WO2021196720A1 - 一种光信号衰减器及一种光信号传输系统 - Google Patents

一种光信号衰减器及一种光信号传输系统 Download PDF

Info

Publication number
WO2021196720A1
WO2021196720A1 PCT/CN2020/135493 CN2020135493W WO2021196720A1 WO 2021196720 A1 WO2021196720 A1 WO 2021196720A1 CN 2020135493 W CN2020135493 W CN 2020135493W WO 2021196720 A1 WO2021196720 A1 WO 2021196720A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
attenuation
signal attenuator
attenuator
intensity
Prior art date
Application number
PCT/CN2020/135493
Other languages
English (en)
French (fr)
Inventor
曹俊红
罗勇
万丹
范杰乔
肖清明
王敏
洪小鹏
孙明超
毕会刚
陈阳
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to JP2022513482A priority Critical patent/JP7361206B2/ja
Publication of WO2021196720A1 publication Critical patent/WO2021196720A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present disclosure relates to the field of optical communication, in particular to an optical signal attenuator and an optical signal transmission system.
  • the optical signal attenuator is one of the important components of the optical fiber communication system. It is mainly used to reduce or control the optical signal to achieve power balance between different communication channels. In the optical signal transmission system, the optical characteristics of each optical device will change with the change of temperature. The attenuation strength of the optical signal attenuator needs to be adjusted according to the temperature change. The attenuation strength of the optical signal attenuator refers to the The difference between the intensity of the optical signal before the optical signal attenuator and the intensity of the optical signal after the optical signal attenuator.
  • the related optical signal attenuator realizes the adjustment of the attenuation intensity of the optical signal attenuator through a temperature sensor and an actuator, and this optical signal attenuator needs to consume external energy.
  • the present disclosure provides an optical signal attenuator and an optical signal transmission system to solve the technical problem of how to automatically adjust the attenuation intensity of the optical signal attenuator with temperature changes without consuming external energy.
  • An embodiment of the present disclosure provides an optical signal attenuator, the optical signal attenuator comprising: an optical signal channel provided with a containing space; attenuating elements, at least a part of which is located in the containing space, so as to absorb a part of the optical signal channel Optical signal; a deformation element, connected to the attenuation element, the deformation element can be deformed according to temperature, so that the attenuation element is displaced; wherein the displacement direction of the attenuation element is the same as the extension direction of the optical signal channel At a preset angle.
  • the optical signal attenuator further includes a fixing member; along the extension direction of the deforming element, one end of the deforming element is fixedly connected to the fixing member, and the other end of the deforming element is connected to the attenuating element
  • the extension direction of the deformable element and the extension direction of the optical signal channel present the preset angle.
  • the optical signal attenuator further includes: a fixing member; a first connecting member connected to the fixing member and connected to the deformation element; a second connecting member connected to the fixing member and connected to the The deformation element is connected; the first connection piece and the second connection piece are arranged along the extension direction of the deformation element, and the connection position of the deformation element and the attenuation element is located between the first connection piece and the Between the second connecting piece.
  • the first connecting member and the second connecting member are separated by a predetermined distance.
  • the distance between the first connecting piece and the second connecting piece is not less than a minimum distance; the minimum distance is:
  • L min is the minimum distance
  • E is the elastic modulus of the deformation element
  • I is the moment of inertia of the deformation element
  • P min is the minimum compressive stress
  • the minimum compressive stress is the ability to make the deformation The minimum value of the compressive stress at which the component is bent.
  • the deformation element includes: a first metal sheet connected to the attenuating element, and connected to the fixing part through the first connecting piece and the second connecting piece; and a second metal sheet connected to the attenuation element.
  • the first metal sheet is connected, and the thermal expansion coefficient of the second metal sheet is different from the thermal expansion coefficient of the first metal sheet.
  • the optical signal attenuator further includes a locking element; the first connecting element is slidably connected to the fixing element and slidably connected to the deforming element, and the first connecting element is slidably connected to the fixing element.
  • the locking element is detachably connected to limit the relative movement between the first connecting piece and the deformable element, and the relative movement between the first connecting piece and the fixing piece, and/or,
  • the second connecting piece is slidably connected to the fixing piece and slidably connected to the deforming element, and the first connecting piece is detachably connected to the locking element to restrict the first The relative movement between the connecting piece and the deformable element, and the relative movement between the first connecting piece and the fixing piece.
  • the optical signal attenuator further includes: a mounting seat, and the mounting seat is connected to the deformation element and the attenuation element.
  • the optical signal channel includes: a first collimator located on one side of the attenuation element; a second collimator located on the other side of the attenuation element; the first collimator and the The accommodating space is formed between the second collimators.
  • the ends of the first collimator and the second collimator are both provided with an antireflection film.
  • the embodiment of the present disclosure also provides an optical signal transmission system, which includes: an optical splitter, provided with a first signal output terminal and a second signal output terminal; a first optical fiber, and the first signal output terminal Connection; a second optical fiber connected to the second signal output end; the optical signal attenuator as described above, the optical signal attenuator is arranged in the first optical fiber or the second optical fiber.
  • the embodiment of the present disclosure also provides a fault detection method of an optical signal transmission system, the fault detection method is applied to the optical signal transmission system provided in the above embodiment; the fault detection method includes: calibrating the optical signal attenuator , Obtain the corresponding relationship between the attenuation intensity of the optical signal attenuator and the temperature; obtain the ambient temperature, and obtain the theoretical attenuation intensity according to the corresponding relationship between the attenuation intensity of the optical signal attenuator and the temperature; The intensity of the optical signal in the first optical fiber that has not been attenuated by the optical signal attenuator is subtracted from the intensity of the optical signal in the second optical fiber that has been attenuated by the optical signal attenuator to obtain the optical signal attenuator When the absolute value of the difference between the theoretical attenuation intensity and the actual attenuation intensity is less than a preset threshold, it is determined that there is no fault in the optical signal transmission system, and the theoretical attenuation When the absolute value of the difference between the intensity and the actual atten
  • the embodiments of the present disclosure also provide a detection method of ambient temperature, which is applied to the optical signal transmission system provided in the above embodiment; the detection method includes: calibrating the optical signal attenuator to obtain the light The corresponding relationship between the attenuation intensity of the signal attenuator and the temperature; the intensity of the optical signal in the first optical fiber that has not been attenuated by the optical signal attenuator is compared with the intensity of the optical signal in the second optical fiber that has passed through the optical signal attenuator The intensity of the attenuated optical signal is subtracted to obtain the attenuation intensity of the optical signal attenuator; and the ambient temperature is obtained according to the attenuation intensity and the corresponding relationship between the attenuation intensity of the optical signal attenuator and temperature.
  • the embodiments of the present disclosure provide an optical signal attenuator, which includes an optical signal channel provided with an accommodation space, an attenuation element partially located in the optical signal channel, and a deformation element connected to the attenuation element.
  • the deformation element drives the attenuation element when the temperature changes Displacement is generated, and the area of the cross section of the optical signal channel occupied by the attenuation element is changed, thereby changing the proportion of the attenuated optical signal in the total optical signal, thereby adjusting the attenuation intensity of the optical signal attenuator.
  • the embodiments of the present disclosure utilize the kinetic energy generated by the deformation element of the optical signal attenuator according to the temperature change, so that the attenuation intensity of the optical signal attenuator is automatically adjusted with the temperature change without consuming external energy.
  • FIG. 1 is a schematic structural diagram of an optical signal attenuator provided by an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of another optical signal attenuator provided by an embodiment of the disclosure.
  • FIG. 3 is a schematic structural diagram of another optical signal attenuator provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic structural diagram of another optical signal attenuator provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of a first type of locking element in the optical signal attenuator provided by an embodiment of the disclosure
  • FIG. 6 is a schematic structural diagram of a second type of locking element in the optical signal attenuator provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of assembling a mounting seat, a deformation element, and an attenuation element in the optical signal attenuator provided by the embodiments of the disclosure;
  • FIG. 8 is a schematic diagram of assembling a first collimator, a second collimator, and an attenuating element in the optical signal attenuator provided by the embodiments of the disclosure;
  • FIG. 9 is a schematic structural diagram of an optical signal transmission system provided by an embodiment of the disclosure.
  • FIG. 10 is a diagram of the corresponding relationship between the attenuation intensity and temperature of an optical signal attenuator in an optical signal transmission system provided by an embodiment of the disclosure.
  • 10- optical signal channel 11-accommodating space, 12-first collimator, 13-second collimator, 20-attenuation element, 30-deformation element, 31-first metal sheet, 32-second metal sheet , 40-fixing piece, 50-first connecting piece, 60-second connecting piece, 70-locking element, 70A-first type of locking element, 71A-sleeve, 72A-base, 73A-deformation groove, 74A-splint, 75A-locking hole, 70B-locking element of the second type, 71B-mounting sleeve, 72B-seat plate, 73B-threaded hole, 80-mounting seat, 1-splitter, 1a-first signal Output terminal, 1b-second signal output terminal, 2-first optical fiber, 3-second optical fiber, 4-optical signal attenuator.
  • the optical signal attenuator can be used in any optical fiber transmission system.
  • the optical signal attenuator can be used in a network optical signal transmission system, and it can also be used in optical signal transmission of a close-range control system. .
  • the optical signal attenuator includes: an optical signal channel 10, an attenuation element 20 and a deformation element 30.
  • the optical signal channel 10 is used to transmit optical signals.
  • the optical signal channel 10 can be any component that can transmit optical signals, such as optical fibers, and optical signals are transmitted in optical fibers; for example, it can also be an optical signal transmitter and an optical signal receiver.
  • Optical signal channel the optical signal is sent from the optical signal transmitter and received by the optical signal receiver.
  • An accommodating space 11 is provided in the optical signal channel 10, and the accommodating space 11 is used for accommodating the attenuating element 20, that is, the attenuating element 20 enters the optical signal channel through the accommodating space 11.
  • the form of the accommodating space 11 is also different.
  • the optical signal channel 10 is a transmission fiber, and the transmission fiber is provided with a slot, thereby forming the accommodating space 11 in the transmission fiber; for example, the optical signal channel
  • the optical signal channel including the optical signal transmitter and the optical signal receiver, the optical signal transmitter and the optical signal receiver are separated by a preset distance, and an accommodation space 11 is formed between the optical signal transmitter and the optical signal receiver.
  • the attenuation element 20 is an element that can absorb optical signals, and at least a part of the attenuation element 20 is located in the containing space 11, that is, at least a part of the attenuation element 20 is located in the optical signal channel 10, thereby absorbing the optical signal in the optical signal channel 10, thereby Realize the attenuation of the optical signal.
  • the attenuation element 20 occupies at least a part of the accommodating space 11, when the optical signal passes through the accommodating space 11, at least a part of the optical signal passes through the attenuation element 20, and during the process of this part of the optical signal passing through the attenuation element 20 A part of the optical signal of this part is absorbed by the attenuating element 20, thereby reducing the intensity of the optical signal of this part, and further reducing the intensity of the optical signal after passing through the attenuating element 20.
  • the attenuation element 20 is optically polished neutral absorption glass.
  • the deformation element 30 is an element that can be deformed according to temperature, that is, the deformation element 30 is a temperature sensitive element. When the temperature of the environment where the deformation element 30 is located changes, internal stress is generated in the deformation element 30 and the internal stress is generated in the deformation element 30. Deformation occurs under the action.
  • the deformation element 30 is connected to the attenuation element 20, so that when the temperature of the environment where the deformation element 30 is located, the deformation element 30 drives the attenuation element 20 to move, wherein the displacement direction of the attenuation element 30 is the same as the extension direction of the optical signal channel 10 It is a preset angle.
  • the preset angle is greater than 0 degrees, that is, the displacement direction of the attenuation element 30 is not parallel to the extension direction of the optical signal channel 10.
  • the principle of adjusting the attenuation intensity of the optical signal attenuator is exemplified below.
  • the cross section perpendicular to the extending direction of the optical signal channel 10 is called a cross section, and the attenuation element 20 occupies at least a part of the cross section.
  • the attenuation element 20 absorbs part of the attenuated optical signal, thereby reducing the intensity of the attenuated optical signal, thereby reducing the intensity of the optical signal passing through the optical signal attenuator.
  • the deformation element 30 is deformed, so that the attenuation element 20 is displaced non-parallel to the extension direction of the optical signal channel 10, so that the attenuation element 20 occupies a cross-sectional area. Change, change the ratio of the attenuated optical signal to the total optical signal, and then change the attenuation intensity of the optical signal attenuator, that is, adjust the attenuation intensity of the optical signal attenuator according to the temperature.
  • the optical signal attenuator provided by the embodiment of the present disclosure includes an optical signal channel provided with an accommodation space, an attenuation element partially located in the optical signal channel, and a deformation element connected to the attenuation element.
  • the deformation element drives the attenuation element to produce Displacement and change the area of the attenuation element occupying the cross-section of the optical signal channel, thereby changing the proportion of the attenuated optical signal in the total optical signal, and then adjusting the attenuation intensity of the optical signal attenuator, that is, the optical signal attenuator using temperature changes
  • the kinetic energy generated by the deformable element makes the attenuation intensity of the optical signal attenuator automatically adjusted with temperature changes without consuming external energy.
  • the optical signal attenuator further includes a fixing member 40.
  • the deformation element 30 Along the extension direction of the deformation element 30 (that is, the longest dimension of the deformation element 30), one end of the deformation element 30 is fixedly connected to the fixing member 40, and the other end of the deformation element 30 is connected to the attenuation element 20.
  • the deformation element 30 drives the attenuation element 20 to move along the extension direction of the deformation element 20, wherein the extension direction of the deformation element 30 and the extension direction of the optical signal channel 10 are at a predetermined angle, that is, the extension direction of the deformation element 30 does not correspond to the extension direction of the optical signal.
  • the extension direction of the channel 10 is vertical, so that the attenuation element 20 is displaced along a mountain that is not perpendicular to the extension direction of the optical signal channel 10, and the area of the attenuation element 20 that occupies the cross section of the optical signal channel 10 is changed, thereby changing the optical signal attenuator Attenuation intensity, that is, the attenuation intensity of the optical signal attenuator can be automatically adjusted with temperature.
  • the optical signal attenuator further includes a fixing member 40, a first connecting member 50 and a second connecting member 60.
  • the first connecting piece 50 is connected to the fixing piece 40 and connected to the deformable element 30, that is, the deforming element 30 is connected to the fixing piece 40 through the first connecting piece 50;
  • the second connecting piece 60 is connected to the fixing piece 40 and is connected to the deforming element 30.
  • the element 30 is connected, that is, the deformable element 30 is also connected to the fixing member 40 through the second connecting member 60.
  • the first connecting piece 50 and the second connecting piece 60 are arranged along the extension direction of the deforming element 30, and the connecting position of the deforming element 30 and the attenuating element 20 is located between the first connecting piece 50 and the second connecting piece 60, that is, along the deforming element In the extending direction of 30, the attenuating element 20 is located between the first connecting piece 50 and the second connecting piece 60.
  • the deformable element 30 located between the first connecting piece 50 and the second connecting piece 60 bends, so that the attenuation element 20 is displaced.
  • the deformable element 30 When the deformable element 30 is bent, the deformable element 30 and the attenuation element The displacement of the position where 20 is connected is not parallel to the extension direction of the optical signal channel 10, so that the attenuation element 20 is displaced non-parallel to the extension direction of the optical signal channel 10, and the attenuation element occupies the cross-sectional area of the optical signal channel. Change, thereby changing the proportion of the attenuated optical signal in the total optical signal, and then adjust the attenuation intensity of the optical signal attenuator.
  • the first connecting member 50 and the second connecting member 60 are separated by a predetermined distance, so that the deformable element 30 can be formed under the action of compressive stress. Unstable bending, and then the attenuation element 20 is displaced by the bending of the deformation element, thereby adjusting the attenuation strength of the optical signal attenuator.
  • the minimum distance between the first connector 50 and the second connector is determined according to the adjustment accuracy of the attenuation intensity of the optical signal attenuator, specifically, the minimum compressive stress P min is determined according to the adjustment accuracy of the attenuation intensity of the optical signal attenuator, that is, The minimum value of the compressive stress that can cause the deformation element 30 to bend.
  • the critical compressive stress is calculated by the following formula:
  • P cr is the critical compressive stress
  • E is the elastic modulus of the deformation element
  • I is the moment of inertia of the deformation element
  • L is the deformation element between the first connector 50 and the second connector 60
  • the length that is, the distance between the first connecting member 50 and the second connecting member 60 along the extension direction of the deformable element 30.
  • the minimum distance L min between the first connecting member 50 and the second connecting member can be obtained:
  • the deformation element 30 includes a first metal sheet 31 and a second metal sheet 32.
  • the first metal sheet 31 is connected to the attenuating element 20 and is connected to the attenuation element 20 through the first connecting member 50 and the second connecting member.
  • the member 60 is connected to the fixing member 40, the second metal piece 32 is connected to the first metal piece 31, and the thermal expansion coefficient of the second metal piece 32 is different from that of the first metal piece 31.
  • the first metal piece The amount of deformation produced by the sheet 31 and the second metal sheet 32 is different, so that the deformable element 30 is bent.
  • the thermal expansion coefficient of the first metal sheet 31 is greater than the thermal expansion coefficient of the second metal sheet 32 as an example for the deformation element 30
  • the relationship between deformation and temperature change is exemplified. In a state where the temperature rises, the elongation of the first metal sheet 31 is greater than the elongation of the second metal sheet 32, and the deformation element 30 faces the side of the first metal sheet 31. Bending; In a state where the temperature drops, the amount of shortening of the first metal sheet 31 is greater than that of the second metal sheet 32, and the deformable element 30 is bent to one side of the second metal sheet 32.
  • the optical signal attenuator further includes a locking element.
  • At least one of the first connecting member 50 and the second connecting member 60 is a movable member, that is, a connecting member that can slide along the extension direction of the deformable element.
  • the stop element 70 is detachably connected with the movable part to limit the relative movement between the movable part and the deformable element, and limit the relative movement between the movable part and the fixed part.
  • the following description takes the first connecting member 50 as an example.
  • the first connecting member 50 is slidably connected to the fixing member 40, and is slidably connected to the deformable element 30, and the first connecting member 50 is detachably connected to the locking element 70.
  • the locking element 70 restricts the relative movement between the first connecting member 50 and the deformable element 30, and restricts the relative movement between the first connecting member 50 and the fixing member 40.
  • the first connecting piece 50 can slide along the extension direction of the deformable element 40, thereby adjusting the distance between the first connecting piece 50 and the second connecting piece 60, thereby adjusting the distance between the first connecting piece 50 and the second connecting piece 60.
  • the length of the deformable element 60 between the connecting piece 50 and the second connecting piece 60 is used to adjust the amount of deformation of the deforming element 60, thereby adjusting the attenuation degree of the optical signal attenuator, so that the first connecting piece 50 is along the extension direction of the deforming element 30
  • the locking element 70 is connected to the first connecting piece 50, thereby restricting the relative movement between the first connecting piece 50 and the deformable element 30, and restricting the first connecting piece 50 and the fixing piece 40
  • the relative movement of the deformable element 30 is fixed to the fixing member 40 through the first connecting member 50, so that the deformable element 30 can be bent and deformed.
  • the locking element 70 is any structure that can be detachably connected to the first connecting member 50, can restrict the relative movement of the first connecting member 50 and the deformable element, and can restrict the relative movement of the first connecting member 50 and the fixing member 40, as follows
  • the structure of the locking element 70 is exemplarily described with reference to FIGS. 5 and 6. It should be understood that the structure of the locking element 70 is not limited to the two structures described below.
  • the first type of locking element 70A includes a sleeve 71A and a base 72A, and the base 72A is connected to the outer surface of the sleeve 71A.
  • the sleeve 71A is provided with a deformation groove 73A, two sides of the deformation groove 73A are provided with a clamping plate 74A, and a locking hole 75A is provided on the clamping plate 74A.
  • the sleeve 71A is sleeved on the deformable element, the bottom surface of the base 72A is in contact with the fixing member 40, and the inner edge size of the sleeve 71A is larger than the outer edge size of the deformable element 30 so that the first type of locking element 70A can follow the deformation element Slide in the extension direction; after moving the locking element to the desired position, pass the bolt through the locking hole of the splint, and install a nut on the other side of the bolt, and apply a pressing force to the splint 74A by tightening the nut, so that The deformation groove 73A is deformed, and the size of the inner edge of the sleeve 71A is reduced.
  • the second type of locking element 70B includes a mounting sleeve 71B and a seat plate 72B, and the mounting sleeve 71B is connected to the outer surface of the seat plate 72B.
  • a threaded hole 73B is provided on the mounting sleeve 71B.
  • the mounting sleeve 71B, the bottom surface of the seat plate 72B is in contact with the fixing member 40, the inner edge size of the mounting sleeve 71B is larger than the outer edge size of the deformable element 30, so that the locking element 70B can slide along the extension direction of the deformable element;
  • After the element is moved to the desired position pass the bolt through the threaded hole 73B, and abut the deformation element 30 at the other end of the bolt, so that friction is generated between the bolt and the deformation element 30, and the friction force can limit the second
  • the optical signal attenuator further includes a mounting seat 80 that is connected to the deformable element 30 and the attenuating element 20, that is, the attenuating element 20 is connected to the deforming element 30 through the mounting seat 80.
  • the deformation element 30 is a slender element, which is inconvenient to directly connect with the attenuation element 30.
  • the optical signal channel 10 includes: a first collimator 12 and a second collimator 13.
  • the first collimator 12 is located on one side of the attenuating element 20, and the second collimator 13 is located on the other side of the attenuating element 20, and is formed between the first collimator 12 and the second collimator 13 collimator In the accommodating space 11 accommodating the attenuating element.
  • the non-parallel input optical signal can be converted into the parallel input optical signal, which can prevent the optical signal from leaking without installing the optical fiber and reduce the optical signal.
  • the optical signal of channel 10 is lost.
  • the ends of the first collimator 12 and the second collimator 13 are both provided with antireflection coatings, so as to increase the light transmittance of the first collimator 12 and the second collimator 13, thereby further reducing The optical signal of the optical signal channel 10 is lost.
  • the embodiment of the present invention also provides an optical signal transmission system.
  • the optical signal transmission system includes: an optical splitter 1, a first optical fiber 2, a second optical fiber 3, and an optical signal attenuation as described above. ⁇ 4.
  • the optical splitter 1 is provided with a first signal output terminal 1a and a second signal output terminal 1b, and the input optical signal can be output by the first signal output terminal 1a and the second signal output terminal 1b, and the first signal output terminal 1a
  • the intensity of the output optical signal is equal to the intensity of the optical signal output from the second signal output terminal 1b.
  • the first optical fiber 2 is connected to the first signal output end 1a
  • the second optical fiber 3 is connected to the second signal output end 1b
  • the optical signal attenuator 4 is arranged in the first optical fiber 2 or the second optical fiber 3.
  • the optical fiber The attenuator 4 is provided in the first optical fiber as an example for the following description.
  • the corresponding relationship between the attenuation intensity of the optical signal attenuator 4 and temperature can be obtained.
  • the corresponding relationship between the attenuation intensity of the optical signal attenuator 4 and temperature is shown in FIG. Shows that the attenuation intensity is roughly proportional to the temperature.
  • the theoretical attenuation intensity of the optical signal attenuator 4 can be obtained, and the intensity of the optical signal in the first optical fiber 2 that has not been attenuated by the optical signal attenuator 4 is compared with that of the second optical fiber In 3, the intensity of the optical signal attenuated by the optical signal attenuator 4 is subtracted, and the actual attenuation intensity of the optical signal attenuator 4 can be obtained.
  • the theoretical attenuation intensity and the actual attenuation intensity it can be determined whether there is a fault in the optical signal transmission system.
  • the absolute value of the difference between the theoretical attenuation intensity and the actual attenuation intensity is less than the preset threshold, confirm that there is no fault in the optical signal transmission system; the difference between the theoretical attenuation intensity and the actual attenuation intensity When the absolute value is greater than the preset threshold, it is confirmed that there is a fault in the optical signal transmission system.
  • the temperature of the environment can also be measured by the attenuation intensity of the optical signal attenuator 4.
  • the first optical fiber 2 is not attenuated by the optical signal.
  • the intensity of the optical signal attenuated by the optical signal attenuator 4 is subtracted from the intensity of the optical signal attenuated by the optical signal attenuator 4 in the second optical fiber 3 to obtain the attenuation intensity of the optical signal attenuator 4, and the attenuation intensity of the optical signal attenuator 4 is compared with the temperature Correspondence between, get the temperature of the environment.
  • the embodiments of the present disclosure provide an optical signal attenuator, which includes an optical signal channel provided with an accommodation space, an attenuation element partially located in the optical signal channel, and a deformation element connected to the attenuation element.
  • the deformation element drives the attenuation element when the temperature changes Displacement is generated, and the area of the cross section of the optical signal channel occupied by the attenuation element is changed, thereby changing the proportion of the attenuated optical signal in the total optical signal, thereby adjusting the attenuation intensity of the optical signal attenuator.
  • the embodiments of the present disclosure utilize the kinetic energy generated by the deformation element of the optical signal attenuator according to the temperature change, so that the attenuation intensity of the optical signal attenuator is automatically adjusted with the temperature change without consuming external energy.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种光信号衰减器及一种光信号传输系统,涉及光通信领域。光信号衰减器包括:光信号通道(10),设置有容纳空间(11);衰减元件(20),至少一部分位于容纳空间(11)中,以吸收光信号通道(10)中的一部分光信号;形变元件(30),与衰减元件(20)连接,形变元件(30)能够根据温度发生形变,以使衰减元件(20)发生位移;其中,衰减元件(20)的位移方向与光信号通道(10)的延伸方向呈预设的角度。光信号衰减器的衰减强度能够随温度自动调节,且无需消耗外部能量。光信号传输系统能够确认系统中是否存在故障或能够测量环境的温度。

Description

一种光信号衰减器及一种光信号传输系统
相关申请的交叉引用
本公开基于申请号为202020444531.0申请日为2020年03月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及光通信领域,尤其涉及一种光信号衰减器及一种光信号传输系统。
背景技术
光信号衰减器是光纤通信系统的重要器件之一,主要用来降低或控制光信号,实现不同通信信道之间的功率均衡。在光信号传输系统中各光学器件的光学特性会随温度的改变而发生变化,需要根据温度的变化对光信号衰减器的衰减强度进行调节,其中,光信号衰减器的衰减强度是指,经过光信号衰减器前的光信号的强度与经过光信号衰减器后的光信号的强度之间的差值。
相关的光信号衰减器通过温度传感器和执行机构实现对光信号衰减器的衰减强度的调节,这种光信号衰减器需要消耗外部能量。
发明内容
本公开提供一种光信号衰减器及一种光信号传输系统,以解决如何在无需消耗外部能量的前提下,使光信号衰减器的衰减强度随温度的变化自动调节的技术问题。
本公开实施例提供一种光信号衰减器,该光信号衰减器包括:光信号通道,设置有容纳空间;衰减元件,至少一部分位于所述容纳空间中,以吸收所述光信号通道中的一部分光信号;形变元件,与所述衰减元件连接,所述形变元件能够根据温度发生形变,以使所述衰减元件发生位移;其中,所述衰减元件的位移方向与所述光信号通道的延伸方向呈预设的角度。
进一步地,所述光信号衰减器还包括固定件;沿所述形变元件的延伸方向,所述形变元件的一端与所述固定件固定连接,所述形变元件的另一端与所述衰减元件连接;所述形变元件的延伸方向与所述光信号通道的延伸方向呈所述的预设的角度。
进一步地,所述光信号衰减器还包括:固定件;第一连接件,与所述固定件连接,并与所述形变元件连接;第二连接件,与所述固定件连接,并与所述形变元件连接;所述第一连接件和所述第二连接件沿所述形变元件的延伸方向设置,所述形变元件与所述衰减元件连接的位置位于所述第一连接件和所述第二连接件之间。
进一步地,沿所述形变元件的延伸方向,所述第一连接件和所述第二连接件相距预设的距离。
进一步地,所述第一连接件和所述第二连接件的距离不小于最小间距;所述最小距离为:
Figure PCTCN2020135493-appb-000001
式中,L min为所述最小间距,E为所述形变元件的弹性模量,I为所述形变元件的惯性矩,P min为最小压应力,所述最小压应力为能够使所述形变元件发生弯曲的压应力的最小值。
进一步地,所述形变元件包括:第一金属片,与所述衰减元件连接,并通过所述第一连接件和所述第二连接件与所述固定件连接;第二金属片,与所述第一金属片连接,且所述第二金属片的热膨胀系数与所述第一金属片的热膨胀系数不同。
进一步地,所述光信号衰减器还包括锁止元件;所述第一连接件与所 述固定件可滑动地连接,并与所述形变元件可滑动地连接,所述第一连接件与所述锁止元件可拆卸地连接,以限制所述第一连接件和所述形变元件之间的相对运动,以及所述第一连接件和所述固定件之间的相对运动,和/或,所述第二连接件与所述固定件可滑动地连接,并与所述形变元件可滑动地连接,所述第一连接件与所述锁止元件可拆卸地连接,以限制所述第一连接件和所述形变元件之间的相对运动,以及所述第一连接件和所述固定件之间的相对运动。
进一步地,所述光信号衰减器还包括:安装座,所述安装座与所述形变元件和所述衰减元件连接。
进一步地,所述光信号通道包括:第一准直器,位于所述衰减元件的一侧;第二准直器位于所述衰减元件的另一侧;所述第一准直器和所述第二准直器之间形成所述容纳空间。
进一步地,所述第一准直器和所述第二准直器的端部均设置有增透膜。
本公开实施例还提供了一种光信号传输系统,该光信号传输系统包括:分光器,设置有第一信号输出端和第二信号输出端;第一光纤,与所述第一信号输出端连接;第二光纤,与所述第二信号输出端连接;如前文所述的光信号衰减器,所述光信号衰减器设置于所述第一光纤或所述第二光纤中。
本公开实施例还提供一种光信号传输系统的故障检测方法,所述故障检测方法应用于如上实施例提供的光信号传输系统;所述故障检测方法包括:对所述光信号衰减器进行标定,获取所述光信号衰减器的衰减强度与温度之间的对应关系;获取环境温度,并根据所述光信号衰减器的衰减强度与温度之间的对应关系,得到理论衰减强度;将所述第一光纤中未经过所述光信号衰减器衰减的光信号的强度与所述第二光纤中的经过所述光信号衰减器的衰减的光信号的强度相减,得到所述光信号衰减器的实际衰减 强度;在所述理论衰减强度与所述实际衰减强度之间的差值的绝对值小于预设阈值的状态下,确定所述光信号传输系统中不存在故障,在所述理论衰减强度与所述实际衰减强度之间的差值的绝对值大于预设阈值的状态下,确定所述光信号传输系统中存在故障。
本公开实施例还提供一种环境温度的检测方法,所述检测方法应用于如上实施例提供的光信号传输系统;所述检测方法包括:对所述光信号衰减器进行标定,获取所述光信号衰减器的衰减强度与温度之间的对应关系;将所述第一光纤中未经过所述光信号衰减器衰减的光信号的强度与所述第二光纤中的经过所述光信号衰减器的衰减的光信号的强度相减,得到所述光信号衰减器的衰减强度;根据所述衰减强度和所述光信号衰减器的衰减强度与温度之间的对应关系,得到环境温度。
本公开实施例提供一种光信号衰减器,包括设置有容纳空间的光信号通道、部分位于光信号通道中的衰减元件和与衰减元件连接的形变元件,在温度发生变化时形变元件带动衰减元件产生位移,并使衰减元件占光信号通道的横截面的面积发生改变,从而改变衰减光信号占总光信号中的比例,进而调节光信号衰减器的衰减强度。即,本公开实施例利用温度变化时光信号衰减器的形变元件产生的动能,使光信号衰减器的衰减强度随温度的变化而自动调节,而无需消耗外部能量。
附图说明
图1为本公开实施例提供的一种光信号衰减器的结构示意图;
图2为本公开实施例提供的另一种光信号衰减器的结构示意图;
图3为本公开实施例提供的另一种光信号衰减器的结构示意图;
图4为本公开实施例提供的另一种光信号衰减器的结构示意图;
图5为本公开实施例提供的光信号衰减器中的第一类型的锁止元件的结构示意图;
图6为本公开实施例提供的光信号衰减器中的第二类型的锁止元件的结构示意图;
图7为本公开实施例提供的光信号衰减器中的一种安装座、形变元件和衰减元件的装配示意图;
图8为本公开实施例提供的光信号衰减器中的一种第一准直器、第二准直器和衰减元件的装配示意图;
图9为本公开实施例提供的一种光信号传输系统的结构示意图;
图10为本公开实施例提供的一种光信号传输系统中光信号衰减器的衰减强度与温度的对应关系图。
附图标记说明
10-光信号通道,11-容纳空间,12-第一准直器,13-第二准直器,20-衰减元件,30-形变元件,31-第一金属片,32-第二金属片,40-固定件,50-第一连接件,60-第二连接件,70-锁止元件,70A-第一类型的锁止元件,71A-套筒,72A-底座,73A-形变槽,74A-夹板,75A-锁止孔,70B-第二类型的锁止元件,71B-安装套,72B-座板,73B-螺纹孔,80-安装座,1-分光器,1a-第一信号输出端,1b-第二信号输出端,2-第一光纤,3-第二光纤,4-光信号衰减器。
具体实施方式
在具体实施方式中所描述的各个实施例中的各个具体技术特征,在不矛盾的情况下,可以进行各种组合,例如通过不同的具体技术特征的组合可以形成不同的实施方式,为了避免不必要的重复,本公开中各个具体技术特征的各种可能的组合方式不再另行说明。
在以下具体实施方式中所述光信号衰减器可以用于任何通光纤传输系统,例如,该光信号衰减器可以用于网络光信号传输系统,还可以用于近距离的控制系统的光信号传输。
如图1所示,所述光信号衰减器包括:光信号通道10、衰减元件20和形变元件30。光信号通道10用于传输光信号,光信号通道10可以为任何可以传输光信号的元件,例如可以为光纤,光信号在光纤中传输;例如还可以为包括光信号发射器和光信号接收器的光信号通道,光信号从光信号发射器发出并由光信号接收器接收。光信号通道10中设置有容纳空间11,容纳空间11用于容纳衰减元件20,即,衰减元件20穿过容纳空间11进入光信号通道中。根据光信号通道10的形式不同,容纳空间11的形式也不同,例如,光信号通道10为传输光纤,该传输光纤设置有插槽,从而在传输光纤中形成容纳空间11;例如,光信号通道为包括光信号发射器和光信号接收器的光信号通道,光信号发射器和光信号接收器相距预设的距离,在光信号发射器和光信号接收器之间形成容纳空间11。
衰减元件20为可以吸收光信号的元件,至少一部分的衰减元件20位于容纳空间11中,即,至少一部分的衰减元件20位于光信号通道10中,从而吸收光信号通道10中的光信号,从而实现对光信号的衰减。具体的,衰减元件20占用至少一部分的容纳空间11,光信号在穿过容纳空间11时,至少有一部分的光信号穿过衰减元件20,在该部分的光信号穿过衰减元件20的过程中,该部分的光信号的一部分被衰减元件20吸收,从而降低了该部分的光信号的强度,进而降低了经过衰减元件20后的光信号的强度。可选的,衰减元件20为经光学抛光的中性吸收玻璃。
形变元件30为可以根据温度发生形变的元件,即,形变元件30为温度敏感元件,在形变元件30所在环境的温度发生变化的状态下,在形变元件30中产生内应力并在该内应力的作用下产生形变。形变元件30与衰减元件20连接,从而在形变元件30所在环境的温度发生变化的状态下,形变元件30带动衰减元件20发生位移,其中,衰减元件30的位移方向与光信号通道10的延伸方向呈预设的角度,需要说明的是,预设的角度大于0 度,即,衰减元件30的位移方向不与光信号通道10的延伸方向平行。下面对光信号衰减器的衰减强度进行调节的原理进行示例性说明。
为了便于说明,将垂直于光信号通道10的延伸方向的截面称为横截面,衰减元件20占该横截面的至少一部分,在光信号穿过该横截面时,至少一部分的光信号穿过衰减元件20,为了便于说明,以下将该部分的光信号称为衰减光信号。衰减光信号在穿过衰减元件20的过程中,衰减元件20吸收部分的衰减光信号,从而使衰减光信号的强度降低,进而使穿过光信号衰减器的光信号的强度降低,其中,衰减元件20占该横截面的面积越大,衰减光信号占总光信号的比例越大,光信号衰减器的衰减强度越强。在光信号衰减器所在的环境温度发生变化的状态下,形变元件30发生形变,从而使衰减元件20发生非平行于光信号通道10的延伸方向的位移,使衰减元件20占横截面的面积发生改变,改变衰减光信号占总光信号的比例,进而改变光信号衰减器的衰减强度,即,根据温度调节光信号衰减器的衰减强度。
本公开实施例提供的光信号衰减器,包括设置有容纳空间的光信号通道,部分位于光信号通道中的衰减元件和与衰减元件连接的形变元件,在温度发生变化时形变元件带动衰减元件产生位移,并使衰减元件占光信号通道的横截面的面积发生改变,从而改变衰减光信号占总光信号中的比例,进而调节光信号衰减器的衰减强度,即,利用温度变化时光信号衰减器的形变元件产生的动能,使光信号衰减器的衰减强度随温度的变化而自动调节,而无需消耗外部能量。
在一些实施例中,如图2所示,光信号衰减器还包括固定件40。沿形变元件30的延伸方向(即形变元件30的尺寸最长的方向),形变元件30的一端与固定件40固定连接,形变元件30的另一端与衰减元件20连接,在温度发生变化时,形变元件30带动衰减元件20沿形变元件20的延伸方 向运动,其中,形变元件30的延伸方向与光信号通道10的延伸方向呈预设的角度,即,形变元件30的延伸方向不与光信号通道10的延伸方向垂直,从而使衰减元件20发生沿非垂直于光信号通道10的延伸方向山的位移,改变衰减元件20占光信号通道10的横截面的面积,进而改变光信号衰减器的衰减强度,即,使光信号衰减器的衰减强度能够随温度自动调节。
在另一些实施例中,如图3所示,光信号衰减器还包括:固定件40,第一连接件50和第二连接件60。第一连接件50与固定件40连接,并与形变元件30连接,即,形变元件30的通过第一连接件50与固定件40连接;第二连接件60与固定件40连接,并与形变元件30连接,即,形变元件30还通过第二连接件60与固定件40连接。第一连接件50和第二连接件60沿形变元件30的延伸方向设置,形变元件30与衰减元件20连接的位置位于第一连接件50和第二连接件60之间,即,沿形变元件30的延伸方向,衰减元件20位于第一连接件50和第二连接件60之间。在温度发生变化时,位于第一连接件50和第二连接件60之间的形变元件30发生弯曲,从而使衰减元件20产生位移,其中,在形变元件30弯曲时,形变元件30与衰减元件20连接的位置的位移不与光信号通道10的延伸方向平行,从而使衰减元件20产生非平行于光信号通道10的延伸方向的位移,并使衰减元件占光信号通道的横截面的面积发生改变,从而改变衰减光信号占总光信号中的比例,进而调节光信号衰减器的衰减强度。
在一些实施例中,如图3所示,沿形变元件30的延伸方向,第一连接件50和第二连接件60相距预设的距离,以使形变元件30能够在压应力的作用下发生失稳弯曲,进而通过形变元件的弯曲使衰减元件20产生位移,从而调节光信号衰减器的衰减强度。第一连接件50和第二连接件相距的最小间距根据光信号衰减器的衰减强度的调节精度确定,具体的,根据光信号衰减器的衰减强度的调节精度确定最小压应力P min,即,能够使形变元件 30发生弯曲的压应力的最小值。然后下式计算得到临界压应力:
Figure PCTCN2020135493-appb-000002
式(1)中P cr为临界压应力,E为形变元件30的弹性模量,I为形变元件30的惯性矩,L为第一连接件50和第二连接件60之间的形变元件的长度,即,沿形变元件30的延伸方向上,第一连接件50和第二连接件60的间距。使临界压应力P cr小于最小压应力P min可以使形变元件30在最小的压应力P min的作用下能够弯曲,即
P cr<P min          (2)
将式(1)带入式(2)中:
Figure PCTCN2020135493-appb-000003
根据式(3)可以得到第一连接件50和第二连接件相距的最小间距L min
Figure PCTCN2020135493-appb-000004
在一些实施例中,如图4所示,形变元件30包括第一金属片31和第二金属片32,第一金属片31与衰减元件20连接,并通过第一连接件50和第二连接件60与固定件40连接,第二金属片32与第一金属片31连接,且第二金属片32的热膨胀系数与第一金属片31的热膨胀系数不同,在温度发生变化时,第一金属片31和第二金属片32的产生形变的量不同,从而使形变元件30弯曲,具体的,以第一金属片31的热膨胀系数大于第二金属片32的热膨胀系数为例对形变元件30的形变与温度变化的关系进行示例性说明,在温度上升的状态下,第一金属片31的伸长量大于第二金属片32的伸长量,形变元件30向第一金属片31的一侧弯曲;在温度下降的状态下,第一金属片31的缩短量大于第二金属片32的缩短量,形变元件30向第二金属片32的一侧弯曲。
在一些实施例中,光信号衰减器还包括锁止元件,第一连接件50和第二连接件60中的至少一个为活动件,即,可以沿形变元件的延伸方向滑动 的连接件,锁止元件70与活动件可拆卸地连接,以限制活动件与形变元件之间的相对运动,并限制活动件与固定件之间的相对运功。以第一连接件50为例进行以下说明。
如图4所示,第一连接件50与固定件40可滑动地连接,并与形变元件30可滑动地连接,第一连接件50与锁止元件70可拆卸地连接,在将锁止元件70与第一连接件50连接的状态下,锁止元件70限制第一连接件50与形变元件30之间的相对运动,并限制第一连接件50与固定件40之间的相对运动。将锁止元件70从第一连接件50卸下,第一连接件50可沿形变元件40的延伸方向滑动,从而调节第一连接件50和第二连接件60的间距,从而调节位于第一连接件50和第二连接件60之间的形变元件60的长度,以调节形变元件60的形变量,进而调节光信号衰减器的衰减程度,将第一连接件50沿形变元件30的延伸方向滑动至预设位置后,将锁止元件70与第一连接件50连接,从而限制第一连接件50与形变元件30之间的相对运动,并限制第一连接件50与固定件40之间的相对运动,从而将形变元件30通过第一连接件50与固定件40固定,进而使形变元件30能够产生弯曲形变。锁止元件70为任何可以与第一连接件50可拆卸连接、可以限制第一连接件50与形变元件的相对运动、并可以限制第一连接件50与固定件40的相对运动的结构,下面结合图5和图6对锁止元件70的结构进行示例性说明,应当理解,锁止元件70的结构不限于以下所述的两种结构。
如图5所示,第一类型的锁止元件70A包括:套筒71A和底座72A,底座72A与套筒71A外表面连接。套筒71A上设置有形变槽73A,形变槽73A的两侧设置有夹板74A,在夹板74A上设置有锁止孔75A。套筒71A套设在形变元件上,底座72A的底面与固定件40接触,套筒71A的内缘尺寸大于形变元件30的外缘尺寸从而使第一类型的锁止元件70A能够沿形变元件的延伸方向滑动;在将锁止元件移动到所需的位置后,将螺栓穿过 夹板的锁止孔,并在螺栓的另一侧安装螺母,通过拧紧螺母向夹板74A施加压紧力,从而使形变槽73A发生形变,并使套筒71A的内缘尺寸缩小,此时,套筒71A与形变元件30之间产生摩擦力,该摩擦力能够限制第一类型的锁止元件70A与形变元件30之间的相对运动,同时,由于套筒71A的形变,底座72A被压向固定件40A,底座72A与固定件40之间也产生摩擦力,该摩擦力能够限制第一类型的锁止元件70A与固定件40之间的相对运动。
如图6所示,第二类型的锁止元件70B包括:安装套71B和座板72B,安装套71B与座板72B的外表面连接。安装套71B上设置有螺纹孔73B。安装套71B,座板72B的底面与固定件40接触,安装套71B的内缘尺寸大于形变元件30的外缘尺寸,从而使锁止元件70B能够沿形变元件的延伸方向滑动;在将锁止元件移动到所需的位置后,将螺栓穿过螺纹孔73B,并在螺栓的另一端抵接于形变元件30,从而使螺栓与形变元件30之间产生摩擦力,该摩擦力能够限制第二类型的锁止元件70B与形变元件30之间的相对运动,同时,在螺栓与形变元件30之间的正压力的作用下,座板72B被压向固定件40,座板72B与固定件40之间也产生摩擦力,该摩擦力能够限制第二类型的锁止元件70B与固定件40之间的相对运动。
在一些实施例中,如图7所示,光信号衰减器还包括安装座80,安装座80与形变元件30和衰减元件20连接,即,衰减元件20通过安装座80与形变元件30连接。形变元件30的为细长型元件,不便与衰减元件30直接连接,通过设置具有较大尺寸的安装座80,并通过安装座80连接衰减元件20和形变元件30,能够将衰减元件20和形变元件30可靠连接,并减低形变元件20的安装难度。
在一些实施例中,如图8所示,光信号通道10包括:第一准直器12和第二准直器13。第一准直器12位于衰减元件20的一侧,第二准直器13 位于衰减元件20的另一侧,在第一准直器12和第二准直器13准直器之间形成用于容纳衰减元件的容纳空间11。通过设置第一准直器12和第二准直器13,可以将非平行的输入光信号转化为平行的输入光信号,从而可以在无需设置光纤的状态下防止光信号泄露,降低了光信号通道10的光信号损失。可选的,第一准直器12和第二准直器13的端部均设置有增透膜,从而提高第一准直器12和第二准直器13的透光率,进而进一步降低了光信号通道10的光信号损失。
如图9所示,本使用新型实施例还提供了一种光信号传输系统,该光信号传输系统包括:分光器1、第一光纤2、第二光纤3和如上文所述的光信号衰减器4。
分光器1设置有第一信号输出端1a和第二信号输出端1b,能够将输入的光信号分别由第一信号输出端1a和第二信号输出端1b输出,且由第一信号输出端1a输出的光信号的强度与第二信号输出端1b输出的光信号的强度相等。
第一光纤2与第一信号输出端1a连接,第二光纤3与第二信号输出端1b连接,光信号衰减器4设置于第一光纤2或第二光纤3中,为了方便说明,以光纤衰减器4设置于第一光纤中为例进行以下说明。
通过对光信号衰减器4进行标定,能够获取光信号衰减器4的衰减强度与温度之间的对应关系,示例性的,光信号衰减4的衰减强度与温度之间的对应关系如图10所示,衰减强度与温度之间呈大致的正比例关系。
在一些实施例中,在环境温度已知的状态下,可以获知光信号衰减器4的理论衰减强度,将第一光纤2中未经过光信号衰减器4衰减的光信号的强度与第二光纤3中经过光信号衰减器4衰减的光信号的强度相减,能够得到光信号衰减器4的实际衰减强度,通过比较理论衰减强度和实际衰减强度能够确定光信号传输系统中是否存在故障,具体的,在理论衰减强度 和实际衰减强度之间的差值的绝对值小于预设阈值的状态下,确认光信号传输系统中不存在故障;在理论衰减强度和实际衰减强度之间的差值的绝对值大于预设阈值的状态下,确认光信号传输系统中存在故障。
在一些实施例中,在确认光信号传输系统中不存在故障的状态下,还可以通过光信号衰减器4的衰减强度测量环境的温度,具体的,将第一光纤2中未经过光信号衰减器4衰减的光信号的强度与第二光纤3中经过光信号衰减器4衰减的光信号的强度相减,得到光信号衰减器4的衰减强度,并通过光信号衰减4的衰减强度与温度之间的对应关系,得到环境的温度。
以上所述,仅为本公开的较佳实施例而已,并非用于限定本公开的保护范围。
工业实用性
本公开实施例提供一种光信号衰减器,包括设置有容纳空间的光信号通道、部分位于光信号通道中的衰减元件和与衰减元件连接的形变元件,在温度发生变化时形变元件带动衰减元件产生位移,并使衰减元件占光信号通道的横截面的面积发生改变,从而改变衰减光信号占总光信号中的比例,进而调节光信号衰减器的衰减强度。即,本公开实施例利用温度变化时光信号衰减器的形变元件产生的动能,使光信号衰减器的衰减强度随温度的变化而自动调节,而无需消耗外部能量。

Claims (13)

  1. 一种光信号衰减器,其中,包括:
    光信号通道,设置有容纳空间;
    衰减元件,至少一部分位于所述容纳空间中,以吸收所述光信号通道中的一部分光信号;
    形变元件,与所述衰减元件连接,所述形变元件能够根据温度发生形变,以使所述衰减元件发生位移;
    其中,所述衰减元件的位移方向与所述光信号通道的延伸方向呈预设的角度。
  2. 根据权利要求1所述的光信号衰减器,其中,所述光信号衰减器还包括固定件;
    沿所述形变元件的延伸方向,所述形变元件的一端与所述固定件固定连接,所述形变元件的另一端与所述衰减元件连接;
    所述形变元件的延伸方向与所述光信号通道的延伸方向呈所述的预设的角度。
  3. 根据权利要求1所述的光信号衰减器,其中,所述光信号衰减器还包括:
    固定件;
    第一连接件,与所述固定件连接,并与所述形变元件连接;
    第二连接件,与所述固定件连接,并与所述形变元件连接;
    所述第一连接件和所述第二连接件沿所述形变元件的延伸方向设置,所述形变元件与所述衰减元件连接的位置位于所述第一连接件和所述第二连接件之间。
  4. 根据权利要求3所述的光信号衰减器,其中,沿所述形变元件的延 伸方向,所述第一连接件和所述第二连接件相距预设的距离。
  5. 根据权利要求4所述的光信号衰减器,其中,所述第一连接件和所述第二连接件的距离不小于最小间距;
    所述最小距离为:
    Figure PCTCN2020135493-appb-100001
    式中,L min为所述最小间距,E为所述形变元件的弹性模量,I为所述形变元件的惯性矩,P min为最小压应力,所述最小压应力为能够使所述形变元件发生弯曲的压应力的最小值。
  6. 根据权利要求3所述的光信号衰减器,其中,所述形变元件包括:
    第一金属片,与所述衰减元件连接,并通过所述第一连接件和所述第二连接件与所述固定件连接;
    第二金属片,与所述第一金属片连接,且所述第二金属片的热膨胀系数与所述第一金属片的热膨胀系数不同。
  7. 根据权利要求3所述的光信号衰减器,其中,所述光信号衰减器还包括锁止元件;
    所述第一连接件与所述固定件可滑动地连接,并与所述形变元件可滑动地连接,所述第一连接件与所述锁止元件可拆卸地连接,以限制所述第一连接件和所述形变元件之间的相对运动,以及所述第一连接件和所述固定件之间的相对运动,
    和/或,
    所述第二连接件与所述固定件可滑动地连接,并与所述形变元件可滑动地连接,所述第一连接件与所述锁止元件可拆卸地连接,以限制所述第一连接件和所述形变元件之间的相对运动,以及所述第一连接件和所述固定件之间的相对运动。
  8. 根据权利要求1所述的光信号衰减器,其中,所述光信号衰减器还 包括:
    安装座,所述安装座与所述形变元件和所述衰减元件连接。
  9. 根据权利要求1所述的光信号衰减器,其中,所述光信号通道包括:
    第一准直器,位于所述衰减元件的一侧;
    第二准直器位于所述衰减元件的另一侧;
    所述第一准直器和所述第二准直器之间形成所述容纳空间。
  10. 根据权利要求9所述的光信号衰减器,其中,所述第一准直器和所述第二准直器的端部均设置有增透膜。
  11. 一种光信号传输系统,其中,包括:
    分光器,设置有第一信号输出端和第二信号输出端;
    第一光纤,与所述第一信号输出端连接;
    第二光纤,与所述第二信号输出端连接;
    如权利要求1-9中任一项所述的光信号衰减器,所述光信号衰减器设置于所述第一光纤或所述第二光纤中。
  12. 一种光信号传输系统的故障检测方法,其中,所述故障检测方法应用于如权利要求11所述的光信号传输系统;
    所述故障检测方法包括:
    对所述光信号衰减器进行标定,获取所述光信号衰减器的衰减强度与温度之间的对应关系;
    获取环境温度,并根据所述光信号衰减器的衰减强度与温度之间的对应关系,得到理论衰减强度;
    将所述第一光纤中未经过所述光信号衰减器衰减的光信号的强度与所述第二光纤中的经过所述光信号衰减器的衰减的光信号的强度相减,得到所述光信号衰减器的实际衰减强度;
    在所述理论衰减强度与所述实际衰减强度之间的差值的绝对值小于预 设阈值的状态下,确定所述光信号传输系统中不存在故障,在所述理论衰减强度与所述实际衰减强度之间的差值的绝对值大于预设阈值的状态下,确定所述光信号传输系统中存在故障。
  13. 一种环境温度的检测方法,其中,所述检测方法应用于如权利要求11所述的光信号传输系统;
    所述检测方法包括:
    对所述光信号衰减器进行标定,获取所述光信号衰减器的衰减强度与温度之间的对应关系;
    将所述第一光纤中未经过所述光信号衰减器衰减的光信号的强度与所述第二光纤中的经过所述光信号衰减器的衰减的光信号的强度相减,得到所述光信号衰减器的衰减强度;
    根据所述衰减强度和所述光信号衰减器的衰减强度与温度之间的对应关系,得到环境温度。
PCT/CN2020/135493 2020-03-31 2020-12-10 一种光信号衰减器及一种光信号传输系统 WO2021196720A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022513482A JP7361206B2 (ja) 2020-03-31 2020-12-10 光信号減衰器及び光信号伝送システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020444531.0U CN211741626U (zh) 2020-03-31 2020-03-31 一种光信号衰减器及一种光信号传输系统
CN202020444531.0 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021196720A1 true WO2021196720A1 (zh) 2021-10-07

Family

ID=72854507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135493 WO2021196720A1 (zh) 2020-03-31 2020-12-10 一种光信号衰减器及一种光信号传输系统

Country Status (3)

Country Link
JP (1) JP7361206B2 (zh)
CN (1) CN211741626U (zh)
WO (1) WO2021196720A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211741626U (zh) * 2020-03-31 2020-10-23 武汉光迅科技股份有限公司 一种光信号衰减器及一种光信号传输系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130984A (en) * 1997-05-19 2000-10-10 E-Tek Dynamics, Inc. Miniature variable optical attenuator
CN101419313A (zh) * 2008-10-31 2009-04-29 武汉光迅科技股份有限公司 基于平板波导移动的无热阵列波导光栅的制作方法
CN105929485A (zh) * 2016-05-16 2016-09-07 中国电子科技集团公司第四十研究所 一种基于直线电机的直线型连续可调光衰减装置
CN110703384A (zh) * 2019-10-09 2020-01-17 蚌埠学院 一种连续可调的光衰减器数据处理方法
CN211741626U (zh) * 2020-03-31 2020-10-23 武汉光迅科技股份有限公司 一种光信号衰减器及一种光信号传输系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742827A (en) * 1980-08-28 1982-03-10 Toshiba Corp Temperature-sensitive optical switch
JPS61252521A (ja) * 1985-05-02 1986-11-10 Sony Corp 紫外線露光装置
CA2068926C (en) * 1991-09-03 1997-08-26 Cleo D. Anderson Optical line monitor
TW355752B (en) * 1996-09-27 1999-04-11 Siemens Ag Optical coupling-device to couple the light between two waveguide-end-face
JPH10133157A (ja) * 1996-10-31 1998-05-22 Ando Electric Co Ltd 光可変減衰器
US6275320B1 (en) * 1999-09-27 2001-08-14 Jds Uniphase, Inc. MEMS variable optical attenuator
JP2002169104A (ja) * 2000-12-01 2002-06-14 Sumitomo Electric Ind Ltd 光デバイス
US6580868B2 (en) * 2001-03-19 2003-06-17 Optiwork, Inc. High-resolution variable optical attenuator with mechanical adjustment
KR100451927B1 (ko) * 2002-02-27 2004-10-08 삼성전기주식회사 가변 광감쇠기
JP2004191606A (ja) * 2002-12-11 2004-07-08 Hitachi Ltd 光スイッチ
JP2005010656A (ja) * 2003-06-20 2005-01-13 Nhk Spring Co Ltd 光可変減衰機構を備えた光導波回路
JP2005227637A (ja) * 2004-02-16 2005-08-25 Citizen Watch Co Ltd アクチュエータ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130984A (en) * 1997-05-19 2000-10-10 E-Tek Dynamics, Inc. Miniature variable optical attenuator
CN101419313A (zh) * 2008-10-31 2009-04-29 武汉光迅科技股份有限公司 基于平板波导移动的无热阵列波导光栅的制作方法
CN105929485A (zh) * 2016-05-16 2016-09-07 中国电子科技集团公司第四十研究所 一种基于直线电机的直线型连续可调光衰减装置
CN110703384A (zh) * 2019-10-09 2020-01-17 蚌埠学院 一种连续可调的光衰减器数据处理方法
CN211741626U (zh) * 2020-03-31 2020-10-23 武汉光迅科技股份有限公司 一种光信号衰减器及一种光信号传输系统

Also Published As

Publication number Publication date
CN211741626U (zh) 2020-10-23
JP2022552600A (ja) 2022-12-19
JP7361206B2 (ja) 2023-10-13

Similar Documents

Publication Publication Date Title
WO2021196720A1 (zh) 一种光信号衰减器及一种光信号传输系统
US9983361B2 (en) GRIN-lensed, tuned wedge waveguide termination and method of reducing back reflection caused thereby
US5745634A (en) Voltage controlled attenuator
US6901204B2 (en) Microelectromechanical system (MEMS) variable optical attenuator
WO2006073229A1 (en) Packaging method of temperature insensitive arrayed waveguide grating
TW444131B (en) Dual fiber collimator optical variable attenuator
US7171085B2 (en) Polarization compensated optical tap
US20030031451A1 (en) Variable optical attenuator of optical path conversion
CA2341675A1 (en) Fiber coupler variable optical attenuator
JP3497510B2 (ja) 光導波路モジュール
EP1703307B1 (en) VIPA based chromatic dispersion and dispersion slope compensating apparatus
KR100451927B1 (ko) 가변 광감쇠기
US6643431B2 (en) Optical device and control method thereof
KR20040087675A (ko) Mems 가변 광감쇄기
KR20040058478A (ko) Mems 가변 광감쇄기
US20030161568A1 (en) Apparatus and method for Polarization Mode Dispersion Compensation (PMDC) and Chromatic Dispersion Compensation (CDC)
CA2059861C (en) Terminal structure for an optical device
CA2043446A1 (en) Optical switching connector
US6721099B2 (en) Variable dispersion compensator
US9739956B2 (en) Variable optical attenuator
Ryaboy Analysis of thermal stress and deformation in elastically bonded optics
US6898002B2 (en) Optical device, optical module, optical amplifier, and optical transmission system
US20110129219A1 (en) Light multiplexer
JP4385983B2 (ja) 光可変減衰器
US20030091318A1 (en) Dual fiber variable optical attenuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513482

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928196

Country of ref document: EP

Kind code of ref document: A1