WO2021196403A1 - 一种储能器及具有该储能器的马桶冲洗系统 - Google Patents

一种储能器及具有该储能器的马桶冲洗系统 Download PDF

Info

Publication number
WO2021196403A1
WO2021196403A1 PCT/CN2020/094932 CN2020094932W WO2021196403A1 WO 2021196403 A1 WO2021196403 A1 WO 2021196403A1 CN 2020094932 W CN2020094932 W CN 2020094932W WO 2021196403 A1 WO2021196403 A1 WO 2021196403A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
main valve
water
cavity
valve core
Prior art date
Application number
PCT/CN2020/094932
Other languages
English (en)
French (fr)
Inventor
林龙成
林邦福
连锦华
Original Assignee
厦门恩沐智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010255085.3A external-priority patent/CN111306307A/zh
Priority claimed from CN202010315936.9A external-priority patent/CN111395470A/zh
Priority claimed from CN202010446231.0A external-priority patent/CN111636532A/zh
Application filed by 厦门恩沐智能科技有限公司 filed Critical 厦门恩沐智能科技有限公司
Publication of WO2021196403A1 publication Critical patent/WO2021196403A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D3/00Flushing devices operated by pressure of the water supply system flushing valves not connected to the water-supply main, also if air is blown in the water seal for a quick flushing
    • E03D3/02Self-closing flushing valves

Definitions

  • the invention relates to an energy storage device and a toilet flushing system with the energy storage device.
  • the present invention provides an energy storage device, which can store energy and pressurize water flow, has a simple structure and reliable functions.
  • the invention also provides a toilet flushing system with an energy storage device, which increases the water pressure of flushing water through the energy storage and pressurization of the energy storage device, thereby greatly improving the flushing effect of the toilet.
  • one of the technical solutions provided by the present invention is:
  • An energy storage device including:
  • the body has a water inlet, a water outlet, an energy storage cavity, an overflow channel for communicating the water inlet and the water outlet, a main valve port for communicating the energy storage cavity and the water outlet, the water inlet Communicate with the energy storage cavity;
  • the main control valve includes a main valve core movably arranged in the body and matched with the main valve port;
  • the elastic energy storage component is movably arranged in the energy storage cavity
  • the main valve core closes the main valve port, and the overflow channel is in a closed state
  • the water flow overcomes the elastic force of the elastic energy storage component and flows into the energy storage cavity and drives the elastic energy storage component so that the elastic energy storage component stores energy.
  • the flow passage is opened, so that the side of the main valve core facing away from the energy storage cavity is subjected to water pressure to open the main valve port, and then the energy storage cavity Under the action of the elastic energy storage component, the water is discharged from the main valve port and flows out from the water outlet together with the water in the water inlet.
  • the water flow of the water inlet is first stored in the energy storage cavity of the energy storage device.
  • the elastic energy storage component When moving to a predetermined position, the flow passage is opened, thereby opening the main valve port, so that the water in the energy storage cavity can flow out through the main valve port and flow out from the water outlet together with the water in the water inlet, which improves the water flow from the water outlet.
  • the pressure and the flow rate of the water flow thus realize the energy storage and pressurization of the water flow, the structure is simple, the design is ingenious, and the function is reliable.
  • the elastic energy storage component presses against the main valve core so that the main valve core closes the main valve port; when the water inlet enters, the When the elastic energy storage component is not moved to the predetermined position, the main valve core keeps closing the main valve port under the action of water pressure.
  • This solution enables the main valve core to close the main valve port during the water storage process of the accumulator, thereby avoiding the water flow entering the energy storage cavity from flowing out of the main valve port.
  • the elastic energy storage component when the elastic energy storage component abuts the main valve core, there is a water flow gap between the elastic energy storage component and the main valve core, so that the main valve core faces the elastic storage core.
  • One side of the energy component can receive the force of water pressure.
  • the water flow can flow to the side of the main valve core facing the elastic energy storage component to apply water pressure to the main valve core so that the main valve core closes the main valve core under the action of the water inlet water pressure.
  • the direction of the valve port moves to close the main valve port; on the other hand, to prevent the elastic energy storage component from adhering to the main valve core.
  • the direction movement of the valve port causes the problem that the main valve core cannot close the main valve port.
  • the main valve core opens the main valve port under the action of an external force acting on the main valve core, or the main valve core opens the main valve port under the action of its own gravity.
  • Main valve port When the flow passage is opened, the side of the main valve core facing away from the energy storage chamber is subjected to water pressure. When the side of the main valve core facing away from the energy storage chamber receives water pressure equal to or less than that of the main valve core located in the energy storage chamber. When the side receives the water pressure, the main valve core can automatically open the main valve port with the help of the external force acting on the main valve core or the gravity of the main valve core.
  • the specific way to make the main valve core open the main valve port can be designed according to needs.
  • the main control valve includes a first elastic member acting on the main valve core, and the main valve core overcomes the elastic force of the first elastic member in the process of closing the main valve port, and the overpass When the flow channel is opened, the main valve core opens the main valve port under the action of the external force provided by the first elastic member.
  • the main valve core automatically opens the main valve port by the elastic external force provided by the first elastic member, which is more reliable.
  • the elastic energy storage assembly includes a piston and a second elastic member acting on the piston
  • the piston includes a piston head and a piston rod
  • a seal is provided on the piston head
  • the piston head passes through the piston
  • the sealing element forms a dynamic seal with the inner wall of the energy storage cavity
  • the piston head seals and isolates the energy storage cavity into a first cavity and a second cavity
  • the first cavity is connected to the water inlet and the main valve
  • the port is communicated
  • the second cavity is communicated with the outside.
  • the elastic energy storage component includes a bladder with open ends, a piston and a second elastic member acting on the piston, the piston includes a piston head and a piston rod, and the bladder is close to the main valve port.
  • An opening at one end is sealed and fixedly connected with the body, an opening at one end of the bladder away from the main valve port is sealed and fixedly connected with the piston head, and the bladder seals and isolates the energy storage cavity into a third cavity and a fourth cavity
  • the part of the energy storage cavity enclosed by the bladder seal forms the third cavity, the part outside the bladder in the energy storage cavity forms the fourth cavity, and the third cavity is connected to the
  • the water inlet is in communication with the main valve port, and the fourth cavity is in communication with the outside.
  • the structure of the elastic energy storage component of the scheme is simple.
  • the elastic energy storage component includes a bladder with an open end, the bladder seals and isolates the inner cavity of the energy storage cavity into a first cavity and a second cavity, and the energy storage cavity is sealed and surrounded by the bladder
  • the part of the energy storage cavity forms the first cavity
  • the part outside the skin bladder of the energy storage cavity forms the second cavity
  • the first cavity is in communication with the water inlet and the main valve port
  • the second The cavity is in communication with the outside
  • the main control valve is arranged in the first cavity
  • the elastic energy storage component is arranged in the second cavity
  • the elastic energy storage component includes a piston and a piston acting on the piston.
  • the second elastic member, the piston includes a piston head and a piston rod, the open end of the bladder is sealed and fixedly connected with the opening of the energy storage chamber, and the piston head abuts against the movable end of the bladder away from the open end Cooperate.
  • the structure of the elastic energy storage component of the scheme is simple.
  • the energy storage device further includes a secondary control valve for controlling the opening and closing of the flow passage; when the elastic energy storage component is moved to the predetermined position, the secondary control valve is driven to open, or the energy storage device further includes a position sensor When the position sensor senses that the elastic energy storage component moves to the predetermined position, the position sensor controls the auxiliary control valve to open, or the energy storage device also includes a flow sensor. When the flow sensor senses that the amount of water flowing into the energy storage chamber from the water inlet reaches a predetermined value, the flow sensor controls the auxiliary control valve to open. The opening and closing of the overflow channel is controlled by setting the auxiliary control valve, and the design is ingenious and the function is reliable.
  • the elastic energy storage component is driven by a transmission mechanism to open the auxiliary control valve, and an auxiliary valve port is formed on the flow passage, and the auxiliary control valve includes an auxiliary valve core and an auxiliary valve core matched with the auxiliary valve port. Acting on the fourth elastic member of the auxiliary valve core, the auxiliary valve core closes the auxiliary valve port under the elastic force of the fourth elastic member, and the transmission mechanism overcomes the force of the fourth elastic member The elastic force opens the auxiliary valve port.
  • the auxiliary valve port can be opened under the action of the water pressure of the water inlet, so that it can flow out from the water outlet without energy storage, and the water outlet timing can be advanced. Better results.
  • the transmission mechanism includes a swing rod and a push rod, the swing rod is swingably attached to the side wall of the energy storage cavity, one end of the swing rod is in linkage with the elastic energy storage component, and the other end
  • the push rod is in linkage cooperation with the push rod, and the push rod is in linkage cooperation with the auxiliary control valve.
  • the transmission mechanism of this scheme is simple and the transmission is reliable.
  • the main body includes a main body and a top cover, the energy storage cavity and a water outlet cavity are formed in the main body, and the water outlet cavity is located on one side of the energy storage cavity.
  • the cavity is communicated through the main valve port, the side wall of the water outlet cavity is provided with the water outlet, the side of the water outlet cavity away from the energy storage cavity forms an opening, and the top cover is sealed and connected to the water outlet cavity.
  • the flow channel is communicated with the water outlet cavity.
  • the water outlet end of the overflow channel is located in the water outlet cavity and communicates with the water outlet cavity, and the water outlet end of the overflow channel forms an auxiliary valve port, and the auxiliary valve port is provided with a control station.
  • the auxiliary control valve whose auxiliary valve port is opened or closed, the auxiliary control valve includes an auxiliary valve core and a fourth elastic member acting on the auxiliary valve core, when the elastic energy storage component moves to the predetermined position
  • the auxiliary valve core opens the auxiliary valve port, the fourth elastic member springs up between the inner side wall of the top cover and the auxiliary valve core, and the auxiliary valve core is located on the side of the fourth elastic member.
  • the auxiliary valve port is closed under the action.
  • the body further includes a bottom cover, an end of the energy storage cavity away from the water outlet cavity forms an opening, and the main control valve and the elastic energy storage component are inserted into the energy storage through the opening.
  • the guide rod provided on the main valve core extends from the main valve port, and the bottom cover is connected to the open port.
  • the auxiliary control valve adopts a pilot-type auxiliary control valve.
  • the water flow overcomes the elastic force of the elastic energy storage component and flows into the energy storage cavity and drives the elastic energy storage component so that The elastic energy storage component stores energy, and the pilot-operated auxiliary control valve closes or keeps closing the flow passage under the action of the received water pressure difference.
  • the elastic energy storage component moves to a predetermined position, the The elastic energy storage component linkage opens the pressure relief port of the pilot auxiliary control valve to open the flow passage.
  • the auxiliary control valve of this scheme adopts the pilot-operated auxiliary control valve, and the pilot-operated auxiliary control valve can be opened smoothly with only a small force, and the function is more reliable.
  • the elastic energy storage component is driven by a transmission mechanism to open the pressure relief port of the pilot auxiliary control valve, a auxiliary valve port is formed on the flow passage, and the pilot auxiliary control valve includes a auxiliary valve cover and The auxiliary valve core matched with the auxiliary valve port, a back pressure chamber is formed between the auxiliary valve core and the auxiliary valve cover, the pressure relief port is in communication with the back pressure chamber, and the back pressure chamber passes A flow groove is connected to the water inlet.
  • the auxiliary valve core opens the auxiliary valve port under the action of the water pressure of the inlet water.
  • the auxiliary valve The valve core closes the auxiliary valve port under the action of the water pressure difference received on both sides of the auxiliary valve core.
  • the transmission mechanism includes a swing rod, a push rod and a lift rod, the swing rod is swingably mounted on the side wall of the energy storage cavity, and one end of the swing rod is linked with the elastic energy storage component The other end is in linkage cooperation with the push rod, the push rod is in linkage cooperation with one end of the lift rod, and the other end of the lift rod is opened and closed with the pressure relief port of the pilot auxiliary control valve.
  • the transmission mechanism of this scheme is simple and the transmission is reliable.
  • the main body includes a main body and a top cover
  • the energy storage cavity is formed in the main body
  • the overflow channel is formed on the top cover
  • the main The control valve is installed in the main body
  • the pilot auxiliary control valve is installed on the top cover.
  • an energy storage device including:
  • the body has a water inlet, a water outlet, an energy storage cavity, and a main valve port for communicating the energy storage cavity with the water outlet, and the water inlet is in communication with the energy storage cavity;
  • the main control valve includes a main valve core movably arranged in the body and matched with the main valve port. When the main valve core closes the main valve port, the main valve core faces away from the energy storage One side of the cavity forms a water outlet cavity;
  • One end of the flow channel is connected to the energy storage cavity, and the other end is connected to the water outlet cavity;
  • the elastic energy storage component is movably arranged in the energy storage cavity
  • the main valve core closes the main valve port
  • the water flow overcomes the elastic force of the elastic energy storage component and flows into the energy storage cavity and drives the elastic energy storage component so that the elastic energy storage component stores energy.
  • the component moves to a predetermined position, the water in the energy storage cavity flows into the water outlet cavity through the flow passage, so that the side of the main valve core away from the energy storage cavity is subjected to water pressure, Thereby, the direction of the resultant force received by the main valve core is to open the main valve port to open the main valve port, and the water in the energy storage chamber will interact with the water under the action of the elastic energy storage component.
  • the water in the water inlet is discharged from the main valve port to the water outlet together.
  • the water flow of the water inlet is first stored in the energy storage cavity of the energy storage device.
  • the elastic energy storage component When moving to a predetermined position, the overflow channel starts to pass water, and the water in the energy storage cavity flows to the outlet cavity through the overflow channel, so that the main valve core opens the main valve port, thereby making the water energy in the energy storage cavity and the water inlet
  • the water flows out through the main valve port together, which increases the pressure and flow rate of the water flow from the water outlet, thereby realizing the energy storage and pressurization of the water flow.
  • the hydraulic feedback of the flow channel is used to open the main valve port.
  • the main valve core closes the main valve port
  • the water outlet cavity is separated from the water outlet
  • the main valve core opens the main valve port
  • the water outlet cavity is separated from the water outlet port.
  • the nozzles are connected. Since the main valve core closes the main valve port, the water outlet cavity is separated from the water outlet, so that the water in the flow channel will not flow out from the water outlet immediately after flowing to the water outlet cavity, and the water flow will accumulate in the water outlet cavity
  • the side of the main valve core facing away from the energy storage chamber is subjected to water pressure, and the resultant force on the main valve core moves in the direction of opening the main valve port to open the main valve port. reliable.
  • a flow hole is provided between the water outlet cavity and the water outlet, and when the water outlet cavity is separated from the water outlet, the water in the water outlet cavity is discharged through the flow hole To the water outlet.
  • the elastic energy storage component presses against the main valve core so that the main valve core closes the main valve port; when the water inlet enters, the When the elastic energy storage component is not moved to the predetermined position, the main valve core keeps closing the main valve port under the action of water pressure.
  • This solution enables the main valve core to close the main valve port during the water storage process of the accumulator, thereby avoiding the water flow entering the energy storage cavity from flowing out of the main valve port.
  • the elastic energy storage component when the elastic energy storage component abuts the main valve core, there is a water flow gap between the elastic energy storage component and the main valve core, so that the main valve core faces the elastic storage core.
  • One side of the energy component can receive the force of water pressure.
  • the water flow can flow to the side of the main valve core facing the elastic energy storage component to apply water pressure to the main valve core so that the main valve core closes the main valve core under the action of the water inlet water pressure.
  • the direction of the valve port moves to close the main valve port; on the other hand, to prevent the elastic energy storage component from adhering to the main valve core.
  • the direction movement of the valve port causes the problem that the main valve core cannot close the main valve port.
  • the main valve core opens the main valve port by the combined force of the water pressure on both sides of the main valve core, and/or the main valve core acts on The external force of the main valve core opens the main valve port, and/or the main valve core opens the main valve port by its own gravity.
  • the main valve core can rely on the combined force of the water pressure on both sides of the main valve core and/or the external force and / Or automatically open the main valve port with the help of the main spool's own gravity, so that the specific way of opening the main valve port by the main spool can be designed according to needs.
  • the main control valve includes a first elastic member acting on the main valve core, and the main valve core overcomes the elastic force of the first elastic member in the process of closing the main valve port, and the overpass When water flows through the flow channel, the main valve core opens the main valve port under the action of the external force provided by the first elastic member.
  • the main valve core automatically opens the main valve port by the elastic external force provided by the first elastic member, and the opening of the main valve port is more reliable.
  • the elastic energy storage assembly includes a piston and a second elastic member acting on the piston, the piston is provided with a sealing member, and the piston forms a motion with the inner wall of the energy storage chamber through the sealing member. Sealing, the sealing element seals and isolates the energy storage cavity into a first cavity and a second cavity, the first cavity is connected to the water inlet and the main valve port, and the second cavity is connected to the outside Pass.
  • the structure of the elastic energy storage component of the scheme is simple.
  • the elastic energy storage component includes a bladder with openings at both ends, a piston and a third elastic member acting on the piston, and an opening of the bladder close to the main valve port is sealed and fixedly connected with the body, The opening of one end of the bladder away from the main valve port is sealed and fixedly connected with the head of the piston, and the bladder seals and isolates the energy storage cavity into a third cavity and a fourth cavity.
  • the portion enclosed by the bladder seal forms the third cavity
  • the portion outside the bladder in the energy storage cavity forms the fourth cavity
  • the third cavity is connected to the water inlet and the main valve port.
  • the fourth cavity is in communication with the outside.
  • the flow passage is formed on the body, and further includes a check valve for controlling the opening and closing of the flow passage, a check valve port is formed on the flow passage, and the flow passage communicates with
  • the one-way valve opens the one-way valve port under the action of the water pressure of the overflow channel.
  • the one-way valve includes a one-way valve core matched with the one-way valve port and a fourth elastic member acting on the one-way valve core.
  • the one-way valve port is closed under the action of the elastic force of the element, and the water flow through the water passage overcomes the elastic force of the fourth elastic element to open the one-way valve port.
  • the one-way valve of this scheme has a simple structure.
  • the main body further includes a main body and a top cover
  • the main body is formed with the water inlet, the water outlet, the energy storage cavity and the main valve port, and the energy storage cavity is away from the outlet
  • One end of the water port forms an open port
  • the main control valve further includes a valve seat
  • the main valve core is movably arranged on the valve seat
  • the main control valve and the elastic energy storage component are loaded by the open port In the energy storage cavity
  • the top cover is connected to the opening.
  • the present invention provides the following technical solutions:
  • a toilet flushing system includes a flushing water path for flushing the toilet, and further includes any one of the above-mentioned energy storage devices, and the energy storage device is arranged on the flushing water path.
  • the energy storage and pressurization effect of the energy storage device is used to increase the water pressure of the flushing water, thereby greatly improving the flushing effect of the toilet.
  • the water inlet end of the flushing water path is connected with the tap water pipeline, and the water outlet end of the flushing water path is connected with the water outlet on the top of the toilet, so as to effectively flush the inner peripheral wall of the toilet bowl.
  • Figure 1 is a three-dimensional exploded view of an energy storage device according to a first embodiment of the present invention
  • Figure 2 is a transverse cross-sectional view of the energy storage according to the first embodiment of the present invention.
  • Figure 3 is a cross-sectional view in the direction of A-A in Figure 2. At this time, the water inlet has just started to enter water, and the main valve port is in a closed state;
  • Figure 4 is a cross-sectional view in the direction of B-B in Figure 2. At this time, the water inlet has just started to enter water, and the main valve port is in a closed state;
  • Figure 5 is a partial enlarged view of C in Figure 4.
  • Figure 6 is a cross-sectional view in the direction of B-B in Figure 2, when the main valve port is in an open state;
  • Figure 7 is a perspective view of the main body of the first embodiment of the present invention.
  • Figure 8 is a transverse cross-sectional view of the main body of the first embodiment of the present invention.
  • Fig. 9 is a longitudinal sectional view of the main body of the first embodiment of the present invention.
  • Figure 10 is a cross-sectional view of an alternative structure of the first embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a three-dimensional assembly of an energy storage device according to a second embodiment of the present invention.
  • Figure 12 is a cross-sectional view of one of the sections of the energy storage according to the second embodiment of the present invention.
  • Figure 13 is a cross-sectional view of another section of the energy storage in the state of Figure 12;
  • FIG. 14 is a cross-sectional view of one of the sections of the energy storage according to the second embodiment of the present invention, at this time, the pressure relief port is in an open state;
  • Figure 15 is a cross-sectional view of another section of the energy storage in the state of Figure 14;
  • FIG. 16 is a partial three-dimensional exploded view of the energy storage device according to the second embodiment of the present invention.
  • Figure 17 is a cross-sectional view of one of the sections of Figure 16;
  • Figure 18 is a cross-sectional view of another section of Figure 16;
  • Figure 19 is one of the assembled cross-sectional views of Figure 16;
  • Figure 20 is the second assembly cross-sectional view of Figure 16;
  • 21 is a schematic diagram of a three-dimensional assembly of an energy storage device according to a third embodiment of the present invention.
  • Figure 22 is a cross-sectional view in the direction of A-A in Figure 1, when the water inlet is not in the water inlet state;
  • Figure 23 is a cross-sectional view in the direction of B-B in Figure 1, when the water inlet is not in the water inlet state;
  • Figure 24 is a cross-sectional view in the direction of B-B in Figure 1, at this time the water inlet is in the water inlet state, and the overflow channel is in the water flow state, and the main valve port is not opened;
  • Figure 25 is a cross-sectional view in the direction of A-A in Figure 1, when the water inlet is in the water inlet state, and the main valve port is in an open state;
  • Figure 26 is a perspective view of the valve seat of the third embodiment of the present invention.
  • Figure 27 is a perspective view of the cooperation of the valve seat and the main valve core of the third embodiment of the present invention.
  • Figure 28 is a cross-sectional view of the valve seat and the main valve core in the third embodiment of the present invention.
  • Figure 29 is a perspective view of the main valve core of the third embodiment of the present invention.
  • 30-Elastic energy storage component 31-Piston; 311-Piston head; 312-Piston rod; 3111-Protrusion; 32-Second elastic member; 33-Sealing member; 34-Bladder;
  • first and second quoted in the present invention are merely identifications and do not have any other meanings, such as a specific order. Also, for example, the term “first component” itself does not imply the existence of “second component”, and the term “second component” itself does not imply the existence of “first component”.
  • an energy storage device includes a main body 10, a main control valve 20, an elastic energy storage component 30, an auxiliary control valve 40, and a transmission mechanism 50.
  • the body 10 has a water inlet 11, a water outlet 12, an energy storage cavity 13, an overflow channel 14 for communicating the water inlet 11 and the water outlet 12, and a main valve port 15 for communicating the energy storage cavity 13 and the water outlet 12 ,
  • the water inlet 11 communicates with the energy storage cavity 13.
  • the main control valve 20 includes a main valve core 21 movably arranged in the body 10 and matched with the main valve port 15.
  • the elastic energy storage component 30 is movably arranged in the energy storage cavity 13.
  • the main valve core 21 closes the main valve port 15, and the flow passage 14 is in a closed state.
  • the water flow overcomes the elastic force of the elastic energy storage component 30 and flows into the energy storage cavity 13 and drives the elastic energy storage component 30 so that the elastic energy storage component 30 can store energy.
  • the flow passage 14 is opened, so that the side of the main valve core 21 facing away from the energy storage cavity 13 is subjected to water pressure to open the main valve port 15, and then the main valve port 15 is opened in the energy storage cavity 13
  • the water is discharged from the main valve port 15 under the action of the elastic energy storage component 30 and flows out from the water outlet 12 together with the water of the water inlet 11, so that the water flow pressure and water flow out of the water outlet 12 can be effectively increased.
  • a water inlet channel 17 and a water outlet channel 18 are formed on the main body 10a.
  • the water inlet 11 forms the water inlet end of the water inlet channel 17, and the water outlet end of the water inlet channel 17 splits to form a first water outlet end 171 and a second water outlet end 172.
  • the first water outlet end 171 is connected to the energy storage cavity 13, and the water inlet 11
  • the water inlet channel 17 and the first water outlet 171 communicate with the energy storage cavity 13.
  • the second water outlet end 172 is in communication with the overflow channel 14, and the water inlet 11 communicates with the overflow channel 14 through the water inlet channel 17 and the second water outlet end 172.
  • the water outlet 12 forms the water outlet end of the water outlet channel 18, and the water inlet end of the water outlet channel 18 is in communication with the water outlet cavity 16 described below.
  • the elastic energy storage component 30 presses against the main valve core 21 so that the main valve core 21 closes the main valve port 15; when the water inlet 11 enters water, the elastic energy storage component 30 does not
  • the main valve core 21 keeps closing the main valve port 15 under the action of water pressure, so that the main valve core 21 can close the main valve port 15 during the process of storing water in the accumulator, thereby avoiding entering the energy storage
  • the water flow in the cavity 13 flows out from the main valve port 15.
  • the core 21 sucks and moves together in a direction away from the main valve port 15, which causes the problem that the main valve core 21 cannot close the main valve port 15 during the process of storing water in the accumulator.
  • a number of protrusions 3111 are arranged at intervals, and the elastic energy storage assembly 30 is resisted by the protrusions 3111. Connected to the main valve core 21, the protrusion 3111 is located between the piston head 311 and the main valve core 21, thereby forming the water flow gap between the two.
  • the way to make the main valve core 21 automatically open the main valve port 15 can be designed according to needs, for example: the main valve core 21 is used to open the main valve port 15 under the action of the external force acting on the main valve core 21, Alternatively, the main valve core 21 opens the main valve port 15 and the like under the action of its own gravity. Specifically, when the flow passage 14 is opened, the side of the main valve core 21 facing away from the energy storage chamber 13 is subjected to water pressure. When the side of the main valve core 21 facing away from the energy storage chamber 13 receives water pressure equal to or less than the main valve core 21.
  • the main valve core 21 can automatically open the main valve port 15 by means of the external force acting on the main valve core 21 or the gravity of the main valve core 21.
  • the specific way for the main valve core 21 to open the main valve port 15 can be designed according to needs, and is not limited to the above-mentioned embodiment.
  • the main control valve 20 includes a first elastic member 22 that acts on the main valve core 21, and the main valve core 21 overcomes the elastic force of the first elastic member 22 when the main valve core 21 closes the main valve port 15, that is, When the main valve core 21 closes the main valve port 15, the first elastic member 22 is in an elastic deformation state and exerts an elastic force on the main valve core 21.
  • the elastic force exerted by the first elastic member 22 on the main valve core 21 is less than that of the storage.
  • the inlet pressure of the main valve core 21 on the side of the energy device 13 ensures that the main valve core 21 keeps the main valve port 15 closed under the action of the inlet water pressure.
  • the combined force of the elastic force exerted by the first elastic member 22 on the main valve core 21 and the water pressure on the side of the main valve core 21 facing away from the accumulator 13 is greater than that of the main valve core 21 located in the accumulator
  • the main valve core 21 opens the main valve port 15 under the external force provided by the first elastic member 22.
  • the main valve core 21 automatically opens the main valve port 15 by the elastic external force provided by the first elastic member 22, which is more reliable.
  • the elastic energy storage assembly 30 includes a piston 31 and a second elastic member 32 acting on the piston 31.
  • the piston 31 includes a piston head 311 and a piston rod 312.
  • the piston head 311 is provided with a seal 33, and the piston head 311 passes
  • the sealing member 33 forms a dynamic seal with the inner wall of the energy storage cavity 13.
  • the piston head 311 seals and isolates the energy storage cavity 13 into a first cavity 131 and a second cavity 132.
  • the first cavity 131 communicates with the water inlet 11 and the main valve port 15, and the second cavity 132 communicates with the outside.
  • a secondary control valve 40 for controlling the opening and closing of the flow passage 14 is further included.
  • the auxiliary control valve 40 controls the opening of the auxiliary control valve 40, including mechanical opening or electronic control.
  • the auxiliary control valve 40 adopts an electronic control valve, or the accumulator further includes a flow sensor (not shown).
  • the flow sensor When the flow sensor senses that the water inlet 11 flows into the When the water volume of the energy storage chamber 13 reaches a predetermined value, the flow sensor controls the auxiliary control valve 40 to open, and at this time, the auxiliary control valve 40 is an electronic control valve.
  • the auxiliary control valve 40 By setting the auxiliary control valve 40 to control the opening and closing of the overflow passage 14, the design is clever and the function is reliable.
  • the flow passage 14 When moving to a predetermined position, the flow passage 14 is opened. This embodiment specifically uses the elastic energy storage component 30 to mechanically drive to open the auxiliary control valve 40.
  • an auxiliary valve port 141 is formed on the overflow passage 14, and the auxiliary control valve 40 includes an auxiliary valve core 41 that matches with the auxiliary valve port 141 and a fourth elastic member 45 acting on the auxiliary valve core 41.
  • the auxiliary valve core 41 The auxiliary valve port 141 is closed under the elastic force of the fourth elastic member 45, and the transmission mechanism 50 opens the auxiliary valve port 141 by overcoming the elastic force of the fourth elastic member 45. In this way, when the water pressure of the water inlet 11 is enough to overcome the elastic force of the fourth elastic member 45, the auxiliary valve port 141 can be opened under the action of the water pressure of the water inlet, so that it can flow out from the water outlet 12 without storing energy. Can be made in advance, the effect is better.
  • the transmission mechanism 50 includes a swing rod 51 and a push rod 52.
  • the swing rod 51 is swingably attached to the side wall of the energy storage chamber 13 via a rotating shaft 53.
  • One end is linked to the elastic energy storage assembly 30, the other end is linked to the push rod 52, and the push rod 52 is linked to the auxiliary valve core 41 of the auxiliary control valve 40.
  • the transmission mechanism is simple and reliable.
  • the push rod 52 and the auxiliary valve core 41 are integrally formed.
  • the main body 10 includes a main body 10a and a top cover 10b, the main body 10a is formed with an energy storage cavity 13 and a water outlet cavity 16, the water outlet cavity 16 is located in the storage On one side of the energy cavity 13, the water outlet cavity 16 and the energy storage cavity 13 are connected through the main valve port 15.
  • the side wall of the water outlet cavity 16 is provided with a water outlet 12, and the side of the water outlet cavity 16 away from the energy storage cavity 13 forms an opening.
  • the top cover 10 b is sealed and connected to the opening of the water outlet cavity 16, and the flow passage 14 is communicated with the water outlet cavity 16.
  • the water outlet end of the overflow channel 14 is located in the water outlet cavity 16 and communicates with the water outlet cavity 16, and the water outlet end of the overflow channel 14 forms the auxiliary valve port 141, and the auxiliary control valve 40 controls the auxiliary valve port 141 to open or close
  • the auxiliary valve core 41 is linked to open the auxiliary valve port 141
  • the fourth elastic member 45 springs up between the inner side wall of the top cover 10b and the auxiliary valve core 41
  • the auxiliary valve core 41 is located The fourth elastic member 45 closes the auxiliary valve port 141.
  • the body 10 also includes a bottom cover 10c.
  • the end of the energy storage cavity 13 away from the water outlet cavity 16 forms an open opening.
  • the main control valve 20 and the elastic energy storage component 30 are inserted into the energy storage cavity 13 through the opening, and the main valve core 21 is provided.
  • Some guide rods 211 (the guide rods 211 are used to guide the up and down movement of the main valve core 21) extend upward from the main valve port 15 to the water outlet chamber 16, and the bottom cover 10c is connected to the opening, thereby enabling energy storage
  • the assembly of the device is more convenient and the assembly efficiency is improved.
  • the first elastic element 22, the second elastic element 32, and the fourth elastic element 45 all adopt compression springs. Moreover, the elastic force of the second elastic member 32 is greater than the elastic force of the first elastic member 22, and the elastic force exerted by the fourth elastic member 45 on the auxiliary valve core 41 is greater than the water pressure of the water inlet flow from the water inlet 11 on the auxiliary valve core 41.
  • the water inlet 11 When in use, in the initial state, the water inlet 11 does not enter the water. At this time, the main valve core 21 closes the main valve port 15, and the flow passage 14 is in a closed state. Please refer to Figures 3 to 5.
  • the water flow overcomes the elastic force of the elastic energy storage component 30 and flows into the energy storage chamber 13, and the main valve core 21 is under the action of the water pressure in the energy storage chamber 13 Overcoming the elastic force of the first elastic member 22 to keep the main valve port 15 closed.
  • the water flow drives the elastic energy storage assembly 30 to make the piston 31 of the elastic energy storage assembly 30 move downward and compress the second elastic member 32 for energy storage.
  • the auxiliary valve core 41 of the auxiliary control valve 40 keeps closing the auxiliary valve port 141 under the elastic force of the fourth elastic member 45 (at this time, the elastic force of the fourth elastic member 45 on the auxiliary valve core 41 is greater than the water flow Regarding the water pressure of the auxiliary valve core 41), the overflow channel 14 is kept closed, so that the water flow from the water inlet 11 cannot flow to the water outlet 12 through the overflow channel 14.
  • the main spool 21 moves downward and opens the main valve At this time, the water in the energy storage chamber 13 is discharged from the main valve port 15 under the action of the elastic energy storage component 30 and flows out from the water outlet 12 together with the water in the water inlet 11, so that it can flow out of the water outlet 12
  • the water flow pressure and flow rate of the water flow are effectively improved, so as to realize the energy storage and pressurization of the water flow.
  • the elastic energy storage assembly 30 presses against the main valve core 21 again so that the main valve core 21 can overcome the first elastic member 22.
  • the elastic force of an elastic member 22 is located at a position where the main valve port 15 is closed.
  • the elastic energy storage assembly 30 is reset, it loses contact with the swing rod 51 of the transmission mechanism 50, and the auxiliary valve core 41 is reset under the action of the fourth elastic member and closes the auxiliary valve port 141, thereby making the energy storage device Restore to the initial state.
  • Figures 2 to 6 indicate the direction of water flow.
  • FIG. 10 shows an alternative structure of the first embodiment of the present invention, which is basically the same as the first embodiment, except that the seal 33 is not provided on the piston head 311 and does not pass through the seal 33
  • the energy storage chamber 13 is sealed and isolated into two chambers, but a bladder 34 is used to seal and isolate the energy storage chamber 13 into two chambers.
  • the elastic energy storage assembly 30 includes a bladder 34 with openings at both ends, a piston 31, and a second elastic member 32 acting on the piston 31.
  • the piston 31 includes a piston head 311 and a piston rod 312. The structure of one embodiment is the same.
  • An opening of the bladder 34 close to the main valve port 15 is sealed and fixedly connected to the main body 10, and an opening of the bladder 34 far away from the main valve port 15 is sealed and fixedly connected to the piston head 311.
  • the bladder 34 seals and isolates the energy storage cavity 13 into a third cavity 133 and a fourth cavity 134.
  • the portion of the energy storage cavity 13 sealed and enclosed by the bladder 34 forms the third cavity 133, and the part outside the bladder 34 in the energy storage cavity 13 forms The fourth cavity 134 and the third cavity 133 are in communication with the water inlet 11 and the main valve port 15, and the fourth cavity 134 is in communication with the outside.
  • the elastic energy storage component 30 of the alternative embodiment is also simple in structure, and can also achieve the purpose of the present invention.
  • An energy storage device includes a main body 10, a main control valve 20, an elastic energy storage component 30, a pilot auxiliary control valve 40, and a transmission mechanism 50.
  • the body 10 has a water inlet 11, a water outlet 12, an energy storage cavity 13, an overflow channel 14 for communicating the water inlet 11 and the water outlet 12, and a main valve port 15 for communicating the energy storage cavity 13 and the water outlet 12 ,
  • the water inlet 11 communicates with the energy storage cavity 13.
  • the main control valve 20 includes a main valve core 21 movably arranged in the body 10 and matched with the main valve port 15.
  • the elastic energy storage component 30 is movably arranged in the energy storage cavity 13.
  • the pilot-operated auxiliary control valve 40 is provided in the flow passage 14 for opening and closing the flow passage 14.
  • the main valve core 21 closes the main valve port 15.
  • the auxiliary control valve 40 can choose to close the flow passage 14 or open the flow passage 14.
  • the auxiliary control valve 40 is closed.
  • Flow channel 14 When the water inlet 11 enters water, the water flow overcomes the elastic force of the elastic energy storage component 30 and flows into the energy storage cavity 13 and drives the elastic energy storage component 30 so that the elastic energy storage component 30 stores energy, and the pilot auxiliary control valve 40 is receiving The flow passage 14 is closed or kept closed under the action of the water pressure difference.
  • the elastic energy storage component 30 When the elastic energy storage component 30 moves to a predetermined position, the elastic energy storage component 30 linkage opens the pressure relief port 421 of the pilot auxiliary control valve 40 to open the flow passage 14 , So that the side of the main valve core 21 facing away from the energy storage chamber 13 is subjected to water pressure to open the main valve port 15, and the water in the energy storage chamber 13 is discharged from the main valve port 15 under the action of the elastic energy storage component 30 And the water from the water inlet 11 flows out from the water outlet 12 together, so that the water flow pressure and the water flow flow out of the water outlet 12 can be effectively increased.
  • the main body 10 includes a main body 10a and a top cover 10b.
  • the main body 10a is formed with an energy storage cavity 13
  • the top cover 10b is formed with a water inlet channel 17, a flow channel 14, a water inlet 11, and a water outlet. 12 and the main valve port 15 are formed on the top cover 10b.
  • the water inlet 11 forms the water inlet end of the water inlet channel 17, and the water outlet end of the water inlet channel 17 splits to form a first water outlet end 171 and a second water outlet end 172.
  • the first water outlet end 171 is connected to the energy storage cavity 13, and the water inlet 11
  • the water inlet channel 17 and the first water outlet 171 communicate with the energy storage cavity 13.
  • the second water outlet end 172 is in communication with the overflow channel 14, and the water inlet 11 communicates with the overflow channel 14 through the water inlet channel 17 and the second water outlet end 172.
  • the elastic energy storage component 30 presses against the main valve core 21 so that the main valve core 21 closes the main valve port 15; when the water inlet 11 enters water, the elastic energy storage component 30 does not
  • the main valve core 21 keeps closing the main valve port 15 under the action of water pressure, so that the main valve core 21 can close the main valve port 15 during the process of storing water in the accumulator, thereby avoiding entering the energy storage
  • the water flow in the cavity 13 flows out from the main valve port 15.
  • the auxiliary valve core 41 described below closes the auxiliary valve port 141 under the action of its own elastic force, so that the pilot-type auxiliary control valve 40 closes the flow passage 14.
  • the way to make the main valve core 21 automatically open the main valve port 15 can be designed according to needs, for example: the main valve core 21 is used to open the main valve port 15 under the action of the external force acting on the main valve core 21, Alternatively, the main valve core 21 opens the main valve port 15 and the like under the action of its own gravity. Specifically, when the flow passage 14 is opened, the side of the main valve core 21 facing away from the energy storage chamber 13 is subjected to water pressure. When the side of the main valve core 21 facing away from the energy storage chamber 13 receives water pressure equal to or less than the main valve core 21.
  • the main valve core 21 can automatically open the main valve port 15 by means of the external force acting on the main valve core 21 or the gravity of the main valve core 21.
  • the specific way for the main valve core 21 to open the main valve port 15 can be designed as required, and is not limited to the above-mentioned embodiment.
  • the main control valve 20 includes a first elastic member 22 that acts on the main valve core 21, and the main valve core 21 overcomes the elastic force of the first elastic member 22 when the main valve core 21 closes the main valve port 15, that is, When the main valve core 21 closes the main valve port 15, the first elastic member 22 is in an elastic deformation state and exerts an elastic force on the main valve core 21.
  • the elastic force exerted by the first elastic member 22 on the main valve core 21 is less than that of the storage.
  • the inlet pressure of the main valve core 21 on the side of the energy device 13 ensures that the main valve core 21 keeps the main valve port 15 closed under the action of the inlet water pressure.
  • the combined force of the elastic force exerted by the first elastic member 22 on the main valve core 21 and the water pressure on the side of the main valve core 21 facing away from the accumulator 13 is greater than that of the main valve core 21 located in the accumulator
  • the main valve core 21 opens the main valve port 15 under the external force provided by the first elastic member 22.
  • the main valve core 21 automatically opens the main valve port 15 by the elastic external force provided by the first elastic member 22, which is more reliable.
  • the elastic energy storage assembly 30 includes a bladder 34 with an open end.
  • the bladder 34 seals and isolates the inner cavity of the energy storage cavity 13 into a first cavity 131 and a second cavity 132, and the energy storage cavity 13 is sealed and surrounded by the bladder 34
  • the part of the energy storage chamber 13 forms a first cavity 131
  • the part outside the bladder 34 of the energy storage cavity 13 forms a second cavity 132.
  • the first cavity 131 communicates with the water inlet 11 and the main valve port 15, and the second cavity 132 communicates with the outside world.
  • the main control valve 20 is disposed in the first cavity 131
  • the elastic energy storage component 30 is disposed in the second cavity 132.
  • the elastic energy storage assembly 30 includes a piston 31 and a second elastic member 32 acting on the piston 31.
  • the piston 31 includes a piston head 311 and a piston rod 312.
  • the open end of the bladder 34 is sealed and fixedly connected with the opening of the energy storage chamber 13, and the piston head 311 Abutting and fitting with the movable end of the bladder 34 away from its open end, a Y-shaped seal 33 is provided on the piston head 311, and the piston head 311 forms a dynamic seal between the seal 33 and the inner wall of the energy storage chamber 13.
  • the bladder 34 may not be provided: specifically, the elastic energy storage assembly 30 includes a piston 31 and a second elastic member 32 acting on the piston 31, and the piston 31 includes a piston head 311 and a piston.
  • the rod 312 is provided with a seal 33 on the piston head 311, and the piston head 311 forms a dynamic seal with the inner wall of the energy storage chamber 13 through the seal 33.
  • the piston head 311 seals and isolates the energy storage cavity 13 into a first cavity 131 and a second cavity 132.
  • the first cavity 131 communicates with the water inlet 11 and the main valve port 15, and the second cavity 132 communicates with the outside.
  • the bladder 34 is designed to be open at both ends, one end of the bladder 34 close to the main valve port 15 is sealed and fixedly connected with the body 10, and the bladder 34 is far away from the main valve port 15. One end of the opening is sealed and fixedly connected with the piston head 311.
  • the elastic energy storage assembly 30 is driven by a transmission mechanism to open the pressure relief port 421 of the pilot auxiliary control valve 40.
  • An auxiliary valve port 141 is formed on the flow passage 14.
  • the pilot-operated auxiliary control valve 40 includes an auxiliary valve cover 42 and an auxiliary valve core 41 matched with the auxiliary valve port 141.
  • the auxiliary valve core 41 is an elastic rubber pad, and the auxiliary valve core
  • a back pressure chamber 43 is formed between 41 and the auxiliary valve cover 42.
  • the pressure relief port 421 communicates with the back pressure chamber 43.
  • the back pressure chamber 43 communicates with the overflow channel 14 on the side of the water inlet 11 through a flow groove 44, and then communicates with The water inlet 11 is connected, and the water flow of the water inlet 11 flows into the back pressure cavity 43 through the flow passage 14 and the flow groove 44.
  • the auxiliary valve core 41 opens the auxiliary valve port 141 under the action of the inlet water pressure.
  • the auxiliary valve core 41 receives the effect of the water pressure difference on both sides of the auxiliary valve core 41. Close the auxiliary valve port 141 downward.
  • the working principle of the pilot-operated auxiliary control valve 40 adopting the pressure difference is a well-known technology in the art, and its working principle will not be described in detail here.
  • the transmission mechanism closes the pressure relief port 421 of the pilot-operated auxiliary control valve 40 under the action of gravity.
  • a third elastic member 55 can also be provided. The third elastic member 55 acts on the push rod 52, so that the transmission mechanism 50 resets after losing the force of the elastic energy storage component 30. And close the pressure relief port 421.
  • the transmission mechanism 50 includes a swing rod 51, a push rod 52, and a lift rod 54.
  • the swing rod 51 is swingably attached to the side wall of the energy storage chamber 13 through a shaft 53.
  • One end of the swing rod 51 is linked to the elastic energy storage assembly 30, and the other end is linked to the push rod 52.
  • the push rod 52 is linked to one end of the lift rod 54.
  • the other end of the lift rod 54 is connected to the pilot auxiliary control valve 40.
  • the pressure port 421 is opened and closed to cooperate.
  • the transmission mechanism is simple and reliable.
  • an energy storage cavity 13 is formed in the main body 10a, and the flow passage 14, the water inlet 11, the water outlet 12 and the main valve port 15 are formed in
  • the main control valve 20 is installed in the main body 10a, and the pilot auxiliary control valve 40 is installed on the top cover 10b.
  • the top cover 10b is also provided with a guide groove 19, and the main valve core 21 is provided with a guide rod 211 that is slidably guided and matched with the guide groove 19.
  • the first elastic element 22, the second elastic element 32, and the third elastic element 55 all adopt compression springs.
  • the elastic force of the second elastic member 32 is greater than the elastic force of the first elastic member 22.
  • the water inlet 11 When in use, in the initial state, the water inlet 11 does not enter the water. At this time, the main valve core 21 closes the main valve port 15 and the pilot auxiliary control valve 40 closes the flow passage 14.
  • the water flow overcomes the elastic force of the elastic energy storage component 30 and flows into the energy storage chamber 13, and the main valve core 21 is under the action of the water pressure in the energy storage chamber 13 Overcoming the elastic force of the first elastic member 22 to keep the main valve port 15 closed.
  • the water flow drives the elastic energy storage assembly 30 to make the piston 31 of the elastic energy storage assembly 30 move downward and compress the second elastic member 32 for energy storage.
  • the auxiliary valve core 41 of the pilot-operated auxiliary control valve 40 keeps closing the auxiliary valve port 141 under the action of the water pressure difference received on both sides of the auxiliary valve core 41, and the over-flow channel 14 remains closed, so that the water inlet 11 The water flow cannot flow to the water outlet 12 through the overflow channel 14.
  • the side of the main valve core 21 facing away from the energy storage chamber 13 is subjected to water pressure.
  • the resultant force of the water pressure on the side of the energy storage chamber 13 is greater than the water pressure on the side of the main spool 21 on the side of the accumulator 13.
  • the main spool 21 moves downward and opens the main valve port 15.
  • the water in the energy storage chamber 13 is discharged from the main valve port 15 under the action of the elastic energy storage component 30 and flows out from the water outlet 12 together with the water in the water inlet 11, so that the water flowing out of the water outlet 12
  • the water flow pressure and the water flow rate are effectively increased, so as to realize the energy storage and pressurization of the water flow.
  • the elastic energy storage assembly 30 presses against the main valve core 21 again so that the main valve core 21 can overcome the first elastic member 22.
  • the elastic force of an elastic member 22 is located at a position where the main valve port 15 is closed.
  • the elastic energy storage assembly 30 is reset, it loses contact with the swing rod 51 of the transmission mechanism 50.
  • the gravity of the lift rod 54 on the lift rod 54, the gravity of the push rod 52 and the elastic force of the third elastic member 55 are common. Under the action, the back pressure pad 541 swings downward to close the pressure relief port 421 again, so that the energy accumulator is restored to the initial state.
  • Fig. 12, Fig. 14 and Fig. 15 indicate the direction of water flow.
  • the water flow of the water inlet 11 is first stored in the energy storage cavity 13 of the energy storage.
  • the elastic storage When the energy component 30 moves to a predetermined position, the pilot-operated auxiliary control valve opens the flow passage 14, thereby opening the main valve port 15, so that the water in the energy storage chamber 13 can flow out through the main valve port 15 and interact with the water in the water inlet 11.
  • the flow out from the water outlet 12 increases the pressure and flow rate of the water flow from the water outlet 12, thereby realizing energy storage and pressurization of the water flow, with simple structure, ingenious design, and reliable function.
  • the accumulator of the present invention adopts a pilot-type auxiliary control valve, therefore, the pilot-type auxiliary control valve can be opened smoothly with only a small force, and the function is more reliable.
  • an energy storage device specifically a hydraulic feedback type energy storage device, includes a body 10, a main control valve 20, an elastic energy storage component 30, and a one-way valve 60.
  • the body 10 has a water inlet 11, a water outlet 12, an energy storage cavity 13, and a main valve port 15 for connecting the energy storage cavity 13 and the water outlet 12, and the water inlet 11 communicates with the energy storage cavity 13.
  • the main control valve 20 includes a main valve core 21 movably arranged in the body 10 and matched with the main valve port 15. When the main valve core 21 closes the main valve port 15, the side of the main valve core 21 facing away from the energy storage chamber 13 forms a water outlet chamber 16.
  • the energy storage device further includes an overflow channel 14 formed on the body 10. One end of the overflow channel 14 is connected to the energy storage cavity 13, and the other end is connected to the water outlet cavity 16.
  • the elastic energy storage component 30 is movably arranged in the energy storage cavity 13.
  • the main valve core 21 closes the main valve port 15; when the water inlet 11 enters, the water flow overcomes the elastic force of the elastic energy storage component 30 and flows into the energy storage cavity 13 and drives the elastic energy storage component 30 so that The elastic energy storage component 30 stores energy.
  • the elastic energy storage component 30 moves to a predetermined position, water flows through the flow passage 14, and the water in the energy storage chamber 13 flows into the water outlet chamber 16 through the flow passage 14, so that the main valve core
  • the side of 21 facing away from the energy storage chamber 13 is subjected to water pressure, so that the direction of the resultant force received by the main valve core 21 is to open the main valve port 15 to open the main valve port 15, and the water in the energy storage chamber 13 is elastic.
  • the water in the water inlet is discharged from the main valve port 15 to the water outlet 12 together, so that the water flow pressure and the water flow flow out of the water outlet 12 can be effectively increased.
  • the hydraulic feedback of the flow passage 14 is adopted to open the main valve port 15.
  • the main valve core 21 is provided with a second seal 212.
  • the second seal 212 separates the water outlet chamber 16 from the water outlet 12, and the main valve core 21
  • the second sealing member 212 is driven to make the water outlet cavity 16 communicate with the water outlet. In this way, the water in the flow channel 14 will not flow out of the water outlet 12 immediately after flowing to the water outlet cavity 16, and the water flow will accumulate in the water outlet cavity 16, so that the side of the main valve core 21 facing away from the energy storage cavity 13 is subjected to water pressure.
  • the direction of the resultant force received by the main valve core 21 is to open the main valve port 15 to open the main valve port 15, and the function is more reliable.
  • the main valve core 21 closes the main valve port 15, it is not necessary to separate the water outlet chamber 16 from the water outlet 12, for example, when the pipe resistance of the pipeline connected to the water outlet 12 is large (for example, when the pipe diameter is small) , The water in the flow channel 14 will not flow out from the water outlet 12 immediately after it flows to the water outlet cavity 16, as long as the water in the flow channel 14 flows to the water outlet cavity 16 to the side of the main valve core 21 facing away from the energy storage cavity 13 Just form water pressure.
  • a flow orifice 161 is also provided between the water outlet cavity 16 and the water outlet 12.
  • the water in the water outlet cavity 16 is discharged to the water outlet 12 through the flow small hole 161.
  • the flow orifice 161 By providing the flow orifice 161, the water in the water outlet chamber 16 can be discharged through the flow orifice 161 when the water inlet 11 stops entering water, so as to prevent the water outlet chamber 16 from holding water and causing the main valve core 21 to fail to close the main valve port. 15 questions, the function is more reliable.
  • the flow orifice 161 since the main valve core 21 and the main valve port 15 are sealed at the end faces, the flow orifice 161 may not be provided, but it is better to provide the flow orifice 161.
  • the elastic energy storage component 30 presses against the main valve core 21 so that the main valve core 21 closes the main valve port 15; when the water inlet 11 enters water, the elastic energy storage component 30 does not
  • the main valve core 21 keeps closing the main valve port 15 under the action of water pressure, so that the main valve core 21 can close the main valve port 15 during the process of storing water in the accumulator, thereby avoiding entering the energy storage
  • the water flow in the cavity 13 flows out from the main valve port 15.
  • the main control valve 20 further includes a valve seat 23, a hollow valve cavity is formed in the valve seat 23, and the main valve core 21 is movably arranged on the valve seat 23.
  • the valve seat 23 is provided with a flow ring groove 231 that communicates with the inside and outside of the valve cavity, and a perforation 232 that communicates with the inside and outside of the valve cavity.
  • the linkage rod 213 provided on the main valve core 21 can pass through the perforation 232, and the elastic energy storage component 30 cooperates with the linkage rod 213 on the main valve core 21 to drive the main valve core 21 to close the main valve port 15.
  • the outer peripheral wall of the valve seat 23 is also provided with ribs 233.
  • the ribs 233 and the grooves (not shown) provided on the inner wall of the main body 10a are circumferentially limited and matched, so that the valve seat 23 It does not rotate in the circumferential direction relative to the main body 10a.
  • the elastic energy storage component 30 when the elastic energy storage component 30 abuts the main valve core 21, there is a water flow gap between the elastic energy storage component 30 and the main valve core 21, so that the main valve core 21 faces the elastic energy storage component 30.
  • One side can receive the force of water pressure.
  • the water flow can flow to the side of the main spool 21 facing the elastic energy storage component 30 to apply water pressure to the main spool 21 so that the main spool 21 will move forward under the action of the inlet water pressure.
  • the core 21 sucks and moves together in a direction away from the main valve port 15, which causes the problem that the main valve core 21 cannot close the main valve port 15 during the process of storing water in the accumulator.
  • the way to make the main valve core 21 automatically open the main valve port 15 can be designed as required, for example: the main valve core 21 is used to open the main valve by the combined force of the water pressure on both sides of the main valve core 21 Port 15, and/or, the main valve core 21 opens the main valve port 15 by the external force acting on the main valve core 21, and/or the main valve core 21 opens the main valve port 15 by its own gravity.
  • the side of the main valve core 21 facing away from the energy storage chamber 13 is subjected to water pressure, and when the side of the main valve core 21 facing away from the energy storage chamber 13 receives water pressure
  • the pressure of the main valve core 21 is greater than the water pressure on the side of the energy storage chamber 13 of the main valve core 21.
  • the main valve core 21 uses the combined force of the water pressure on both sides of the main valve core 21 and the elasticity of the first elastic member 22 described below. The force acts to open the main valve port 15.
  • the main control valve 20 includes a first elastic member 22 that acts on the main valve core 21, and the main valve core 21 overcomes the elastic force of the first elastic member 22 when the main valve core 21 closes the main valve port 15, that is, When the main valve core 21 closes the main valve port 15, the first elastic member 22 is in an elastic deformation state and exerts an elastic force on the main valve core 21.
  • the elastic force exerted by the first elastic member 22 on the main valve core 21 is less than that of the storage.
  • the inlet pressure of the main valve core 21 on the side of the energy device 13 ensures that the main valve core 21 keeps the main valve port 15 closed under the action of the inlet water pressure.
  • the combined force of the elastic force exerted by the first elastic member 22 on the main valve core 21 and the water pressure on the side of the main valve core 21 facing away from the accumulator 13 is greater than that of the main valve core 21 located in the accumulator
  • the combined force of the water pressure on one side of the main valve core 21 and the water pressure on both sides of the main valve core 21 and the external force provided by the first elastic member 22 open the main valve port 15.
  • the main valve core 21 further uses the elastic external force provided by the first elastic member 22 to automatically open the main valve port 15, which is more reliable.
  • the main valve core 21 due to the combined action of the water pressure on both sides of the main valve core 21, the main valve core 21 can smoothly open the main valve port 15, so the first elastic member 22 may not be provided.
  • the elastic energy storage assembly 30 includes a piston 31 and a second elastic member 32 acting on the piston 31.
  • a sealing member 33 is provided on the head of the piston 31.
  • the piston 31 passes through the sealing member 33 and the inner wall of the energy storage chamber 13 Form a dynamic seal.
  • the seal 33 seals and isolates the energy storage cavity 13 into a first cavity 131 and a second cavity 132.
  • the first cavity 131 communicates with the water inlet 11 and the main valve port 15, and the second cavity 132 communicates with the outside.
  • a one-way valve 60 for controlling the opening and closing of the flow passage 14 is further included.
  • a one-way valve port 142 is formed on the over-flow channel. When the over-flow channel 14 passes water, the one-way valve 60 opens the one-way valve port 142 under the action of the water pressure in the over-flow channel 14.
  • the one-way valve 60 includes a one-way valve core 61 that cooperates with the one-way valve port 142 and a fourth elastic member (not shown) acting on the one-way valve core 61.
  • the one-way valve port 142 is closed under the action of force, and the water flow passing through the water channel 14 opens the one-way valve port 142 by overcoming the elastic force of the fourth elastic member.
  • the body 10 includes a main body 10a and a top cover 10b, and the water inlet 11, the water outlet 12, the energy storage cavity 13 and the main valve port 15 are all formed On the main body 10a, the end of the energy storage chamber 13 away from the water outlet 12 is opened.
  • the main control valve 20 and the elastic energy storage assembly 30 are inserted into the energy storage chamber 13 through the opening, and the top cover 10b is connected to the opening. , Thereby making the assembly of the energy storage more convenient and improving the assembly efficiency.
  • the first elastic element 22, the second elastic element 32, and the fourth elastic element all adopt compression springs.
  • the elastic force of the second elastic member 32 is greater than the elastic force of the first elastic member 22.
  • the water flow drives the elastic energy storage assembly 30 to make the piston 31 of the elastic energy storage assembly 30 move downwards and compress the second elastic member 32 to store energy until the elastic energy storage assembly 30 moves to a predetermined level
  • the sealing member 33 of the elastic energy storage assembly 30 passes over the open end of the over-flow channel 14 that communicates with the energy storage cavity 13, and the over-flow channel 14 communicates with the first cavity 131 in the energy storage cavity 13, so that the over-flow channel Water is passed through 14, and the water flow in the energy storage cavity 13 flows into the water outlet cavity 16 through the flow passage 14.
  • the water in the energy storage chamber 13 is discharged from the main valve port 15 under the action of the elastic energy storage component 30 and flows out from the water outlet 12 together with the water in the water inlet 11, so that it can flow out
  • the water flow pressure and the water flow rate of the water outlet 12 are effectively increased, thereby realizing the energy storage and pressurization of the water flow.
  • the elastic energy storage assembly 30 presses against the linkage rod 213 on the main valve core 21 again so that the main valve The core 21 can overcome the elastic force of the first elastic member 22 to be located at a position where the main valve port 15 is closed.
  • the flow passage 14 is again communicated with the second cavity 132 in the energy storage cavity but not the first cavity 131, so that the energy storage is restored to the initial state.
  • Figures 24 and 25 indicate the direction of water flow.
  • the piston 31 is not provided with a seal 33, and the energy storage chamber 13 is not sealed and isolated into two chambers by the seal 33, but a bladder (not shown) is used to seal the energy storage chamber 13 Isolate into two chambers.
  • the elastic energy storage assembly 30 includes a bladder with openings at both ends, a piston, and a third elastic member acting on the piston 31.
  • One end of the bladder close to the main valve port 15 is sealed and fixedly connected with the body 10, and the bladder is far away from the main valve port 15.
  • One end of the opening is sealed and fixedly connected with the head of the piston 31.
  • the bladder seals and isolates the energy storage cavity 13 into a third cavity (not shown) and a fourth cavity (not shown).
  • the portion of the energy storage cavity 13 enclosed by the bladder seal forms the third cavity.
  • the outer part forms a fourth cavity, the third cavity is in communication with the water inlet 11 and the main valve port 15, and the fourth cavity is in communication with the outside.
  • the elastic energy storage component 30 of this embodiment is also simple in structure, and can also achieve the purpose of the present invention.
  • the water flow of the water inlet 11 is first stored in the energy storage cavity 13 of the energy storage device.
  • the elastic energy storage When the component 30 moves to a predetermined position, the flow passage 14 is opened, thereby opening the main valve port 15, so that the water in the energy storage chamber 13 can flow out through the main valve port 15 and flow out from the water outlet 12 together with the water in the water inlet 11,
  • the water flow pressure and the water flow flow out of the water outlet 12 are increased, thereby realizing energy storage and pressurization of the water flow, the structure is simple, the design is ingenious, and the function is reliable.
  • the present invention provides a toilet flushing system, including a flushing water path (not shown) for flushing the toilet (not shown), and also including any one of the above-mentioned energy storage devices ,
  • the accumulator is located on the flushing waterway.
  • the water inlet end of the flushing water path is connected with a tap water pipe (not shown), and the outlet end of the flushing water path is connected with the water outlet 12 on the top of the toilet, so as to effectively flush the inner peripheral wall of the toilet with water.
  • the water outlet end of the flushing water path can also be connected to a water outlet (not shown) at the bottom of the toilet bowl to flush the bottom of the toilet bowl with water.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

一种储能器及具有该储能器的马桶冲洗系统,该储能器包括:本体(10),具有进水口(11)、出水口(12)、储能腔(13)、用于连通进水口(11)和出水口(12)的过流通道(14)、用于连通储能腔(13)与出水口(12)的主阀口(15);主控制阀(20),包括与主阀口(15)相配合的主阀芯(21);弹性储能组件(30),活动设于储能腔(13);进水口(11)未进水状态下,主阀芯(21)关闭主阀口(15),过流通道(14)关闭;进水口(11)进水时,水流克服弹性储能组件(30)的弹性力流入储能腔(13)中并驱动弹性储能组件(30)活动至预定位置,过流通道(14)打开,使主阀芯(21)背向储能腔(13)的一侧受到水压作用而打开主阀口(15),储能腔(13)中的水排出并和进水口的水一起流出。该装置对水流进行储能加压,结构简单,功能可靠。

Description

一种储能器及具有该储能器的马桶冲洗系统 技术领域
本发明涉及一种储能器及具有该储能器的马桶冲洗系统。
背景技术
众所周知,现有的马桶冲洗系统中,冲洗水的水压越大、水量越多,越能将马桶冲刷得干净。为了减小马桶的整体体积,市面上有直接利用自来水管的水流对马桶进行冲洗。但是,当自来水的水压不足时,水流的冲刷力和水量都不够,造成马桶冲洗不干净。为了使得在自来水的水压不足的情况下,也能对马桶实现有效冲洗,市面上出现了利用泵装置对自来水进行加压的方式来提高水流的水压,但是采用泵装置成本较高,并且需要对泵装置进行供电,比较麻烦。
发明内容
本发明为解决上述问题,提供一种储能器,其能对水流进行储能加压,结构简单,功能可靠。本发明还提供一种具有储能器的马桶冲洗系统,通过储能器的储能加压来提高冲洗水的水压,从而大大提高马桶的冲洗效果。
根据本发明的其中一个方面,本发明提供的技术方案之一为:
一种储能器,包括:
本体,具有进水口、出水口、储能腔、用于连通所述进水口和出水口的过流通道、用于连通所述储能腔与所述出水口的主阀口,所述进水口与所述储能腔相连通;
主控制阀,包括活动设于所述本体内并与所述主阀口相配合的主阀芯;
弹性储能组件,活动设于所述储能腔;
所述进水口未进水状态下,所述主阀芯关闭所述主阀口,并且所述过流 通道处于关闭状态;
所述进水口进水时,水流克服所述弹性储能组件的弹性力流入所述储能腔中并驱动所述弹性储能组件使得所述弹性储能组件进行储能,所述弹性储能组件活动至预定位置时,所述过流通道打开,从而使得所述主阀芯背向所述储能腔的一侧受到水压作用而打开所述主阀口,进而所述储能腔中的水在所述弹性储能组件的作用下由所述主阀口排出并和所述进水口的水一起从所述出水口流出。
根据本发明的储能器,其在进水口开始进水时,进水口的水流先存储在储能器的储能腔中,当储能腔中的水存到预定量后,弹性储能组件活动至预定位置时,过流通道打开,从而打开主阀口,使得储能腔中的水能经由主阀口流出并与进水口的水一起从出水口流出,提高了从出水口流出的水流压力和水流流量,由此实现对水流进行储能加压,结构简单,设计巧妙,功能可靠。
优选的,所述进水口未进水状态下,所述弹性储能组件抵顶所述主阀芯使得所述主阀芯关闭所述主阀口;所述进水口进水时,在所述弹性储能组件未活动至所述预定位置时,所述主阀芯在水压作用下保持关闭所述主阀口。该方案使得主阀芯能在储能器进行储水的过程中关闭主阀口,从而避免进入储能腔中的水流从主阀口流出。
优选的,所述弹性储能组件与所述主阀芯相抵接时,所述弹性储能组件与所述主阀芯之间具有水流间隙,从而使得所述主阀芯面对所述弹性储能组件的一侧能受到水压的作用力。通过设置水流间隙,一方面,使得水流能流至主阀芯面对所述弹性储能组件的一侧以对主阀芯施加水压从而使得主阀芯在进水水压作用下往关闭主阀口的方向运动以关闭主阀口;另一方面,避免 弹性储能组件与主阀芯相贴合,弹性储能组件在水压作用下活动时会将主阀芯吸合并一起往远离主阀口的方向运动,进而导致主阀芯无法关闭主阀口的问题。
优选的,所述过流通道打开时,所述主阀芯在作用于所述主阀芯的外力作用下打开所述主阀口,或者,所述主阀芯在自身重力作用下打开所述主阀口。过流通道打开时,主阀芯背向储能腔的一侧受到水压作用,当主阀芯背向储能腔的一侧受到的水的压力等于或小于主阀芯位于储能腔的一侧受到的水的压力时,主阀芯能借助作用于主阀芯的外力或借助主阀芯的自身重力自动打开主阀口。使主阀芯打开主阀口的具体方式可根据需要进行设计。
优选的,所述主控制阀包括作用于所述主阀芯的第一弹性件,所述主阀芯关闭所述主阀口的过程中克服所述第一弹性件的弹性力,所述过流通道打开时,所述主阀芯在所述第一弹性件提供的所述外力作用下打开所述主阀口。主阀芯借助第一弹性件提供的弹性外力作用自动打开主阀口,更加可靠。
优选的,所述弹性储能组件包括活塞和作用于所述活塞的第二弹性件,所述活塞包括活塞头和活塞杆,所述活塞头上设有密封件,所述活塞头通过所述密封件与所述储能腔的内壁形成动密封,所述活塞头将所述储能腔密封隔离成第一腔和第二腔,所述第一腔与所述进水口和所述主阀口相连通,所述第二腔与外界相连通。该方案的弹性储能组件结构简单。
优选的,所述弹性储能组件包括两端开口的皮囊、一活塞和作用于所述活塞的第二弹性件,所述活塞包括活塞头和活塞杆,所述皮囊靠近所述主阀口的一端开口与所述本体密封固定连接,所述皮囊远离所述主阀口的一端开口与所述活塞头密封固定连接,所述皮囊将所述储能腔密封隔离成第三腔和第四腔,所述储能腔内由所述皮囊密封包围的部分形成所述第三腔,所述储 能腔内所述皮囊之外的部分形成所述第四腔,所述第三腔与所述进水口和所述主阀口相连通,所述第四腔与外界相连通。该方案的弹性储能组件结构简单。
优选的,所述弹性储能组件包括一端开口的皮囊,所述皮囊将所述储能腔的内腔密封隔离成第一腔和第二腔,所述储能腔内由所述皮囊密封包围的部分形成所述第一腔,所述储能腔内皮囊之外的部分形成所述第二腔,所述第一腔与所述进水口和所述主阀口相连通,所述第二腔与外界相连通,所述主控制阀设于所述第一腔中,所述弹性储能组件设于所述第二腔中,所述弹性储能组件包括活塞和作用于所述活塞的第二弹性件,所述活塞包括活塞头和活塞杆,所述皮囊的开口端与所述储能腔的开口密封固定连接,所述活塞头与所述皮囊远离所述开口端的活动端抵接配合。该方案的弹性储能组件结构简单。
优选的,还包括用于控制所述过流通道开闭的副控制阀;所述弹性储能组件活动至所述预定位置时传动打开所述副控制阀,或者,储能器还包括位置感应器,当所述位置感应器感应到所述弹性储能组件活动至所述预定位置时,所述位置感应器控制所述副控制阀打开,或者,储能器还包括流量感应器,当所述流量感应器感应到所述进水口流入所述储能腔的水量达到预定值时,所述流量感应器控制所述副控制阀打开。通过设置副控制阀控制所述过流通道的开闭,设计巧妙,功能可靠。
进一步的,所述弹性储能组件通过传动机构传动打开所述副控制阀,所述过流通道上形成有副阀口,所述副控制阀包括与所述副阀口相配合的副阀芯和作用于所述副阀芯的第四弹性件,所述副阀芯在所述第四弹性件的弹性力作用下关闭所述副阀口,所述传动机构通过克服所述第四弹性件的弹性力 打开所述副阀口。该方案,当进水口的水压足够克服第四弹性件的弹性力时,副阀口能在进水水压作用打开,从而无需进行储能,就可以从出水口流出,出水时机可提前,效果更好。
进一步的,所述传动机构包括摆动杆和推杆,所述摆动杆摆动装接在所述储能腔的侧壁上,所述摆动杆的一端与所述弹性储能组件联动配合,另一端与所述推杆联动配合,所述推杆与所述副控制阀联动配合。该方案的传动机构简单,传动可靠。
优选的,所述本体包括主体和顶盖,所述主体内形成有所述储能腔和出水腔,所述出水腔位于所述储能腔的一侧,所述出水腔与所述储能腔通过所述主阀口相连通,所述出水腔的侧壁上开设有所述出水口,所述出水腔远离所述储能腔的一侧形成开口,所述顶盖密封盖接在所述出水腔的开口处,所述过流通道与所述出水腔相连通。该方案使得储能器的整体布局合理、结构紧凑、便于成型。
优选的,所述过流通道的出水端位于所述出水腔内并与所述出水腔相连通,所述过流通道的出水端形成副阀口,所述副阀口处设有用于控制所述副阀口打开或关闭的副控制阀,所述副控制阀包括副阀芯和作用于所述副阀芯的第四弹性件,所述弹性储能组件活动至所述预定位置时联动所述副阀芯以打开所述副阀口,所述第四弹性件弹顶在所述顶盖的内侧壁与所述副阀芯之间,所述副阀芯在所述第四弹性件的作用下关闭所述副阀口。该方案进一步使得结构紧凑。
进一步的,所述本体还包括底盖,所述储能腔远离所述出水腔的一端形成敞口,所述主控制阀和所述弹性储能组件由所述敞口装入所述储能腔中,并且所述主阀芯上设有的导杆由所述主阀口伸出,所述底盖盖接在所述敞口 处。该方案使得储能器的装配更方便,提高装配效率。
优选的,所述副控制阀采用先导式副控制阀,所述进水口进水时,水流克服所述弹性储能组件的弹性力流入所述储能腔中并驱动所述弹性储能组件使得所述弹性储能组件进行储能,并且所述先导式副控制阀在受到的水压差作用下关闭或保持关闭所述过流通道,当所述弹性储能组件活动至预定位置时,所述弹性储能组件联动打开所述先导式副控制阀的泄压口以打开所述过流通道。该方案副控制阀采用先导式的副控制阀,仅需很小的作用力就可以顺利打开先导式副控制阀,功能更可靠。
进一步的,所述弹性储能组件通过传动机构传动打开所述先导式副控制阀的泄压口,所述过流通道上形成有副阀口,所述先导式副控制阀包括副阀盖和与所述副阀口相配合的副阀芯,所述副阀芯和所述副阀盖之间形成背压腔,所述泄压口与所述背压腔相连通,所述背压腔通过一通流槽与所述进水口相连通,所述泄压口打开时,所述副阀芯在进水水压的作用下打开所述副阀口,所述泄压口关闭时,所述副阀芯在所述副阀芯的两侧受到的水压差作用下关闭所述副阀口。
更进一步的,所述传动机构包括摆动杆、推杆和抬杆,所述摆动杆摆动装接在所述储能腔的侧壁上,所述摆动杆的一端与所述弹性储能组件联动配合,另一端与所述推杆联动配合,所述推杆与与所述抬杆的一端联动配合,所述抬杆的另一端与所述先导式副控制阀的泄压口开闭配合。该方案的传动机构简单,传动可靠。
进一步的,所述本体包括主体和顶盖,所述主体内形成有所述储能腔,所述过流通道、进水口、出水口和主阀口形成在所述顶盖上,所述主控制阀装设在所述主体内,所述先导式副控制阀装设在所述顶盖上。该方案使得储 能器的整体布局合理、结构紧凑、便于成型。
本发明提供的技术方案之二为:一种储能器,包括:
本体,具有进水口、出水口、储能腔、用于连通所述储能腔与所述出水口的主阀口,所述进水口与所述储能腔相连通;
主控制阀,包括活动设于所述本体内并与所述主阀口相配合的主阀芯,所述主阀芯关闭所述主阀口时,所述主阀芯背向所述储能腔的一侧形成一出水腔;
过流通道,一端连通所述储能腔,另一端连通所述出水腔;
弹性储能组件,活动设于所述储能腔;
所述进水口未进水状态下,所述主阀芯关闭所述主阀口;
所述进水口进水时,水流克服所述弹性储能组件的弹性力流入所述储能腔中并驱动所述弹性储能组件使得所述弹性储能组件进行储能,所述弹性储能组件活动至预定位置时,所述储能腔中的水经由所述过流通道流至所述出水腔中,使得所述主阀芯背向所述储能腔的一侧受到水压作用,从而使得所述主阀芯受到的合力方向往打开所述主阀口的方向以打开所述主阀口,进而所述储能腔中的水在所述弹性储能组件的作用下和所述进水口的水一起由所述主阀口排至所述出水口。
根据本发明的储能器,其在进水口开始进水时,进水口的水流先存储在储能器的储能腔中,当储能腔中的水存到预定量后,弹性储能组件活动至预定位置时,过流通道开始通水,储能腔的水经由过流通道流至出水腔,从而使得主阀芯打开主阀口,进而使得储能腔中的水能和进水口的水一起经由主阀口流出,提高了从出水口流出的水流压力和水流流量,由此实现对水流进行储能加压,采用过流通道的液压反馈从而打开主阀口,结构简单,设计巧 妙,功能可靠。
优选的,所述主阀芯关闭所述主阀口时,所述出水腔与所述出水口相隔开,所述主阀芯打开所述主阀口时,所述出水腔与所述出水口相连通。由于主阀芯关闭所述主阀口时,所述出水腔与所述出水口相隔开,这样过流通道的水流至出水腔后不会马上从出水口流出,水流会积存在出水腔中从而使得主阀芯背向所述储能腔的一侧受到水压作用,进而使得所述主阀芯受到的合力方向往打开所述主阀口的方向以打开所述主阀口,功能更可靠。
优选的,所述出水腔与所述出水口之间设有过流小孔,所述出水腔与所述出水口相隔开时,所述出水腔的水通过所述过流小孔泄出至所述出水口。通过设置该过流小孔,使得进水口停止进水时,出水腔的水能够由过流小孔泄出,从而避免出水腔憋水导致主阀芯无法关闭主阀口的问题,功能更可靠。
优选的,所述进水口未进水状态下,所述弹性储能组件抵顶所述主阀芯使得所述主阀芯关闭所述主阀口;所述进水口进水时,在所述弹性储能组件未活动至所述预定位置时,所述主阀芯在水压作用下保持关闭所述主阀口。该方案使得主阀芯能在储能器进行储水的过程中关闭主阀口,从而避免进入储能腔中的水流从主阀口流出。
优选的,所述弹性储能组件与所述主阀芯相抵接时,所述弹性储能组件与所述主阀芯之间具有水流间隙,从而使得所述主阀芯面对所述弹性储能组件的一侧能受到水压的作用力。通过设置水流间隙,一方面,使得水流能流至主阀芯面对所述弹性储能组件的一侧以对主阀芯施加水压从而使得主阀芯在进水水压作用下往关闭主阀口的方向运动以关闭主阀口;另一方面,避免弹性储能组件与主阀芯相贴合,弹性储能组件在水压作用下活动时会将主阀芯吸合并一起往远离主阀口的方向运动,进而导致主阀芯无法关闭主阀口的 问题。
优选的,所述过流通道通水时,所述主阀芯借助所述主阀芯两侧的水压的合力作用打开所述主阀口,和/或,所述主阀芯借助作用于所述主阀芯的外力作用打开所述主阀口,和/或,所述主阀芯借助自身重力作用打开所述主阀口。过流通道通水时,主阀芯背向储能腔的一侧受到水压作用,主阀芯能借助主阀芯两侧的水压的合力和/或借助作用于主阀芯的外力和/或借助主阀芯的自身重力自动打开主阀口,使主阀芯打开主阀口的具体方式可根据需要进行设计。
优选的,所述主控制阀包括作用于所述主阀芯的第一弹性件,所述主阀芯关闭所述主阀口的过程中克服所述第一弹性件的弹性力,所述过流通道通水时,所述主阀芯借助所述第一弹性件提供的所述外力作用下打开所述主阀口。主阀芯借助第一弹性件提供的弹性外力作用自动打开主阀口,主阀口的打开更加可靠。
优选的,所述弹性储能组件包括活塞和作用于所述活塞的第二弹性件,所述活塞上设有密封件,所述活塞通过所述密封件与所述储能腔的内壁形成动密封,所述密封件将所述储能腔密封隔离成第一腔和第二腔,所述第一腔与所述进水口和所述主阀口相连通,所述第二腔与外界相连通。该方案的弹性储能组件结构简单。
优选的,所述弹性储能组件包括两端开口的皮囊、一活塞和作用于所述活塞的第三弹性件,所述皮囊靠近所述主阀口的一端开口与所述本体密封固定连接,所述皮囊远离所述主阀口的一端开口与所述活塞的头部密封固定连接,所述皮囊将所述储能腔密封隔离成第三腔和第四腔,所述储能腔内由所述皮囊密封包围的部分形成所述第三腔,所述储能腔内所述皮囊之外的部分 形成所述第四腔,所述第三腔与所述进水口和所述主阀口相连通,所述第四腔与外界相连通。该方案的弹性储能组件结构简单。
优选的,所述过流通道形成于所述本体上,还包括用于控制所述过流通道开闭的单向阀,所述过流通道上形成有单向阀口,所述过流通道通水时,所述单向阀在所述过流通道的水压作用下打开所述单向阀口。通过设置单向阀阻止出水腔的水经由所述过流通道返流至储能腔中,设计巧妙,功能可靠。
进一步的,所述单向阀包括与所述单向阀口相配合的单向阀芯和作用于所述单向阀芯的第四弹性件,所述单向阀芯在所述第四弹性件的弹性力作用下关闭所述单向阀口,所述过水通道的水流通过克服所述第四弹性件的弹性力打开所述单向阀口。该方案的单向阀结构简单。
优选的,所述本体还包括主体和顶盖,所述主体上形成有所述进水口、所述出水口、所述储能腔和所述主阀口,所述储能腔远离所述出水口的一端形成敞口,所述主控制阀还包括阀座,所述主阀芯活动设于所述阀座上,所述主控制阀和所述弹性储能组件由所述敞口装入所述储能腔中,所述顶盖盖接在所述敞口处。该方案使得储能器的装配更方便,提高装配效率。
根据本发明的其中另一个方面,本发明提供了以下技术方案:
一种马桶冲洗系统,包括用于对马桶进行冲洗的冲洗水路,还包括上述任一项所述的储能器,所述储能器设于所述冲洗水路上。
根据本发明的马桶冲洗系统,通过设置上述的储能器,利用储能器的储能加压作用来提高冲洗水的水压,从而大大提高马桶的冲洗效果。
优选的,所述冲洗水路的进水端与自来水管路接通,所述冲洗水路的出水端与马桶顶部的出水口相连通,从而能有效地对马桶便池的内周壁进行冲洗。
附图说明
为了使本发明的优点更容易理解,将通过参考在附图中示出的具体实施方式更详细地描述上文简要描述的本发明。可以理解这些附图只描绘了本发明的典型实施方式,因此不应认为是对其保护范围的限制,通过附图以附加的特性和细节描述和解释本发明。在附图中:
图1为本发明第一实施例的储能器的立体爆炸图;
图2为本发明第一实施例的储能器的横向剖视图;
图3为图2中A-A方向的剖视图,此时为进水口刚开始进水,且主阀口处于关闭的状态;
图4为图2中B-B方向的剖视图,此时为进水口刚开始进水,且主阀口处于关闭的状态;
图5为图4中C处的局部放大图;
图6为图2中B-B方向的剖视图,此时为主阀口处于打开的状态;
图7为本发明第一实施例的主体的立体图;
图8为本发明第一实施例的主体的横向剖视图;
图9为本发明第一实施例的主体的纵向剖视图。
图10为本发明第一实施例的替代结构的剖视图;
图11为本发明第二实施例的储能器的立体组装示意图;
图12为本发明第二实施例的储能器的其中一个截面的剖视图,此时,进水口刚刚开始进水,泄压口处于关闭状态;
图13为图12状态下,储能器的另一个截面的剖视图;
图14为本发明第二实施例的储能器的其中一个截面的剖视图,此时,泄压口处于打开状态;
图15为图14状态下,储能器的另一个截面的剖视图;
图16为本发明第二实施例的储能器的部分立体分解图;
图17为图16的其中一个截面的剖视图;
图18为图16的另一个截面的剖视图;
图19为图16的组装剖视图之一;
图20为图16的组装剖视图之二;
图21为本发明第三实施例的储能器的立体组装示意图;
图22为图1中A-A方向的剖视图,此时为进水口未进水状态;
图23为图1中B-B方向的剖视图,此时为进水口未进水状态;
图24为图1中B-B方向的剖视图,此时为进水口进水状态,并且过流通道处于通水状态,主阀口未打开;
图25为图1中A-A方向的剖视图,此时为进水口进水状态,并且主阀口处于打开状态;
图26为本发明第三实施例的阀座的立体图;
图27为本发明第三实施例的阀座和主阀芯相配合的立体图;
图28为本发明第三实施例的阀座和主阀芯相配合的剖视图。
图29为本发明第三实施例的主阀芯的立体图。
图中附图标记分别是:
10-本体,10a-主体;10b-顶盖;10c-底盖;11-进水口,12-出水口;13-储能腔;131-第一腔;132-第二腔;133-第三腔;134-第四腔;14-过流通道;141-副阀口;142-单向阀口;15-主阀口;16-出水腔;161-过流小孔;17-进水通道;171-第一出水端;172-第二出水端;18-出水通道;19-导槽;
20-主控制阀;21-主阀芯;211-导杆;212-第二密封件;213-联动杆;22- 第一弹性件;23-阀座;231-通水环槽;232-穿孔;233-凸筋;
30-弹性储能组件;31-活塞;311-活塞头;312-活塞杆;3111-凸起;32-第二弹性件;33-密封件;34-皮囊;
40-副控制阀(先导式副控制阀);41-副阀芯;42-副阀盖;421-泄压口,43-背压腔;44-通流槽;45-第四弹性件;
50-传动机构;51-摆动杆;52-推杆;53-转轴;54-抬杆;541-背压垫;55-第三弹性件;
60-单向阀;61-单向阀芯。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在下文的讨论中,给出了细节以便提供对本发明更为彻底的理解。然而,本领域技术人员可以了解,本发明可以无需一个或多个这些细节而得以实施。在特定的示例中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行详尽地描述。需要说明的是,本文中所使用的术语“上”、“下”、“前”、“后”、“左”、“右”以及类似的表述只是为了说明的目的,并非限制。
本发明中所引用的诸如“第一”和“第二”的序数词仅仅是标识,而不具有任何其他含义,例如特定的顺序等。而且,例如,术语“第一部件”其本身不暗示“第二部件”的存在,术语“第二部件”本身不暗示“第一部件”的存在。
请查阅图1至图9,本发明的第一实施例的一种储能器,包括本体10、主控制阀20、弹性储能组件30、副控制阀40、传动机构50。
其中,本体10具有进水口11、出水口12、储能腔13、用于连通进水口11和出水口12的过流通道14、用于连通储能腔13与出水口12的主阀口15,进水口11与储能腔13相连通。主控制阀20包括活动设于本体10内并与主阀口15相配合的主阀芯21。弹性储能组件30活动设于储能腔13。
进水口11未进水状态下,主阀芯21关闭主阀口15,并且过流通道14处于关闭状态。进水口11进水时,水流克服弹性储能组件30的弹性力流入储能腔13中并驱动弹性储能组件30使得弹性储能组件30进行储能。弹性储能组件30活动至预定位置时,过流通道14打开,从而使得主阀芯21背向储能腔13的一侧受到水压作用而打开主阀口15,进而储能腔13中的水在弹性储能组件30的作用下由主阀口15排出并和进水口11的水一起从出水口12流出,这样就能使得流出出水口12的水流压力和水流流量得到有效提高。
具体的,请查阅图8和图9,本实施例中,主体10a上形成有进水通道17和出水通道18。进水口11形成进水通道17的进水端,进水通道17的出水端分流形成第一出水端171和第二出水端172,第一出水端171与储能腔13相连通,进水口11通过进水通道17、第一出水端171与储能腔13实现连通。第二出水端172与过流通道14相连通,进水口11通过进水通道17、第二出水端172与过流通道14实现连通。出水口12形成出水通道18的出水端,出水通道18的进水端与下文所述的出水腔16相连通。
本实施例中,进水口11未进水状态下,弹性储能组件30抵顶主阀芯21使得主阀芯21关闭主阀口15;进水口11进水时,在弹性储能组件30未活动至预定位置时,主阀芯21在水压作用下保持关闭主阀口15,这样,主阀芯21能在储能器进行储水的过程中关闭主阀口15,从而避免进入储能腔13中的水流从主阀口15流出。
请查阅图1、图3、图4和图5,本实施例中,弹性储能组件30与主阀芯21相抵接时,弹性储能组件30与主阀芯21之间具有水流间隙,从而使得主阀芯21面对弹性储能组件30的一侧能受到水压的作用力。通过设置水流间隙,一方面,使得水流能流至主阀芯21面对弹性储能组件30的一侧以对主阀芯21施加水压从而使得主阀芯21在进水水压作用下往关闭主阀口15的方向运动以关闭主阀口15;另一方面,避免弹性储能组件30与主阀芯21相贴合,弹性储能组件30在水压作用下活动时会将主阀芯21吸合并一起往远离主阀口15的方向运动,进而导致主阀芯21在储能器进行储水的过程无法关闭主阀口15的问题。
具体的,本实施例中,在下述的弹性储能组件30的活塞头311面对主阀芯21的一侧设置有若干个间隔布置的凸起3111,弹性储能组件30通过凸起3111抵接主阀芯21,凸起3111位于活塞头311和主阀芯21之间,从而在二者之间形成所述水流间隙。
过流通道14打开时,使主阀芯21自动打开主阀口15的方式可以根据需要进行设计,比如:采用主阀芯21在作用于主阀芯21的外力作用下打开主阀口15,或者,主阀芯21在自身重力作用下打开主阀口15等。具体的,过流通道14打开时,主阀芯21背向储能腔13的一侧受到水压作用,当主阀芯21背向储能腔13的一侧受到的水的压力等于或小于主阀芯21位于储能腔13的一侧受到的水的压力时,主阀芯21能借助作用于主阀芯21的外力或借助主阀芯21的自身重力自动打开主阀口15。使主阀芯21打开主阀口15的具体方式可根据需要进行设计,不以上述的实施方式为限。
本实施例具体是,主控制阀20包括作用于主阀芯21的第一弹性件22,主阀芯21关闭主阀口15的过程中克服第一弹性件22的弹性力,也就是说, 主阀芯21关闭主阀口15时,第一弹性件22处于弹性变形状态而对主阀芯21施加弹性力,当然,此时第一弹性件22对主阀芯21施加的弹性力小于储能器13一侧对主阀芯21的进水压力,从而确保主阀芯21在进水水压的作用下保持关闭主阀口15。过流通道14打开时,第一弹性件22施加在主阀芯21上的弹性力和主阀芯21背向储能器13一侧受到的水压力的合力大于主阀芯21位于储能器13一侧受到的水压力,主阀芯21在第一弹性件22提供的所述外力作用下打开主阀口15。主阀芯21借助第一弹性件22提供的弹性外力作用自动打开主阀口15,更加可靠。
本实施例中,弹性储能组件30包括活塞31和作用于活塞31的第二弹性件32,活塞31包括活塞头311和活塞杆312,活塞头311上设有密封件33,活塞头311通过密封件33与储能腔13的内壁形成动密封。活塞头311将储能腔13密封隔离成第一腔131和第二腔132,第一腔131与进水口11和主阀口15相连通,第二腔132与外界相连通。
本实施例中,还包括用于控制过流通道14开闭的副控制阀40。控制副控制阀40打开的方式可以有多种,包括机械方式打开或电控方式打开,比如:弹性储能组件30活动至所述预定位置时传动打开副控制阀40,这时采用机械传动控制打开副控制阀40,或者,储能器还包括位置感应器(未图示),当所述位置感应器感应到弹性储能组件30活动至所述预定位置时,所述位置感应器控制所述副控制阀40打开,此时副控制阀40采用电控阀,或者,储能器还包括流量感应器(未图示),当所述流量感应器感应到所述进水口11流入所述储能腔13的水量达到预定值时,所述流量感应器控制所述副控制阀40打开,此时副控制阀40采用电控阀。通过设置副控制阀40控制过流通道14的开闭,设计巧妙,功能可靠,当然,除了采用副控制阀40控制过流通 道14的开闭外,还可以有其他方式实现弹性储能组件30活动至预定位置时打开过流通道14。本实施例具体采用弹性储能组件30机械传动打开副控制阀40。
进一步的,过流通道14上形成有副阀口141,副控制阀40包括与副阀口141相配合的副阀芯41和作用于副阀芯41的第四弹性件45,副阀芯41在第四弹性件45的弹性力作用下关闭副阀口141,传动机构50通过克服第四弹性件45的弹性力打开副阀口141。这样,当进水口11的水压足够克服第四弹性件45的弹性力时,副阀口141能在进水水压作用打开,从而无需进行储能,就可以从出水口12流出,出水时机可提前,效果更好。
作为优选,如图1、图4和图6所示,传动机构50包括摆动杆51和推杆52,摆动杆51通过转轴53摆动装接在储能腔13的侧壁上,摆动杆51的一端与弹性储能组件30联动配合,另一端与推杆52联动配合,推杆52与副控制阀40的副阀芯41联动配合。该传动机构简单,传动可靠。本实施例中,推杆52与副阀芯41一体成型。
为了使得储能器的整体布局合理、结构紧凑、便于成型,本实施例中,本体10包括主体10a和顶盖10b,主体10a内形成有储能腔13和出水腔16,出水腔16位于储能腔13的一侧,出水腔16与储能腔13通过主阀口15相连通,出水腔16的侧壁上开设有出水口12,出水腔16远离储能腔13的一侧形成开口,顶盖10b密封盖接在出水腔16的开口处,过流通道14与出水腔16相连通。具体的,过流通道14的出水端位于出水腔16内并与出水腔16相连通,过流通道14的出水端形成所述副阀口141,副控制阀40控制副阀口141打开或关闭,弹性储能组件30活动至预定位置时联动副阀芯41以打开副阀口141,第四弹性件45弹顶在顶盖10b的内侧壁与副阀芯41之间, 副阀芯41在第四弹性件45的作用下关闭副阀口141。
本体10还包括底盖10c,储能腔13远离出水腔16的一端形成敞口,主控制阀20和弹性储能组件30由敞口装入储能腔13中,并且主阀芯21上设有的导杆211(导杆211用于对主阀芯21的上下活动进行导向)由主阀口15向上伸至出水腔16中,底盖10c盖接在该敞口处,从而使得储能器的装配更方便,提高装配效率。
本实施例中,第一弹性件22、第二弹性件32、第四弹性件45均采用压缩弹簧。并且第二弹性件32的弹性力大于第一弹性件22的弹性力,第四弹性件45对副阀芯41施加的弹性力大于进水口11的进水水流对副阀芯41的水压。
使用时,初始状态下,进水口11未进水,此时,主阀芯21关闭主阀口15,并且过流通道14处于关闭状态。请查阅图3至图5,当进水口11刚开始进水时,水流克服弹性储能组件30的弹性力流入储能腔13中,主阀芯21在储能腔13中的水压作用下克服第一弹性件22的弹性力保持关闭主阀口15。随着水流不断进入储能腔13中,水流驱动弹性储能组件30使得弹性储能组件30的活塞31向下运动并压缩第二弹性件32进行储能。在此过程中,副控制阀40的副阀芯41在第四弹性件45的弹性力作用下保持关闭副阀口141(此时,第四弹性件45对副阀芯41的弹性力大于水流对副阀芯41的水压力),过流通道14保持关闭状态,使得进水口11的水流无法通过过流通道14流至出水口12。
请继续查阅图6,当弹性储能组件30活动至预定位置时,弹性储能组件30的活塞头311开始向下抵接传动机构50的摆动杆51的一端(即图6中的左端),从而带动摆动杆51摆动,摆动杆51的另一端(即图6中的右端)向 上运动并通过推杆52带动副阀芯41克服第四弹性件45的作用力向上运动,副阀芯41向上运动后打开副阀口141,从而打开过流通道14,使得进水口11的水流能经由过流通道14流至出水腔16中。
当出水腔16中有水流时,主阀芯21背向储能腔13的一侧受到水压作用,此时,第一弹性件22施加在主阀芯21上的弹性力和主阀芯21背向储能腔13一侧受到的水压力的合力大于主阀芯21位于储能器13一侧受到的水压力,以图6的方向为例,主阀芯21向下运动并打开主阀口15,此时,储能腔13中的水在弹性储能组件30的作用下由主阀口15排出并和进水口11的水一起从出水口12流出,这样就能使得流出出水口12的水流压力和水流流量得到有效提高,从而实现对水流的储能加压。
当储能腔13中的水排出后,由于第二弹性件32的弹性力大于第一弹性件22的弹性力,弹性储能组件30重新抵顶主阀芯21使得主阀芯21能克服第一弹性件22的弹性力而位于关闭主阀口15的位置。与此同时,弹性储能组件30复位后,失去对传动机构50的摆动杆51的抵接,副阀芯41在第四弹性件的作用下复位并关闭副阀口141,从而使得储能器恢复到初始状态。
其中,图2至图6中的箭头表示水流流向。
请查阅图10,图10绘示了本发明第一实施例的替代结构,其与第一实施例基本相同,不同之处仅在于:活塞头311上未设置密封件33,不通过密封件33将储能腔13密封隔离为两个腔室,而是采用一皮囊34将储能腔13密封隔离为两个腔室。
具体是,弹性储能组件30包括两端开口的皮囊34、一活塞31和作用于活塞31的第二弹性件32,活塞31包括活塞头311和活塞杆312,替代实施例的活塞31与第一实施例的结构相同。皮囊34靠近主阀口15的一端开口与 本体10密封固定连接,皮囊34远离主阀口15的一端开口与活塞头311密封固定连接。皮囊34将储能腔13密封隔离成第三腔133和第四腔134,储能腔13内由皮囊34密封包围的部分形成第三腔133,储能腔13内皮囊34之外的部分形成第四腔134,第三腔133与进水口11和主阀口15相连通,第四腔134与外界相连通。替代实施例的弹性储能组件30同样结构简单,也能实现本发明的目的。
替代实施例的其余结构、工作原理和工作过程与第一实施例相同,这里不再赘述。
请查阅图11至图20,本发明的第二实施例的一种储能器,包括本体10、主控制阀20、弹性储能组件30、先导式副控制阀40、传动机构50。
其中,本体10具有进水口11、出水口12、储能腔13、用于连通进水口11和出水口12的过流通道14、用于连通储能腔13与出水口12的主阀口15,进水口11与储能腔13相连通。主控制阀20包括活动设于本体10内并与主阀口15相配合的主阀芯21。弹性储能组件30活动设于储能腔13。先导式副控制阀40设于过流通道14中用以开闭过流通道14。
进水口11未进水状态下,主阀芯21关闭主阀口15,此时,副控制阀40可以选择关闭过流通道14或打开过流通道14,优选的是使得副控制阀40关闭过流通道14。进水口11进水时,水流克服弹性储能组件30的弹性力流入储能腔13中并驱动弹性储能组件30使得弹性储能组件30进行储能,并且先导式副控制阀40在受到的水压差作用下关闭或保持关闭过流通道14,当弹性储能组件30活动至预定位置时,弹性储能组件30联动打开先导式副控制阀40的泄压口421以打开过流通道14,从而使得主阀芯21背向储能腔13 的一侧受到水压作用而打开主阀口15,进而储能腔13中的水在弹性储能组件30的作用下由主阀口15排出并和进水口11的水一起从出水口12流出,这样就能使得流出出水口12的水流压力和水流流量得到有效提高。
具体的,本实施例中,本体10包括主体10a和顶盖10b,主体10a内形成有储能腔13,顶盖10b上形成有进水通道17,过流通道14、进水口11、出水口12和主阀口15形成在顶盖10b上。进水口11形成进水通道17的进水端,进水通道17的出水端分流形成第一出水端171和第二出水端172,第一出水端171与储能腔13相连通,进水口11通过进水通道17、第一出水端171与储能腔13实现连通。第二出水端172与过流通道14相连通,进水口11通过进水通道17、第二出水端172与过流通道14实现连通。
本实施例中,进水口11未进水状态下,弹性储能组件30抵顶主阀芯21使得主阀芯21关闭主阀口15;进水口11进水时,在弹性储能组件30未活动至预定位置时,主阀芯21在水压作用下保持关闭主阀口15,这样,主阀芯21能在储能器进行储水的过程中关闭主阀口15,从而避免进入储能腔13中的水流从主阀口15流出。下文所述的副阀芯41在自身弹性力作用下关闭副阀口141,从而使得先导式副控制阀40关闭过流通道14。
过流通道14打开时,使主阀芯21自动打开主阀口15的方式可以根据需要进行设计,比如:采用主阀芯21在作用于主阀芯21的外力作用下打开主阀口15,或者,主阀芯21在自身重力作用下打开主阀口15等。具体的,过流通道14打开时,主阀芯21背向储能腔13的一侧受到水压作用,当主阀芯21背向储能腔13的一侧受到的水的压力等于或小于主阀芯21位于储能腔13的一侧受到的水的压力时,主阀芯21能借助作用于主阀芯21的外力或借助主阀芯21的自身重力自动打开主阀口15。使主阀芯21打开主阀口15的具 体方式可根据需要进行设计,不以上述的实施方式为限。
本实施例具体是,主控制阀20包括作用于主阀芯21的第一弹性件22,主阀芯21关闭主阀口15的过程中克服第一弹性件22的弹性力,也就是说,主阀芯21关闭主阀口15时,第一弹性件22处于弹性变形状态而对主阀芯21施加弹性力,当然,此时第一弹性件22对主阀芯21施加的弹性力小于储能器13一侧对主阀芯21的进水压力,从而确保主阀芯21在进水水压的作用下保持关闭主阀口15。过流通道14打开时,第一弹性件22施加在主阀芯21上的弹性力和主阀芯21背向储能器13一侧受到的水压力的合力大于主阀芯21位于储能器13一侧受到的水压力,主阀芯21在第一弹性件22提供的所述外力作用下打开主阀口15。主阀芯21借助第一弹性件22提供的弹性外力作用自动打开主阀口15,更加可靠。
本实施例中,弹性储能组件30包括一端开口的皮囊34,皮囊34将储能腔13的内腔密封隔离成第一腔131和第二腔132,储能腔13内由皮囊34密封包围的部分形成第一腔131,储能腔13内皮囊34之外的部分形成第二腔132,第一腔131与进水口11和主阀口15相连通,第二腔132与外界相连通,主控制阀20设于第一腔131中,弹性储能组件30设于第二腔132中。弹性储能组件30包括活塞31和作用于活塞31的第二弹性件32,活塞31包括活塞头311和活塞杆312,皮囊34的开口端与储能腔13的开口密封固定连接,活塞头311与皮囊34远离其开口端的活动端抵接配合,活塞头311上设有Y形密封件33,活塞头311通过密封件33和储能腔13的内壁之间形成动密封。
在未图示出的其他一些实施例中,也可以不设置皮囊34:具体是,弹性储能组件30包括活塞31和作用于活塞31的第二弹性件32,活塞31包括活塞头311和活塞杆312,活塞头311上设有密封件33,活塞头311通过密封 件33与储能腔13的内壁形成动密封。活塞头311将储能腔13密封隔离成第一腔131和第二腔132,第一腔131与进水口11和主阀口15相连通,第二腔132与外界相连通。
在未图示出的其他另一些实施例中,也可替换为:皮囊34设计为两端开口,皮囊34靠近主阀口15的一端开口与本体10密封固定连接,皮囊34远离主阀口15的一端开口与活塞头311密封固定连接。
本实施例中,弹性储能组件30通过传动机构传动打开先导式副控制阀40的泄压口421。过流通道14上形成有副阀口141,先导式副控制阀40包括副阀盖42和与副阀口141相配合的副阀芯41,副阀芯41为一弹性胶垫,副阀芯41和副阀盖42之间形成背压腔43,泄压口421与背压腔43相连通,背压腔43通过一通流槽44与进水口11侧的过流通道14相连通,进而与进水口11相连通,进水口11的水流经由过流通道14、通流槽44流至背压腔43中。泄压口421打开时,副阀芯41在进水水压的作用下打开副阀口141,泄压口421关闭时,副阀芯41在副阀芯41的两侧受到的水压差作用下关闭副阀口141。先导式副控制阀40采用压力差的工作原理为本领域的公知技术,这里对其工作原理不详细展开说明。
较佳的,弹性储能组件30失去对传动机构的作用力时,传动机构在重力作用下关闭先导式副控制阀40的泄压口421。为了使得对泄压口421的关闭更可靠和及时,还可以设置第三弹性件55,第三弹性件55作用于推杆52,使得传动机构50在失去弹性储能组件30的作用力后复位并关闭泄压口421。
作为优选,如图11、图13和图14所示,传动机构50包括摆动杆51、推杆52和抬杆54,摆动杆51通过转轴53摆动装接在储能腔13的侧壁上,摆动杆51的一端与弹性储能组件30联动配合,另一端与推杆52联动配合, 推杆52与抬杆54的一端联动配合,抬杆54的另一端与先导式副控制阀40的泄压口421开闭配合。该传动机构简单,传动可靠。
为了使得储能器的整体布局合理、结构紧凑、便于成型,本实施例中,主体10a内形成有储能腔13,过流通道14、进水口11、出水口12和主阀口15形成在顶盖10b上,主控制阀20装设在主体10a内,先导式副控制阀40装设在顶盖10b上。顶盖10b上还设有导槽19,主阀芯21上设有与所述导槽19滑动导向配合的导杆211。
本实施例中,第一弹性件22、第二弹性件32、第三弹性件55均采用压缩弹簧。并且第二弹性件32的弹性力大于第一弹性件22的弹性力。
使用时,初始状态下,进水口11未进水,此时,主阀芯21关闭主阀口15,并且先导式副控制阀40关闭过流通道14。请查阅图12和图13,当进水口11刚开始进水时,水流克服弹性储能组件30的弹性力流入储能腔13中,主阀芯21在储能腔13中的水压作用下克服第一弹性件22的弹性力保持关闭主阀口15。随着水流不断进入储能腔13中,水流驱动弹性储能组件30使得弹性储能组件30的活塞31向下运动并压缩第二弹性件32进行储能。在此过程中,先导式副控制阀40的副阀芯41在副阀芯41的两侧受到的水压差作用下保持关闭副阀口141,过流通道14保持关闭状态,使得进水口11的水流无法通过过流通道14流至出水口12。
请查阅图14和图15,当弹性储能组件30活动至预定位置时,弹性储能组件30的活塞杆312开始向下抵接传动机构50的摆动杆51的一端(即图14中的左端),从而带动摆动杆51摆动,摆动杆51的另一端(即图14中的右端)向上运动并带动推杆52克服第三弹性件55的作用力向上运动,推杆52带动抬杆54向上抬起,从而使得抬杆54上设有的背压垫541打开泄压口 421,副阀芯41在进水水压的作用下向上运动后打开副阀口141,从而打开过流通道14,使得进水口11的水流能经由过流通道14流至出水口12。
当过流通道14打开时,主阀芯21背向储能腔13的一侧受到水压作用,此时,第一弹性件22施加在主阀芯21上的弹性力和主阀芯21背向储能腔13一侧受到的水压力的合力大于主阀芯21位于储能器13一侧受到的水压力,以图14的方向为例,主阀芯21向下运动并打开主阀口15,此时,储能腔13中的水在弹性储能组件30的作用下由主阀口15排出并和进水口11的水一起从出水口12流出,这样就能使得流出出水口12的水流压力和水流流量得到有效提高,从而实现对水流的储能加压。
当储能腔13中的水排出后,由于第二弹性件32的弹性力大于第一弹性件22的弹性力,弹性储能组件30重新抵顶主阀芯21使得主阀芯21能克服第一弹性件22的弹性力而位于关闭主阀口15的位置。与此同时,弹性储能组件30复位后,失去对传动机构50的摆动杆51的抵接,抬杆54在抬杆54的重力、推杆52的重力以及第三弹性件55的弹性力共同作用下向下摆动以式背压垫541重新关闭泄压口421,从而使得储能器恢复到初始状态。
其中,图12、图14和图15中的箭头表示水流流向。
本实施例的储能腔在进水口11开始进水时,进水口11的水流先存储在储能器的储能腔13中,当储能腔13中的水存到预定量后,弹性储能组件30活动至预定位置时,联动先导式副控制阀打开过流通道14,从而打开主阀口15,使得储能腔13中的水能经由主阀口15流出并与进水口11的水一起从出水口12流出,提高了从出水口12流出的水流压力和水流流量,由此实现对水流进行储能加压,结构简单,设计巧妙,功能可靠。并且,本发明的储能器采用先导式的副控制阀,因此,仅需很小的作用力就可以顺利打开先导式 副控制阀,功能更可靠。
请查阅图21至图29,本发明第三实施例的一种储能器,具体是一种液压反馈式储能器,包括本体10、主控制阀20、弹性储能组件30、单向阀60。
其中,本体10具有进水口11、出水口12、储能腔13、用于连通储能腔13与出水口12的主阀口15,进水口11与储能腔13相连通。主控制阀20包括活动设于本体10内并与主阀口15相配合的主阀芯21。主阀芯21关闭主阀口15时,主阀芯21背向储能腔13的一侧形成一出水腔16。
储能器还包括形成于本体10上的过流通道14,过流通道14一端连通储能腔13,另一端连通出水腔16。弹性储能组件30活动设于储能腔13。
进水口11未进水状态下,主阀芯21关闭主阀口15;进水口11进水时,水流克服弹性储能组件30的弹性力流入储能腔13中并驱动弹性储能组件30使得弹性储能组件30进行储能,弹性储能组件30活动至预定位置时,过流通道14通水,储能腔13中的水经由过流通道14流至出水腔16中,使得主阀芯21背向储能腔13的一侧受到水压作用,从而使得主阀芯21受到的合力方向往打开主阀口15的方向以打开主阀口15,进而储能腔13中的水在弹性储能组件30的作用下和进水口的水一起由主阀口15排至出水口12,这样就能使得流出出水口12的水流压力和水流流量得到有效提高。采用过流通道14的液压反馈从而打开主阀口15,结构简单,设计巧妙,功能可靠。
本实施例中,主阀芯21上设有第二密封件212,主阀芯21关闭主阀口15时,第二密封件212将出水腔16与出水口12相隔开,主阀芯21打开主阀口15时带动第二密封件212使得出水腔16与所述出水口相连通。这样过流通道14的水流至出水腔16后不会马上从出水口12流出,水流会积存在出 水腔16中从而使得主阀芯21背向所述储能腔13的一侧受到水压作用,进而使得所述主阀芯21受到的合力方向往打开所述主阀口15的方向以打开主阀口15,功能更可靠。当然,主阀芯21关闭主阀口15时,出水腔16与出水口12相隔开不是必需的,比如与出水口12连接的管路的管阻较大时(如管路直径较小时),过流通道14的水流至出水腔16后也不会马上从出水口12流出,只要过流通道14的水流至出水腔16能对主阀芯21背向所述储能腔13的一侧形成水压即可。
为了进一步使得主阀芯21可以顺利关闭主阀口15,本实施例中,出水腔16与出水口12之间还设有过流小孔161,出水腔16与出水口12相隔开时,出水腔16的水通过过流小孔161泄出至出水口12。通过设置该过流小孔161,使得进水口11停止进水时,出水腔16的水能够由过流小孔161泄出,从而避免出水腔16憋水导致主阀芯21无法关闭主阀口15的问题,功能更可靠。当然,本实施例由于主阀芯21与主阀口15为端面密封,因此,也可以不设置过流小孔161,但设置过流小孔161更佳。
本实施例中,进水口11未进水状态下,弹性储能组件30抵顶主阀芯21使得主阀芯21关闭主阀口15;进水口11进水时,在弹性储能组件30未活动至预定位置时,主阀芯21在水压作用下保持关闭主阀口15,这样,主阀芯21能在储能器进行储水的过程中关闭主阀口15,从而避免进入储能腔13中的水流从主阀口15流出。
请查阅图26、图27和图28,本实施例中,主控制阀20还包括阀座23,阀座23中形成有中空的阀腔,主阀芯21活动设于阀座23上。阀座23上设有连通阀腔内外的通流环槽231,连通阀腔内外的穿孔232,储能腔13中的水流经由通流环槽231流至阀腔中以对主阀芯21形成水压,主阀芯21上设 有的联动杆213能经由穿孔232穿出,弹性储能组件30与主阀芯21上的联动杆213联动配合以带动主阀芯21关闭主阀口15。阀座23的外周壁上还设有凸筋233,阀座23装入主体10a内时,凸筋233与主体10a内壁设有的槽(未图示)周向限位配合,这样阀座23不会相对主体10a周向转动。
在其他实施例中,弹性储能组件30与主阀芯21相抵接时,弹性储能组件30与主阀芯21之间具有水流间隙,从而使得主阀芯21面对弹性储能组件30的一侧能受到水压的作用力。通过设置水流间隙,一方面,使得水流能流至主阀芯21面对弹性储能组件30的一侧以对主阀芯21施加水压从而使得主阀芯21在进水水压作用下往关闭主阀口15的方向运动以关闭主阀口15;另一方面,避免弹性储能组件30与主阀芯21相贴合,弹性储能组件30在水压作用下活动时会将主阀芯21吸合并一起往远离主阀口15的方向运动,进而导致主阀芯21在储能器进行储水的过程无法关闭主阀口15的问题。
过流通道14通水时,使主阀芯21自动打开主阀口15的方式可以根据需要进行设计,比如:采用主阀芯21借助主阀芯21两侧的水压的合力作用打开主阀口15,和/或,主阀芯21借助作用于主阀芯21的外力作用打开主阀口15,和/或,主阀芯21借助自身重力作用打开主阀口15等。具体的,本实施例中,过流通道14通水时,主阀芯21背向储能腔13的一侧受到水压作用,当主阀芯21背向储能腔13的一侧受到的水的压力大于主阀芯21位于储能腔13的一侧受到的水的压力,主阀芯21借助主阀芯21两侧的水压的合力作用及借助下述的第一弹性件22的弹性力作用打开主阀口15。
本实施例具体是,主控制阀20包括作用于主阀芯21的第一弹性件22,主阀芯21关闭主阀口15的过程中克服第一弹性件22的弹性力,也就是说,主阀芯21关闭主阀口15时,第一弹性件22处于弹性变形状态而对主阀芯 21施加弹性力,当然,此时第一弹性件22对主阀芯21施加的弹性力小于储能器13一侧对主阀芯21的进水压力,从而确保主阀芯21在进水水压的作用下保持关闭主阀口15。过流通道14打开时,第一弹性件22施加在主阀芯21上的弹性力和主阀芯21背向储能器13一侧受到的水压力的合力大于主阀芯21位于储能器13一侧受到的水压力,主阀芯21在主阀芯21两侧的水压的合力作用和在第一弹性件22提供的所述外力作用下打开主阀口15。主阀芯21进一步借助第一弹性件22提供的弹性外力作用自动打开主阀口15,更加可靠。当然,本实施例由于主阀芯21两侧的水压的合力作用已经能够将主阀芯21顺利打开主阀口15,因此也可以不设置第一弹性件22。
本实施例中,弹性储能组件30包括活塞31和作用于活塞31的第二弹性件32,活塞31的头部上设有密封件33,活塞31通过密封件33与储能腔13的内壁形成动密封。密封件33将储能腔13密封隔离成第一腔131和第二腔132,第一腔131与进水口11和主阀口15相连通,第二腔132与外界相连通。
本实施例中,还包括用于控制过流通道14开闭的单向阀60。过流通道上形成有单向阀口142,过流通道14通水时,单向阀60在过流通道14的水压作用下打开单向阀口142。
单向阀60包括与单向阀口142相配合的单向阀芯61和作用于单向阀芯61的第四弹性件(未图示),单向阀芯61在第四弹性件的弹性力作用下关闭单向阀口142,过水通道14的水流通过克服第四弹性件的弹性力打开单向阀口142。
为了使得储能器的整体布局合理、结构紧凑、便于成型,本实施例中,本体10包括主体10a和顶盖10b,进水口11、出水口12、储能腔13和主阀口15均形成在主体10a上,储能腔13远离出水口12的一端形成敞口,主控 制阀20和弹性储能组件30由敞口装入储能腔13中,顶盖10b盖接在该敞口处,从而使得储能器的装配更方便,提高装配效率。
本实施例中,第一弹性件22、第二弹性件32、第四弹性件均采用压缩弹簧。并且第二弹性件32的弹性力大于第一弹性件22的弹性力。
使用时,请查阅图22和图23,初始状态下,进水口11未进水,此时,主阀芯21在弹性储能组件30的抵压下关闭主阀口15,并且过流通道14处于未通水状态。请查阅图24,当进水口11进水时,水流克服弹性储能组件30的弹性力流入储能腔13中,主阀芯21在储能腔13中的水压作用下克服第一弹性件22的弹性力保持关闭主阀口15。随着水流不断进入储能腔13中,水流驱动弹性储能组件30使得弹性储能组件30的活塞31向下运动并压缩第二弹性件32进行储能,直到弹性储能组件30活动至预定位置时,弹性储能组件30的密封件33越过过流通道14与储能腔13相连通的开口端,过流通道14与储能腔13中的第一腔131连通,从而使得过流通道14通水,储能腔13中的水流经由过流通道14流至出水腔16中。
请查阅图25,当出水腔16中有水流时,主阀芯21背向储能腔13的一侧受到水压作用,此时,第一弹性件22施加在主阀芯21上的弹性力和主阀芯21背向储能腔13一侧受到的水压力的合力大于主阀芯21位于储能器13一侧受到的水压力,以图25方向为例,主阀芯21向上运动并打开主阀口15,此时,储能腔13中的水在弹性储能组件30的作用下由主阀口15排出并和进水口11的水一起从出水口12流出,这样就能使得流出出水口12的水流压力和水流流量得到有效提高,从而实现对水流的储能加压。
当储能腔13中的水排出后,由于第二弹性件32的弹性力大于第一弹性件22的弹性力,弹性储能组件30重新抵顶主阀芯21上的联动杆213使得主 阀芯21能克服第一弹性件22的弹性力而位于关闭主阀口15的位置。与此同时,弹性储能组件30复位后,过流通道14重新与储能腔中的第二腔132连通而不与第一腔131连通,从而使得储能器恢复到初始状态。
其中,图24和图25中的箭头表示水流流向。
在其他的实施例中,活塞31上未设置密封件33,不通过密封件33将储能腔13密封隔离为两个腔室,而是采用一皮囊(未图示)将储能腔13密封隔离为两个腔室。
具体是,弹性储能组件30包括两端开口的皮囊、一活塞和作用于活塞31的第三弹性件,皮囊靠近主阀口15的一端开口与本体10密封固定连接,皮囊远离主阀口15的一端开口与活塞31头部密封固定连接。皮囊将储能腔13密封隔离成第三腔(未图示)和第四腔(未图示),储能腔13内由皮囊密封包围的部分形成第三腔,储能腔13内皮囊之外的部分形成第四腔,第三腔与进水口11和主阀口15相连通,第四腔与外界相连通。本实施例的弹性储能组件30同样结构简单,也能实现本发明的目的。
本实施例的其余结构、工作原理和工作过程与上述实施例相同,这里不再赘述。
本发明的储能腔在进水口11开始进水时,进水口11的水流先存储在储能器的储能腔13中,当储能腔13中的水存到预定量后,弹性储能组件30活动至预定位置时,过流通道14打开,从而打开主阀口15,使得储能腔13中的水能经由主阀口15流出并与进水口11的水一起从出水口12流出,提高了从出水口12流出的水流压力和水流流量,由此实现对水流进行储能加压,结构简单,设计巧妙,功能可靠。
根据本发明的其中另一个方面,本发明提供了一种马桶冲洗系统,包括 用于对马桶(未图示)进行冲洗的冲洗水路(未图示),还包括上述任一项的储能器,储能器设于冲洗水路上。通过设置上述的储能器,利用储能器的储能加压作用来提高冲洗水的水压,从而大大提高马桶的冲洗效果。
冲洗水路的进水端与自来水管路(未图示)接通,冲洗水路的出水端与马桶顶部的出水口12相连通,从而能有效地对马桶便池的内周壁进行供水冲洗。或者,冲洗水路的出水端也可以与马桶便池底部的出水口(未图示)相连通以对马桶便池底部进行供水冲洗。
除非另有定义,本文中所使用的技术和科学术语与本发明的技术领域的技术人员通常理解的含义相同。本文中使用的术语只是为了描述具体的实施目的,不是旨在限制本发明。本文中出现的诸如“部件”等术语既可以表示单个的零件,也可以表示多个零件的组合。本文中出现的诸如“安装”、“设置”等术语既可以表示一个部件直接附接至另一个部件,也可以表示一个部件通过中间件附接至另一个部件。本文中在一个实施方式中描述的特征可以单独地或与其他特征结合地应用于另一个实施方式,除非该特征在该另一个实施方式中不适用或是另有说明。
上述说明示出并描述了本发明的优选实施例,如前,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (32)

  1. 一种储能器,其特征在于,包括:
    本体,具有进水口、出水口、储能腔、用于连通所述进水口和出水口的过流通道、用于连通所述储能腔与所述出水口的主阀口,所述进水口与所述储能腔相连通;
    主控制阀,包括活动设于所述本体内并与所述主阀口相配合的主阀芯;
    弹性储能组件,活动设于所述储能腔;
    所述进水口未进水状态下,所述主阀芯关闭所述主阀口,并且所述过流通道处于关闭状态;
    所述进水口进水时,水流克服所述弹性储能组件的弹性力流入所述储能腔中并驱动所述弹性储能组件使得所述弹性储能组件进行储能,所述弹性储能组件活动至预定位置时,所述过流通道打开,从而使得所述主阀芯背向所述储能腔的一侧受到水压作用而打开所述主阀口,进而所述储能腔中的水在所述弹性储能组件的作用下由所述主阀口排出并和所述进水口的水一起从所述出水口流出。
  2. 根据权利要求1所述的储能器,其特征在于,所述进水口未进水状态下,所述弹性储能组件抵顶所述主阀芯使得所述主阀芯关闭所述主阀口;所述进水口进水时,在所述弹性储能组件未活动至所述预定位置时,所述主阀芯在水压作用下保持关闭所述主阀口。
  3. 根据权利要求2所述的储能器,其特征在于,所述弹性储能组件与所述主阀芯相抵接时,所述弹性储能组件与所述主阀芯之间具有水流间隙,从而使得所述主阀芯面对所述弹性储能组件的一侧能受到水压的作用力。
  4. 根据权利要求1所述的储能器,其特征在于,所述过流通道打开时,所述主阀芯在作用于所述主阀芯的外力作用下打开所述主阀口,或者,所述主阀 芯在自身重力作用下打开所述主阀口。
  5. 根据权利要求4所述的储能器,其特征在于,所述主控制阀包括作用于所述主阀芯的第一弹性件,所述主阀芯关闭所述主阀口的过程中克服所述第一弹性件的弹性力,所述过流通道打开时,所述主阀芯在所述第一弹性件提供的所述外力作用下打开所述主阀口。
  6. 根据权利要求1所述的储能器,其特征在于,所述弹性储能组件包括活塞和作用于所述活塞的第二弹性件,所述活塞包括活塞头和活塞杆,所述活塞头上设有密封件,所述活塞头通过所述密封件与所述储能腔的内壁形成动密封,所述活塞头将所述储能腔密封隔离成第一腔和第二腔,所述第一腔与所述进水口和所述主阀口相连通,所述第二腔与外界相连通。
  7. 根据权利要求1所述的储能器,其特征在于,所述弹性储能组件包括两端开口的皮囊、一活塞和作用于所述活塞的第二弹性件,所述活塞包括活塞头和活塞杆,所述皮囊靠近所述主阀口的一端开口与所述本体密封固定连接,所述皮囊远离所述主阀口的一端开口与所述活塞头密封固定连接,所述皮囊将所述储能腔密封隔离成第三腔和第四腔,所述储能腔内由所述皮囊密封包围的部分形成所述第三腔,所述储能腔内所述皮囊之外的部分形成所述第四腔,所述第三腔与所述进水口和所述主阀口相连通,所述第四腔与外界相连通。
  8. 根据权利要求1所述的储能器,其特征在于,所述弹性储能组件包括一端开口的皮囊,所述皮囊将所述储能腔的内腔密封隔离成第一腔和第二腔,所述储能腔内由所述皮囊密封包围的部分形成所述第一腔,所述储能腔内皮囊之外的部分形成所述第二腔,所述第一腔与所述进水口和所述主阀口相连通,所述第二腔与外界相连通,所述主控制阀设于所述第一腔中,所述弹性储能 组件设于所述第二腔中,所述弹性储能组件包括活塞和作用于所述活塞的第二弹性件,所述活塞包括活塞头和活塞杆,所述皮囊的开口端与所述储能腔的开口密封固定连接,所述活塞头与所述皮囊远离所述开口端的活动端抵接配合。
  9. 根据权利要求1至8任一项所述的储能器,其特征在于,还包括用于控制所述过流通道开闭的副控制阀;所述弹性储能组件活动至所述预定位置时传动打开所述副控制阀,或者,储能器还包括位置感应器,当所述位置感应器感应到所述弹性储能组件活动至所述预定位置时,所述位置感应器控制所述副控制阀打开,或者,储能器还包括流量感应器,当所述流量感应器感应到所述进水口流入所述储能腔的水量达到预定值时,所述流量感应器控制所述副控制阀打开。
  10. 根据权利要求9所述的储能器,其特征在于,所述弹性储能组件通过传动机构传动打开所述副控制阀,所述过流通道上形成有副阀口,所述副控制阀包括与所述副阀口相配合的副阀芯和作用于所述副阀芯的第四弹性件,所述副阀芯在所述第四弹性件的弹性力作用下关闭所述副阀口,所述传动机构通过克服所述第四弹性件的弹性力打开所述副阀口。
  11. 根据权利要求10所述的储能器,其特征在于,所述传动机构包括摆动杆和推杆,所述摆动杆摆动装接在所述储能腔的侧壁上,所述摆动杆的一端与所述弹性储能组件联动配合,另一端与所述推杆联动配合,所述推杆与所述副控制阀联动配合。
  12. 根据权利要求1所述的储能器,其特征在于,所述本体包括主体和顶盖,所述主体内形成有所述储能腔和出水腔,所述出水腔位于所述储能腔的一侧,所述出水腔与所述储能腔通过所述主阀口相连通,所述出水腔的侧壁上开设 有所述出水口,所述出水腔远离所述储能腔的一侧形成开口,所述顶盖密封盖接在所述出水腔的开口处,所述过流通道与所述出水腔相连通。
  13. 根据权利要求12所述的储能器,其特征在于,所述过流通道的出水端位于所述出水腔内并与所述出水腔相连通,所述过流通道的出水端形成副阀口,所述副阀口处设有用于控制所述副阀口打开或关闭的副控制阀,所述副控制阀包括副阀芯和作用于所述副阀芯的第四弹性件,所述弹性储能组件活动至所述预定位置时联动所述副阀芯以打开所述副阀口,所述第四弹性件弹顶在所述顶盖的内侧壁与所述副阀芯之间,所述副阀芯在所述第四弹性件的作用下关闭所述副阀口。
  14. 根据权利要求12所述的储能器,其特征在于,所述本体还包括底盖,所述储能腔远离所述出水腔的一端形成敞口,所述主控制阀和所述弹性储能组件由所述敞口装入所述储能腔中,并且所述主阀芯上设有的导杆由所述主阀口伸出,所述底盖盖接在所述敞口处。
  15. 根据权利要求9所述的储能器,其特征在于,所述副控制阀采用先导式副控制阀,所述进水口进水时,水流克服所述弹性储能组件的弹性力流入所述储能腔中并驱动所述弹性储能组件使得所述弹性储能组件进行储能,并且所述先导式副控制阀在受到的水压差作用下关闭或保持关闭所述过流通道,当所述弹性储能组件活动至预定位置时,所述弹性储能组件联动打开所述先导式副控制阀的泄压口以打开所述过流通道。
  16. 根据权利要求15所述的储能器,其特征在于,所述弹性储能组件通过传动机构传动打开所述先导式副控制阀的泄压口,所述过流通道上形成有副阀口,所述先导式副控制阀包括副阀盖和与所述副阀口相配合的副阀芯,所述副阀芯和所述副阀盖之间形成背压腔,所述泄压口与所述背压腔相连通,所 述背压腔通过一通流槽与所述进水口相连通,所述泄压口打开时,所述副阀芯在进水水压的作用下打开所述副阀口,所述泄压口关闭时,所述副阀芯在所述副阀芯的两侧受到的水压差作用下关闭所述副阀口。
  17. 根据权利要求16所述的储能器,其特征在于,所述传动机构包括摆动杆、推杆和抬杆,所述摆动杆摆动装接在所述储能腔的侧壁上,所述摆动杆的一端与所述弹性储能组件联动配合,另一端与所述推杆联动配合,所述推杆与与所述抬杆的一端联动配合,所述抬杆的另一端与所述先导式副控制阀的泄压口开闭配合。
  18. 根据权利要求15所述的储能器,其特征在于,所述本体包括主体和顶盖,所述主体内形成有所述储能腔,所述过流通道、进水口、出水口和主阀口形成在所述顶盖上,所述主控制阀装设在所述主体内,所述先导式副控制阀装设在所述顶盖上。
  19. 一种储能器,其特征在于,包括:
    本体,具有进水口、出水口、储能腔、用于连通所述储能腔与所述出水口的主阀口,所述进水口与所述储能腔相连通;
    主控制阀,包括活动设于所述本体内并与所述主阀口相配合的主阀芯,所述主阀芯关闭所述主阀口时,所述主阀芯背向所述储能腔的一侧形成一出水腔;过流通道,一端连通所述储能腔,另一端连通所述出水腔;
    弹性储能组件,活动设于所述储能腔;
    所述进水口未进水状态下,所述主阀芯关闭所述主阀口;
    所述进水口进水时,水流克服所述弹性储能组件的弹性力流入所述储能腔中并驱动所述弹性储能组件使得所述弹性储能组件进行储能,所述弹性储能组件活动至预定位置时,所述储能腔中的水经由所述过流通道流至所述出水腔 中,使得所述主阀芯背向所述储能腔的一侧受到水压作用,从而使得所述主阀芯受到的合力方向往打开所述主阀口的方向以打开所述主阀口,进而所述储能腔中的水在所述弹性储能组件的作用下和所述进水口的水一起由所述主阀口排至所述出水口。
  20. 根据权利要求19所述的储能器,其特征在于,所述主阀芯关闭所述主阀口时,所述出水腔与所述出水口相隔开,所述主阀芯打开所述主阀口时,所述出水腔与所述出水口相连通。
  21. 根据权利要求20所述的储能器,其特征在于,所述出水腔与所述出水口之间设有过流小孔,所述出水腔与所述出水口相隔开时,所述出水腔的水通过所述过流小孔泄出至所述出水口。
  22. 根据权利要求19所述的储能器,其特征在于,所述进水口未进水状态下,所述弹性储能组件抵顶所述主阀芯使得所述主阀芯关闭所述主阀口;所述进水口进水时,在所述弹性储能组件未活动至所述预定位置时,所述主阀芯在水压作用下保持关闭所述主阀口。
  23. 根据权利要求22所述的储能器,其特征在于,所述弹性储能组件与所述主阀芯相抵接时,所述弹性储能组件与所述主阀芯之间具有水流间隙,从而使得所述主阀芯面对所述弹性储能组件的一侧能受到水压的作用力。
  24. 根据权利要求19所述的储能器,其特征在于,所述过流通道通水时,所述主阀芯借助所述主阀芯两侧的水压的合力作用打开所述主阀口,和/或,所述主阀芯借助作用于所述主阀芯的外力作用打开所述主阀口,和/或,所述主阀芯借助自身重力作用打开所述主阀口。
  25. 根据权利要求24所述的储能器,其特征在于,所述主控制阀包括作用于所述主阀芯的第一弹性件,所述主阀芯关闭所述主阀口的过程中克服所述第 一弹性件的弹性力,所述过流通道通水时,所述主阀芯借助所述第一弹性件提供的所述外力作用打开所述主阀口。
  26. 根据权利要求19所述的储能器,其特征在于,所述弹性储能组件包括活塞和作用于所述活塞的第二弹性件,所述活塞上设有密封件,所述活塞通过所述密封件与所述储能腔的内壁形成动密封,所述密封件将所述储能腔密封隔离成第一腔和第二腔,所述第一腔与所述进水口和所述主阀口相连通,所述第二腔与外界相连通。
  27. 根据权利要求19所述的储能器,其特征在于,所述弹性储能组件包括两端开口的皮囊、一活塞和作用于所述活塞的第三弹性件,所述皮囊靠近所述主阀口的一端开口与所述本体密封固定连接,所述皮囊远离所述主阀口的一端开口与所述活塞的头部密封固定连接,所述皮囊将所述储能腔密封隔离成第三腔和第四腔,所述储能腔内由所述皮囊密封包围的部分形成所述第三腔,所述储能腔内所述皮囊之外的部分形成所述第四腔,所述第三腔与所述进水口和所述主阀口相连通,所述第四腔与外界相连通。
  28. 根据权利要求19至27任一项所述的储能器,其特征在于,所述过流通道形成于所述本体上,还包括用于控制所述过流通道开闭的单向阀,所述过流通道上形成有单向阀口,所述过流通道通水时,所述单向阀在所述过流通道的水压作用下打开所述单向阀口。
  29. 根据权利要求28所述的储能器,其特征在于,所述单向阀包括与所述单向阀口相配合的单向阀芯和作用于所述单向阀芯的第四弹性件,所述单向阀芯在所述第四弹性件的弹性力作用下关闭所述单向阀口,所述过水通道的水流通过克服所述第四弹性件的弹性力打开所述单向阀口。
  30. 根据权利要求27所述的储能器,其特征在于,所述本体还包括主体和顶 盖,所述主体上形成有所述进水口、所述出水口、所述储能腔和所述主阀口,所述储能腔远离所述出水口的一端形成敞口,所述主控制阀还包括阀座,所述主阀芯活动设于所述阀座上,所述主控制阀和所述弹性储能组件由所述敞口装入所述储能腔中,所述顶盖盖接在所述敞口处。
  31. 一种马桶冲洗系统,包括用于对马桶进行冲洗的冲洗水路,其特征在于,还包括权利要求1至30任一项所述的储能器,所述储能器设于所述冲洗水路上。
  32. 根据权利要求31所述的马桶冲洗系统,其特征在于,所述冲洗水路的进水端与自来水管路接通,所述冲洗水路的出水端与马桶顶部的出水口相连通。
PCT/CN2020/094932 2020-04-02 2020-06-08 一种储能器及具有该储能器的马桶冲洗系统 WO2021196403A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010255085.3A CN111306307A (zh) 2020-04-02 2020-04-02 一种储能器及具有该储能器的马桶冲洗系统
CN202010255085.3 2020-04-02
CN202010315936.9A CN111395470A (zh) 2020-04-21 2020-04-21 一种液压反馈式储能器及具有该储能器的马桶冲洗系统
CN202010315936.9 2020-04-21
CN202010446231.0A CN111636532A (zh) 2020-05-25 2020-05-25 一种储能器及具有该储能器的马桶冲洗系统
CN202010446231.0 2020-05-25

Publications (1)

Publication Number Publication Date
WO2021196403A1 true WO2021196403A1 (zh) 2021-10-07

Family

ID=77927705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094932 WO2021196403A1 (zh) 2020-04-02 2020-06-08 一种储能器及具有该储能器的马桶冲洗系统

Country Status (1)

Country Link
WO (1) WO2021196403A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114250836A (zh) * 2021-12-22 2022-03-29 谷力(厦门)科技有限公司 一种座便器
CN114411898A (zh) * 2021-12-24 2022-04-29 厦门韩盈科技有限公司 一种无水箱式机械阀冲水系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550716A (zh) * 2009-04-24 2009-10-07 陈唯兵 分档式回力加压冲厕装置
CN104818753A (zh) * 2015-04-27 2015-08-05 佛山市新明珠卫浴有限公司 一种储水直冲式坐便器
JP6066453B2 (ja) * 2013-03-26 2017-01-25 Toto株式会社 流路開閉装置
JP2018119328A (ja) * 2017-01-26 2018-08-02 Toto株式会社 便器洗浄装置及びそれを備える便器装置
CN109797825A (zh) * 2018-12-11 2019-05-24 厦门派夫特卫浴科技有限公司 一种马桶冲刷系统
CN110409575A (zh) * 2019-07-03 2019-11-05 厦门优胜卫厨科技有限公司 一种马桶冲水机构及其冲水控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550716A (zh) * 2009-04-24 2009-10-07 陈唯兵 分档式回力加压冲厕装置
JP6066453B2 (ja) * 2013-03-26 2017-01-25 Toto株式会社 流路開閉装置
CN104818753A (zh) * 2015-04-27 2015-08-05 佛山市新明珠卫浴有限公司 一种储水直冲式坐便器
JP2018119328A (ja) * 2017-01-26 2018-08-02 Toto株式会社 便器洗浄装置及びそれを備える便器装置
CN109797825A (zh) * 2018-12-11 2019-05-24 厦门派夫特卫浴科技有限公司 一种马桶冲刷系统
CN110409575A (zh) * 2019-07-03 2019-11-05 厦门优胜卫厨科技有限公司 一种马桶冲水机构及其冲水控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114250836A (zh) * 2021-12-22 2022-03-29 谷力(厦门)科技有限公司 一种座便器
CN114250836B (zh) * 2021-12-22 2024-01-30 谷力(厦门)科技有限公司 一种座便器
CN114411898A (zh) * 2021-12-24 2022-04-29 厦门韩盈科技有限公司 一种无水箱式机械阀冲水系统
CN114411898B (zh) * 2021-12-24 2024-02-09 厦门智海峰卫浴科技有限公司 一种无水箱式机械阀冲水系统

Similar Documents

Publication Publication Date Title
WO2021196823A1 (zh) 一种储能器及具有该储能器的马桶冲洗系统
WO2021196403A1 (zh) 一种储能器及具有该储能器的马桶冲洗系统
CN216130283U (zh) 一种马桶冲刷装置
CN111827423B (zh) 一种马桶冲刷装置
WO2017024792A1 (zh) 一种双流量切换装置
CN113202966A (zh) 一种气控多功能先导阀
WO2022016459A1 (zh) 一种马桶冲刷装置
CN209368971U (zh) 一种延时关闭的手动控制阀及具有其的座便器冲洗装置
PL199327B1 (pl) Zawór o podwójnym przepływie
CN112376661B (zh) 一种储能器及具有该储能器的马桶冲洗系统
WO2023116887A1 (zh) 一种无水箱式机械阀冲水系统
CN214245966U (zh) 一种进水控制装置
CN216515957U (zh) 一种马桶排水装置
CN216195223U (zh) 一种提高冲刷性能的马桶排水装置
US9151028B2 (en) Flushing valve
CN212297618U (zh) 一种储能器及具有该储能器的马桶冲洗系统
CN214614409U (zh) 一种排水装置及具有其的马桶
CN214274607U (zh) 可调延时自闭式阀芯
CN111719651B (zh) 一种进水装置
CN216238819U (zh) 一种储能器
CN214999626U (zh) 一种储能器及具有该储能器的马桶冲洗系统
CN111395470A (zh) 一种液压反馈式储能器及具有该储能器的马桶冲洗系统
CN214994383U (zh) 一种储能器及具有该储能器的马桶冲洗系统
CN112502252A (zh) 一种冲劲强的座便器
CN206218067U (zh) 自行车座垫升降调整装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928272

Country of ref document: EP

Kind code of ref document: A1