上紧凑布置一起的第一电路板(1)和第一电池(3),另一部分包括在空间上紧凑布置一起的第二电路板(2)和第二电池(4)。图1所示中,基于折叠区域的对折需求,将手机内部空间分为两部分,第一电路板(1)和第一电池(3)位于折叠区域上半部分,第二电路板(2)和第二电池(4)位于折叠区域下半部分。这两部分可通过折叠区域(如图示中的中间虚线位置)贴合到一起,从而实现充分利用该可折叠手机的内部空间放置电池,使手机的电池容量最大化。
本申请实施例中,在第一电路板(1)上可焊接/承载有控制器(11),阻抗调节电路(12),电流检测电路(13),电流检测电路(14)。控制器(11)负责对两个电池的充电/放电的控制。阻抗调节电路(12)由金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET,简称MOS管)、运算放大器、电阻、电容等元件搭建而成,用于实现调节至少一个电池(例如第一电池)所在支路的阻抗。由于第一电池(3)容量小,充电电流小,通过阻抗调节电路(12)可以增加阻抗,进而保护第一电池(3)过冲。电流检测电路(13)和电流检测电路(14)用于实现检测两个电池所在支路的电流。
第一电路板(1)可包括多种耗电系统,例如片上系统(System on Chip,SOC)、射频(Radio Frequency,RF)通信模块等等。例如上述控制器(11)、阻抗调节电路(12)、电流检测电路(13)、电流检测电路(14)等等中的一者或多者可以部署于SOC,从而使SOC承担为电池充放电的功能,例如至少可将控制器(11)部署到SOC。这些耗电系统占用空间较大,导致第一电路板(1)相对第二电路板(2)而言规模较大,但仍可以在折叠区域上半部分挤出部分空间放置小电池(即第一电池)。在一种示例中,小电池可通过连接器扣装到第一电路板(1)上,通过阻抗调节电路(12)对第一电路板(1)和第二电路板(2)供电。
示例性地,还可以将阻抗调节电路(12)、电流检测电路(13)、电流检测电路(14)等等中的一者或多者可以部署于FPC5,从而使FPC5承担为电池充放电的功能。
本文中,电流检测电路(13)又可称为第一电流检测电路,电流检测电路(14)又可称为第二电流检测电路。
本申请实施例中,在第二电路板(2)上可焊接/承载有充电模块21和USB接口,充电模块可用于给电池充电/放电。充电模块例如可通过USB接口接入到外接电源,以实现给电池充电。示例性地,充电模块可包括电源管理芯片(Scharge)、过压保护电路(OVP MOS)和适配器(Adapter)。其中,适配器作为接口转换器连接到USB接口,USB外接充电线以接入到外界电源。过压保护电路用于将输入电压限定在安全范围内。当出现过压现象时,过压保护电路进行保护以防止损坏后级用电器件。电源管理芯片用于控制充电电压从而为电池充电,以及管理电池放电电压从而给第一电路板(1)和/或第二电路板(2)供电。
第二电路板(2)上的器件相对少,从而使折叠区域下半部分能够腾出大量空间放置大电池(即第二电池)。由于大电池容量较大,充放电电流均较大,本申请实施例将充电模块21布置在第二电路板(2)上,由于充电模块和大电池挨近,充电路径最短,路径损耗低,有利于提高充电速度。在一种示例中,大电池可通过连接器扣装到第二电路板(2)上,对第一电路板(1)和/或第二电路板(2)供电。
在具体实施例中,第一电池(3)和第二电池(4)采用并联的方式进行充放电。
在可能的实施例中,移动终端的内部器件还包括一个或多个负温度系数(Negative Temperature Coefficient,NTC)热敏电阻,这种热敏电阻随温度上升电阻呈指数关系减小,从而能实现对温度的测量。如图示中可包括NTC15和NTC22,其中NTC15可测量第一电池(3)处的温度,即可用于测量第一电池(3)在充放电过程的温度。NTC22可测量第二电池(4)处的温度,即可用于测量第二电池(4)在充放电过程的温度。
需要说明的是,本申请实施例中的电路板上还可焊接/承载其他更多的微型电子器件、应用芯片、电路、模块等,本申请不做限制。
虽然图1以内部器件的两部分空间上下折叠为例进行方案的描述,但是本申请对此并不做限定。在具体的实现中,还可以有其他的折叠方式和空间分配方式。例如,参见图2,图2是本申请实施例提供的又一种可能的移动终端内部器件的系统架构示意图。该实施例和前述图1的区别在于,内部器件的两部分空间可左右折叠,即内部器件的两部分可通过折叠区域(如图示中的中间虚线位置)贴合到一起,从而也能实现充分利用内部空间放置电池,使手机的电池容量最大化。
另外,虽然图1和图2均以第一电路板和第二电路板均为矩形板进行方案的描述,但是本申请对此并不做限定。在具体的实现中,还可以根据实际需要,将电路板设计成任意的形状。例如,参见图3,图3是本申请实施例提供的又一种可能的移动终端内部器件的系统架构示意图。在该示例中,第一电路板(1)被设计成不规则形状,而第一电池(3)可以基于第一电路板(1)的形状进行设计,从而使得第一电路板(1)和第一电池(3)紧凑排布在一起,从而最大化地利用手机内部空间。此外,在其他示例中,也可以将第二电路板(2)被设计成不规则形状,而第二电池(4)可以基于第二电路板(2)的形状进行设计,从而使得第二电路板(2)和第二电池(4)紧凑排布在一起,从而最大化地利用手机内部空间。
参见图4,图4是本申请实施例提供的又一种可能的移动终端内部器件的系统架构示意图。该系统架构以两块电路板和三块电池为例,例如可应用于可折叠手机。如图4所示,该系统架构包括第一电路板(1)、第二电路板(2)、第一电池(3)、第二电池(4)、第三电池 (6),这些器件同样可通过FPC(5)相互连接。其中第一电路板(1)为主板,第二电路板(2)为小板。第三电池(6)的电池尺寸或容量或内阻最小,第二电池(4)的电池尺寸或容量或内阻最大。手机的内部空间可被充分利用,隔离成两部分。其中一部分包括在空间上紧凑布置一起的第一电路板(1)、第一电池(3)和第三电池(6),另一部分包括在空间上紧凑布置一起的第二电路板(2)和第二电池(4)。这两部分可通过折叠区域(如图示中的中间虚线位置)贴合到一起,从而实现充分利用该可折叠手机的内部空间放置电池,使手机的电池容量最大化。
本申请实施例中,在第二电路板(2)上同样可焊接/承载有充电模块21和USB接口。在第一电路板(1)上可焊接/承载有控制器(11)、阻抗调节电路(12)、阻抗调节电路(18)、电流检测电路(13)、电流检测电路(14)、电流检测电路(16)。控制器(11)负责对三个电池的充电/放电的控制。阻抗调节电路(12)和阻抗调节电路(18)可分别用于实现调节一个电池(例如第一电池和第三电池)所在支路的阻抗。电流检测电路(13)、电流检测电路(14)和电流检测电路(16)用于实现检测这三个电池所在支路的电流。
在可能的实施例中,移动终端的内部器件还包括一个或多个NTC热敏电阻,如图示中可包括NTC15、NTC17和NTC22,其中NTC15可测量第一电池(3)处的温度,NTC17可测量第三电池(6)处的温度,NTC22可测量第二电池(4)处的温度。
需要说明的是,本申请实施例中的电路板上还可焊接/承载其他更多的微型电子器件、应用芯片、电路、模块等,本申请不做限制。
可以看到,本申请上述实施例充分利用了被器件隔离成两部分的手机空间来放置至少两个电池,所述至少两个电池容量可以不等,甚至可以相差较大,所述至少两个电池可以采用并联的方式连接,这些电池容量相加可以使整体容量最大化。
基于上文描述的系统架构,下面继续描述本申请实施例提供的几种电池充放电系统。
参见图5,图5本申请实施例提供的一种电池充放电系统的示例图。该系统可应用于移动终端,如图5所示,该系统包括控制器(11)和受控制器(11)控制的电池充放电电路(本文中电池充放电电路可简称充放电电路),所述充放电电路包括:充电模块(21),小电池(3)和大电池(4)所形成的至少两个并联的支路,小电池(3)所在的支路具体包括小电池(3)、阻抗调节电路(12)和电流检测电路(13);其中:
电流检测电路(13)进一步包括电量计(131)和第一精密电阻(132),第一精密电阻(132)和小电池(3)串联,电量计(131)通过SRP端和SRN端分别连接第一精密电阻(132)的两端,电量计(131)的VBAT端接入到充电模块(21)。电量计(131)通过检测流经第一精密电阻(132)的电量来获得小电池(3)的充放电电流,即小电池(3)所在的支路的电流。
小电池(3)和大电池(4)的并联支路的输出端连接电流检测电路(14)。电流检测电路(14)进一步包括电量计(141)和第二精密电阻(142),第二精密电阻(142)的一端与并联支路的输出端连接,另一端配置为接地。电量计(141)通过SRP1端和SRN1端分别连接第二精密电阻(142)的两端,电量计(141)的VBAT端接入到充电模块(21)。电量计(141)通过检测流经第二精密电阻(142)的电量来获得两个并联支路的总的充放电电流,即统计小电池(3)所在的支路的电流和大电池(4)所在的支路的电流。
第二精密电阻(142)的阻值可能与第一精密电阻(132)的阻值相同,也可能不同,这里不做限定。
本实施例中,阻抗调节电路(12)用于调节小电池(3)所在的支路的阻抗;当电流小于预设阈值时,通过阻抗调节电路(12)可以减小小电池(3)所在的支路的阻抗,以使小电池(3)所在的支路的阻抗的电流逐步符合所述预设阈值,从而提高小电池(3)充放电的速度。当电流大于预设阈值时,通过阻抗调节电路(12)可以增加小电池(3)所在的支路的阻抗,以使小电池(3)所在的支路的电流逐步符合预设阈值,从而避免小电池(3)充放电过程的过充或过放现象。
充电模块(21)例如可包括电源管理芯片(Scharge)、过压保护电路(OVP MOS)和适配器(Adapter)。其中,适配器作为接口转换器连接到USB接口,USB外接充电线以接入到外界电源。过压保护电路用于将输入电压限定在安全范围内。当出现过压现象时,过压保护电路进行保护以防止损坏后级用电器件。电源管理芯片连接两电池并联电路的输入端,电源管理芯片可用于控制充电电压从而为电池充电,电源管理芯片还可通过FPC连接到电路板,例如第一电路板(1)和第二电路板(2),通过管理电池放电电压从而给第一电路板(1)和/或第二电路板(2)供电。
控制器(11)可以是能够处理电子指令、实现电路控制功能的任何类型的电子器件,包括但不限于中央处理器(Central Processing Unit,CPU)、微处理器、微控制器、主处理器、ASIC(Application Specific Integrated Circuit,专用集成电路)等等。控制器(11)可分别通过I2C总线采集电量计(131)/电量计(141)的电流检测结果,本文中的电流检测结果又可称为电流信息,电流信息指示了电流值的大小。具体的,由电量计(131)检测的电流信息可称为第一电流信息,由电量计(141)检测的电流信息可称为第二电流信息。控制器(11)还可通过通用输入/输出口(General Purpose Input Output,GPIO)实现对阻抗调节电路(12)的控制。可能实施例中,控制器(11)还可以通过连接线连接到充电模块(21),以指示充电模块(例如指示电压管理芯片或者适配器)调整输出的充电电压。
在可能的实施例中,系统还包括一个或多个NTC热敏电阻,如图示中可包括NTC(15)和NTC(22),其中NTC(15)可测量小电池(3)处的温度,NTC22可测量大电池(4)处的温度。控制器(11)例如可分别通过模数变换器(Analog to Digital Converter,ADC)接口采集NTC(15)和NTC(22)的温度检测结果。
下面描述基于图5所示系统的电池充电原理。
充电过程中,充电模块(21)连接到外接电源(例如插入到充电器、USB电源、移动电源等等)后,充电模块(21)在控制器(11)控制下开始为并联电路上的小电池(3)和大电池(4)充电。大电池(4)容量比较大,可充电流大,通路可不做控制。小电池(3)的通路受阻抗调节电路(12)制约,可通过调节阻抗调节电路(12)的阻抗将电流控制在小电池(3)的最大接收电流之内。通过电流检测电路(13)可以实时检测小电池(3)通路的电流。通过电流检测电路(14)可以实时检测小电池(3)和大电池(4)充电总通路的总电流,进而通过总电流和小电池(3)通路的电流可以推算大电池(4)通路的电流。
控制器(11)通过相关控制线,实时采集电流检测电路(13)和电流检测电路(14)的电流检测结果,可选的还可以NTC(15)和NTC(22)实时采集小电池(3)和大电池(4)的温度采集结果。然后,控制器(11)根据电流检测结果、温度采集结果,动态调整小电池(3)通路和大电池(4)通路的充电电流,从而使小电池(3)和大电池(4)均达到最快充电速度,而且可以保证充电过程的安全性。
一些具体实施例中,对于小电池(3)通路,当控制器(11)通过电流检测电路(13)检 测到充电电流小于预设阈值时,控制器(11)控制阻抗调节电路(12)减小在小电池(3)通路的阻抗,以使小电池(3)通路的电流朝所述预设阈值逐步增大,从而提高充电速度。当控制器(11)通过电流检测电路(13)检测到充电电流大于预设阈值时,控制器(11)控制阻抗调节电路(12)增加在小电池(3)通路的阻抗,以使小电池(3)通路的电流朝所述预设阈值减小,从而避免电流过充损坏电池,提高充电安全性。
又一些具体实施例中,对于小电池(3)和大电池(4)的并联电路形成的总通路,当控制器(11)通过电流检测电路(14)检测到总通路的充电电流比较小时,控制器(11)控制阻抗调节电路(12)减小在小电池(3)通路的阻抗,以使小电池(3)通路的电流逐步增大,从而提高总通路的充电电流。当控制器(11)通过电流检测电路(14)检测到充电电流达到或超过总电流门限时,控制器(11)控制阻抗调节电路(12)增加在小电池(3)通路的阻抗,以使小电池(3)通路的电流减小,或者指示充电模块(21)降低充电电压,从而使总通路的充电电流减小,从而避免电流过充损坏电池,提高充电安全性。
又一些具体实施例中,对于小电池(3)通路,当控制器(11)通过NTC15检测到小电池(3)的温度超过门限值时,控制器(11)控制阻抗调节电路(12减小在小电池(3)通路的阻抗,以使小电池(3)通路的电流减小,甚至关闭小电池(3)通路,从而使小电池(3)降温,提高电池充电过程的安全性。当控制器(11)通过NTC(22检测到大电池(4)的温度超过门限值时,控制器(11)可以指示充电模块(21)降低充电电压,以使小电池大电池(4)通路的电流减小,甚至关闭大电池(4)通路,从而使大电池(4)降温,提高电池充电过程的安全性。
下面描述基于图5所示系统的电池放电原理。
放电过程中,电源管理芯片通过FPC连接到第一电路板(1)和第二电路板(2),小电池(3)和大电池(4)充电组成的并联电路在控制器(11)控制下一起放电,通过电源管理芯片向第一电路板(1)和第二电路板(2)供电。其中小电池(3)的放电通路受阻抗调节电路(12)制约,可通过调节阻抗调节电路(12)的阻抗将放电电流控制在小电池(3)的最大放电电流之内。通过电流检测电路(13)可以实时检测小电池(3)通路的电流。通过电流检测电路(14)可以实时检测小电池(3)和大电池(4)充电总通路的总电流,进而通过总电流和小电池(3)通路的电流可以推算大电池(4)通路的放电电流。
控制器(11)通过相关控制线,实时采集电流检测电路(13)和电流检测电路(14)的电流检测结果,可选的还可以NTC(15)和NTC(22)实时采集小电池(3)和大电池(4)的温度采集结果。然后,控制器(11)根据电流检测结果、温度采集结果,动态调整小电池(3)通路和大电池(4)通路的放电电流,从而使小电池(3)和大电池(4)能均衡地放电,而且可以保证充电过程的安全性。
一些具体实施例中,对于小电池(3)通路,当控制器(11)通过电流检测电路(13)检测到放电电流大于预设阈值(放电过程的预设阈值可不同于充电过程的预设阈值)时,控制器(11)控制阻抗调节电路(12)增加在小电池(3)通路的阻抗,以使小电池(3)通路的电流朝所述预设阈值减小,从而避免电流过放损坏电池或电路板器件,提高放电安全性。
又一些具体实施例中,对于小电池(3)和大电池(4)的并联电路形成的总通路,当控制器(11)通过电流检测电路(14)检测到放电电流达到或超过总电流门限(放电过程的总电流门限可不同于充电过程的总电流门限)时,控制器(11)控制阻抗调节电路(12)增加在小电池(3)通路的阻抗,以使小电池(3)通路的电流减小,从而使总通路的放电电流减 小,从而避免电流过放损坏电池或电路板器件,提高充电安全性。
又一些具体实施例中,对于小电池(3)通路,当控制器(11)通过NTC(15)检测到小电池(3)的温度超过门限值时,控制器(11)控制阻抗调节电路(12)减小在小电池(3)通路的阻抗,以使小电池(3)通路的电流减小,甚至关闭小电池(3)通路,从而使小电池(3)降温,提高电池放电过程的安全性。
在图5实施例中,充电模块21可以分别直接连接小电池(3)和大电池(4),即此时阻抗调节电路(12)不直接连接充电模块21,即阻抗调节电路(12)对小电池(3)的充放电电流的控制属于负端控制模式。当然,在本申请其他可能实施例中,也可以将小电池(3)和阻抗调节电路(12)的电路位置对换,即设计小电池(3)不直接连接充电模块21,而将阻抗调节电路(12)设计成一端连接充电模块21,另一端连接小电池(3),此时阻抗调节电路(12)对小电池(3)的充放电电流的控制属于正端控制模式。
可以看到,本申请实施例充分利用了被器件隔离成两部分的手机空间放置两个不同容量的电池,采用两个电池并联充放电的方案使电池整体空间利用率最高,整体容量最大。在充电过程两个电池可以同时充电,既提高了充电速度,又能避免过充,保证了充电过程的安全性。在放电过程两个电池可以同时放电,提高了放电能力,又能避免过放,保证了放电过程的安全性。此外,还可以通过检测电池处的温度来采取相关的降温策略,进一步提升了充放电过程的安全性,提升用户使用体验。
需要说明的是,虽然图5实施例以在小电池(3)所在支路中设置阻抗调节电路(12)为例进行方案的描述,但是本申请并不限制于此。在可能的实施例中,还可以在大电池(4)所在支路中设置阻抗调节电路,用于调节大电池(4)所在支路中的阻抗;在可能的实施例中,还可以在小电池(3)所在支路和大电池(4)所在支路中分别设置阻抗调节电路,分别调节小电池(3)所在支路的阻抗和大电池(4)所在支路的阻抗,各个阻抗调节电路均受控制器控制。这样,可以实现独立地对大电池(4)的通路电流进行控制,进一步提高两个电池充放电过程的安全性,减少热损耗。
还需要说明的是,虽然图5实施例以电流检测电路(14)检测并联电路的总通路电流为例进行方案描述,但是本申请并不限制于此。在可能的实施例中,还可以有针对性地设计电流检测电路检测大电池(4)的通路电流。
参见图6,图6本申请实施例提供的又一种电池充放电系统的示例图。该系统与图5所示系统的区别在于,大电池(4)所在的支路具体包括大电池(4)和电流检测电路(14),电流检测电路(14)进一步包括电量计(141)和第三精密电阻(143),第三精密电阻(143)和大电池(4)串联,电量计(141)通过SRP1端和SRN1端分别连接第三精密电阻(143)的两端,电量计(141)的VBAT端接入到充电模块(21)。电量计(141)通过检测流经第三精密电阻(143)的电量来获得大电池(4)的充放电电流,即大电池(4)所在的支路的电流。控制器可以采集电量计(141)的电流检测结果,以实现对大电池(4)通路电流的控制。或者控制器还可以根据电量计(131)的电流检测结果和电量计(141)的电流检测结果获得并联支路的总通路电流,以实现对总通路电流的控制。
其中,第三精密电阻(143)的阻值可能与前述的第二精密电阻(142)的阻值相同,也可能不同,这里不做限定。
图6所示系统中涉及的其他元器件、电路连接关系、电池充放电原理等等可类似参考图 5实施例的相关描述,为了说明书的简洁,这里不再赘述。
下面详细描述本申请实施例中的阻抗调节电路。
参见图7,图7示出了本申请实施例提供的一种阻抗调节电路12的结构示意图,如图7所示,该阻抗调节电路(12)具体包括电平控制模块(123)、运算放大器模块(121)、比较器模块(122)和阻抗调节模块(124)。其中,电平控制模块(123)和运算放大器模块(121)分别连接到比较器模块(122)的输入端,比较器模块(122)的输出端连接阻抗调节模块(124)。
其中,电平控制模块(123)受控制器的控制,运算放大器模块(121)的输入端分别接入到精密电阻的两端,以获得该精密电阻两端的电压。阻抗调节模块(124)与电池连接。当阻抗调节电路(12)设置在前述小电池(3)所在支路时,该电池即为小电池(3),该精密电阻为第一精密电阻(132)。当阻抗调节电路(12)设置在前述大电池(4)所在支路时,该电池即为大电池(4),该精密电阻为第三精密电阻(143)。
具体实施例中,以阻抗调节电路(12)设置在前述小电池(3)所在支路为例,运算放大器模块(121)用于获取和放大第一精密电阻两端的电压,并输出经放大后的电压到比较器模块(122)的负输入端,电平控制模块(123)用于受控制器控制而输出电压到比较器模块(122)的正输入端,比较器模块(122)通过比较所述电平控制模块(123)和所述运算放大器模块(121)各自的输出电压来输出电压到阻抗调节模块(124)。本文中。比较器模块(122)输出到到阻抗调节模块(124)的电压也可以称为目标电压。所述阻抗调节模块(124)用于根据所述比较器模块(122)输出的电压(即目标电压)调节在小电池(3)所在支路中的阻抗。
例如,当小电池(3)所在支路的电流小于预设阈值时,控制器向所述电平控制模块(123)发送第一脉冲宽度调节(Pulse Width Modulation,PWM)信号,该第一PWM信号通过指定电平控制模块(123)中的MOS管(MOS1)的占空比,来指示所述电平控制模块(123)输出比所述运算放大器模块(121)的输出电压更大的电压,这样,所述阻抗调节模块(124)用于根据所述比较器模块(122)的输出电压减小在小电池(3)所在支路中的阻抗,从而促使小电池(3)所在支路的电流增大。
又例如,当小电池(3)所在支路的电流大于预设阈值时,控制器向所述电平控制模块(123)发送第二PWM信号,该第二PWM信号通过指定电平控制模块(123)中的MOS管(MOS1)的占空比,来指示所述电平控制模块(123)输出比所述运算放大器模块(121)的输出电压更小的电压,这样,所述阻抗调节模块(124)用于根据所述比较器模块(122)的输出电压增加在小电池(3)所在支路中的阻抗,从而促使小电池(3)所在支路的电流减小。
基于所描述的阻抗调节电路,为了更好理解本申请的技术方案,下面以本申请实施例提供的又一种电池充放电系统为例进行描述。参见图8,图8是本申请实施例提供的又一种电池充放电系统的细化电路结构示意图。图8实施例与前述图5实施例的区别在于,图8实施例对阻抗调节电路12进行进一步细化。如图8所示,阻抗调节电路12包括电平控制模块(123)、运算放大器模块(121)、比较器模块(122)和阻抗调节模块(124)。其中:
示例性地,电平控制模块(123)进一步由多个电阻(R1、R2、R3、R4)、多个电容(C1、C2)和MOS管(MOS1)搭建而成,具体的电路连接拓扑已在图8中示出。其中,MOS1例如可以是NMOS晶体管,MOS1的第一极(栅极)受控制器(11)的信号控制。MOS1的第一极(栅极)和第二极(源极)之间连接R1,MOS1的第三极(漏极)分别连接R2和R3, R2连接到电压输入端U,以获得固定或者可变的输入电压。R3还分别连接C1的一端和R4的一端,C2分别连接C1的另一端和R4的另一端。R4的输出端可作为电平控制模块(123)的电压输出端。
示例性地,运算放大器模块(121)进一步由多个电阻(R5、R6、R7、R8)和运算放大器(OP1)搭建而成,具体的电路连接拓扑已在图8中示出。其中,R5的一端和R6的一端分别对应连接到第一精密电阻(132)的两端(SRP/SRN),R5的另一端和R6的另一端分别连接到OP1的正输入端和负输入端。R7分别连接接地端和OP1的正输入端,R8分别连接OP1的负输入端和OP1的输出端。OP1的输出端可作为运算放大器模块(121)的电压输出端。
示例性地,比较器模块(122)进一步由电阻(R9)、运算放大器(OP2)和电容(C3)搭建而成,具体的电路连接拓扑已在图8中示出。其中,OP2的正输入端连接到电平控制模块(123)的电压输出端,OP2的负输入端连接R9的一端,R9的另一端连接到运算放大器模块(121)的电压输出端。C3分别连接OP2的负输入端和OP2的输出端。OP2的输出端可作为比较器模块(122)的电压输出端。
示例性地,阻抗调节模块(124)进一步由电阻(R10、R11)和MOS管(MOS2)搭建而成,具体的电路连接拓扑已在图8中示出。其中,MOS2例如可以是NMOS晶体管,R10的一端连接比较器模块(122)的电压输出端,另一端连接MOS2的第一极(栅极)。MOS2的第三极(漏极)连接到小电池(3)的一端,MOS1的第二极(源极)连接到第一精密电阻(132)的一端(SRP),R11分别连接MOS2的第一极(栅极)和第一精密电阻(132)的另一端(SRN)。基于该电路结构,阻抗调节模块(124)可以基于比较器模块(122)的输出电压来调节MOS2的阻抗。由于MOS2设置在小电池(3)所在的支路,所以也相当于调节了小电池(3)所在的支路的阻抗。
下面描述基于图8所示系统的电池充放电原理。
充电过程中,充电模块(21)连接到外接电源(例如插入到充电器、USB电源、移动电源等等)后,充电模块(21)在控制器(11)控制下开始为并联电路上的小电池(3)和大电池(4)充电。控制器(11)通过电流检测电路(13)可以实时检测小电池(3)通路的电流。
一方面,这部分电流流过第一精密电阻可转化为电压(即SNP和SRN之间的电压),该电压输入到运算放大器模块(121),通过运算放大器模块(121)按照所需求的比例进行电压放大,该比例由运算放大器模块(121)中的各电阻的具体阻值来决定,例如可将输入电压放大100倍。经过放大的电压经过运算放大器模块(121)的输出端输出到比较器模块(122)的负输入端。
另一方面,控制器(11)可基于电流检测电路(13)检测的电流,通过GPIO接口向电平控制模块(123)发送PWM信号,PWM信号携带有方波占空比的信息。电平控制模块(123)根据该PWM信号和电压输入端U提供的电压,通过输出端输出合适的电压到比较器模块(122)的正输入端。例如,PWM信号中的方波占空比越大,电平控制模块(123)输出的电压就越大。
在一具体实施例中,当控制器(11)检测小电池(3)所在的支路的电流小于预设阈值时,可以通过GPIO接口指示电平控制模块(123)输出固定的电压或者输出逐步升高的电压。电平控制模块(123)的输出端输出的电压比运算放大器模块(121)的输出端输出的电压大,则经过比较器模块(122)处理后,将输出比之前更高的电压到阻抗调节模块(124)。阻抗调 节模块(124)随着比较器模块(122)的输出电压作用于栅极而降低MOS管(MOS2)的漏-源间的阻抗。这样,小电池(3)所在的支路的电流将随着阻抗降低而得到增大,从而提高小电池的充电速度。
反之,当控制器(11)检测小电池(3)所在的支路的电流大于预设阈值时,可以通过GPIO接口指示电平控制模块(123)的输出端输出的电压比运算放大器模块(121)的输出端输出的电压小。比较器模块(122)迅速动作,将输出比较低的电压到阻抗调节模块(124)。阻抗调节模块(124)随着比较器模块(122)的输出电压作用于栅极而增加MOS管(MOS2)的漏-源间的阻抗,即控制增加了小电池(3)所在的支路的阻抗。这样,小电池(3)所在的支路的电流将随着阻抗增加而得到降低,从而实现了小电池(3)的充电电流的限制,避免小电池(3)过充,提升电池充电安全性。
又一些具体实施例中,控制器(11)可通过电流检测电路(14)可以实时检测小电池(3)和大电池(4)充电总通路的总电流,还可通过总电流和小电池(3)通路的电流推算大电池(4)通路的电流。对于小电池(3)和大电池(4)的并联电路形成的总通路,当控制器(11)通过电流检测电路(14)检测到总通路的充电电流比较小时,控制器(11)通过GPIO接口指示电平控制模块(123)的输出电压比运算放大器模块(121)的输出电压小,从而增大了比较器模块(122)的输出电压,降低MOS管(MOS2)的漏-源间的阻抗,使小电池(3)通路的电流逐步增大,从而提高总通路的充电电流。
反之,当控制器(11)通过电流检测电路(14)检测到充电电流达到或超过总电流门限时,控制器(11)通过GPIO接口指示电平控制模块(123)输出端输出电压比运算放大器模块(121)的输出电压小,从而降低了比较器模块(122)的输出电压,提高了MOS管(MOS2)的漏-源间的阻抗,使小电池(3)通路的电流减少,从而减小使总通路的充电电流,避免电流过充损坏电池,提高充电安全性。
又一些具体实施例中,对于小电池(3)通路,当控制器(11)通过NTC15检测到小电池(3)的温度超过门限值时,控制器(11)控制阻抗调节电路(12)减小MOS管(MOS2)的漏-源间的阻抗,以使小电池(3)通路的电流减小,甚至关闭小电池(3)通路,从而使小电池(3)降温,提高电池充电过程的安全性。
同样,在放电过程中,控制器(11)同样可以控制阻抗调节电路(12)的电平控制模块(123),进而调节MOS管(MOS2)的漏-源间的阻抗。相关过程类似参考充电过程的实现细节,这里不再赘述。
可以看到,本申请实施例中控制器充分利用电流计、NTC所采集的数据,根据充放电策略对充电模块和阻抗调节电路进行控制,实现了安全地对大电池和小电池同时进行充放电。阻抗调节电路的MOS管串联在小电池通路上,因此可以根据小电池的充放电过程的电流控制小电池通路的阻抗,以调节小电池充放电的电流。另外还可以根据两个并联支路的总电流实时调整小电池通路的阻抗或者调整充电模块的充电电压,以及根据电池温度来执行降温策略,提高电池充放电过程的安全性。本申请实施例中充放电系统是一个闭环系统,自动根据电池并联支路中的电流进行阻抗控制,动态调整充放电的电流,达到充放电的速度和安全性能的均衡。
此外,本申请实施例中,阻抗调节电路的电平控制模块输出的电压可以是固定的,也可以是可变的。控制器根据流过小电池的电流限流的需求,控制阻抗调节电路中的电平控制模块的MOS管(MOS1)的占空比,从而输出动态需求的电压,这样可以满足不同电流的限流 要求。此外,如果电池长时间使用后老化,还可以根据电池的寿命特征进行电流限流适配,把充放电的电流进一步限制小一点,达到电池安全使用的目的。
基于上文描述的充放电系统,下面继续描述本申请提供的充放电电路的控制方法。所述充放电电路可应用于移动终端,所述充放电系统包括控制器和充放电电路,所述充放电电路包括:至少两个电池形成的至少两个并联的支路;其中至少一个支路具体包括电池、第一电流检测电路和阻抗调节电路;所述第一电流检测电路用于检测所述至少一个支路的充电或放电的电流,所述阻抗调节电路用于调节在所述至少一个支路中的阻抗。可能实施例中,所述阻抗调节电路具体包括电平控制模块、运算放大器模块、比较器模块和阻抗调节模块;所述阻抗调节模块包括金属-氧化物半导体场效应晶体管(MOS管),所述MOS管与所述至少一个支路中的电池串联;所述电平控制模块用于输出电压到所述比较器模块的输入端;所述运算放大器模块用于获取所述精密电阻两端的电压并放大,输出经放大后的电压到所述比较器模块的输入端;所述比较器模块用于通过比较所述电平控制模块和所述运算放大器模块各自的输出电压,输出目标电压到所述阻抗调节模块;所述阻抗调节模块用于根据所述目标电压调节所述MOS管在所述至少一个支路中的阻抗。
参见图9,图9是本申请提供的一种充放电电路的控制方法,所述方法可应用于充放电系统中的控制器,所述控制器可以是前文任意实施例描述的控制器11,该方法包括但不限于以下步骤:
101、通过电流检测电路采集所述至少一个支路的电流。
具体的,控制器可以从第一电流检测电路获取第一电流信息,所述第一电流信息指示了所述至少一个支路的充电或放电的电流值。所述第一电流检测电路具体包括电量计和精密电阻,所述精密电阻与所述至少一个支路中的电池串联;所述第一电流检测电路用于检测流经所述精密电阻的电量来获得所述至少一个支路的充电或放电的电流值。
其中,所述至少一个支路中的电池可以是前文任意实施例描述的第一电池3(或小电池3),第一电流检测电路可以是前文任意实施例描述的电流检测电路13,所述电量计可以是前文任意实施例描述的电量计13,所述精密电阻可以是前文任意实施例描述的第一精密电阻(132)。
在可能实施例中,所述至少一个支路中的电池的容量小于除所述至少一个支路外的其他支路的电池的容量。所述其他支路的电池可以是前文任意实施例描述的第二电池4(或大电池4)。
在可能实施例中,所述至少两个电池形成的至少两个并联的支路用于共同为至少两个规模不同的电路板供电。所述至少两个规模不同的电路板例如可以是前文任意实施例描述的第一电路板1和第二电路板2。
102、当所述电流小于预设阈值时,控制所述阻抗调节电路逐步减小在所述至少一个支路中的阻抗,以使所述至少一个支路的电流逐步增大,从而逐步接近所述预设阈值。
具体的,当所述电流的电流值小于预设阈值时,控制器可通过GPIO接口向所述电平控制模块发送第一脉冲宽度调节PWM信号,所述第一PWM信号用于指示所述电平控制模块输出比所述经放大后的电压更小的电压;从而,所述比较器模块的输出比先前更大的电压,所述阻抗调节模块具体根据所述比较器模块的输出电压减少在所述至少一个支路中的阻抗。
103、当所述电流大于预设阈值时,控制所述阻抗调节电路增加在所述至少一个支路中的阻抗,以使所述至少一个支路的电流减小,减小后的电流小于或等于预设阈值。具体实现中, 可以逐步增加阻抗以使电流逐步减小从而趋向预设阈值,也可以使阻抗急剧变化以使电流迅速降低到预设阈值或低于预设阈值。
具体的,当所述电流值大于预设阈值时,向所述电平控制模块发送第二脉冲宽度调节PWM信号,所述第二PWM信号用于指示所述电平控制模块输出比所述经放大后的电压更小的电压;从而,所述比较器模块的输出比先前更小的电压,所述阻抗调节模块具体根据所述比较器模块的输出电压增加在所述至少一个支路中的阻抗。
需要说明的是,关于所述电平控制模块的详细内容可参考前述图7或图8实施例的相关描述,为了说明书的简洁,这里不再赘述。
此外,在本申请可能的实现中,所述电池充放电电路还包括至少一个热敏电阻,所述热敏电阻用于检测所述至少一个电路的电池的温度。所述热敏电阻可以是前述任意实施例描述的NTC15,充放电过程中控制器还可以检测检测小电池是否达到温度门限,从而基于温度信息进行实时电流调整,提高电池使用的安全性和性能。具体实现细节已在前文阐述,这里不再赘述。
可以看到,本申请实施例可充分利用移动终端的内部空间放置至少两个不同大小的电池和至少两个不同大小的电路板,采用两个电池并联的方案,充电池过程中两个电池同时充电,且充放电过程中通过控制阻抗调节电路的MOS管的阻抗来控制充放电电流最大值,避免小电池过放和过充,延长小电池寿命,在充电速度和寿命达到最佳平衡,提高了整个充放电系统的安全性能;此外在放电过程中,两个电池同时放电,使移动终端的放电能力达到最大。
参见图10,图10是本申请提供的又一种充放电电路的控制方法,所述充放电电路可应用于移动终端,所述充放电系统包括控制器和充放电电路,所述充放电电路包括:充电模块,至少两个电池形成的至少两个并联的支路,第二电流检测电路;其中,所述充电模块用于为所述至少两个并联的支路提供充电电压,至少一个支路具体包括电池、第一电流检测电路和阻抗调节电路;所述第一电流检测电路用于检测所述至少一个支路的充电或放电的电流,所述阻抗调节电路用于调节在所述至少一个支路中的阻抗。所述第二电流检测电路用于检测所述至少两个并联的支路的总电流,所述至少一个支路中的电池可以是前文任意实施例描述的第一电池3(或小电池3),第一电流检测电路可以是前文任意实施例描述的电流检测电路13。所述第二电流检测电路可以是前文任意实施例描述的电流检测电路14。
所述方法可应用于所述充放电系统中的控制器,所述控制器可以是前文任意实施例描述的控制器12,该方法包括但不限于以下步骤:
301、控制所有并联支路所形成的总通路以安全门限电流充电。
开始充电的时候,为了安全起见,可以让由所有并联支路形成的总通路以一个比较小的电流(即安全门限电流)进行充电。在可能的实施例中,还可以让比较器模块输出的电压保持最高,从而让小电池通路的阻抗最小,使得系统快速进入充电状态。
302、指示充电模块小幅度地提高总通路的电流。
所述充电模块可以是前文任意实施例描述的充电模块21。
示例性地,所述充电模块可包括电源管理芯片(Scharge)、过压保护电路(OVP MOS)和适配器(Adapter)。其中,适配器作为接口转换器连接到USB接口,USB外接充电线以接入到外界电源。过压保护电路用于将输入电压限定在安全范围内。当出现过压现象时,过压保护电路进行保护以防止损坏后级用电器件。电源管理芯片用于控制充电电压从而为电池充 电。控制器通过连接线与充电模块连接,控制器向充电模块发送信息以指示充电模块小幅度地提高充电电压,从而提高了总通路的电流。其中,所谓“小幅度”可以是一种较小程度的增加电压的步长,本申请不做限定。
303、判断总通路的总电流是否小于总通路的门限值。具体的,控制器可以通过第二电流检测电路实时检测总通路的总电流值。如果总通路的总电流小于总通路的门限值,后续继续执行步骤304;如果总通路的总电流大于总通路的门限值,后续继续执行步骤307。
304、判断小电池通路的电流是否小于小电池通路的预设阈值。具体的,控制器可以通过第一电流检测电路实时检测小电池通路的总电流值。如果小电池通路的电流小于小电池通路的预设阈值,后续继续执行步骤305;如果小电池通路的电流大于小电池通路的预设阈值,后续继续执行步骤306。
305、控制阻抗调节电路减少小电池通路的阻抗,从而使小电池通路的电流增加,可控制增加后的电流小于等于预设阈值。后续继续返回执行步骤302,即继续提高充电模块的充电电压让总通路的电流小幅度增加。
306、控制阻抗调节电路增加小电池通路的阻抗,从而使小电池通路的电流减少,即控制减少后的电流小于预设阈值,后续继续返回执行步骤302,即继续提高充电模块的充电电压让总通路的电流小幅度增加。
其中,所述阻抗调节电路可以是前文任意实施例描述的阻抗调节电路12,关于所述阻抗调节电路的详细结构以及控制器控制阻抗调节电路减少或增加小电池通路的阻抗的方法已在前文做了详细描述,为了说明书的简洁,这里不再赘述。
307、降低总通路的电流进行充电。具体的,控制器向充电模块发送信息以指示充电模块降低充电电压,从而降低了总通路的电流。后续进行执行步骤303,以判断降低后的总通路的电流是否小于门限值。
可以看到,通过上述过程的循环反复,可以实现动态自适应的充电过程。充电过程中控制器可以不断地检测总通路的总电流和小电池通路的电流,自适应地指示充电模块调整总通路的总电流以及指示阻抗调节电路调整电路阻抗,从而实现了对至少两个不同大小的电池同时充电,避免小电池过充,延长电池寿命,提升了两个电池的充电速度,并且在充电速度和寿命之间达到最佳平衡,提高了整个充放电系统的安全性能。
此外,基于相同发明构思,本申请还提供了一种控制器,所述控制器包括输入输出接口和逻辑电路;所述输入输出接口用于收发数据;所述逻辑电路用于控制所述控制器执行如图9或图10实施例所描述的方法,示例性地,所述控制器可以是前文任意实施例描述的控制器(11)。
基于相同发明构思,本申请还提供了一种系统,所述系统包括控制器和电池充放电电路,所述电池充放电电路可以为前文任意实施例描述的充放电电路,所述控制器可以为前文任意实施例描述的控制器,例如控制器(11)。
基于相同发明构思,本申请还提供了一种移动终端,所述移动终端包括至少两个电路板以及如前文任意实施例描述的充放电电路,所述系统用于为所述至少两个电路板供电。所述充放电电路中的部分或全部的电路、元器件、模块等可以部署于所述至少两个电路板中的任意电路板,所述至少两个电路板例如包括第一电路板(1)和第二电路板(2)。
在上述实施例中,对各个实施例的描述各有侧重,某个实施例中没有详述的部分,可以 参见其他实施例的相关描述。
上述实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照上述实施例对本申请进行了详细的说明,本领域的普通技术人员还应当理解的是:任何基于对上述各实施例所记载的技术方案进行的改动、变形、或者对其中部分技术特征进行的等同替换均应属于本申请各实施例技术方案的精神和范围。

Claims (24)

  1. 一种电池充放电电路,其特征在于,所述电池充放电电路包括:至少两个电池形成的至少两个并联的支路、分别连接所述至少两个电池的充电模块;其中,所述充电模块用于为所述至少两个并联的支路提供充电电压;所述至少两个并联的支路中的至少一个支路具体包括电池、第一电流检测电路和阻抗调节电路;其中:所述第一电流检测电路用于检测所述至少一个支路的充电或放电的电流;所述阻抗调节电路用于根据所述电流与预设阈值的差距逐步调节在所述至少一个支路中的阻抗,以改变所述电流趋向预设阈值。
  2. 根据权利要求1所述的电路,其特征在于,当所述第一电流检测电路检测到所述电流大于预设阈值时,所述阻抗调节电路用于逐步增加在所述至少一个支路中的阻抗,以降低所述电流。
  3. 根据权利要求1或2所述的电路,其特征在于,当所述第一电流检测电路检测到所述电流小于所述预设阈值时,所述阻抗调节电路用于逐步减少在所述至少一个支路中的阻抗,以提高所述电流。
  4. 根据权利要求1-3任一项所述的电路,其特征在于,
    当所述第一电流检测电路检测到所述电流小于所述预设阈值时,所述充电模块具体用于增加所述充电电压,以提高所述电流。
  5. 根据权利要求1-4任一项所述的电路,其特征在于,所述第一电流检测电路包括电量计和精密电阻,所述精密电阻与所述至少一个支路中的电池串联;所述第一电流检测电路用于检测流经所述精密电阻的电量来获得所述至少一个支路的充电或放电的电流。
  6. 根据权利要求5所述的电路,其特征在于,所述阻抗调节电路具体包括:电平控制模块、运算放大器模块、比较器模块和阻抗调节模块;其中,所述电平控制模块和所述运算放大器模块分别连接到所述比较器模块的输入端,所述比较器模块的输出端连接所述阻抗调节模块;所述阻抗调节模块包括金属-氧化物半导体场效应晶体管(MOS管),所述MOS管与所述至少一个支路中的电池串联;
    所述电平控制模块用于逐步输出可变的电压到所述比较器模块的输入端;
    所述运算放大器模块用于获取所述精密电阻两端的电压并放大,输出经放大后的电压到所述比较器模块的输入端;
    所述比较器模块用于通过比较所述电平控制模块和所述运算放大器模块各自的输出电压,输出目标电压到所述阻抗调节模块;
    所述阻抗调节模块用于根据所述目标电压调节所述MOS管在所述至少一个支路中的阻抗。
  7. 根据权利要求1-6任一项所述的电路,其特征在于,所述电池充放电电路还包括第二电流检测电路,所述第二电流检测电路用于检测所述至少两个并联的支路的总电流;
    当所述第二电流检测电路检测到所述总电流小于门限值时,所述充电模块具体用于增加所述充电电压以提高所述总电流;或者,所述阻抗调节电路具体用于减少在所述至少一个支路中的阻抗,以提高所述至少一个支路中的电流。
  8. 根据权利要求1-7任一项所述的电路,其特征在于,所述电池充放电电路还包括热敏电阻,所述热敏电阻用于检测所述至少一个电路的电池的温度;
    当所述热敏电阻检测到所述至少一个电路的电池的温度高于温度门限时,所述阻抗调节电路具体用于增加在所述至少一个支路中的阻抗,以降低所述电流。
  9. 根据权利要求1-8任一项所述的电路,其特征在于,所述至少一个支路中的电池的容量小于除所述至少一个支路外的其他支路的电池的容量。
  10. 根据权利要求1-8任一项所述的电路,其特征在于,所述至少两个电池形成的至少两个并联的支路用于共同为至少两个规模不同的电路板供电。
  11. 一种电池充放电电路的控制方法,所述电池充放电电路包括:至少两个电池形成的至少两个并联的支路、分别连接所述至少两个电池的充电模块;其中,所述充电模块用于为所述至少两个并联的支路提供充电电压;所述至少两个并联的支路中的至少一个支路具体包括电池、第一电流检测电路和阻抗调节电路;其特征在于,在所述至少两个电池同时充电或同时放电的情况下,所述方法包括:
    从所述第一电流检测电路获取第一电流信息,所述第一电流信息指示了所述至少一个支路的充电或放电的电流;
    根据所述电流与预设阈值的差距,控制所述阻抗调节电路逐步调节在所述至少一个支路中的阻抗,以使所述电流趋向预设阈值。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述电流与预设阈值的差距,控制所述阻抗调节电路逐步调节在所述至少一个支路中的阻抗,以使所述电流趋向预设阈值,包括:
    当所述电流大于预设阈值时,控制所述阻抗调节电路逐步增加在所述至少一个支路中的阻抗,以降低所述电流。
  13. 根据权利要求12所述的方法,其特征在于,其特征在于,所述根据所述电流与预设阈值的差距,控制所述阻抗调节电路逐步调节在所述至少一个支路中的阻抗,以使所述电流趋向预设阈值,包括:
    当所述电流小于所述预设阈值时,控制所述阻抗调节电路逐步减小在所述至少一个支路中的阻抗,以提高所述电流。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,其特征在于,所述方法还包括:
    当所述第一电流检测电路检测到所述电流小于所述预设阈值时,控制所述充电模块增加 所述充电电压,以提高所述电流。
  15. 根据权利要求13或14任一项所述的方法,其特征在于,所述第一电流检测电路包括电量计和精密电阻,所述精密电阻与所述至少一个支路中的电池串联;所述第一电流检测电路用于检测流经所述精密电阻的电量来获得所述至少一个支路的充电或放电的电流。
  16. 根据权利要求15所述的方法,其特征在于,所述阻抗调节电路具体包括电平控制模块、运算放大器模块、比较器模块和阻抗调节模块;所述阻抗调节模块包括金属-氧化物半导体场效应晶体管(MOS管),所述MOS管与所述至少一个支路中的电池串联;所述电平控制模块用于逐步输出电压到所述比较器模块的输入端;所述运算放大器模块用于获取所述精密电阻两端的电压并放大,输出经放大后的电压到所述比较器模块的输入端;所述比较器模块用于通过比较所述电平控制模块和所述运算放大器模块各自的输出电压,输出目标电压到所述阻抗调节模块;所述阻抗调节模块用于根据所述目标电压调节所述MOS管在所述至少一个支路中的阻抗。
  17. 根据权利要求16所述的方法,其特征在于,所述当所述电流小于预设阈值时,控制所述阻抗调节电路减少在所述至少一个支路中的阻抗,包括:
    当所述电流小于预设阈值时,向所述电平控制模块发送第一脉冲宽度调节PWM信号,所述第一PWM信号用于指示所述电平控制模块输出比所述经放大后的电压更小的电压;所述阻抗调节模块具体用于根据所述比较器模块的输出电压逐步减少在所述至少一个支路中的阻抗。
  18. 根据权利要求16或17所述的方法,其特征在于,所述当所述电流大于预设阈值时,控制所述阻抗调节电路增加在所述至少一个支路中的阻抗,包括:
    当所述电流大于预设阈值时,向所述电平控制模块发送第二脉冲宽度调节PWM信号,所述第二PWM信号用于指示所述电平控制模块输出比所述经放大后的电压更小的电压;所述阻抗调节模块具体用于根据所述比较器模块的输出电压逐步增加在所述至少一个支路中的阻抗。
  19. 根据权利要求14所述的方法,其特征在于,所述电池充放电电路还包括第二电流检测电路,所述第二电流检测电路用于检测所述至少两个并联的支路的充电或放电的总电流;所述方法还包括:
    从所述第二电流检测电路获取第二电流信息,所述第二电流信息指示了所述总电流;
    当所述总电流小于门限值时,控制所述充电模块增加所述充电电压,以及控制所述阻抗调节电路减少在所述至少一个支路中的阻抗;
    当所述总电流大于门限值时,控制所述充电模块减小所述充电电压。
  20. 根据权利要求11-19任一项所述的方法,其特征在于,所述电池充放电电路还包括热敏电阻,所述热敏电阻用于检测所述至少一个电路的电池的温度;所述方法还包括:
    从所述热敏电阻获取所述温度;
    当所述温度高于温度门限时,控制所述阻抗调节电路增加在所述至少一个支路中的阻抗,以降低所述电流。
  21. 根据权利要求11-20任一项所述的方法,其特征在于,所述至少一个支路中的电池的容量小于除所述至少一个支路外的其他支路的电池的容量。
  22. 一种控制器,其特征在于,所述控制器包括输入输出接口和逻辑电路;所述输入输出接口用于收发数据;所述逻辑电路用于控制所述控制器执行如权利要求11-21任一项所描述的方法。
  23. 一种系统,其特征在于,所述系统包括控制器和电池充放电电路,所述电池充放电电路为如权利要求1-10任一项所描述的电路,所述控制器如权利要求22所描述的控制器。
  24. 一种移动终端,其特征在于,所述移动终端包括至少两个电路板以及如权利要求23所描述的系统,所述系统用于为所述至少两个电路板供电。
PCT/CN2021/083260 2020-03-28 2021-03-26 一种电池充放电电路的控制方法及相关装置 WO2021197226A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010232965.9 2020-03-28
CN202010232965.9A CN113452100A (zh) 2020-03-28 2020-03-28 一种电池充放电电路的控制方法及相关装置

Publications (1)

Publication Number Publication Date
WO2021197226A1 true WO2021197226A1 (zh) 2021-10-07

Family

ID=77808154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083260 WO2021197226A1 (zh) 2020-03-28 2021-03-26 一种电池充放电电路的控制方法及相关装置

Country Status (2)

Country Link
CN (1) CN113452100A (zh)
WO (1) WO2021197226A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116667475A (zh) * 2023-03-13 2023-08-29 深圳库博能源科技有限公司 一种基于云计算的储能管理系统及方法
CN117517785A (zh) * 2024-01-08 2024-02-06 深圳市瀚强科技股份有限公司 阻抗检测电路、阻抗检测设备及阻抗检测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110575A (zh) * 2017-12-07 2018-06-01 柳州市双飞汽车电器配件制造有限公司 一种汽车混合动力系统的电源线束总成
CN113866658A (zh) * 2021-12-01 2021-12-31 荣耀终端有限公司 电量信息采集电路和设备
CN117394472A (zh) * 2022-07-04 2024-01-12 荣耀终端有限公司 充放电电路和电子设备
CN116566022A (zh) * 2023-07-07 2023-08-08 北京小米移动软件有限公司 充电保护电路及充电控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532191A (zh) * 2013-10-14 2014-01-22 松下家电研究开发(杭州)有限公司 一种吸尘器的双组电池组充电系统及其充电方法
CN206193207U (zh) * 2016-11-24 2017-05-24 潍坊歌尔电子有限公司 一种检测并联双电池中单个电池状态的装置
US20190214837A1 (en) * 2018-01-10 2019-07-11 Microsoft Technology Licensing, Llc Parallel charging and discharging of batteries with disparate characteristics
CN110277813A (zh) * 2019-06-13 2019-09-24 华为技术有限公司 可折叠的电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532191A (zh) * 2013-10-14 2014-01-22 松下家电研究开发(杭州)有限公司 一种吸尘器的双组电池组充电系统及其充电方法
CN206193207U (zh) * 2016-11-24 2017-05-24 潍坊歌尔电子有限公司 一种检测并联双电池中单个电池状态的装置
US20190214837A1 (en) * 2018-01-10 2019-07-11 Microsoft Technology Licensing, Llc Parallel charging and discharging of batteries with disparate characteristics
CN110277813A (zh) * 2019-06-13 2019-09-24 华为技术有限公司 可折叠的电子设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116667475A (zh) * 2023-03-13 2023-08-29 深圳库博能源科技有限公司 一种基于云计算的储能管理系统及方法
CN117517785A (zh) * 2024-01-08 2024-02-06 深圳市瀚强科技股份有限公司 阻抗检测电路、阻抗检测设备及阻抗检测方法
CN117517785B (zh) * 2024-01-08 2024-04-23 深圳市瀚强科技股份有限公司 阻抗检测电路、阻抗检测设备及阻抗检测方法

Also Published As

Publication number Publication date
CN113452100A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2021197226A1 (zh) 一种电池充放电电路的控制方法及相关装置
CN212784793U (zh) 一种电池充放电电路
US10707691B2 (en) Electronic device and charging method thereof
US20080272741A1 (en) Systems and methods for detecting power sources
US9509160B2 (en) Fast charging terminal
US20130113417A1 (en) Charge control device and charge control method
US6172481B1 (en) Method and apparatus for rapid charging batteries under sub-optimal interconnect conditions
CN106546822B (zh) 负载的充电线路的阻抗检测方法、芯片和移动终端
US9673638B2 (en) Apparatus and method for a switching power converter
AU2019402985B2 (en) Methods and apparatus for controlling charge current in a battery pack containing cells of disparate types
US11837887B2 (en) Charging integrated circuit and operating method
CN101350532A (zh) 带有旁路的过电压保护电池充电器
CN210327077U (zh) 快速充电电路及装置
US20110025255A1 (en) Solar Power System For Charging Battery Pack
CN101771280B (zh) 电池充电控制器及电池平衡充电控制器
US7898222B2 (en) Battery charger and associated method
CN111277012A (zh) 充电电路、充电芯片及电子设备
WO2022194106A1 (zh) 双电池充放电电路及控制方法、电子设备
WO2020063390A1 (zh) 快充电路以及电子烟
TW201843905A (zh) 電池組及將電池組並聯到外部電池系統的方法
CN114567054A (zh) 控制方法、装置及电子设备
WO2021047361A1 (zh) 控制装置及电子设备
US20180145525A1 (en) Charging managment method and system thereof
CN205081514U (zh) 充电装置
TW201701562A (zh) 行動充放電裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781543

Country of ref document: EP

Kind code of ref document: A1