WO2021139620A1 - 由用户设备执行的方法及用户设备 - Google Patents

由用户设备执行的方法及用户设备 Download PDF

Info

Publication number
WO2021139620A1
WO2021139620A1 PCT/CN2021/070105 CN2021070105W WO2021139620A1 WO 2021139620 A1 WO2021139620 A1 WO 2021139620A1 CN 2021070105 W CN2021070105 W CN 2021070105W WO 2021139620 A1 WO2021139620 A1 WO 2021139620A1
Authority
WO
WIPO (PCT)
Prior art keywords
msg
random access
sdt
fallback
mac pdu
Prior art date
Application number
PCT/CN2021/070105
Other languages
English (en)
French (fr)
Inventor
张崇铭
刘仁茂
Original Assignee
夏普株式会社
张崇铭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 张崇铭 filed Critical 夏普株式会社
Publication of WO2021139620A1 publication Critical patent/WO2021139620A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance

Definitions

  • the present invention relates to the field of wireless communication technology, and more specifically, the present invention relates to a method executed by a user equipment and a corresponding user equipment.
  • the UE When the UE is performing a random access procedure, it can perform a four-step random access procedure (4-step RA). As shown in the signaling flow in Figure 3, four steps S301 to S304 are included.
  • step S401 the UE sends a message A (Message A, MSG A), MSG A includes the preamble sequence and the payload of MSG A (MSG A payload).
  • message A Message A, MSG A
  • MSG A includes the preamble sequence and the payload of MSG A (MSG A payload).
  • UP data user protocol data
  • the message 3 sent by the UE carries user data
  • the load of MSG A may also carry user data.
  • RA Random Access procedure for Small Data transmission
  • the random access procedure that does not carry user data in message 3 or the load of MSG A can be called Random Access procedure not for Small Data transmission, RA not for SDT ), or random access procedure for non-small data transmission (Random Access procedure for non-Small Data transmission, RA not for non-SDT).
  • the main difference between 4-step RA for SDT and 4-step RA not for SDT is whether user data is carried in message 3; the main difference between 2-step RA for SDT and 2-step RA not for SDT is whether the payload of message A Carry user data.
  • 2-step RA can fall back to 4-step RA. As shown in Figure 5, it includes four steps S501 to S504. The UE starts a 2-step RA, but in this 2-step RA, it includes four steps S501 to S504.
  • the UE receives a random access response (fallback RAR) indicating a fallback of the UE in step S502, and this random access response indicating a fallback belongs to a type of MSG B. Then the UE sends MSG 3 in step S503 and receives MSG 4 in step S504. This can be called RA fallback.
  • RA fallback random access response
  • the UE When the UE does not correctly receive the MSG4 in step S504, or the identifier contained in the received MSG4 does not belong to the UE, the UE considers that the contention conflict resolution has failed, and executes the random access procedure again.
  • 4-step RA for SDT can fall back to 4-step RA for Non-SDT, as shown in Figure 6, including four steps S601 to S604. This can be called the fallback of small data transmission ( SDT fallback).
  • the UE When the fallback of small data and RA fallback occur at the same time, if the UE does not correctly receive MSG 4 in step S604, or the identifier contained in the received MSG 4 does not belong to the UE, the UE considers that the contention conflict resolution has failed, and Perform the random access procedure again. Then, what kind of random access process is the random access process that the UE is about to perform, and what kind of operation the UE needs to perform in order to perform such a random access process are issues that need to be resolved.
  • the purpose of the present invention is to propose a solution to the problems of what kind of random access process the UE is about to perform, and what kind of operation the UE needs to perform in order to perform such a random access process.
  • a method executed by a user equipment which is a method for the fallback of small data transmission and/or the fallback of a random access procedure performed by the user equipment UE, wherein the fallback of the small data transmission represents Fallback from SDT used for small data transmission to non-SDT not used for small data transmission.
  • the fallback of the random access process means the fallback from the two-step random access process 2-step RA to the four-step random access process 4-step RA.
  • the method includes the following steps:
  • the UE initiates a 2-step RA, which is used for the transmission of user plane data to realize small data transmission;
  • the UE sends a message A, which is MSG A, and the MSG A includes the preamble sequence and the payload MSG A payload of MSG A;
  • the UE receives message B, namely MSG B,
  • the MSG B received by the UE includes a random access response indicating fallback, and the random access response indicating fallback further indicates that the uplink grant UL grant included in the random access response is for non-SDT; or,
  • the MSG B received by the UE includes a random access response indicating fallback, and the random access response indicating fallback includes UL grant;
  • the UE sends message 3, namely MSG 3, which carries identification information used for contention conflict resolution;
  • the UE receives the message 4, namely MSG 4. If the MSG 4 carries the identification information carried by the UE in the MSG 3, the UE considers that the contention conflict is resolved, and the random access process is successfully completed.
  • the UE Before sending MSG 3, the UE instructs the upper layer to cancel the SDT; or,
  • the UE takes out the media access control protocol data unit MAC PDU from the buffer area of MSG A, updates the MAC PDU, then sends the updated MAC PDU, and stores the updated MAC PDU in the buffer area of MSG 3; or,
  • the UE takes out the MAC PDU from the buffer area of MSGA, stores it in the buffer area of MSG 3, then updates the MAC PDU in the buffer area of MSG 3, fetches the updated MAC PDU from the buffer area of MSG 3 and sends it.
  • the UE If the UE does not receive the MSG 4 within the predetermined time, or the UE receives the MSG 4 but cannot decode it correctly or the decoding is unsuccessful, or the MSG 4 received by the UE does not contain the contention conflict resolution belonging to the UE ID, the UE considers that the contention conflict resolution has failed or the contention conflict has not been successfully resolved,
  • the UE fetches the MAC PDU in the buffer area of MSG 3 and stores it in the buffer area of MSG A; or, the UE first clears the buffer area of MSG A, and then fetches and stores the MAC PDU in the buffer area of MSG 3 Into the buffer area of MSG A,
  • the UE triggers again or performs 2-step RA.
  • the UE determines that the contention conflict resolution fails or the contention conflict is not successfully resolved, the UE sets the value of the variable random access type to the value corresponding to 4-step RA, and then the UE triggers random access again to perform 4-step RA .
  • the UE determines that the contention conflict resolution fails or the contention conflict is not successfully resolved, or afterwards, the UE instructs the upper layer to perform SDT, or instructs the upper layer to recover the SDT.
  • a user equipment including:
  • a memory on which instructions are stored
  • the instructions when executed by the processor, cause the user equipment to execute the method described above.
  • the fallback of small data transmission and/or the fallback of the random access process can be well realized, and the communication quality can be improved.
  • Fig. 1 is a flowchart showing a method executed by a user equipment according to an embodiment of the present invention.
  • Figure 2 is a schematic block diagram of the user equipment involved in the present invention.
  • Figure 3 is a flowchart showing a conventional four-step random access procedure.
  • Figure 4 is a flowchart showing a conventional two-step random access procedure.
  • Fig. 5 is a flowchart showing the fallback of the conventional random access procedure.
  • Fig. 6 is a flowchart showing the fallback of conventional small data transmission.
  • Fig. 7 is a flowchart showing a conventional four-step random access procedure.
  • Fig. 8 is a flowchart showing a conventional two-step random access procedure.
  • Fig. 9 is a flowchart showing the fallback of the conventional random access procedure.
  • Fig. 10 is a flowchart showing the fallback of conventional small data transmission.
  • gNB NR-supporting base stations
  • UE devices multiple embodiments according to the present invention are described in detail.
  • the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as eLTE communication systems, and can also be applied to other base stations and UE devices, such as eLTE-enabled base stations and UEs. equipment.
  • the UE performs the 4-step random access procedure including the following steps:
  • Step S700 the UE selects random access resources for random access. in this process
  • the UE selects a preamble for transmission, and sets the sequence number corresponding to the selected preamble as the value of the parameter PREAMBLE_INDEX;
  • Step S701 The UE sends the selected preamble on the determined PRACH occasion.
  • Step S702 The UE receives a random access response (Random Access Response, RAR) sent from the base station side.
  • RAR Random Access Response
  • this RAR carries the sequence number (preamble index id) corresponding to the preamble sent by the UE in step S701, the UE can determine that the RAR is sent to itself.
  • UL grant will be carried in such RAR.
  • the UL grant indicates the PUSCH resource used for message 3 transmission.
  • the UE After receiving the above-mentioned RAR, the UE will process the UL grant carried in the RAR and indicate it to the lower layer. If this is the first time that the UE successfully receives the above RAR, then the UE obtains the MAC PDU for transmission from the multiplexing and assembly entity, and saves it in the buffer of message 3. (MSG3 buffer).
  • Step S703 The UE sends message 3 on the PUSCH resource indicated by the UL grant.
  • the UE will carry identification information for contention conflict resolution.
  • Step S704 the UE receives the message 4 sent by the base station side.
  • the UE If the message 4 carries the identification information of the UE carried in the message 3, the UE considers that the contention conflict is resolved, and the random access procedure is successfully completed.
  • the foregoing four-step random access procedure may also be referred to as the first type of layer 1 random access (Type-1 layer 1 Random Access Procedure, type 1 L1 RA).
  • the type 1 L1 RA process includes at least the transmission of a random access preamble sequence (or called the transmission of message one) on PRACH, and a random access response The transmission/reception of the message (Random Access Response Message), the transmission of this random access response message is scheduled by the PDCCH and is transmitted on the PDSCH; in addition, the type 1 L1 RA process can also include a random access response The PUSCH that is scheduled by the uplink grant carried in and the PDSCH that is used for contention resolution (contention resolution).
  • Step S800 the UE selects random access resources for random access. in this process
  • the UE selects a preamble for transmission, and sets the sequence number corresponding to the selected preamble as the value of the parameter PREAMBLE_INDEX;
  • Step S801 UE sends message A to the base station
  • the message A contains the preamble and the payload of the message A (payload).
  • the preamble is sent on PRACH, and the payload of message A is sent on PUSCH.
  • the payload of message A is packaged into MAC PDU and transmitted on PUSCH.
  • Step S802 UE receives message B sent by the base station
  • the message B carries information used for contention conflict resolution.
  • steps S901 to S904 are included.
  • the UE carries a random access response indicating fallback in the received message B.
  • the UE will take out the MAC PDU in the MSG A buffer area It is used for sending in step S903 and storing the MAC PDU in the buffer area of MSG 3.
  • the above two-step random access process or the fallback from the two-step random access process to the four-step random access process can be called the second type of layer 1 random access (Type-2 layer 1 Random Access Procedure, type 2) L1 RA).
  • the type 2 L1 RA process includes at least the transmission of a random access preamble sequence on PRACH, the transmission of message A or the load of message A on PUSCH, and the reception of message B.
  • Message B contains a random access response message.
  • the transmission of this random access response message is scheduled by the PDCCH and is transmitted on the PDSCH.
  • the type 2 L1 RA process may also include the transmission of the PUSCH scheduled by the uplink grant carried in the random access response, and the PDSCH that is used for contention resolution (contention resolution).
  • small data mainly refers to the size of data or packets carrying these data (for example, MAC PDU/RLC PDU/PDCP PDU carrying these data) that does not exceed a predetermined value.
  • This value can be broadcast by the base station or the network side in the system information.
  • the UE determines that the size of the data or data packet to be sent does not exceed this value, the UE can directly send to the base station or the network side through the random access process, without first entering the RRC connection state, and then performing data transmission. process.
  • the data type here mainly refers to user plane data (User Plane daa, UP daa). Data on the control plane (control Plane daa, CP daa) can also be transmitted using this method.
  • steps S1001 to S1004 are included.
  • 4-step RA for SDT can fall back to 4-step RA for Non-SDT.
  • the UE uses the preamble to indicate to the base station that the random access process includes user plane data in step S1001.
  • the random access response received by the UE in step S1002 indicates that the UL grant included in the random access response is not used for user plane data transmission. Therefore, the UE needs to adjust the data sent in MSG3.
  • the UE indicates to the upper layer that the SDT is cancelled through step S10021.
  • the upper layer of the UE performs corresponding operations based on the indication that the SDT is cancelled, for example
  • the UE can also update the MAC PDU in the MSG3 buffer area through step S10022.
  • the size of the MAC PDU may be adjusted according to the UL grant received in step S1002. For example, part or all of the data in the data user plane is discarded, thereby reducing the size of the MAC PDU. It can also directly discard the MAC PDU in the MSG3 buffer area or flush the MSG3 buffer area, and then obtain the MAC PDU for transmission from the multiplexing and assembly entity, and save it In the message 3 buffer (MSG3 buffer).
  • this embodiment provides a method for the fallback of small data transmission and/or the fallback of the random access procedure performed by the user equipment.
  • Step S100 The UE initiates a 2-step RA process, which is used for the transmission of user plane data to realize small data transmission.
  • Such a start procedure may be that the upper layer of the UE instructs the UE to trigger a random access procedure for user plane data transmission.
  • the upper layer of the UE may further indicate 2-step RA.
  • the upper layer of the UE triggers a random access procedure for user plane data transmission.
  • the MAC layer of the UE determines to adopt 2-step RA according to factors such as the size of the measured signal.
  • the UE may set the value of the variable random access type to the value corresponding to 2-step RA.
  • Step S101 The UE sends MSG A, and the MSG A includes a preamble sequence and a payload MSG A payload of MSG A.
  • the UE After the transmission timing of MSG A is determined, if the UE is transmitting MSG A for the first time, the UE obtains the MAC PDU for transmission from the multiplexing and assembly entity and saves it In the buffer of message A (MSGA buffer). Then the UE sends MSG A.
  • MSGA buffer buffer of message A
  • the UE may perform the above operation after determining the transmission timing of the preamble or the load of MSG A, or may also perform the above operation after the transmission timing of both is determined.
  • the preamble sent by the UE may be a preamble used for SDT.
  • the base station broadcasts multiple sets of preambles in the system information, and the TB size of the PUSCH used to transmit the MSG A payload corresponding to each set of preambles is different.
  • the UE can select the preamble according to the size of the MSG A payload to be transmitted. For example, if the payload in MSG A is not used to transmit user plane data or is not used for SDT, the UE can select the preamble corresponding to the smallest TB size or the preamble corresponding to non-SDT. If the payload in MSG A is used to transmit user plane data or used for SDT, the UE can select the preamble corresponding to the SDT, or determine the appropriate TB Size according to the size of the payload, thereby selecting the corresponding preamble.
  • the preamble sent by the UE may also be a public preamble.
  • the preamble can correspond to different PUSCHs (at least two different PUSCHs), and these PUSCHs are used to transmit MSG A payload.
  • the difference between these PUSCHs is that the size of the TB size that can be transmitted is different.
  • the TB size that can be transmitted on the PUSCH corresponding to the SDT is always greater than if the triggered RA is used for SDT, then when determining the preamble, the UE also needs to determine that the corresponding PUSCH is the PUSCH used for SDT. If the triggered RA is not used for SDT, when determining this preamble, the UE also needs to determine that its corresponding PUSCH is a PUSCH not used for SDT.
  • Step S102 the UE receives MSG B.
  • the received MSG B at least includes a random access response (fallback RAR) for instructing the UE to fall back from 2-step to 4-step.
  • the random access response indicating the fallback may further carry indication information, indicating that the UL grant included in the random access response is used for non-SDT. Then, based on the indication, the UE may indicate to the upper layer of the UE to cancel the SDT, or the SDT is cancelled (cancel).
  • the UE may also determine whether the UL grant is used for SDT or whether it needs to fall back from SDT to non-SDT based on the UL grant carried in the received random access response indicating fallback.
  • the specific method may be that the UE compares the TB size scheduled by the UL grant or that can be carried by the corresponding PUSCH with the TB size of the MSG A payload sent by the UE in step S101:
  • the UE can determine that the UL grant included in the random access response can be used for SDT , That is, there is no need to fall back to non-SDT;
  • the UE can determine that the UL grant included in the random access response cannot be used for non-SDT, thus It implicitly indicates the fall of SDT to non-SDT, and the UE can instruct the upper layer to cancel SDT based on the result of the comparison.
  • the UE can determine the UL grant It can still be used for SDT; and only when the TB size scheduled by the UL grant or the corresponding PUSCH can carry is less than the predetermined value, the UE can determine that the UL grant included in the random access response cannot be used for non-SDT, thus It implicitly indicates the fall of SDT to non-SDT, and the UE can instruct the upper layer to cancel SDT based on the result of the comparison.
  • This predetermined value may be pre-configured or broadcasted in the system information under the base station.
  • Step S103 The UE sends MSG 3, which carries identification information used for contention conflict resolution.
  • the UE Before sending MSG 3, the UE may indicate SDT cancellation to the upper layer as described in step S102.
  • the UE can also perform the following operations:
  • the UE Take out the MAC PDU from the MSGA buffer, and update the MAC PDU according to the size of the UL grant in step S102. Then the UE sends the updated MAC PDU, and stores the updated MAC PDU in the MSG 3buffer.
  • the sequence of this operation can also be that the UE takes out the MAC PDU from the MSGA buffer and stores it in the MSG 3 buffer. Then, the MAC PDU in the MSG 3 buffer is updated according to the size of the UL grant in step S102. Then take out the updated MAC PDU from the MSG 3buffer and send it.
  • the so-called "update” can be to repack the MAC PDU according to the size of the UL grant.
  • the size of the UL grant it mainly refers to repackaging the MAC PDU according to the size of the TB scheduled by the UL grant or carried by the corresponding PUSCH.
  • the TB size corresponding to UL grant is less than or not greater than the TB size of the previously sent MSG A payload or the TB size of the MAC PDU in the MSG 3 buffer or MSG A buffer, then the UE needs to re-segment the MAC PDU.
  • the UE needs to add more padding bits to the MAC PDU, and then group the packet to make it the same or equivalent to the TB size corresponding to the UL grant; if the TB size corresponding to the UL grant is equal to the previously sent MSG A payload
  • the TB size may be equal to the TB size of the MAC PDU in the MSG 3 buffer or MSG A buffer, so the UE does not need to perform an update operation.
  • the above operation of sending MAC PDU is sending MSG 3.
  • Step S104 UE receives MSG4.
  • the UE If the MSG 4 carries the identification information carried by the UE in the MSG 3, the UE considers that the contention conflict is resolved, and the random access process is successfully completed.
  • the UE may be that the UE has not received MSG 4 within a predetermined time window (such as a random access response window, RAR window), or it may be that the UE has received MSG 4, but it cannot be decoded correctly, or the decoding is unsuccessful. ; It may also be that the MSG 4 received by the UE does not contain the contention conflict resolution ID belonging to the UE. This can be referred to as a failure to resolve a competition conflict or an unsuccessful resolution of a competition conflict. If the contention conflict resolution fails or the contention conflict is not successfully resolved, the UE may further determine that the random access process is not completed.
  • a predetermined time window such as a random access response window, RAR window
  • the UE can perform the following operations:
  • This operation can also be that the UE first clears the MSG A buffer, and then takes out the MAC PDU in the MSG 3 buffer and stores it in the MSG A buffer.
  • the UE After the UE determines that the random access process (consider) fails to resolve the contention conflict or the contention conflict is not successfully resolved, or determines that the random access process is not completed, and the random access process is a 2-step random access process, or For the random access process of SDT, the UE takes out the MAC PDU in the MSG 3 buffer, and then saves it in the MSG A buffer. Or the UE first clears the MSG A buffer, and then takes out the MAC PDU in the MSG 3 buffer and stores it in the MSG A buffer.
  • the UE determines that the random access process (consider) fails to resolve the contention conflict or the contention conflict is not successfully resolved, or determines that the random access process is not completed, and the random access process is a 2-step random access process, or
  • the random access process used for SDT and in the process the UE receives a non-SDT random access response message (fallback RAR message) indicating fallback, then the UE takes out the MAC PDU in the MSG 3 buffer, and then Stored in MSG A buffer. Or the UE first clears the MSG A buffer, and then takes out the MAC PDU in the MSG 3 buffer and stores it in the MSG A buffer.
  • step S101 if the UE is transmitting MSG A for the first time, then the UE obtains the MAC PDU from the multiplexing entity, but when the UE re-executes step S101, the UE can directly retrieve the MAC from the MSG A buffer PDU is used for transmission. And because the MAC PDU stored in MSG A is an updated MAC PDU, the 2-step RA actually performed by the UE does not carry user plane data.
  • a simple implementation method is that the base station broadcasts at least two sets of preambles in the system information, one set of preambles corresponds to SDT, and one set of preambles corresponds to non-SDT.
  • the UE triggers an SDT RA according to the upper layer instruction, then the UE selects a preamble in the group of preambles corresponding to the SDT, and then sends it in step S101.
  • Another implementation method may be that the base station broadcasts at least two sets of preambles in the system information, and the PUSCH corresponding to one set of preambles is different from the PUSCH corresponding to another set of preambles.
  • the difference between the two corresponding PUSCHs lies in the size of the transport block (transport block, TB) that can be transmitted or carried on the PUSCH.
  • the TB size that can be transmitted on the PUSCH corresponding to the first group of preambles is X, and the unit can be bits; the value of the TB size that can be transmitted on the PUSCH corresponding to the second group of preambles is Y.
  • X is less than Y.
  • the UE When the UE triggers an SDT RA according to the upper layer instruction, the UE selects a preamble in the group of preambles whose TB size is Y, and then sends it in step S101.
  • the UE selects a preamble in the group of preambles corresponding to the TB Size of Y Used in step S101.
  • the TB sizes that can be transmitted by the corresponding PUSCH are all larger than X, for example, Y1, Y2, etc., respectively.
  • X for example, Y1, Y2, etc.
  • the UE When the UE triggers a non-SDT RA according to the upper layer instruction, the UE selects a preamble in P1;
  • the UE When the UE triggers an SDT RA according to the upper layer instruction, the UE selects a preamble in P2 or P3.
  • the MAC layer of the UE obtains one or more MAC SDUs used for transmission, for example, it obtains all the data used for transmission from the upper layer.
  • the UE selects one preamble in the group of preambles corresponding to the TB Size of Y1 for step S101.
  • the UE selects one preamble in the group of preambles corresponding to the TB Size of Y2 for step S101.
  • the UE selects a preamble in the group of preambles whose TB Size is Y2 for step S101, and adjusts the size of the MAC PDU to make it the same as Y2. match.
  • the matching process can be to repack the MAC PDU so that the transmission size does not exceed Y2.
  • the UE needs to consider the size of the MAC subheader corresponding to each MAC SDU, that is, the TB size and the PUSCH corresponding to the PUSCH used to transmit this or these MAC SDUs and their corresponding MAC subheaders Compare Y1 or Y2.
  • the UE always chooses P2.
  • the UE always chooses P3.
  • the base station broadcasts a group of preambles in the system information, and any preamble in the group can correspond to at least two different PUSCHs.
  • the difference between the two PUSCHs is that the two PUSCHs correspond to each other.
  • the difference is that the size of the TB size that can be transmitted or carried on the PUSCH is different.
  • the UE can select a preamble from the preamble, and then further needs to select and determine the corresponding PUSCH.
  • the specific selection method may be the above method one, two or three to determine the corresponding PUSCH.
  • step S104 The difference from the first embodiment or the second embodiment lies in step S104.
  • the UE determines that the contention conflict resolution fails or the contention conflict is not successfully resolved, or determines that the random access process is not completed, the UE sets the value of the variable random access type (RA_TYPE) to '4step', that is, sets the variable randomly
  • RA_TYPE variable random access type
  • the UE After the UE determines that the random access process (consider) fails to resolve the contention conflict or the contention conflict is not successfully resolved, or determines that the random access process is not completed, and the random access process is a 2-step random access process, or For the random access process of SDT, the UE performs this operation: the UE sets the value of the variable random access type (RA_TYPE) to '4step', or sets the value to correspond to 4-step RA.
  • RA_TYPE variable random access type
  • the UE After the UE determines that the random access process (consider) fails to resolve the contention conflict or the contention conflict is not successfully resolved, or determines that the random access process is not completed, and the random access process is a 2-step random access process, or The random access process used for SDT, and in the process the UE receives a non-SDT random access response message (fallback RAR message) indicating fallback, then the UE performs this operation: the variable random access type ( The value of RA_TYPE) is set to '4step', or the value is set to correspond to 4step RA.
  • the variable random access type The value of RA_TYPE
  • the UE can trigger random access again, including selection of random access resources. Since the value of the random access type is '4step', the UE performs 4-step RA. And because the MAC PDU stored in MSG3 is an updated MAC PDU, the 4-step RA actually performed by the UE does not carry SDT.
  • step S104 The difference from the first embodiment or the second embodiment lies in step S104.
  • the UE determines that the contention conflict resolution fails or the contention conflict is not successfully resolved, or afterwards, or determines that the random access process is not completed, the UE indicates to the upper layer that SDT (SDT available) can be performed, or instructs the upper layer to SDT recovery.
  • SDT SDT available
  • the UE After the UE determines that the random access process (consider) fails to resolve the contention conflict or the contention conflict is not successfully resolved, or determines that the random access process is not completed, and the random access process is a 2-step random access process, or For the random access procedure of SDT, the UE performs this operation: the UE indicates to the upper layer that SDT (SDT available) is available, or indicates to the upper layer that SDT resumes.
  • SDT SDT available
  • the UE After the UE determines that the random access process (consider) fails to resolve the contention conflict or the contention conflict is not successfully resolved, or determines that the random access process is not completed, and the random access process is a 2-step random access process, or The random access process used for SDT, and in the process the UE receives a non-SDT random access response message (fallback RAR message) indicating fallback, then the UE performs this operation: the UE indicates to the upper layer that SDT can be performed (SDT available), or instruct the upper layer to resume SDT.
  • a non-SDT random access response message fallback RAR message
  • the UE can perform the following operations at the RRC layer:
  • the UE may perform the operation of step S100.
  • the upper layer of the UE may also indicate to trigger a random access and not be used to transmit SDT.
  • 2-step RA or 4-step RA can be determined by the measurement result of the MAC layer based on RSRP.
  • the UE can suspend the previous random access process.
  • the specific operation may be to reinitialize the random access parameters and perform random access resource selection.
  • FIG. 2 is a schematic block diagram of the user equipment involved in the present invention.
  • the user equipment UE200 includes a processor 201 and a memory 202.
  • the processor 201 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 202 may include, for example, volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memories.
  • the memory 202 stores program instructions. When the instruction is executed by the processor 201, it can execute the above-mentioned method executed by the user equipment described in detail in the present invention.
  • the program running on the device according to the present invention may be a program that enables the computer to implement the functions of the embodiments of the present invention by controlling a central processing unit (CPU).
  • the program or the information processed by the program can be temporarily stored in volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.
  • the program for realizing the functions of the various embodiments of the present invention can be recorded on a computer-readable recording medium.
  • Corresponding functions can be realized by causing the computer system to read the programs recorded on the recording medium and execute these programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as peripheral devices).
  • the "computer-readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium storing a program dynamically for a short period of time, or any other recording medium readable by a computer.
  • circuits for example, single-chip or multi-chip integrated circuits.
  • Circuits designed to perform the functions described in this specification can include general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above devices.
  • the general-purpose processor may be a microprocessor, or any existing processor, controller, microcontroller, or state machine.
  • the above-mentioned circuit can be a digital circuit or an analog circuit. In the case of new integrated circuit technologies that replace existing integrated circuits due to advances in semiconductor technology, one or more embodiments of the present invention may also be implemented using these new integrated circuit technologies.
  • the present invention is not limited to the above-mentioned embodiment. Although various examples of the embodiment have been described, the present invention is not limited thereto.
  • Fixed or non-mobile electronic equipment installed indoors or outdoors can be used as terminal equipment or communication equipment, such as AV equipment, kitchen equipment, cleaning equipment, air conditioners, office equipment, vending machines, and other household appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种由用户设备执行的方法及用户设备。由UE执行的方法包括如下步骤:启动一个2-step RA,用于用户面数据的传输来实现小数据传输;发送MSG A,包含preamble及MSG A payload;接收MSG B,在MSG B包含了指示回落的随机接入响应,以及在该指示回落的随机接入响应中进一步指示了包含在该随机接入响应中的UL grant是用于非SDT,或者,在MSG B包含了指示回落的随机接入响应,以及在该指示回落的随机接入响应中包含了UL grant;发送MSG 3,携带用于竞争冲突解决的标识信息;接收MSG 4,如果携带了UE在MSG 3中携带的标识信息,那么认为竞争冲突解决,随机接入过程成功完成。

Description

由用户设备执行的方法及用户设备 技术领域
本发明涉及无线通信技术领域,更具体地,本发明涉及由用户设备执行的方法以及相应的用户设备。
背景技术
当UE在执行随机接入过程时,可以执行四步随机接入过程(4-step RA)。如图3中的信令流程所示,包含四个步骤S301~S304。
还可以执行两步随机接入过程(2-step RA),如图4中的信令流程所示,包含两个步骤S401~S402,其中步骤S401中,UE向基站发送消息A(Message A,MSG A),MSG A包括前导序列preamble以及MSG A的有效负载(MSG A payload)。
为了实现小数据的传输,一种可能的方法是将需要发送的用户面的数据(User protocol data,UP data)携带在随机接入过程中发送给基站。例如在4-step RA过程中,在UE发送的消息3中携带用户数据;还可以是在2-step RA过程中,在MSG A的负载中携带用户数据。这样的随机接入过程可以被称为用于小数据传输的随机接入过程(Random Access procedure for Small Data transmission,RA for SDT)。
而在消息3中或者是MSG A的负载中没有携带用户数据的随机接入过程,可以被称为不用于小数据传输的随机接入过程(Random Access procedure not for Small Data transmission,RA not for SDT),或者是非小数据传输的随机接入过程(Random Access procedure for non-Small Data transmission,RA not for non-SDT)。
4-step RA for SDT与4-step RA not for SDT的主要区别在于消息3中是否携带用户数据;2-step RA for SDT与2-step RA not for SDT的主要区别在于消息A的payload中是否携带用户数据。
在一种特殊情况下,2-step RA可以回落(fallback)到4-step RA,如图5所示,包含四个步骤S501~S504,UE启动了一个2-step RA,但是在这个2-step RA过程中,UE在步骤S502中接收到了一个指示UE回落的随机接入响应(fallback RAR),这个指示回落的随机接入响应属于MSG B的一种。然后UE在步骤S503中发送MSG 3,以及在步骤S504中接收MSG 4。这个可以称为随机接入的回落(RA fallback)。
当UE在步骤S504中没有正确接收到MSG4,或者接收到的MSG 4中包含的标识不属于该UE,那么UE认为竞争冲突解决失败,并且再次执行随机接入过程。
在另外一种特殊情况下,4-step RA for SDT可以回落到4-step RA for Non-SDT,如图6所示,包含四个步骤S601~S604,这个可以称为小数据传输的回落(SDT fallback)。
当小数据的回落与RA的回落同时发生时,如果UE在步骤S604中没有正确接收到MSG 4,或者接收到的MSG 4中包含的标识不属于该UE,那么UE认为竞争冲突解决失败,并且再次执行随机接入过程。那么UE即将要执行的随机接入过程是何种随机接入过程,以及为了执行这样的随机接入过程,UE需要进行何种操作,都是需要解决的问题。
发明内容
本发明的目的在于针对UE即将要执行的随机接入过程是何种随机接入过程,以及为了执行这样的随机接入过程而UE需要进行何种操作等的问题提出了解决方法。
根据本发明的一个方面,提供了一种由用户设备执行的方法,是由用户设备UE执行的小数据传输的回落和/或随机接入过程的回落的方法,其中,小数据传输的回落表示从用于小数据传输SDT到不用于小数据传输non-SDT的回落,随机接入过程的回落表示从两步随机接入过程2-step RA到四步随机接入过程4-step RA的回落,
所述方法包括如下步骤:
UE启动一个2-step RA,该过程用于用户面数据的传输来实现小数据传输;
UE发送消息A即MSG A,该MSG A包含前导序列preamble以及MSG A的有效负载MSG A payload;
UE接收消息B即MSG B,
在UE接收到的MSG B包含了指示回落的随机接入响应,以及在该指示回落的随机接入响应中进一步指示了包含在该随机接入响应中的上行授权UL grant是用于非SDT;或者,
在UE接收到的MSG B包含了指示回落的随机接入响应,以及在该指示回落的随机接入响应中包含了UL grant;
UE发送消息3即MSG 3,该MSG 3携带用于竞争冲突解决的标识信息;
UE接收消息4即MSG 4,在MSG 4中如果携带了UE在MSG 3中携带的标识信息,那么UE认为竞争冲突解决,随机接入过程成功完成。
在上述的由用户设备执行的方法中,优选的是,
在发送MSG 3之前,UE向上层指示SDT的取消;或者,
UE从MSG A的缓存区中取出媒体接入控制协议数据单元MAC PDU,更新该MAC PDU,然后发送更新后的MAC PDU,并将更新后的MAC PDU存入MSG 3的缓存区中;或者,
UE从MSGA的缓存区中取出MAC PDU,将其存入MSG 3的缓存区中,然后更新MSG 3的缓存区中的MAC PDU,从MSG 3的缓存区取出更新后的MAC PDU并发送。
在上述的由用户设备执行的方法中,优选的是,
如果UE没有在既定的时间内接收到MSG 4,或者是,UE接收到了MSG 4但是不能正确解码或者是解码不成功,或者是,UE接收到的MSG 4中没有包含属于该UE的竞争冲突解决标识ID,则UE认为竞争冲突解决失败或者竞争冲突没有成功解决,
那么UE将MSG 3的缓存区中的MAC PDU取出,然后保存在MSG A的缓存区中;或者,UE先将MSG A的缓存区清空,然后将MSG 3的缓存区中的MAC PDU取出并存入MSG A的缓存区,
然后UE再次触发或者执行2-step RA。
在上述的由用户设备执行的方法中,优选的是,
当UE确定竞争冲突解决失败或者竞争冲突没有成功解决时,UE将变量随机接入种类的取值设置为对应于4-step RA的取值,然后UE再次触发随机接入而执行4-step RA。
在上述的由用户设备执行的方法中,优选的是,
当UE确定竞争冲突解决失败或者竞争冲突没有成功解决时,或者之后,UE向上层指示进行SDT,或者是向上层指示SDT恢复。
根据本发明的另一个方面,提供了一种用户设备,包括:
处理器;以及
存储器,所述存储器上存储有指令,
所述指令在由所述处理器运行时,使所述用户设备执行根据上文所描述的方法。
根据本公开所涉及的由用户设备执行的方法以及相应的用户设备,能够良好地实现小数据传输的回落和/或随机接入过程的回落,提高通信质量。
附图说明
图1是表示本发明的一实施例涉及的由用户设备执行的方法的流程图。
图2是本发明涉及的用户设备的简要结构框图。
图3是表示以往的四步随机接入过程的流程图。
图4是表示以往的两步随机接入过程的流程图。
图5是表示以往的随机接入过程的回落的流程图。
图6是表示以往的小数据传输的回落的流程图。
图7是表示以往的四步随机接入过程的流程图。
图8是表示以往的两步随机接入过程的流程图。
图9是表示以往的随机接入过程的回落的流程图。
图10是表示以往的小数据传输的回落的流程图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
在具体描述之前,先对本发明中提到的若干术语做如下说明。除非另有指出,本发明中涉及的术语都具有下文的含义。
UE    User Equipment 用户设备
NR    New Radio 新一代无线技术
LTE   Long Term Evolution 长期演进技术
eLTE  Enhaced Long Term Evolution 增强的长期演进技术
RRC   Radio Resource Control 无线资源控制(层)
MAC   Medium Access Control 媒体接入控制(层)
PDCP  Packet Data Convergence Protocol 分组数据汇聚协议(层)
RLC   Radio Link Control 无线链路控制(层)
MAC CE  MAC Control Element MAC层控制信息
MAC PDU  MAC Protocol Data Unit MAC协议数据单元
RLC PDU  RLC Protocol Data Unit RLC协议数据单元
PDCP PDU  PDCP Protocol Data Unit PDCP协议数据单元
MSG 3  Message 3 消息3
PRACH  Physical Random Access Channel 物理随机接入信道
PUSCH  Physical Uplink Shared Channel 物理上行共享信道
CCCH  Common Control Channel 公共控制信道
UL grant  Uplink grant 上行授权
SDT  Small Data transmission 小数据传输
TB  Tranfer Block 传输块
下文以NR移动通信系统及其后续的演进版本作为示例应用环境,以支持NR的基站(gNB)和UE设备为例,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如eLTE通信系统,而且可以适用于其他基站和UE设备,例如支持eLTE的基站和UE设备。
以下,详细描述本发明的若干实施例。
现有技术如图所示。
四步随机接入过程(4 step Random Access procedure,4-step RA)
如图7所示,UE执行4步随机接入过程包含下述步骤:
步骤S700:UE选定用于随机接入的随机接入资源。在这一过程中
-UE选定了用于发送的前导序列(preamble),将选定的preamble对应的序号设置为参数PREAMBLE_INDEX的值;以及
-在多个PRACH时机(PRACH occassions)中确定下一个可以用于传输的PRACH时机(determine the next available PRACH occasion from the PRACH occasions),
步骤S701:UE在确定的PRACH时机上发送选定的preamble。
步骤S702:UE接收基站侧发来的随机接入响应(Random Access Response,RAR)。
如果在这个RAR中携带了UE在步骤S701中发送的preamble对应的序号(preamble index id),那么UE可以确定该RAR是发送给自己的。在这样的RAR中会携带UL grant。该UL grant指示了用于传输消息3的PUSCH资源。
当接收到上述的RAR之后,UE会处理RAR中携带的UL grant,并将它指示给下层。如果这是UE第一次成功的接收到上述RAR,那么UE从复用和组装实体(Multiplexing and assembly entity)中获取(obtain)用于发送的MAC PDU,并将它保存在消息3的缓存区(MSG3 buffer)中。
步骤S703:UE在UL grant指示的PUSCH资源上发送消息3。
在这个消息3中,UE会携带用于竞争冲突解决的标识信息。
步骤S704:UE接收基站侧发送来的消息4。
在消息4中如果携带了UE在消息3中携带的标识信息,那么UE认为竞争冲突解决,随机接入过程成功完成。
由于在上述随机接入过程中UE经历了步骤S701~S704的消息传递过程,因此被称为“四步随机接入”(4-step RA)过程。
上述四步随机接入过程还可以被称为是第一类型的层1随机接入(Type-1 layer 1 Random Access Procedure,type 1 L1 RA)。从物理层(又称为层1,layer 1)的角度来看,type 1 L1 RA过程至少包含了在PRACH上传输随机接入前导序列(或者称为消息一的传输),以及随机接入响应消息 (Random Access Response Message)的传输/接收,这个随机接入响应消息的传输是由PDCCH调度的,并且是在PDSCH上传输的;此外,在type 1 L1 RA过程中还可以包含随机接入响应中携带的上行授权所调度的PUSCH,以及随之而来的用于竞争冲突解决(contention resolution)的PDSCH。
两步随机接入过程(2 step Random Access procedure,2-step RA)
如图8所示,两步随机接入过程为
步骤S800:UE选定用于随机接入的随机接入资源。在这一过程中
-UE选定了用于发送的前导序列(preamble),将选定的preamble对应的序号设置为参数PREAMBLE_INDEX的值;以及
-在多个PRACH时机(PRACH occassions)中确定下一个可以用于传输的PRACH时机(determine the next available PRACH occasion from the PRACH occasions),以及
-确定对应于该前导序列的PUSCH资源
步骤S801:UE向基站发送消息A
其中,消息A包含preamble和消息A的负载(payload)。
其中,preamble在PRACH上发送,消息A的payload在PUSCH上发送。消息A的payload是被包装成MAC PDU在PUSCH上传输。当UE确定了用于发送消息A的时机时,如果这是UE第一次发送MSG A,那么UE从复用和组装实体(Multiplexing and assembly entity)中获取(obtain)用于发送的MAC PDU,并将它保存在消息A的缓存区(MSGA buffer)中。
步骤S802:UE接收基站发送的消息B
其中消息B携带了用于竞争冲突解决的信息。
两步随机接入到四步随机接入的回落(随机接入的回落)
如图9所示,包含步骤S901~S904。UE在执行2-step RA的过程中,在接收到的消息B中携带了指示回落的随机接入响应,如图9中的步骤S902所示,UE会将MSG A缓存区中的MAC PDU取出用于步骤S903中的发送,以及将该MAC PDU存在MSG 3的缓存区中。
上述两步随机接入过程或者是两步随机接入过程回落到四步随机接入过程都可以被称为是第二类型的层1随机接入(Type-2 layer 1 Random Access Procedure,type 2 L1 RA)。从物理层的角度来看,type 2 L1 RA过程至少包含了在PRACH上传输随机接入前导序列,以及在PUSCH上传输消息A或者是消息A的负载,以及消息B的接收。消息B中包含了随机接入响应消息,这个随机接入响应消息的传输是由PDCCH调度的,并且是在PDSCH上传输的。此外,在type 2 L1 RA过程中还可以包含随机接入响应中携带的上行授权所调度的PUSCH的传输,以及随之而来的用于竞争冲突解决(contention resolution)的PDSCH。
小数据的传输
本文中小数据主要是指数据或者携带这些数据的包(例如携带这些数据的MAC PDU/RLC PDU/PDCP PDU)的大小不超过既定的值。这个值可以是基站或者网络侧在系统信息中进行广播。当UE判定要发送的数据或者数据包的大小不超过该值时,UE可以通过随机接入过程直接发送给基站或者网络侧,而不需要通过先进入RRC连接态,然后再进行数据传输这一过程。这里的数据类型主要是指用户面的数据(User Plane daa,UP daa)。控制面的数据(control Plane daa,CP daa)也可以借助这种方法进行传输。
小数据传输的回落(SDT到non-SDT的回落)
如图10所示,包含步骤S1001~S1004。在另外一种特殊情况下,4-step RA for SDT可以回落到4-step RA for Non-SDT,如图10所示,UE在步骤S1001中通过preamble向基站指示随机接入过程包含用户面数据的传输,但是UE在步骤S1002中接收到的随机接入响应中,指示该随机接入响应中包含的UL grant不用于用户面的数据传输。因此UE需要调整在MSG3中发送的数据。UE通过步骤S10021向上层指示SDT被取消。UE的上层基于该SDT被取消的指示进行相应的操作,例如
重新启动与RRC连接建立或者RRC连接恢复相关的定时器;
或者重新触发RRC连接建立过程或者RRC连接恢复过程。
与此同时,UE还可以通过步骤S10022更新MSG3缓存区中的MAC PDU。可以是根据在步骤S1002中接收到的UL grant来调整MAC PDU的大小。例如,将其中数据用户面的数据部分或者全部丢弃,从而缩小MAC PDU的大小。还可以是直接丢弃MSG3缓存区中的MAC PDU或者清空 (flush)MSG3缓存区,然后从复用和组装实体(Multiplexing and assembly entity)中获取(obtain)用于发送的MAC PDU,并将它保存在消息3的缓存区(MSG3 buffer)中。
实施例一
如图1所示,该实施例给出了一种由用户设备执行的小数据传输的回落和/或随机接入过程的回落的方法。
步骤S100:UE启动一个2-step RA过程,该过程用于用户面数据的传输来实现小数据传输。
这样一个启动过程,可以是UE的上层指示UE触发用于用户面数据传输的随机接入过程。优选地,UE的上层可以进一步指示是2-step RA。
还可以是UE的上层触发了一个随机接入过程用于用户面的数据传输。在UE的MAC层根据测量信号的大小等因素,确定采用2-step RA。
在确定采用2-step RA后,UE可以将变量随机接入种类的取值设置为对应于2-step RA的取值。
步骤S101:UE发送MSG A,该MSG A包含前导序列preamble以及MSG A的有效负载MSG A payload。
在确定了MSG A的传输时机后,如果UE是首次进行MSG A的传输,那么UE从复用和组装实体(Multiplexing and assembly entity)中获取(obtain)用于发送的MAC PDU,并将它保存在消息A的缓存区(MSGA buffer)中。然后UE发送MSG A。
由于MSG A包含了preamble以及MSG A的负载,可以是UE在确定了preamble或者MSG A的负载的传输时机后执行上述操作,还可以是在两者的传输时机都确定后执行。
特别地,UE发送的preamble可以是用于SDT的preamble。又或者基站在系统信息中广播了多组preamble,每一组preamble对应的用于传输MSG A payload的PUSCH的TB size是不同的。UE可以根据其要传输的MSG A payload的大小来选择preamble。例如,如果MSG A中的payload不用于传输用户面数据或者不用于SDT,那么UE可以选择对应于最小TB size的preamble或者是对应于非SDT的preamble。如果MSG A中的payload 用于传输用户面数据或者用于SDT,那么UE可以选择对应于SDT的preamble,或者是根据payload的大小,确定合适的TB Size,从而选择对应的preamble。
UE发送的preamble还可以是一个公共的preamble。该preamble可以对应不同的PUSCH(至少是两个不同的PUSCH),这些PUSCH用于传输MSG Apayload。这些PUSCH之间的差别在于可以传输的TB size的大小不相同。例如对应于SDT的PUSCH可以传输的TB size总是大于如果触发的RA是用于SDT的,那么UE在确定这个preamble时,还需要确定其对应的PUSCH是用于SDT的PUSCH。如果触发的RA不用于SDT,那么UE在确定这个preamble时,还需要确定其对应的PUSCH是不用于SDT的PUSCH。
步骤S102:UE接收MSG B。
在接收的MSG B至少包含了指示UE从2-step回落到4-step的用于回落的随机接入响应(fallback RAR)。此外还可以是在该指示回落的随机接入响应中进一步携带了指示信息,指示了包含在该随机接入响应中的UL grant是用于非SDT的。那么UE基于该指示,可以向UE的上层指示取消SDT,或者是SDT被取消(cancel)。
此外还可以是UE基于接收到的、指示回落的随机接入响应中所携带的UL grant来确定该UL grant是否用于SDT或者是否需要从SDT回落到非SDT。具体的方法可以是UE将该UL grant调度的或者是对应PUSCH所能够承载的TB size与UE在步骤S101中发送的MSG A payload的TB size进行比较:
如果用于传输消息3的PUSCH能够承载的或者是对应的TB size不小于或者大于之前发送的MSG A payload的TB size,那么UE可以判定包含在该随机接入响应中的UL grant可以用于SDT,即不需要回落到非SDT;
如果UL grant调度的或者对应的PUSCH能够承载的TB size小于或者不大于之前发送的MSG A payload的TB size,那么UE可以判定包含在该随机接入响应中的UL grant无法用于非SDT,从而隐式地指示了SDT向非SDT的回落,以及UE可以基于该比较的结果,向上层指示取消SDT。
在一种特殊情况下,如果UL grant调度的或者对应的PUSCH能够承载的TB size小于或者不大于之前发送的MSG A payload的TB size,但是又大 于某一个预定值,那么UE可以判断该UL grant还是可以用于SDT;而只有当UL grant调度的或者对应的PUSCH能够承载的TB size小于该预定值时,UE才可以判定包含在该随机接入响应中的UL grant无法用于非SDT,从而隐式地指示了SDT向非SDT的回落,以及UE可以基于该比较的结果,向上层指示取消SDT。这个预定值可以是预先配置的,或者是基站下系统信息中广播的。
步骤S103:UE发送MSG 3,该MSG 3携带用于竞争冲突解决的标识信息。
在发送MSG 3之前,UE可以如步骤S102所述,向上层指示了SDT取消。
此外,在发送MSG 3之前,UE还可以执行下述操作:
从MSGA buffer中取出MAC PDU,并且根据步骤S102中UL grant的大小来更新该MAC PDU。然后UE发送更新后的MAC PDU,并将更新后的MAC PDU存入MSG 3buffer中。
这一操作的顺序还可以是UE从MSGA buffer中取出MAC PDU,将其存入MSG 3buffer中。然后根据步骤S102中UL grant的大小来更新MSG 3 buffer中的MAC PDU。再然后从MSG 3buffer取出更新后的MAC PDU并发送。
所谓的“更新”可以是根据UL grant的大小,对MAC PDU进行重新组包。这里根据UL grant的大小,主要是指根据UL grant调度的或者对应的PUSCH所承载的TB的大小,来对MAC PDU进行重新组包。例如UL grant对应的TB size小于或者不大于之前发送的MSG A payload的TB size或者是在MSG 3 buffer或者MSG A buffer中的MAC PDU的TB size,那么UE需要对该MAC PDU进行重新分割(segmentation),然后再组包,使之与UL grant对应的TB size相同或者相当;如果UL grant对应的TB size大于之前发送的MSG A payload的TB size或者是在MSG 3 buffer或者MSG A buffer中的MAC PDU的TB size,那么UE需要对该MAC PDU再增加填充比特,然后再组包,使之与UL grant对应的TB size相同或者相当;如果UL grant对应的TB size等于之前发送的MSG A payload的TB size或者是等于在MSG 3 buffer或者MSG A buffer中的MAC PDU的TB size,那么UE不需要执行更新操作。上述发送MAC PDU的操作即为发送MSG 3。
步骤S104:UE接收MSG 4。
在MSG 4中如果携带了UE在MSG 3中携带的标识信息,那么UE认为竞争冲突解决,随机接入过程成功完成。
在这一步骤中可以是UE没有在既定的时间窗(例如随机接入响应窗,RAR window)内接收到MSG 4,还可以是UE接收到了MSG 4,但是不能正确解码,或者是解码不成功;还可以是UE接收到的MSG 4中没有包含属于该UE的竞争冲突解决ID。这都可以称为竞争冲突解决失败或者竞争冲突没有成功解决。如果竞争冲突解决失败或者竞争冲突没有成功解决,UE可以进一步确定随机接入过程没有完成。
那么在UE确定(consider)竞争冲突解决失败或者竞争冲突没有成功解决之后,或者是确定随机接入过程没有完成时,UE可以执行下述操作:
将MSG 3 buffer中的MAC PDU取出,然后保存在MSG A buffer中。
这一操作还可以是UE先将MSG A buffer清空,然后将MSG 3 buffer中的MAC PDU取出并存入MSG A buffer中。
考虑到前面三个步骤是在进行2-step RA for SDT的过程中发生的,上述过程可以进一步表达为:
在UE确定随机接入过程(consider)竞争冲突解决失败或者竞争冲突没有成功解决之后,或者是确定随机接入过程没有完成时,且该随机接入过程是2-step随机接入过程,或者是用于SDT的随机接入过程,那么UE将MSG 3 buffer中的MAC PDU取出,然后保存在MSG A buffer中。或者是UE先将MSG A buffer清空,然后将MSG 3 buffer中的MAC PDU取出并存入MSG A buffer中。
还可以是
在UE确定随机接入过程(consider)竞争冲突解决失败或者竞争冲突没有成功解决之后,或者是确定随机接入过程没有完成时,且该随机接入过程是2-step随机接入过程,或者是用于SDT的随机接入过程,以及在该过程中UE接收到了用于non-SDT的指示回落的随机接入响应消息(fallback RAR message),那么UE将MSG 3 buffer中的MAC PDU取出,然后保存在MSG A buffer中。或者是UE先将MSG A buffer清空,然后将MSG 3 buffer中的MAC PDU取出并存入MSG A buffer中。
在UE确定竞争冲突解决失败或者竞争冲突没有成功解决之后,或者是 确定随机接入过程没有完成时,UE还可以再次触发或者执行随机接入,重新进行随机接入资源的选择,即再次执行步骤S101。需要注意的是,在步骤S101中,如果UE是首次进行MSG A的传输,那么UE从复用实体中获取MAC PDU,但是当UE重新执行步骤S101时,UE可以直接从MSG A buffer中取出MAC PDU用于传输。并且由于MSG A中存放的MAC PDU是更新后的MAC PDU,那么UE实际执行的2-step RA是不携带用户面数据的。
实施例二
在实施例一的基础上
对于步骤S101中发送的preamble的选择及确定,可以采用下述方法。
一种简单的实现方法是基站在系统信息中广播了至少两组preamble,一组的preamble对应于SDT,一组的preamble对应于non-SDT。UE根据上层指示触发一个SDT的RA,那么UE选择对应于SDT的那组preamble中的一个preamble,然后在步骤S101中发送。
另外一种实现方法可以是基站在系统信息中广播了至少两组preamble,一组的preamble对应的PUSCH与另外一组的preamble对应的PUSCH不同。两者对应的PUSCH的不同在于PUSCH上可以传输或者承载的传输块(transport block,TB)的规格/尺寸(TB size)的大小不同。例如第一组preamble对应的PUSCH可以传输的TB size取值为X,单位可以是比特;第二组preamble对应的PUSCH可以传输的TB size取值为Y。X小于Y。
当UE根据上层指示触发一个SDT的RA,那么UE选择对应于TB size为Y的那组preamble中的一个preamble,然后在步骤S101中发送。
或者是当UE的MAC层获取了用于传输的MAC PDU,进而判断用于传输这个MAC PDU的PUSCH对应的TB size大于X,那么UE选择对应于TB Size为Y的那组preamble中的一个preamble用于步骤S101。
在上述方法的基础上,还可以是还存在多组preamble,其对应的PUSCH可以传输的TB size都大于X,例如分别为Y1,Y2等。以下表为例。
Y1>X,Y2>X,Y2>Y1
Preambel组序号 PUSCH可以传输的TB size
P1 X
P2 Y1
P3 Y2
当UE根据上层指示触发一个non-SDT的RA,那么UE选择P1中的一个preamble;
当UE根据上层指示触发一个SDT的RA,那么UE选择P2或者P3中的一个preamble。
如何从P2或者P3中进一步确定所选择的preamble组,具体的确定方法如下
方法一:
当UE的MAC层获取了用于传输的一个或者多个MAC SDU,例如从上层获取了所有用于传输的数据。
如果用于传输这个MAC SDU的PUSCH对应的TB size小于或者等于Y1,那么UE选择对应于TB Size为Y1的那组preamble中的一个preamble用于步骤S101。
如果用于传输这个MAC SDU的PUSCH对应的TB size大于Y1小于等于Y2,那么UE选择对应于TB Size为Y2的那组preamble中的一个preamble用于步骤S101。
如果用于传输这个MAC SDU的PUSCH对应的TB size大于Y2,那么UE选择对应于TB Size为Y2的那组preamble中的一个preamble用于步骤S101,并且调整MAC PDU的大小,使之与Y2相匹配。这个匹配的过程可以是,对MAC PDU进行重新组包,使之传输的大小不超过Y2。
优选地,在上述比较大小的过程中,UE需要考虑到每个MAC SDU对应的MAC子头的大小,即将用于传输这个或者这些MAC SDU以及它们对应的MAC子头的PUSCH对应的TB size与Y1或者Y2相比较。
方法二:
UE总是选择P2。
然后根据P2对应的PUSCH来组包。即,根据P2对应的PUSCH的大小来组MAC PDU。
方法三:
UE总是选择P3。
然后根据P3对应的PUSCH来组包。即,根据P3对应的PUSCH的大 小来组MAC PDU。
在另外一种情况下,基站在系统信息中广播了一组preamble,在该组中的任意一个preamble可以对应至少两个不同的PUSCH,这两个PUSCH的不同之处在于两者对应的PUSCH的不同在于PUSCH上可以传输或者承载的TB size的大小不同。
那么UE可以从该preamble中选择一个preamble,然后进一步地,需要选择及确定对应的PUSCH。具体的选择方法可以是如上述方法一,二或者三,从而确定相应的PUSCH。
实施例三
和实施例一或者实施例二的区别在于步骤S104。
当UE确定竞争冲突解决失败或者竞争冲突没有成功解决时,或者是确定随机接入过程没有完成时,UE将变量随机接入种类(RA_TYPE)的取值设置为‘4step’,即,将变量随机接入种类的取值设置为对应于4-step RA的取值。
考虑到前面三个步骤是在进行2-step RA for SDT的过程中发生的,上述过程可以进一步表达为:
在UE确定随机接入过程(consider)竞争冲突解决失败或者竞争冲突没有成功解决之后,或者是确定随机接入过程没有完成时,且该随机接入过程是2-step随机接入过程,或者是用于SDT的随机接入过程,那么UE执行该操作:UE将变量随机接入种类(RA_TYPE)的取值设置为‘4step’,或者是将取值设置为对应于4-step RA。
还可以是
在UE确定随机接入过程(consider)竞争冲突解决失败或者竞争冲突没有成功解决之后,或者是确定随机接入过程没有完成时,且该随机接入过程是2-step随机接入过程,或者是用于SDT的随机接入过程,以及在该过程中UE接收到了用于non-SDT的指示回落的随机接入响应消息(fallback RAR message),那么UE执行该操作:将变量随机接入种类(RA_TYPE)的取值设置为‘4step’,或者是将取值设置为对应于4step RA。
然后UE可以再次触发随机接入,包括进行随机接入资源的选择。由于随机接入种类的取值为‘4step’,那么UE执行4-step RA。并且由于MSG3中存放的MAC PDU是更新后的MAC PDU,那么UE实际执行的4-step RA是不携带SDT的。
实施例四
和实施例一或者实施例二的区别在于步骤S104。
当UE确定竞争冲突解决失败或者竞争冲突没有成功解决时,或者之后,或者是确定随机接入过程没有完成时UE向上层指示可以进行SDT(SDT available),或者是向上层指示SDT恢复。
考虑到前面三个步骤是在进行2-step RA for SDT的过程中发生的,上述过程可以进一步表达为:
在UE确定随机接入过程(consider)竞争冲突解决失败或者竞争冲突没有成功解决之后,或者是确定随机接入过程没有完成时,且该随机接入过程是2-step随机接入过程,或者是用于SDT的随机接入过程,那么UE执行该操作:UE向上层指示可以进行SDT(SDT available),或者是向上层指示SDT恢复。
还可以是
在UE确定随机接入过程(consider)竞争冲突解决失败或者竞争冲突没有成功解决之后,或者是确定随机接入过程没有完成时,且该随机接入过程是2-step随机接入过程,或者是用于SDT的随机接入过程,以及在该过程中UE接收到了用于non-SDT的指示回落的随机接入响应消息(fallback RAR message),那么UE执行该操作:UE向上层指示可以进行SDT(SDT available),或者是向上层指示SDT恢复。
基于该指示(SDT available),如果UE的上层希望重新进行SDT,那么UE可以在RRC层进行如下操作:
重新启动与RRC连接建立或者RRC连接恢复相关的定时器;
或者重新触发RRC连接建立过程或者RRC连接恢复过程。
然后UE可以执行步骤S100的操作。
基于该指示(SDT available),如果UE的上层不希望重新进行SDT,或者是继续当前的非SDT的状态,那么UE的上层还可以是指示触发一个随机接入,不用于传输SDT。具体是2-step RA还是4-step RA可以由MAC层基于RSRP的测量结果来确定。
而UE基于该新触发的随机接入,可以中止之前进行的随机接入过程。具体操作可以是重新初始化随机接入参数,并进行随机接入资源选择。
图2是本发明涉及的用户设备的简要结构框图。如图2所示,该用户设备UE200包括处理器201和存储器202。处理器201例如可以包括微处理器、微控制器、嵌入式处理器等。存储器202例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器202上存储有程序指令。该指令在由处理器201运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
运行在根据本发明的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本发明各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可 以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本发明并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本发明并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (6)

  1. 一种由用户设备执行的方法,是由用户设备UE执行的小数据传输的回落和/或随机接入过程的回落的方法,其中,小数据传输的回落表示从用于小数据传输SDT到不用于小数据传输non-SDT的回落,随机接入过程的回落表示从两步随机接入过程2-step RA到四步随机接入过程4-step RA的回落,
    所述方法包括如下步骤:
    UE启动一个2-step RA,该过程用于用户面数据的传输来实现小数据传输;
    UE发送消息A即MSG A,该MSG A包含前导序列preamble以及MSG A的有效负载MSG A payload;
    UE接收消息B即MSG B,
    在UE接收到的MSG B包含了指示回落的随机接入响应,以及在该指示回落的随机接入响应中进一步指示了包含在该随机接入响应中的上行授权UL grant是用于非SDT;或者,
    在UE接收到的MSG B包含了指示回落的随机接入响应,以及在该指示回落的随机接入响应中包含了UL grant;
    UE发送消息3即MSG 3,该MSG 3携带用于竞争冲突解决的标识信息;
    UE接收消息4即MSG 4,在MSG 4中如果携带了UE在MSG 3中携带的标识信息,那么UE认为竞争冲突解决,随机接入过程成功完成。
  2. 根据权利要求1所述的由用户设备执行的方法,其中,
    在发送MSG 3之前,UE向上层指示SDT的取消;或者,
    UE从MSG A的缓存区中取出媒体接入控制协议数据单元MAC PDU,更新该MAC PDU,然后发送更新后的MAC PDU,并将更新后的MAC PDU存入MSG 3的缓存区中;或者,
    UE从MSGA的缓存区中取出MAC PDU,将其存入MSG 3的缓存区中,然后更新MSG 3的缓存区中的MAC PDU,从MSG 3的缓存区取出更新后的MAC PDU并发送。
  3. 根据权利要求1或2所述的由用户设备执行的方法,其中,
    如果UE没有在既定的时间内接收到MSG 4,或者是,UE接收到了MSG 4但是不能正确解码或者是解码不成功,或者是,UE接收到的MSG 4中没有包含属于该UE的竞争冲突解决标识ID,则UE认为竞争冲突解决失败或者竞争冲突没有成功解决,
    那么UE将MSG 3的缓存区中的MAC PDU取出,然后保存在MSG A的缓存区中;或者,UE先将MSG A的缓存区清空,然后将MSG 3的缓存区中的MAC PDU取出并存入MSG A的缓存区,
    然后UE再次触发或者执行2-step RA。
  4. 根据权利要求1或2所述的由用户设备执行的方法,其中,
    当UE确定竞争冲突解决失败或者竞争冲突没有成功解决时,UE将变量随机接入种类的取值设置为对应于4-step RA的取值,然后UE再次触发随机接入而执行4-step RA。
  5. 根据权利要求1或2所述的由用户设备执行的方法,其中,
    当UE确定竞争冲突解决失败或者竞争冲突没有成功解决时,或者之后,UE向上层指示进行SDT,或者是向上层指示SDT恢复。
  6. 一种用户设备,包括:
    处理器;以及
    存储器,所述存储器上存储有指令,
    所述指令在由所述处理器运行时,使所述用户设备执行根据权利要求1-5中任一项所述的方法。
PCT/CN2021/070105 2020-01-06 2021-01-04 由用户设备执行的方法及用户设备 WO2021139620A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010011976.4 2020-01-06
CN202010011976.4A CN113079583A (zh) 2020-01-06 2020-01-06 由用户设备执行的方法及用户设备

Publications (1)

Publication Number Publication Date
WO2021139620A1 true WO2021139620A1 (zh) 2021-07-15

Family

ID=76608925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070105 WO2021139620A1 (zh) 2020-01-06 2021-01-04 由用户设备执行的方法及用户设备

Country Status (2)

Country Link
CN (1) CN113079583A (zh)
WO (1) WO2021139620A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210259021A1 (en) * 2020-02-13 2021-08-19 Asustek Computer Inc. Method and apparatus for fallback action of small data transmission in a wireless communication system
US20220022266A1 (en) * 2020-07-17 2022-01-20 Samsung Electronics Co., Ltd. Method and apparatus for random access procedure for small data transmission in wireless communication system
WO2023231005A1 (zh) * 2022-06-02 2023-12-07 上海移远通信技术股份有限公司 无线通信的方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115623604A (zh) * 2021-07-14 2023-01-17 大唐移动通信设备有限公司 信息处理方法及装置
CN115915295A (zh) * 2021-08-06 2023-04-04 维沃移动通信有限公司 信息上报方法、终端及网络侧设备
CA3228363A1 (en) * 2021-08-24 2023-03-02 Jussi-Pekka Koskinen Communication for small data transmission
CN117377118A (zh) * 2022-06-23 2024-01-09 夏普株式会社 由用户设备执行的方法及用户设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586878A (zh) * 2017-09-29 2019-04-05 北京三星通信技术研究有限公司 基站、用户设备以及上行资源分配方法、上行传输方法
CN109804697A (zh) * 2016-10-07 2019-05-24 三星电子株式会社 用于基于增强竞争的随机接入程序的方法和装置
CN110012557A (zh) * 2018-01-05 2019-07-12 夏普株式会社 无线通信设备和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804697A (zh) * 2016-10-07 2019-05-24 三星电子株式会社 用于基于增强竞争的随机接入程序的方法和装置
CN109586878A (zh) * 2017-09-29 2019-04-05 北京三星通信技术研究有限公司 基站、用户设备以及上行资源分配方法、上行传输方法
CN110012557A (zh) * 2018-01-05 2019-07-12 夏普株式会社 无线通信设备和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Views on NR small data transmission enhancements in Rel-17", 3GPP DRAFT; RP-192549, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Sitges, Spain; 20191209 - 20191212, 2 December 2019 (2019-12-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051834191 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210259021A1 (en) * 2020-02-13 2021-08-19 Asustek Computer Inc. Method and apparatus for fallback action of small data transmission in a wireless communication system
US20220022266A1 (en) * 2020-07-17 2022-01-20 Samsung Electronics Co., Ltd. Method and apparatus for random access procedure for small data transmission in wireless communication system
WO2023231005A1 (zh) * 2022-06-02 2023-12-07 上海移远通信技术股份有限公司 无线通信的方法及装置

Also Published As

Publication number Publication date
CN113079583A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2021139620A1 (zh) 由用户设备执行的方法及用户设备
US11825364B2 (en) Beam configuration for secondary cells
US11777664B2 (en) Uplink signal control
US11844032B2 (en) Power control and retransmission
US20240032051A1 (en) Beam Failure Recovery Procedures Using Bandwidth Parts
US10904873B2 (en) Terminal apparatus, communication method, and integrated circuit
KR101375936B1 (ko) 시간동기 타이머의 만료 시 하향링크 harq의 동작 방법
KR101514079B1 (ko) 상향링크 시간 동기 타이머의 재구성 방법
US10959138B2 (en) Terminal apparatus, base station apparatus, communication method, and control method
US20180139668A1 (en) Terminal device, base station apparatus, integrated circuit, and wireless communication method
WO2019029300A1 (zh) 传输随机接入响应的方法、接入网设备和终端设备
US11375487B2 (en) Terminal apparatus, base station apparatus, and communication method
GB2462011A (en) User equipment transmits signals in consideration of a time alignment timer
EP3657831A1 (en) User power headroom report related method, user device, base station, and computer readable medium
US20180139731A1 (en) Terminal device, base station device, integrated circuit, and communication method
US20220140972A1 (en) Uplink Reference Signal Sending Method, Uplink Reference Signal Receiving Method, And Apparatus
EP3300442B1 (en) Communication between terminal device and base station device for periodic channel status information (csi) reporting for a secondary cell
JP6725516B2 (ja) 端末装置、および通信方法
JP2020107918A (ja) 端末装置、基地局装置、通信方法、および、集積回路
JPWO2013136375A1 (ja) 無線通信システム、移動局及び基地局
WO2020151662A1 (zh) 接入控制信令的发送、处理方法及装置
US20230171844A1 (en) Multicast service receiving method, multicast service configuration method, terminal, and network-side device
WO2020192729A1 (zh) 随机接入方法以及用户设备
WO2022057693A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023040957A1 (zh) 由用户设备在处于非激活态时执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21738137

Country of ref document: EP

Kind code of ref document: A1