WO2021196821A1 - 一种80-100mm特厚海上风电用EH36钢的制备方法 - Google Patents

一种80-100mm特厚海上风电用EH36钢的制备方法 Download PDF

Info

Publication number
WO2021196821A1
WO2021196821A1 PCT/CN2021/070625 CN2021070625W WO2021196821A1 WO 2021196821 A1 WO2021196821 A1 WO 2021196821A1 CN 2021070625 W CN2021070625 W CN 2021070625W WO 2021196821 A1 WO2021196821 A1 WO 2021196821A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
steel
wind power
steel plate
offshore wind
Prior art date
Application number
PCT/CN2021/070625
Other languages
English (en)
French (fr)
Inventor
刘朝霞
许晓红
苗丕峰
周永浩
刘俊
韩步强
徐光琴
武金明
高俊
Original Assignee
江阴兴澄特种钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴兴澄特种钢铁有限公司 filed Critical 江阴兴澄特种钢铁有限公司
Publication of WO2021196821A1 publication Critical patent/WO2021196821A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the invention belongs to the field of iron and steel metallurgy, and specifically relates to a preparation method of normalizing rolled EH36 steel for extra-thick offshore wind power.
  • Wind power is regarded as the future of clean energy.
  • Wind power provides clean energy for homes and businesses, reduces climate change, reduces carbon pollution, and increases international economic competitiveness. Due to the continued low price and more efficient wind power generation, offshore wind power is growing rapidly worldwide.
  • the steel plate In order to meet the large inner diameter requirements of large fans as much as possible, generally coiled and welded in the direction perpendicular to the rolling direction of the steel plate to form pipe piles and jackets, that is to say, the coiling direction of the steel plate is the rolling direction, in order to minimize welding stress ,
  • the steel plate is required to be delivered in a normalized state or a normalized rolling state.
  • the national standard GB712-2011 "Structural Steel for Ships and Offshore Engineering" and the classification society regulations stipulate that the delivery state of EH36 steel is different from DH36 and AH36 steel, and only normalizing and TMCP methods are available.
  • the use of TMCP rolling to produce 80-100mm EH36 is no way to ensure the uniformity of performance in the thickness direction of the steel plate. Therefore, the currently used EH36 steel for offshore wind power is still delivered by normalizing.
  • the carbon equivalent is usually in the range of 0.45 to 0.50%, and the higher carbon equivalent is not conducive to welding. Bringing difficulties to downstream welding processing.
  • steel delivery in a normalized state has disadvantages such as high energy consumption, high manufacturing costs, and long production cycles.
  • Chinese patent document CN102899569A through the TMCP (Controlled Rolling and Controlled Cooling) + normalizing method, has obtained a method for manufacturing wide and thick steel plates for offshore wind power with excellent ultra-low temperature toughness, and its performance has reached the performance requirements of S355G8+N.
  • Chinese patent document CN106521319A discloses an extra-thick EH36 steel for offshore wind power pipe piles and its preparation method. Its performance meets the requirements of GB712 and classification society regulations. Production time and economic cost.
  • Chinese Patent CN106521319A adds a large amount of precious microalloys Nb, V and Ni to ensure that the strength of the steel plate with a large thickness of 90-120mm after normalizing still meets the requirements. Increased alloy cost.
  • the invention provides a preparation method of 80-100mm extra-thick EH36 steel for offshore wind power, which adopts normalizing rolling instead of TMCP.
  • the steel plate has higher yield strength, lower carbon equivalent, easy welding, and production process than normalized EH36 steel. The advantages of short and low cost.
  • the technical scheme of the present invention is: an 80-100mm extra-thick EH36 steel for offshore wind power, the element composition is calculated by mass percentage: C: 0.10 ⁇ 0.13%, Si: 0.30 ⁇ 0.50%, Mn: 1.40 ⁇ 1.60%, P : ⁇ 0.0070%, S: ⁇ 0.0020%, Nb: 0.020 ⁇ 0.050%, Ti: 0.008 ⁇ 0.020%, Al: 0.020 ⁇ 0.040%, Cu: 0.10 ⁇ 0.20%, Cr: 0.10 ⁇ 0.20%, Ni: 0.10 ⁇ 0.20%, the balance is Fe and unavoidable impurity elements.
  • the carbon equivalent CEV is less than or equal to 0.43%, and the welding crack sensitivity index Pcm is less than or equal to 0.23%.
  • the carbon equivalent CEV is calculated by the smelting analysis component using formula (1), and the welding crack sensitivity index (Pcm) is used by the smelting analysis component.
  • the basis for setting the chemical composition of the EH36 steel of the present invention is as follows:
  • C increases the hardenability of steel, especially the production of medium and heavy plates, which can significantly improve the strength of extra-thick plate steel, but too much carbon content is not conducive to the ultra-low temperature impact performance, low temperature strain aging performance, welding performance and Corrosion resistance, so the carbon content in the present invention is controlled between 0.10% and 0.13%.
  • the lower limit of the silicon content in the present invention is 0.30%, but if the silicon in the iron oxide scale exceeds 0.50%, it is easy to form silicon aluminum spinel, which is not easy to remove, affects the surface quality of the steel plate, and may cause segregation of the core and damage the welding performance.
  • the upper limit is specified as 0.50%.
  • Mn has the effect of delaying the transformation of austenite to ferrite in the steel, which is beneficial for refining ferrite and improving strength and toughness.
  • the above effects are not significant, resulting in low strength and toughness of the steel plate. Too high will cause segregation of continuous casting slabs, poor toughness and lower weldability.
  • the classification society rules require that the upper limit of manganese content is 1.60%, so the present invention stipulates that the manganese content is within the range of 1.40-1.60%.
  • Ti is used to fix the nitrogen element in the steel. Under appropriate conditions, titanium and nitrogen form titanium nitride, which prevents the austenite grains from coarsening during the heating, rolling, and especially welding of the billet at high temperatures up to 1350°C. Improve the extremely low temperature toughness of the base metal and the welding heat-affected zone, and improve the welding performance. When the titanium content is less than 0.008%, the effect is poor. When it exceeds 0.020%, the excess titanium will be compounded and precipitated with other elements, which will deteriorate the toughness of the steel. If it is too much, it will affect the normal continuous casting.
  • Al is an important deoxidizing element in the steelmaking process. Adding a small amount of aluminum to the steel can also effectively reduce the content of inclusions in the steel and refine the grains. However, too much aluminum will promote surface cracks in the continuous casting slab, produce internal aluminum inclusions, and reduce the quality of the slab. Therefore, the total aluminum content should be controlled at 0.020 to 0.040%.
  • Ni is an element that improves the hardenability of steel, and is also the most commonly used element that effectively improves the low-temperature toughness of steel.
  • the compounding effect with residual Cr and P in the steel will help to improve the corrosion resistance of the steel.
  • the nickel content is specified to be between 0.10% and 0.20%.
  • Cr is an element that improves the hardenability of steel, and can suppress the formation of polygonal ferrite and pearlite, and increase the strength of steel.
  • too high chromium content will affect the toughness of steel, and classification society rules require no more than 0.20%. Therefore, the chromium content in the present invention is controlled at 0.10 to 0.20%.
  • Cu is an element that improves the hardenability of steel. And it can effectively reduce the delta phase zone, which is beneficial to steel smelting and reduces thermal shrinkage during continuous casting.
  • the solid solution of TiN in the delta phase region is also reduced, the high-temperature nail-rolling effect of TiN is increased, and the coarsening of austenite grains is reduced.
  • the copper content is less than 0.10%, the effect is not obvious. However, if the content is too high, it is easy to cause copper segregation, resulting in poor surface quality of the steel plate.
  • the copper content of the present invention is between 0.10 and 0.20%.
  • P can improve the corrosion resistance, it will reduce the low-temperature toughness and affect the weldability of the steel plate, which is inappropriate for structural steel.
  • the present invention controls it to less than 0.0070%.
  • the preparation method of 80-100mm extra-thick EH36 steel for offshore wind power of the present invention includes the following steps:
  • Smelting and continuous casting Smelting raw materials are smelted in a converter, LF refining, and RH refining. In order to control the internal looseness and segregation of the steel plate, low superheat pouring, full argon gas protection pouring, and dynamic soft reduction control are carried out. The casting superheat is controlled at 5 ⁇ 25°C; to ensure that the center segregation of the cast slab is not higher than the C1.0 level.
  • Slow cooling of the slab After the cast slab is off the production line, it is subjected to slow cooling treatment, and the cast slab is required to be stacked into a pit or covered.
  • the starting temperature of slow cooling is not less than 600°C, and the time is not less than 72 hours.
  • Heating Put the casting billet into a walking heating furnace with an average heating rate of 10-14cm/min. In order to ensure high-temperature rolling, it is heated to 1200-1250°C to ensure sufficient softening of the steel. When the core temperature reaches the surface temperature Start the heat preservation, and the heat preservation time shall not be less than 0.5 hours. The alloying elements in the steel are fully dissolved to ensure the uniformity of the composition and performance of the final product.
  • Normalizing rolling The compression ratio between the thickness of the continuous casting billet and the finished product is ⁇ 3, and the two-stage normalizing rolling process of rough rolling and finishing rolling is adopted.
  • the opening temperature of rough rolling is between 1050-1100°C, three passes after rough rolling Single-pass reduction rate ⁇ 15%, cumulative reduction rate in rough rolling stage ⁇ 50%; by adding sufficient Nb, the temperature range of the austenite non-recrystallization zone is expanded to ensure that the steel plate is in the austenite-ferrite equilibrium phase Rolling above the change point (Ac 3 is 848-858°C), the finish rolling opening temperature is 860 ⁇ 890°C, the total rolling pass is 8-12 passes, air cooling is used after rolling, and no ACC is passed after the rolling is completed The unit is cooled. In the air cooling process, Nb is precipitated in the air cooling process after the steel sheet is rolled, and the triangular grain boundaries, grain boundaries and intragranular of ferrite grains are nailed to limit the rapid growth of ferrite.
  • Slow cooling of the steel plate When the temperature of the steel plate is ⁇ 500°C, the lower cooling bed is stacked for cooling, and hydrogen expansion is performed, and the destacking temperature is ⁇ 200°C.
  • the present invention mainly uses hardenable elements such as C-Mn-Cr-Ni-Cu as the alloy system, combined with the precipitation of the microalloying elements Nb and Ti to refine the crystal grains and ensure the strength of the steel plate.
  • the elements that affect the formation of iron oxide scale such as the content control of Si, Al, Ni, and Cr, are considered to reduce the surface defects of the steel plate due to surface pits, pits, pits and other surface defects that affect the surface quality of the steel plate.
  • Ti can improve the welding performance of the steel plate and inhibit the cracking tendency of the Nb-containing steel casting billet.
  • normalizing rolling is different from normalizing heat treatment, normalizing heat treatment will cause a significant decrease in strength after heat treatment, but normalizing rolling will not.
  • the steel plate after hot rolling is generally water-cooled, and normalizing rolling is used. After rolling, water cooling cannot be used, but air cooling is used.
  • the rolling mill can make large reduction rolling, and distribute the total reduction of rough rolling and finishing passes. It is required that the cumulative reduction in the rough rolling stage is ⁇ 50%, and the latter three passes.
  • the single-pass reduction rate is ⁇ 15%, which limits the number of passes and improves the uniformity of the mechanical properties of the low-compression ratio and high-strength extra-thick steel plates at different thicknesses.
  • the present invention has the advantages of: through simple and reasonable composition design, normalizing rolling is used to replace the traditional offshore wind power EH36 steel TMCP (controlled rolling, hot rolling) + normalizing heat treatment method, and the rolling The number of passes and the reduction of a single pass of rough rolling are limited, and the total reduction of rough and finish rolling passes is allocated to obtain an EH36 steel plate for offshore wind power with extra-thickness, high strength, high impact toughness, and surface defect-free.
  • the production thickness is 80-100mm, the yield strength is between 400-440MPa, the tensile strength is between 520-570MPa, the elongation is ⁇ 30%, and the Charpy impact energy at 1/4 and 1/2 of the thickness at -40°C is ⁇ 170J .
  • the material of the steel plate is uniform, and there are no defects such as delamination and cracks.
  • the flaw detection results meet the requirements of ASTM A 578 C level. There are no bubbles, scars, cracks, cracks, folds, inclusions, and iron oxide scale on the surface of the steel plate.
  • the production process is simple, the production process is stable, and the production process window is large. It can be popularized and applied to other extra-thick and high-strength steels such as steel for high-rise buildings, steel for bridges, structural steel, and pressure vessel steel.
  • Figure 1 is a typical structure morphology at 1/4 thickness of the steel plate of Example 4.
  • Figure 2 is a typical structure morphology at 1/4 thickness of the steel plate of Example 4.
  • Figure 3 is a typical structure morphology at 1/2 thickness of the steel plate of Example 4.
  • Figure 4 is a typical structure morphology at 1/2 thickness of the steel plate of Example 4.
  • Figures 1 and 2 show the microstructure at 1/4 of the thickness of the steel plate in Example 4 under different magnifications.
  • the microstructure is mainly composed of ferrite pearlite, with small grain size, and the ferrite grain size is between 5. -10um, the ferrite pearlite is dispersed.
  • Figures 3 and 4 show the morphology of the steel plate at 1/2 the thickness of the steel plate in Example 4 under different magnifications.
  • the structure is mainly composed of ferrite pearlite, and the grain size is not obvious relative to the structure at 1/4 of the steel plate thickness. Coarse, there is a small amount of striped pearlite caused by segregation in the center of the cast slab.
  • the preparation method of EH36 steel for extra-thick offshore wind power in Examples 1-6 of the present invention includes the following steps:
  • Cast slab hydrogen expansion treatment continuous casting slabs are stacked in the pit and slowly cooled to expand hydrogen, and the pit time is 72 hours.
  • the starting temperature of slow cooling is required to be ⁇ 600°C.
  • the average stepping rate of the slab is 10-14cm/min, and it will be heated to 1200-1250°C.
  • the temperature of the core reaches the surface temperature, the temperature will be kept, and the holding time will not be low. In 0.5 hours.
  • the alloying elements in the steel are fully dissolved to ensure the uniformity of the composition and performance of the final product.
  • Normalizing rolling The compression ratio between the thickness of the continuous casting billet and the finished product is ⁇ 3, and two stages of rough rolling and finishing rolling are used for controlled rolling. The reduction rate is ⁇ 50%, and the single-pass reduction rate of the last three passes is ⁇ 15%; the finish rolling temperature is 860 ⁇ 890°C, and the total number of passes is 8 ⁇ 12. After rolling, air cooling is adopted. After completion, the ACC unit is not used for accelerated cooling, but for air cooling.
  • the yield strength of the steel plate is between 400-440MPa, the tensile strength is between 520-570MPa, the elongation is ⁇ 30%, and the Charpy impact energy at 1/4 of the thickness at -40°C is ⁇ 170J.
  • the material of the steel plate is uniform, and there are no defects such as delamination and cracks. There are no bubbles, scars, cracks, cracks, folds, inclusions, and iron oxide scale on the surface of the steel plate.
  • Figures 1-4 show typical microstructure photos of Example 4.
  • the microstructure of the finished steel plate is mainly ferrite + pearlite, and the ferrite grain size is between 5-10um. It can be seen that the normalizing rolling process is carried out through reasonable composition design. For such a thick steel plate, although the center segregation caused by the slab at 1/2 thickness has some negative effects on the structure, the grains are not significantly coarsened. While meeting the strength of the steel plate, it fully guarantees the low-temperature impact toughness of the steel plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种80-100mm特厚海上风电用EH36钢的制备方法,流程:转炉->LF精炼->RH真空脱气->Ca处理->连铸->铸坯扩氢->加热->正火轧制->空气冷却->钢板堆垛缓冷->拆垛。其中正火轧制采用粗轧和精轧两阶段:粗轧的开轧温度1050-1100℃,粗轧后三道次单道次压下率≥15%,粗轧阶段累积压下率≥50%;精轧开轧温度860~890℃,通过加入足量的Nb,扩大奥氏体非再结晶区间,精轧的开轧温度在奥氏体铁素体平衡相变点Ac 3以上,总轧制道次为8~12道次,轧后空冷,空冷过程中Nb在钢板中析出,钉扎铁素体晶粒三角晶界、晶界、晶内来限制铁素体的快速长大。从而获得一种正火轧制的海上风电用EH36钢板。

Description

一种80-100mm特厚海上风电用EH36钢的制备方法 技术领域
本发明属于钢铁冶金领域,具体涉及一种正火轧制的特厚海上风电用EH36钢的制备方法。
背景技术
风电作为一种可再生能源,被视为清洁能源的未来。风力发电为家庭和企业提供清洁能源,减少气候变化,减少碳污染,增加国际经济竞争力。由于持续的低价格、更高效的风力发电,海上风电全球范围内快速增长。
海上风电需求量的增加,带动了用来制作风电管桩、导管架等的大厚度海上风电用钢的强劲发展。由于需要降低海上风电项目的均化发电成本,风机尺寸不断增大。风机越大,管桩、导管架内径越大,需要的钢板单重越大、钢板越厚。为了尽可能满足大风机的大内径需求,一般沿垂直于钢板轧向的方向卷取、焊接制成管桩、导管架,也就是说钢板卷取的方向为轧向,为了尽可能减少焊接应力,要求钢板以正火态或者正火轧制状态交货。国家标准GB712-2011《船舶及海洋工程用结构钢》及船级社规范规定EH36钢交货状态不同于DH36、AH36钢,仅有正火与TMCP方式。就目前生产技术能力,生产80-100mm的EH36采用TMCP轧制是没有办法保证钢板厚度方向上的性能均匀性。所以,目前应用的海上风电用EH36钢仍是以正火交货为主,为了保证正火后强度不显著下降,碳当量通常介于0.45~0.50%范围,而碳当量较高不利于焊接,给下游焊接加工带来困难。另外,钢以正火态交货存在能源消耗大、制造成本高、生产周期长等弊端。
中国专利文献CN102899569A,通过TMCP(控轧控冷)+正火的方法获得了一种超低温韧性优异的海上风电用宽厚钢板制造方法,其性能达到了S355G8+N的性能要求。中国专利文献CN106521319A,公开了一种海上风电管桩用特厚EH36钢及其制备方法,性能达到GB712及船级社规范要求,但是上述两种都是在轧制之后追加正火处理,增加了生产时间与经济成本。此外,中国专利CN106521319A为了保证大厚度90-120mm的钢板正火后强度仍满足要求,加入了大量的贵重微合金Nb、V以及Ni,碳当量较高,除了正火工序成本增加之外,还增加了合金成本。
发明内容
本发明提供一种80-100mm特厚海上风电用EH36钢的制备方法,采用正火轧制代替TMCP,该钢板具备比正火生产的EH36钢屈服强度高、碳当量低、易焊接、生产流程短、成本低的优点。
本发明的技术方案为:一种80-100mm特厚海上风电用EH36钢,元素组分按质量百分比计:C:0.10~0.13%,Si:0.30~0.50%,Mn:1.40~1.60%,P:≤0.0070%,S:≤0.0020%,Nb:0.020~0.050%,Ti:0.008~0.020%,Al:0.020~0.040%,Cu:0.10~0.20%,Cr:0.10~0.20%,Ni:0.10~0.20%,余量为Fe及不可避免的杂质元素。
为了保证焊接性能,碳当量CEV≤0.43%,焊接裂纹敏感性指数Pcm≤0.23%,其中碳当量CEV由熔炼分析成分采用公式(1)计算,焊接裂纹敏感性指数(Pcm)由熔炼分析成分采用公式(2)计算
CEV(%)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15      (1)
Pcm(%)=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B     (2)
本发明EH36钢的化学成分的设置依据如下:
C增加钢的淬透性,特别是中厚板生产,可以显著提高特厚板钢的强度,但是碳含量过多不利于正火轧制钢的超低温冲击性能、低温应变时效性能、焊接性能以及耐蚀性能,所以本发明中碳含量控制介于0.10~0.13%。
Si主要用于脱氧,虽要依据不同的冶炼方式来确定其加入量,但要获得良好的钢板性能,必须在0.15%以上,考虑到硅加入可以有效晶粒细化还不增加钢板的碳当量,因而本发明中硅含量下限为0.30%,但氧化铁皮中硅若超过0.50%以上易形成硅铝尖晶石,不易去除,影响钢板表面质量,又会造成心部偏析以及破坏焊接性能,所以规定其上限为0.50%。
Mn在所述钢中具有推迟奥氏体向铁素体转变的作用,对细化铁素体,提高强度和韧性有利。当锰含量较低,上述作用不显著,导致钢板强度和韧性偏低等。过高则又会引起连铸坯偏析、韧性差和可焊性降低,同时船级社规范要求锰含量上限为1.60%,故本发明规定锰含量介于1.40~1.60%的范围内。
Nb的溶质拖曳作用和Nb(C,N)对奥氏体晶界的钉扎作用,均抑制形变奥氏体的再结晶,扩大奥氏体非再结晶区间,减少特厚板生产待温时间。并在冷却或回火时形成析出物,从而使强度和韧性均得到提高,可以很好的抑制轧后钢板因冷却不足而晶粒粗化的 现象,还可以提高钢的耐蚀性能。添加量小于0.020%时效果不明显,大于0.050%时韧性降低,导致连铸坯产生表面裂纹。因此,本发明规定铌含量应介于0.020~0.050%的范围内。
Ti是用来固定钢中的氮元素,在适当条件下,钛、氮形成氮化钛,阻止钢坯在加热、轧制、特别是焊接达1350℃的高温过程中奥氏体晶粒粗化,改善母材和焊接热影响区的极低温韧性,提高焊接性能。钛低于0.008%时,效果差,超过0.020%时,过剩的钛会与其它元素复合析出,使钢的韧性恶化,再多的话就会影响正常连铸。
Al是炼钢过程中一个重要的脱氧元素,在钢中加入微量的铝,也可以有效的减少钢中的夹杂物含量,细化晶粒。但过多的铝,会促进连铸坯产生表面裂纹,产生内部铝系夹杂物,降低板坯质量,因此,全铝含量应控制在0.020~0.040%。
Ni是提高钢淬透性的元素,也是有效提高钢的低温韧性的最常用元素。此外,与钢中残余Cr、P复合作用,将有助于提高钢的耐腐蚀性,考虑到本发明中加入了Cu,起到了Ni、Cu复合作用,并且加入过多,导致成本显著增加。故在本发明中,规定镍含量介于0.10~0.20%。
Cr是提高钢淬透性的元素,能够抑制多边形铁素体和珠光体的形成,提高钢的强度。但铬含量过高将影响钢的韧性,船级社规范要求不超过0.20%。故本发明中铬含量控制在0.10~0.20%。
Cu是提高钢淬透性的元素。并可有效减小δ相区,有利于钢材冶炼,减小连铸过程中的热收缩。在焊接过程中,也减小TiN在δ相区固溶,增加TiN高温钉轧效果,减小奥氏体晶粒粗化。铜含量小于0.10%时,效果不明显。但是含量过高,容易引起铜偏聚,形成钢板表面质量差,同时兼顾船级社规范要求以及经济性,本发明铜含量介于0.10~0.20%。
P虽能提高耐蚀性,但会降低低温韧性和影响钢板的可焊性,对结构钢是不适当的,本发明控制在0.0070%以下。
S形成MnS夹杂物,也会导致中心偏析,对耐蚀性也有不良影响,发明规定在其控制在0.0020%以下。
本发明的80-100mm特厚海上风电用EH36钢的制备方法,步骤包括:
冶炼连铸:冶炼原料依次经转炉冶炼、LF精炼、RH精炼,为了控制钢板内部疏松、偏析,进行低过热度浇注,全程氩气保护浇注,以及动态轻压下控制。浇铸过热度控制在5~25℃;以保证铸坯中心偏析不高于C1.0级。
板坯缓冷:铸坯下线后,进行缓冷处理,要求铸坯堆垛入坑或加罩。缓冷开始温度要求不低于600℃,时间不低于72小时。
加热:将铸坯进入步进式加热炉,平均加热速率10~14cm/min,为保证高温度轧制,加热至1200~1250℃,以保证钢材的充分软化,待心部温度到达表面温度时开始保温,保温时间不低于0.5小时。使钢中的合金元素充分固溶以保证最终产品的成份及性能的均匀性。
正火轧制:连铸坯与成品厚度的压缩比≥3,采用粗轧和精轧两阶段正火轧制工艺,粗轧的开轧温度介于1050-1100℃,粗轧后三道次单道次压下率≥15%,粗轧阶段累积压下率≥50%;通过加入足量的Nb,扩大奥氏体非再结晶区温度区间,保证钢板在奥氏体铁素体平衡相变点(Ac 3为848-858℃)以上轧制,精轧开轧温度860~890℃,总轧制道次为8~12道次,轧后采用空气冷却,轧制完成之后不经过ACC机组冷却,空冷过程中通过Nb在钢板轧后空气冷却过程中析出,钉轧铁素体晶粒三角晶界、晶界、晶内来限制铁素体的快速长大。
钢板缓冷:当钢板温度≤500℃时,下冷床堆垛冷却,进行扩氢处理,拆垛温度≤200℃。
本发明具有如下特点:
1、本发明主要以C-Mn-Cr-Ni-Cu等淬透性元素为合金体系,结合微合金元素Nb、Ti的析出作用来细化晶粒,保证钢板强度。
2、在成分设计中考虑了影响氧化铁皮形成的元素,如Si、Al、Ni、Cr的含量控制,以减少钢板因表面麻点、麻坑、凹坑等表面缺陷影响钢板表面质量。
3、添加Nb,提高奥氏体非再晶区的温度,保证钢板在Ac3温度以上轧制,实现正火轧制工艺。同时通过Nb在钢板轧后空气冷却过程中析出,钉轧铁素体晶粒三角晶界、晶界、晶内来限制铁素体的快速长大。
4、加入Ti,可以改善钢板的焊接性能,抑制含Nb钢铸坯的裂纹倾向。
5、钢板碳当量CEV≤0.43%,焊接裂纹敏感性指数Pcm≤0.23%,有利于加工焊接。
6、考虑到正火轧制不同于正火热处理,正火热处理会导致热处理后强度显著降低,而正火轧制则不会。另外,若采用正火热处理,热轧后钢板一般采用的是水冷,而采用正火轧制,轧后不能采用水冷,而要采用空冷。
7、通过高温加热,正火轧制,使得轧机能够大压下轧制,并进行粗轧、精轧道次总压下率分配,要求粗轧阶段累积压下率≥50%,后三道次单道次压下率≥15%,限制道次数,改善低压缩比高强度特厚钢板不同厚度处力学性能的均匀性。
与现有技术相比,本发明的优点在于:通过简单合理的成分设计,采用正火轧制代替传统海上风电用EH36钢TMCP(控轧、热轧)+正火热处理的方式,配合设置轧制道次数和限定粗轧单道次压下量,粗、精轧道次总压下率分配,获得一种特厚、高强度、高冲击韧性、表面无缺陷的海上风电用EH36钢板。生产厚度为80-100mm,屈服强度介于400-440MPa,抗拉强度介于520-570MPa,延伸率≥30%,-40℃下厚度1/4处、1/2处夏比冲击功≥170J。钢板材质均匀,无分层,裂纹等缺陷。探伤结果满足ASTM A 578 C级要求。钢板表面无气泡、结疤、裂纹、拉裂、折叠、夹杂和压入氧化铁皮。该生产流程简单,生产工艺稳定,生产工艺窗口大,可以推广应用至其它特厚高强度钢如高层建筑用钢、桥梁用钢、结构钢、压力容器钢等。
附图说明
图1是实施例4钢板1/4厚度处的典型组织形貌;
图2是实施例4钢板1/4厚度处的典型组织形貌;
图3是实施例4钢板1/2厚度处的典型组织形貌;
图4是实施例4钢板1/2厚度处的典型组织形貌;
图1、2是在不同倍数金相显微镜下,实施例4钢板厚度1/4处组织形貌,组织主要由铁素体珠光体组成,晶粒尺寸细小,铁素体晶粒尺寸介于5-10um,铁素体珠光体弥布分散。
图3、4是在不同倍数金相显微镜下,实施例4钢板厚度1/2处组织形貌,组织主要由铁素体珠光体组成,晶粒尺寸相对于钢板厚度1/4处组织没有明显粗化,有少量因铸坯中心偏析导致的条带状珠光体存在。
具体实施方式
以下结合实施例对本发明作进一步详细描述,所述实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
本发明正火轧制80-100mm特厚海上风电用EH36钢的工艺流程:转炉->LF精炼->RH真空脱气->Ca处理->连铸->铸坯脱氢处理->加热->正火轧制->空气冷却->钢板堆垛缓冷->拆垛。
本发明实施例1-6的特厚海上风电用EH36钢的制备方法,包括如下步骤:
(1)冶炼:采用150吨转炉冶炼,然后送入LF炉进行精炼并经过RH真空脱气处 理,破空进行Ca处理,成分控制见表1。
(2)连铸:将冶炼的钢水浇铸成370mm厚的连铸坯。浇铸温度控制在液相线以上10-25℃,即过热度为10-25℃。浇铸过程中实施动态轻压下,氩气保护。
(3)铸坯扩氢处理:连铸板坯入坑堆垛缓冷扩氢,在坑时间为72小时。缓冷开始温度要求≥600℃。
(4)加热:将铸坯进入步进式加热炉,铸坯的平均步进速率10~14cm/min,加热至1200~1250℃,待心部温度到达表面温度时开始保温,保温时间不低于0.5小时。使钢中的合金元素充分固溶以保证最终产品的成分及性能的均匀性。
(5)正火轧制:连铸坯与成品厚度的压缩比≥3,采用粗轧和精轧两阶段控制轧制,粗轧的开轧温度介于1050-1100℃,粗轧阶段累积压下率≥50%,后三道次单道次压下率≥15%;精轧开轧温度860~890℃,总轧制道次为8~12道次,轧后采用空气冷却,轧制完成之后不经过ACC机组进行加速冷却,而是进行空冷。
(6)钢板缓冷:当钢板温度将至500℃以下时,下冷床堆垛冷却,进行扩氢处理。拆垛温度≤200℃。
(7)对正火轧制后的钢板进行横向拉伸、纵向冲击及探伤、表面质量的检测。
各实施例的元素组分、工艺参数见表1、表2。各实例钢板对应的性能见表3。
钢板屈服强度介于400-440MPa,抗拉强度介于520-570MPa的范围,延伸率≥30%,-40℃下厚度1/4处、1/2处夏比冲击功≥170J。
探伤结果满足ASTM A 578 C级要求。
钢板材质均匀,无分层,裂纹等缺陷。钢板表面无气泡、结疤、裂纹、拉裂、折叠、夹杂和压入氧化铁皮。
图1-4给出了实施例4典型的微观组织照片。成品钢板的微观组织主要为铁素体+珠光体组织,铁素体晶粒尺寸介于5-10um。可见,通过合理的成分设计进行正火轧制工艺,如此大厚度的钢板,尽管1/2厚度处铸坯带来的中心偏析对组织有些负面影响,但是晶粒没有明显粗化。在满足钢板强度的同时,充分保证了钢板的低温冲击韧性。
表1实施例1-6特厚海上风电用EH36钢的化学成分(wt%)
Figure PCTCN2021070625-appb-000001
Figure PCTCN2021070625-appb-000002
表2轧制工艺控制
Figure PCTCN2021070625-appb-000003
表3本发明实施例拉伸、冲击性能
Figure PCTCN2021070625-appb-000004

Claims (7)

  1. 一种80-100mm特厚海上风电用EH36钢的制备方法,其特征在于:包括如下步骤
    (1)钢水冶炼和连铸成坯:冶炼原料依次经转炉冶炼、LF精炼、RH精炼得到钢水,钢水浇铸成坯,浇铸过热度控制在5~25℃;
    (2)缓冷:铸坯下线后,进行缓冷处理,缓冷开始温度不低于600℃,时间不低于72小时;
    (3)加热:加热温度1200~1250℃,待铸坯心部温度到达表面温度时开始保温,保温时间不低于0.5小时;
    (4)正火轧制:连铸坯轧成成品厚度的总压缩比≥3,正火轧制采用粗轧和精轧两阶段:粗轧的开轧温度1050-1100℃,粗轧后三道次单道次压下率≥15%,粗轧阶段累积压下率≥50%;精轧开轧温度860~890℃,通过加入足量的Nb,扩大奥氏体非再结晶区间,精轧的开轧温度在奥氏体铁素体平衡相变点Ac 3以上,总轧制道次为8~12道次,轧后空冷,空冷过程中Nb在钢板中析出,钉扎铁素体晶粒三角晶界、晶界、晶内来限制铁素体的快速长大;
    钢板缓冷:当钢板温度下降至500℃以下时,下冷床堆垛冷却,作扩氢处理,钢板温度下降至200℃以上后拆垛。
  2. 根据权利要求1所述的80-100mm特厚海上风电用EH36钢的制备方法,其特征在于:步骤(1)中以铸坯中心偏析不高于C1.0级的连铸坯作为合格坯。
  3. 根据权利要求1所述的80-100mm特厚海上风电用EH36钢的制备方法,其特征在于:步骤(2)缓冷时铸坯堆垛入坑或加罩。
  4. 根据权利要求1所述的80-100mm特厚海上风电用EH36钢的制备方法,其特征在于:步骤(3)采用步进式加热炉加热铸坯,平均加热速率10~14cm/min。
  5. 根据权利要求1所述的80-100mm特厚海上风电用EH36钢的制备方法,其特征在于:步骤(1)钢水冶炼的最终化学成分按质量百分比计为C:0.10~0.13%,Si:0.30~0.50%,Mn:1.40~1.60%,P:≤0.0070%,S:≤0.0020%,Nb:0.020~0.050%,Ti:0.008~0.020%,Al:0.020~0.040%,Cu:0.10~0.20%,Cr:0.10~0.20%,Ni:0.10~0.20%,余量为Fe及不可避免的杂质元素,对应的奥氏体铁素体平衡相变点Ac 3为848~858℃。
  6. 根据权利要求5所述的80-100mm特厚海上风电用EH36钢的制备方法,其特征在于:所述EH36钢的碳当量CEV≤0.43%,焊接裂纹敏感性指数Pcm≤0.23%。
  7. 根据权利要求5所述的80-100mm特厚海上风电用EH36钢的制备方法,其特征 在于:所得钢板的屈服强度介于400-440MPa,抗拉强度介于520-570MPa的范围,延伸率≥30%,-40℃下厚度1/4处、1/2处夏比冲击功≥170J,组织主要为铁素体+珠光体,探伤满足ASTM A 578C级要求。
PCT/CN2021/070625 2020-03-30 2021-01-07 一种80-100mm特厚海上风电用EH36钢的制备方法 WO2021196821A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010236291.X 2020-03-30
CN202010236291.XA CN111455255B (zh) 2020-03-30 2020-03-30 一种80-100mm特厚海上风电用EH36钢的制备方法

Publications (1)

Publication Number Publication Date
WO2021196821A1 true WO2021196821A1 (zh) 2021-10-07

Family

ID=71679282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070625 WO2021196821A1 (zh) 2020-03-30 2021-01-07 一种80-100mm特厚海上风电用EH36钢的制备方法

Country Status (2)

Country Link
CN (1) CN111455255B (zh)
WO (1) WO2021196821A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114277314A (zh) * 2021-12-02 2022-04-05 莱芜钢铁集团银山型钢有限公司 一种耐腐蚀大线能量焊接海洋工程用高强度钢板及其制备方法
CN114410935A (zh) * 2021-12-30 2022-04-29 舞阳钢铁有限责任公司 一种低温冲击韧性良好的p265gh钢板的生产方法
CN114645216A (zh) * 2022-03-25 2022-06-21 宝武杰富意特殊钢有限公司 模具钢及其制备方法
CN114672743A (zh) * 2022-03-02 2022-06-28 福建三宝钢铁有限公司 一种低合金结构钢q355的制备方法
CN114737109A (zh) * 2022-02-28 2022-07-12 鞍钢股份有限公司 厚壁抗hic油气管道用x52直缝焊管用钢及制造方法
CN115094331A (zh) * 2022-07-18 2022-09-23 柳州钢铁股份有限公司 一种低成本的q690钢板及其生产方法
CN115094217A (zh) * 2022-07-12 2022-09-23 南阳汉冶特钢有限公司 一种30CrMoA钢板及其生产方法
CN115404407A (zh) * 2022-08-30 2022-11-29 江苏沙钢集团有限公司 一种大单重厚规格tmcp风电钢及其制造方法
CN115418548A (zh) * 2022-08-27 2022-12-02 昆明理工大学 一种以Mn代Ni型双相不锈钢的多道次压缩制备方法
CN115433874A (zh) * 2022-08-31 2022-12-06 马鞍山钢铁股份有限公司 一种屈服强度460MPa级耐-20℃热轧角钢及其生产方法
CN115466830A (zh) * 2022-09-20 2022-12-13 包头钢铁(集团)有限责任公司 一种改善q355me风电钢带状组织的方法
CN115505852A (zh) * 2022-10-26 2022-12-23 河北普阳钢铁有限公司 一种耐蚀农机用钢材及其制造方法
CN115747641A (zh) * 2022-11-01 2023-03-07 沈阳工业大学 一种适用于高热输入焊接高效热轧结构钢板及其制造方法
CN115786806A (zh) * 2022-07-15 2023-03-14 江阴兴澄特种钢铁有限公司 一种具有良好低温韧性的高强度低碳当量特厚钢板及其制造方法
CN115896623A (zh) * 2022-11-21 2023-04-04 包头钢铁(集团)有限责任公司 一种厚规格高韧性屈服强度420MPa级风力发电塔用结构钢板生产方法
CN116179956A (zh) * 2023-03-13 2023-05-30 宝武集团鄂城钢铁有限公司 基于同成分实现420~890MPa不同强度级别特厚船板钢及其生产方法
CN116445818A (zh) * 2023-04-13 2023-07-18 山东钢铁集团日照有限公司 一种屈服强度600MPa级厚规格高韧性热轧带钢及其生产方法
CN116516252A (zh) * 2023-04-28 2023-08-01 鞍钢股份有限公司 1200MPa超高强塑热轧Mn-TRIP钢及其制备方法
CN116875901A (zh) * 2023-07-24 2023-10-13 鞍钢股份有限公司 一种疲劳性能优异的船用720MPa级钢板及制造方法
CN117210770A (zh) * 2023-08-24 2023-12-12 鞍钢股份有限公司 高强度均质化铁素体特厚风电结构用钢板及其制造方法
CN117807424A (zh) * 2024-02-29 2024-04-02 山东钢铁股份有限公司 工业大数据驱动的宽厚钢板质量动态在线识别方法及装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111455255B (zh) * 2020-03-30 2022-05-06 江阴兴澄特种钢铁有限公司 一种80-100mm特厚海上风电用EH36钢的制备方法
CN112048664B (zh) * 2020-08-14 2022-07-01 江阴兴澄特种钢铁有限公司 一种正火态交货的100-120mm厚海上风电管桩用FH36钢板及其制备方法
CN112210723B (zh) * 2020-10-28 2022-01-25 湖南华菱湘潭钢铁有限公司 一种耐大气腐蚀钢的生产方法
CN112662933A (zh) * 2020-11-24 2021-04-16 莱芜钢铁集团银山型钢有限公司 耐低温冲击韧性风电钢的制备方法
CN113249641B (zh) * 2021-03-22 2022-09-30 江阴兴澄特种钢铁有限公司 一种100~120mm Q460D特厚高强钢及其制备方法
CN113564480B (zh) * 2021-07-30 2022-05-17 马鞍山钢铁股份有限公司 一种具有z向性能的厚重热轧h型钢及其生产方法
CN113969372B (zh) * 2021-10-14 2022-05-17 北京科技大学 一种低碳抗疲劳风电用钢板及制备方法
CN114085972A (zh) * 2021-11-20 2022-02-25 甘肃酒钢集团宏兴钢铁股份有限公司 一种2800mm中厚板轧机正火轧制Q355ND钢板的方法
CN114438415A (zh) * 2022-01-26 2022-05-06 宝武集团鄂城钢铁有限公司 一种36kg级特厚低温高韧性船板钢及其生产方法
CN114717377B (zh) * 2022-03-23 2023-06-06 张家港宏昌钢板有限公司 连铸型厚钢板及其生产方法
CN115976404B (zh) * 2022-12-14 2024-03-08 南阳汉冶特钢有限公司 一种海洋平台用dh36钢板及其生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129134A (ja) * 2001-10-18 2003-05-08 Nippon Steel Corp 低温靱性に優れた高強度鋼板の製造方法
CN101921955A (zh) * 2010-07-22 2010-12-22 首钢总公司 一种正火轧制生产韧性优良管线钢中厚板的方法
CN104630627A (zh) * 2015-02-15 2015-05-20 山东钢铁股份有限公司 一种dh36船体结构用钢板及其低成本生产方法
CN106521319A (zh) * 2016-11-26 2017-03-22 江阴兴澄特种钢铁有限公司 一种海上风电管桩用特厚eh36钢及其制备方法
CN107385353A (zh) * 2017-06-19 2017-11-24 江阴兴澄特种钢铁有限公司 一种海洋平台用250mm 特厚EH36钢板及其制备方法
US20190316219A1 (en) * 2016-12-22 2019-10-17 Posco Thick steel plate having excellent cryogenic impact toughness and manufacturing method therefor
CN110358973A (zh) * 2019-07-25 2019-10-22 南京钢铁股份有限公司 一种低成本s420nl低温韧性钢板及制造方法
CN111455255A (zh) * 2020-03-30 2020-07-28 江阴兴澄特种钢铁有限公司 一种80-100mm特厚海上风电用EH36钢的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234742B (zh) * 2010-04-23 2015-12-02 宝山钢铁股份有限公司 一种直缝焊管用钢板及其制造方法
CN104451417A (zh) * 2014-12-31 2015-03-25 广东韶钢松山股份有限公司 一种高洁净非调质塑料模具钢厚板生产工艺
CN106319380A (zh) * 2015-06-16 2017-01-11 鞍钢股份有限公司 一种低压缩比690MPa级特厚钢板及其生产方法
CN107287506B (zh) * 2016-03-31 2019-02-26 鞍钢股份有限公司 一种650MPa级中温中压锅炉钢板及其生产方法
CN105839003B (zh) * 2016-05-31 2017-09-26 江阴兴澄特种钢铁有限公司 一种正火态交货的180~200mm厚EH36钢板及其制备方法
CN108914008B (zh) * 2018-08-10 2020-11-06 宝武集团鄂城钢铁有限公司 一种经济型高塑性360MPa级结构钢板的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129134A (ja) * 2001-10-18 2003-05-08 Nippon Steel Corp 低温靱性に優れた高強度鋼板の製造方法
CN101921955A (zh) * 2010-07-22 2010-12-22 首钢总公司 一种正火轧制生产韧性优良管线钢中厚板的方法
CN104630627A (zh) * 2015-02-15 2015-05-20 山东钢铁股份有限公司 一种dh36船体结构用钢板及其低成本生产方法
CN106521319A (zh) * 2016-11-26 2017-03-22 江阴兴澄特种钢铁有限公司 一种海上风电管桩用特厚eh36钢及其制备方法
US20190316219A1 (en) * 2016-12-22 2019-10-17 Posco Thick steel plate having excellent cryogenic impact toughness and manufacturing method therefor
CN107385353A (zh) * 2017-06-19 2017-11-24 江阴兴澄特种钢铁有限公司 一种海洋平台用250mm 特厚EH36钢板及其制备方法
CN110358973A (zh) * 2019-07-25 2019-10-22 南京钢铁股份有限公司 一种低成本s420nl低温韧性钢板及制造方法
CN111455255A (zh) * 2020-03-30 2020-07-28 江阴兴澄特种钢铁有限公司 一种80-100mm特厚海上风电用EH36钢的制备方法

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114277314A (zh) * 2021-12-02 2022-04-05 莱芜钢铁集团银山型钢有限公司 一种耐腐蚀大线能量焊接海洋工程用高强度钢板及其制备方法
WO2023097979A1 (zh) * 2021-12-02 2023-06-08 莱芜钢铁集团银山型钢有限公司 一种耐腐蚀大线能量焊接海洋工程用高强度钢板及其制备方法
CN114277314B (zh) * 2021-12-02 2022-12-09 莱芜钢铁集团银山型钢有限公司 一种耐腐蚀大线能量焊接海洋工程用高强度钢板及其制备方法
CN114410935A (zh) * 2021-12-30 2022-04-29 舞阳钢铁有限责任公司 一种低温冲击韧性良好的p265gh钢板的生产方法
CN114410935B (zh) * 2021-12-30 2024-05-24 舞阳钢铁有限责任公司 一种低温冲击韧性良好的p265gh钢板的生产方法
CN114737109B (zh) * 2022-02-28 2023-03-17 鞍钢股份有限公司 厚壁抗hic油气管道用x52直缝焊管用钢及制造方法
CN114737109A (zh) * 2022-02-28 2022-07-12 鞍钢股份有限公司 厚壁抗hic油气管道用x52直缝焊管用钢及制造方法
CN114672743A (zh) * 2022-03-02 2022-06-28 福建三宝钢铁有限公司 一种低合金结构钢q355的制备方法
CN114645216A (zh) * 2022-03-25 2022-06-21 宝武杰富意特殊钢有限公司 模具钢及其制备方法
CN115094217A (zh) * 2022-07-12 2022-09-23 南阳汉冶特钢有限公司 一种30CrMoA钢板及其生产方法
CN115786806B (zh) * 2022-07-15 2024-04-23 江阴兴澄特种钢铁有限公司 一种具有良好低温韧性的高强度低碳当量特厚钢板及其制造方法
CN115786806A (zh) * 2022-07-15 2023-03-14 江阴兴澄特种钢铁有限公司 一种具有良好低温韧性的高强度低碳当量特厚钢板及其制造方法
CN115094331A (zh) * 2022-07-18 2022-09-23 柳州钢铁股份有限公司 一种低成本的q690钢板及其生产方法
CN115418548A (zh) * 2022-08-27 2022-12-02 昆明理工大学 一种以Mn代Ni型双相不锈钢的多道次压缩制备方法
CN115404407A (zh) * 2022-08-30 2022-11-29 江苏沙钢集团有限公司 一种大单重厚规格tmcp风电钢及其制造方法
CN115433874B (zh) * 2022-08-31 2023-08-25 马鞍山钢铁股份有限公司 一种屈服强度460MPa级耐-20℃热轧角钢及其生产方法
CN115433874A (zh) * 2022-08-31 2022-12-06 马鞍山钢铁股份有限公司 一种屈服强度460MPa级耐-20℃热轧角钢及其生产方法
CN115466830B (zh) * 2022-09-20 2024-03-22 包头钢铁(集团)有限责任公司 一种改善q355me风电钢带状组织的方法
CN115466830A (zh) * 2022-09-20 2022-12-13 包头钢铁(集团)有限责任公司 一种改善q355me风电钢带状组织的方法
CN115505852A (zh) * 2022-10-26 2022-12-23 河北普阳钢铁有限公司 一种耐蚀农机用钢材及其制造方法
CN115747641A (zh) * 2022-11-01 2023-03-07 沈阳工业大学 一种适用于高热输入焊接高效热轧结构钢板及其制造方法
CN115747641B (zh) * 2022-11-01 2024-02-27 沈阳工业大学 一种适用于高热输入焊接高效热轧结构钢板及其制造方法
CN115896623A (zh) * 2022-11-21 2023-04-04 包头钢铁(集团)有限责任公司 一种厚规格高韧性屈服强度420MPa级风力发电塔用结构钢板生产方法
CN116179956A (zh) * 2023-03-13 2023-05-30 宝武集团鄂城钢铁有限公司 基于同成分实现420~890MPa不同强度级别特厚船板钢及其生产方法
CN116445818A (zh) * 2023-04-13 2023-07-18 山东钢铁集团日照有限公司 一种屈服强度600MPa级厚规格高韧性热轧带钢及其生产方法
CN116516252A (zh) * 2023-04-28 2023-08-01 鞍钢股份有限公司 1200MPa超高强塑热轧Mn-TRIP钢及其制备方法
CN116516252B (zh) * 2023-04-28 2024-03-19 鞍钢股份有限公司 1200MPa超高强塑热轧Mn-TRIP钢及其制备方法
CN116875901A (zh) * 2023-07-24 2023-10-13 鞍钢股份有限公司 一种疲劳性能优异的船用720MPa级钢板及制造方法
CN117210770A (zh) * 2023-08-24 2023-12-12 鞍钢股份有限公司 高强度均质化铁素体特厚风电结构用钢板及其制造方法
CN117807424B (zh) * 2024-02-29 2024-04-30 山东钢铁股份有限公司 工业大数据驱动的宽厚钢板质量动态在线识别方法及装置
CN117807424A (zh) * 2024-02-29 2024-04-02 山东钢铁股份有限公司 工业大数据驱动的宽厚钢板质量动态在线识别方法及装置

Also Published As

Publication number Publication date
CN111455255B (zh) 2022-05-06
CN111455255A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2021196821A1 (zh) 一种80-100mm特厚海上风电用EH36钢的制备方法
CN112048664B (zh) 一种正火态交货的100-120mm厚海上风电管桩用FH36钢板及其制备方法
CN110295320B (zh) 一种lf-rh精炼工艺生产的大壁厚x52ms抗酸管线钢板及其制造方法
WO2017206418A1 (zh) 一种正火态交货的 180 ~ 200mm 厚 EH36 钢板及其制备方法
CN109182919B (zh) 一种多相组织高韧性船板钢eh47的生产方法
CN113249641B (zh) 一种100~120mm Q460D特厚高强钢及其制备方法
US20230098225A1 (en) Steel board for polar marine engineering and preparation method therefor
WO2019218657A1 (zh) 一种屈服强度460MPa级热轧高韧性耐低温H型钢及其制备方法
WO2020237975A1 (zh) 一种LNG储罐用7Ni钢板及生产工艺
WO2022022040A1 (zh) 一种355MPa级别海洋工程用耐低温热轧H型钢及其制备方法
WO2017219553A1 (zh) 一种 200mm 厚抗氢致开裂压力容器钢板及其制造方法
CN112251670A (zh) 一种延伸性能良好的690MPa级钢板及其制造方法
CN102234742A (zh) 一种直缝焊管用钢板及其制造方法
CN116083792A (zh) V系550MPa级建筑结构用抗震耐候钢板及其制备方法
CN114150209B (zh) 一种屈服强度不小于550MPa的高性能桥梁钢及其制备方法和应用
WO2020237976A1 (zh) 一种超细针状组织结构钢及其生产方法
CN114318140A (zh) 一种抗酸性能优良的管线钢及其制造方法
CN113846269A (zh) 一种具有高强塑性冷轧高耐候钢板及其制备方法
CN116752056B (zh) 高强韧低屈强比纵向变厚度耐候桥梁用钢及其制造方法
CN109913758B (zh) 高温强度和成形性能良好的铁素体不锈钢板及其制备方法
CN111286673A (zh) 一种抗拉强度≥320MPa的高成形性含硼钢及生产方法
JP2662485B2 (ja) 低温靭性の良い鋼板およびその製造方法
JPH02263918A (ja) 耐hic性および耐ssc性に優れた高張力鋼板の製造法
CN118086651B (zh) 一种高强特厚钢板及其生产方法
CN114959444B (zh) 耐低温酸露点钢材及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779598

Country of ref document: EP

Kind code of ref document: A1