WO2021193939A1 - Heat storage material composition - Google Patents
Heat storage material composition Download PDFInfo
- Publication number
- WO2021193939A1 WO2021193939A1 PCT/JP2021/012949 JP2021012949W WO2021193939A1 WO 2021193939 A1 WO2021193939 A1 WO 2021193939A1 JP 2021012949 W JP2021012949 W JP 2021012949W WO 2021193939 A1 WO2021193939 A1 WO 2021193939A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat storage
- storage material
- chemical heat
- material composition
- plate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/16—Materials undergoing chemical reactions when used
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Definitions
- the present invention relates to a heat storage material composition having excellent kneadability and moldability and a high filling density of a chemical heat storage material, a plate-shaped chemical heat storage body having excellent durability, a chemical heat storage structure and a chemical heat storage system.
- Chemical heat storage is known as one of the heat storage technologies.
- a working medium of gas such as water reacts with a chemical heat storage material, and the endothermic or heat generation at that time is utilized. It is said that the chemical heat storage material has a higher amount of heat storage per unit mass than the latent heat storage material and the sensible heat storage material.
- Patent Document 1 is for forming a heat storage layer, which comprises 100 parts by mass of a heat storage material, 0.01 to 100 parts by mass of finely divided cellulose fibers, and 0.01 to 100 parts by mass of a water-soluble polymer.
- the composition is disclosed.
- Patent Document 2 discloses a chemical heat storage complex containing an elastomer having a chemically crosslinked structure and a chemical heat storage material.
- Patent Document 3 discloses a chemical heat storage material containing a Group 2 element compound and a silicone polymer.
- Patent Document 4 describes a resin containing a chemical heat storage material composite and a resin, characterized in that particles (B) having a component different from those of the chemical heat storage material particles (A) are attached to the surface of the chemical heat storage material particles (A).
- the composition is disclosed.
- the resin composition seems to have improved handleability when used in the form of a molded product or a paint.
- An object of the present invention is to provide a heat storage material composition having excellent kneadability and moldability and a high packing density of a chemical heat storage material, a plate-shaped chemical heat storage body having excellent durability, a chemical heat storage structure and a chemical heat storage system. be.
- thermoplastic resin kinematic viscosity 3 1000-300000 mm 2 / s in viscosity-average molecular weight of 10,000 to 200,000 and 200 ° C.
- a heat storage material composition containing at least one selected from the group consisting of titanium dioxide, silicon dioxide, alumina silicate fibers, and E glass fibers.
- thermoplastic resin is the 30,000 to 100,000 viscosity-average molecular weight, and a kinematic viscosity at 200 ° C. is 3 1000 to 250,000 mm 2 / s, the heat storage material composition according to [1] ..
- [3] A group in which the chemical heat storage material is composed of magnesium hydroxide or oxide, strontium hydroxide or oxide, barium hydroxide or oxide, calcium hydroxide or oxide, and calcium sulfate.
- thermoplastic resin has a needle insertion degree of 40 to 450 at 25 ° C., a load of 200 gf, and 5 seconds.
- thermoplastic resin is an olefin polymer.
- thermoplastic resin is polyisobutylene or an isoprene-isobutylene copolymer.
- a plate-shaped chemical heat storage body having a substrate and the heat storage material composition according to any one of [1] to [7] supported on the substrate.
- a chemical heat storage structure having at least one plate-shaped chemical heat storage body according to any one of [8] to [10].
- a chemical heat storage system comprising the plate-shaped chemical heat storage body according to any one of [8] to [10] or the chemical heat storage structure according to [11].
- the heat storage material composition of the present invention is excellent in kneadability and moldability, and has a high packing density of the chemical heat storage material. Even if a chemical heat storage material having low purity or strong dilatancy is used, the heat storage material composition of the present invention is excellent in kneadability and moldability, and the packing density of the chemical heat storage material is high.
- the plate-shaped chemical heat storage body of the present invention has excellent shape retention and quick thermal response. In the plate-shaped chemical heat storage body of the present invention, since a gas such as water vapor easily penetrates deep inside, the efficiency of the endothermic reaction and the exothermic reaction is high, and the amount of heat storage per unit weight is high.
- the substrate made of a net absorbs it and prevents cracking and powdering, so that the heat storage / heat dissipation performance Can be maintained high for a long period of time.
- the heat storage material composition of the present invention contains a chemical heat storage material, a thermoplastic resin, and an inorganic filler.
- the thermoplastic resin contained in the heat storage material composition of the present invention has a lower limit of the viscosity average molecular weight of usually 10,000, preferably 20,000, more preferably 30,000, and an upper limit of the viscosity average molecular weight of usually 20. It is 10,000, preferably 150,000, more preferably 100,000, and even more preferably 80,000.
- the thermoplastic resin contained in the heat storage material composition of the present invention has a lower limit of kinematic viscosity at 200 ° C. of usually 3,000 mm 2 / s, preferably 5,000 mm 2 / s, and more preferably 10,000 mm 2 / s.
- the upper limit of the kinematic viscosity at 200 ° C. is usually 300,000 mm 2 / s, preferably 250,000 mm 2 / s, and more preferably 200,000 mm 2 / s.
- the thermoplastic resin contained in the heat storage material composition of the present invention has a needle insertion degree of usually 40 to 450, preferably 100 to 300, and more preferably 150 to 200 at 25 ° C. and a load of 200 gf for 5 seconds.
- the degree of needle insertion was measured according to JIS K 2207 (1996). Further, the degree of needle insertion is represented as 1 with a length of 0.1 mm in which the needle penetrates vertically into the sample.
- thermoplastic resins include diene polymers, silicones, polyamides, polyesters, polycarbonates, polyurethanes, polyphenylene oxides, polyphenylene sulfides, polyetherimides, polyether ether ketones, polyether ketones, polyimides, polyarylates; Fluorine-containing polymers such as vinylidene fluoride and polytetrafluoroethylene; polyvinyl alcohol, modified polyvinyl alcohol, polyether, polyethylene glycol, polyethylene oxide, acrylic resin, hydroxyl group-containing acrylic resin, butyral resin, styrene butadiene rubber, nitrile rubber; polypropylene , Polyethylene, polybutene, polyisobutylene, isoprene-isobutylene copolymer, hydrogenated isoprene-isobutylene copolymer and other olefin-based polymers; C4 petroleum resin, C5 petroleum resin, C5-C9 petroleum resin, C9 petroleum resin and their Petroleum resin
- the amount of the thermoplastic resin is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 3 parts by mass or more and 20 parts by mass or less, and further preferably 4 parts by mass or more and 15 parts by mass with respect to 100 parts by mass of the chemical heat storage material. It is as follows.
- Examples of the chemical heat storage material contained in the heat storage material composition of the present invention include magnesium hydroxide or oxide, strontium hydroxide or oxide, barium hydroxide or oxide, and calcium hydroxide or oxidation. Use at least one selected from the group consisting of substances and calcium sulfate.
- Magnesium hydroxides or oxides use chemical heat storage that utilizes heat storage when magnesium hydroxide dehydrates and changes to magnesium oxide, and heat dissipation when magnesium oxide hydrates and changes to magnesium hydroxide. It is a material.
- the heat storage operating temperature of magnesium hydroxide or oxide is around 350 ° C.
- a hydroxide or oxide of strontium is a chemical heat storage that utilizes heat storage when strontium hydroxide is dehydrated and converted to strontium oxide and heat dissipation when strontium oxide is hydrated and converted to strontium hydroxide. It is a material.
- a hydroxide or oxide of barium is a chemical heat storage that utilizes heat storage when barium hydroxide is dehydrated and converted to barium oxide and heat dissipation when barium oxide is hydrated and converted to barium hydroxide. It is a material.
- a hydroxide or oxide of calcium utilizes chemical heat storage that utilizes heat storage when calcium hydroxide dehydrates and changes to calcium oxide, and heat dissipation when calcium oxide hydrates and changes to calcium hydroxide. It is a material.
- the heat storage operating temperature of calcium hydroxide or oxide is around 500 ° C.
- Calcium sulfate stores heat when calcium sulfate 0.5 hydrate dehydrates and changes to anhydrous calcium sulfate, and dissipates heat when anhydrous calcium sulfate hydrates and changes to calcium sulfate 0.5 hydrate. It is a chemical heat storage material that utilizes. The heat storage operating temperature of calcium sulfate is around 90 ° C.
- the inorganic filler contained in the heat storage material composition of the present invention is at least one selected from the group consisting of titanium dioxide, silicon dioxide, alumina silicate fibers, and E glass fibers. Titanium dioxide and silicon dioxide are preferably in the form of powder.
- the amount of the inorganic filler is preferably 1 part by mass or more and 55 parts by mass or less, more preferably 8 parts by mass or more and 50 parts by mass or less, and further preferably 10 parts by mass or more and 45 parts by mass with respect to 100 parts by mass of the chemical heat storage material. It is as follows.
- the heat storage material composition of the present invention further contains additives such as a heat conductivity imparting material, reinforcing fibers, silica sol, silicate, phosphate and cement. You may be.
- heat conductivity-imparting material examples include molten silica, aluminum oxide, boron nitride, alumnium nitride, silicon nitride, magnesium carbonate, carbon nanotubes, boron nitride nanotubes, and beryllium oxide.
- reinforcing fiber examples include carbon fiber, aramid fiber, polyolefin fiber, vinylon fiber, steel fiber and the like.
- additives include zeolite, jar, sepiolite, bentonite, parigolstite, hydrotalcite, zinc oxide, iron oxide, barium sulfate, calcium carbonate, talc, aluminum hydroxide, antimony oxide, graphite, ferrite, etc. can. Of these, additives that make the heat storage material composition supported on the substrate porous are preferably used.
- the heat storage material composition of the present invention can be made into a honeycomb shape, a plate shape, a corrugated shape, or the like by a known molding method.
- the plate-shaped chemical heat storage body 1 of the present invention has a substrate 3 and a heat storage material composition 2 of the present invention supported on the substrate 3.
- the substrate 3 used in the present invention is preferably a net.
- the net may be any of knitted wire, bonded wire, cut and stretched plate (expanded metal), and perforated plate (punching metal).
- the material of the substrate is not particularly limited, but a metal material is preferable, a metal material having a higher thermal conductivity than the heat storage material composition is more preferable, and stainless steel, aluminum, an aluminum alloy, copper, or a copper alloy is further preferable.
- the mesh opening of the mesh is not particularly limited, but is preferably 10 ⁇ m or more, more preferably 100 ⁇ m or more, from the viewpoint that the heat storage material composition is difficult to peel off from the substrate and the thermal conductivity between the heat storage material composition and the substrate is enhanced. More preferably, it is 1 mm or more and 5 mm or less.
- the net is a flat net with a flat main surface, a bump net with bump-shaped ridges on the main surface, a corrugated net with wavy ridges on the main surface, and a rib net with protrusions on the main surface. And so on. Since the heat storage material composition enters the mesh and exerts an anchor effect, even a flat net exhibits sufficient strength. For bumps, waves or ribs, bumps, waves or ribs can be expected to further enhance the anchoring effect.
- the heat storage material composition is supported on the substrate, more specifically, on the outer surface of the net constituting the substrate, and in the mesh of the net.
- the support can be carried out by applying a slurry or paste of the heat storage material composition to the substrate and drying it, by compacting the powder of the heat storage material composition together with the substrate, or by another supporting method.
- the plate-shaped chemical heat storage body of the present invention has a plate thickness t of preferably 0.3 mm or more and 2 mm or less, and more preferably 0.5 mm or more and 1 mm or less.
- the surface of the plate-shaped chemical heat storage body of the present invention may be completely covered with the heat storage material composition, or a part of the substrate may be exposed.
- the main surface of the plate-shaped chemical heat storage body of the present invention may be a smooth surface or a rough surface. When the surface is rough, a slight gap is formed when the plate-shaped chemical heat storage material of the present invention is laminated, so that water, which is an operating medium for the chemical heat storage material, easily penetrates to the depth. From such a viewpoint, the surface roughness of the main surface is preferably several ⁇ m to several hundred ⁇ m.
- the plate-shaped chemical heat storage body of the present invention is cut into chips, bent into a cylinder or a box, or embossed to be wavy (for example, shown in FIGS. 2 and 3) depending on the purpose. It can be shaped). Further, a plurality of plate-shaped chemical heat storage bodies of the present invention can be laminated, or can be laminated with other plate-shaped materials.
- the chemical heat storage structure of the present invention comprises at least one plate-shaped chemical heat storage body of the present invention.
- FIG. 6 shows a chemical heat storage structure 4 in which a large number of plate-shaped chemical heat storage bodies 1a of the present invention are laminated. When there is a gap between adjacent plate-shaped chemical heat storage bodies 1a, water vapor, which is an operating medium, easily passes through this gap.
- the chemical heat storage structure 4 has a high packing density of the chemical heat storage material per unit volume, can exhibit higher heat storage / heat dissipation performance, and can stably maintain its shape for a long period of time.
- FIG. 7 shows a chemical heat storage structure 5 in which a plate-shaped chemical heat storage body 1a of the present invention and another plate-shaped material 3 are alternately laminated.
- the other plate-like material 3 is not particularly limited, and may be, for example, a substrate 3-a made of a metallic net that does not support the heat storage material composition.
- the plate-shaped material 3 acts as a spacer and the flow path to the plate-shaped chemical heat storage body 1 is expanded, so that water vapor, which is an operating medium, easily flows, and dehydration / hydration occurs. The reaction is promoted.
- FIG. 8 shows a structure in which plate-shaped chemical heat storage bodies 1c in which ridges and flat portions are alternately formed at predetermined intervals as shown in FIG. 3 are laminated.
- FIG. 9 shows a corrugated structure in which a plate-shaped chemical heat storage body 1a and a plate-shaped chemical heat storage body 1b are alternately laminated as shown in FIG.
- the stacking height h at this time is not particularly limited, but is preferably set to 2 mm or more and 4 mm or less.
- the substrate functions as an aggregate, it is possible to maintain high strength and shape retention for a long period of time.
- the present invention is not limited to the above, and other shapes may be formed.
- Example 1 Calcium sulfate dihydrate (CaSO 4 2H 2 O) powder 85 parts by mass, titanium oxide powder 15 parts by mass, and polyisobutylene 8.5 mass with a viscosity average molecular weight of 30,000 and a kinematic viscosity of 10,000 mm 2 / s.
- the parts were mixed and kneaded with a kneader while adding water to obtain a paste-like chemical heat storage material composition having a water content of about 40%.
- the kneading property was A (excellent).
- the material composition was applied and molded.
- the coating moldability was A (excellent).
- it was cut to a length of 500 mm with a cutting machine. This was dried at 120 ° C. for 2 hours. Then, it was cut into small pieces of 50 ⁇ 50 mm to obtain a plate-shaped chemical heat storage body having a thickness of 0.7 mm.
- the packing density of anhydrous gypsum (CaSO 4 ) in the plate-shaped chemical heat storage body was 0.79 g / cm 3 .
- the evaluation results are shown in Table 1.
- Examples 2 to 6 and Comparative Examples 1 to 7 A paste-like chemical heat storage material composition and a plate-like chemical heat storage material were obtained by the same method as in Example 1 except that the compounding ratios shown in the table were changed. The evaluation results are shown in Table 1.
- the paste-like chemical heat storage material composition was evaluated according to the following criteria.
- Kneading property A: Since the paste is cohesive and the paste is soft, it can be kneaded without applying great force.
- D There is no lump in the paste. It is necessary to knead with a very large force. When I try to put the paste together, it becomes a slurry.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A heat storage material composition which contains a chemical heat storage material, a thermoplastic resin that has a viscosity-average molecular weight of from 10,000 to 200,000 and a kinematic viscosity at 200°C of from 3,000 to 300,000 mm2/s, and at least one substance that is selected from the group consisting of titanium dioxide, silicon dioxide, an alumina silicate fiber and an E glass fiber; a plate-like chemical heat storage body that comprises a substrate and this heat storage material composition, which is supported by the substrate; and a chemical heat storage system that is provided with this plate-like chemical heat storage body.
Description
本発明は、混練性および成形性に優れ且つ化学蓄熱材の充填密度が高い蓄熱材組成物、耐久性に優れる板状化学蓄熱体、化学蓄熱構造体および化学蓄熱システムに関する。
The present invention relates to a heat storage material composition having excellent kneadability and moldability and a high filling density of a chemical heat storage material, a plate-shaped chemical heat storage body having excellent durability, a chemical heat storage structure and a chemical heat storage system.
蓄熱技術の一つとして化学蓄熱が知られている。化学蓄熱は、水などの気体の作動媒体が化学蓄熱材と反応し、その際の吸熱または発熱を利用するものである。化学蓄熱材は、潜熱蓄熱材、顕熱蓄熱材などに比べて単位質量当たりの蓄熱量が高いと言われている。
Chemical heat storage is known as one of the heat storage technologies. In chemical heat storage, a working medium of gas such as water reacts with a chemical heat storage material, and the endothermic or heat generation at that time is utilized. It is said that the chemical heat storage material has a higher amount of heat storage per unit mass than the latent heat storage material and the sensible heat storage material.
特許文献1は、蓄熱材100質量部、微細化されたセルロースファイバー0.01~100質量部、及び水溶性高分子0.01~100質量部を含有することを特徴とする、蓄熱層形成用組成物を開示している。
特許文献2は、化学的な架橋構造を持つエラストマーと、化学蓄熱材とを含有する化学蓄熱複合体を開示している。
特許文献3は、第2族元素化合物と、シリコーンポリマーとを含有する化学蓄熱材を開示している。 Patent Document 1 is for forming a heat storage layer, which comprises 100 parts by mass of a heat storage material, 0.01 to 100 parts by mass of finely divided cellulose fibers, and 0.01 to 100 parts by mass of a water-soluble polymer. The composition is disclosed.
Patent Document 2 discloses a chemical heat storage complex containing an elastomer having a chemically crosslinked structure and a chemical heat storage material.
Patent Document 3 discloses a chemical heat storage material containing a Group 2 element compound and a silicone polymer.
特許文献2は、化学的な架橋構造を持つエラストマーと、化学蓄熱材とを含有する化学蓄熱複合体を開示している。
特許文献3は、第2族元素化合物と、シリコーンポリマーとを含有する化学蓄熱材を開示している。 Patent Document 1 is for forming a heat storage layer, which comprises 100 parts by mass of a heat storage material, 0.01 to 100 parts by mass of finely divided cellulose fibers, and 0.01 to 100 parts by mass of a water-soluble polymer. The composition is disclosed.
特許文献4は、化学蓄熱材粒子(A)の表面に該粒子とは異なる成分の粒子(B)が付着していることを特徴とする化学蓄熱材複合物と、樹脂とを含有する、樹脂組成物を開示している。該樹脂組成物は、成形体や塗料のような形で用いるとハンドリング性が向上するようである。
Patent Document 4 describes a resin containing a chemical heat storage material composite and a resin, characterized in that particles (B) having a component different from those of the chemical heat storage material particles (A) are attached to the surface of the chemical heat storage material particles (A). The composition is disclosed. The resin composition seems to have improved handleability when used in the form of a molded product or a paint.
硫酸カルシウムなどの化学蓄熱材のペーストを塗布し、プレス成形しようとすると、水が分離して、化学蓄熱材が固化し、良好な板状の成形体を得ることができないことがある。化学蓄熱材と二酸化チタンなどの無機充填剤との混合物のペーストを用いると、水の分離が生じず、良好な板状の成形体を得ることができる。しかし、混練性および成形性を良好に保つためには無機充填剤を多量に添加しなければならず、その結果、化学蓄熱材の充填密度が下がる(比較例7参照)ので、蓄えることができる熱量が減る。
When a paste of a chemical heat storage material such as calcium sulfate is applied and press molding is attempted, water may separate and the chemical heat storage material may solidify, making it impossible to obtain a good plate-shaped molded body. When a paste of a mixture of a chemical heat storage material and an inorganic filler such as titanium dioxide is used, water does not separate and a good plate-shaped molded product can be obtained. However, in order to maintain good kneadability and moldability, a large amount of an inorganic filler must be added, and as a result, the packing density of the chemical heat storage material decreases (see Comparative Example 7), so that the chemical heat storage material can be stored. The amount of heat is reduced.
本発明の課題は、混練性および成形性に優れ且つ化学蓄熱材の充填密度が高い蓄熱材組成物、耐久性に優れる板状化学蓄熱体、化学蓄熱構造体および化学蓄熱システムを提供することである。
An object of the present invention is to provide a heat storage material composition having excellent kneadability and moldability and a high packing density of a chemical heat storage material, a plate-shaped chemical heat storage body having excellent durability, a chemical heat storage structure and a chemical heat storage system. be.
上記課題を解決すべく検討した結果、以下のような態様を包含する本発明を完成するに至った。
As a result of studies to solve the above problems, the present invention including the following aspects has been completed.
〔1〕 化学蓄熱材と、
粘度平均分子量が1万~20万であり且つ200℃における動粘度が3千~30万mm2/sである熱可塑性樹脂と、
二酸化チタン、二酸化ケイ素、アルミナシリケート繊維、およびEガラス繊維からなる群から選ばれる少なくとも一つと
を含有する、蓄熱材組成物。 [1] Chemical heat storage material and
A thermoplastic resin kinematic viscosity of 3 1000-300000 mm 2 / s in viscosity-average molecular weight of 10,000 to 200,000 and 200 ° C.,
A heat storage material composition containing at least one selected from the group consisting of titanium dioxide, silicon dioxide, alumina silicate fibers, and E glass fibers.
粘度平均分子量が1万~20万であり且つ200℃における動粘度が3千~30万mm2/sである熱可塑性樹脂と、
二酸化チタン、二酸化ケイ素、アルミナシリケート繊維、およびEガラス繊維からなる群から選ばれる少なくとも一つと
を含有する、蓄熱材組成物。 [1] Chemical heat storage material and
A thermoplastic resin kinematic viscosity of 3 1000-300000 mm 2 / s in viscosity-average molecular weight of 10,000 to 200,000 and 200 ° C.,
A heat storage material composition containing at least one selected from the group consisting of titanium dioxide, silicon dioxide, alumina silicate fibers, and E glass fibers.
〔2〕 前記熱可塑性樹脂は、粘度平均分子量が3万~10万であり、且つ200℃における動粘度が3千~25万mm2/sである、〔1〕に記載の蓄熱材組成物。
[2] The thermoplastic resin is the 30,000 to 100,000 viscosity-average molecular weight, and a kinematic viscosity at 200 ° C. is 3 1000 to 250,000 mm 2 / s, the heat storage material composition according to [1] ..
〔3〕 化学蓄熱材が、マグネシウムの水酸化物または酸化物、ストロンチウムの水酸化物または酸化物、バリウムの水酸化物または酸化物、カルシウムの水酸化物または酸化物、および硫酸カルシウムからなる群から選ばれる少なくとも一つである、〔1〕または〔2〕に記載の蓄熱材組成物。
[3] A group in which the chemical heat storage material is composed of magnesium hydroxide or oxide, strontium hydroxide or oxide, barium hydroxide or oxide, calcium hydroxide or oxide, and calcium sulfate. The heat storage material composition according to [1] or [2], which is at least one selected from.
〔4〕 熱可塑性樹脂は、200℃における動粘度の下限が、3千mm2/sであり、200℃における動粘度の上限が、30万mm2/sである、〔1〕~〔3〕のいずれかひとつに記載の蓄熱材組成物。
〔5〕 熱可塑性樹脂は、25℃、荷重200gf、5秒間における針入度が、40~450である、〔1〕~〔4〕のいずれかひとつに記載の蓄熱材組成物。
〔6〕 熱可塑性樹脂が、オレフィン系重合体である、〔1〕~〔5〕のいずれかひとつに記載の蓄熱材組成物。
〔7〕 熱可塑性樹脂が、ポリイソブチレン、若しくはイソプレン-イソブチレン共重合体である、〔1〕~〔5〕のいずれかひとつに記載の蓄熱材組成物。 [4] The lower limit of the kinematic viscosity of the thermoplastic resin at 200 ° C. is 3,000 mm 2 / s, and the upper limit of the kinematic viscosity at 200 ° C. is 300,000 mm 2 / s, [1] to [3]. ] The heat storage material composition according to any one of.
[5] The heat storage material composition according to any one of [1] to [4], wherein the thermoplastic resin has a needle insertion degree of 40 to 450 at 25 ° C., a load of 200 gf, and 5 seconds.
[6] The heat storage material composition according to any one of [1] to [5], wherein the thermoplastic resin is an olefin polymer.
[7] The heat storage material composition according to any one of [1] to [5], wherein the thermoplastic resin is polyisobutylene or an isoprene-isobutylene copolymer.
〔5〕 熱可塑性樹脂は、25℃、荷重200gf、5秒間における針入度が、40~450である、〔1〕~〔4〕のいずれかひとつに記載の蓄熱材組成物。
〔6〕 熱可塑性樹脂が、オレフィン系重合体である、〔1〕~〔5〕のいずれかひとつに記載の蓄熱材組成物。
〔7〕 熱可塑性樹脂が、ポリイソブチレン、若しくはイソプレン-イソブチレン共重合体である、〔1〕~〔5〕のいずれかひとつに記載の蓄熱材組成物。 [4] The lower limit of the kinematic viscosity of the thermoplastic resin at 200 ° C. is 3,000 mm 2 / s, and the upper limit of the kinematic viscosity at 200 ° C. is 300,000 mm 2 / s, [1] to [3]. ] The heat storage material composition according to any one of.
[5] The heat storage material composition according to any one of [1] to [4], wherein the thermoplastic resin has a needle insertion degree of 40 to 450 at 25 ° C., a load of 200 gf, and 5 seconds.
[6] The heat storage material composition according to any one of [1] to [5], wherein the thermoplastic resin is an olefin polymer.
[7] The heat storage material composition according to any one of [1] to [5], wherein the thermoplastic resin is polyisobutylene or an isoprene-isobutylene copolymer.
〔8〕 基板と、該基板に担持された〔1〕~〔7〕のいずれかひとつに記載の蓄熱材組成物とを有する、板状化学蓄熱体。
〔9〕 基板が、ステンレス鋼、アルミニウム、アルミニウム合金、銅、および銅合金からなる群から選ばれる少なくとも一つからなる、〔8〕に記載の板状化学蓄熱体。
〔10〕 板厚が0.3mm以上2mm以下である、〔8〕または〔9〕に記載の板状化学蓄熱体。 [8] A plate-shaped chemical heat storage body having a substrate and the heat storage material composition according to any one of [1] to [7] supported on the substrate.
[9] The plate-shaped chemical heat storage material according to [8], wherein the substrate is made of at least one selected from the group consisting of stainless steel, aluminum, aluminum alloy, copper, and copper alloy.
[10] The plate-shaped chemical heat storage material according to [8] or [9], wherein the plate thickness is 0.3 mm or more and 2 mm or less.
〔9〕 基板が、ステンレス鋼、アルミニウム、アルミニウム合金、銅、および銅合金からなる群から選ばれる少なくとも一つからなる、〔8〕に記載の板状化学蓄熱体。
〔10〕 板厚が0.3mm以上2mm以下である、〔8〕または〔9〕に記載の板状化学蓄熱体。 [8] A plate-shaped chemical heat storage body having a substrate and the heat storage material composition according to any one of [1] to [7] supported on the substrate.
[9] The plate-shaped chemical heat storage material according to [8], wherein the substrate is made of at least one selected from the group consisting of stainless steel, aluminum, aluminum alloy, copper, and copper alloy.
[10] The plate-shaped chemical heat storage material according to [8] or [9], wherein the plate thickness is 0.3 mm or more and 2 mm or less.
〔11〕 〔8〕~〔10〕のいずれかひとつに記載の板状化学蓄熱体を少なくとも一つ有する、化学蓄熱構造体。
[11] A chemical heat storage structure having at least one plate-shaped chemical heat storage body according to any one of [8] to [10].
〔12〕 〔8〕~〔10〕のいずれかひとつに記載の板状化学蓄熱体または〔11〕に記載の化学蓄熱構造体を具備する、化学蓄熱システム。
[12] A chemical heat storage system comprising the plate-shaped chemical heat storage body according to any one of [8] to [10] or the chemical heat storage structure according to [11].
本発明の蓄熱材組成物は、混練性および成形性に優れ且つ化学蓄熱材の充填密度が高い。純度が低くまたはダイラタンシーが強い化学蓄熱材を用いたとしても、本発明の蓄熱材組成物は、混練性および成形性に優れ且つ化学蓄熱材の充填密度が高い。本発明の板状化学蓄熱体は、保形性に優れ、熱応答性が速い。本発明の板状化学蓄熱体は、水蒸気などの気体が内部の奥にまで侵入しやすいので、吸熱反応および発熱反応の効率が高く、単位重量当たりの蓄熱量が高い。本発明の板状化学蓄熱体は、蓄熱材の脱水/水和反応に伴う体積変化が生じても網からなる基板がそれを吸収し、割れや粉化を防止するので、蓄熱/放熱の性能を高く、長期間維持することができる。
The heat storage material composition of the present invention is excellent in kneadability and moldability, and has a high packing density of the chemical heat storage material. Even if a chemical heat storage material having low purity or strong dilatancy is used, the heat storage material composition of the present invention is excellent in kneadability and moldability, and the packing density of the chemical heat storage material is high. The plate-shaped chemical heat storage body of the present invention has excellent shape retention and quick thermal response. In the plate-shaped chemical heat storage body of the present invention, since a gas such as water vapor easily penetrates deep inside, the efficiency of the endothermic reaction and the exothermic reaction is high, and the amount of heat storage per unit weight is high. In the plate-shaped chemical heat storage body of the present invention, even if the volume change due to the dehydration / hydration reaction of the heat storage material occurs, the substrate made of a net absorbs it and prevents cracking and powdering, so that the heat storage / heat dissipation performance Can be maintained high for a long period of time.
本発明の蓄熱材組成物は、化学蓄熱材と熱可塑性樹脂と無機充填剤とを含むものである。
The heat storage material composition of the present invention contains a chemical heat storage material, a thermoplastic resin, and an inorganic filler.
本発明の蓄熱材組成物に含まれる熱可塑性樹脂は、粘度平均分子量の下限が、通常、1万、好ましくは2万、より好ましくは3万であり、粘度平均分子量の上限が、通常、20万、好ましくは15万、より好ましくは10万、さらに好ましくは8万である。
The thermoplastic resin contained in the heat storage material composition of the present invention has a lower limit of the viscosity average molecular weight of usually 10,000, preferably 20,000, more preferably 30,000, and an upper limit of the viscosity average molecular weight of usually 20. It is 10,000, preferably 150,000, more preferably 100,000, and even more preferably 80,000.
本発明の蓄熱材組成物に含まれる熱可塑性樹脂は、200℃における動粘度の下限が、通常、3千mm2/s、好ましくは5千mm2/s、より好ましくは1万mm2/sであり、200℃における動粘度の上限が、通常、30万mm2/s、好ましくは25万mm2/s、より好ましくは20万mm2/sである。
The thermoplastic resin contained in the heat storage material composition of the present invention has a lower limit of kinematic viscosity at 200 ° C. of usually 3,000 mm 2 / s, preferably 5,000 mm 2 / s, and more preferably 10,000 mm 2 / s. The upper limit of the kinematic viscosity at 200 ° C. is usually 300,000 mm 2 / s, preferably 250,000 mm 2 / s, and more preferably 200,000 mm 2 / s.
本発明の蓄熱材組成物に含まれる熱可塑性樹脂は、25℃、荷重200gf、5秒間における針入度が、通常、40~450、好ましくは100~300、より好ましくは150~200である。なお、針入度の測定は、JIS K 2207(1996)に準じて行った。また、針入度は、針が試料中に垂直に進入した長さ0.1mmを、1として表す。
The thermoplastic resin contained in the heat storage material composition of the present invention has a needle insertion degree of usually 40 to 450, preferably 100 to 300, and more preferably 150 to 200 at 25 ° C. and a load of 200 gf for 5 seconds. The degree of needle insertion was measured according to JIS K 2207 (1996). Further, the degree of needle insertion is represented as 1 with a length of 0.1 mm in which the needle penetrates vertically into the sample.
熱可塑性樹脂の具体例としては、ジエン系重合体、シリコーン、ポリアミド、ポリエステル、ポリカーボネート、ポリウレタン、ポリフェニレンオキシド、ポリフェニレンサルファイド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリイミド、ポリアリ-レート;ポリビニリデンフルオライド、ポリテトラフルオロエチレンなどのフッ素含有重合体;ポリビニルアルコール、変性ポリビニルアルコール、ポリーエーテル、ポリエチレングリコール、ポリエチレンオキサイド、アクリル樹脂、水酸基含有アクリル樹脂、ブチラール樹脂、スチレンブタジエンゴム、ニトリルゴム;ポリプロピレン、ポリエチレン、ポリブテン、ポリイソブチレン、イソプレン-イソブチレン共重合体、水添イソプレン-イソブチレン共重合体などのオレフィン系重合体;C4石油樹脂、C5石油樹脂、C5-C9石油樹脂、C9石油樹脂およびこれらの水素化物などの石油樹脂(炭化水素樹脂)を挙げることができる。これらのうち、オレフィン系重合体が好ましく、ポリイソブチレン、イソプレン-イソブチレン共重合体がより好ましい。
Specific examples of thermoplastic resins include diene polymers, silicones, polyamides, polyesters, polycarbonates, polyurethanes, polyphenylene oxides, polyphenylene sulfides, polyetherimides, polyether ether ketones, polyether ketones, polyimides, polyarylates; Fluorine-containing polymers such as vinylidene fluoride and polytetrafluoroethylene; polyvinyl alcohol, modified polyvinyl alcohol, polyether, polyethylene glycol, polyethylene oxide, acrylic resin, hydroxyl group-containing acrylic resin, butyral resin, styrene butadiene rubber, nitrile rubber; polypropylene , Polyethylene, polybutene, polyisobutylene, isoprene-isobutylene copolymer, hydrogenated isoprene-isobutylene copolymer and other olefin-based polymers; C4 petroleum resin, C5 petroleum resin, C5-C9 petroleum resin, C9 petroleum resin and their Petroleum resins (hydrocarbon resins) such as hydrides can be mentioned. Of these, olefin-based polymers are preferable, and polyisobutylene and isoprene-isobutylene copolymers are more preferable.
熱可塑性樹脂の量は、化学蓄熱材100質量部に対して、好ましくは1質量部以上30質量部以下、より好ましくは3質量部以上20質量部以下、さらに好ましくは4質量部以上15質量部以下である。
The amount of the thermoplastic resin is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 3 parts by mass or more and 20 parts by mass or less, and further preferably 4 parts by mass or more and 15 parts by mass with respect to 100 parts by mass of the chemical heat storage material. It is as follows.
本発明の蓄熱材組成物に含まれる化学蓄熱材としては、マグネシウムの水酸化物または酸化物、ストロンチウムの水酸化物または酸化物、バリウムの水酸化物または酸化物、カルシウムの水酸化物または酸化物、および硫酸カルシウムからなる群から選ばれる少なくとも一つを用いる。
Examples of the chemical heat storage material contained in the heat storage material composition of the present invention include magnesium hydroxide or oxide, strontium hydroxide or oxide, barium hydroxide or oxide, and calcium hydroxide or oxidation. Use at least one selected from the group consisting of substances and calcium sulfate.
マグネシウムの水酸化物または酸化物は、水酸化マグネシウムが脱水して酸化マグネシウムに変化する際の蓄熱と、酸化マグネシウムが水和して水酸化マグネシウムに変化する際の放熱とを利用する、化学蓄熱材である。マグネシウムの水酸化物または酸化物による蓄熱作動温度は350℃前後である。
Magnesium hydroxides or oxides use chemical heat storage that utilizes heat storage when magnesium hydroxide dehydrates and changes to magnesium oxide, and heat dissipation when magnesium oxide hydrates and changes to magnesium hydroxide. It is a material. The heat storage operating temperature of magnesium hydroxide or oxide is around 350 ° C.
ストロンチウムの水酸化物または酸化物は、水酸化ストロンチウムが脱水して酸化ストロンチウムに変化する際の蓄熱と、酸化ストロンチウムが水和して水酸化ストロンチウムに変化する際の放熱とを利用する、化学蓄熱材である。
A hydroxide or oxide of strontium is a chemical heat storage that utilizes heat storage when strontium hydroxide is dehydrated and converted to strontium oxide and heat dissipation when strontium oxide is hydrated and converted to strontium hydroxide. It is a material.
バリウムの水酸化物または酸化物は、水酸化バリウムが脱水して酸化バリウムに変化する際の蓄熱と、酸化バリウムが水和して水酸化バリウムに変化する際の放熱とを利用する、化学蓄熱材である。
A hydroxide or oxide of barium is a chemical heat storage that utilizes heat storage when barium hydroxide is dehydrated and converted to barium oxide and heat dissipation when barium oxide is hydrated and converted to barium hydroxide. It is a material.
カルシウムの水酸化物または酸化物は、水酸化カルシウムが脱水して酸化カルシウムに変化する際の蓄熱と、酸化カルシウムが水和して水酸化カルシウムに変化する際の放熱とを利用する、化学蓄熱材である。カルシウムの水酸化物または酸化物による蓄熱作動温度は500℃前後である。
A hydroxide or oxide of calcium utilizes chemical heat storage that utilizes heat storage when calcium hydroxide dehydrates and changes to calcium oxide, and heat dissipation when calcium oxide hydrates and changes to calcium hydroxide. It is a material. The heat storage operating temperature of calcium hydroxide or oxide is around 500 ° C.
硫酸カルシウムは、硫酸カルシウム0.5水和物が脱水して無水硫酸カルシウムに変化する際の蓄熱と、無水硫酸カルシウムが水和して硫酸カルシウム0.5水和物に変化する際の放熱とを利用する、化学蓄熱材である。硫酸カルシウムによる蓄熱作動温度は90℃前後である。
Calcium sulfate stores heat when calcium sulfate 0.5 hydrate dehydrates and changes to anhydrous calcium sulfate, and dissipates heat when anhydrous calcium sulfate hydrates and changes to calcium sulfate 0.5 hydrate. It is a chemical heat storage material that utilizes. The heat storage operating temperature of calcium sulfate is around 90 ° C.
本発明の蓄熱材組成物に含まれる無機充填剤は、二酸化チタン、二酸化ケイ素、アルミナシリケート繊維、およびEガラス繊維からなる群から選ばれる少なくとも一つである。二酸化チタンおよび二酸化ケイ素は、粉末状のものであることが好ましい。
The inorganic filler contained in the heat storage material composition of the present invention is at least one selected from the group consisting of titanium dioxide, silicon dioxide, alumina silicate fibers, and E glass fibers. Titanium dioxide and silicon dioxide are preferably in the form of powder.
無機充填剤の量は、化学蓄熱材100質量部に対して、好ましくは1質量部以上55質量部以下、より好ましくは8質量部以上50質量部以下、さらに好ましくは10質量部以上45質量部以下である。
The amount of the inorganic filler is preferably 1 part by mass or more and 55 parts by mass or less, more preferably 8 parts by mass or more and 50 parts by mass or less, and further preferably 10 parts by mass or more and 45 parts by mass with respect to 100 parts by mass of the chemical heat storage material. It is as follows.
本発明の蓄熱材組成物は、化学蓄熱材、無機充填剤および熱可塑性樹脂以外に、熱伝導性付与材、補強繊維、シリカゾル、ケイ酸塩、リン酸塩、セメントなどの添加剤をさらに含んでいてもよい。
In addition to the chemical heat storage material, the inorganic filler and the thermoplastic resin, the heat storage material composition of the present invention further contains additives such as a heat conductivity imparting material, reinforcing fibers, silica sol, silicate, phosphate and cement. You may be.
熱伝導性付与材としては、溶融シリカ、酸化アルミニウム、窒化ホウ素、窒化アルムニウム、窒化珪素、炭酸マグネシウム、カーボンナノチューブ、窒化ホウ素ナノチューブ、酸化ベリリウムなどを挙げることができる。
補強繊維としては、炭素繊維、アラミド繊維、ポリオレフィン繊維、ビニロン繊維、鋼繊維などを挙げることができる。 Examples of the heat conductivity-imparting material include molten silica, aluminum oxide, boron nitride, alumnium nitride, silicon nitride, magnesium carbonate, carbon nanotubes, boron nitride nanotubes, and beryllium oxide.
Examples of the reinforcing fiber include carbon fiber, aramid fiber, polyolefin fiber, vinylon fiber, steel fiber and the like.
補強繊維としては、炭素繊維、アラミド繊維、ポリオレフィン繊維、ビニロン繊維、鋼繊維などを挙げることができる。 Examples of the heat conductivity-imparting material include molten silica, aluminum oxide, boron nitride, alumnium nitride, silicon nitride, magnesium carbonate, carbon nanotubes, boron nitride nanotubes, and beryllium oxide.
Examples of the reinforcing fiber include carbon fiber, aramid fiber, polyolefin fiber, vinylon fiber, steel fiber and the like.
他の添加剤として、ゼオライト、活性白土、セピオライト、ベントナイト、パリゴルスタイト、ハイドロタルサイト、酸化亜鉛、酸化鉄、硫酸バリウム、炭酸カルシウム、タルク、水酸化アルミニウム、酸化アンチモン、黒鉛、フェライトなどを挙げることができる。これらのうち、基板に担持された蓄熱材組成物が多孔質となる添加剤が好ましく用いられる。
Other additives include zeolite, jar, sepiolite, bentonite, parigolstite, hydrotalcite, zinc oxide, iron oxide, barium sulfate, calcium carbonate, talc, aluminum hydroxide, antimony oxide, graphite, ferrite, etc. can. Of these, additives that make the heat storage material composition supported on the substrate porous are preferably used.
本発明の蓄熱材組成物は、公知の成形法によって、ハニカム状、板状、コルゲート状などにすることができる。
The heat storage material composition of the present invention can be made into a honeycomb shape, a plate shape, a corrugated shape, or the like by a known molding method.
本発明の板状化学蓄熱体1は、基板3と、それに担持された本発明の蓄熱材組成物2とを有する。
The plate-shaped chemical heat storage body 1 of the present invention has a substrate 3 and a heat storage material composition 2 of the present invention supported on the substrate 3.
本発明に用いられる基板3は、好ましくは網である。網は、線材を編んでなるもの線材を接着してなるもの、板材に切り込みを入れ伸ばしてなるもの(エキスパンドメタル)、板材に孔を穿ってなるもの(パンチングメタル)などの、いずれでもよい。
基板の材料は、特に制限されないが、金属材料が好ましく、蓄熱材組成物よりも熱伝導率が高い金属材料がより好ましく、ステンレス鋼、アルミニウム、アルミニウム合金、銅、または銅合金がさらに好ましい。 Thesubstrate 3 used in the present invention is preferably a net. The net may be any of knitted wire, bonded wire, cut and stretched plate (expanded metal), and perforated plate (punching metal).
The material of the substrate is not particularly limited, but a metal material is preferable, a metal material having a higher thermal conductivity than the heat storage material composition is more preferable, and stainless steel, aluminum, an aluminum alloy, copper, or a copper alloy is further preferable.
基板の材料は、特に制限されないが、金属材料が好ましく、蓄熱材組成物よりも熱伝導率が高い金属材料がより好ましく、ステンレス鋼、アルミニウム、アルミニウム合金、銅、または銅合金がさらに好ましい。 The
The material of the substrate is not particularly limited, but a metal material is preferable, a metal material having a higher thermal conductivity than the heat storage material composition is more preferable, and stainless steel, aluminum, an aluminum alloy, copper, or a copper alloy is further preferable.
網の目開きは、特に制限されないが、蓄熱材組成物が基板から剥離し難い点および蓄熱材組成物と基板との熱伝導性を高める点などから、好ましくは10μm以上、より好ましくは100μm以上、さらに好ましくは1mm以上5mm以下である。
網は、主面が平らな平網、主面にコブ状に畝った部分を有するコブ網、主面が波状に畝っている波形網、主面に対して突起した部分を有するリブ網などであってもよい。網の目に蓄熱材組成物が入り込みアンカー効果を奏するので平網でも十分な強度を示す。コブ網、波網またはリブ網は、コブ、波またはリブが、アンカー効果をさらに高めることを期待できる。 The mesh opening of the mesh is not particularly limited, but is preferably 10 μm or more, more preferably 100 μm or more, from the viewpoint that the heat storage material composition is difficult to peel off from the substrate and the thermal conductivity between the heat storage material composition and the substrate is enhanced. More preferably, it is 1 mm or more and 5 mm or less.
The net is a flat net with a flat main surface, a bump net with bump-shaped ridges on the main surface, a corrugated net with wavy ridges on the main surface, and a rib net with protrusions on the main surface. And so on. Since the heat storage material composition enters the mesh and exerts an anchor effect, even a flat net exhibits sufficient strength. For bumps, waves or ribs, bumps, waves or ribs can be expected to further enhance the anchoring effect.
網は、主面が平らな平網、主面にコブ状に畝った部分を有するコブ網、主面が波状に畝っている波形網、主面に対して突起した部分を有するリブ網などであってもよい。網の目に蓄熱材組成物が入り込みアンカー効果を奏するので平網でも十分な強度を示す。コブ網、波網またはリブ網は、コブ、波またはリブが、アンカー効果をさらに高めることを期待できる。 The mesh opening of the mesh is not particularly limited, but is preferably 10 μm or more, more preferably 100 μm or more, from the viewpoint that the heat storage material composition is difficult to peel off from the substrate and the thermal conductivity between the heat storage material composition and the substrate is enhanced. More preferably, it is 1 mm or more and 5 mm or less.
The net is a flat net with a flat main surface, a bump net with bump-shaped ridges on the main surface, a corrugated net with wavy ridges on the main surface, and a rib net with protrusions on the main surface. And so on. Since the heat storage material composition enters the mesh and exerts an anchor effect, even a flat net exhibits sufficient strength. For bumps, waves or ribs, bumps, waves or ribs can be expected to further enhance the anchoring effect.
本発明の板状化学蓄熱体においては、蓄熱材組成物が、基板に、より詳細には基板を構成する網の外表面、および網の目の中に担持されている。
担持は、蓄熱材組成物のスラリまたはペーストを基板に塗布し乾燥させることによって、蓄熱材組成物の粉末を基板とともに圧粉成形することによって、またはその他の担持方法によって行うことができる。 In the plate-shaped chemical heat storage material of the present invention, the heat storage material composition is supported on the substrate, more specifically, on the outer surface of the net constituting the substrate, and in the mesh of the net.
The support can be carried out by applying a slurry or paste of the heat storage material composition to the substrate and drying it, by compacting the powder of the heat storage material composition together with the substrate, or by another supporting method.
担持は、蓄熱材組成物のスラリまたはペーストを基板に塗布し乾燥させることによって、蓄熱材組成物の粉末を基板とともに圧粉成形することによって、またはその他の担持方法によって行うことができる。 In the plate-shaped chemical heat storage material of the present invention, the heat storage material composition is supported on the substrate, more specifically, on the outer surface of the net constituting the substrate, and in the mesh of the net.
The support can be carried out by applying a slurry or paste of the heat storage material composition to the substrate and drying it, by compacting the powder of the heat storage material composition together with the substrate, or by another supporting method.
本発明の板状化学蓄熱体は、板厚tが、好ましくは0.3mm以上2mm以下、より好ましくは0.5mm以上1mm以下である。
本発明の板状化学蓄熱体は、表面が蓄熱材組成物ですべて覆われていてもよいし、一部に基板の露出している部分があってもよい。
本発明の板状化学蓄熱体の主面は、滑面であっても、粗面であってもよい。粗面である場合、本発明の板状化学蓄熱体を積層させたときにわずかに隙間ができるので、化学蓄熱材に対する作動媒体である水が奥まで入り込みやすい。そのような観点から主面の表面粗さは数μm~数百μmであることが好ましい。 The plate-shaped chemical heat storage body of the present invention has a plate thickness t of preferably 0.3 mm or more and 2 mm or less, and more preferably 0.5 mm or more and 1 mm or less.
The surface of the plate-shaped chemical heat storage body of the present invention may be completely covered with the heat storage material composition, or a part of the substrate may be exposed.
The main surface of the plate-shaped chemical heat storage body of the present invention may be a smooth surface or a rough surface. When the surface is rough, a slight gap is formed when the plate-shaped chemical heat storage material of the present invention is laminated, so that water, which is an operating medium for the chemical heat storage material, easily penetrates to the depth. From such a viewpoint, the surface roughness of the main surface is preferably several μm to several hundred μm.
本発明の板状化学蓄熱体は、表面が蓄熱材組成物ですべて覆われていてもよいし、一部に基板の露出している部分があってもよい。
本発明の板状化学蓄熱体の主面は、滑面であっても、粗面であってもよい。粗面である場合、本発明の板状化学蓄熱体を積層させたときにわずかに隙間ができるので、化学蓄熱材に対する作動媒体である水が奥まで入り込みやすい。そのような観点から主面の表面粗さは数μm~数百μmであることが好ましい。 The plate-shaped chemical heat storage body of the present invention has a plate thickness t of preferably 0.3 mm or more and 2 mm or less, and more preferably 0.5 mm or more and 1 mm or less.
The surface of the plate-shaped chemical heat storage body of the present invention may be completely covered with the heat storage material composition, or a part of the substrate may be exposed.
The main surface of the plate-shaped chemical heat storage body of the present invention may be a smooth surface or a rough surface. When the surface is rough, a slight gap is formed when the plate-shaped chemical heat storage material of the present invention is laminated, so that water, which is an operating medium for the chemical heat storage material, easily penetrates to the depth. From such a viewpoint, the surface roughness of the main surface is preferably several μm to several hundred μm.
本発明の板状化学蓄熱体は、目的に応じて、裁断してチップ状にしたり、折り曲げて筒状、箱状にしたり、エンボス加工などして波状(例えば、図2、図3などに示す形)にしたりすることができる。また、本発明の板状化学蓄熱体を複数枚積層させたり、他の板状物と積層させたりすることができる。
The plate-shaped chemical heat storage body of the present invention is cut into chips, bent into a cylinder or a box, or embossed to be wavy (for example, shown in FIGS. 2 and 3) depending on the purpose. It can be shaped). Further, a plurality of plate-shaped chemical heat storage bodies of the present invention can be laminated, or can be laminated with other plate-shaped materials.
本発明の化学蓄熱構造体は、本発明の板状化学蓄熱体を少なくとも一つ有してなるものである。
図6は、本発明の板状化学蓄熱体1aを多数枚積層してなる化学蓄熱構造体4を示している。隣接する板状化学蓄熱体1aの間に隙間が有る場合、作動媒体である水蒸気がこの隙間を通りやすい。化学蓄熱構造体4は、単位体積当たりの化学蓄熱材の充填密度が高く、より高い蓄熱/放熱性能を発揮でき、尚且つ、その形状を長期間安定に保持することができる。 The chemical heat storage structure of the present invention comprises at least one plate-shaped chemical heat storage body of the present invention.
FIG. 6 shows a chemicalheat storage structure 4 in which a large number of plate-shaped chemical heat storage bodies 1a of the present invention are laminated. When there is a gap between adjacent plate-shaped chemical heat storage bodies 1a, water vapor, which is an operating medium, easily passes through this gap. The chemical heat storage structure 4 has a high packing density of the chemical heat storage material per unit volume, can exhibit higher heat storage / heat dissipation performance, and can stably maintain its shape for a long period of time.
図6は、本発明の板状化学蓄熱体1aを多数枚積層してなる化学蓄熱構造体4を示している。隣接する板状化学蓄熱体1aの間に隙間が有る場合、作動媒体である水蒸気がこの隙間を通りやすい。化学蓄熱構造体4は、単位体積当たりの化学蓄熱材の充填密度が高く、より高い蓄熱/放熱性能を発揮でき、尚且つ、その形状を長期間安定に保持することができる。 The chemical heat storage structure of the present invention comprises at least one plate-shaped chemical heat storage body of the present invention.
FIG. 6 shows a chemical
図7は、本発明の板状化学蓄熱体1aと、他の板状物3とを交互に積層してなる化学蓄熱構造体5を示している。他の板状物3は、特に限定されず、例えば、蓄熱材組成物を担持していない金属性の網からなる基板3-aなどであってもよい。化学蓄熱構造体5は、板状物3がスペーサの役割をして、板状化学蓄熱体1への流路が拡大されるため、作動媒体である水蒸気が流れ易くなり、脱水/水和の反応が促進される。
FIG. 7 shows a chemical heat storage structure 5 in which a plate-shaped chemical heat storage body 1a of the present invention and another plate-shaped material 3 are alternately laminated. The other plate-like material 3 is not particularly limited, and may be, for example, a substrate 3-a made of a metallic net that does not support the heat storage material composition. In the chemical heat storage structure 5, the plate-shaped material 3 acts as a spacer and the flow path to the plate-shaped chemical heat storage body 1 is expanded, so that water vapor, which is an operating medium, easily flows, and dehydration / hydration occurs. The reaction is promoted.
図8は、図3に示すような、突条部と平坦部を交互に所定の間隔で形成した板状化学蓄熱体1cを積層した構造体を示している。
図9は、図2に示すような、板状化学蓄熱体1aと板状化学蓄熱体1bとを交互に積層したコルゲート状の構造体を示している。
このときの積層高さhは、特に限定されないが、好ましくは2mm以上4mm以下に設定することができる。 FIG. 8 shows a structure in which plate-shaped chemicalheat storage bodies 1c in which ridges and flat portions are alternately formed at predetermined intervals as shown in FIG. 3 are laminated.
FIG. 9 shows a corrugated structure in which a plate-shaped chemicalheat storage body 1a and a plate-shaped chemical heat storage body 1b are alternately laminated as shown in FIG.
The stacking height h at this time is not particularly limited, but is preferably set to 2 mm or more and 4 mm or less.
図9は、図2に示すような、板状化学蓄熱体1aと板状化学蓄熱体1bとを交互に積層したコルゲート状の構造体を示している。
このときの積層高さhは、特に限定されないが、好ましくは2mm以上4mm以下に設定することができる。 FIG. 8 shows a structure in which plate-shaped chemical
FIG. 9 shows a corrugated structure in which a plate-shaped chemical
The stacking height h at this time is not particularly limited, but is preferably set to 2 mm or more and 4 mm or less.
本発明の化学蓄熱構造体においては、基板が骨材として機能するため、高い強度と保形性を長期間維持することが可能である。なお、本発明における作用効果が発揮される形態であれば、上記に限らず他の形状を成したものであってもよい。
In the chemical heat storage structure of the present invention, since the substrate functions as an aggregate, it is possible to maintain high strength and shape retention for a long period of time. In addition, as long as it is a form in which the action and effect in the present invention are exhibited, the present invention is not limited to the above, and other shapes may be formed.
以下に本発明の実施例を示し、本発明をより具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらによって何等制限されるものではない。
Examples of the present invention will be shown below, and the present invention will be described in more detail. It should be noted that these are merely examples for explanation, and the present invention is not limited thereto.
[実施例1]
硫酸カルシウム二水和物(CaSO42H2O)粉末85質量部、酸化チタン粉末15質量部、および粘度平均分子量30,000で且つ動粘度10,000mm2/sであるポリイソブチレン8.5質量部を混ぜ合わせ、これに水を加えながらニーダで混練して、水分約40%のペースト状化学蓄熱材組成物を得た。混練性はA(優良)であった。一対の圧延ローラを用いて、幅500mmのSUS430製のエキスパンドメタル基板(メタルラス板、P1=4.5mm,P2=3.0mm)に、ラス目間を埋めるようにして、ペースト状化学蓄熱材組成物を塗布し成形した。塗布成形性はA(優良)であった。次いで切断機で長さ500mmに切断した。これを120℃で2時間乾燥させた。次いで50×50mmの小片に切断し、厚さ0.7mmの板状化学蓄熱体を得た。板状化学蓄熱体における無水石膏(CaSO4)充填密度は0.79g/cm3であった。評価結果を表1に示す。 [Example 1]
Calcium sulfate dihydrate (CaSO 4 2H 2 O) powder 85 parts by mass, titanium oxide powder 15 parts by mass, and polyisobutylene 8.5 mass with a viscosity average molecular weight of 30,000 and a kinematic viscosity of 10,000 mm 2 / s. The parts were mixed and kneaded with a kneader while adding water to obtain a paste-like chemical heat storage material composition having a water content of about 40%. The kneading property was A (excellent). Using a pair of rolling rollers, a paste-like chemical heat storage is applied to an expanded metal substrate (metal lath plate, P 1 = 4.5 mm, P 2 = 3.0 mm) made of SUS430 having a width of 500 mm so as to fill the gap between the laths. The material composition was applied and molded. The coating moldability was A (excellent). Then, it was cut to a length of 500 mm with a cutting machine. This was dried at 120 ° C. for 2 hours. Then, it was cut into small pieces of 50 × 50 mm to obtain a plate-shaped chemical heat storage body having a thickness of 0.7 mm. The packing density of anhydrous gypsum (CaSO 4 ) in the plate-shaped chemical heat storage body was 0.79 g / cm 3 . The evaluation results are shown in Table 1.
硫酸カルシウム二水和物(CaSO42H2O)粉末85質量部、酸化チタン粉末15質量部、および粘度平均分子量30,000で且つ動粘度10,000mm2/sであるポリイソブチレン8.5質量部を混ぜ合わせ、これに水を加えながらニーダで混練して、水分約40%のペースト状化学蓄熱材組成物を得た。混練性はA(優良)であった。一対の圧延ローラを用いて、幅500mmのSUS430製のエキスパンドメタル基板(メタルラス板、P1=4.5mm,P2=3.0mm)に、ラス目間を埋めるようにして、ペースト状化学蓄熱材組成物を塗布し成形した。塗布成形性はA(優良)であった。次いで切断機で長さ500mmに切断した。これを120℃で2時間乾燥させた。次いで50×50mmの小片に切断し、厚さ0.7mmの板状化学蓄熱体を得た。板状化学蓄熱体における無水石膏(CaSO4)充填密度は0.79g/cm3であった。評価結果を表1に示す。 [Example 1]
Calcium sulfate dihydrate (CaSO 4 2H 2 O) powder 85 parts by mass, titanium oxide powder 15 parts by mass, and polyisobutylene 8.5 mass with a viscosity average molecular weight of 30,000 and a kinematic viscosity of 10,000 mm 2 / s. The parts were mixed and kneaded with a kneader while adding water to obtain a paste-like chemical heat storage material composition having a water content of about 40%. The kneading property was A (excellent). Using a pair of rolling rollers, a paste-like chemical heat storage is applied to an expanded metal substrate (metal lath plate, P 1 = 4.5 mm, P 2 = 3.0 mm) made of SUS430 having a width of 500 mm so as to fill the gap between the laths. The material composition was applied and molded. The coating moldability was A (excellent). Then, it was cut to a length of 500 mm with a cutting machine. This was dried at 120 ° C. for 2 hours. Then, it was cut into small pieces of 50 × 50 mm to obtain a plate-shaped chemical heat storage body having a thickness of 0.7 mm. The packing density of anhydrous gypsum (CaSO 4 ) in the plate-shaped chemical heat storage body was 0.79 g / cm 3 . The evaluation results are shown in Table 1.
[実施例2~6および比較例1~7]
表に示す配合比に変更した以外は、実施例1と同じ方法で、ペースト状化学蓄熱材組成物、および板状化学蓄熱体を得た。評価結果を表1に示す。 [Examples 2 to 6 and Comparative Examples 1 to 7]
A paste-like chemical heat storage material composition and a plate-like chemical heat storage material were obtained by the same method as in Example 1 except that the compounding ratios shown in the table were changed. The evaluation results are shown in Table 1.
表に示す配合比に変更した以外は、実施例1と同じ方法で、ペースト状化学蓄熱材組成物、および板状化学蓄熱体を得た。評価結果を表1に示す。 [Examples 2 to 6 and Comparative Examples 1 to 7]
A paste-like chemical heat storage material composition and a plate-like chemical heat storage material were obtained by the same method as in Example 1 except that the compounding ratios shown in the table were changed. The evaluation results are shown in Table 1.
ペースト状化学蓄熱材組成物の評価は、以下の基準に従って行った。
(混練性)
A:ペーストに纏まりが有り,ペーストが柔らかいため,大きな力をかけずに混錬することができる。
B:ペーストに纏まりが有るが,ペーストが少し硬い。少し力をかけて混錬する必要がある。
C:ペーストに纏まりが無く,ペーストが硬い。大きな力をかけて混錬する必要がある。
D:ペーストに全く纏まりが無い。非常に大きな力で混錬する必要がある。ペーストを纏めようとするとスラリとなる。 The paste-like chemical heat storage material composition was evaluated according to the following criteria.
(Kneading property)
A: Since the paste is cohesive and the paste is soft, it can be kneaded without applying great force.
B: There is a lump in the paste, but the paste is a little hard. It is necessary to knead with a little force.
C: The paste is not clumped and the paste is hard. It is necessary to apply great force to knead.
D: There is no lump in the paste. It is necessary to knead with a very large force. When I try to put the paste together, it becomes a slurry.
(混練性)
A:ペーストに纏まりが有り,ペーストが柔らかいため,大きな力をかけずに混錬することができる。
B:ペーストに纏まりが有るが,ペーストが少し硬い。少し力をかけて混錬する必要がある。
C:ペーストに纏まりが無く,ペーストが硬い。大きな力をかけて混錬する必要がある。
D:ペーストに全く纏まりが無い。非常に大きな力で混錬する必要がある。ペーストを纏めようとするとスラリとなる。 The paste-like chemical heat storage material composition was evaluated according to the following criteria.
(Kneading property)
A: Since the paste is cohesive and the paste is soft, it can be kneaded without applying great force.
B: There is a lump in the paste, but the paste is a little hard. It is necessary to knead with a little force.
C: The paste is not clumped and the paste is hard. It is necessary to apply great force to knead.
D: There is no lump in the paste. It is necessary to knead with a very large force. When I try to put the paste together, it becomes a slurry.
(塗布成形性)
A:塗布斑もなく且つラス板からの剥がれも無い。または、塗布成形前後におけるメタルラス板の伸びが5%以下である。
B:塗布斑が僅かにあるか、またはラス板からの剥がれが僅かにある。または、塗布成形前後におけるメタルラス板の伸びが5%超過10%以下である。
C:塗布で圧力をかけると水が分離して組成物が硬くなり、塗布成形が困難である。または、塗布成形前後におけるメタルラス板の伸びが10%超過20%以下である。
D:組成物が伸びず、塗布成形不可。または、塗布成形前後におけるメタルラス板の伸びが20%超過である。 (Coating moldability)
A: There is no coating spot and no peeling from the lath plate. Alternatively, the elongation of the metal lath plate before and after coating molding is 5% or less.
B: There is a slight coating spot, or there is a slight peeling from the lath plate. Alternatively, the elongation of the metal lath plate before and after coating molding is more than 5% and 10% or less.
C: When pressure is applied during coating, water separates and the composition becomes hard, making coating molding difficult. Alternatively, the elongation of the metal lath plate before and after coating molding is more than 10% and 20% or less.
D: The composition does not stretch and cannot be coated and molded. Alternatively, the elongation of the metal lath plate before and after coating molding exceeds 20%.
A:塗布斑もなく且つラス板からの剥がれも無い。または、塗布成形前後におけるメタルラス板の伸びが5%以下である。
B:塗布斑が僅かにあるか、またはラス板からの剥がれが僅かにある。または、塗布成形前後におけるメタルラス板の伸びが5%超過10%以下である。
C:塗布で圧力をかけると水が分離して組成物が硬くなり、塗布成形が困難である。または、塗布成形前後におけるメタルラス板の伸びが10%超過20%以下である。
D:組成物が伸びず、塗布成形不可。または、塗布成形前後におけるメタルラス板の伸びが20%超過である。 (Coating moldability)
A: There is no coating spot and no peeling from the lath plate. Alternatively, the elongation of the metal lath plate before and after coating molding is 5% or less.
B: There is a slight coating spot, or there is a slight peeling from the lath plate. Alternatively, the elongation of the metal lath plate before and after coating molding is more than 5% and 10% or less.
C: When pressure is applied during coating, water separates and the composition becomes hard, making coating molding difficult. Alternatively, the elongation of the metal lath plate before and after coating molding is more than 10% and 20% or less.
D: The composition does not stretch and cannot be coated and molded. Alternatively, the elongation of the metal lath plate before and after coating molding exceeds 20%.
1a, 1b, 1c : 板状化学蓄熱体
2 : 蓄熱材組成物
3 : 基板
3-a : 金網基板
3-b : エキスパンドメタル基板 1a, 1b, 1c: Plate-shaped chemical heat storage body 2: Heat storage material composition 3: Substrate 3-a: Wire mesh substrate 3-b: Expanded metal substrate
2 : 蓄熱材組成物
3 : 基板
3-a : 金網基板
3-b : エキスパンドメタル基板 1a, 1b, 1c: Plate-shaped chemical heat storage body 2: Heat storage material composition 3: Substrate 3-a: Wire mesh substrate 3-b: Expanded metal substrate
Claims (12)
- 化学蓄熱材と、
粘度平均分子量が1万~20万であり、且つ200℃における動粘度が3千~30万mm2/sである熱可塑性樹脂と、
二酸化チタン、二酸化ケイ素、アルミナシリケート繊維、およびEガラス繊維からなる群から選ばれる少なくとも一つと
を含有する、蓄熱材組成物。 Chemical heat storage material and
Is the viscosity average molecular weight of 10,000 to 200,000, the thermoplastic resin is a kinematic viscosity at that and 200 ° C. 3 1000-300000 mm 2 / s,
A heat storage material composition containing at least one selected from the group consisting of titanium dioxide, silicon dioxide, alumina silicate fibers, and E glass fibers. - 前記熱可塑性樹脂は、粘度平均分子量が3万~10万であり、且つ200℃における動粘度が3千~25万mm2/sである、請求項1に記載の蓄熱材組成物。 The thermoplastic resin is a viscosity-average molecular weight of from 30,000 to 100,000, and kinematic viscosity at 200 ° C. is 3 1000 to 250,000 mm 2 / s, the heat storage material composition according to claim 1.
- 化学蓄熱材が、マグネシウムの水酸化物または酸化物、ストロンチウムの水酸化物または酸化物、バリウムの水酸化物または酸化物、カルシウムの水酸化物または酸化物、および硫酸カルシウムからなる群から選ばれる少なくとも一つである、請求項1または2に記載の蓄熱材組成物。 The chemical heat storage material is selected from the group consisting of magnesium hydroxides or oxides, strontium hydroxides or oxides, barium hydroxides or oxides, calcium hydroxides or oxides, and calcium sulfate. The heat storage material composition according to claim 1 or 2, which is at least one.
- 熱可塑性樹脂は、200℃における動粘度の下限が、3千mm2/sであり、200℃における動粘度の上限が、30万mm2/sである、請求項1~3のいずれかひとつに記載の蓄熱材組成物。 The thermoplastic resin has a lower limit of kinematic viscosity at 200 ° C. of 3,000 mm 2 / s and an upper limit of kinematic viscosity at 200 ° C. of 300,000 mm 2 / s, any one of claims 1 to 3. The heat storage material composition according to.
- 熱可塑性樹脂は、25℃、荷重200gf、5秒間における針入度が、40~450である、請求項1~4のいずれかひとつに記載の蓄熱材組成物。 The heat storage material composition according to any one of claims 1 to 4, wherein the thermoplastic resin has a needle insertion degree of 40 to 450 at 25 ° C., a load of 200 gf, and 5 seconds.
- 熱可塑性樹脂が、オレフィン系重合体である、請求項1~5のいずれかひとつに記載の蓄熱材組成物。 The heat storage material composition according to any one of claims 1 to 5, wherein the thermoplastic resin is an olefin polymer.
- 熱可塑性樹脂が、ポリイソブチレン、若しくはイソプレン-イソブチレン共重合体である、請求項1~5のいずれかひとつに記載の蓄熱材組成物。 The heat storage material composition according to any one of claims 1 to 5, wherein the thermoplastic resin is polyisobutylene or an isoprene-isobutylene copolymer.
- 基板と、
該基板に担持された請求項1~7のいずれかひとつに記載の蓄熱材組成物と
を有する、板状化学蓄熱体。 With the board
A plate-shaped chemical heat storage body having the heat storage material composition according to any one of claims 1 to 7 supported on the substrate. - 基板が、ステンレス鋼、アルミニウム、アルミニウム合金、銅、および銅合金からなる群から選ばれる少なくとも一つからなるもの、請求項8に記載の板状化学蓄熱体。 The plate-shaped chemical heat storage material according to claim 8, wherein the substrate is made of at least one selected from the group consisting of stainless steel, aluminum, aluminum alloy, copper, and copper alloy.
- 厚さが0.3mm以上2mm以下である、請求項8または9に記載の板状化学蓄熱体。 The plate-shaped chemical heat storage body according to claim 8 or 9, which has a thickness of 0.3 mm or more and 2 mm or less.
- 請求項8~10のいずれかひとつに記載の板状化学蓄熱体を少なくとも一つ有する、化学蓄熱構造体。 A chemical heat storage structure having at least one plate-shaped chemical heat storage body according to any one of claims 8 to 10.
- 請求項8~10のいずれかひとつに記載の板状化学蓄熱体または請求項11に記載の化学蓄熱構造体を具備する、化学蓄熱システム。 A chemical heat storage system comprising the plate-shaped chemical heat storage body according to any one of claims 8 to 10 or the chemical heat storage structure according to claim 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020058395A JP7520548B2 (en) | 2020-03-27 | 2020-03-27 | Heat storage material composition |
JP2020-058395 | 2020-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021193939A1 true WO2021193939A1 (en) | 2021-09-30 |
Family
ID=77891900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/012949 WO2021193939A1 (en) | 2020-03-27 | 2021-03-26 | Heat storage material composition |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7520548B2 (en) |
TW (1) | TWI770907B (en) |
WO (1) | WO2021193939A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003073662A (en) * | 2001-08-31 | 2003-03-12 | Showa Denko Kk | Exothermic agent composition and exothermic device containing the same |
WO2016158973A1 (en) * | 2015-03-31 | 2016-10-06 | 日本ペイントホールディングス株式会社 | Chemical heat storage material, and composition for forming chemical heat storage material |
JP2016210957A (en) * | 2015-05-13 | 2016-12-15 | アイシン化工株式会社 | Heat storage polymer molded body |
JP2017179306A (en) * | 2016-03-31 | 2017-10-05 | 日本碍子株式会社 | Heat storage member |
JP2018059016A (en) * | 2016-10-07 | 2018-04-12 | 株式会社Kri | Chemical thermal storage material composite |
WO2019123914A1 (en) * | 2017-12-21 | 2019-06-27 | Dic株式会社 | Chemical heat storage complex, composition for forming chemical heat storage complex, and method for forming chemical heat storage complex |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5086600B2 (en) * | 2006-08-11 | 2012-11-28 | エスケー化研株式会社 | Thermal storage material composition, thermal storage body and thermal storage laminate |
JP5480319B2 (en) * | 2012-03-13 | 2014-04-23 | 日東電工株式会社 | Adhesive composition, adhesive sheet and moisture permeable waterproof adhesive sheet |
JP5854363B2 (en) * | 2013-12-11 | 2016-02-09 | 富士高分子工業株式会社 | Thermal storage composition |
JP6670234B2 (en) * | 2014-05-16 | 2020-03-18 | 永大産業株式会社 | Heat storage body in which latent heat storage material is impregnated in porous base material and method for producing the same |
WO2017217417A1 (en) * | 2016-06-15 | 2017-12-21 | 住友化学株式会社 | Laminate, building material, building, and heat insulating container |
KR102280229B1 (en) * | 2016-06-22 | 2021-07-21 | 디아이씨 가부시끼가이샤 | heat storage composition |
-
2020
- 2020-03-27 JP JP2020058395A patent/JP7520548B2/en active Active
-
2021
- 2021-03-26 WO PCT/JP2021/012949 patent/WO2021193939A1/en active Application Filing
- 2021-03-29 TW TW110111236A patent/TWI770907B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003073662A (en) * | 2001-08-31 | 2003-03-12 | Showa Denko Kk | Exothermic agent composition and exothermic device containing the same |
WO2016158973A1 (en) * | 2015-03-31 | 2016-10-06 | 日本ペイントホールディングス株式会社 | Chemical heat storage material, and composition for forming chemical heat storage material |
JP2016210957A (en) * | 2015-05-13 | 2016-12-15 | アイシン化工株式会社 | Heat storage polymer molded body |
JP2017179306A (en) * | 2016-03-31 | 2017-10-05 | 日本碍子株式会社 | Heat storage member |
JP2018059016A (en) * | 2016-10-07 | 2018-04-12 | 株式会社Kri | Chemical thermal storage material composite |
WO2019123914A1 (en) * | 2017-12-21 | 2019-06-27 | Dic株式会社 | Chemical heat storage complex, composition for forming chemical heat storage complex, and method for forming chemical heat storage complex |
Also Published As
Publication number | Publication date |
---|---|
JP7520548B2 (en) | 2024-07-23 |
TWI770907B (en) | 2022-07-11 |
TW202142671A (en) | 2021-11-16 |
JP2021155608A (en) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2747536A1 (en) | Heat-conducting pad, method for manufacturing heat-conducting pad, radiating apparatus and electronic device | |
KR20220143100A (en) | Thermal management multi-layer sheet for batteries | |
WO2015045211A1 (en) | Thermal insulation sheet and thermal insulation material | |
TWI285187B (en) | Flexible graphite sheet having increased isotropy | |
CA2748197C (en) | Sheet gasket and production method thereof | |
WO2021193939A1 (en) | Heat storage material composition | |
CN109715892A (en) | Heat-barrier material arranges body | |
JP5297669B2 (en) | Chemical heat storage material composite and its manufacturing method | |
KR19980032979A (en) | Active complex with laminated structure containing granular activator | |
KR101367684B1 (en) | Packaged hydrogen-generating agent, manufacturing method therefor, and hydrogen generation method | |
JP2009256520A (en) | Chemical thermal storage medium composite and method for producing the same | |
JP2009256519A (en) | Chemical thermal storage medium composite and method for producing the same | |
JPS6023132B2 (en) | Method for manufacturing open-cell polyolefin foam | |
EP3969507A1 (en) | (co)polymer matrix composites comprising thermally-conductive particles and a nonvolatile diluent and methods of making the same | |
JP7296207B2 (en) | Plate-shaped chemical heat storage element | |
JP3691945B2 (en) | Fireproof multilayer sheet | |
JP2019099660A (en) | Manufacturing method of silicone rubber sponge | |
EP3969506A1 (en) | (co)polymer matrix composites comprising thermally-conductive particles and endothermic particles and methods of making the same | |
KR20220024793A (en) | Reticulated Carbon Composite | |
JP2023109116A (en) | Chemical heat storage unit and its manufacturing method | |
JP3790332B2 (en) | Foam refractory paint and coated structure | |
JP2019071474A (en) | Polarizable electrode for electric double layer capacitor | |
JPH0637617B2 (en) | Sheet gasket material | |
JP5339888B2 (en) | Exothermic molded body | |
JPH0218300B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21776563 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21776563 Country of ref document: EP Kind code of ref document: A1 |