WO2021196500A1 - 基于大数据的工业机房节能调控系统、方法及存储介质 - Google Patents

基于大数据的工业机房节能调控系统、方法及存储介质 Download PDF

Info

Publication number
WO2021196500A1
WO2021196500A1 PCT/CN2020/109912 CN2020109912W WO2021196500A1 WO 2021196500 A1 WO2021196500 A1 WO 2021196500A1 CN 2020109912 W CN2020109912 W CN 2020109912W WO 2021196500 A1 WO2021196500 A1 WO 2021196500A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
air conditioner
evaporator
energy
big data
Prior art date
Application number
PCT/CN2020/109912
Other languages
English (en)
French (fr)
Inventor
张彩霞
胡绍林
王向东
Original Assignee
佛山科学技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山科学技术学院 filed Critical 佛山科学技术学院
Publication of WO2021196500A1 publication Critical patent/WO2021196500A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the invention relates to the field of intelligent manufacturing, in particular to a system, a method and a storage medium for energy-saving regulation and control of an industrial computer room based on big data.
  • Industrial computer rooms often need to use air conditioners for the computer room, and the temperature and humidity in the computer room can be adjusted to an appropriate range through industrial air conditioners, so as to maintain the stable operation of the industrial computer room.
  • industrial air conditioners tend to consume a lot of electricity, so an energy-saving control system is generally added to the industrial computer room to make industrial air conditioners perform smart frequency changes and thereby save energy on a large scale.
  • the purpose of the present invention is to solve the deficiencies of the prior art, provide an energy-saving control system, method, and storage medium for industrial computer rooms based on big data, and be able to establish an energy-saving control system with a DC inverter industrial air conditioner as a component, and combine the system to propose a corresponding inverter
  • the control method can make the energy-saving regulation of the industrial computer room more intelligent, and greatly save the power consumption of the industrial computer room.
  • a big data-based energy-saving control system for an industrial computer room including: a condenser, the condenser is composed of a plurality of coils, the coils are provided with a first temperature probe, and the condenser is also provided with an AC fan;
  • the inlet end of the condenser is connected to the output port of the evaporator through a capillary tube, the input port of the evaporator is connected with the liquid storage tank of the DC inverter compressor, and the liquid storage tank is connected with the input port of the evaporator Is provided with a second temperature probe;
  • the discharge end of the condenser is connected to the DC variable frequency compressor, a third temperature probe is further arranged at the discharge end of the condenser, and the control end of the DC variable frequency compressor is connected to a variable frequency controller;
  • the control end of the AC fan is connected to the frequency conversion controller, the frequency conversion controller is provided with an operation display panel, and the operation display panel is used for human-computer interaction between the user and the frequency conversion controller.
  • the input port of the evaporator is provided with a compressed gas injection quantity monitoring module, and the compressed gas injection quantity monitoring module is used to monitor the injection quantity H of the compressed gas outside the evaporator.
  • the evaporator is further provided with a temperature setting module, and the adjustment range of the temperature setting module is 0-15°C.
  • the present invention also proposes an energy-saving control method for an industrial computer room based on big data, which is characterized in that it includes the following:
  • Step 401 Obtain the user's start instruction, and run the air conditioner to the rated platform power, so that the air conditioner enters a stable state;
  • Step 402 Obtain the user's set temperature T1 of the evaporator and the current temperature T2 of the evaporator, and perform frequency conversion control on the air conditioner according to the values of T1 and T2;
  • Step 403 Obtain the injection amount H of external compressed gas, determine whether H is lower than the first threshold, if so, adjust the operating frequency of the air conditioner to the lowest frequency, determine whether H is higher than the second threshold, and if so, adjust the operating frequency of the air conditioner To the highest frequency.
  • the rated platform frequency, minimum frequency, and maximum frequency in the above steps 401 and 403 are all frequencies set by the compressor.
  • performing frequency conversion control on the air conditioner according to the values of T1 and T2 in the above step 402 specifically includes the following:
  • Step 601 Determine whether T2 is lower than the third threshold, and if so, determine that the air conditioning system has a low temperature limitation of the evaporator, and adjust the operating frequency of the air conditioner to the lowest frequency;
  • Step 602 Obtain the duration of the low temperature limitation of the evaporator in the air conditioning system, determine whether the duration is higher than a fourth threshold, and if so, control the air conditioner to enter a shutdown state;
  • Step 603 Control the air conditioner to automatically start when the air conditioner enters the shutdown state due to step 602 for a period of time for the fifth threshold;
  • Step 604 Repeat the above steps 601-603.
  • performing frequency conversion control on the air conditioner according to the values of T1 and T2 in the above step 402 also includes the following:
  • the technicians have obtained multiple frequency qualification test values of the compressor corresponding to the value of T1-T2 every 0.5 interval between [-5, 5] after enough experimental tests, and the frequency qualification test value is when taken
  • the frequency qualified test value can make the air conditioner qualified under the temperature difference of T1-T2 , and then take the arithmetic average value of the multiple frequency qualified test values M T1-T2, then M T1-T2 is the current temperature difference It is the frequency value automatically selected by the system when T1-T2.
  • the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and is characterized in that, when the computer program is executed by a processor, it implements the energy-saving method for an inverter air conditioner as described in any item A step of.
  • the present invention provides an energy-saving control system, method and storage medium for an industrial computer room based on big data, which can establish an energy-saving control system with a DC frequency conversion industrial air conditioner as a component, and proposes a corresponding frequency conversion control method in combination with the system, so as to save energy in the industrial computer room
  • the regulation is more intelligent, which greatly saves the power consumption of the industrial computer room.
  • Figure 1 shows a flow chart of the energy-saving control method for an industrial computer room based on big data in the present invention.
  • the present invention proposes an energy-saving control system for an industrial computer room based on big data, including: a condenser, the condenser is composed of a plurality of coils, the coil is provided with a first temperature probe, and the condenser is also provided with an AC fan ;
  • the inlet end of the condenser is connected to the output port of the evaporator through a capillary tube, the input port of the evaporator is connected with the liquid storage tank of the DC inverter compressor, and the liquid storage tank is connected with the input port of the evaporator Is provided with a second temperature probe;
  • the discharge end of the condenser is connected to the DC variable frequency compressor, a third temperature probe is further arranged at the discharge end of the condenser, and the control end of the DC variable frequency compressor is connected to a variable frequency controller;
  • the control end of the AC fan is connected to the frequency conversion controller, the frequency conversion controller is provided with an operation display panel, and the operation display panel is used for a user to perform human-computer interaction with the frequency conversion controller.
  • the input port of the evaporator is provided with a compressed gas injection quantity monitoring module, and the compressed gas injection quantity monitoring module is used to monitor the compressed gas injection quantity H outside the evaporator.
  • the evaporator is further provided with a temperature setting module, and the adjustment range of the temperature setting module is 0-15°C.
  • the present invention also proposes a big data-based energy-saving control method for an industrial computer room, which is characterized in that it includes the following:
  • Step 401 Obtain the user's start instruction, and run the air conditioner to the rated platform power, so that the air conditioner enters a stable state;
  • Step 402 Obtain the user's set temperature T1 of the evaporator and the current temperature T2 of the evaporator, and perform frequency conversion control on the air conditioner according to the values of T1 and T2;
  • Step 403 Obtain the injection amount H of external compressed gas, determine whether H is lower than the first threshold, if so, adjust the operating frequency of the air conditioner to the lowest frequency, determine whether H is higher than the second threshold, and if so, adjust the operating frequency of the air conditioner To the highest frequency.
  • the first threshold and the second threshold are set by the engineer.
  • the rated platform frequency, minimum frequency, and maximum frequency in the above steps 401 and 403 are all frequencies set by the compressor.
  • performing frequency conversion control on the air conditioner according to the values of T1 and T2 in step 402 specifically includes the following:
  • Step 601 Determine whether T2 is lower than the third threshold, if yes, determine that the air conditioning system has a low temperature limitation of the evaporator, and adjust the operating frequency of the air conditioner to the lowest frequency; wherein the third threshold is set by the engineer.
  • Step 602 Obtain the duration of the low temperature limitation of the evaporator in the air conditioning system, determine whether the duration is higher than a fourth threshold, and if so, control the air conditioner to enter a shutdown state;
  • Step 603 Control the air conditioner to automatically start when the air conditioner enters the shutdown state due to step 602 for a period of time for the fifth threshold;
  • Step 604 Repeat the above steps 601-603.
  • performing frequency conversion control on the air conditioner according to the values of T1 and T2 in step 402 further includes the following:
  • the difference database is obtained in the following manner:
  • the technicians have obtained multiple frequency qualification test values of the compressor corresponding to the value of T1-T2 every 0.5 interval between [-5, 5] after enough experimental tests, and the frequency qualification test value is when taken
  • the frequency qualified test value can make the air conditioner qualified under the temperature difference of T1-T2 , and then take the arithmetic average value of the multiple frequency qualified test values M T1-T2, then M T1-T2 is the current temperature difference It is the frequency value automatically selected by the system when T1-T2.
  • the controller will use the value of T1-T2 after the decimal point with 1 digit less than 3, retreat 1 digit, and enter the way that 3 is enough, that is, -4.1 is counted as -4, and -4.3 is counted as -4.5. Perform calculations to ensure that the values of T1-T2 have corresponding frequencies.
  • the present invention when the present invention is implemented, when the system is started for the first time, it will run to the rated platform frequency, prompting the system to enter a stable state, and perform up-and-down frequency control according to the temperature difference T1-T2 between the current evaporator temperature T1 and the set temperature T2.
  • the compressor's automatic frequency up/down technology makes real-time tracking changes with the temperature difference between the evaporator temperature and the set temperature, and finds the most suitable frequency point to match the current system cooling capacity output requirements, which effectively solves the fixed frequency constant output cooling The problem of volume.
  • the controller can quickly and automatically reduce the frequency to the lowest frequency allowed by the compressor, thereby greatly reducing electrical power consumption and saving energy; when the external compressed gas injection volume H is large At the same time, the controller can quickly and automatically increase the frequency to the highest frequency allowed by the compressor, thereby quickly reducing the evaporator temperature, making the condensing water capacity stronger, and the water removal efficiency higher; at the same time, when the system has a low temperature limit point of the evaporator When the time, the system will maintain the lowest frequency operation. When the system is restored to the state, the limit will be released. Otherwise, it will enter the shutdown protection. It will automatically start 180 seconds after the shutdown, playing an unattended function.
  • the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and is characterized in that, when the computer program is executed by a processor, it implements the energy-saving method for an inverter air conditioner as described in any item A step of.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed on multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each functional module in each embodiment of the present invention may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the present invention implements all or part of the processes in the above-mentioned embodiments and methods, and can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium.
  • the computer program is executed by the processor, it can implement the steps of the foregoing method embodiments.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunications signal, and software distribution media, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signal telecommunications signal
  • software distribution media etc.
  • the content contained in the computer-readable medium can be appropriately added or deleted according to the requirements of the legislation and patent practice in the jurisdiction.
  • the computer-readable medium Does not include electrical carrier signals and telecommunication signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及基于大数据的工业机房节能调控系统、方法及存储介质,包括以下:步骤401、获取用户的启动指令,运行空调至额定的平台功率,使空调进入稳定状态;步骤402、获取用户对蒸发器的设定温度T1,以及蒸发器的当前温度T2,根据T1与T2的值对空调进行变频控制;步骤403、获取外部压缩气体的注入量H,判断H是否低于第一阈值,若是则将空调的运行频率调整至最低频率,判断H是否高于第二阈值,若是则将空调的运行频率调整至最高频率。本发明能够建立以直流变频工业空调为元件的节能调控系统,并结合该系统提出相应的变频控制方法,以使工业机房的节能调控更具智能化,较大幅度的节省工业机房电能的消耗。

Description

基于大数据的工业机房节能调控系统、方法及存储介质 技术领域
本发明涉及智能制造领域,尤其涉及基于大数据的工业机房节能调控系统、方法及存储介质。
背景技术
工业机房中常常需要使用到机房用空调,通过工业空调来使机房中的温度以及湿度调节到一个适宜的范围,进而维持工业机房的稳定进行。但是工业空调往往十分耗电,所以一般在工业机房中会加入一个节能调控系统,来使工业空调进行智能频率变化进而较大幅度的节能。
但是现有市面上的节能调控系统在定频控制的技术上也已经达到了瓶颈,效率上也没有达到最大化,还面临着露点温度过低导致冰堵现象产生和系统空载时的过度损耗电能等。
当今市场需要基于大数据的工业机房节能调控系统、方法及存储介质,使工业机房的节能调控更具智能化,较大幅度的节省工业机房电能的消耗。
发明内容
本发明的目的是解决现有技术的不足,提供基于大数据的工业机房节能调控系统、方法及存储介质,能够建立以直流变频工业空调为元件的节能调控系统,并结合该系统提出相应的变频控制方法,以使工业机房的节能调控更具智能化,较大幅度的节省工业机房电能的消耗。
为了实现上述目的,本发明采用以下的技术方案:
提出基于大数据的工业机房节能调控系统,包括:冷凝器,所述冷凝器由多个盘管组成,所述盘管处设置有第一温度探头,所述冷凝器还设置有交流风机;
所述冷凝器的进气端通过毛细管连接蒸发器的输出口,所述蒸发器的输入口与直流变频压缩机的储液罐连接,所述储液罐与所述蒸发器的输入口的连接处设置有第二温度探头;
所述冷凝器的排气端与所述直流变频压缩机连接,在所述冷凝器的排气端还设置有第三温度探头,所述直流变频压缩机的控制端连接变频控制器;
所述交流风机的控制端连接所述变频控制器,所述变频控制器设置有操作显示面板,所 述操作显示面板用于用户与所述变频控制器进行人机交互。
进一步,所述蒸发器的输入口设置有压缩气体注入量监测模块,所述压缩气体注入量监测模块用于监测蒸发器外部的压缩气体的注入量H。
进一步,所述蒸发器还设置有温度设定模块,所述温度设定模块的调节范围为0~15℃。
本发明还提出基于大数据的工业机房节能调控方法,其特征在于,包括以下:
步骤401、获取用户的启动指令,运行空调至额定的平台功率,使空调进入稳定状态;
步骤402、获取用户对蒸发器的设定温度T1,以及蒸发器的当前温度T2,根据T1与T2的值对空调进行变频控制;
步骤403、获取外部压缩气体的注入量H,判断H是否低于第一阈值,若是则将空调的运行频率调整至最低频率,判断H是否高于第二阈值,若是则将空调的运行频率调整至最高频率。
进一步,上述步骤401、403中的额定的平台频率、最低频率以及最高频率,均为压缩机所设定好的频率。
进一步,上述步骤402中根据T1与T2的值对空调进行变频控制具体包括以下:
步骤601、判断T2是否低于第三阈值,若是则判断空调系统出现蒸发器低温限制情况,将空调的运行频率调整至最低频率;
步骤602、获取空调系统出现蒸发器低温限制情况的持续时间,判断所述持续时间是否高于第四阈值,若是则控制空调进入停机状态;
步骤603、在空调因步骤602进入停机状态长达第五阈值的时长时,控制空调自动启动;
步骤604、重复上述步骤601-603。
进一步,上述步骤402中根据T1与T2的值对空调进行变频控制还包括以下:
获取T1与T2的差值T1-T2,根据差值T1-T2与差值数据库中的对应数值表进行匹配,将匹配得到的频率值作为新的频率值控制空调的压缩机以所述新的频率值进行运行。
进一步,所述差值数据库通过一下方式得到:
技术人员经过足够多次实验测试得出T1-T2在[-5,5]之间每隔0.5间距的值所对应的压缩机的多个频率合格测试值,所述频率合格测试值为当取该频率合格测试值时,能够使在T1-T2的温差情况下,空调运行合格,之后将得到的多个频率合格测试值取算术平均值M T1-T2,则M T1-T2即为当温差为T1-T2时系统自动选取的频率值。
本发明还提出一种计算机可读存储的介质,所述计算机可读存储的介质存储有计算机程 序,其特征在于,所述计算机程序被处理器执行时实现如任一项所述变频空调节能方法的步骤。
本发明的有益效果为:
本发明在采用上述的系统以及方法时能够获得以下有益效果:
本发明提供了基于大数据的工业机房节能调控系统、方法及存储介质,能够建立以直流变频工业空调为元件的节能调控系统,并结合该系统提出相应的变频控制方法,以使工业机房的节能调控更具智能化,较大幅度的节省工业机房电能的消耗。
附图说明
图1所示为本发明基于大数据的工业机房节能调控方法流程图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的、方案和效果。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。附图中各处使用的相同的附图标记指示相同或相似的部分。
本发明提出基于大数据的工业机房节能调控系统,包括:冷凝器,所述冷凝器由多个盘管组成,所述盘管处设置有第一温度探头,所述冷凝器还设置有交流风机;
所述冷凝器的进气端通过毛细管连接蒸发器的输出口,所述蒸发器的输入口与直流变频压缩机的储液罐连接,所述储液罐与所述蒸发器的输入口的连接处设置有第二温度探头;
所述冷凝器的排气端与所述直流变频压缩机连接,在所述冷凝器的排气端还设置有第三温度探头,所述直流变频压缩机的控制端连接变频控制器;
所述交流风机的控制端连接所述变频控制器,所述变频控制器设置有操作显示面板,所述操作显示面板用于用户与所述变频控制器进行人机交互。
作为本发明的优选实施方式,所述蒸发器的输入口设置有压缩气体注入量监测模块,所述压缩气体注入量监测模块用于监测蒸发器外部的压缩气体的注入量H。
作为本发明的优选实施方式,所述蒸发器还设置有温度设定模块,所述温度设定模块的调节范围为0~15℃。
参照图1,本发明还提出基于大数据的工业机房节能调控方法,其特征在于,包括以下:
步骤401、获取用户的启动指令,运行空调至额定的平台功率,使空调进入稳定状态;
步骤402、获取用户对蒸发器的设定温度T1,以及蒸发器的当前温度T2,根据T1与T2 的值对空调进行变频控制;
步骤403、获取外部压缩气体的注入量H,判断H是否低于第一阈值,若是则将空调的运行频率调整至最低频率,判断H是否高于第二阈值,若是则将空调的运行频率调整至最高频率。其中第一阈值以及第二阈值由工程师设定。
作为本发明的优选实施方式,上述步骤401、403中的额定的平台频率、最低频率以及最高频率,均为压缩机所设定好的频率。
作为本发明的优选实施方式,上述步骤402中根据T1与T2的值对空调进行变频控制具体包括以下:
步骤601、判断T2是否低于第三阈值,若是则判断空调系统出现蒸发器低温限制情况,将空调的运行频率调整至最低频率;其中第三阈值由工程师设定。
步骤602、获取空调系统出现蒸发器低温限制情况的持续时间,判断所述持续时间是否高于第四阈值,若是则控制空调进入停机状态;
步骤603、在空调因步骤602进入停机状态长达第五阈值的时长时,控制空调自动启动;
步骤604、重复上述步骤601-603。
作为本发明的优选实施方式,上述步骤402中根据T1与T2的值对空调进行变频控制还包括以下:
获取T1与T2的差值T1-T2,根据差值T1-T2与差值数据库中的对应数值表进行匹配,将匹配得到的频率值作为新的频率值控制空调的压缩机以所述新的频率值进行运行。
作为本发明的优选实施方式,所述差值数据库通过一下方式得到:
技术人员经过足够多次实验测试得出T1-T2在[-5,5]之间每隔0.5间距的值所对应的压缩机的多个频率合格测试值,所述频率合格测试值为当取该频率合格测试值时,能够使在T1-T2的温差情况下,空调运行合格,之后将得到的多个频率合格测试值取算术平均值M T1-T2,则M T1-T2即为当温差为T1-T2时系统自动选取的频率值。
具体的如下表所示进行构建:
Figure PCTCN2020109912-appb-000001
并且当计算时,控制器会将T1-T2的值采用小数点后1位不足3的退1位,足3的进以 为的方式,即-4.1算作-4,-4.3算作-4.5的方式进行计算,确保T1-T2的值均存在对应的频率。
具体的本发明在实施时,系统首次启动时,将运行至额定的平台频率,促使系统进入稳定状态后根据当前蒸发器温度T1和设定温度T2之间的温差T1-T2进行升降频控制,压缩机的自动升降频技术随蒸发器温度与设定温度之间的温差做出实时的跟踪变化,寻找最合适的频率点来匹配当前系统制冷量输出要求,有效的解决了定频恒定输出制冷量的问题。当外部压缩气体注入量H较低时,控制器可快速自动降频至压缩机允许的最低频率运行,从而大幅度的降低电功耗,达到节省电能目的;当外部压缩气体注入量H较大时,控制器可快速自动升频至压缩机允许的最高频率运行,从而快速的降低蒸发器温度,使凝结水份能力更强,除水效率更高;同时,当系统出现蒸发器低温限制点时,系统将维持最低频率运行,当系统恢复状态后释放限制,反之进入停机保护,停机后180秒将自动启动,起到了一个无人守值的功能。
本发明还提出一种计算机可读存储的介质,所述计算机可读存储的介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如任一项所述变频空调节能方法的步骤。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储的介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减, 例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
尽管本发明的描述已经相当详尽且特别对几个所述实施例进行了描述,但其并非旨在局限于任何这些细节或实施例或任何特殊实施例,而是应当将其视作是通过参考所附权利要求考虑到现有技术为这些权利要求提供广义的可能性解释,从而有效地涵盖本发明的预定范围。此外,上文以发明人可预见的实施例对本发明进行描述,其目的是为了提供有用的描述,而那些目前尚未预见的对本发明的非实质性改动仍可代表本发明的等效改动。
以上所述,只是本发明的较佳实施例而已,本发明并不局限于上述实施方式,只要其以相同的手段达到本发明的技术效果,都应属于本发明的保护范围。在本发明的保护范围内其技术方案和/或实施方式可以有各种不同的修改和变化。

Claims (9)

  1. 基于大数据的工业机房节能调控系统,其特征在于,包括:冷凝器,所述冷凝器由多个盘管组成,所述盘管处设置有第一温度探头,所述冷凝器还设置有交流风机;
    所述冷凝器的进气端通过毛细管连接蒸发器的输出口,所述蒸发器的输入口与直流变频压缩机的储液罐连接,所述储液罐与所述蒸发器的输入口的连接处设置有第二温度探头;
    所述冷凝器的排气端与所述直流变频压缩机连接,在所述冷凝器的排气端还设置有第三温度探头,所述直流变频压缩机的控制端连接变频控制器;
    所述交流风机的控制端连接所述变频控制器,所述变频控制器设置有操作显示面板,所述操作显示面板用于用户与所述变频控制器进行人机交互。
  2. 根据权利要求1所述的基于大数据的工业机房节能调控系统,其特征在于,所述蒸发器的输入口设置有压缩气体注入量监测模块,所述压缩气体注入量监测模块用于监测蒸发器外部的压缩气体的注入量H。
  3. 根据权利要求1所述的基于大数据的工业机房节能调控系统,其特征在于,所述蒸发器还设置有温度设定模块,所述温度设定模块的调节范围为0~15℃。
  4. 基于大数据的工业机房节能调控方法,其特征在于,包括以下:
    步骤401、获取用户的启动指令,运行空调至额定的平台功率,使空调进入稳定状态;
    步骤402、获取用户对蒸发器的设定温度T1,以及蒸发器的当前温度T2,根据T1与T2的值对空调进行变频控制;
    步骤403、获取外部压缩气体的注入量H,判断H是否低于第一阈值,若是则将空调的运行频率调整至最低频率,判断H是否高于第二阈值,若是则将空调的运行频率调整至最高频率。
  5. 根据权利要求4所述的基于大数据的工业机房节能调控方法,其特征在于,上述步骤401、403中的额定的平台频率、最低频率以及最高频率,均为压缩机所设定好的频率。
  6. 根据权利要求4所述的基于大数据的工业机房节能调控方法,其特征在于,上述步骤402中根据T1与T2的值对空调进行变频控制具体包括以下:
    步骤601、判断T2是否低于第三阈值,若是则判断空调系统出现蒸发器低温限制情况,将空调的运行频率调整至最低频率;
    步骤602、获取空调系统出现蒸发器低温限制情况的持续时间,判断所述持续时间是否高于第四阈值,若是则控制空调进入停机状态;
    步骤603、在空调因步骤602进入停机状态长达第五阈值的时长时,控制空调自动启动;
    步骤604、重复上述步骤601-603。
  7. 根据权利要求6所述的基于大数据的工业机房节能调控方法,其特征在于,上述步骤402中根据T1与T2的值对空调进行变频控制还包括以下:
    获取T1与T2的差值T1-T2,根据差值T1-T2与差值数据库中的对应数值表进行匹配,将匹配得到的频率值作为新的频率值控制空调的压缩机以所述新的频率值进行运行。
  8. 根据权利要求7所述的基于大数据的工业机房节能调控方法,其特征在于,所述差值数据库通过一下方式得到:
    技术人员经过足够多次实验测试得出T1-T2在[-5,5]之间每隔0.5间距的值所对应的压缩机的多个频率合格测试值,所述频率合格测试值为当取该频率合格测试值时,能够使在T1-T2的温差情况下,空调运行合格,之后将得到的多个频率合格测试值取算术平均值M T1-T2,则M T1-T2即为当温差为T1-T2时系统自动选取的频率值。
  9. 一种计算机可读存储的介质,所述计算机可读存储的介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求4-8中任一项所述方法的步骤。
PCT/CN2020/109912 2020-03-31 2020-08-19 基于大数据的工业机房节能调控系统、方法及存储介质 WO2021196500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010240773.2 2020-03-31
CN202010240773.2A CN111397132B (zh) 2020-03-31 2020-03-31 基于大数据的工业机房节能调控系统、方法及存储介质

Publications (1)

Publication Number Publication Date
WO2021196500A1 true WO2021196500A1 (zh) 2021-10-07

Family

ID=71436789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109912 WO2021196500A1 (zh) 2020-03-31 2020-08-19 基于大数据的工业机房节能调控系统、方法及存储介质

Country Status (2)

Country Link
CN (1) CN111397132B (zh)
WO (1) WO2021196500A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113915735A (zh) * 2021-11-15 2022-01-11 宁波奥克斯电气股份有限公司 一种空调器测试方法和空调器测试装置
CN114017898A (zh) * 2021-11-08 2022-02-08 青岛海信日立空调系统有限公司 一种多联机系统
CN114234357A (zh) * 2021-12-24 2022-03-25 珠海格力电器股份有限公司 空调自适应运维方法、空调及计算机可读存储介质
CN114777305A (zh) * 2022-04-11 2022-07-22 富联智能工坊(郑州)有限公司 空气调节系统的调控方法、调控模型建立方法及相关装置
CN116489978A (zh) * 2023-06-25 2023-07-25 杭州电瓦特科技有限公司 一种基于人工智能的机房节能优化控制系统
WO2023246531A1 (zh) * 2022-06-20 2023-12-28 青岛海尔空调器有限总公司 用于空调制冷控制的方法、装置、空调及存储介质
CN117846942A (zh) * 2024-03-08 2024-04-09 湖南捷工医疗科技有限公司 一款气体多功能自动检测装备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397132B (zh) * 2020-03-31 2021-06-29 佛山科学技术学院 基于大数据的工业机房节能调控系统、方法及存储介质
CN113606735B (zh) * 2021-08-17 2022-10-11 宁波奥克斯电气股份有限公司 一种空调器的智能控制方法
CN115789880B (zh) * 2022-11-18 2024-04-26 四川虹美智能科技有限公司 基于大数据的遥控器按键设置方法及装置、设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603751A (zh) * 2009-07-15 2009-12-16 北京科技大学 一种制冷系统的变频节能控制方法
CN102679499A (zh) * 2012-05-24 2012-09-19 山东龙都瑞麟祥机电股份有限公司 电动客车空调控制系统
CN106288205A (zh) * 2016-08-19 2017-01-04 芜湖美智空调设备有限公司 空调器及其控制方法
JP2018128158A (ja) * 2017-02-06 2018-08-16 ダイキン工業株式会社 空気調和機
CN110486925A (zh) * 2019-08-22 2019-11-22 宁波奥克斯电气股份有限公司 一种空调器防凝露控制方法、装置、及空调器
CN111397132A (zh) * 2020-03-31 2020-07-10 佛山科学技术学院 基于大数据的工业机房节能调控系统、方法及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603751A (zh) * 2009-07-15 2009-12-16 北京科技大学 一种制冷系统的变频节能控制方法
CN102679499A (zh) * 2012-05-24 2012-09-19 山东龙都瑞麟祥机电股份有限公司 电动客车空调控制系统
CN106288205A (zh) * 2016-08-19 2017-01-04 芜湖美智空调设备有限公司 空调器及其控制方法
JP2018128158A (ja) * 2017-02-06 2018-08-16 ダイキン工業株式会社 空気調和機
CN110486925A (zh) * 2019-08-22 2019-11-22 宁波奥克斯电气股份有限公司 一种空调器防凝露控制方法、装置、及空调器
CN111397132A (zh) * 2020-03-31 2020-07-10 佛山科学技术学院 基于大数据的工业机房节能调控系统、方法及存储介质

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114017898A (zh) * 2021-11-08 2022-02-08 青岛海信日立空调系统有限公司 一种多联机系统
CN113915735A (zh) * 2021-11-15 2022-01-11 宁波奥克斯电气股份有限公司 一种空调器测试方法和空调器测试装置
CN113915735B (zh) * 2021-11-15 2022-11-04 宁波奥克斯电气股份有限公司 一种空调器测试方法和空调器测试装置
CN114234357A (zh) * 2021-12-24 2022-03-25 珠海格力电器股份有限公司 空调自适应运维方法、空调及计算机可读存储介质
CN114777305A (zh) * 2022-04-11 2022-07-22 富联智能工坊(郑州)有限公司 空气调节系统的调控方法、调控模型建立方法及相关装置
CN114777305B (zh) * 2022-04-11 2024-01-26 富联智能工坊(郑州)有限公司 空气调节系统的调控方法、调控模型建立方法及相关装置
WO2023246531A1 (zh) * 2022-06-20 2023-12-28 青岛海尔空调器有限总公司 用于空调制冷控制的方法、装置、空调及存储介质
CN116489978A (zh) * 2023-06-25 2023-07-25 杭州电瓦特科技有限公司 一种基于人工智能的机房节能优化控制系统
CN116489978B (zh) * 2023-06-25 2023-08-29 杭州电瓦特科技有限公司 一种基于人工智能的机房节能优化控制系统
CN117846942A (zh) * 2024-03-08 2024-04-09 湖南捷工医疗科技有限公司 一款气体多功能自动检测装备
CN117846942B (zh) * 2024-03-08 2024-05-10 湖南捷工医疗科技有限公司 一款气体多功能自动检测装备

Also Published As

Publication number Publication date
CN111397132B (zh) 2021-06-29
CN111397132A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2021196500A1 (zh) 基于大数据的工业机房节能调控系统、方法及存储介质
CN109812949B (zh) 一种多压缩机机组的负载控制方法、装置和空调
CN110925959B (zh) 一种空调节能控制方法、装置、空调器及存储介质
CN107036238B (zh) 动态预测外气与负载智慧节能控制方法
CN105716201B (zh) 一种空调自学交互方法
CN109033014B (zh) 一种设备功率的计算方法、控制方法及对应的设备
CN115325682A (zh) 一种高效智能制冷机房性能监测的优化控制方法及装置
CN107990497A (zh) 运行控制方法、装置、压缩机和计算机可读存储介质
CN113739341A (zh) 空调器舒适性控制方法、装置、空调器及可读存储介质
CN110081560B (zh) 风机运行频率的调整方法及装置
CN204693906U (zh) 一种能解决机房空调储液罐消耗过冷度的机房系统
CN112856748B (zh) 冷量输出控制方法、装置、机房空调和存储介质
CN109341012A (zh) 空调器及其控制方法和装置
CN116718237A (zh) 一种空气能热泵工作数据监测方法
CN113883687B (zh) 空调器的风机控制方法、装置、空调器和存储介质
CN112082248A (zh) 空调器及其室外机除霜控制方法
CN114413497B (zh) 双级压缩机及控制方法、装置以及控制设备、制冷设备
CN113739350B (zh) 一种低温制热变频控制方法、装置、存储介质和空调器
CN214332878U (zh) 一种风冷空调及其外机降噪及预冷的控制系统
CN115289631A (zh) 空调控制方法、装置、设备和存储介质
CN113864999A (zh) 空调系统能耗预测方法、装置及空调系统
CN114251751A (zh) 一种空调扇及其控制方法、装置、存储介质
CN113932376A (zh) 温度调节机组控制方法、装置及温度调节机组设备
CN112963937B (zh) 一种外环拟合方法、装置及空调器
CN113339937B (zh) 空调器的除霜控制方法、装置、空调器和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929535

Country of ref document: EP

Kind code of ref document: A1