WO2021197036A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2021197036A1
WO2021197036A1 PCT/CN2021/080743 CN2021080743W WO2021197036A1 WO 2021197036 A1 WO2021197036 A1 WO 2021197036A1 CN 2021080743 W CN2021080743 W CN 2021080743W WO 2021197036 A1 WO2021197036 A1 WO 2021197036A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
drb
configuration
data transmission
default
Prior art date
Application number
PCT/CN2021/080743
Other languages
English (en)
French (fr)
Inventor
张崇铭
刘仁茂
肖芳英
Original Assignee
夏普株式会社
张崇铭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 张崇铭 filed Critical 夏普株式会社
Priority to US17/913,908 priority Critical patent/US20240215096A1/en
Priority to EP21780706.4A priority patent/EP4132204A4/en
Publication of WO2021197036A1 publication Critical patent/WO2021197036A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of wireless communication technology, and more specifically, the present invention relates to a method executed by a user equipment and a corresponding base station and user equipment.
  • the UE entering the RRC INACTIVE STATE can send a transmission block ( Transport Block).
  • This transmission method can be called PUR transmission. It is also possible to send a transmission block carrying user data in message 3 or message A during random access. Both of these methods can be called small data transmission.
  • the UE In order to enable the UE to perform data transmission in the inactive state, the UE first needs to resume DRB (resume DRB).
  • the UE restores the RRC configuration (restore the RRC configuration from the stored UE AS context) and restores the PDCP state (Restore PDCP state) according to the stored UE access layer context, and then rebuilds the PDCP entity, thereby restoring the DRB.
  • the UE can perform small data transmission in the cell where it currently resides.
  • a cell may be referred to as a cell that provides small data transmission services.
  • the UE may obtain pre-configured uplink resources, or obtain random access resources based on the system information broadcast in the cell, so as to perform small data transmission.
  • the UE is configured with a list of allowed serving cells (allowedServingCells) before entering the INACTIVE state, where the information of the serving cell, such as an index number, is recorded in the allowedServingCells.
  • allowedServingCells the information of the serving cell, such as an index number, is recorded in the allowedServingCells.
  • the UE may also be configured with an allowed subcarrier interval list (allowedSCS-List), where allowedSCS-List records the allowed subcarrier interval.
  • allowedSCS-List records the allowed subcarrier interval.
  • Each DRB is associated with at least one logical channel.
  • the UE restores the previous RRC configuration, but the cell currently providing small data transmission services may not match the previous RRC configuration in the resource configuration:
  • the current serving cell does not belong to the cell in allowedServingCells
  • the subcarrier interval of the current cell is not in the allowedSCS-List.
  • the present invention provides a method executed by user equipment and user equipment, which can avoid additional signaling overhead and reduce power when the user equipment is in an inactive state and needs to perform small data transmission. Therefore, the communication efficiency and reliability of the wireless communication system can be improved.
  • a method executed by a user equipment including: triggering a radio resource control RRC connection recovery process when the user equipment is in an inactive state and needs to perform small data transmission; and in the RRC During the connection restoration process, the user equipment adopts a predefined default configuration for the data radio bearer DRB, and restores other configurations other than the default configuration in the RRC configuration for the DRB.
  • the default configuration may include at least one of a default radio link control RLC bearer configuration and a default packet data convergence protocol PDCP configuration.
  • a default radio link control RLC bearer configuration For the parameters existing in the default RLC bearer configuration, use The values configured in the default RLC bearer configuration, for the parameters existing in the default PDCP configuration, the values configured in the default PDCP configuration are used.
  • the user equipment sends an RRC connection recovery request message to the network side after recovering all the DRBs.
  • a method executed by a user equipment including: when the user equipment is in an inactive state and needs to perform small data transmission, triggering a radio resource control RRC connection recovery process; and in the RRC During the connection restoration process, the user equipment restores the relevant RRC configuration of the data radio bearer DRB that supports small data transmission.
  • the RRC configuration information received by the user equipment in the connected state includes indication information indicating that the DRB supports small data transmission.
  • the request information sent by the user equipment to the network side or the response information for the request information received from the network side includes relevant information of the DRB supporting small data transmission.
  • the user equipment is configured with one or more dedicated DRBs only used for small data transmission in the inactive state.
  • the service data from the upper layer The adaptive layer protocol service data unit SDAP SDU is sent to the dedicated DRB.
  • the SDAP SDU when there is a mapping rule from Qos flow to DRB, the SDAP SDU is sent to the corresponding DRB in the dedicated DRB according to the mapping rule, and when the mapping rule does not exist, the SDAP SDU is sent to the corresponding DRB.
  • the SDU is sent to the default DRB in the dedicated DRB.
  • the user equipment determines that the small data transmission can be performed only when the data from the upper layer comes from the DRB supporting small data transmission.
  • a user equipment including: a processor; and a memory storing instructions; wherein the instructions execute the above method when run by the processor.
  • additional signaling overhead and power consumption can be reduced when the user equipment is in an inactive state and small data transmission is required, thereby improving the communication efficiency of the wireless communication system and reliability.
  • Fig. 1 shows a flowchart of a method 100 in a user equipment based on an embodiment of the present invention.
  • Fig. 2 shows a flowchart of a method 200 in a user equipment based on an embodiment of the present invention.
  • Fig. 3 shows a block diagram of a user equipment 30 based on an embodiment of the present invention.
  • RNARAN-based Notification Area Based on the notification area of the radio access network
  • the present invention is not limited to the following embodiments, but is applicable to more other wireless communication systems, such as eLTE, communication systems, or NB-Iot systems, or LTE-M systems. And it can be applied to other base stations and UE equipment, such as base stations and UE equipment supporting eLTE/NB-Iot/LTE-M.
  • the upper layer of the UE can request the UE to resume the RRC connection (request resumption of an RRC connection).
  • requests usually occur when data arrives from the upper layer.
  • the access layer of the UE such as the RRC layer, may also request the UE to resume the RRC connection (request resumption of an RRC connection).
  • a request usually occurs when RNAU is triggered, or the UE receives a paging message from the network side in the INACTIVE state.
  • the UE will trigger the RRC connection recovery process.
  • the UE will send an RRC connection recovery request message to the base station/network side.
  • the UE can send a MAC PDU during the PUR or random access process, and the MAC PDU carries the RRC connection recovery request message and user data.
  • the UE In the RRC connection recovery process, if the UE adopts the small data transmission mode, the UE needs to recover the DRB first.
  • Fig. 1 shows a flowchart of a method 100 in a user equipment based on an embodiment of the present invention.
  • step S101 when the user equipment is in an inactive state and needs to perform small data transmission, the RRC connection recovery process is triggered.
  • step S102 in the RRC connection restoration process, the user equipment adopts a predefined default configuration for the DRB, and restores other configurations other than the default configuration in the RRC configuration for the DRB.
  • Fig. 2 shows a flowchart of a method 200 in a user equipment based on an embodiment of the present invention.
  • step S201 when the user equipment is in an inactive state and needs to perform small data transmission, the RRC connection recovery process is triggered.
  • step S202 during the RRC connection restoration process, the user equipment restores the relevant RRC configuration of the DRB supporting small data transmission.
  • the configuration information element includes at least the following parameters or fields (field), the so-called field refers to a single information element Individual content, an information element can contain multiple fields.
  • the field is set to the value empty (empty), or the default state, or does not exist (not present) state
  • this field is set to the value of empty (empty), or the default state, or not present (not present) state
  • the above configuration method enables the DRB with the above default RLC bearer configuration to not be restricted by allowedServingCells and allowedSCS-List, and can work normally in a serving cell that provides small data transmission.
  • default PDCP configuration (default PDCP config), which includes at least the following parameters or fields:
  • the field is set to MCG, or empty
  • the domain is set to deactivate or is set to empty, which means that the domain is not configured
  • the above configuration method makes the DRB adopting the above default PDCP configuration, its primary transmission path is MCG, or a serving cell that provides small data transmission.
  • the UE restores the RRC configuration, but not all the RRC configurations.
  • the specific method can be:
  • RLC-BearerConfig For the information element RLC-BearerConfig in the RRC configuration saved by the UE, for those domains that exist in the default RLC bearer configuration, such as the above allowedServingCells or allowedSCS-ListUE, these domains can be used in the default RLC bearer configuration. Configuration value; for those domains that are not in the default RLC bearer configuration, such as logical channel ID, RLC entity mode, etc., the original RRC configuration stored in the UE access context is used. value.
  • the values configured in these domains in the default PDCP configuration can be used. Value; For those fields that do not exist in the default PDCP configuration, such as the length value of PDCP-SN, or PDCP integrity protection parameters, the original RRC configuration stored in the UE access context is used The values of these fields.
  • the UE restores the RRC configuration through the above method, it can rebuild the PDCP entity or the RLC entity, and then restore all DRBs. Then the RRC connection recovery request message is submitted to the lower layer for transmission/sending.
  • the UE restores all RRC configurations, and then uses the values set in the default RLC bearer configuration for the domains that appear in the default RLC bearer configuration; and it can also be used for the fields that are present in the default PDCP configuration.
  • the field of adopts the value set in the default PDCP configuration.
  • the UE restores the RRC configuration, and then can rebuild the PDCP entity or the RLC entity, and then restore all the DRBs. Then the RRC connection recovery request message is submitted to the lower layer for transmission/sending.
  • the difference from the first embodiment is that the UE does not restore all the DRBs, but only restores the DRBs using the small data transmission scheme.
  • DRB with small data transmission scheme is a kind of proprietary DRB, which can be one or more.
  • the RRC configuration information received by the UE in the connected state may include DRB configuration information, and the DRB configuration information indicates that the DRB can be used for small data transmission.
  • DRB configuration information indicates that the DRB can be used for small data transmission.
  • Such indication information can be associated with the ID (drb-Identity) of the DRB, or can be associated with the logical channel ID,
  • RLC-BearerConfig can be added to RLC-BearerConfig. Since RLC-BearerConfig also contains logicalChannelIdentity and drb-Identity, it can be considered that such indication information is related to the logical channel ID or is related to the ID of the DRB. United.
  • the UE restores the RRC configuration, but instead of restoring all the RRC configurations, it restores the DRB related configurations that support or can be used for small data transmission. And rebuild PDCP entities or RLC entities for those DRBs that support or can be used for small data transmission, and then restore all DRBs that can be used for small data transmission.
  • the UE After the DRB is recovered, the UE then submits the RRC connection recovery request message to the lower layer for transmission/sending.
  • the UE sends request information to the base station or the network side, requesting resource configuration for small data transmission, or requesting to perform small data transmission.
  • the request message carries at least DRB related information, such as drb-Identity, or information about a logical channel associated with the DRB, such as a logical channel ID.
  • the DRB carried in the request information is the DRB used for small data transmission in the inactive state.
  • the base station or the network side completely accepts the UE's request, it can be considered that the DRB indicated by the UE in the request information can be used for small data transmission.
  • the base station or the network part accepts the UE's request, and can carry DRB information in the response information to the request message, such as drb-Identity, then the DRB indicated in the response information can be used for small data transmission .
  • the base station or the network side can use the existing RRC configuration procedure to reconfigure these DRBs to make them suitable for data transmission in the inactive state.
  • the RRC connection recovery process is triggered, and the UE restores the RRC configuration, but instead of restoring the RRC configuration of all DRBs, it restores the related DRBs that can be used for small data transmission.
  • RRC configuration reconstructs the PDCP entity or RLC entity for those DRBs that can be used for small data transmission, and then restore all the DRBs that can be used for small data transmission.
  • the DRBs that can be used for small data transmission here are all the DRBs indicated by the UE in the previous request information or the response message of the request message, or one or more of them.
  • the UE After the DRB is recovered, the UE then submits the RRC connection recovery request message to the lower layer for transmission/sending.
  • one situation when a DRB is configured to support small data transmission, one situation may be that the DRB can perform small data transmission in an inactive state, and can perform normal data transmission in a connected state.
  • the UE is configured with one or more dedicated DRBs for small data transmission. This or these dedicated DRBs are only used for small data transmission in the inactive state. When the UE enters the connected state, this or these DRBs may be in a suspended state.
  • the SDAP layer When the upper layer data arrives, the SDAP layer sends the data to different DRBs according to the mapping relationship between QoS flow and DRB (QoS flow to DRB mapping rule: used to determine which DRB carries the QoS flow packet).
  • QoS flow to DRB mapping rule used to determine which DRB carries the QoS flow packet.
  • the SDAP entity maps the SDAP SDU to Or sent to this dedicated DRB; if the UE is not in the inactive state, but in the connected state, then if there is no Qos flow to DRB mapping rule, the SDAP entity will map the SDAP SDU to or send it to the default DRB ; If there is a mapping rule from Qos flow to DRB, then the SDAP SDU is mapped to or sent to the corresponding DRB according to the rule.
  • the SDAP SDU in the inactive state, when there are at least two dedicated DRBs, the SDAP SDU can be sent to one of the dedicated DRBs according to the rules in the active state and the pre-configured Qos flow to DRB mapping rule. There is a DRB; if there is no QoS flow to DRB mapping rule, then the SDAP SDU is sent to another dedicated DRB among them, or a default dedicated DRB is defined.
  • the RRC connection recovery process is triggered, and the UE restores the RRC configuration, but instead of restoring the RRC configuration of all DRBs, it restores those or DRBs that can be used for small data transmission Related RRC configuration. And reconstruct the PDCP entity or RLC entity for those or that DRB that can be used for small data transmission, and then restore the DRB that can be used for small data transmission.
  • the DRB that can be used for small data transmission here is a dedicated DRB that is configured.
  • the UE After the DRB is recovered, the UE then submits the RRC connection recovery request message to the lower layer for transmission/sending.
  • the UE needs to determine whether the data from the upper layer comes from those or the DRB that can be used for small data transmission when judging whether the small data transmission is possible. Only when at least this condition is met, that is, the data from the upper layer comes from those or the DRB that can be used for small data transmission, the UE can perform small data transmission, otherwise the UE does not perform small data transmission.
  • Fig. 3 shows a block diagram of a user equipment 30 according to an embodiment of the present invention.
  • the user equipment 30 includes a processor 301 and a memory 302.
  • the processor 301 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 302 may include, for example, volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.
  • the memory 302 stores program instructions. When the instruction is run by the processor 301, it can execute the foregoing method in the user equipment described in detail in the present invention.
  • the program running on the device according to the present invention may be a program that enables the computer to implement the functions of the embodiments of the present invention by controlling a central processing unit (CPU).
  • the program or the information processed by the program can be temporarily stored in volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.
  • the program for realizing the functions of the various embodiments of the present invention can be recorded on a computer-readable recording medium.
  • Corresponding functions can be realized by causing the computer system to read the programs recorded on the recording medium and execute these programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as peripheral devices).
  • the "computer-readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium storing a program dynamically for a short period of time, or any other recording medium readable by a computer.
  • circuits for example, single-chip or multi-chip integrated circuits.
  • Circuits designed to perform the functions described in this specification can include general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above devices.
  • the general-purpose processor may be a microprocessor, or any existing processor, controller, microcontroller, or state machine.
  • the above-mentioned circuit can be a digital circuit or an analog circuit. In the case of new integrated circuit technologies that replace existing integrated circuits due to advances in semiconductor technology, one or more embodiments of the present invention may also be implemented using these new integrated circuit technologies.
  • the present invention is not limited to the above-mentioned embodiment. Although various examples of the embodiment have been described, the present invention is not limited thereto.
  • Fixed or non-mobile electronic equipment installed indoors or outdoors can be used as terminal equipment or communication equipment, such as AV equipment, kitchen equipment, cleaning equipment, air conditioners, office equipment, vending machines, and other household appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种由用户设备执行的方法以及用户设备。由用户设备执行的方法包括: 用户设备在处于非激活态而需要进行小数据传输的情况下,触发无线资源控制RRC连接恢复过程; 以及在RRC连接恢复过程中,用户设备为数据无线承载DRB采用预先定义的默认配置,并且为DRB复原RRC配置中的所述默认配置之外的其他配置。由此,能够在用户设备处于非激活态而需要进行小数据传输时避免额外的信令开销以及降低功耗,从而能够提高无线通信系统的通信效率以及可靠性。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,更具体地,本发明涉及由用户设备执行的方法以及相应的基站和用户设备。
背景技术
为了缩短传输时延,以及节约信令开销,进入RRC非激活态(RRC INACTIVE STATE)的UE可以在预先配置的上行资源(preconfigured Uplink Resource,PUR)上发送既定大小的、携带数据的传输块(Transport Block)。这种传输方式可以称为PUR传输。还可以在随机接入的过程中,在消息三或者消息A中发送携带用户数据的传输块。这两种方式都可以被称为小数据传输。
为了使得UE在非激活状态下能够进行数据传输,UE首先需要恢复DRB(resume DRB)。UE根据存储的UE接入层的上下文复原(restore)RRC的配置(restore the RRC configuration from the stored UE AS context)以及复原PDCP的状态(Restore PDCP state),然后重建PDCP实体,从而恢复DRB。
通过上述准备工作,接下来,UE就可以在当前驻留的小区中进行小数据传输。这样的小区可以被称为提供小数据传输服务的小区。通过在这样的小区中,UE可以是获得了预先配置的上行资源,还可以是基于在该小区广播的系统信息,获得随机接入的资源,从而进行小数据传输。
但是,在进行小数据传输的准备中可能存在下述情况:
UE在进入INACTIVE状态之前被配置了被允许的服务小区列表(allowedServingCells),其中,allowedServingCells中记录了服务小区的信息,例如索引编号。当一个逻辑信道被配置了allowedServingCells,那么来自于该逻辑信道的数据只能通过allowedServingCells中记录的服务小区来传输。
类似地,UE还可能被配置了被允许的子载波间隔列表(allowedSCS-List),其中allowedSCS-List记录的是允许使用的子载波间隔。当一个逻辑信道被配置了allowedSCS-List,那么来自于该逻辑信道的数据只能通过满足allowedSCS-List中记录的子载波间隔的物理资源来传输。
每一个DRB至少与一个逻辑信道相互关联。为了恢复该DRB,UE复原了之前的RRC配置,但是当前提供小数据传输服务的小区可能在资源配置上与之前RRC配置中的不匹配:
例如,当前提供服务的小区不属于allowedServingCells中的小区;
又例如,当前小区的子载波间隔不在allowedSCS-List中。
那么尽管UE恢复了DRB的传输,但是由于下层的物理资源不能满足已有的RRC配置,使得从DRB到达的数据无法在当前提供小数据传输的小区上进行发送。为了发送数据,UE不得不再次进入连接态,从而带来了额外的信令开销以及增加了功耗。因此在执行小数据传输中,这个是需要解决的问题。
发明内容
为了解决现有技术中的上述问题,本发明提供了一种由用户设备执行的方法以及用户设备,能够在用户设备处于非激活态而需要进行小数据传输时避免额外的信令开销以及降低功耗,从而能够提高无线通信系统的通信效率以及可靠性。
根据本发明的第一方面,提供了一种由用户设备执行的方法,包括:用户设备在处于非激活态而需要进行小数据传输的情况下,触发无线资源控制RRC连接恢复过程;以及在RRC连接恢复过程中,用户设备为数据无线承载DRB采用预先定义的默认配置,并且为DRB复原RRC配置中的所述默认配置之外的其他配置。
在上述方法中,可以是,所述默认配置包括默认的无线链路控制RLC承载配置和默认的分组数据汇聚协议PDCP配置中的至少一者,对于在默认的RLC承载配置中存在的参数,采用在默认的RLC承载配置中被配置的取值,对于在默认的PDCP配置中存在的参数,采用在默认的PDCP配置中被配置的取值。
在上述方法中,可以是,用户设备在恢复了所有的DRB之后,向网络侧发送RRC连接恢复请求消息。
根据本发明的第二方面,提供了一种由用户设备执行的方法,包括:用户设备在处于非激活态而需要进行小数据传输的情况下,触发无线资源控制RRC连接恢复过程;以及在RRC连接恢复过程中,用户设备复原支持小数据传输的数据无线承载DRB的相关RRC配置。
在上述方法中,可以是,用户设备在连接态下接收到的RRC配置信息中,包含指示DRB支持小数据传输的指示信息。
在上述方法中,可以是,在用户设备向网络侧发送的请求信息或者从网络侧接收的针对请求信息的响应信息中,包含支持小数据传输的DRB的相关信息。
在上述方法中,可以是,用户设备被配置了一个或者多个仅用于非激活态下的小数据传输的专有DRB,在用户设备处于非激活态的情况下,将上层来的业务数据自适应层协议服务数据单元SDAP SDU送往所述专有DRB。
在上述方法中,可以是,当存在Qos flow到DRB的映射规则时,根据该映射规则而将SDAP SDU送往所述专有DRB中对应的DRB,当不存在所述映射规则时,将SDAP SDU送往所述专有DRB中默认的DRB。
在上述方法中,可以是,仅在上层来的数据来自于支持小数据传输的DRB的情况下,用户设备判断为能够进行小数据传输。
根据本发明的第三方面,提供了一种用户设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行上述方法。
发明效果
根据本发明的由用户设备执行的方法以及用户设备,能够在用户设备处于非激活态而需要进行小数据传输时避免额外的信令开销以及降低功耗,从而能够提高无线通信系统的通信效率以及可靠性。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1表示基于本发明的实施例的用户设备中的方法100的流程图。
图2表示基于本发明的实施例的用户设备中的方法200的流程图。
图3表示基于本发明的实施例的用户设备30的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
在具体描述之前,先对本发明中提到的若干术语做如下说明。除非另有指出,本发明中涉及的术语都具有下文的含义。
UE User Equipment 用户设备
NR New Radio 新一代无线技术
LTE Long Term Evolution 长期演进技术
eLTE Enhaced Long Term Evolution 增强的长期演进技术
RRC Radio Resource Control 无线资源控制(层)
MAC Medium Access Control 媒体接入控制(层)
PUSCH Physical Uplink Shared Channel 物理上行共享信道
PDCCH Physical Downlink Control Channel 物理下行控制信道
RNARAN-based Notification Area 基于无线接入网的通知区域
SDAP Service Data Adaptation Protocol 业务数据自适应层协议
下文以NR移动通信系统及其后续的演进版本作为示例应用环境,以支持NR的基站和UE设备为例,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如eLTE,通信系统,或者是NB-Iot系统,又或者是LTE-M系统。而且可以适用于其他基站和UE设备,例如支持eLTE/NB-Iot/LTE-M的基站和UE设备。
当UE处于INACTIVE状态时,UE的上层,例如非接入层,可以请求UE恢复RRC连接(request resumption of an RRC connection)。这样的请求通常发生在上层有数据到达的时候。此外UE的接入层,例如RRC层,也可以请求UE恢复RRC连接(request resumption of an RRC connection)。这样的请求通常发生在RNAU被触发时,或者是UE在INACTIVE状态下接收到了网络侧发来的寻呼消息。
基于该请求,UE会触发RRC连接恢复过程。在这一过程中,UE会向基站/网络侧发送RRC连接恢复请求消息。
如果UE支持并且决定采用小数据传输的方式,那么UE可以在PUR或者随机接入过程中发送一个MAC PDU,在该MAC PDU中携带了RRC连接恢复请求消息,以及用户的数据。
在RRC连接恢复过程中,如果UE采用了小数据的传输方式,UE需要首先恢复DRB。
图1中表示基于本发明的实施例的用户设备中的方法100的流程图。在步骤S101中,用户设备在处于非激活态而需要进行小数据传输的情况下,触发RRC连接恢复过程。在步骤S102中,在RRC连接恢复过程中,用户设备为DRB采用预先定义的默认配置,并且为DRB复原RRC配置中的所述默认配置之外的其他配置。
图2中表示基于本发明的实施例的用户设备中的方法200的流程图。在步骤S201中,用户设备在处于非激活态而需要进行小数据传输的情况下,触发RRC连接恢复过程。在步骤S202中,在RRC连接恢复过程中,用户设备复原支持小数据传输的DRB的相关RRC配置。
根据上述方法,能够在用户设备处于非激活态而需要进行小数据传输时避免额外的信令开销以及降低功耗,从而能够提高无线通信系统的通信效率以及可靠性。
为了解决背景技术中提到的问题,以下,详细描述本发明的若干实施例。
实施例一
定义默认或者缺省的RLC承载配置(default RLC-BearerConfig),在该配置信息元素(information element,IE)中中至少包括以下参数或者域(field),所谓的域是指在信息元素中单独的内容(individual content),一个信息元素中可以包含多个域。
-allowedServingCells,该域被设置为取值为空(empty),或者是缺省状态,或者是不存在(not present)状态
-allowedSCS-List,该域被设置为取值为空(empty),或者是缺省状态,或者是不存在(not present)状态
上述配置方法使得采用上述默认RLC承载配置的DRB不受allowedServingCells以及allowedSCS-List的限制,在提供小数据传输的服务小区能够正常工作。
定义默认或者缺省的PDCP配置(default PDCP config),在该配置中至少包括以下参数或者域(field),
-primaryPath,该域被设置为MCG,或者为空,
-pdcp-Duplication,该域被设置为去激活,或者设置为空,表示不配置该域
上述配置方法使得采用上述默认PDCP配置的DRB,其首要的传输路径是MCG,或者是提供小数据传输的服务小区。
当RRC连接恢复过程被触发,UE复原RRC配置,但是不是复原所有的RRC配置。具体方法可以是:
针对UE所保存的RRC配置中的信息元素RLC-BearerConfig,对于那些在默认的RLC承载配置中存在的域,例如上述的allowedServingCells或者是allowedSCS-ListUE,可以采用在默认的RLC承载配置中这些域被配置的取值;对于那些没有在默认的RLC承载配置中存在的域,例如逻辑信道ID,RLC实体模式等,则采用原有的、存储在UE接入上下文中的RRC配置中这些域的取值。
针对UE所保存的RRC配置中的信息元素PDCP config,对于那些在默认的PDCP配置中存在的域,例如上述的primaryPath或者是pdcp-Duplication,可以采用在默认的PDCP配置中这些域被配置的取值; 对于那些没有在默认的PDCP配置中存在的域,例如PDCP-SN的长度值,或者是PDCP的完整性保护等参数,则采用原有的、存储在UE接入上下文中的RRC配置中这些域的取值。
UE通过上述方法复原了RRC配置之后,可以重建PDCP实体,或者是RLC实体,然后恢复所有的DRB。然后再将RRC连接恢复请求消息递交给下层进行传输/发送。
上述方案的又一实施方式可以是
当RRC连接恢复过程被触发,UE复原所有的RRC配置,然后对于在默认RLC承载配置中出现的域,采用在默认RLC承载配置中设置的取值;以及还可以对于在默认的PDCP配置中存在的域,采用在默认的PDCP配置中设置的取值。通过这样的方式UE复原了RRC配置,然后可以重建PDCP实体,或者是RLC实体,然后恢复所有的DRB。然后再将RRC连接恢复请求消息递交给下层进行传输/发送。
实施例二
与实施例一的区别在于UE不恢复所有的DRB,而仅仅恢复采用小数据传输方案的DRB。
所谓“采用小数据传输方案的DRB”是一种专有的DRB,可以是一个或者多个。
UE在连接态下接收到的RRC配置信息中,可以包含DRB的配置信息,在DRB的配置信息中指示该DRB可以用于小数据传输。这样的指示信息可以是和DRB的ID(drb-Identity)相关联的,也可以是和逻辑信道ID相关联,
具体可以是在RLC-BearerConfig中增加这样的指示信息,由于RLC-BearerConfig中还包含了logicalChannelIdentity,以及drb-Identity,所以可以认为这样的指示信息与逻辑信道ID相关联,或者是与DRB的ID相关联。
当RRC连接恢复过程被触发,UE复原RRC配置,但是不是复原所有的RRC配置,而是复原那些支持或者可以用于小数据传输的DRB的相关配置。以及为那些支持或者可以用于小数据传输的DRB重建PDCP实体,或者是RLC实体,然后恢复所有可以用于小数据传输的DRB。
在DRB恢复之后,UE再将RRC连接恢复请求消息递交给下层进行传输/发送。
实施例三
UE向基站或者网络侧发送请求信息,请求用于小数据传输的资源配置,或者是请求执行小数据传输等。在该请求消息中至少携带DRB的相关信息,例如drb-Identity,或者是和DRB相关联的逻辑信道的信息,例如逻辑信道ID。在该请求信息中携带的DRB是用于非激活态下小数据传输的DRB。
一种情况下,基站或者网络侧完全接受UE的请求,那么可以认为UE在请求信息中指示的DRB都可以用于小数据传输。
在另一种情况下,基站或者网络侧部分接受UE的请求,可以在对请求消息的响应信息中携带DRB的信息,例如drb-Identity,那么在响应信息中指示的DRB可以用于小数据传输。
此外,基站或者网络侧在接收到该请求后,可以采用现有的RRC配置流程,对这些DRB进行重新配置,使其适用于非激活态下的数据传输。
当UE进入非激活态,需要进行小数据传输时,RRC连接恢复过程被触发,UE复原RRC配置,但是不是复原所有的DRB的RRC配置,而是复原那些可以用于小数据传输的DRB的相关RRC配置。以及为那些可以用于小数据传输的DRB重建PDCP实体,或者是RLC实体,然后恢复所有可以用于小数据传输的DRB。这里可以用于小数据传输的DRB就是之前UE在请求信息或者是请求消息的响应消息中指示的所有DRB,或者是其中的一个或多个。
在DRB恢复之后,UE再将RRC连接恢复请求消息递交给下层进行传输/发送。
实施例四
在实施例二中,当一个DRB被配置了支持小数据传输,一种情况可以是该DRB既能够在非激活态下进行小数据传输,又能够在连接态下进行正常的数据传输。
在本实施例中,还可以是UE被配置了专有的一个或者多个DRB用于小数据传输。这个或者这些专有的DRB仅仅用于非激活态下的小数据传输, 当UE进入连接态,这个或者这些DRB可以是处于暂停(suspend)的状态。
当上层的数据到达时,SDAP层根据Qos flow和DRB的映射关系(QoS flow to DRB mapping rule:用于判断由哪一个DRB来承载Qos flow包)将数据送往不同的DRB。为了让这个专有的DRB能够正常工作,如果UE从上层接收到了一个SDAP SDU,SDAP实体需要判断UE是否处于非激活态,如果UE正处于非激活态,那么SDAP实体就将该SDAP SDU映射到或者送往这个专有的DRB;如果UE没有处于非激活态,而是处于连接态,那么如果没有存在Qos flow到DRB的映射规则时,SDAP实体就将SDAP SDU映射到或者送往默认的DRB;如果存在Qos flow到DRB的映射规则,那么就根据该规则,将SDAP SDU映射到或者送往相应的DRB。
可见,在非激活态下,无论是否存在Qos flow到DRB的映射规则,上层来的SDAP SDU总是被送往用于小数据传输的专有的DRB。
特殊情况下,在非激活态下,当专有的DRB存在至少两个时,可以按照激活态下的规则,根据预先配置的Qos flow到DRB的映射规则,将SDAP SDU送往其中的一个专有DRB;如果不存在Qos flow到DRB的映射规则,那么就将SDAP SDU送往其中的另外一个专有DRB,或者是定义一个默认的专有DRB。
当UE进入非激活态,需要进行小数据传输时,RRC连接恢复过程被触发,UE复原RRC配置,但是不是复原所有的DRB的RRC配置,而是复原那些或者那个可以用于小数据传输的DRB的相关RRC配置。以及为那些或者那个可以用于小数据传输的DRB重建PDCP实体,或者是RLC实体,然后恢复可以用于小数据传输的DRB。这里可以用于小数据传输的DRB是被配置的专有的DRB。
在DRB恢复之后,UE再将RRC连接恢复请求消息递交给下层进行传输/发送。
实施例五
在实施例二~四的基础上,UE在判断是否能够进行小数据传输时,需要判断上层来的数据是否来自于那些或者那个可以用于小数据传输的DRB。只有当至少满足了这个条件,即上层来的数据来自于那些或者那个可以用于小数据传输的DRB,UE才可能进行小数据传输,否则UE不进行小数据 传输。
图3示出了根据本发明的实施例的用户设备30的框图。如图3所示,该用户设备30包括处理器301和存储器302。处理器301例如可以包括微处理器、微控制器、嵌入式处理器等。存储器302例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统等。存储器302上存储有程序指令。该指令在由处理器301运行时,可以执行本发明详细描述的用户设备中的上述方法。
运行在根据本发明的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本发明各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本发明并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本发明并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (10)

  1. 一种由用户设备执行的方法,包括:
    用户设备在处于非激活态而需要进行小数据传输的情况下,触发无线资源控制RRC连接恢复过程;以及
    在RRC连接恢复过程中,用户设备为数据无线承载DRB采用预先定义的默认配置,并且为DRB复原RRC配置中的所述默认配置之外的其他配置。
  2. 根据权利要求1所述的方法,其中,
    所述默认配置包括默认的无线链路控制RLC承载配置和默认的分组数据汇聚协议PDCP配置中的至少一者,
    对于在默认的RLC承载配置中存在的参数,采用在默认的RLC承载配置中被配置的取值,
    对于在默认的PDCP配置中存在的参数,采用在默认的PDCP配置中被配置的取值。
  3. 根据权利要求1所述的方法,其中,
    用户设备在恢复了所有的DRB之后,向网络侧发送RRC连接恢复请求消息。
  4. 一种由用户设备执行的方法,包括:
    用户设备在处于非激活态而需要进行小数据传输的情况下,触发无线资源控制RRC连接恢复过程;以及
    在RRC连接恢复过程中,用户设备复原支持小数据传输的数据无线承载DRB的相关RRC配置。
  5. 根据权利要求4所述的方法,其中,
    用户设备在连接态下接收到的RRC配置信息中,包含指示DRB支持小数据传输的指示信息。
  6. 根据权利要求4所述的方法,其中,
    在用户设备向网络侧发送的请求信息或者从网络侧接收的针对请求信息的响应信息中,包含支持小数据传输的DRB的相关信息。
  7. 根据权利要求4所述的方法,其中,
    用户设备被配置了一个或者多个仅用于非激活态下的小数据传输的专有DRB,
    在用户设备处于非激活态的情况下,将上层来的业务数据自适应层协议服务数据单元SDAP SDU送往所述专有DRB。
  8. 根据权利要求7所述的方法,其中,
    当存在Qos flow到DRB的映射规则时,根据该映射规则而将SDAP SDU送往所述专有DRB中对应的DRB,当不存在所述映射规则时,将SDAP SDU送往所述专有DRB中默认的DRB。
  9. 根据权利要求4至8中任一项所述的方法,其中,
    仅在上层来的数据来自于支持小数据传输的DRB的情况下,用户设备判断为能够进行小数据传输。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中任一项所述的方法。
PCT/CN2021/080743 2020-04-01 2021-03-15 由用户设备执行的方法以及用户设备 WO2021197036A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/913,908 US20240215096A1 (en) 2020-04-01 2021-03-15 Method performed by user equipment, and user equipment
EP21780706.4A EP4132204A4 (en) 2020-04-01 2021-03-15 METHOD EXECUTED BY USER EQUIPMENT, AND USER EQUIPMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010252755.6 2020-04-01
CN202010252755.6A CN113498152A (zh) 2020-04-01 2020-04-01 由用户设备执行的方法以及用户设备

Publications (1)

Publication Number Publication Date
WO2021197036A1 true WO2021197036A1 (zh) 2021-10-07

Family

ID=77927714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080743 WO2021197036A1 (zh) 2020-04-01 2021-03-15 由用户设备执行的方法以及用户设备

Country Status (4)

Country Link
US (1) US20240215096A1 (zh)
EP (1) EP4132204A4 (zh)
CN (1) CN113498152A (zh)
WO (1) WO2021197036A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115024018A (zh) * 2020-04-07 2022-09-06 Oppo广东移动通信有限公司 非激活态下的数据发送、接收方法及装置、用户设备
CN116248237A (zh) * 2021-12-07 2023-06-09 华为技术有限公司 一种通信方法及装置
WO2023197331A1 (zh) * 2022-04-15 2023-10-19 北京小米移动软件有限公司 数据传输方法/装置/设备及存储介质
CN117177387A (zh) * 2022-05-24 2023-12-05 荣耀终端有限公司 数据传输方法及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109936878A (zh) * 2017-12-18 2019-06-25 华为技术有限公司 一种触发状态恢复的方法以及终端设备
CN110035495A (zh) * 2018-01-11 2019-07-19 维沃移动通信有限公司 一种去激活态的恢复方法和设备
CN110784904A (zh) * 2018-07-31 2020-02-11 夏普株式会社 接入控制方法及用户设备
US10574564B2 (en) * 2017-04-24 2020-02-25 Motorola Mobility Llc Duplicating PDCP PDUS for a radio bearer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10153816B2 (en) * 2013-05-09 2018-12-11 Intel IP Corporation Small data communications
CN116210339A (zh) * 2020-07-14 2023-06-02 三星电子株式会社 无线通信系统中在rrc_inactive状态下处理小数据传输的方法和装置
JP2023534954A (ja) * 2020-07-15 2023-08-15 サムスン エレクトロニクス カンパニー リミテッド 小データの送信方法及び装置
CN116195340A (zh) * 2020-09-18 2023-05-30 三星电子株式会社 用于小数据传输的pdcch监视的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10574564B2 (en) * 2017-04-24 2020-02-25 Motorola Mobility Llc Duplicating PDCP PDUS for a radio bearer
CN109936878A (zh) * 2017-12-18 2019-06-25 华为技术有限公司 一种触发状态恢复的方法以及终端设备
CN110035495A (zh) * 2018-01-11 2019-07-19 维沃移动通信有限公司 一种去激活态的恢复方法和设备
CN110784904A (zh) * 2018-07-31 2020-02-11 夏普株式会社 接入控制方法及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4132204A4 *

Also Published As

Publication number Publication date
US20240215096A1 (en) 2024-06-27
EP4132204A4 (en) 2024-04-03
EP4132204A1 (en) 2023-02-08
CN113498152A (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2021197036A1 (zh) 由用户设备执行的方法以及用户设备
US11716780B2 (en) Methods and systems for multicast-broadcast session release and modification
US11381994B2 (en) Method for delivering data packet, user equipment, and base station
JP6733736B2 (ja) Scefエンティティ及びデータ処理方法
WO2020024847A1 (zh) 接入控制方法及用户设备
BR112019013820A2 (pt) método, aparelho de transmissão de dados e mídia de armazenamento
WO2021139620A1 (zh) 由用户设备执行的方法及用户设备
WO2018228267A1 (zh) 无线协议层实体处理方法以及相应的用户设备
JP6693572B2 (ja) システム、制御装置、Exposure Functionエンティティ、及び方法
CN113170527B (zh) 方法、装置和计算机程序
WO2020001257A1 (zh) 一种数据传输方法及装置
US12010530B2 (en) PDCP duplication function determination and indication methods and devices, base station, and terminal
WO2022052888A1 (zh) 用户设备执行的方法以及用户设备
WO2018233451A1 (zh) 通信方法、装置和系统
WO2022068771A1 (zh) 一种通信方法及通信装置
US20190037025A1 (en) Transmission control protocol (tcp) synchronize (syn) signaling passthrough for tcp proxy servers
WO2021223623A1 (zh) 针对信令无线承载pdcp重复的配置方法及rrc实体
WO2022135517A1 (zh) 由用户设备执行的方法以及用户设备
WO2022151963A1 (zh) Pucch重传确定、配置方法及装置、存储介质、用户设备、网络侧设备
WO2021109933A1 (zh) 用户设备及其方法、基站及其方法
WO2019098192A1 (ja) 移動体通信システムにおける移動局装置および基地局装置
WO2024120476A1 (zh) 由用户设备执行的方法以及用户设备
WO2021185202A1 (zh) 用户设备及其方法、基站及其方法
WO2023280205A1 (zh) 由用户设备执行的方法及用户设备
WO2022135513A1 (zh) 由用户设备执行的方法及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780706

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17913908

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021780706

Country of ref document: EP

Effective date: 20221102