WO2021196017A1 - 一种检测扩散膜偏移的装置和抬头显示器 - Google Patents

一种检测扩散膜偏移的装置和抬头显示器 Download PDF

Info

Publication number
WO2021196017A1
WO2021196017A1 PCT/CN2020/082572 CN2020082572W WO2021196017A1 WO 2021196017 A1 WO2021196017 A1 WO 2021196017A1 CN 2020082572 W CN2020082572 W CN 2020082572W WO 2021196017 A1 WO2021196017 A1 WO 2021196017A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion film
module
frame
head
closed loop
Prior art date
Application number
PCT/CN2020/082572
Other languages
English (en)
French (fr)
Inventor
翁德正
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022559718A priority Critical patent/JP7460793B2/ja
Priority to CN202080036874.6A priority patent/CN113853545A/zh
Priority to PCT/CN2020/082572 priority patent/WO2021196017A1/zh
Priority to EP20928945.3A priority patent/EP4113192A4/en
Publication of WO2021196017A1 publication Critical patent/WO2021196017A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/0161Head-up displays characterised by mechanical features characterised by the relative positioning of the constitutive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/0167Emergency system, e.g. to prevent injuries

Definitions

  • the embodiments of the present application relate to the field of optical technology, and in particular to a device for detecting the deviation of a diffusion film and a head-up display.
  • the working principle of the car head-up display is roughly as follows: the laser light source emits laser light, and then the MEMS system scans the laser light onto the diffuser film; at this time, the diffuser film can be regarded as a surface light source, and the light emitted by the diffuser film is finally projected to the windshield , So as to form a virtual image on the outside of the windshield car, the virtual image can be used to display the information on the instrument panel or mobile phone and other devices to avoid accidents caused by the driver looking down on the mobile phone or the instrument panel.
  • the laser scanned by the MEMS may directly hit the windshield, and eventually hit the driver's eyes, thereby causing harm.
  • the embodiments of the present application provide a device and a head-up display for detecting the deviation of the diffusion film, which can detect the deviation of the diffusion film.
  • the first aspect of the embodiments of the present application provides a device for detecting the deviation of a diffusion film, which includes a power supply, a conductive module, and a detection module;
  • the conductive module and the diffusion film have a relatively fixed positional relationship.
  • the conductive module When the diffusion film is in the first position, the conductive module is connected with the power source to form a closed loop.
  • the position of the conductive module changes to open the closed loop, and there are multiple choices for the second position.
  • the offset distance of the second position from the first position is greater than the preset distance, and the preset distance can be set according to actual conditions, for example, can be determined according to the size of the conductive module and the relative positional relationship between the conductive module and the diffusion film.
  • the detection module is used to detect the disconnection of the closed circuit. When the closed circuit is disconnected, the deviation of the diffusion film can be determined.
  • the conductive module when the diffusion film is at the first position, the conductive module is connected to the power source to form a closed loop; when the diffusion film shifts from the first position to the second position, the closed loop is disconnected; the detection module detects the closure When the circuit is disconnected, it can be determined that the diffusion film has shifted, so as to promptly remind the user.
  • the embodiments of the present application provide the first implementation of the first aspect.
  • the diffusion film is fixed on the carrier module.
  • the structure of the carrier module can be various, and the diffusion film can be fixed on the carrier module. There are many kinds.
  • the conductive module is connected to the carrier module, and the connection between the conductive module and the carrier module can be multiple.
  • the conductive module can be pasted on the carrier module or fixed on the carrier module by fixing components such as screws.
  • the embodiment of the present application provides a feasible solution for forming a relatively fixed positional relationship, that is, the conductive module is connected to the diffusion film through the carrier module.
  • an embodiment of the present application provides a second implementation manner of the first aspect, and the bearing module includes a first frame;
  • the diffusion film is located in the first frame, and the diffusion film can be adhered to the first frame through double-sided tape;
  • the conductive module is fixed on the first frame, and there are many fixing methods.
  • the conductive module can be fixed on the first frame by screws.
  • the embodiment of the present application provides a feasible solution for connecting the diffusion membrane and the carrying module.
  • the carrying module includes a first frame, and the diffusion membrane can be adhered to the first frame.
  • the load-bearing module further includes feet, wherein there are various structures of the feet, and the number of the feet can also be multiple.
  • the supporting feet are connected with the first frame and used for supporting the first frame.
  • the conductive module is arranged under the supporting leg and connected with the supporting leg.
  • the embodiment of the present application provides a feasible solution for connecting a conductive module with a first frame, that is, the conductive module is connected with a leg supporting the first frame.
  • the embodiments of the present application provide the first implementation manner of the first aspect, the load-bearing module includes a second frame and a third frame, and the conductive module includes a screw;
  • the second frame is provided with a first through hole
  • the third frame is provided with a second through hole
  • the screw passes through the first through hole and the second through hole to fix the second frame and the third frame;
  • the diffusion film is fixed between the second frame and the third frame.
  • the embodiment of the present application provides another structure of the load-bearing module, that is, the load-bearing module includes a second frame and a third frame that are connected to each other. Based on this structure, the conductive module is a screw that fixes the second frame and the third frame.
  • the detection module includes a first resistor, a second resistor, a detection sub-module, a first connection terminal, and a second connection terminal;
  • the power supply terminal of the power supply is connected to the first terminal of the first resistor
  • the first end of the second resistor is connected to the second end of the first resistor, and the second end of the second resistor is grounded;
  • the first connecting end is connected to the second end of the first resistor, and the second connecting end is grounded;
  • the first end of the conductive module is connected to the first connection end, and the second end of the conductive module is connected to the second connection end;
  • the first end of the conductive module is disconnected from the first connection end, and/or the second end of the conductive module is disconnected from the second connection end.
  • the detection sub-module is connected to the first end of the first resistor, and is used to detect the voltage of the first end of the first resistor to determine that the closed loop is disconnected.
  • the embodiment of the present application provides a feasible solution for the detection module, that is, the closed loop is determined to be disconnected by detecting the voltage at a certain point in the closed loop.
  • the second aspect of the embodiments of the present application provides a head-up display, which includes a laser light source, a microelectromechanical system, a diffusion film, and the device for detecting the deviation of the diffusion film as described in any one of the implementations in the first aspect of the embodiments of the present application.
  • the laser light emitted by the laser light source is scanned by the MEMS and then incident on the diffusion film;
  • the diffusion film When the diffusion film is located at the second position, the diffusion film deviates from the optical path of the laser scanned by the MEMS, so that the laser light emitted by the laser light source cannot be incident on the diffusion film after being scanned by the MEMS.
  • the diffusion film when the diffusion film is located at the first position, the laser light emitted by the laser light source is scanned by the MEMS and incident on the diffusion film, and the conductive module is connected with the power source to form a closed loop;
  • the diffusion film When the position shifts to the second position, the diffusion film deviates from the optical path of the laser scanned by the MEMS, resulting in that the laser emitted by the laser light source cannot be incident on the diffusion film after being scanned by the MEMS, and the closed loop is disconnected; so based on The detection module detects the disconnection of the closed loop, which can determine the deviation of the diffusion film, so as to remind the user in time.
  • the embodiments of the present application provide the first implementation manner of the second aspect, and the head-up display further includes a bearing module;
  • the diffusion film is fixed on the carrier module.
  • the embodiment of the present application provides a feasible solution for fixing the diffusion film in the head-up display.
  • an embodiment of the present application provides the second implementation manner of the second aspect, and the head-up display further includes a control module.
  • the control module can be connected with the detection module and the laser light source, and is used to control the laser light source to turn off when the closed loop is detected to be disconnected.
  • control module controls the laser light source to turn off when the closed loop is detected to be disconnected, so as to prevent the laser light emitted by the laser light source from directly entering the driver's eyes without passing through the diffusion film.
  • the third aspect of the embodiments of the present application provides a method for controlling the head-up display according to any one of the implementation manners of the second aspect of the embodiments of the present application, including:
  • the laser light source in the head-up display is controlled to turn on.
  • the control module controls the laser light source in the head-up display to turn off, so as to prevent the laser light emitted by the laser light source from directly entering the driver's eyes without passing through the diffusion film; when the closed loop is turned on , The control module controls the laser light source in the head-up display to turn on to ensure the normal use of the head-up display.
  • the conductive module and the diffusion film have a relatively fixed positional relationship; when the diffusion film is in the first position, the conductive module and the power supply are connected to form a closed loop; when the diffusion film is shifted from the first position to In the second position, the closed loop is disconnected; based on the detection module detecting that the closed loop is disconnected, it can be determined that the diffusion membrane has shifted, so as to promptly remind the user.
  • FIG. 1 is a schematic diagram of the architecture of an imaging system in an embodiment of the application
  • FIG. 2 is a schematic diagram of the structure of the diffusion film in the embodiment of the application.
  • FIG. 3 is a schematic diagram of a first embodiment of a device for detecting deviation of a diffusion film in an embodiment of the application
  • FIG. 4 is a schematic diagram of an embodiment of a bearer module in an embodiment of the application.
  • FIG. 5 is a schematic diagram of a second embodiment of the device for detecting the deviation of the diffusion film in the embodiment of the application;
  • FIG. 6 is a schematic diagram of a third embodiment of the device for detecting the deviation of the diffusion film in the embodiment of the application;
  • FIG. 7 is a schematic diagram of a fourth embodiment of the device for detecting the deviation of the diffusion film in the embodiment of the application.
  • FIG. 8 is a schematic diagram of a fifth embodiment of the device for detecting the deviation of the diffusion film in the embodiment of the application.
  • FIG. 9 is a schematic diagram of a sixth embodiment of the device for detecting the deviation of the diffusion film in the embodiment of the application.
  • FIG. 10 is a schematic diagram of a first embodiment of a detection module in an embodiment of the application.
  • FIG. 11 is a schematic diagram of a second embodiment of a detection module in an embodiment of the application.
  • FIG. 12 is a schematic diagram of a seventh embodiment of the device for detecting the deviation of the diffusion film in the embodiment of the application;
  • FIG. 13 is a schematic diagram of a first embodiment of a head-up display in an embodiment of the application.
  • FIG. 14 is a schematic diagram of a second embodiment of a head-up display in an embodiment of the application.
  • FIG. 15 is a schematic diagram of a third embodiment of a head-up display in an embodiment of the application.
  • FIG. 16 is a schematic diagram of an embodiment of a method for controlling a head-up display in an embodiment of the application.
  • the embodiments of the present application can be applied to the imaging system shown in FIG. 1.
  • the imaging system mainly includes a head-up display (HUD) and windshield (Windshield).
  • the head-up display is used to project light onto the windshield to produce a virtual image on the outside of the windshield.
  • the virtual image can be used to display various information, for example, it can be used to display information on a dashboard or mobile phone.
  • the head-up display includes an image generation unit and an optical mirror surface group; optionally, a lens is provided on the outer wall of the image generation unit, and the lens is located on the optical path of the light emitted from the image generation unit.
  • the image generation unit includes a laser light source, a Micro Electro Mechanical System (MEMS), and a diffusion film; the laser light source emits laser light, and then the MEMS system scans the laser light onto the diffusion film. Finally, the laser light passes through the diffusion film and passes through the diffusion film. Projected to the windshield under the action of the mirror group.
  • MEMS Micro Electro Mechanical System
  • the structure of the diffusion film may be as shown in FIG. 2, including a light-transmitting substrate and a diffusion layer provided on the surface of the substrate.
  • the material of the substrate may be polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the diffusion layer is composed of optical astigmatism particles.
  • the diffusion film can be regarded as a surface light source.
  • the optical mirror group includes a first mirror and a second mirror.
  • the light emitted from the diffuser film will be reflected by the first reflector and the second reflector in turn, and finally projected onto the windshield.
  • the arrow in FIG. 1 indicates the direction of light propagation.
  • the diffusion film should be set in an appropriate position so that the laser passes through the diffusion film and is directed to the optical mirror assembly instead of directly to the optical mirror assembly.
  • the diffusion film may shift, causing the laser light to be directly directed to the optical mirror group without passing through the diffusion film, and ultimately into the driver's eyes.
  • the head-up display since the head-up display is used in a vehicle, the vehicle will be impacted and shaken during driving, so the diffusion film is more prone to deviation.
  • the embodiment of the present application provides a device for detecting the deviation of the diffusion film.
  • the device can be integrated with the diffusion film in the same device, for example, can be integrated in a head-up display.
  • the device can be directly or indirectly connected to the diffusion film. It is used to detect the deviation of the diffusion film, which can remind the user of the deviation of the diffusion film to prevent damage.
  • FIG. 3 is a schematic diagram of the first embodiment of the device for detecting the deviation of the diffusion film in the embodiment of the present application.
  • the embodiment of the present application provides an embodiment of a device for detecting the deviation of a diffusion film, which includes a power supply 100, a conductive module 200, and a detection module 300.
  • the output voltage of the power supply 100 can be selected according to actual needs.
  • the conductive module 200 and the diffusion film have a relatively fixed positional relationship.
  • the number of the conductive module 200 may be one or more, and the structure of the conductive module 200 may be various, which is not limited in the embodiment of the present application. For example, it may be Conductive shrapnel.
  • the relatively fixed positional relationship can be formed in a variety of ways, which is not limited in the embodiment of the present application.
  • the conductive module 200 may be connected with the diffusion film to form a relatively fixed positional relationship, wherein the connection may be a direct connection or an indirect connection; the conductive module 200 may not be connected with the diffusion film, but with the diffusion film There is a relatively fixed positional relationship between them.
  • the diffusion film is fixed on the carrying module 400; the conductive module 200 is connected to the carrying module 400.
  • the structure of the bearing module 400 may have multiple types, which are not limited in the embodiment of the present application.
  • the diffusion film may be fixed on the carrier module 400, and the manner may be related to the structure of the carrier module 400, which is not limited in the embodiment of the present application.
  • the conductive module 200 can be connected to the carrier module 400 in a variety of ways.
  • the conductive module 200 can be pasted on the carrier module 400, or it can be fixed on the carrier module 400 by fixing components such as screws. This is not done in the embodiment of the application. limited.
  • the structure of the carrying module 400, the fixing method of the diffusion film, and the connection method between the conductive module 200 and the carrying module 400 will be described below with reference to FIGS. 3 and 4.
  • the carrying module 400 includes a first frame 4001.
  • the diffusion film is located in the first frame 4001, and the diffusion film is adhered to the first frame 4001.
  • a double-sided tape may be arranged around the diffusion film, and the diffusion film is adhered to the first frame 4001 through the double-sided tape.
  • Figure 4 does not show the diffusion mode.
  • the conductive module 200 is fixed on the first frame 4001. There are many ways to fix the conductive module 200 on the first frame 4001. For example, it can be directly fixed on the first frame 4001 or indirectly fixed on the first frame 4001.
  • the carrying module 400 further includes a leg 4002;
  • the supporting leg 4002 is connected to the first frame 4001 and used for supporting the first frame 4001.
  • the conductive module 200 is disposed under the leg 4002 and connected to the leg 4002.
  • the number of legs 4002 can be one or more; when the number of legs 4002 is more than one, one conductive module 200 can be provided under each leg 4002.
  • the diffusion film when the diffusion film is located at the first position, the laser passes through the diffusion film, and the conductive module 200 is connected to the power supply 100 to form a closed loop.
  • the number of conductive modules 200 may be multiple; assuming that the number of conductive modules 200 is two, the two conductive modules 200 may be connected in series in the same closed loop or connected in different loops.
  • the carrying module 400 includes two legs 4002, and a conductive module 200 is arranged under each leg 4002.
  • the two conductive modules 200 are connected in series with the power supply 100 to form a closed loop; the two conductive modules 200 also It can be connected in parallel to form two closed loops with the power supply 100.
  • the laser does not pass through the diffuser film, and the position of the conductive module 200 changes to disconnect the closed circuit, where the offset distance from the second position to the first position is greater than the preset distance .
  • the diffusion film can be longitudinally shifted from the first position to the second position; specifically, as shown in FIG. 5, the diffusion film is shifted upward from the first position to the second position, that is, the position of the diffusion film in FIG. 5 is the second position;
  • the conductive module 200 also shifts upward together with the diffusion film, and both ends of the conductive module 200 are disconnected from the power supply 100, so that the closed loop is disconnected.
  • the diffusion film can be tilted and shifted from the first position to the second position; specifically, as shown in FIG. 6, the diffusion film is tilted from the first position to one side to the second position, that is, the position of the diffusion film in FIG. 6 is the second position. Position; the conductive module 200 is also inclined to one side together with the diffusion film, and one end of the conductive module 200 is disconnected from the power supply 100, so that the closed loop is disconnected.
  • the diffusion film can also be laterally shifted from the first position to the second position, so that the conductive module 200 is also laterally shifted, and both ends of the conductive module 200 are disconnected from the power supply 100, so that the closed loop is disconnected.
  • the second position may have multiple situations, specifically including any position that can open the closed loop.
  • the diffusion film will inevitably deviate during use, especially when the diffusion film is used in a head-up display of a vehicle, the diffusion film will often deviate as the vehicle vibrates. Therefore, in order to prevent a slight deviation of the diffusion film from causing the closed circuit to be disconnected, the position of the conductive module 200 will be reasonably set in the embodiment of the present application, so that the closed circuit will be opened only when the deviation distance of the diffusion film is greater than the preset distance.
  • FIGS. 3 and 7 shows that the diffusion film is inclined to one side from the first position shown in 3, but because the conductive module 200 has a certain thickness, both ends of the conductive module 200 are not disconnected from the power supply 100 6 and 7, it can be seen that the diffusion film continues to shift on the basis of the position shown in FIG. 7, and will eventually shift to the second position shown in FIG. 6, which will cause one end of the conductive module 200 and The power supply 100 is disconnected.
  • the preset distance can be determined according to the size of the conductive module 200 and the relative positional relationship between the conductive module 200 and the diffusion film, and the specific determination method is not described in detail here.
  • the detection module 300 is used to detect the disconnection of the closed loop. It is understood that the detection module 300 can be connected to the closed loop to detect the disconnection of the closed loop.
  • the detection module 300 may have various structures, which are not limited in the embodiment of the present application; for example, the detection module 300 may be an ammeter connected in series in a closed loop.
  • the conductive module 200 when the diffusion film is located at the first position, the conductive module 200 is connected to the power supply 100 to form a closed loop; when the diffusion film shifts from the first position to the second position, the closed loop is disconnected; based on the detection module 300 detects the disconnection of the closed circuit, which can determine the deviation of the diffusion film, so as to prompt the user in time.
  • the carrying module 400 includes a first frame 4001 and a leg 4002. Accordingly, the diffusion film can be adhered to the carrying module 400, and the conductive module 200 can be disposed under the leg 4002.
  • the carrying module 400 can have a variety of structures.
  • the connection modes of the modules 400 are different from those shown in FIG. 4.
  • the carrying module 400 includes a second frame 4003 and a third frame 4004, and the conductive module 200 includes screws.
  • FIG. 7 only shows one structure of the second frame 4003 and the third frame 4004.
  • the second frame 4003 is provided with a first through hole
  • the third frame 4004 is provided with a second through hole.
  • the first through hole and the second through hole are not shown in FIG. 7.
  • the screw sequentially fixes the second frame 4003 and the third frame 4004 to the first through hole and the second through hole.
  • the diffusion film is fixed between the second frame 4003 and the third frame 4004.
  • the screw not only plays a role of fixing the second frame 4003 and the third frame 4004, but also plays a role of the conductive module 200.
  • the diffusion film is located at the first position, and the two ends of the screw are respectively connected with the power supply 100 to form a closed loop.
  • FIG. 9 assuming that the diffusion film is shifted to the position shown in FIG. 9, that is, the second position, the connections between the two ends of the screw and the two ends of the power supply 100 are disconnected, so that the closed loop is disconnected.
  • the conductive module 200 is a screw. Based on the falling off of the screw, the diffusion film shifts from the first position to the second position, and the closed loop between the screw and the power supply 100 is disconnected. Therefore, the embodiment of the present application By detecting the opening of the closed circuit, the deviation of the diffusion film can be determined.
  • the detection module 300 can have a variety of structures. The following specifically describes a structure of the detection module with reference to FIG. 10 and FIG. 11. As shown in FIG. 10, the detection module 300 includes a first resistor R1, a second resistor R2, a detection sub-module 3001, a first connection terminal Q, and a second connection terminal P;
  • the power supply terminal VCC of the power supply is connected to the first terminal A of the first resistor R1;
  • the first end C of the second resistor R2 is connected to the second end B of the first resistor R1, and the second end D of the second resistor R2 is grounded;
  • the first connection terminal Q is connected to the second terminal B of the first resistor R1, and the second connection terminal E is grounded;
  • the first end F of the conductive module 200 is connected to the first connecting end Q, and the second end E of the conductive module 200 is connected to the second connecting end P. Connect, so that the conductive module 200 is connected to the power source to form a closed loop.
  • the detection sub-module 3001 is connected to the second terminal B of the first resistor R1, and is used to detect the voltage of the second terminal B of the first resistor R1 to determine that the closed loop is disconnected.
  • the conductive module 200 when the first terminal F of the conductive module 200 is connected to the first connecting terminal Q and the second terminal E of the conductive module 200 is connected to the second connecting terminal P, the conductive module 200 is connected in parallel with the second resistor R2, assuming At this time, the voltage detected by the detection sub-module 3001 is the first voltage; when the first terminal F of the conductive module 200 is disconnected from the first connecting terminal Q, and/or the second terminal E of the conductive module 200 is disconnected from the second connecting terminal When P is disconnected, the branch where the conductive module 200 is located is disconnected, and it is assumed that the voltage detected by the detection sub-module 3001 at this time is the second voltage.
  • the first voltage is lower than the second voltage. Therefore, if the detection sub-module 3001 detects a low voltage, it can be determined that the closed loop is not disconnected; if the detection sub-module 3001 detects a high voltage, it can be determined that the closed loop disconnect.
  • the device for detecting the deviation of the diffusion film shown in FIG. 3 may be as shown in FIG. 12.
  • FIG. 13 a schematic diagram of a first embodiment of a head-up display in the embodiment of the present application; an embodiment of the present application provides an embodiment of a head-up display, including a laser light source 10, a microelectromechanical system 20, a diffusion film 30, and any of the foregoing The device for detecting the deviation of the diffusion film mentioned in an embodiment.
  • the laser light emitted by the laser light source 10 is scanned by the MEMS 20 and incident on the diffusion film 30, passes through the diffusion film 30, and is finally emitted out of the head-up display.
  • FIG. 14 a schematic diagram of the second embodiment of the head-up display in the embodiment of the present application; as shown in FIG. 14, the diffusion film 30 is located in the second position, and the diffusion film 30 deviates from the optical path of the laser scanned by the microelectromechanical system 20, that is, the laser The head-up display is shot directly without passing through the diffusion film 30.
  • FIGS. 13 and 14 only show one of the structures of the device for detecting the deviation of the diffusion film, and FIG. 14 only shows one of the cases where the diffusion film 30 is located at the second position; based on the foregoing implementation
  • the example describes the device for detecting the deviation of the diffusion film in detail, and the embodiments of the present application will not be described in detail here.
  • the diffusion film 30 when the diffusion film 30 is at the first position, the laser light emitted by the laser light source 10 is scanned by the MEMS 20 and incident on the diffusion film 30, and the conductive module 200 is connected with the power supply 100 to form a closed loop;
  • the diffusion film 30 shifts from the first position to the second position, the diffusion film 30 deviates from the optical path of the laser scanned by the MEMS 20, that is, the laser does not pass through the diffusion film 30 but directly emits the head-up display, and the closed loop is disconnected; Therefore, if the detection module 300 detects that the closed loop is disconnected, it can be determined that the diffusion film 30 has shifted, so as to promptly remind the user.
  • the head-up display further includes a carrying module 400;
  • the diffusion film 30 is fixed on the carrier module 400.
  • the head-up display further includes a control module 40;
  • the control module 40 is used to control the laser light source 10 to turn off when the closed loop is detected to be disconnected.
  • control module 40 can be connected to the detection module 300 to obtain the detection result of the detection module 300; the control module can also be connected to the laser light source 10 to control the turning on and off of the laser light source 10.
  • control module 40 and the detection module 300 can be integrated into one module.
  • the control control module 40 and the detection module 300 can be integrated as a micro control unit (MCU) in Chinese.
  • MCU micro control unit
  • the power supply 100 in the device for detecting the drift of the diffusion film can also be integrated in the MCU. .
  • the first terminal of the MCU is used as the output terminal of the power supply 100 (for example, the power supply terminal VCC in FIG. 10) for power supply;
  • the second terminal of the MCU is connected to the closed loop (for example, the second terminal of the first resistor R1 in FIG. Terminal B) is connected to detect the disconnection of the closed loop;
  • the third terminal of the MCU is connected to the laser light source 10 and is used to control the turning on and off of the laser light source 10.
  • the MCU can be connected to the battery through a DC-DC conversion circuit.
  • the control module 40 controls the laser light source 10 in the head-up display to be turned off, so as to prevent the laser light emitted by the laser light source 10 from directly entering the driver's eyes without passing through the diffusion film 30;
  • the control module 40 controls the laser light source 10 in the head-up display to turn on to ensure the normal use of the head-up display.
  • an embodiment of the present application also provides a method for controlling a head-up display as described in FIGS. 13-15, including:
  • Step 111 The detection module detects the on-off state of the closed loop, where the closed loop is the closed loop mentioned in FIG. 13 to FIG. 15;
  • Step 222 Based on detecting that the closed loop is disconnected, the control module controls the laser light source in the head-up display to turn off;
  • Step 333 based on detecting that the closed loop is turned on, the control module controls the laser light source in the head-up display to turn on.
  • the control module controls the laser light source in the head-up display to turn off, so as to prevent the laser light emitted by the laser light source from directly entering the driver's eyes without passing through the diffusion film; when the closed loop is turned on , The control module controls the laser light source in the head-up display to turn on to ensure the normal use of the head-up display.

Abstract

一种检测扩散膜偏移的装置和抬头显示器,用于检测扩散膜偏移,应用于自动驾驶领域。检测扩散膜偏移的装置包括:导电模块(200)与扩散膜具有相对固定的位置关系;当扩散膜位于第一位置时,导电模块(200)与电源(100)连接形成闭合回路;当扩散膜从第一位置偏移到第二位置时,闭合回路断开;基于检测模块(300)检测闭合回路断开,则可以确定扩散膜发生偏移,以便及时提醒用户。

Description

一种检测扩散膜偏移的装置和抬头显示器 技术领域
本申请实施例涉及光学技术领域,尤其涉及一种检测扩散膜偏移的装置和抬头显示器。
背景技术
随着车辆的不断增多,在道路上行驶的压力变得越来越大。并且,驾驶员在行驶时经常需要低头查看手机或仪表盘,这难免会增加行驶的风险性。因此,车载抬头显示器应运而生。
车载抬头显示器的工作原理大致如下:激光光源发出激光,然后微机电系统将该激光扫描至扩散膜上;此时,扩散膜可以看成面光源,由扩散膜射出的光最终投射至挡风玻璃,从而在挡风玻璃车外一侧形成虚像,该虚像可以用来显示仪表盘或手机等设备上的信息,以避免驾驶员低头查看手机或仪表盘而发生意外事故。
然而,基于扩散膜位置发生偏移,则经微机电系统扫描后的激光可能直接射向挡风玻璃,最终射入驾驶员眼睛,从而产生危害。
为此,需要及时检测扩散膜偏移,以防对驾驶员产生危害。
发明内容
本申请实施例提供了一种检测扩散膜偏移的装置和抬头显示器,能够检测扩散膜偏移。
本申请实施例的第一方面提供一种检测扩散膜偏移的装置,包括电源、导电模块和检测模块;
导电模块与扩散膜具有相对固定的位置关系。
当扩散膜位于第一位置时,导电模块与电源连接形成闭合回路。
当扩散膜从第一位置偏移到第二位置时,导电模块位置发生改变使闭合回路断开,其中第二位置可以有多种选择。
第二位置距第一位置的偏移距离大于预设距离,该预设距离可以根据实际情况进行设定,例如可以根据导电模块的尺寸以及导电模块和扩散膜之间的相关位置关系确定。
检测模块与用于检测闭合回路断开,当闭合回路断开时,则可以确定扩散膜偏移。
在本申请实施例中,当扩散膜位于第一位置时,导电模块与电源连接形成闭合回路;当扩散膜从第一位置偏移到第二位置时,闭合回路断开;基于检测模块检测闭合回路断开,可以确定扩散膜发生偏移,以便及时提醒用户。
基于第一方面,本申请实施例提供了第一方面的第一种实施方式,扩散膜固定在承载模块上,其中承载模块的结构可以有多种,扩散膜固定在承载模块上的方式也可以有多种。
导电模块与承载模块连接,导电模块与承载模块的连接方式也可以由多种,例如,导电模块可以粘贴在承载模块上,也可以通过螺钉等固定组件固定在承载模块上。
本申请实施例提供了形成相对固定的位置关系的一种可行方案,即导电模块通过承载模块与扩散膜连接。
基于第一方面的第一种实施方式,本申请实施例提供了第一方面的第二种实施方式,承载模块包括第一框架;
扩散膜位于第一框架中,且扩散膜可以通过双面胶与第一框架粘连;
导电模块固定在第一框架上,其中固定方式也有多种,例如导电模块可以通过螺钉固定在第一框架上。
本申请实施例提供了一种扩散膜与承载模块连接的可行方案,具体地,承载模块包括第一框架,扩散膜可以与第一框架粘连。
基于第一方面的第二种实施方式,本申请实施例提供了第一方面的第三种实施方式,承载模块还包括支脚,其中支脚的结构有多种,支脚的数量也可以有多个。
支脚与第一框架连接,用于支撑第一框架。
导电模块设置在支脚下方并与支脚连接。
本申请实施例提供了一种导电模块与第一框架连接的可行方案,即导电模块与支撑第一框架的支脚连接。
基于第一方面,本申请实施例提供了第一方面的第一种实施方式,承载模块包括第二框架和第三框架,导电模块包括螺钉;
第二框架设置有第一通孔,第三框架上设置有第二通孔;
螺钉通过第一通孔和第二通孔,将第二框架和第三框架固定;
扩散膜固定在第二框架和第三框架之间。
本申请实施例提供了承载模块的另一种结构,即承载模块包括相互连接的第二框架和第三框架,基于该种结构,导电模块为固定第二框架和第三框架的螺钉。
基于第一方面,或第一方面的第一种实施方式,或第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,本申请实施例提供了第一方面的第五种实施方式,检测模块包括第一电阻、第二电阻、检测子模块、第一连接端和第二连接端;
电源的供电端与第一电阻的第一端连接;
第二电阻的第一端与第一电阻的第二端连接,第二电阻的第二端接地;
第一连接端与第一电阻的第二端连接,第二连接端接地;
当扩散膜位于第一位置时,导电模块的第一端与第一连接端连接,导电模块的第二端与第二连接端连接;
当扩散膜从第一位置偏移到第二位置时,导电模块的第一端与第一连接端断开连接,和/或导电模块的第二端与第二连接端断开连接。
检测子模块与第一电阻的第一端连接,用于检测第一电阻的第一端的电压,以确定闭合回路断开。
本申请实施例提供了检测模块的一种可行方案,即通过检测闭合回路中某一点电压来确定闭合回路断开。
本申请实施例第二方面提供了一种抬头显示器,包括激光光源、微机电系统、扩散膜和如本申请实施例第一方面中任一实施方式所述的检测扩散膜偏移的装置。
当扩散膜位于第一位置时,由激光光源发射的激光经微机电系统扫描后入射至扩散膜上;
当扩散膜位于第二位置时,扩散膜偏离激光经微机电系统扫描后的光路,导致由激光光源发射的激光经微机电系统扫描后无法入射至扩散膜上。
在本申请实施例中,当扩散膜位于第一位置时,由激光光源发射的激光经微机电系统扫描后入射至扩散膜上,且导电模块与电源连接形成闭合回路;当扩散膜从第一位置偏移到第二位置时,扩散膜偏离激光经微机电系统扫描后的光路,导致由激光光源发射的激光经微机电系统扫描后无法入射至扩散膜上,且闭合回路断开;所以基于检测模块检测闭合回路断开,可以确定扩散膜发生偏移,以便及时提醒用户。
基于第二方面,本申请实施例提供了第二方面的第一种实施方式,抬头显示器还包括承载模块;
扩散膜固定在承载模块上。
本申请实施例提供了抬头显示器中固定扩散膜的一种可行方案。
基于第二方面,或第二方面的第二种实施方式,本申请实施例提供了第二方面的第二种实施方式,抬头显示器还包括控制模块。
控制模块可以与检测模块和激光光源连接,用于在检测到闭合回路断开的情况下控制激光光源关闭。
在本申请实施例中,控制模块在检测到闭合回路断开的情况下控制激光光源关闭,以防止激光光源射出的激光未经过扩散膜而直接射入驾驶员眼睛。
本申请实施例第三方面提供了一种控制如本申请实施例第二方面任一实施方式所述的抬头显示器的方法,包括:
基于检测到闭合回路断开,控制抬头显示器中的激光光源关闭;
基于检测到闭合回路导通,控制抬头显示器中的激光光源打开。
在本申请实施例中,当闭合回路断开时,控制模块控制抬头显示器中的激光光源关闭,以防止激光光源射出的激光未经过扩散膜而直接射入驾驶员眼睛;当闭合回路导通时,控制模块控制抬头显示器中的激光光源打开,以保证抬头显示器的正常使用。
本申请实施例提供的技术方案中,导电模块与扩散膜具有相对固定的位置关系;当扩散膜位于第一位置时,导电模块与电源连接形成闭合回路;当扩散膜从第一位置偏移到第二位置时,闭合回路断开;基于检测模块检测闭合回路断开,可以确定扩散膜发生偏移,以便及时提醒用户。
附图说明
图1为本申请实施例中成像系统的架构示意图;
图2为本申请实施例中扩散膜的结构示意图;
图3为本申请实施例中检测扩散膜偏移的装置的第一实施例示意图;
图4为本申请实施例中承载模块的实施例示意图;
图5为本申请实施例中检测扩散膜偏移的装置的第二实施例示意图;
图6为本申请实施例中检测扩散膜偏移的装置的第三实施例示意图;
图7为本申请实施例中检测扩散膜偏移的装置的第四实施例示意图;
图8为本申请实施例中检测扩散膜偏移的装置的第五实施例示意图;
图9为本申请实施例中检测扩散膜偏移的装置的第六实施例示意图;
图10为本申请实施例中检测模块的第一实施例示意图;
图11为本申请实施例中检测模块的第二实施例示意图;
图12为本申请实施例中检测扩散膜偏移的装置的第七实施例示意图;
图13为本申请实施例中抬头显示器的第一实施例示意图;
图14为本申请实施例中抬头显示器的第二实施例示意图;
图15为本申请实施例中抬头显示器的第三实施例示意图;
图16为本申请实施例中控制抬头显示器的方法的实施例示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行详细描述。
本申请实施例可以应用于图1所示的成像系统中。该成像系统主要包括抬头显示器(Head Up Display,HUD)和挡风玻璃(Windshield)。抬头显示器用于向挡风玻璃投射光,以在挡风玻璃的车外一侧产生成虚像,该虚像可以用来显示各种信息,例如可以用来显示仪表盘或手机等设备上的信息。
具体地,抬头显示器包括图像生成单元和光学镜面组;可选地,在图像生成单元外壁上设置镜头,该镜头位于在图像生成单元的出射光的光路上。
图像生成单元包括激光光源、微机电系统(MEMS,Micro Electro Mechanical System)和扩散膜;激光光源发出激光,然后微机电系统将激光扫描至扩散膜上,最后激光会穿过扩散膜,并在光学镜面组的作用下投射至挡风玻璃。
扩散膜的结构可以如图2所示,包括具有透光性的基材和设置在基材表面的扩散层。其中基材的材料可以为聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)。扩散层由光学散光颗粒组成。
基于扩散层的作用,激光在穿过扩散膜的过程中会发生反射、折射或散射,从而变得均匀、柔和、不伤眼睛。所以,扩散膜又可以看成是面光源。
在图1所示的成像系统中,光学镜面组包括第一反射镜和第二反射镜。由扩散膜射出的光会依次经第一反射镜和第二反射镜的反射,最终投射至挡风玻璃上。
其中,图1中的箭头表示光的传播方向。
应理解,由于激光能量大,所以为了防止激光射入驾驶员眼睛而造成危害,扩散膜应当设置在适当位置,从而使得激光穿过扩散膜射向光学镜面组,而不是直接射向光学镜面组。然而,在抬头显示器在使用过程中,扩散膜可能发生偏移,导致激光未经过扩散膜而 直接射向光学镜面组,最终射入驾驶员眼睛。并且,由于抬头显示器应用于车辆中,车辆在行驶过程中会受到冲击和震动,因此扩散膜更容易发生偏移。
为此,本申请实施例提供了一种检测扩散膜偏移的装置,该装置可以与扩散膜集成于同一设备中,例如可以集成于抬头显示器中,该装置可以与扩散膜直接或间接连接,用于检测出扩散膜发生偏移,从而可以提醒用户扩散膜发生偏移,以防止造成危害。
具体地,请参阅图3,本申请实施例中检测扩散膜偏移的装置的第一实施例示意图。本申请实施例提供了一种检测扩散膜偏移的装置的一个实施例,包括电源100、导电模块200和检测模块300。
其中,电源100的输出电压可以根据实际需要进行选择。
导电模块200与扩散膜具有相对固定的位置关系,其中,导电模块200的数量可以为一个或多个,导电模块200的结构可以有多种,本申请实施例对此不做限定,例如可以是导电弹片。
该相对固定的位置关系可以通过多种方式形成,本申请实施例对此不做限定。
示例性地,导电模块200可以与扩散膜连接,从而形成相对固定的位置关系,其中该连接可以是直接连接,也可以是间接连接;导电模块200也可以不与扩散膜连接,但与扩散膜之间具有相对固定的位置关系。
下面介绍导电模块200与扩散膜间接连接的一种方式。以图3为例,扩散膜固定在承载模块400上;导电模块200与承载模块400连接。
其中,承载模块400的结构可以有多种,本申请实施例对此不做限定。
扩散膜固定在承载模块400上的方式可以有多种,该方式可以与承载模块400的结构相关,本申请实施例对此不做限定。
导电模块200与承载模块400连接方式也可以有多种,例如,导电模块200可以粘贴在承载模块400上,也可以通过螺钉等固定组件固定在承载模块400上,本申请实施例对此不做限定。
下面结合图3和图4对承载模块400的结构、扩散膜的固定方式以及导电模块200与承载模块400之间的连接方式进行说明。
如图1和图4所示,示例性地,承载模块400包括第一框架4001。
扩散膜位于第一框架4001中,且扩散膜与第一框架4001粘连。
需要说明的是,扩散膜与第一框架4001粘连的方式有多种。例如,可以在扩散膜周围设置双面胶,扩散膜通过双面胶与第一框架4001粘连。其中,图4未示出扩散模。
导电模块200固定在第一框架4001上,其中导电模块200固定在第一框架4001上的方式有多种,例如可以直接固定在第一框架4001上,也可以间接固定在第一框架4001上。
如图3和图4所示,作为导电模块200间接固定在第一框架4001上的一种可实现方式,承载模块400还包括支脚4002;
支脚4002与第一框架4001连接,用于支撑第一框架4001。
导电模块200设置在支脚4002下方并与支脚4002连接。
需要说明的是,支脚4002的数量可以为一个,也可以为多个;当支脚4002的数量为 多个时,每个支脚4002下均可以设置一个导电模块200。
基于前述相对固定的位置关系,当扩散膜位于第一位置时,激光穿过扩散膜,导电模块200与电源100连接形成闭合回路。
基于前述说明可知,导电模块200的数量可以为多个;假设导电模块200的数量为两个,这两个导电模块200可以串联在同一闭合回路中,也可以分别连接在不同回路中。例如,如图4所示,承载模块400包括两个支脚4002,每个支脚4002下方设置一个导电模块200,这两个导电模块200与电源100串联形成一条闭合回路;这两个导电模块200也可以并联,从而与电源100形成两条闭合回路。
当扩散膜从第一位置偏移到第二位置时,激光不经过扩散膜,且导电模块200位置发生改变使闭合回路断开,其中第二位置距第一位置的偏移距离大于预设距离。
需要说明的是,第二位置可以有多种情况,本申请实施例对此不做限定,下面结合图3、图5和图6进行具体说明,这里首先假设图3中扩散膜的位置为第一位置。
扩散膜可以从第一位置纵向偏移至第二位置;具体地,如图5所示,扩散膜从第一位置向上偏移第二位置,即图5中扩散膜的位置为第二位置;导电模块200也与扩散膜一起向上偏移,导电模块200两端均与电源100断开连接,使得闭合回路断开。
扩散膜可以从第一位置倾斜偏移至第二位置;具体地,如图6所示,扩散膜从第一位置向一侧倾斜至第二位置,即图6中扩散膜的位置为第二位置;导电模块200也与扩散膜一起向一侧倾斜,导电模块200一端与电源100断开连接,使得闭合回路断开。
除此之外,扩散膜还可以从第一位置横向偏移至第二位置,使得导电模块200也发生横向偏移,导电模块200两端均与电源100断开连接,使得闭合回路断开。
因此,在本申请实施例中,第二位置可以有多种情况,具体包括能够使闭合回路断开的任意位置。
需要说明的是,扩散膜在使用过程中难免会发生偏移,尤其是当扩散膜应用于车辆的抬头显示器中时,随着车辆的振动,扩散膜会经常发生偏移。因此,为了防止扩散膜的轻微偏移导致闭合回路断开,本申请实施例中将合理设置导电模块200的位置,使得扩散膜的偏移距离大于预设距离时,闭合回路才会断开。
为了便于理解,对比图3和图7可知,扩散膜从3所示的第一位置向一侧倾斜,但由于导电模块200存在一定厚度,所以导电模块200两端并未与电源100断开连接;而对比图6和图7,可知,扩散膜在图7所示的位置的基础上继续偏移,最终会偏移至图6所示的第二位置,此时会导致导电模块200一端与电源100断开连接。
其中,预设距离可以根据导电模块200的尺寸以及导电模块200和扩散膜之间的相关位置关系确定,具体确定方法在此不做详述。
检测模块300与用于检测闭合回路断开,可以理解的是,检测模块300可以与闭合回路连接,以便检测闭合回路断开。
需要说明的是,检测模块300的结构可以有多种,本申请实施例对此不做限定;例如,检测模块300可以为串联在闭合回路中的电流表。
在本申请实施例中,当扩散膜位于第一位置时,导电模块200与电源100连接形成闭 合回路;当扩散膜从第一位置偏移到第二位置时,闭合回路断开;基于检测模块300检测闭合回路断开,可以确定扩散膜发生偏移,以便及时提醒用户。
基于图4及图4的相关说明可知,承载模块400包括第一框架4001和支脚4002,相应地,扩散膜可以与承载模块400粘连,导电模块200可以设置在支脚4002下方。除了之外,承载模块400的结构还可以有多种,相应地,扩散膜与承载模块400的连接方式、导电模块200的结构以及导电模块200与承载模块400的连接方式也可以有多种选择。
下面结合图8和图9,介绍本申请的另一实施例,在该实施例中,承载模块400的结构、扩散膜与承载模块400的连接方式、导电模块200的结构以及导电模块200与承载模块400的连接方式均与图4所示的不同。具体地,如图8所示,在本申请实施例提供的检测扩散膜偏移的装置的另一个实施例中,承载模块400包括第二框架4003和第三框架4004,导电模块200包括螺钉。
其中,第二框架4003和第三框架4004的结构有多种,本申请实施例对此不做限定;图7仅示出了第二框架4003和第三框架4004的其中一种结构。
第二框架4003设置有第一通孔,第三框架4004上设置有第二通孔,其中图7未示出第一通孔和第二通孔。
螺钉依次第一通孔和第二通孔,以将第二框架4003和第三框架4004固定。
扩散膜固定在第二框架4003和第三框架4004之间。
在本申请实施例中,螺钉不仅起到固定第二框架4003和第三框架4004的作用,还起到导电模块200的作用。
具体地,如图8所示,扩散膜位于第一位置,螺钉两端分别与电源100连接形成闭合回路。
基于螺钉松动,螺钉会从第一通孔和第二通孔中脱落,则第二框架4003和第三框架4004将分离,扩散膜也无法固定在第一位置,所以扩散膜会发生偏移;以图9为例,假设扩散膜偏移至图9所示的位置即第二位置,螺钉两端与电源100两端的连接断开,从而使得闭合回路断开。
在本申请实施例中,导电模块200为螺钉,基于螺钉的脱落,扩散膜从第一位置偏移到第二位置,并且螺钉与电源100之间的闭合回路断开,因此,本申请实施例通过检测闭合回路断开,以确定扩散膜偏移。
基于前述说明可知,检测模块300可以有多种结构,下面结合图10和图11对检测模块的一种结构进行具体说明。如图10所示,检测模块300包括第一电阻R1、第二电阻R2、检测子模块3001、第一连接端Q和第二连接端P;
电源的供电端VCC与第一电阻R1的第一端A连接;
第二电阻R2的第一端C与第一电阻R1的第二端B连接,第二电阻R2的第二端D接地;
第一连接端Q与第一电阻R1的第二端B连接,第二连接端E接地;
如图10所示,当扩散膜位于图10所示的第一位置时,导电模块200的第一端F与第一连接端Q连接,导电模块200的第二端E与第二连接端P连接,从而使得导电模块200与电源连接构成闭合回路。
如图11所示,当扩散膜从第一位置偏移到如图11所示的第二位置时,导电模块200的第一端F与第一连接端Q断开连接,和/或导电模块200的第二端E与第二连接端P断开连接,使得导电模块200与电源之间的闭合回路断开。其中图10仅示出了导电模块200的第一端F与第一连接端Q断开连接的情况。
检测子模块3001与第一电阻R1的第二端B连接,用于检测第一电阻R1的第二端B的电压,以确定闭合回路断开。
可以理解的是,当导电模块200的第一端F与第一连接端Q连接且导电模块200的第二端E与第二连接端P连接时,导电模块200与第二电阻R2并联,假设此时检测子模块3001检测到的电压为第一电压;当导电模块200的第一端F与第一连接端Q断开连接,和/或导电模块200的第二端E与第二连接端P断开连接时,导电模块200所在的支路断开,假设此时检测子模块3001检测到的电压为第二电压。
基于电路理论可知,第一电压低于第二电压,因此,若检测子模块3001检测到低电压,则可以确定闭合回路未断开;若检测子模块3001检测到高电压,则可以确定闭合回路断开。
基于检测模块为图10和图11所示的结构,图3所示的检测扩散膜偏移的装置可以如图12所示。
请参阅图13,本申请实施例中抬头显示器的第一实施例示意图;本申请实施例提供了一种抬头显示器的一个实施例,包括激光光源10、微机电系统20、扩散膜30和前述任一实施例中提及的检测扩散膜偏移的装置。
当扩散膜30位于第一位置时,由激光光源10发射的激光经微机电系统20扫描后入射至扩散膜30上,并会穿过扩散膜30,最终射出抬头显示器。
请参阅图14,本申请实施例中抬头显示器的第二实施例示意图;在图14所示,扩散膜30位于第二位置,扩散膜30偏离激光经微机电系统20扫描后的光路,即激光不经过扩散膜30而直接射出抬头显示器。
需要说明的是,图13和图14仅示出了检测扩散膜偏移的装置的其中一种结构,且图14仅示出了扩散膜30位于第二位置的其中一种情况;基于前述实施例对检测扩散膜偏移的装置进行了详细说明,本申请实施例在此不做详述,具体可参阅图2至图12所描述的检测扩散膜偏移的装置进行理解。
在本申请实施例中,当扩散膜30位于第一位置时,由激光光源10发射的激光经微机电系统20扫描后入射至扩散膜30上,且导电模块200与电源100连接形成闭合回路;当扩散膜30从第一位置偏移到第二位置时,扩散膜30偏离激光经微机电系统20扫描后的光路,即激光不经过扩散膜30而直接射出抬头显示器,且闭合回路断开;所以若检测模块300检测闭合回路断开,则可以确定扩散膜30发生偏移,以便及时提醒用户。
基于上述实施例,如图13和图14可知,在本申请实施例提供的抬头显示器的另一个实施例中,抬头显示器还包括承载模块400;
扩散膜30固定在承载模块400上。
基于前述各个实施例,如图13和图14可知,在本申请实施例提供的抬头显示器的另一个实施例中,抬头显示器还包括控制模块40;
控制模块40用于在检测到闭合回路断开的情况下控制激光光源10关闭。
其中,控制模块40可以与检测模块300连接,以获取检测模块300的检测结果;控制模块还可以与激光光源10连接,用于控制激光光源10的开启与关闭。
需要说明的是,控制模块40和检测模块300可以集成为一个模块。例如,请参阅图15,控制控制模块40和检测模块300可以集成为中文为微控制单元(Micro Control Unit,MCU),此时,检测扩散膜偏移的装置中的电源100也可以集成在MCU。
具体地,MCU的第一端作为电源100的输出端(例如图10中的供电端VCC),用于供电;MCU的第二端与闭合回路(例如图10中的第一电阻R1的第二端B)连接,用于检测闭合回路断开;MCU的第三端与激光光源10连接,用于控制激光光源10的开启与关闭。其中MCU可以通过直流-直流变换电路与电池连接。
在本申请实施例中,当闭合回路断开时,控制模块40控制抬头显示器中的激光光源10关闭,以防止激光光源10射出的激光未经过扩散膜30而直接射入驾驶员眼睛;当闭合回路导通时,控制模块40控制抬头显示器中的激光光源10打开,以保证抬头显示器的正常使用。
请参阅图16,本申请实施例还提供了一种控制如图13至图15中所描述的抬头显示器的方法,包括:
步骤111,检测模块检测闭合回路的通断状态,其中该闭合回路为图13至图15中提及的闭合回路;
步骤222,基于检测到闭合回路断开,控制模块控制抬头显示器中的激光光源关闭;
步骤333,基于检测到闭合回路导通,控制模块控制抬头显示器中的激光光源打开。
在本申请实施例中,当闭合回路断开时,控制模块控制抬头显示器中的激光光源关闭,以防止激光光源射出的激光未经过扩散膜而直接射入驾驶员眼睛;当闭合回路导通时,控制模块控制抬头显示器中的激光光源打开,以保证抬头显示器的正常使用。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)并不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的方案,例如,包括了一系列步骤或模块的过程、方法、装置、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、装置、产品或设备固有的其它步骤或模块。

Claims (10)

  1. 一种检测扩散膜偏移的装置,其特征在于,包括电源、导电模块和检测模块;
    所述导电模块与扩散膜具有相对固定的位置关系;
    当所述扩散膜位于第一位置时,所述导电模块与所述电源连接形成闭合回路;
    当所述扩散膜从第一位置偏移到所述第二位置时,所述导电模块位置发生改变使所述闭合回路断开;
    所述第二位置距所述第一位置的偏移距离大于预设距离;
    所述检测模块与用于检测所述闭合回路断开。
  2. 根据权利要求1所述的装置,其特征在于,所述扩散膜固定在承载模块上;
    所述导电模块与所述承载模块连接。
  3. 根据权利要求2所述的装置,其特征在于,所述承载模块包括第一框架;
    所述扩散膜位于所述第一框架中,且所述扩散膜与所述第一框架粘连;
    所述导电模块固定在所述第一框架上。
  4. 根据权利要求3所述的装置,其特征在于,所述承载模块还包括支脚;
    所述支脚与所述第一框架连接,用于支撑所述第一框架;
    所述导电模块设置在所述支脚下方并与所述支脚连接。
  5. 根据权利要求2所述的装置,其特征在于,所述承载模块包括第二框架和第三框架,所述导电模块包括螺钉;
    所述第二框架设置有第一通孔,所述第三框架上设置有第二通孔;
    所述螺钉通过所述第一通孔和所述第二通孔,将所述第二框架和所述第三框架固定;
    所述扩散膜固定在所述第二框架和所述第三框架之间。
  6. 根据权利要求1至5中任意一项所述的装置,其特征在于,所述检测模块包括第一电阻、第二电阻、检测子模块、第一连接端和第二连接端;
    所述电源的供电端与所述第一电阻的第一端连接;
    所述第二电阻的第一端与所述第一电阻的第二端连接,所述第二电阻的第二端接地;
    所述第一连接端与所述第一电阻的第二端连接,所述第二连接端接地;
    当所述扩散膜位于第一位置时,所述导电模块的第一端与所述第一连接端连接,所述导电模块的第二端与所述第二连接端连接;
    当所述扩散膜从第一位置偏移到所述第二位置时,所述导电模块的第一端与所述第一连接端断开连接,和/或所述导电模块的第二端与所述第二连接端断开连接;
    所述检测子模块与所述第一电阻的第一端连接,用于检测所述第一电阻的第一端的电压,以确定所述闭合回路断开。
  7. 一种抬头显示器,其特征在于,包括激光光源、微机电系统、扩散膜和如权利要求1至6中任意一项所述的检测扩散膜偏移的装置;
    当所述扩散膜位于第一位置时,由所述激光光源发射的激光经所述微机电系统扫描后入射至所述扩散膜上;
    当所述扩散膜位于第二位置时,所述扩散膜偏离激光经所述微机电系统扫描后的光路。
  8. 根据权利要求7所述的抬头显示器,其特征在于,所述抬头显示器还包括承载模块;
    所述扩散膜固定在所述承载模块上。
  9. 根据权利要求7或8所述的抬头显示器,其特征在于,所述抬头显示器还包括控制模块;
    所述控制模块用于在检测到闭合回路断开的情况下控制所述激光光源关闭。
  10. 一种控制如权利要求7至9中任意一项所述的抬头显示器的方法,其特征在于,包括:
    基于检测到闭合回路断开,控制所述抬头显示器中的激光光源关闭;
    基于检测到闭合回路导通,控制所述抬头显示器中的所述激光光源打开。
PCT/CN2020/082572 2020-03-31 2020-03-31 一种检测扩散膜偏移的装置和抬头显示器 WO2021196017A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022559718A JP7460793B2 (ja) 2020-03-31 2020-03-31 ディフューザフィルムのシフトを検出する装置及びヘッドアップディスプレイ
CN202080036874.6A CN113853545A (zh) 2020-03-31 2020-03-31 一种检测扩散膜偏移的装置和抬头显示器
PCT/CN2020/082572 WO2021196017A1 (zh) 2020-03-31 2020-03-31 一种检测扩散膜偏移的装置和抬头显示器
EP20928945.3A EP4113192A4 (en) 2020-03-31 2020-03-31 DEVICE FOR DETECTING THE SHIFT OF A DIFFUSION FILM AND HEAD-UP DISPLAY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082572 WO2021196017A1 (zh) 2020-03-31 2020-03-31 一种检测扩散膜偏移的装置和抬头显示器

Publications (1)

Publication Number Publication Date
WO2021196017A1 true WO2021196017A1 (zh) 2021-10-07

Family

ID=77926971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082572 WO2021196017A1 (zh) 2020-03-31 2020-03-31 一种检测扩散膜偏移的装置和抬头显示器

Country Status (4)

Country Link
EP (1) EP4113192A4 (zh)
JP (1) JP7460793B2 (zh)
CN (1) CN113853545A (zh)
WO (1) WO2021196017A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334530A (zh) * 2007-06-27 2008-12-31 先进微系统科技股份有限公司 抬头显示系统
US20100053604A1 (en) * 2008-08-31 2010-03-04 Paul Rice Broken screen detector
CN101958110A (zh) * 2009-03-27 2011-01-26 Prysm公司 显示系统中的屏幕破损检测
CN102466882A (zh) * 2010-11-18 2012-05-23 华创车电技术中心股份有限公司 具有抬头及仪表显示功能的车用显示模块
CN107636508A (zh) * 2015-06-03 2018-01-26 苹果公司 具有增强的可靠性和完整性的集成光学模块
CN107870186A (zh) * 2017-12-18 2018-04-03 深圳奥比中光科技有限公司 一种含安全监测功能的光学模组
CN109031676A (zh) * 2017-06-08 2018-12-18 京东方科技集团股份有限公司 投影装置、平视显示设备及车载视觉辅助系统
US20190033585A1 (en) * 2017-07-27 2019-01-31 Thalmic Labs Inc. Systems, devices, and methods for laser projectors
CN109543515A (zh) * 2018-10-15 2019-03-29 华为技术有限公司 光学元件及其监测系统和方法、主动发光模组、终端
US20190285885A1 (en) * 2018-03-19 2019-09-19 Ricoh Company, Ltd. Display device and apparatus
CN110741305A (zh) * 2017-06-13 2020-01-31 浜松光子学株式会社 扫描型显示装置及扫描型显示系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168587A (ja) 2012-02-16 2013-08-29 Sharp Corp 発光装置、半導体レーザ素子、および照明装置
WO2013146096A1 (ja) * 2012-03-26 2013-10-03 株式会社Jvcケンウッド 画像表示装置、および、画像表示装置の制御方法
JP2013200474A (ja) 2012-03-26 2013-10-03 Jvc Kenwood Corp 画像表示装置、および、画像表示装置の制御方法
JP2016191853A (ja) * 2015-03-31 2016-11-10 浜松ホトニクス株式会社 投影表示装置
CN107430280B (zh) 2015-03-31 2020-01-31 浜松光子学株式会社 投影显示装置
US10290993B2 (en) * 2016-06-03 2019-05-14 Princeton Optronics, Inc. VCSEL illuminator package
CN109891299B (zh) * 2016-10-31 2021-06-18 柯尼卡美能达株式会社 虚像显示光学系统及图像显示装置
KR101853268B1 (ko) * 2017-10-26 2018-05-02 주식회사 나무가 레이저를 이용하는 빔프로젝터모듈
TWM570522U (zh) 2018-06-11 2018-11-21 海華科技股份有限公司 光學元件、光學組件及光學模組
CN210153731U (zh) * 2018-06-12 2020-03-17 意法半导体(格勒诺布尔2)公司 安装在基板上的光源的外壳以及电子设备
JP7190713B2 (ja) 2018-07-05 2022-12-16 パナソニックIpマネジメント株式会社 画像表示装置および光学機器
JP7077186B2 (ja) 2018-09-04 2022-05-30 矢崎総業株式会社 車両用表示装置
JP2020047874A (ja) * 2018-09-21 2020-03-26 ソニーセミコンダクタソリューションズ株式会社 光源駆動装置および発光装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334530A (zh) * 2007-06-27 2008-12-31 先进微系统科技股份有限公司 抬头显示系统
US20100053604A1 (en) * 2008-08-31 2010-03-04 Paul Rice Broken screen detector
CN101958110A (zh) * 2009-03-27 2011-01-26 Prysm公司 显示系统中的屏幕破损检测
CN102466882A (zh) * 2010-11-18 2012-05-23 华创车电技术中心股份有限公司 具有抬头及仪表显示功能的车用显示模块
CN107636508A (zh) * 2015-06-03 2018-01-26 苹果公司 具有增强的可靠性和完整性的集成光学模块
CN109031676A (zh) * 2017-06-08 2018-12-18 京东方科技集团股份有限公司 投影装置、平视显示设备及车载视觉辅助系统
CN110741305A (zh) * 2017-06-13 2020-01-31 浜松光子学株式会社 扫描型显示装置及扫描型显示系统
US20190033585A1 (en) * 2017-07-27 2019-01-31 Thalmic Labs Inc. Systems, devices, and methods for laser projectors
CN107870186A (zh) * 2017-12-18 2018-04-03 深圳奥比中光科技有限公司 一种含安全监测功能的光学模组
US20190285885A1 (en) * 2018-03-19 2019-09-19 Ricoh Company, Ltd. Display device and apparatus
CN109543515A (zh) * 2018-10-15 2019-03-29 华为技术有限公司 光学元件及其监测系统和方法、主动发光模组、终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4113192A4 *

Also Published As

Publication number Publication date
JP2023522309A (ja) 2023-05-30
EP4113192A4 (en) 2023-04-19
EP4113192A1 (en) 2023-01-04
JP7460793B2 (ja) 2024-04-02
CN113853545A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
JP7206361B2 (ja) ヘッドアップディスプレイ装置
CN108333752B (zh) 光学系统以及头戴式显示装置
US10501004B2 (en) Car light system and motor vehicle
JP5137386B2 (ja) コンパクトな背面投射ディスプレイ
US7133022B2 (en) Apparatus for image projection
US8231231B2 (en) Image display device and portable terminal device
TWI493226B (zh) 抬頭投影系統
JP2011514619A (ja) 前面光ガイドおよび結合素子を有する表示部の光照明
TW201351383A (zh) 裝飾裝置、干涉式調變器、顯示器裝置、用於製造其之方法及微機電系統裝置
JP2006099063A (ja) 干渉変調のための方法及び支柱構造
KR20100110808A (ko) 분리된 홀로그래픽 막 및 확산체
US20120188652A1 (en) Optical System for Use in a Vehicle Head-Up Display
US8100548B2 (en) Direct backlight module supporting apparatus and direct backlight module
US20120039090A1 (en) Surface light source device and display apparatus using the same
US20230076388A1 (en) Head-up display apparatus, display method, and display system
WO2021196017A1 (zh) 一种检测扩散膜偏移的装置和抬头显示器
US20040141309A1 (en) Area light source apparatus
Asari et al. Adaptive driving beam system with MEMS optical scanner for reconfigurable vehicle headlight
US20100195056A1 (en) Hybrid polarization beam splitter architecture and optical projection system thereof
US20110128212A1 (en) Display device having an integrated light source and accelerometer
KR20190067953A (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
WO2017169610A1 (ja) ヘッドアップディスプレイ装置
US20050141222A1 (en) Lighting device and temperature detection method thereof
CN106896582A (zh) 背光模组及显示器
CN107229120A (zh) 抬头显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559718

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020928945

Country of ref document: EP

Effective date: 20220929

NENP Non-entry into the national phase

Ref country code: DE