WO2021196343A1 - 一种500MPa级低屈强比耐候桥梁钢及其制造方法 - Google Patents

一种500MPa级低屈强比耐候桥梁钢及其制造方法 Download PDF

Info

Publication number
WO2021196343A1
WO2021196343A1 PCT/CN2020/089132 CN2020089132W WO2021196343A1 WO 2021196343 A1 WO2021196343 A1 WO 2021196343A1 CN 2020089132 W CN2020089132 W CN 2020089132W WO 2021196343 A1 WO2021196343 A1 WO 2021196343A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
thickness
continuous casting
yield ratio
steel
Prior art date
Application number
PCT/CN2020/089132
Other languages
English (en)
French (fr)
Inventor
黄一新
楚觉非
王军
崔强
陈林恒
邓伟
孟令明
唐春霞
王青峰
赵丽洋
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to KR1020227034096A priority Critical patent/KR20230009365A/ko
Priority to JP2022559635A priority patent/JP2023520418A/ja
Priority to US17/914,347 priority patent/US20230104637A1/en
Publication of WO2021196343A1 publication Critical patent/WO2021196343A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the invention relates to a weathering steel, in particular to a 500MPa grade low yield ratio weathering bridge steel and a manufacturing method thereof.
  • the invention with publication number CN101892431A discloses a hot-rolled yield strength 500MPa grade weathering bridge steel and its manufacturing method. Its Mo content reaches 0.15-0.35%, and requires rare earth treatment, and the cost is relatively high.
  • the invention with the application number CN201811494831.3 introduces a Q550qENH and its production method, but its thickness specification is 12-60mm, and the yield ratio of individual thickness specification steel plates has reached 0.87.
  • the invention with publication number CN103103458A discloses a high-strength weathering steel and its preparation method, but its C content is 0.01-0.05%, which belongs to ultra-low carbon steel, and it is difficult to smelt.
  • the Mn content is 1.5-2.0%, and the casting billet is easy Central segregation occurs, and the finished product is a thin-gauge coil, which cannot meet the needs of large-thickness and wide-gauge modern bridge structure construction.
  • the present invention discloses a 500MPa-class weathering bridge steel with low yield ratio, which has the characteristics of low yield ratio, high and low temperature toughness and high ductility.
  • Another object of the present invention is to provide a method for manufacturing the above-mentioned 500MPa-class weathering bridge steel with low yield ratio.
  • the 500MPa-grade weathering bridge steel with low yield ratio is composed of the following mass percentages: C: 0.04 to 0.09%, Si: 0.15 to 0.30%, Mn: 1.40 to 1.50%, P: 0.009 ⁇ 0.015%, S: ⁇ 0.002%, Nb: 0.020 ⁇ 0.050%, Ti: 0.010 ⁇ 0.020%, V: 0.010 ⁇ 0.030%, Cu: 0.30 ⁇ 0.40%, Ni: 0.30 ⁇ 0.45%, Cr: 0.45 ⁇ 0.60%, Mo: 0.08 to 0.15%, Alt: 0.02 to 0.04%, the balance Fe and unavoidable impurities.
  • composition ratio of the present invention is determined by changing the content of certain elements and adding alloy elements that can strengthen and improve the mechanical properties of the material. Following the principle of multiple and small quantities, the method of controlled rolling and controlled cooling + tempering is adopted to obtain For steel with a thickness of 8 to 80 mm and a yield ratio ⁇ 0.83, its delivery state is TMCP + tempering treatment.
  • the carbon content in the steel in the composition of the present invention should not be too high, while reducing sulfur and gas impurities and controlling the phosphorus content of the corrosion-resistant element, ensuring the purity of the steel and strong toughness.
  • the present invention is based on tempered bainite structure to achieve low yield ratio, high and low temperature toughness and high elongation. The description of each component and content is as follows:
  • C is an indispensable element in steel that improves the strength and hardness of steel, and has a significant impact on steel structure.
  • C dissolves into the matrix to form interstitial solid solution, which plays a role of solid solution strengthening and significantly increases the strength of the matrix.
  • the carbon content increases, the tensile strength and yield limit of steel will increase, while the elongation and notched impact toughness will decrease.
  • the present invention adopts an ultra-low carbon design.
  • a small amount of C forms microalloy element carbides in the steel, which plays a role of strengthening and refining the second phase. ,
  • the percentage of C in the present invention is set to 0.04 to 0.09%.
  • Mn is a main element in iron standard steel. Manganese can increase the strength of the material. Although increasing the content of C or Cr can also increase the strength, too much carbon will affect the formability and welding line. The price of Cr is too high and the reserves are limited. , It is not conducive to reducing costs. Mn is still the main element to prevent hot brittleness in steel. Therefore, the manganese content is increased to the upper limit due to comprehensive consideration, and the Mn content of the present invention is set to 1.40-1.50%.
  • the Si element in steel mainly improves the strength of steel in the form of strong solid solution strengthening. It is also a necessary element for steelmaking to deoxidize. It can improve atmospheric corrosion resistance, but significantly reduces the plasticity and toughness of steel and significantly reduces the surface coating of steel. Performance, therefore, considering factors such as strength, toughness, and plasticity, the percentage of Si in the present invention is set to 0.15 to 0.30%.
  • P promotes the amorphous transformation of the rust layer.
  • Cu and P composite have the best weather resistance and are relatively economical corrosion resistance elements.
  • weathering steel is used in important welded structures.
  • the content of P is generally limited, and the narrow range of the control of the percentage of P in the present invention is 0.009 to 0.012%.
  • the Cu element mainly plays a solid solution strengthening effect in the steel.
  • An appropriate amount of copper can increase the strength without reducing the toughness, and can also improve the corrosion resistance of the steel.
  • the Cu percentage of the present invention is 0.30-0.40%.
  • Cr is widely used in actual industrial production. It is second only to carbon in increasing the yield strength of steel, and is not good for reducing the yield strength ratio. In addition, my country has fewer chromium reserves, so the content of chromium is reduced. Mn and Instead of Si element, the percentage of Cr in the present invention is 0.45 to 0.60%.
  • Mo is a strong solid solution strengthening element, which strongly improves hardenability, can significantly improve thermal hardness, and improve tempering stability, and significantly reduce temper brittleness.
  • the percentage of Mo in the present invention is 0.08-0.15%.
  • V is a medium-level carbide forming element, which can form alloy carbide VC with a simple cubic crystal structure, which can enter the cementite to improve the stability of the cementite and improve the stability of tempering.
  • the percentage of V in the present invention is 0.010 ⁇ 0.030 %.
  • Ti can shift the C curve to the right. Titanium can significantly increase the strength and refine the grains. It can also improve the toughness of steel. A proper amount of Ti can form the second particle and improve the toughness of the metal.
  • the percentage of Ti in the present invention It is 0.010 ⁇ 0.020%.
  • the atmospheric corrosion resistance index of the steel I ⁇ 6.5.
  • the atmospheric corrosion resistance index I 26.01(%Cu)+3.88(%Ni)+1.20(%Cr)+1.49(%Si)+17.28(%P)-7.29(%Cu)(%Ni)-9.10 (%Ni)(%P)-33.39(%Cu) 2 .
  • the process of the technical solution adopted by the manufacturing method provided by the present invention includes smelting, continuous casting, soaking, rolling, relaxation, cooling and offline tempering;
  • the continuous casting slab is heated to a core temperature of 1130 ⁇ 1230°C in the soaking process;
  • the rolling process is to perform recrystallization zone rolling and non-recrystallization zone rolling on the continuous casting slab after descaling, and the cumulative deformation of rolling in the recrystallization zone is more than 50% of the thickness of the continuous casting slab;
  • the intermediate billet is heated to 800°C to 990°C, and the thickness to be heated is 2 to 4 times the thickness of the finished product. After reaching the temperature, the non-recrystallization zone is rolled, and the final rolling temperature is controlled at 790 to 830°C;
  • the cooling process is to perform laminar cooling from the initial cooling temperature, control the redness temperature at 420-600°C, and then air-cool to room temperature;
  • the tempering temperature is 450-550°C, and the temperature is kept for 20-40 minutes, and the holding time is proportional to the thickness of the finished product, and then it is naturally cooled to room temperature.
  • the present invention obtains 500MPa low-yield strength with low yield ratio, high toughness and high ductility through scientific composition design and a matched manufacturing method of controlled rolling and controlled cooling + tempering. Better than weathering bridge steel.
  • the yield strength is above 545MPa
  • the tensile strength is above 682MPa
  • the yield ratio of the finished steel is less than or equal to 0.83
  • the -40°C Akv is above 180J
  • the elongation is ⁇ 20%. It has good comprehensive performance and is suitable for the application of bridge structures.
  • Figure 1 is a 500-fold optical metallographic structure of the product in Example 2.
  • Example 1 in terms of mass percentage are: C: 0.04%, Si: 0.28%, Mn: 1.50%, P: 0.014%, S: 0.0010%, Nb: 0.020%, Ti: 0.015%, V: 0.010% , Ni: 0.30%, Cu: 0.40%, Cr: 0.45%, Mo: 0.08%, Alt: 0.02%, the balance is Fe and unavoidable impurities.
  • the raw materials are smelted, refined, alloyed, and treated with calcium to obtain molten steel.
  • the slab continuous casting on the molten steel has a thickness of 150mm and an atmospheric corrosion resistance index I of 6.51.
  • the continuous casting billet is pile-cooled for more than 24 hours, and the billet is soaked at 1230°C, and the temperature uniformity is less than 20°C. After heating for 150 minutes, phosphorus is removed, and then two-stage rolling is carried out.
  • the rolling temperature in the recrystallization zone is 1080°C, the total deformation is 79%, and the thickness of the intermediate billet is controlled at 4 times the thickness of the finished product.
  • the rolling start temperature in the unrecrystallized zone is 990°C, the final product thickness is 8mm, and the final rolling is 830°C.
  • the steel plate at the initial cooling temperature is laminar cooling, the redness temperature is 600°C, and then air-cooled to room temperature, then the steel plate is tempered, the tempering temperature is 550 °C, and keep at this temperature for 20min.
  • the microstructure type is "tempered bainite" structure
  • the yield strength of the material is 575MPa
  • the tensile strength is 693MPa
  • the yield strength of the finished steel The ratio is 0.83
  • the -40°C Akv is 180J
  • the elongation A is 20%.
  • Example 2 The components of Example 2 in terms of mass percentage are: C: 0.06%, Si: 0.30%, Mn: 1.46%, P: 0.010%, S: 0.0015%, Nb: 0.040%, Ti: 0.020%, V: 0.020% , Ni: 0.35%, Cu: 0.30%, Cr: 0.60%, Mo: 0.10%, Alt: 0.04%, the balance is Fe and unavoidable impurities.
  • the raw materials are smelted, refined, alloyed, and treated with calcium to obtain molten steel.
  • the molten steel is slab continuous casting.
  • the billet with a thickness of 320mm and the atmospheric corrosion resistance index I is 6.70.
  • the continuous casting billet is pile-cooled for more than 48 hours, and the billet is soaked at 1160°C with a temperature uniformity of less than 20°C. Phosphorus removal is performed after heating for 352 minutes, followed by two-stage rolling.
  • the rolling temperature in the recrystallization zone is 1070°C, the total deformation is 53%, and the thickness of the intermediate billet is controlled at 2.5 times the thickness of the finished product.
  • the rolling start temperature in the unrecrystallized zone is 850°C, reaching the final product thickness of 60mm, and the final rolling temperature is 810°C.
  • the metallographic structure of the sample after controlled rolling and cooling + tempering is observed, and it is found that the microstructure type is "tempered bainite" structure, the yield strength of the material is 556MPa, and the tensile strength is 682MPa, the yield ratio of the finished steel is 0.82, the -40°C Akv is 225J, and the elongation A is 21%.
  • Example 3 The components of Example 3 in terms of mass percentage are: C: 0.09%, Si: 0.15%, Mn: 1.40%, P: 0.0090%, S: 0.0020%, Nb: 0.035%, Ti: 0.018%, V: 0.030% , Ni: 0.45%, Cu: 0.37%, Cr: 0.50%, Mo: 0.15%, Alt: 0.02%, the balance is Fe and unavoidable impurities.
  • the raw materials are smelted, refined, alloyed, and treated with calcium to obtain molten steel.
  • the molten steel is continuously cast for slabs.
  • the billet with a thickness of 320mm has an atmospheric corrosion resistance index I of 6.53.
  • the cast billet is pile-cooled for more than 48 hours, the billet is soaked at 1130°C, and the temperature uniformity is less than 20°C. After 320 minutes of heating, phosphorus is removed, followed by two-stage rolling.
  • the rolling temperature in the recrystallization zone is 1040°C, the total rough rolling deformation is 50%, and the thickness of the intermediate billet is controlled at 2.0 times the thickness of the finished product.
  • the rolling start temperature of the unrecrystallized zone is 800°C, the final product thickness is 80mm, and the final rolling temperature is 790°C.
  • tempered bainite structure
  • the uniformity of the structure is good
  • the yield strength of the material is 545MPa
  • the tensile strength is 673MPa
  • the yield ratio of the finished steel is 0.81
  • the -40°C Akv is 216J
  • the elongation A is 22%.
  • Example 4 in terms of mass percentage are: C: 0.05%, Si: 0.20%, Mn: 1.45%, P: 0.015%, S: 0.0012%, Nb: 0.050%, Ti: 0.010%, V: 0.018% , Ni: 0.40%, Cu: 0.38%, Cr: 0.48%, Mo: 0.12%, Alt: 0.025%, the balance is Fe and unavoidable impurities.
  • the raw materials are smelted, refined, alloyed, and treated with calcium to obtain molten steel.
  • the molten steel is continuously cast for slabs.
  • the billet with a thickness of 260mm and the atmospheric corrosion resistance index I is 6.59.
  • the cast billet is pile-cooled for more than 36 hours, the billet is soaked at 1200°C, and the temperature uniformity is less than 20°C, dephosphorized after heating for 286 minutes, followed by two-stage rolling.
  • the finishing rolling temperature in the recrystallization zone is 1100°C, the total rough rolling deformation is 63%, and the thickness of the intermediate billet is controlled at 3.0 times the thickness of the finished product.
  • the rolling start temperature in the unrecrystallized zone is 870°C, reaching the final product thickness of 32mm, and the final rolling temperature is 810°C.
  • the microstructure type is "tempered bainite"
  • the yield strength of the material is 571MPa
  • the tensile strength is 713MPa
  • the yield strength of the finished steel The ratio is 0.80
  • the -40°C Akv is 332J
  • the elongation A is 21%.
  • the 500MPa grade low yield ratio weathering bridge steel produced by the medium and heavy plate rolling mill through its composition design assisted by the manufacturing process of controlled rolling and controlled cooling + offline tempering, effectively reduces the weathering bridge steel
  • the yield ratio can ensure that the yield ratio of the finished steel is less than or equal to 0.83.

Abstract

一种500MPa级低屈强比耐候桥梁钢及其制造方法,由以下质量百分比的成分组成C:0.04~0.09%、Si:0.15~0.30%、Mn:1.40~1.50%、P:0.009~0.015%、S:≤0.002%、Nb:0.020~0.050%、Ti:0.010~0.020%、V:0.010~0.030%、Cu:0.30~0.40%、Ni:0.30~0.45%、Cr:0.45~0.60%、Mo:0.08~0.15%、Alt:0.02~0.04%,余量的Fe及不可避免的杂质。通过科学的成分设计及相匹配的控轧控冷+回火的制造方法,使得该耐候桥梁钢兼具低屈强比、高低温韧性和高延展性的特点。

Description

一种500MPa级低屈强比耐候桥梁钢及其制造方法 技术领域
本发明涉及一种耐候钢,具体涉及一种500MPa级低屈强比耐候桥梁钢及其制造方法。
背景技术
随着大型钢结构桥梁向大跨度、重载荷、全焊接结构方向发展,对桥梁结构的安全可靠性要求越来越严格。这对设计者提出了更高的要求,同时也对钢板质量提出了更高的标准,即不仅要求钢板具有高强度以满足结构轻量化要求,而且还应具有优良的塑性、低温韧性、焊接性、耐腐蚀性能等,以满足桥梁跨径更大,荷载更重的工况条件。因此高强高韧高塑高耐候桥梁钢的应用,可以降低桥梁结构自重,降低桥梁工程设计、制造、施工难度等,同时可以提高使用寿命。
但是,随着钢的强度提高,钢的屈强比一般也会升高,甚至可以达到0.93以上。由于屈强比很高,一旦构件发生过载,如在地震等条件下,将迅速达到钢种极限强度而导致事故的发生。因此,较高的屈强比,限制了高强度结构钢在桥梁工程上的应用。地震的频发和其造成的灾难性后果,引起了国外对桥梁抗震性的高度关注,并在一些结构设计规范中作了相关规定。低屈强比、高强、高韧、高塑、高耐候桥梁钢是桥梁建设的发展趋势。
公开号为CN101892431A的发明,公开了一种热轧态屈服强度500MPa级耐候桥梁钢及其制造方法,其Mo含量达到了0.15-0.35%,且需稀土处理,成本较高。申请号为CN201811494831.3的发明中介绍了一种Q550qENH及其生产方法,但其厚度规格为12~60mm,个别厚度规格钢板屈强比已达到0.87。公开号为CN103103458A的发明,公开了一种高强度耐候钢及其制备方法,但是其C含量0.01~0.05%,属于超低碳钢,冶炼难度较大,Mn含量1.5~2.0%,铸坯易产生中心偏析,且成品是薄规格的卷板,不能满足大厚度、宽规格现代桥梁结构建设的需求。
发明内容
发明目的:为了克服现有技术的缺陷,本发明公开了一种500MPa级低屈强比耐候桥梁钢,该耐候桥梁钢兼具低屈强比、高低温韧性和高延展性的特点。
本发明的另一目的是提供一种上述500MPa级低屈强比耐候桥梁钢的制造方法。
技术方案:本发明所述的一种500MPa级低屈强比耐候桥梁钢,由以下质量百分比的成分组成C:0.04~0.09%、Si:0.15~0.30%、Mn:1.40~1.50%、P:0.009~0.015%、S:≤0.002%、Nb:0.020~0.050%、Ti:0.010~0.020%、V:0.010~0.030%、Cu:0.30~0.40%、Ni:0.30~0.45%、Cr:0.45~0.60%、Mo:0.08~0.15%、Alt:0.02~0.04%,余量的Fe及不可避免的杂质。
本发明成分配比的确定是通过改变某些元素的含量和加入可以强化并改善材料力学性能的合金元素来实现的,遵循多元少量的原则,采用控轧控冷+回火的方法,获得了厚度规格8~80mm且屈强比≤0.83的钢,其交货状态为TMCP+回火处理。
具体而言,本发明成分中钢中碳含量不宜过高,同时降低硫、气体杂质并控制耐蚀元素磷含量,确保钢质纯净并具有强韧性。本发明以回火贝氏体为主的组织类型实现了低屈强比和高低温韧性和高延伸性,各成分及含量的说明如下:
C是钢中不可缺少的提高钢材强度及硬度的元素,对钢组织影响显著。C溶入基体形成间隙固溶体,起到固溶强化的作用,显著增加基体的强度。随着碳含量的增加,钢的抗拉强度和屈服极限会提高而延伸率、缺口冲击韧性则下降。当钢材中C含量较高时易加剧产生冷裂纹的,因此,本发明采用超低碳设计,少量的C在钢中形成微合金元素碳化物,起到第二相强化和细化晶粒作用,本发明C百分含量设定为0.04~0.09%。
Mn是铁标钢中一种主要元素,锰元素可以提高材料强度,虽然提高C含量或Cr也可提高强度,但碳元素过多影响成型性及焊接线,而Cr元素价格太高且储量有限,不利于降低成本,Mn元素在钢中还是防止热脆性的主要元素,综合考虑所以提高了锰含量至上限,本发明Mn百分含量设定为1.40~1.50%。
Si元素在钢中主要以很强的固溶强化形式提高钢的强度,也是炼钢脱氧的必要元素,可以提高耐大气腐蚀性能,但明显降低钢的塑性和韧性且显著降低钢的表面涂镀性能,因此,综合考虑强度、韧性、塑性等因素,本发明Si百分含量设定为0.15~0.30%。
P促进锈层非晶态转变,一般而言,Cu、P复合具有最优的耐候效果,是比较经济的耐蚀元素,考虑到P导致低温脆性和裂纹敏感性,在重要焊接结构用耐候钢中,一般限制P的含量,本发明P百分含量控制窄区间为0.009~0.012%。
Cu元素在钢中主要起到固溶强化作用,适量的铜可提高强度而不降低韧性,也可提高钢的耐蚀性,本发明Cu百分含量为0.30~0.40%。
Cr是在实际工业生产中应用比较广泛,它对提高钢的屈服强度仅次于碳元素,对降低屈强比不利,且我国铬元素储量较少,所以降低了铬元素的含量,用Mn及Si元素代替,本发明Cr百分含量为0.45~0.60%。
Mo是较强的固溶强化元素,强烈提高淬透性,可明显提高热硬性,并提高回火稳定性,显著降低回火脆性,本发明Mo百分含量为0.08~0.15%。
V是中等程度的碳化物形成元素,可形成简单立方晶体结构的合金碳化物VC,可进入渗碳体提高渗碳体稳定性,提高回火稳定性,本发明V百分含量为0.010~0.030%。
Ti可使C曲线右移,钛能显著提高强度,起到细化晶粒作用,也可提高钢的韧性,适量的Ti可以形成第二项质点,提高金属的韧性,本发明Ti百分含量为0.010~0.020%。
进一步的,该钢的耐大气腐蚀性指数I≥6.5。其中,耐大气腐蚀性指数I=26.01(%Cu)+3.88(%Ni)+1.20(%Cr)+1.49(%Si)+17.28(%P)-7.29(%Cu)(%Ni)-9.10(%Ni)(%P)-33.39(%Cu) 2
对应于上述500MPa级低屈强比耐候桥梁钢,本发明提供的制造方法所采用的技术方案的工序包括冶炼、连铸、均热、轧制、弛豫、冷却以及离线回火;
其中,连铸坯在均热工序中加热至中心温度为1130~1230℃;
轧制工序是对除鳞后的连铸坯进行再结晶区轧制和未再结晶区轧制,所述再结晶区轧制的累积变形量为连铸坯厚度的50%以上;
中间坯待温800℃~990℃,待温厚度为2~4倍的成品厚度,到温后进行所述未再结晶区轧制,终轧温度控制在790~830℃;
弛豫工序中,弛豫至始冷温度为730℃~760℃;
冷却工序是自所述始冷温度进行层流冷却,返红温度控制在420~600℃,随后空冷至室温;
离线回火工序中,回火温度在450~550℃,并在此温度下保温20~40min,且保温时间与成品厚度成正比,随后自然冷却至室温。
有益效果:与现有技术相比,本发明通过科学的成分设计及相匹配的控轧控冷+回火的制造方法,得到具有低屈强比、高韧性和高延性的500MPa级低屈强比耐候桥梁钢。其屈服强度545MPa以上,抗拉强度682MPa以上,成品钢的屈强比小于等于0.83,-40℃Akv在180J以上,且延伸率≥20%,综合性能好,适应于桥梁结构的应用。
附图说明
图1为实施例2中产品的500倍光学金相组织图。
具体实施方式
下面,结合具体实施例进一步对本发明进行说明。
实施例1的成分以质量百分比计为:C:0.04%、Si:0.28%、Mn:1.50%、P:0.014%、S:0.0010%、Nb:0.020%、Ti:0.015%、V:0.010%、Ni:0.30%、Cu:0.40%、Cr:0.45%、Mo:0.08%、Alt:0.02%,余量为Fe及不可避免杂质。原料通过冶炼、精炼、合金化、钙处理,得到钢水,钢水上板坯连铸,铸坯厚度为150mm,耐大气腐蚀性指数I为6.51。连铸坯堆冷24小时以上,把坯料在1230℃下均热,温度均匀性小于20℃,加热150min后进行除磷,随后进行两阶段轧制。再结晶区轧制温度是1080℃,总变形量为79%,中间坯厚度控制在成品厚度4倍。未再结晶区轧制开轧温度为990℃,达到最终产品厚度8mm,终轧为830℃。
终轧后进行弛豫至始冷温度730℃,对在始冷温度下的钢板进行层流冷却,返红温度为600℃,而后空冷至室温,然后对钢板进行回火,回火温度在550℃,并在此温度下保温20min。
对控轧控冷+回火后的试样金相组织进行观察发现,显微组织类型为“回火贝氏体”组织,材料的屈服强度为575MPa,抗拉强度为693MPa,成品钢屈强比为0.83,-40℃Akv为180J,延伸率A为20%。
实施例2的成分以质量百分比计为:C:0.06%、Si:0.30%、Mn:1.46%、P:0.010%、S:0.0015%、Nb:0.040%、Ti:0.020%、V:0.020%、Ni:0.35%、Cu:0.30%、Cr:0.60%、Mo:0.10%、Alt:0.04%,余量为Fe及不可避免杂质。原料通过冶炼、精炼、合金化、钙处理,得到钢水,钢水上板坯连铸,铸坯厚度为320mm的坯料,耐大气腐蚀性指数I为6.70。连铸坯堆冷48h以上,把坯料在1160℃均热,温度均匀性小于20℃,加热352min后进行除磷,随后进行两阶段轧制。再结晶区轧制温度是1070℃,总变形量为53%,中间坯厚度控制在成品厚度2.5倍。未再结晶区轧制开轧温度为850℃,达到最终产品厚度60mm,终轧温度为810℃。
终轧后进行弛豫处理至始冷温度750℃,对在始冷温度下的钢板进行层流冷却,返红温度为480℃,而后空冷至室温,然后对钢板进行回火,回火温度在500℃,并在此温度下保温35min。
如图2所示,对控轧控冷+回火后的试样金相组织进行观察发现,显微组织 类型为“回火贝氏体”组织,材料的屈服强度为556MPa,抗拉强度为682MPa,成品钢屈强比为0.82,-40℃Akv为225J,延伸率A为21%。
实施例3的成分以质量百分比计为:C:0.09%、Si:0.15%、Mn:1.40%、P:0.0090%、S:0.0020%、Nb:0.035%、Ti:0.018%、V:0.030%、Ni:0.45%、Cu:0.37%、Cr:0.50%、Mo:0.15%、Alt:0.02%,余量为Fe及不可避免杂质。原料通过冶炼、精炼、合金化、钙处理,得到钢水,钢水上板坯连铸,铸坯厚度为320mm的坯料,耐大气腐蚀性指数I为6.53。铸坯堆冷48h以上,把坯料在1130℃均热,温度均匀性小于20℃,加热320min后进行除磷,随后进行两阶段轧制。再结晶区轧制温度是1040℃,粗轧总变形量为50%,中间坯厚度控制在成品厚度2.0倍。未再结晶区轧制开轧温度为800℃,达到最终产品厚度80mm,终轧温度为790℃。
终轧后进行弛豫处理至始冷温度760℃,对在始冷温度下的钢板进行层流冷却,返红温度为420℃,而后空冷至室温,然后对钢板进行回火,回火温度在450℃,并在此温度下保温40min。
对控轧控冷+回火后的试样金相组织进行观察发现,低倍镜下的显微组织类型为“回火贝氏体”组织,组织结构的均匀性好,材料的屈服强度为545MPa,抗拉强度为673MPa,成品钢屈强比为0.81,-40℃Akv为216J,延伸率A为22%。
实施例4的成分以质量百分比计为:C:0.05%、Si:0.20%、Mn:1.45%、P:0.015%、S:0.0012%、Nb:0.050%、Ti:0.010%、V:0.018%、Ni:0.40%、Cu:0.38%、Cr:0.48%、Mo:0.12%、Alt:0.025%,余量为Fe及不可避免杂质。原料通过冶炼、精炼、合金化、钙处理,得到钢水,钢水上板坯连铸,铸坯厚度为260mm的坯料,耐大气腐蚀性指数I为6.59。铸坯堆冷36h以上,把坯料在1200℃均热,温度均匀性小于20℃,加热286min后进行除磷,随后进行两阶段轧制。再结晶区精轧温度是1100℃,粗轧总变形量为63%,中间坯厚度控制在成品厚度3.0倍。未再结晶区轧制开轧温度为870℃,达到最终产品厚度32mm,终轧温度为810℃。
终轧后进行弛豫处理至始冷温度740℃,对在始冷温度下的钢板进行层流冷却,返红温度为550℃,而后空冷至室温,然后对钢板进行回火,回火温度在480℃,并在此温度下保温30min。
对控轧控冷+回火后的试样金相组织进行观察发现,显微组织类型为“回火贝氏体”组织,材料的屈服强度为571MPa,抗拉强度为713MPa,成品钢屈强 比为0.80,-40℃Akv为332J,延伸率A为21%。
从上述实施例可知,采用中厚板轧机生产的这种500MPa级低屈强比耐候桥梁钢,通过其成分设计辅助控轧控冷+离线回火的制造工艺,有效的降低了耐候桥梁钢的屈强比,能够保证成品钢的屈强比≤0.83。

Claims (10)

  1. 一种500MPa级低屈强比耐候桥梁钢,其特征在于,由以下质量百分比的成分组成C:0.04~0.09%、Si:0.15~0.30%、Mn:1.40~1.50%、P:0.009~0.015%、S:≤0.002%、Nb:0.020~0.050%、Ti:0.010~0.020%、V:0.010~0.030%、Cu:0.30~0.40%、Ni:0.30~0.45%、Cr:0.45~0.60%、Mo:0.08~0.15%、Alt:0.02~0.04%,余量的Fe及不可避免的杂质。
  2. 根据权利要求1所述的500MPa级低屈强比耐候桥梁钢,其特征在于,金相组织为回火贝氏体。
  3. 根据权利要求1所述的500MPa级低屈强比耐候桥梁钢,其特征在于,8~80mm厚度的钢板的屈强比≤0.83。
  4. 根据权利要求3所述的500MPa级低屈强比耐候桥梁钢,其特征在于,耐大气腐蚀性指数I≥6.5。
  5. 根据权利要求1所述的500MPa级低屈强比耐候桥梁钢,其特征在于,质量百分比的成分组成中C为0.06~0.09%,Mn为1.40~1.46%。
  6. 一种根据权利要求1-5任一项所述的500MPa级低屈强比耐候桥梁钢的制造方法,其特征在于,工序包括冶炼、连铸、均热、轧制、弛豫、冷却以及离线回火;
    其中,连铸坯在均热工序中加热至中心温度为1130~1230℃;
    轧制工序是对除鳞后的连铸坯进行再结晶区轧制和未再结晶区轧制,所述再结晶区轧制的累积变形量为连铸坯厚度的50%以上;
    中间坯待温800℃~990℃,待温厚度为2~4倍的成品厚度,到温后进行所述未再结晶区轧制,终轧温度控制在790~830℃;
    弛豫工序中,弛豫至始冷温度为730℃~760℃;
    冷却工序是自所述始冷温度进行层流冷却,返红温度控制在420~600℃,随后空冷至室温;
    离线回火工序中,回火温度在450~550℃,并在此温度下保温20~40min,且保温时间与成品厚度成正比,随后自然冷却至室温。
  7. 根据权利要求6所述的制造方法,其特征在于,制造厚度为8~80mm的成品所采用的连铸坯厚度为150~320mm。
  8. 根据权利要求7所述的制造方法,其特征在于,连铸工序的连铸坯堆冷24h以上,且连铸坯的厚度增大堆冷的时间随之增大,对于320mm的连铸坯,堆冷时间在48h以上。
  9. 根据权利要求8所述的制造方法,其特征在于,连铸坯在均热工序中温度均匀性小于20℃。
  10. 根据权利要求9所述的制造方法,其特征在于,在均热工序中,加热时间≥连铸坯厚度*1min/mm。
PCT/CN2020/089132 2020-03-30 2020-05-08 一种500MPa级低屈强比耐候桥梁钢及其制造方法 WO2021196343A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227034096A KR20230009365A (ko) 2020-03-30 2020-05-08 500MPa급 저항복비 내후성 교량용 철강 및 이의 제조방법
JP2022559635A JP2023520418A (ja) 2020-03-30 2020-05-08 500Mpaレベルの低降伏比の耐候性橋梁用鋼及びその製造方法
US17/914,347 US20230104637A1 (en) 2020-03-30 2020-05-08 500 mpa grade low yield ratio weather-resistant bridge steel and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010240576.0A CN111455287B (zh) 2020-03-30 2020-03-30 一种500MPa级低屈强比耐候桥梁钢及其制造方法
CN202010240576.0 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021196343A1 true WO2021196343A1 (zh) 2021-10-07

Family

ID=71679329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089132 WO2021196343A1 (zh) 2020-03-30 2020-05-08 一种500MPa级低屈强比耐候桥梁钢及其制造方法

Country Status (5)

Country Link
US (1) US20230104637A1 (zh)
JP (1) JP2023520418A (zh)
KR (1) KR20230009365A (zh)
CN (1) CN111455287B (zh)
WO (1) WO2021196343A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561586A (zh) * 2021-12-02 2022-05-31 安阳钢铁股份有限公司 一种炉卷轧机薄规格桥梁耐候钢及其生产方法
CN114807750A (zh) * 2022-04-06 2022-07-29 江阴兴澄特种钢铁有限公司 一种薄规格500MPa级低屈强比高韧性桥梁钢板及其制造方法
CN115074602A (zh) * 2022-07-28 2022-09-20 湖南华菱湘潭钢铁有限公司 Q500级高耐蚀高强度近海结构用调质钢板的生产方法
CN115491604A (zh) * 2022-09-27 2022-12-20 包头钢铁(集团)有限责任公司 一种屈服强度500MPa稀土耐候桥梁钢及其制造方法
CN115505852A (zh) * 2022-10-26 2022-12-23 河北普阳钢铁有限公司 一种耐蚀农机用钢材及其制造方法
CN116590627A (zh) * 2023-07-14 2023-08-15 内蒙古工业大学 一种高强度耐候桥梁钢及其制备工艺

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522620B (zh) * 2019-11-28 2022-04-19 新余钢铁股份有限公司 一种在同种钢铁成分下制备不同级别耐候桥梁钢板的方法
CN112080702B (zh) * 2020-09-16 2021-07-16 燕山大学 焊接粗晶热影响区-60℃冲击吸收功不低于60j的耐候桥梁钢
CN113186454B (zh) * 2021-03-30 2022-03-29 湖南华菱湘潭钢铁有限公司 一种回火型低屈强比桥梁钢的生产方法
CN113549828B (zh) * 2021-07-13 2022-11-18 鞍钢股份有限公司 一种低屈强比超高强海工钢及其制造方法
CN113957342B (zh) * 2021-10-18 2022-07-08 南京钢铁股份有限公司 一种低屈强比耐候钢桥用不锈钢复合板
CN114293097B (zh) * 2021-11-17 2023-06-09 攀钢集团攀枝花钢铁研究院有限公司 一种500MPa级铌钛微合金化耐候乙字型钢及其生产方法
CN114381658B (zh) * 2021-11-26 2023-03-10 安阳钢铁集团有限责任公司 一种800MPa级低焊接裂纹敏感性钢板及其制造方法
CN114645201B (zh) * 2022-03-14 2023-05-05 安阳钢铁股份有限公司 一种高韧性Q500qNH桥梁耐候钢板及制造方法
CN114892090A (zh) * 2022-05-25 2022-08-12 湖南华菱湘潭钢铁有限公司 一种q550级高耐蚀高强度近海结构钢的生产方法
CN115094324A (zh) * 2022-06-30 2022-09-23 南京钢铁股份有限公司 一种系列高等级耐候桥梁用e级钢一坯料多钢级生产方法
CN115341141A (zh) * 2022-07-22 2022-11-15 南京钢铁股份有限公司 一种低屈强比耐候桥梁钢及制备方法
CN115491607A (zh) * 2022-09-29 2022-12-20 南京钢铁股份有限公司 一种耐海洋大气腐蚀的结构用钢板及制备方法
CN116145034A (zh) * 2023-01-03 2023-05-23 南京钢铁股份有限公司 一种耐海洋大气腐蚀的结构用345MPa级钢板的制造方法
CN117026066A (zh) * 2023-09-23 2023-11-10 湖南华菱湘潭钢铁有限公司 一种超低碳大厚度500MPa级海洋工程用钢板的生产方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302442A (ja) * 1996-05-13 1997-11-25 Sumitomo Metal Ind Ltd 耐候性鋼およびその製造方法
CN101876032A (zh) * 2009-12-26 2010-11-03 舞阳钢铁有限责任公司 一种耐候桥梁用高强度钢板及其生产方法
CN101892431A (zh) * 2010-07-07 2010-11-24 江苏省沙钢钢铁研究院有限公司 热轧态屈服强度500MPa级耐候桥梁钢及其制造方法
CN102168229A (zh) * 2010-02-25 2011-08-31 宝山钢铁股份有限公司 耐候钢板及其制造方法
CN105506450A (zh) * 2015-12-10 2016-04-20 南京钢铁股份有限公司 一种抗震耐候桥梁钢及其制造工艺
CN107365940A (zh) * 2017-08-16 2017-11-21 北京科技大学 一种700MPa级超细晶高强耐候钢的制备方法及应用
CN107747043A (zh) * 2017-11-13 2018-03-02 山东钢铁股份有限公司 一种屈服强度650MPa及以上级别耐候热轧H型钢及其制造方法
CN108642389A (zh) * 2018-05-30 2018-10-12 燕山大学 一种焊缝夹杂物少的免涂装耐候钢及其制备方法
CN109234635A (zh) * 2018-10-29 2019-01-18 南京钢铁股份有限公司 一种345MPa级低屈强比耐候钢及其制备方法
CN110205554A (zh) * 2019-06-28 2019-09-06 东北大学 690MPa级抗震耐火耐候建筑结构用钢及其制备方法
CN110468350A (zh) * 2019-08-30 2019-11-19 南阳汉冶特钢有限公司 一种高强高耐候建筑用q420gjnhez35钢板及其生产方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096839B2 (ja) * 2003-08-22 2008-06-04 Jfeスチール株式会社 超大入熱溶接熱影響部靱性に優れた低降伏比高張力厚鋼板の製造方法
CN102021494B (zh) * 2009-09-23 2012-11-14 宝山钢铁股份有限公司 一种耐候厚钢板及其制造方法
JP2012207237A (ja) * 2011-03-29 2012-10-25 Jfe Steel Corp 多層盛溶接部の靭性に優れた降伏強さ500MPa級厚鋼板およびその製造方法
CN103352167B (zh) * 2013-07-15 2015-11-25 南京钢铁股份有限公司 一种低屈强比高强度桥梁用钢及其制造方法
CN105063511B (zh) * 2015-08-14 2017-03-22 武汉钢铁(集团)公司 中厚板轧机轧制超低碳贝氏体类薄规格钢板及其生产方法
CN109554623A (zh) * 2018-12-07 2019-04-02 唐山中厚板材有限公司 屈服强度550MPa级耐候桥梁钢板及其生产方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302442A (ja) * 1996-05-13 1997-11-25 Sumitomo Metal Ind Ltd 耐候性鋼およびその製造方法
CN101876032A (zh) * 2009-12-26 2010-11-03 舞阳钢铁有限责任公司 一种耐候桥梁用高强度钢板及其生产方法
CN102168229A (zh) * 2010-02-25 2011-08-31 宝山钢铁股份有限公司 耐候钢板及其制造方法
CN101892431A (zh) * 2010-07-07 2010-11-24 江苏省沙钢钢铁研究院有限公司 热轧态屈服强度500MPa级耐候桥梁钢及其制造方法
CN105506450A (zh) * 2015-12-10 2016-04-20 南京钢铁股份有限公司 一种抗震耐候桥梁钢及其制造工艺
CN107365940A (zh) * 2017-08-16 2017-11-21 北京科技大学 一种700MPa级超细晶高强耐候钢的制备方法及应用
CN107747043A (zh) * 2017-11-13 2018-03-02 山东钢铁股份有限公司 一种屈服强度650MPa及以上级别耐候热轧H型钢及其制造方法
CN108642389A (zh) * 2018-05-30 2018-10-12 燕山大学 一种焊缝夹杂物少的免涂装耐候钢及其制备方法
CN109234635A (zh) * 2018-10-29 2019-01-18 南京钢铁股份有限公司 一种345MPa级低屈强比耐候钢及其制备方法
CN110205554A (zh) * 2019-06-28 2019-09-06 东北大学 690MPa级抗震耐火耐候建筑结构用钢及其制备方法
CN110468350A (zh) * 2019-08-30 2019-11-19 南阳汉冶特钢有限公司 一种高强高耐候建筑用q420gjnhez35钢板及其生产方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561586A (zh) * 2021-12-02 2022-05-31 安阳钢铁股份有限公司 一种炉卷轧机薄规格桥梁耐候钢及其生产方法
CN114807750A (zh) * 2022-04-06 2022-07-29 江阴兴澄特种钢铁有限公司 一种薄规格500MPa级低屈强比高韧性桥梁钢板及其制造方法
CN114807750B (zh) * 2022-04-06 2023-09-15 江阴兴澄特种钢铁有限公司 一种薄规格500MPa级低屈强比高韧性桥梁钢板及其制造方法
CN115074602A (zh) * 2022-07-28 2022-09-20 湖南华菱湘潭钢铁有限公司 Q500级高耐蚀高强度近海结构用调质钢板的生产方法
CN115491604A (zh) * 2022-09-27 2022-12-20 包头钢铁(集团)有限责任公司 一种屈服强度500MPa稀土耐候桥梁钢及其制造方法
CN115505852A (zh) * 2022-10-26 2022-12-23 河北普阳钢铁有限公司 一种耐蚀农机用钢材及其制造方法
CN116590627A (zh) * 2023-07-14 2023-08-15 内蒙古工业大学 一种高强度耐候桥梁钢及其制备工艺
CN116590627B (zh) * 2023-07-14 2023-10-10 内蒙古工业大学 一种高强度耐候桥梁钢及其制备工艺

Also Published As

Publication number Publication date
CN111455287A (zh) 2020-07-28
US20230104637A1 (en) 2023-04-06
CN111455287B (zh) 2021-09-17
KR20230009365A (ko) 2023-01-17
JP2023520418A (ja) 2023-05-17

Similar Documents

Publication Publication Date Title
WO2021196343A1 (zh) 一种500MPa级低屈强比耐候桥梁钢及其制造方法
CN112831717B (zh) 一种690MPa级低屈强比薄规格耐候桥梁钢及其制造方法
CN106282789B (zh) 一种低碳特厚TMCP型Q420qE桥梁钢及其制造方法
CN112981235B (zh) 一种屈服强度420MPa级的调质型建筑结构用钢板及其生产方法
CN110205554B (zh) 690MPa级抗震耐火耐候建筑结构用钢及其制备方法
CN105839003B (zh) 一种正火态交货的180~200mm厚EH36钢板及其制备方法
CN111378896B (zh) 一种高强度耐候型建筑桥梁用钢板及其制造方法
CN114480806B (zh) 一种厚规格TiC粒子增强型马氏体耐磨钢板的制造方法
CN103160746A (zh) 一种高强度厚壁输水管用钢及其制造方法
WO2022001904A1 (zh) 一种厚度≥20mm的X90级高强度管线钢板卷及其制造方法
CN114411059A (zh) 一种桥梁钢及其制造方法
CN112226673A (zh) 一种抗拉强度650MPa级热轧钢板及其制造方法
CN112981232A (zh) 一种连铸坯成材低压缩比高探伤质量要求的12Cr2Mo1VR钢板及生产工艺
CN115386805A (zh) 一种低屈强比高韧性桥梁耐候钢及其制造方法
CN114480962A (zh) 一种620MPa级煤矿液压支架用钢及其制造方法
WO2024016419A1 (zh) 一种低屈强比耐候桥梁钢及制备方法
CN114231826B (zh) 一种Q420qE桥梁结构钢板的生产方法
CN115491607A (zh) 一种耐海洋大气腐蚀的结构用钢板及制备方法
CN115558851A (zh) 一种370MPa级别工程结构用热轧钢板及其制造方法
CN101956147A (zh) 高强度低裂纹敏感性厚板及其制造方法
CN114480976A (zh) 一种高温轧制Q420qE桥梁结构钢板及其生产方法
CN114672617A (zh) 一种耐-40℃低温冲击的hb450级在线水冷耐磨钢板及其制备方法
CN115786806B (zh) 一种具有良好低温韧性的高强度低碳当量特厚钢板及其制造方法
CN111270162B (zh) 中等厚度低温高心部冲击a537cl2容器钢板及其生产方法
CN102127704A (zh) 900MPa级高强度高塑性中碳热轧钢及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928467

Country of ref document: EP

Kind code of ref document: A1