WO2021196466A1 - 一种全磁场直流电动机系统的控制方法 - Google Patents

一种全磁场直流电动机系统的控制方法 Download PDF

Info

Publication number
WO2021196466A1
WO2021196466A1 PCT/CN2020/105342 CN2020105342W WO2021196466A1 WO 2021196466 A1 WO2021196466 A1 WO 2021196466A1 CN 2020105342 W CN2020105342 W CN 2020105342W WO 2021196466 A1 WO2021196466 A1 WO 2021196466A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
stator winding
motor
magnetic
Prior art date
Application number
PCT/CN2020/105342
Other languages
English (en)
French (fr)
Inventor
杨猛
Original Assignee
杨猛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨猛 filed Critical 杨猛
Publication of WO2021196466A1 publication Critical patent/WO2021196466A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor

Definitions

  • the invention relates to the technical field of motors, in particular to a control method of a full-field DC motor system.
  • a motor is a device that converts electrical energy into mechanical energy. It uses an energized coil to generate a rotating magnetic field and act on the rotor to form a magneto-electric power rotating torque.
  • the principle model of a DC motor in physics is shown in Figure 1. When the coils at both ends are connected with current When, according to the right-hand spiral rule, an additional magnetic flux density B pointing to the right will be generated, and the rotor in the middle will try to keep the direction of its internal magnetic flux line consistent with the direction of the external magnetic flux line to form a shortest closed magnetic flux loop. In this way, the inner rotor will rotate in a clockwise direction. Applying this principle, the predecessors designed a brushed DC motor with a commutator.
  • the invention patent application with publication number WO2017092174A1 discloses a multi-phase brushless DC motor and a driving method thereof, wherein the driving module of the motor includes a controller electrically connected in sequence , Each phase of the H-bridge single-stage inverter and independent phase coil windings, but the invention patent application only proposes that each stator winding is independently driven by the H-bridge.
  • the motor drive principle is still based on the principle of sinusoidal alternating current to generate a rotating magnetic field.
  • the existing motor manufactured by the principle of rotating magnetic field has a low power density.
  • the invention patent with publication number CN105322748B discloses a current control method of a seven-phase winding permanent magnet synchronous brushless DC motor, including a stator with 7 slots or 7 slots. Multiple slots, and use seven-phase windings.
  • the invention patent proposes the idea of increasing the power density of the motor it is only limited to seven-phase windings and does not have universal adaptability, and the power density is limited;
  • the present invention discloses a control method of a full-field DC motor system.
  • the technical solution of the present invention to achieve the above objective is a control method of a full-field DC motor system, comprising a motor body and a motor controller for driving the motor body, the motor body is provided with a stator and a permanent magnet rotor, The stator is provided with stator magnetic poles and stator windings, the motor stator is provided with a phase sensor, and the rotor shaft is provided with a phase marking code disc matched with the phase sensor, and each stator winding corresponds to a group of phase sensors;
  • the number of stator poles is required to be greater than the number of rotor poles, but the number of stator poles is not required to be equal to 1.5 times the number of rotor poles.
  • the number of stator poles is allowed to be equal to the number of rotor poles +1, +2, and stator poles are also supported. The number is prime;
  • stator windings If the number of stator windings is a prime number, the windings of each magnetic pole of the stator must be independently controlled by electricity;
  • stator windings are composite numbers, the stator windings can be properly connected in series.
  • the number of series windings is the common divisor of the number of stator windings and the number of magnetic poles of the rotor. 3 windings; another example is a 6-pole rotor with 8-pole stator windings, the number of series is 2, and the 8-pole stator windings can be connected in series to form 4 windings;
  • the number of stator magnetic poles is greater than the number of rotor magnetic poles
  • the number of stator magnetic poles is less than the number of rotor magnetic poles
  • stator windings are neither star-connected nor delta-connected, and each stator winding is independently controlled by the power controller;
  • the magnetic field generated by the stator winding current and the magnetic field polarity of the rotor magnetic poles attract each other, driving the rotor to rotate forward.
  • the stator windings pass reverse current, at this time, the magnetic field generated by the stator winding current and the magnetic field polarity of the rotor poles mutually repel each other, pushing the rotor to continue to rotate forward, and at the same time, the subsequent adjacent rotor poles are in the same polarity as the current stator.
  • the continuous rotation of the motor body is realized during the close overlap process that the magnetic field generated by the winding current attracts;
  • the motor controller includes a single-chip microcomputer, a DC bus, and multiple groups of H bridges.
  • the DC bus is electrically connected to the multiple groups of H bridges.
  • the DC bus is electrically connected with a current control element, and the current control element is used to manage the transmission of the DC bus.
  • the output terminal of the single-chip microcomputer is electrically connected with the switching element of the H-bridge, the single-chip microcomputer is electrically connected with the phase sensor, and the single-chip receives the signal from the phase sensor to drive the switch of the H-bridge bridge arm, In this way, the direction control and switching control of the stator winding current are carried out, and each group of the H-bridges individually controls one of the stator windings;
  • the phase sensor When the center line of the rotor magnetic pole coincides with the center line of the stator winding, the phase sensor obtains the rotor phase signal and transmits it to the single-chip microcomputer. After receiving the signal from the phase sensor, the single-chip microcomputer drives the H The switch of the bridge arm realizes the commutation control of the stator winding current, so that the magnetic field generated by the stator winding current and the magnetic field polarity of the rotor magnetic pole repel each other, and the rotor continues to rotate forward.
  • the stator winding is provided with a small-angle power-off dead zone on both sides of the center line, and when the rotor magnetic pole center line enters the power-off dead zone range, the motor controller controls the H bridge to power off the stator winding After the rotor magnetic pole center line passes through the power-off dead zone of the stator winding, the motor controller controls the H bridge to commutate the stator winding current;
  • the invention provides a control method of a full-field DC motor system, which has the following beneficial effects: the motor system has a compact structure, subverts the traditional motor driving principle through a rotating magnetic field, and all the motor windings participate in the drive, thereby greatly improving the power density of the motor.
  • Fig. 1 is a schematic diagram of the rotor of the present invention rotating under the attraction force in an electromagnetic field.
  • Fig. 2 is a schematic diagram of the rotor of the present invention rotating by repulsive force in an electromagnetic field.
  • Fig. 3 is a schematic diagram of the structure of the 4-stage rotor and 5-salience-pole stator motor of the present invention.
  • Fig. 4 is a schematic diagram of the structure of the 4-stage rotor and 6 salient pole stator motor of the present invention.
  • FIG. 5 is a schematic diagram of the photoelectric switch + code disc of the present invention.
  • Figure 6 is the overall principle diagram of the motor of the present invention.
  • the motor structure is shown in Fig. 3, and the schematic diagram of the motor and motor control system is shown in Fig. 5.
  • the identification mark of the phase mark code disc 4 coincides with the center line of the magnetic pole of the rotor 3, and there is a dead space; each stator magnetic pole 1 corresponds to two phase sensors 5, such as magnetic pole A corresponds to two phase sensors 5, MA1 and MA2, MA1 Located at the center line of magnetic pole A, the phase difference between MA2 and MA1 is 90°, which is the angle between the center lines of the magnetic poles of the two rotors 3.
  • Each phase sensor 5 is connected to the single-chip computer 9 of the motor controller 6, and the phase mark code disk 4 turns on the phase signal
  • the included angle is 87°, that is, when the current of the stator pole 1 is commutated, there is a dead zone with an included angle of 3°.
  • Each stator winding 2 pushes the rotor 3 to work through the principle of attraction and repulsion with the magnetic poles of the rotor 3.
  • the current direction in the stator winding 2 is controlled by the phase of the rotor 3, as shown in Fig. 5, taking the magnetic pole A as an example, taking MA1 as the S level, MA2 Open as the N pole, set the rotation direction of the rotor 3 to be counterclockwise, the N-level centerline of the rotor 3 has exceeded the centerline of the A magnetic pole, the S pole of the rotor 3 is in the process of close overlap with the A magnetic pole, and the N pole of the rotor 3 When leaving the magnetic pole A, the instantaneous position of the phase marking code disc 4 corresponds to MA2, and the polarity of the magnetic pole A is the N pole.
  • the B magnetic pole is in the commutation dead zone, the center line of the B magnetic pole is completely coincident with the N-level center line of the rotor 3, the two phase sensors MB1 and MB2 are both in the off state, the B magnetic pole winding is powered off, and there is no magnetism.
  • the hour hand continues to turn 1.5°, MB2 is open, and the B magnetic pole polarity is N pole.
  • the S-level centerline of the rotor 3 has exceeded the C magnetic pole centerline, but it is still within the magnetic pole overlap area.
  • the C magnetic pole phase sensor MC1 is on and MC2 is off.
  • the polarity of the C magnetic pole is S level, and it is leaving The S pole of the rotor 3 repels and attracts the N pole of the rotor 3 that is entering the overlap zone.
  • the stator winding 2 is provided with a small-angle power-off dead zone before and after the center line.
  • the stator winding 2 is not energized and has no force on the magnetic poles of the rotor 3.
  • the rotor 3 passes through the dead zone under the force of other magnetic poles, and the reverse current is applied to the stator after the center line of the magnetic poles of the rotor 3 passes through the dead zone.
  • a phase mark code disc 4 is provided on the rotor shaft of the motor, and the code disc identification mark corresponds to the center line of the magnetic pole of each rotor 3, and the phase mark code disc 4 is provided with a matching phase sensor 5, which can identify the mark through the code disc Obtain the rotor 3 phase interval corresponding to the current phase sensor 5, each stator winding 2 corresponds to a group of phase sensors 5.
  • the phase sensor 5 obtains the rotor phase signal and transmits it to the single-chip computer 9 of the motor controller 6.
  • Each H-bridge 8 unit controls the motor's
  • the single-chip microcomputer 9 receives the signal of the phase sensor 5, drives the switch of the 8 bridge arms of the H bridge, and realizes the commutation control of the current of the stator winding 2.
  • the phase signal transmitted by the direction logic and the encoder in the microcontroller 9 controls the on and off of the H bridge 8 bridge arms.
  • the bridge arm opening and closing signal is sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种全磁场直流电动机系统的控制方法,当转子磁极处于与定子磁极接近重叠的过程中,定子绕组电流产生的磁场与所述转子磁极的磁场极性互相吸引,当所述转子磁极中心线转过所述定子磁极中心线后,改变电流方向,此时所述定子绕组电流产生的磁场与所述转子磁极的磁场极性互相排斥,推动转子继续向前转动,本申请属于电动机系统领域,颠覆传统电动机通过旋转磁场驱动原理,各个定子绕组独立受电源控制器控制,电动机绕组全部参与驱动,大幅度提高电动机的功率密度。

Description

一种全磁场直流电动机系统的控制方法 技术领域
本发明涉及电动机技术领域,具体为一种全磁场直流电动机系统的控制方法。
背景技术
电动机是把电能转换成机械能的一种设备,它是利用通电线圈产生旋转磁场并作用于转子形成磁电动力旋转扭矩,物理学中的直流电机原理模型见图1,当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B,而中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了,应用这个原理,前人设计了带有换向器的有刷直流电动机,当转子转到N-S极中心完全对齐的时候,如果定子磁场保持不变,则会对转子产生强大的制动转矩,如果能够在定子和转子磁极对齐提前一个小角度对定子断电,则定子磁极失磁,转子虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,转过对齐角点一个小角度后,若改变两头螺线管的电流方向,如图2所示,转子就会继续顺时针向前转动,如此不断改变两头螺线管的电流方向,内转子就会不停转起来了,公开号为WO2017092174A1的发明专利申请,公开了一种多相无刷直流电机及其驱动方法,其中电机中驱动模块包括依次电连接的控制器、每一相的H桥单级逆变器和独立相线圈绕组,然而该发明专利申请仅提出了各个定子绕组独立由H桥驱动,对于电动机驱动原理仍然是基于正弦交流电产生旋转磁场原理,通过现有旋转磁场原理制造的电机,其功率密度较低,公开号为CN105322748B的发明专利,公开了一种七相绕组永磁同步无刷直流电机的电流控制方法,包括定子采用7槽或7的倍数槽,并采用七相绕组的绕制,该发明专利虽然提出了提高电机功率密度的理念,但是仅仅局限于七相绕组,不具备通用适应性,且功率密度提高 有限;
现有的基于旋转磁场原理的无刷直流电动机,在任意时刻,只有三分之二的绕组在通电做功,其功率密度有限。
发明内容
为了解决上述问题,本发明公开了一种全磁场直流电动机系统的控制方法。
实现上述目的本发明的技术方案为,一种全磁场直流电动机系统的控制方法,包括电机本体以及用于驱动所述电机本体的电机控制器,所述电机本体内设有定子以及永磁转子,所述定子上具有定子磁极以及定子绕组,所述电机定子上设有相位传感器,所述转子轴上设有与相位传感器配套的相位标记码盘,每个定子绕组对应一组相位传感器;
特别的,对内转子电机要求定子磁极数量大于转子磁极数量但并不要求定子磁极数量等于转子磁极数量的1.5倍,特别是允许定子磁极数等于转子磁极数+1、+2,也支持定子磁极数是素数;
如果定子绕组数为素数,定子每个磁极的绕组必须进行独立的电力控制;
如果定子绕组为合数,定子绕组可以做适当串联,绕组串联数为定子绕组数与转子磁极数的公约数,例如4极转子6极定子绕组,那么串联数为2,6极定子绕组可以串成3绕组;又如6极转子8极定子绕组,串联数为2,8极定子绕组可以串联成4绕组;
当定子绕组数为素数时,电机转矩脉动最小;
对于内转子电机,所述定子磁极数量大于所述转子磁极数量;
对于外转子电机,所述定子磁极数量小于所述转子磁极数量;
定子绕组不做星形连接也不做三角形连接,各个定子绕组独立受电源控制器控制;
当所述转子磁极处于与所述定子磁极接近重叠的过程中,定子绕组电流产生的磁场与转子磁极的磁场极性互相吸引,带动转子向前转动,转子磁极中心线转过定子磁极中心线后,定子绕组通反向电流,此时定子绕组电流产生的磁场与转子磁极的磁场极性互相排斥,推动转子继续向前转动,与此同时后续相邻的转子磁极的极性正处于与当前定子绕组电流产生的磁场相吸引的接近重叠过程中,实现了电机本体的连续转动;
所述电机控制器包括单片机、直流母线、多组H桥,直流母线与多组H桥电性连接,所述直流母线上电性连接有电流控制元件,该电流控制元件用于管理输送直流母线上的电流,所述单片机输出端与H桥的开关元件电性连接,所述单片机与所述相位传感器电性连接,所述单片机接受所述相位传感器的信号,驱动H桥桥臂的开关,从而对定子绕组电流进行方向控制和开闭控制,每组所述H桥单独控制一个所述定子绕组;
当所述转子磁极的中心线与所述定子绕组中心线重合时,所述相位传感器取得所述转子相位信号传递给所述单片机,所述单片机接受所述相位传感器的信号后,驱动所述H桥桥臂的开关,实现对所述定子绕组电流的换向控制,使所述定子绕组电流产生的磁场与所述转子磁极的磁场极性相互排斥,推动所述转子继续向前转动。
优选的,所述定子绕组在中心线两侧设置小角度断电死区,当所述转子磁极中心线进入断电死区范围内时,电机控制器控制所述H桥对该定子绕组断电,待所述转子磁极中心线通过该定子绕组的断电死区后,电机控制器控制H桥对定子绕组电流换向;
本发明提供一种全磁场直流电动机系统的控制方法,具备以下有益效果:本电机系统结构紧凑,颠覆传统电动机通过旋转磁场驱动原理,本电动机绕组全部参与驱动,大幅度提高电动机的功率密度。
附图说明
图1为本发明的转子在电磁场中受吸引力转动原理图。
图2为本发明的转子在电磁场中受排斥力转动原理图。
图3为本发明的4级转子5凸极定子电机结构示意图。
图4为本发明的4级转子6凸极定子电机结构示意图。
图5为本发明的光电开关+码盘示意图。
图6为本发明的电机整体原理图。
图中,1、定子磁极;2、定子绕组;3、转子;4、相位标记码盘;5、相位传感器;6、电机控制器;7、直流母线;8、H桥;9、单片机;10、电流控制元件。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例:根据图3-6可知,选择一种4级转子5凸极定子无刷电机介绍本发明的实施方式,电机结构如图3所示,电机及电机控制系统示意图如图5所示,相位标记码盘4的识别标记与转子3磁极的中心线重合,且留有死区空间;每个定子磁极1对应2个相位传感器5,如A磁极对应MA1和MA2两个相位传感器5,MA1位于A磁极的中心线,MA2与MA1相位相差90°,为两个转子3磁极中心线夹角,各个相位传感器5均接入电机控制器6的单片机9,相位标记码盘4的开通相位信号夹角87°,即定子磁极1电流换向时,留有3°夹角的死区。
各个定子绕组2通过与转子3磁极的吸引与排斥原理推动转子3工作,定子绕组2中的电流方向由转子3相位控制,如图5,以A磁极为例,以MA1通为S级,MA2开为N极,设转子3旋转方向为逆时针,转子3的N级中心线已经超过A磁极的中心线,转子3的S极在与A磁极接近重叠的过程中,而转子3的N极在离开A磁极,相位标记码盘4的瞬时位置对应MA2通,A磁极极性为N极,
B磁极处于换向死区,B磁极的中心线与转子3的N级的中心线完全重合,两个相位传感器MB1、MB2均处于关闭状态,B磁极绕组断电,没有磁性,当转子3逆时针继续转过1.5°时,MB2通,B磁极极性为N极,
对C磁极,转子3的S级中心线已经超过C磁极的中心线,但还在磁极重叠区范围内,C磁极相位传感器MC1通,MC2关,C磁极的极性为S级,与正在离开的转子3的S极排斥,与正在进入重叠区的转子3的N极吸引。
为防止定子磁极1与转子3磁极之间产生抱死力矩或者反向力矩,定子绕组2在中心线前后设置小角度断电死区,在此当转子3磁极中心线在死区范围内时,定子绕组2不通电,对转子3磁极没有作用力,转子3在其他磁极的作用力下通过死区,待转子3磁极中心线通过死区后才对定子通入反向电流。
在电机转子轴上设置有相位标记码盘4,码盘识别标记对应于各个转子3磁极的中心线,与相位标记码盘4相对应的设置有配套的相位传感器5,能够通过码盘识别标记取得当前相位传感器5对应的转子3相位区间,每个定子绕组2对应一组相位传感器5,相位传感器5取得转子相位信号传递给电机控制器6的单片机9,每个H桥8单元控制电机的一个绕组,单片机9接受相位传感器5的信号,驱动H桥8桥臂的开关,实现对定子绕组2电流的换向控制。当电机的需要换向时,在单片机9中通过方向逻辑和编码器传输过来的相位信号控制H桥8桥臂的通断,换向时通按方向逻辑交换各个H桥8上桥臂与下桥臂开闭信号即可。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (2)

  1. 一种全磁场直流电动机系统的控制方法,包括电机本体以及用于驱动所述电机本体的电机控制器(6),所述电机本体内设有定子以及转子(3),所述定子上具有定子磁极(1)以及定子绕组(2),其特征在于,所述转子(3)为永磁转子,所述电机本体定子上设有相位传感器(5),所述转子(3)轴上设有与相位传感器(5)配套的相位标记码盘(4);
    当所述转子(3)磁极处于与所述定子磁极(1)接近重叠的过程中,定子绕组(2)电流产生的磁场与转子(3)磁极的磁场极性互相吸引,带动转子(3)向前转动,转子(3)磁极中心线转过定子磁极(1)中心线后,定子绕组(2)通反向电流,此时定子绕组(2)电流产生的磁场与转子(3)磁极的磁场极性互相排斥,推动转子(3)继续向前转动,与此同时后续相邻的转子(3)磁极的极性正处于与当前定子绕组(2)电流产生的磁场相吸引的接近重叠过程中,实现了电机本体的连续转动;
    所述电机控制器(6)包括单片机(9)、直流母线(7)和H桥(8),直流母线(7)与多组H桥(8)电性连接,单片机(9)输出端与H桥(8)的控制端电性连接,单片机(9)与相位传感器(5)电性连接,单片机(9)接受相位传感器(5)的信号,驱动H桥(8)桥臂的开关,从而对定子绕组(2)电流进行方向控制和开闭控制,每组所述H桥(8)单独控制一个所述定子绕组(2);
    当所述转子(3)磁极的中心线与所述定子绕组(2)中心线重合时,所述相位传感器(5)取得所述转子(3)相位信号传递给所述单片机(9),所述单片机(9)接受所述相位传感器(5)的信号后,驱动所述H桥(8)桥臂的开关,实现对所述定子绕组(2)电流的换向控制,使所述定子绕组(2)电流产生的磁场与所述转子(3)磁极的磁场极性相互排斥,推动所述转子(3)继续向前转动。
  2. 根据权利要求1所述的一种全磁场直流电动机系统的控制方法,其特征在于,所述定子绕组(2)在中心线两侧设置断电死区,当所述转子(3)磁极中心线进入断电死区范围内时,电机控制器(6)控制与定子绕组(2)对应的H 桥(8)对该定子绕组(2)断电,待所述转子(3)磁极中心线通过该定子绕组(2)的断电死区后,电机控制器(6)控制H桥(8)对定子绕组(2)电流换向。
PCT/CN2020/105342 2020-03-30 2020-07-29 一种全磁场直流电动机系统的控制方法 WO2021196466A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010235045.2 2020-03-30
CN202010235045.2A CN111371350B (zh) 2020-03-30 2020-03-30 一种全磁场直流电动机系统的控制方法

Publications (1)

Publication Number Publication Date
WO2021196466A1 true WO2021196466A1 (zh) 2021-10-07

Family

ID=71212101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105342 WO2021196466A1 (zh) 2020-03-30 2020-07-29 一种全磁场直流电动机系统的控制方法

Country Status (2)

Country Link
CN (1) CN111371350B (zh)
WO (1) WO2021196466A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111371350B (zh) * 2020-03-30 2021-09-24 沈阳揽月工业设计有限公司 一种全磁场直流电动机系统的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024167A1 (en) * 1996-11-29 1998-06-04 Franc Tasner Switched reluctance electric motor
CN101820190A (zh) * 2010-01-22 2010-09-01 王铂仕 强弱气隙磁场相间分布的电机
CN203788115U (zh) * 2014-04-08 2014-08-20 程永治 双定子、双转子节能电机及高效磁循环机电一体节能电机
CN107817732A (zh) * 2017-11-28 2018-03-20 美尚生态景观股份有限公司 一种无线电锯控制系统
CN109842261A (zh) * 2019-04-02 2019-06-04 李保金 高效直流永磁无刷电机
CN209627190U (zh) * 2018-11-09 2019-11-12 彭明 逐相驱动多相无刷电机和驱动器
CN111371350A (zh) * 2020-03-30 2020-07-03 杨猛 一种全磁场直流电动机系统的控制方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068218U (zh) * 1973-10-23 1975-06-18
JPS6419992A (en) * 1987-07-14 1989-01-24 Victor Company Of Japan Brushless motor
CN2590266Y (zh) * 2002-12-24 2003-12-03 李孟玉 组合式分组控制磁阻电机
US6850019B2 (en) * 2003-06-12 2005-02-01 Mcmillan Electric Company Single coil, direct current permanent magnet brushless motor with voltage boost
CN2894055Y (zh) * 2006-03-10 2007-04-25 庄铭沛 各相绕组可单独激励的电子换向电动机
US8581539B2 (en) * 2006-11-16 2013-11-12 Sten R. Gerfast Efficient circuit for brushless low cogging machine with congruent stator
CN201312245Y (zh) * 2008-04-01 2009-09-16 燕山大学 永磁转子电机
CN101340169A (zh) * 2008-08-07 2009-01-07 北京航天控制仪器研究所 一种三相凸极无刷直流电动机的换相方法及换相装置
CN101951109B (zh) * 2010-10-12 2012-03-28 彭希南 直接驱动型永磁直流无刷电动机
WO2013044443A1 (zh) * 2011-09-27 2013-04-04 浙江博望科技发展有限公司 一种三相多态伺服电机
CN202309463U (zh) * 2011-09-30 2012-07-04 深圳市配天电机技术有限公司 一种永磁旋转直流电动机
CN103296847B (zh) * 2013-05-15 2016-03-23 南京邮电大学 一种无轴承开关磁阻电机及其控制方法
CN105322748B (zh) * 2014-08-05 2017-10-10 章昭晖 一种七相绕组永磁同步无刷直流电机及其控制方法
CN204179908U (zh) * 2014-10-30 2015-02-25 江苏超力电器有限公司 一种永磁直流有刷电机
CN107994814A (zh) * 2015-12-02 2018-05-04 刘振韬 多相无刷直流电机及其驱动方法
CN106394318B (zh) * 2016-11-02 2020-01-10 株洲变流技术国家工程研究中心有限公司 一种地面自动过分相装置及其控制方法
CN107070012B (zh) * 2017-03-22 2019-03-12 大连碧蓝节能环保科技有限公司 单绕组两相无刷直流电动机
CN106992652A (zh) * 2017-04-12 2017-07-28 浙江大学 270v高功率密度的五相容错直流电机
CN209170080U (zh) * 2018-12-29 2019-07-26 长沙市开启时代电子有限公司 径向充磁永磁转子倍极式开关磁阻电机
CN109768689B (zh) * 2019-03-15 2024-03-26 湖南开启时代科技股份有限公司 非平衡转子单相永磁开关磁阻电机
CN109951116B (zh) * 2019-03-29 2020-12-08 华中科技大学 一种基于双电流传感器的开关磁阻电机系统及控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024167A1 (en) * 1996-11-29 1998-06-04 Franc Tasner Switched reluctance electric motor
CN101820190A (zh) * 2010-01-22 2010-09-01 王铂仕 强弱气隙磁场相间分布的电机
CN203788115U (zh) * 2014-04-08 2014-08-20 程永治 双定子、双转子节能电机及高效磁循环机电一体节能电机
CN107817732A (zh) * 2017-11-28 2018-03-20 美尚生态景观股份有限公司 一种无线电锯控制系统
CN209627190U (zh) * 2018-11-09 2019-11-12 彭明 逐相驱动多相无刷电机和驱动器
CN109842261A (zh) * 2019-04-02 2019-06-04 李保金 高效直流永磁无刷电机
CN111371350A (zh) * 2020-03-30 2020-07-03 杨猛 一种全磁场直流电动机系统的控制方法

Also Published As

Publication number Publication date
CN111371350B (zh) 2021-09-24
CN111371350A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
JP3212310B2 (ja) 多相切換型リラクタンスモータ
US5652493A (en) Polyphase split-phase switched reluctance motor
CN105449881B (zh) 低互感容错型六相双凸极无刷直流电机
US6850019B2 (en) Single coil, direct current permanent magnet brushless motor with voltage boost
CN1227010A (zh) 电机
ES2778874T3 (es) Máquina eléctrica polifásica modular
WO2021196466A1 (zh) 一种全磁场直流电动机系统的控制方法
Millett Brushless vs brushed DC motors: When and why to choose one over the other
EP1396068B1 (en) Flux impulse motor
CN2770217Y (zh) 一种新型永磁无刷直流电机
CN112165231B (zh) 一种互补型轴向气隙磁通永磁开关磁阻电机
CN113346638A (zh) 一种三相并行磁路电机
JPH0223088A (ja) 4相ブラッシュレスdcモータを制御する回路および方法
JPH05236688A (ja) 永久磁石形モータ
JP7210619B2 (ja) ブラシレス直流電気モータ、および関連する制御方法
Kurian et al. Open loop control of switched reluctance motor using theta position sensing
EP0222604A2 (en) Starter procedure for permanent magnet motor
CA2447880C (en) Stator with multiple winding configurations
CN107800260B (zh) 一种多相磁场正交永磁无刷直流电机及其驱动装置
WO2024050876A1 (zh) 一种短磁路开关磁阻电机
EP0208657A2 (en) Electronic-reverse self-synchronous electric motor
JPS5825024B2 (ja) 無刷子直流モ−タ
WO2017082194A1 (ja) 2相回転電機制御装置及び2相回転電機用制御システム
JP4312115B2 (ja) モータ駆動装置
JP2001309631A (ja) 電気機械とインバ一タ回路とインバ一タ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20929283

Country of ref document: EP

Kind code of ref document: A1