JP5339888B2 - Exothermic molded body - Google Patents

Exothermic molded body Download PDF

Info

Publication number
JP5339888B2
JP5339888B2 JP2008326856A JP2008326856A JP5339888B2 JP 5339888 B2 JP5339888 B2 JP 5339888B2 JP 2008326856 A JP2008326856 A JP 2008326856A JP 2008326856 A JP2008326856 A JP 2008326856A JP 5339888 B2 JP5339888 B2 JP 5339888B2
Authority
JP
Japan
Prior art keywords
heat
heat generating
molded body
exothermic
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008326856A
Other languages
Japanese (ja)
Other versions
JP2010150303A (en
Inventor
兼人 大山
輝男 内堀
梨江 宮島
嘉男 田村
春見 半田
覺 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynic Corp
Original Assignee
Dynic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynic Corp filed Critical Dynic Corp
Priority to JP2008326856A priority Critical patent/JP5339888B2/en
Publication of JP2010150303A publication Critical patent/JP2010150303A/en
Application granted granted Critical
Publication of JP5339888B2 publication Critical patent/JP5339888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat generating molded body which has excellent strength, wherein a problem of a conventional technique based on using powder as it is improved while keeping excellent heat generating characteristics of a conventional pulverized heat generating body. <P>SOLUTION: The heat generating molded body contains: a heat generating material which generates heat by reacting with water; and a fluorine-based resin, wherein, more specifically, the content of the heat generating material is 20-99 wt.% and the content of the fluorine-based resin is 80-1 wt.%, based on 100 wt.% of the sum total of the heat generating material and the fluorine-based resin. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、水と反応することにより発熱する発熱性成形体に関する。   The present invention relates to an exothermic molded body that generates heat by reacting with water.

従来、水と反応することにより発熱する発熱体としては、酸化カルシウムが知られている(例えば、特許文献1)。更に改良したものとして、酸化カルシウムとアルミニウムとを混合したものが知られている(例えば、特許文献2〜5)。特許文献2〜5の発熱体は、酸化カルシウムと水とを反応させて発熱させるとともにこの反応によって生成した水酸化カルシウムとアルミニウムとを反応させることにより発熱させるものであり、食品などの物品を加熱するために十分な発熱量が短時間で得られる。特に特許文献3には、反応後、約30秒で約100℃に達し、この温度を20分以上維持できるとされている。そして、この発熱反応を利用して、日本酒や駅弁を屋外で温めたり、調理済みのレトルト食品を再加熱したりしている。   Conventionally, calcium oxide is known as a heating element that generates heat by reacting with water (for example, Patent Document 1). As a further improvement, a mixture of calcium oxide and aluminum is known (for example, Patent Documents 2 to 5). The heating elements of Patent Documents 2 to 5 cause calcium oxide and water to react with each other and generate heat, and cause calcium hydroxide and aluminum generated by this reaction to generate heat, and heat articles such as foods. A sufficient calorific value can be obtained in a short time. In particular, Patent Document 3 states that after the reaction, the temperature reaches about 100 ° C. in about 30 seconds, and this temperature can be maintained for 20 minutes or more. And using this exothermic reaction, sake and ekiben are warmed outdoors, and cooked retort food is reheated.

上記従来の発熱体(特に特許文献2〜5)は、酸化カルシウム及びアルミニウムを含む有効成分の粉末を不織布などの内袋に収容し、使用時に内袋ごと水と接触させ、内袋内部に浸透した水と有効成分とを反応させて発熱させている。この発熱体は、有効成分が粉末であるために水との接触が容易であり、発熱させ易いという利点がある。   The conventional heating element (especially Patent Documents 2 to 5) contains powder of an active ingredient containing calcium oxide and aluminum in an inner bag such as a nonwoven fabric, and in contact with water together with the inner bag during use, penetrates into the inner bag. The generated water reacts with the active ingredients to generate heat. This heating element has the advantage that since the active ingredient is powder, it can be easily brought into contact with water and easily heated.

しかしながら、上記従来の発熱体は、有効成分が粉末であるために使用前及び発熱中に内袋から粉末が漏れ出るという問題がある。食品などの加熱に利用する場合には、漏れ出した粉末が食品に混入するおそれがあり、そのような事態を回避する必要がある。また、発熱反応に際して水素ガスが副生する。しかも、発熱によって水蒸気が発生するため、これらのガス成分が袋内部を膨張させ、袋の細かな穴から噴出しようとして、新たに袋内に入ろうとする水の浸入を抑える。また、発熱中に膨張した袋の中で粉体が充満した後、固形化するため、余裕を持って発熱体を収容する空間を確保する必要がある。また、元より内袋に有効成分の粉末を収容する作業は面倒である。   However, the conventional heating element has a problem in that the powder leaks from the inner bag before use and during heat generation because the active ingredient is powder. When used for heating foods and the like, the leaked powder may be mixed into the foods, and such a situation needs to be avoided. In addition, hydrogen gas is by-produced during the exothermic reaction. Moreover, since water vapor is generated due to heat generation, these gas components expand the inside of the bag and suppress the invasion of water that is about to enter the bag in an attempt to be ejected from a fine hole in the bag. In addition, since the powder is filled in the bag expanded during heat generation and then solidifies, it is necessary to secure a space for accommodating the heat generating element with a margin. Moreover, the operation | work which accommodates the powder of an active ingredient in an inner bag from the beginning is troublesome.

そこで、有効成分の粉末をそのまま用いるのではなく、成形体に加工して用いることが方策として考えられるが、単に成形体に加工しても水と有効成分との接触面積が減少する結果、発熱反応が迅速且つ十分に得られないという課題がある。なお、特許文献6には、酸化カルシウムを主成分とする発熱成形体であって空隙率、強度、透水度等を特定範囲に設定したものが提案されているが(特に特許請求の範囲)、発熱材料の粒度や成形圧力の選択によって成形体を形成する場合には空隙率や透水度を考慮すると強度が不十分になり易く、強度と発熱効率とを両立させるには更なる改良が必要である。   Therefore, it is conceivable that the active ingredient powder is not used as it is, but is processed into a molded body. However, even if the molded body is simply processed, the contact area between water and the active ingredient decreases, resulting in heat generation. There is a problem that the reaction cannot be obtained quickly and sufficiently. Patent Document 6 proposes an exothermic molded body mainly composed of calcium oxide, in which the porosity, strength, water permeability, and the like are set in specific ranges (particularly in the claims), When forming a compact by selecting the particle size and molding pressure of the heat generating material, the strength tends to be insufficient when considering the porosity and water permeability, and further improvement is necessary to achieve both strength and heat generation efficiency. is there.

従って、従来の粉末状発熱体の優れた発熱特性を維持しつつ、粉末をそのまま用いることに基づく従来技術の問題を改善した、良好な強度を有する発熱性成形体の開発が望まれている。
実開平1−158485号公報 特許第3467729号公報 特許第4008490号公報 特開2007−63404号公報 特開2007−131689号公報 特開平4−168190号公報
Accordingly, there is a demand for the development of a heat-generating molded body having good strength that improves the problems of the prior art based on using powder as it is while maintaining the excellent heat generation characteristics of the conventional powder-like heat generating body.
Japanese Utility Model Publication No. 1-158485 Japanese Patent No. 3467729 Japanese Patent No. 4008490 JP 2007-63404 A Japanese Patent Laid-Open No. 2007-131589 JP-A-4-168190

本発明は、従来の粉末状発熱体の優れた発熱特性を維持しつつ、粉末をそのまま用いることに基づく従来技術の問題を改善した、良好な強度を有する発熱性成形体を提供することを目的とする。   An object of the present invention is to provide an exothermic molded body having good strength, which has improved the problems of the prior art based on the use of powder as it is while maintaining the excellent heat generation characteristics of the conventional powdery heating element. And

本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、水と反応して発熱する発熱材料と特定の樹脂成分を併用する場合には、上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved when a heat generating material that generates heat by reacting with water and a specific resin component are used in combination. It came to be completed.

即ち、本発明は下記の発熱成形体に関する。
1.水と反応して発熱する発熱材料とフッ素系樹脂を含有する発熱性成形体であって、
発熱材料が酸化カルシウムとアルミニウムとの混合物を含有
発熱材料とフッ素系樹脂の合計量を100重量%とした場合に、発熱材料の含有量が20〜99重量%であり、フッ素系樹脂の含有量が80〜1重量%である、
発熱性成形体。
.前記フッ素系樹脂は、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド及びエチレン−テトラフルオロエチレン共重合体からなる群から選択される少なくとも1種である、請求項に記載の発熱性成形体。
.前記フッ素系樹脂は、フィブリル化させたポリテトラフルオロエチレンである、請求項に記載の発熱性成形体。
.表面積を増やす加工が施されている、請求項1〜のいずれかに記載の発熱性成形体。
.ペレット状である、請求項1〜のいずれかに記載の発熱性成形体。
.シート状である、請求項1〜のいずれかに記載の発熱性成形体。
That is, this invention relates to the following exothermic molded object.
1. An exothermic molded body containing a heat generating material that generates heat by reacting with water and a fluororesin,
Heating material comprises a mixture of calcium oxide and aluminum,
When the total amount of the heat generating material and the fluororesin is 100% by weight, the content of the heat generating material is 20 to 99% by weight, and the content of the fluororesin is 80 to 1% by weight.
Exothermic molded body.
2 . The heat generation according to claim 1 , wherein the fluororesin is at least one selected from the group consisting of polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, and an ethylene-tetrafluoroethylene copolymer. Molded product.
3 . The exothermic molded article according to claim 1 , wherein the fluororesin is fibrillated polytetrafluoroethylene.
4 . The exothermic molded object according to any one of claims 1 to 3 , wherein a process for increasing a surface area is performed.
5 . The exothermic molded object according to any one of claims 1 to 4 , which is in a pellet form.
6 . The exothermic molded object according to any one of claims 1 to 4 , which is in a sheet form.

本発明の発熱性成形体は、水と反応して発熱する発熱材料とフッ素系樹脂を含有することを特徴とする。   The exothermic molded article of the present invention is characterized by containing a heat generating material that generates heat by reacting with water and a fluororesin.

上記特徴を有する本発明の発熱性成形体は、特にフッ素系樹脂をバインダー成分として用いることにより成形体とされているため、使用前及び発熱中に有効成分の粉末が漏れ出すことが防止されている。また、フッ素系樹脂は成形体を形成する際の剪断力によって容易にフィブリル化するため、発熱材料をコーティングせず、フィブリル化した糸状のフッ素系樹脂が発熱材料と点接着しているので、成形体にした後でも有効成分と水との接触の妨げになり難く、発熱特性を高く維持することができ粉落ちしない高強度な成形体ができる。更に、成形体であるため内袋に収容して用いる必要がなく、しかも発熱時の膨張が抑制されているため、発熱体を収容する空間を最小限の容積に抑えることができる。   Since the exothermic molded body of the present invention having the above characteristics is formed into a molded body by using a fluorine resin as a binder component, it is possible to prevent the powder of the active ingredient from leaking before use and during heat generation. Yes. In addition, since the fluororesin is easily fibrillated by the shearing force when forming the molded body, the heat-generating material is not coated, and the fibrillated thread-like fluororesin is point-bonded to the heat-generating material. Even after making into a body, it is difficult to interfere with the contact between the active ingredient and water, the heat generation characteristics can be kept high, and a high-strength molded body that does not fall off can be obtained. Furthermore, since it is a molded body, it is not necessary to be housed in an inner bag and the expansion during heat generation is suppressed, so that the space for housing the heat generating body can be suppressed to a minimum volume.

本発明で用いる発熱材料としては、水と反応して発熱するものであれば限定されないが、例えば、酸化カルシウム、酸化カルシウムとアルミニウムとの混合物、ソーダ石灰、マグネシウム−鉄合金等の少なくとも1種が挙げられる。これらの発熱材料の中でも、特に酸化カルシウムとアルミニウムとの混合物が好ましい。   The exothermic material used in the present invention is not limited as long as it reacts with water and generates heat. For example, at least one of calcium oxide, a mixture of calcium oxide and aluminum, soda lime, magnesium-iron alloy and the like can be used. Can be mentioned. Among these heat generating materials, a mixture of calcium oxide and aluminum is particularly preferable.

上記発熱材料の平均粒子径は限定的ではないが、5〜200μm程度が好ましく、10〜100μm程度がより好ましい。   The average particle size of the heat generating material is not limited, but is preferably about 5 to 200 μm, more preferably about 10 to 100 μm.

上記発熱材料の比表面積は限定的ではない。例えば、酸化カルシウムは乾燥剤用に一般に用いられるものや、更に比表面積の大きなものも使用できる。比表面積の大きな酸化カルシウムを用いることにより、発熱特性を向上させることができる。   The specific surface area of the heat generating material is not limited. For example, calcium oxide generally used for a desiccant or one having a larger specific surface area can be used. By using calcium oxide having a large specific surface area, the heat generation characteristics can be improved.

本発明で用いるフッ素系樹脂としては、上記発熱材料を含む成形体を形成する際に、バインダーとして作用するとともに成形体を形成する際の剪断力によって容易にフィブリル化するものが好ましい。例えば、押出し成形により成形体を形成する場合には、成形圧力、ノズルとシリンダーの断面積比等を変えることにより剪断力を調整できる。また、プレス成形により成形体を形成する場合には、プレス圧力を変えることにより剪断力を調整できる。このようなフッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、エチレン−テトラフルオロエチレン共重合体等が挙げられる。この中でも、特にPTFEがフィブリル化させ易い点で好ましい。   The fluororesin used in the present invention is preferably one that acts as a binder and easily fibrillates by a shearing force when forming a molded body when the molded body containing the heat generating material is formed. For example, when forming a molded body by extrusion molding, the shearing force can be adjusted by changing the molding pressure, the cross-sectional area ratio between the nozzle and the cylinder, and the like. Moreover, when forming a molded object by press molding, a shear force can be adjusted by changing a press pressure. Examples of such a fluororesin include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene, polyvinylidene fluoride, and an ethylene-tetrafluoroethylene copolymer. Among these, PTFE is particularly preferable because it can be easily fibrillated.

上記発熱材料とフッ素系樹脂の混合割合は限定されないが、発熱材料とフッ素系樹脂の合計量を100重量%とした場合に、発熱材料の含有量が20〜99重量%であり、フッ素系樹脂の含有量が80〜1重量%であれば好ましい。また、発熱材料の含有量が60〜99重量%であり、フッ素系樹脂の含有量が40〜1重量%であればより好ましい。更に、発熱材料の含有量は80〜97重量%がより好ましく、フッ素系樹脂の含有量は20〜3重量%がより好ましい。   The mixing ratio of the heat generating material and the fluororesin is not limited, but when the total amount of the heat generating material and the fluororesin is 100% by weight, the content of the heat generating material is 20 to 99% by weight, and the fluororesin The content of is preferably 80 to 1% by weight. Further, it is more preferable that the content of the heat generating material is 60 to 99% by weight and the content of the fluororesin is 40 to 1% by weight. Furthermore, the content of the heat generating material is more preferably 80 to 97% by weight, and the content of the fluororesin is more preferably 20 to 3% by weight.

上記フッ素系樹脂は表面自由エネルギーが低く撥水性を有するため、過度に配合すると発熱材料と水との接触を妨げる可能性があるため、上記の通り、発熱材料とフッ素系樹脂の合計量を100重量%としてフッ素系樹脂の含有量を好ましくは80重量%以下、より好ましくは40重量%以下に設定する。   Since the fluororesin has low surface free energy and water repellency, excessive blending may hinder the contact between the heat generating material and water. Therefore, as described above, the total amount of the heat generating material and the fluororesin is set to 100. The content of the fluororesin is preferably set to 80% by weight or less, more preferably 40% by weight or less as the weight%.

本発明の発熱性成形体は、上記成分に加えて他の成分を併用してもよい。例えば、硫酸カルシウム、硫酸第1鉄、塩化マグネシウム、亜硫酸ナトリウム、リン酸ナトリウム、炭酸ナトリウム等を配合できる。これらの含有量は限定的ではないが、上記発熱材料100重量部に対して5〜10重量部とすることが好ましい。   In the exothermic molded article of the present invention, other components may be used in combination with the above components. For example, calcium sulfate, ferrous sulfate, magnesium chloride, sodium sulfite, sodium phosphate, sodium carbonate and the like can be blended. Although these content is not limited, it is preferable to set it as 5-10 weight part with respect to 100 weight part of said heat-generating materials.

本発明の発熱性成形体は、上記成分を混合・成形することにより得られる。成形時は、成形を容易に行えるように成形助剤を併用してもよい。例えば、イソパラフィンなどの炭化水素系化合物や、プロピレングリコールなどのグリコール系化合物や、シリコーンなどの油性化合物などがあげられる。   The exothermic molded body of the present invention can be obtained by mixing and molding the above components. At the time of molding, a molding aid may be used in combination so that the molding can be easily performed. Examples thereof include hydrocarbon compounds such as isoparaffin, glycol compounds such as propylene glycol, and oily compounds such as silicone.

成形助剤の使用量は限定されるものではなく、併用する成形助剤の種類に応じ適宜調整すればよい。成形方法としては押出し成形やプレス成形など所望の形状に成形できる限り限定されない。押出し成形においては、使用原料の配合比率によって成形圧力やノズルとシリンダーの断面積比を適宜設定し、プレス成形においては使用原料の混合時のシェアや成形圧力を適宜設定する。   The amount of the molding aid used is not limited, and may be appropriately adjusted according to the type of molding aid used together. The molding method is not limited as long as it can be molded into a desired shape such as extrusion molding or press molding. In extrusion molding, the molding pressure and the cross-sectional area ratio of the nozzle and cylinder are appropriately set according to the mixing ratio of the raw materials used, and in press molding, the share and molding pressure when mixing the raw materials used are appropriately set.

本発明の発熱性成形体の形状は、発熱体に適した形状であれば良く、例えば、ペレット状、コイン状、シート状が挙げられる。これらの形状に加工する場合には、厚さは0.1〜10mm程度に設定することが好ましい。厚さが0.1mmよりも薄い場合は用いるシートの枚数が多くなりシートの面積が極めて大きくなるので好ましくない。シート状には、使用原料の混合物を2軸延伸やカレンダー加工などにより圧延して作製できる。また、ペレット状やコイン状は押出し成形やプレス成形などにより作成したものを使用したり、シート状のものを粉砕や抜き加工したりすることにより作製できる。   The shape of the exothermic molded body of the present invention may be any shape suitable for the heating element, and examples thereof include a pellet shape, a coin shape, and a sheet shape. When processing into these shapes, the thickness is preferably set to about 0.1 to 10 mm. When the thickness is less than 0.1 mm, the number of sheets to be used increases and the area of the sheet becomes extremely large, which is not preferable. The sheet can be produced by rolling a mixture of used raw materials by biaxial stretching or calendering. Moreover, the pellet form and the coin form can be produced by using those prepared by extrusion molding or press molding, or by pulverizing or punching a sheet.

また、発熱体の表面には、表面積を増やす加工が施されていることが好ましい。例えば、表面に凹凸形状を設けたり、穴や切り込みを設けたりすることにより容易に表面積を増やすことができる。更に、成形体の強度を維持できる範囲内で多孔質の程度を変えれば、水分の吸収程度を調整できるため、発熱の程度を調整できる。発熱の程度が急峻なものは発熱用途に適しており、発熱の程度が緩やかなものは保温用途に適している。   Moreover, it is preferable that the surface of the heating element is processed to increase the surface area. For example, the surface area can be easily increased by providing an uneven shape on the surface, or providing holes or cuts. Furthermore, if the degree of porosity is changed within a range in which the strength of the molded body can be maintained, the degree of moisture absorption can be adjusted, so the degree of heat generation can be adjusted. Those with sharp heat generation are suitable for heat generation applications, and those with moderate heat generation are suitable for heat insulation applications.

本発明の発熱性成形体は、例えば、駅弁などの食品を加工する場合には、外側容器内の最下部に本発明の発熱性成形体と水を収容し、使用時にこれらが接触するように設定し、更に内蓋の上に加熱する食品を収容する。そして、使用時に本発明の発熱性成形体と水が接触・反応して発熱が起こり、食品が加熱される。加熱時間や発熱量については、用いる発熱材料の種類や成形体の大きさを調整することにより適宜調整できる。また、食品を加熱する用途だけでなく、保温材としての用途やアロマテラピー材料(芳香剤の加熱)の用途にも利用できる。   The exothermic molded body of the present invention, for example, when processing food such as ekiben, accommodates the exothermic molded body of the present invention and water in the lowermost part of the outer container so that they come into contact with each other during use. Set and contain food to be heated on the inner lid. And the exothermic molded object of this invention and water contact and react at the time of use, heat_generation | fever arises, and a foodstuff is heated. The heating time and the amount of heat generated can be appropriately adjusted by adjusting the type of heat generating material used and the size of the molded body. Moreover, it can be used not only for heating foods but also for heat-retaining materials and for aromatherapy materials (heating fragrances).

本発明の発熱性成形体は、特にフッ素系樹脂をバインダー成分として用いることにより成形体とされているため、使用前及び発熱中に有効成分の粉末が漏れ出すことが防止されている。また、フッ素系樹脂は成形体を形成する際の剪断力によって容易にフィブリル化するため、発熱材料をコーティングせず、フィブリル化した糸状のフッ素系樹脂が発熱材料と点接着しているので、成形体にした後でも有効成分と水との接触の妨げになり難く、発熱特性を高く維持することができ粉落ちしない高強度な成形体ができる。更に、成形体であるため内袋に収容して用いる必要がなく、しかも発熱時の膨張が抑制されているため、発熱体を収容する空間を最小限の容積に抑えることができる。   Since the exothermic molded body of the present invention is formed into a molded body by using a fluororesin as a binder component, the active ingredient powder is prevented from leaking before use and during heat generation. In addition, since the fluororesin is easily fibrillated by the shearing force when forming the molded body, the heat-generating material is not coated, and the fibrillated thread-like fluororesin is point-bonded to the heat-generating material. Even after making into a body, it is difficult to interfere with the contact between the active ingredient and water, the heat generation characteristics can be kept high, and a high-strength molded body that does not fall off can be obtained. Furthermore, since it is a molded body, it is not necessary to be housed in an inner bag and the expansion during heat generation is suppressed, so that the space for housing the heat generating body can be suppressed to a minimum volume.

以下に実施例・比較例を示して本発明を説明する。但し本発明は実施例に限定されない。   Hereinafter, the present invention will be described with reference to examples and comparative examples. However, the present invention is not limited to the examples.

実施例1〜20
アルミニウム(品名「VA−235」、山石金属製、平均粒子径40〜50μm)100重量部に対して、酸化カルシウム(吉澤石灰工業製の水酸化カルシウム「カルミユー メソックス」(登録商標)の焼成物)50重量部、炭酸ナトリウム(品名「ソーダ石灰」、トクヤマ製、平均粒子径100μm)37.5重量部及び塩化マグネシウム(品名「塩化マグネシウム」、丸安産業製、平均粒子径66μm)5.25重量部を混合して発熱材料とした。
Examples 1-20
Calcium oxide (calcined product of calcium hydroxide “Karmyu Mesox” (registered trademark) manufactured by Yoshizawa Lime Industry) with respect to 100 parts by weight of aluminum (product name “VA-235”, manufactured by Yamaishi Metal, average particle size 40-50 μm) 50 parts by weight, sodium carbonate (product name “soda lime”, manufactured by Tokuyama, average particle size 100 μm) 37.5 parts by weight and magnesium chloride (product name “magnesium chloride”, manufactured by Maruyasu Sangyo, average particle size 66 μm) 5.25 weights The parts were mixed to obtain a heat generating material.

発熱材料に、バインダー:PTFE(品名「F-201」ダイキン工業製)及び成形助剤:炭化水素系化合物(品名「アイソハ゜ーM」(登録商標)、エクソンモービル製)を下記表1に示す混合割合で混合してコイン状又はシート状成形体(発熱剤)を作製した。コイン状成形体の直径は23mmとした(以下の実施例でも同じとした)。   Mixing proportions shown in Table 1 below include binder: PTFE (product name “F-201” manufactured by Daikin Industries) and molding aid: hydrocarbon compound (product name “Iso-H M” (registered trademark), manufactured by ExxonMobil)) as the heat generating material. To form a coin-shaped or sheet-shaped molded body (heat generating agent). The diameter of the coin-shaped molded body was 23 mm (the same applies to the following examples).

成形体の厚み、表面凹凸(穴)の有無については下記表1の通りとした。   The thickness of the molded body and the presence or absence of surface irregularities (holes) were as shown in Table 1 below.

Figure 0005339888
Figure 0005339888

[表1中、2倍量、3倍量は発熱剤に対する水分量を示す]
(発熱試験)
2重構造の容器を用意し、下段に上記発熱剤(発熱剤重量各18g)とその2倍量又は3倍量の水を入れ、容器の上段に20℃の水を200g入れた。上段に入れた水の温度変化をモニターした。発熱試験の結果を示すグラフを図2〜図5に示す。
[In Table 1, the double amount and the triple amount indicate the water content with respect to the exothermic agent.]
(Fever test)
A container having a double structure was prepared, and the exothermic agent (18 g each of exothermic agent weight) and twice or three times the amount of water were added to the lower stage, and 200 g of 20 ° C. water was added to the upper stage of the container. The temperature change of the water in the upper stage was monitored. The graph which shows the result of a heat_generation | fever test is shown in FIGS.

図2〜図5から明らかなように、実施例1〜20の全てにおいて温度上昇の程度は異なるものの、何れも温度上昇(高いものは70℃以上に上昇)しており、加熱又は保温手段として利用できることがわかる。   As is apparent from FIGS. 2 to 5, although all of Examples 1 to 20 have different degrees of temperature rise, all of them have risen in temperature (higher rises to 70 ° C. or more) and are used as heating or heat retaining means. You can see that it can be used.

Figure 0005339888
Figure 0005339888

Figure 0005339888
Figure 0005339888

Figure 0005339888
Figure 0005339888

Figure 0005339888
Figure 0005339888

Figure 0005339888
Figure 0005339888

(膨張率試験)
発熱剤(発熱前)の厚みは表1に記載の通りである。発熱試験の終了直後に測定した発熱剤(発熱後)の厚みを測定して膨張率を調べた。膨張率を下記表5に示す。
(Expansion coefficient test)
The thickness of the heat generating agent (before heat generation) is as shown in Table 1. The expansion coefficient was examined by measuring the thickness of the heat generating agent (after heat generation) measured immediately after the end of the heat generation test. The expansion coefficient is shown in Table 5 below.

実施例21〜23
酸化カルシウム(品名「ホ゛ルミック」、有恒鉱業製、平均粒子径31μm)100重量部を発熱材料とした。
Examples 21-23
100 parts by weight of calcium oxide (product name “Volmic”, made by Yue Mining Co., Ltd., average particle size 31 μm) was used as a heat generating material.

発熱材料に、バインダー:PTFE(品名「F-201」ダイキン工業製)及び成形助剤:炭化水素系化合物(品名「アイソハ゜ーM」(登録商標)、エクソンモービル製)を下記表3に示す混合割合で混合してコイン状成形体(発熱剤)を作製した。   Mixing ratios shown in Table 3 below include binder: PTFE (product name “F-201” manufactured by Daikin Industries) and molding aid: hydrocarbon compound (product name “Iso-H M” (registered trademark), manufactured by ExxonMobil)) as the heat generating material. To obtain a coin-shaped molded body (exothermic agent).

成形体の厚み、表面凹凸(穴)の有無については下記表3の通りとした。   The thickness of the molded body and the presence or absence of surface irregularities (holes) were as shown in Table 3 below.

Figure 0005339888
Figure 0005339888

実施例1〜20と同様に、発熱試験及び膨張率試験を実施した。発熱試験の結果を示すグラフを図7に示す。図7の結果から明らかなように、実施例21〜23の全てにおいて温度上昇の程度は異なるものの、何れも温度上昇(高いものは70℃程度に上昇)しており、加熱又は保温手段として利用できることがわかる。酸化カルシウムを発熱材料とした場合でも発熱剤重量(g)を増やせば加熱手段として利用できることがわかる。   As in Examples 1 to 20, an exothermic test and an expansion rate test were performed. A graph showing the results of the heat generation test is shown in FIG. As is clear from the results of FIG. 7, although all of Examples 21 to 23 have different temperature rises, they all have a temperature rise (higher ones rise to about 70 ° C.) and are used as heating or heat retaining means. I understand that I can do it. It can be seen that even when calcium oxide is used as the heat generating material, it can be used as a heating means by increasing the weight (g) of the heat generating agent.

膨張率試験の結果を下記表5に示す。表5から明らかなように、本発明の発熱性成形体は発熱材料が酸化カルシウムの場合でも従来品と比較して膨張率が非常に抑制されていることが分かる。有効成分の割合が多いほど、発熱体の厚さが薄いほど発熱速度が速くなることが分かる。   The results of the expansion coefficient test are shown in Table 5 below. As is apparent from Table 5, it can be seen that the exothermic molded body of the present invention has an extremely low expansion rate compared to the conventional product even when the heat generating material is calcium oxide. It can be seen that the heat generation rate increases as the proportion of the active ingredient increases and the thickness of the heating element decreases.

実施例24、25
(実施例24)
成形助剤を使用しない以外は実施例4と同様にしてコイン状成形体を作製した。
Examples 24 and 25
(Example 24)
A coin-shaped molded body was produced in the same manner as in Example 4 except that no molding aid was used.

実施例で作製したコイン状成形体(直径23mm)は、いずれも底部又は上部の円部分に10kgの荷重をかけても全く変形が認められず優れた強度を保持していた。
(実施例25)
コイン状成形体ではなく5mm角のペレット状成形体とした以外は実施例4と同様にして成形体を作製した。
The coin-shaped molded bodies (diameter: 23 mm) produced in the Examples were not deformed at all even when a load of 10 kg was applied to the bottom or upper circular portion, and maintained excellent strength.
(Example 25)
A molded body was produced in the same manner as in Example 4 except that a 5 mm square pellet-shaped molded body was used instead of the coin-shaped molded body.

実施例24、25の成形体(発熱剤)に対して、実施例1〜20と同様に発熱試験を実施した。発熱試験の結果を示すグラフを図8に示す。図8の結果から明らかなように、ペレット状成形体とした場合でも加熱又は保温手段として使用できることが分かる。また、成形助剤を用いなくても加熱又は保温手段として使用できることが分かる。   Exothermic tests were performed on the molded bodies (exothermic agents) of Examples 24 and 25 in the same manner as in Examples 1-20. A graph showing the results of the heat generation test is shown in FIG. As is apparent from the results of FIG. 8, it can be seen that the pellets can be used as heating or heat retaining means. Moreover, it turns out that it can be used as a heating or heat retention means, without using a shaping | molding adjuvant.

比較例1〜3
下記表4に示す通り、各特許文献に記載の各実施例を追試して従来品の粉末状発熱剤(発熱剤を内袋に収容した態様)を作製した。
Comparative Examples 1-3
As shown in Table 4 below, each example described in each patent document was reexamined to produce a conventional powdery heat generating agent (a mode in which the heat generating agent was housed in an inner bag).

Figure 0005339888
Figure 0005339888

実施例1〜20と同様に、発熱試験及び膨張率試験を実施した。発熱試験の結果を示すグラフを図6に示す。図2などの本願実施例と図6の結果から明らかなように、本発明の発熱性成形体は従来品の粉末状発熱剤と比較して発熱特性に遜色ないことが分かる。   As in Examples 1 to 20, an exothermic test and an expansion rate test were performed. A graph showing the results of the heat generation test is shown in FIG. As is apparent from the example of the present application such as FIG. 2 and the results of FIG. 6, it can be seen that the exothermic molded article of the present invention is comparable to the exothermic characteristics as compared with the conventional powdered exothermic agent.

膨張率試験の結果を下記表5に示す。表5から明らかなように、本発明の発熱性成形体は従来品と比較して膨張率が非常に抑制されていることが分かる。有効成分の含有量が多い場合には、厚みの膨張が比較的大きくなるが、穴加工を施すことで膨張を抑制することができる。有効成分の割合が多いほど、また発熱体の厚さが薄いほど発熱速度が速くなることが分かる。   The results of the expansion coefficient test are shown in Table 5 below. As is apparent from Table 5, it can be seen that the exothermic molded body of the present invention has an extremely low expansion rate compared to the conventional product. When the content of the active ingredient is large, the expansion of the thickness becomes relatively large, but the expansion can be suppressed by drilling. It can be seen that the heating rate increases as the proportion of the active ingredient increases and the thickness of the heating element decreases.

また、実施例は膨張率試験の結果、表4からも分かるように、発熱前後で成形体としての形状を保持している。一方、比較例1〜3は発熱剤を内袋に収容した形態のため、発熱後は内袋なしでは発熱剤自身が形状を保持することができない。比較例4においても発熱前は成形体としての形状を保持できるが発熱後は発熱剤が水に離散して形状を保持することができない。本発明は発熱前後の形状保持性能の面でも優れていることがわかる。   In addition, as can be seen from Table 4 as a result of the expansion coefficient test, the example maintains the shape as a molded body before and after heat generation. On the other hand, since Comparative Examples 1 to 3 have a form in which the heat generating agent is housed in the inner bag, the heat generating agent itself cannot maintain the shape without the inner bag after the heat generation. Also in Comparative Example 4, the shape as a molded body can be maintained before heat generation, but the heat generating agent is dispersed in water and cannot retain the shape after heat generation. It turns out that this invention is excellent also in the surface of the shape retention performance before and behind heat_generation | fever.

Figure 0005339888
Figure 0005339888

比較例4
PTFEの代わりにポリエチレングリコール(PEG、非フッ素系樹脂)を使用し、炭化水素系の成形助剤を加えないこと以外は実施例1と同様にして発熱性成形体を作製した。
Comparative Example 4
An exothermic molded body was produced in the same manner as in Example 1 except that polyethylene glycol (PEG, non-fluorine resin) was used instead of PTFE, and no hydrocarbon-based molding aid was added.

PEGは親水性樹脂であり水の浸透性が良好のため発熱するが、PEGが水に溶解するため成形体は形状を保持できず崩れて発熱後の発熱材料は水に離散した。   PEG is a hydrophilic resin and generates heat because of its good water permeability. However, since PEG dissolves in water, the molded body could not retain its shape, and the exothermic material after heat generation was dispersed in water.

(a)コイン状発熱性成形体の模式図(一例)である。(b)表面に小穴を設けたコイン状発熱性成形体の模式図(一例)である。(A) It is a schematic diagram (an example) of a coin-like exothermic molded object. (B) It is a schematic diagram (an example) of the coin-like exothermic molded object which provided the small hole in the surface. 実施例1〜8の発熱試験の結果を示す図である。It is a figure which shows the result of the heat_generation | fever test of Examples 1-8. 実施例9〜14の発熱試験の結果を示す図である。It is a figure which shows the result of the heat_generation | fever test of Examples 9-14. 実施例15、16の発熱試験の結果を示す図である。It is a figure which shows the result of the heat_generation | fever test of Example 15 and 16. 実施例17〜20の発熱試験の結果を示す図である。It is a figure which shows the result of the heat_generation | fever test of Examples 17-20. 比較例1〜3の発熱試験の結果を示す図である。It is a figure which shows the result of the heat_generation | fever test of Comparative Examples 1-3. 実施例21〜23の発熱試験の結果を示す図である。It is a figure which shows the result of the heat_generation | fever test of Examples 21-23. 実施例24、25の発熱試験の結果を示す図である。It is a figure which shows the result of the heat_generation | fever test of Example 24,25.

Claims (6)

水と反応して発熱する発熱材料とフッ素系樹脂を含有する発熱性成形体であって、
発熱材料が酸化カルシウムとアルミニウムとの混合物を含有
発熱材料とフッ素系樹脂の合計量を100重量%とした場合に、発熱材料の含有量が20〜99重量%であり、フッ素系樹脂の含有量が80〜1重量%である、
発熱性成形体。
An exothermic molded body containing a heat generating material that generates heat by reacting with water and a fluororesin,
Heating material comprises a mixture of calcium oxide and aluminum,
When the total amount of the heat generating material and the fluororesin is 100% by weight, the content of the heat generating material is 20 to 99% by weight, and the content of the fluororesin is 80 to 1% by weight.
Exothermic molded body.
前記フッ素系樹脂は、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド及びエチレン−テトラフルオロエチレン共重合体からなる群から選択される少なくとも1種である、請求項に記載の発熱性成形体。 The heat generation according to claim 1 , wherein the fluororesin is at least one selected from the group consisting of polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, and an ethylene-tetrafluoroethylene copolymer. Molded product. 前記フッ素系樹脂は、フィブリル化させたポリテトラフルオロエチレンである、請求項に記載の発熱性成形体。 The exothermic molded article according to claim 1 , wherein the fluororesin is fibrillated polytetrafluoroethylene. 表面積を増やす加工が施されている、請求項1〜のいずれかに記載の発熱性成形体。 The exothermic molded object according to any one of claims 1 to 3 , wherein a process for increasing a surface area is performed. ペレット状である、請求項1〜のいずれかに記載の発熱性成形体。 The exothermic molded object according to any one of claims 1 to 4 , which is in a pellet form. シート状である、請求項1〜のいずれかに記載の発熱性成形体。 The exothermic molded object according to any one of claims 1 to 4 , which is in a sheet form.
JP2008326856A 2008-12-24 2008-12-24 Exothermic molded body Expired - Fee Related JP5339888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008326856A JP5339888B2 (en) 2008-12-24 2008-12-24 Exothermic molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008326856A JP5339888B2 (en) 2008-12-24 2008-12-24 Exothermic molded body

Publications (2)

Publication Number Publication Date
JP2010150303A JP2010150303A (en) 2010-07-08
JP5339888B2 true JP5339888B2 (en) 2013-11-13

Family

ID=42569749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008326856A Expired - Fee Related JP5339888B2 (en) 2008-12-24 2008-12-24 Exothermic molded body

Country Status (1)

Country Link
JP (1) JP5339888B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09328340A (en) * 1996-06-07 1997-12-22 Murakashi Sekkai Kogyo Kk Dustproof treatment of dusting powder
TW571601B (en) * 2000-05-17 2004-01-11 Dynic Corp Hygroscopic molded material
JP2006291224A (en) * 2000-05-17 2006-10-26 Dynic Corp Moisture absorbing formed article
JP2003342558A (en) * 2002-05-24 2003-12-03 Kyodo:Kk Thermogenic agent
JP3921550B1 (en) * 2006-04-21 2007-05-30 マイコール株式会社 Food heating equipment

Also Published As

Publication number Publication date
JP2010150303A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
DK2615132T3 (en) AEROGEL / PTFE COMPOSITION INSULATION MATERIALS
Barker The reactivity of calcium oxide towards carbon dioxide and its use for energy storage
JP3979542B1 (en) Desiccant composition, desiccant molded product, equilibrium humidity control method thereof, and control method of equilibrium humidity maintenance time
CN101523125B (en) Oxygen activated heater and methods of manufacturing same
CA2838801C (en) A method of modulated exothermic chemical systems through phase change materials
US20130174835A1 (en) Porous oxygen activated heater
JP2018129377A (en) Heat conduction sheet
JP6472917B2 (en) Exothermic composition and heating element
JP5339888B2 (en) Exothermic molded body
Taniguchi et al. Dynamical superfluid response of 4 He confined in a nanometer-size channel
CN113861944A (en) Inorganic hydrated salt phase-change material composition, inorganic hydrated salt phase-change material, and preparation method and application thereof
JP7467024B2 (en) Thermal Conductive Sheet
JP2013199983A (en) Fluororesin gasket for pipe sealing
JP6244056B1 (en) Hydrogen generator comprising calcium oxide powder and aluminum powder
KR102605001B1 (en) heating pad
JPWO2014157726A1 (en) Exothermic composition and disposable body warmer using the same
Kiatkamjornwong et al. Natural rubber–cassava starch foam by compression moulding
JPH08269248A (en) Rubber composition
JP7341681B2 (en) Method for manufacturing expandable styrenic resin particles
JP7291625B2 (en) Exothermic intumescent composition
KR102237429B1 (en) Foamable heating composition and maunfacturing method thereof
JP2020147625A (en) Exothermic agent, heating agent employing the same, and heating method
KR101505517B1 (en) Thermogenic composition
WO2023182487A1 (en) Heat-generating body and heat-generating composition
US1642349A (en) Alloy structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees