WO2019123914A1 - Chemical heat storage complex, composition for forming chemical heat storage complex, and method for forming chemical heat storage complex - Google Patents

Chemical heat storage complex, composition for forming chemical heat storage complex, and method for forming chemical heat storage complex Download PDF

Info

Publication number
WO2019123914A1
WO2019123914A1 PCT/JP2018/042260 JP2018042260W WO2019123914A1 WO 2019123914 A1 WO2019123914 A1 WO 2019123914A1 JP 2018042260 W JP2018042260 W JP 2018042260W WO 2019123914 A1 WO2019123914 A1 WO 2019123914A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
chemical
chemical heat
elastomer
composition
Prior art date
Application number
PCT/JP2018/042260
Other languages
French (fr)
Japanese (ja)
Inventor
隆一 清岡
真 矢田
義之 佐野
香 河村
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2019560878A priority Critical patent/JP6863481B2/en
Publication of WO2019123914A1 publication Critical patent/WO2019123914A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/16Materials undergoing chemical reactions when used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a chemical heat storage composite including a resin and a chemical heat storage material.
  • chemical thermal storage materials such as metal oxides, salts, and adsorbents, and reaction medium gases such as water, ammonia, and methanol reversibly react chemically or adsorbate, and store heat and generate exothermic reactions by endothermic reaction. It is a heat storage system that dissipates heat.
  • Such chemical heat storage has a large heat storage amount compared with the latent heat and the sensible heat which are other heat storage methods, and has the advantage of being able to store heat stably for a long period of time because it is not necessary to keep warm.
  • Chemical thermal storage materials are used in chemical thermal storage systems such as chemical heat pumps where effective use of thermal energy is required. Using this chemical heat storage system, cold heat is created from exhaust heat of 100 ° C. or less emitted from a car, and studies are being conducted to improve the fuel efficiency of the car as an air conditioner system.
  • the chemical heat storage material is used, for example, by being packed in a heat exchanger.
  • a chemical thermal storage material as powder
  • the volume of the chemical thermal storage material expands and contracts in the process of repeating heat absorption and exothermic reaction, and the chemical thermal storage material drops out of the heat exchanger, resulting in a decrease in the amount of thermal storage. was there.
  • Patent Literature 1 a method of supporting a chemical thermal storage material on a cage-like carbon structure having a large number of holes by bringing a hardly volatile organic substance and a chemical thermal storage material into contact and firing under an inert atmosphere.
  • Patent Literature 1 a method of supporting a chemical thermal storage material on a cage-like carbon structure having a large number of holes by bringing a hardly volatile organic substance and a chemical thermal storage material into contact and firing under an inert atmosphere.
  • Patent Literature 1 a method of supporting a chemical thermal storage material on a cage-like carbon structure having a large number of holes by bringing a hardly volatile organic substance and a chemical thermal storage material into contact and firing under an inert atmosphere.
  • the chemical thermal storage medium is included in the dense three-dimensional structure formed by desorbing all the alkoxy groups bonded to silicon by baking the alkoxysilane at 680 ° C. or more, the chemical thermal storage medium is broken.
  • a method for prevention is disclosed (US Pat.
  • a method of preventing leakage of the heat storage material is considered by using a core-shell structure having a heat storage material including a chemical heat storage material as a core and a polyurethane polyurea having a high mechanical strength as a shell.
  • the structure becomes hard and brittle because it is a method of obtaining a three-dimensional structure surrounding the heat storage material by firing, and the heat exchanger can not follow the volume expansion of the chemical heat storage material.
  • the shell portion is provided with a function to prevent volatilization and exudation, so there is a problem that the chemical heat storage material and the reaction medium gas can not sufficiently react with each other.
  • the problem to be solved by the present invention is to provide a chemical heat storage composite which can stand off from the heat exchanger due to volumetric expansion of the heat storage material and can endure repeated use. .
  • a chemical heat storage composite comprising: a chemical heat storage composite containing an elastomer having a chemical crosslink structure and a chemical heat storage material.
  • a chemical heat storage composite characterized in that it is a chemical heat storage composite having a bulk density of 1.0 to 6.0 g / cm 3 , containing an elastomer having a chemical crosslink structure and a chemical heat storage material.
  • Item 3. The elastomer according to item 1 or 2, wherein the elastomer is at least one resin selected from the group consisting of natural rubber, diene rubber, olefin rubber, silicone resin, polyester resin, epoxy resin and urethane resin.
  • Chemical heat storage complex Item 4.
  • a composition for forming a chemical thermal storage composite comprising a liquid that is cured by heating and a chemical heat storage material, wherein the liquid that is cured by the heating becomes an elastomer when it is cured.
  • Composition for chemical thermal storage complex formation Item 5.
  • a composition for forming a chemical thermal storage composite comprising a liquid that cures by heating, and a chemical heat storage material, wherein the liquid that cures by heating becomes an elastomer when cured, and after curing
  • a composition for forming a chemical heat storage composite wherein the chemical heat storage composite is prepared to have a bulk density of 1.0 to 6.0 g / cm 3 .
  • composition for forming a chemical heat storage composite according to item 4 or 5, further comprising a solvent Item 7.
  • Item 8. Item 8. A step of applying the composition for forming a chemical heat storage composite according to any one of items 4 to 7 on the surface of a substrate, and a step of heating the substrate on which the composition for forming a chemical heat storage composite is applied And a method of forming a chemical thermal storage complex.
  • the chemical thermal storage composite of the present invention is excellent in heat storage density per volume, and can repeat volumetric expansion of a chemical thermal storage medium contained in the composite even if heat absorption and exothermic reaction are repeated. For this reason, the chemical heat storage composite of the present invention has an excellent effect of having a high heat storage density and having a long life. Moreover, according to the composition for chemical thermal storage complex formation of this invention, when a chemical thermal storage complex is formed using this, the chemical thermal storage complex which exhibits the above outstanding effects can be obtained.
  • the chemical thermal storage composite in the present invention is a composite material (sometimes referred to as a thermal storage material in the present specification) composed of a resin that is an elastomer having a chemical cross-linked structure and a chemical thermal storage material.
  • the chemical heat storage material is dispersed in the resin and is contained in the resin. Since the resin is an elastomer having a chemically cross-linked structure, the resin has a rubber-like structure and is an easy-to-stretch (soft) material. Therefore, by taking such a structure, it is possible to relieve the stress at the time of volumetric expansion and contraction of the chemical thermal storage material which occurs at the time of heat storage and heat radiation by the resin, and it is possible to prevent deterioration of the chemical thermal storage material. Further, the elastomer having a chemically crosslinked structure has high heat resistance, and can maintain a sufficient rubber-like structure even after repeated use, so that the life of the chemical heat storage material can be extended.
  • Elastomers having a chemically crosslinked structure are known to have high gas permeability, and even if a chemical heat storage material is contained in the resin, it can react with the reaction medium gas. Since the reaction between the chemical heat storage material and the reaction medium gas is also fully considered and designed, providing a void in the support structure is not an essential condition for functioning, so the heat storage density can be improved. It is. As a result, the above excellent effects can be obtained.
  • chemical heat storage composite refers to a composite of a chemical heat storage material and a resin.
  • the “chemical heat storage material” described later is different.
  • composition for chemical thermal storage composites mentioned later is a material used for formation of a chemical thermal storage composite, and it can form it by the below-mentioned method etc.
  • the elastomer used in the present invention is characterized by being an elastomer having a chemically crosslinked structure.
  • the elastomer having a chemically crosslinked structure is one obtained by covalently crosslinking a soft segment or a soft segment and a hard segment.
  • the hard segment in the elastomer is not particularly limited, and examples thereof include polystyrene, polyolefin, polyvinyl chloride, polyurethane, polyester, polyamide and the like.
  • the soft segment is not particularly limited, for example, polybutadiene, polyisoprene, polyisobutylene, aliphatic polyester, aliphatic polyether, polydimethylsiloxane, polyvinylidene fluoride, ethylene / propylene / diene rubber, ethylene / propylene rubber, acrylic rubber, Fluorine rubber, silicone rubber and the like can be mentioned.
  • Each segment may be of one type or a combination of two or more types.
  • the crosslinking is not particularly limited.
  • crosslinking with sulfur or sulfur compound vulcanization
  • crosslinking with epoxy group crosslinking with isocyanate and alcohol (urethane bond)
  • crosslinking with peroxide crosslinking by hydrosilylation reaction
  • dehydration Crosslinking by condensation and the like can be mentioned.
  • the crosslinking method is not particularly limited, and examples thereof include crosslinking by heating, crosslinking by ultraviolet light, and crosslinking by radiation. Crosslinking by heating is preferred from the viewpoint of productivity.
  • elastomer which has a chemical crosslinking structure
  • natural rubber, diene system rubber, olefin system rubber, silicone resin, polyester resin, epoxy resin, urethane resin, urethane rubber, fluororubber, silicone rubber etc. are mentioned.
  • Be Natural rubber, diene-based rubber, and rubber such as olefin-based rubber are not preferable because time and effort such as mastication and viscosity adjustment are separately required before crosslinking such as vulcanization.
  • Silicone resins polyester resins, epoxy resins, and so on because they can be combined with ease of obtaining raw materials, better processability and durability (heat resistance, light resistance, chemical resistance, etc.) and gas permeability and productivity as described below.
  • Urethane resin is preferred.
  • the resin having such a suitable chemical cross-linking structure is also attached to the heat exchanger in actual use, and when the endothermic reaction and the exothermic reaction are repeated, the chemical heat storage material falls off from the chemical heat storage composite. Can be suppressed for a longer period of time.
  • the elastomer having a chemically crosslinked structure preferably has a glass transition temperature of -140 ° C. or more and 30 ° C. or less, and an elastic modulus of 30 MPa or more and 0.3 MPa or more and 500 MPa or less It is preferable to be in the range of The glass transition temperature and the elastic modulus used the value calculated
  • the glass transition temperature of the elastomer in the chemical heat storage composite can be measured by a dynamic viscoelasticity measurement device, and the temperature of the maximum value of the loss tangent (tan ⁇ ) obtained by the measurement is taken as the glass transition temperature.
  • a strip-shaped chemical thermal storage composite was measured with a dynamic viscoelasticity measuring device under conditions of a temperature elevation temperature of 3 ° C./min and a frequency of 1 Hz.
  • the chemical heat storage material used in the present invention reversibly chemically reacts or adsorbs with the reaction medium gas, and is capable of storing heat as an endothermic reaction and releasing heat as an exothermic reaction.
  • Examples of the chemical heat storage material include metal oxides, hydroxides, salts, and adsorbents.
  • reaction medium gas examples include gases such as water (steam), ammonia, hydrogen, carbon dioxide, alcohols, ammonia, primary amines, secondary amines, and tertiary amines.
  • the reaction medium may be used alone or in combination of two or more.
  • Alcohols include methanol, ethanol, 1-propanol, 2-propanol, n-butanol, ethylene glycol and the like.
  • primary amines include methylamine, ethylamine and propylamine.
  • secondary amines include dimethylamine, ethylmethylamine, N-methylpropylamine and the like.
  • tertiary amines examples include trimethylamine, N, N-diethylmethylamine, N, N-dimethylethylamine and the like.
  • water (steam), ammonia, carbon dioxide, methanol, and ethanol are preferable from the viewpoint of excellent stability in repetition of heat storage and heat release when the chemical heat storage composite is used by being incorporated into a heat exchanger.
  • a preferred reaction medium gas with less hazard and ease of handling and relatively high heat removal is water (steam).
  • a chemical heat storage material suitable for the reaction medium gas can be appropriately selected. Any of known and commonly used chemical heat storage materials can be used.
  • the reaction between the chemical heat storage material and water (steam) is a hydration reaction, an adsorption reaction of water molecules, a hydroxylation reaction, etc. Can be mentioned.
  • An example of the reaction is shown below.
  • heat is generated upon hydration with water (steam), and endotherm occurs upon dehydration.
  • adsorption reaction of water molecules heat is generated when the water molecules are adsorbed to the heat storage material, and heat absorption occurs when dewatering.
  • an inorganic salt As a chemical thermal storage material which can form a hydrate, an inorganic salt, an organic salt, and a hydroxide are mentioned, for example.
  • the inorganic salt include halides, sulfates, phosphates and silicates.
  • the halide for example, fluoride, chloride, bromide, iodide and the like can be mentioned.
  • the fluoride include lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride and calcium fluoride.
  • chloride examples include lithium chloride, sodium chloride, potassium chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride, iron chloride, zinc chloride, cobalt chloride, nickel chloride, copper chloride, ammonium chloride and the like. It can be mentioned.
  • bromide for example, lithium bromide, sodium bromide, potassium bromide, magnesium bromide, calcium bromide, strontium bromide, barium bromide, iron bromide, zinc bromide, cobalt bromide, odor And nickel bromide and copper bromide.
  • iodide examples include lithium iodide, sodium iodide, potassium iodide, magnesium iodide, calcium iodide, calcium iodide, strontium iodide, barium iodide, iron iodide, zinc iodide, cobalt iodide, Nickel iodide, copper iodide and the like can be mentioned. These may be combined.
  • the sulfate include lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, strontium sulfate, barium sulfate, yttrium sulfate, lanthanum sulfate, chromium sulfate, manganese sulfate, iron sulfate, cobalt sulfate, sulfuric acid Nickel, copper sulfate, zinc sulfate, cerium sulfate, lead sulfate, aluminum sulfate, aluminum potassium sulfate, ammonium aluminum sulfate and the like can be mentioned. These may be combined.
  • phosphate examples include lithium phosphate, sodium phosphate, calcium phosphate, magnesium phosphate and the like. These may be combined.
  • silicic acid examples include lithium silicate, sodium silicate, potassium silicate, magnesium silicate, calcium silicate and aluminum silicate.
  • organic salt examples include carboxylates, sulfonates, phosphonates, phosphinates and the like. These may be combined.
  • Carboxylic acid salts are salts of carboxylic acids and metals, and as carboxylic acids, for example, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, oleic acid, linoleic acid, linolenic acid, lactic acid, apple Acid, citric acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid, aconitic acid, pyruvic acid, acrylic acid, methacrylic acid Acid, polyacrylic acid, polymethacrylic acid and the like, and specific examples of the metal include lithium, sodium, potassium, magnesium, calcium, barium, manganese, iron, cobalt, nickel, copper, zinc, aluminum and the like It can be mentioned. These may be combined.
  • the sulfonic acid salt is a salt of sulfonic acid and metal
  • specific examples of the sulfonic acid include methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, taurine, fluorosulfonic acid and the like.
  • Specific examples of the metal include lithium, sodium, potassium, magnesium, calcium, barium, manganese, iron, cobalt, nickel, copper, zinc, aluminum and the like. You may combine these.
  • the phosphonate is a salt of phosphonic acid and metal, and as the phosphonic acid, specifically, for example, methyl phosphonic acid, ethyl phosphonic acid, propyl phosphonic acid, phenyl phosphonic acid, methylene diphosphonic acid, 1,4-phenylene diphosphonic acid An acid etc. are mentioned.
  • the metal include lithium, sodium, potassium, magnesium, calcium, barium, manganese, iron, cobalt, nickel, copper, zinc, and aluminum. These may be combined.
  • the phosphinic acid salt is a salt of phosphinic acid and a metal.
  • Specific examples of the phosphinic acid include phenyl phosphinic acid, methyl phosphinic acid, ethyl phosphinic acid, aminoethyl phosphinic acid and the like.
  • lithium, sodium, potassium, magnesium, calcium, barium, manganese, iron, cobalt, nickel, copper, zinc, aluminum and the like can be mentioned. These may be combined.
  • hydroxide examples include lithium hydroxide, strontium hydroxide and barium hydroxide. These may be combined.
  • magnesium oxide, calcium oxide, zinc oxide, nickel oxide, cobalt oxide, iron oxide, copper oxide, copper oxide, strontium oxide, barium oxide are converted to oxides by dehydration reaction and to hydroxides by hydration reaction. And lanthanum oxide. These may be combined.
  • Examples of a chemical heat storage material capable of adsorbing and desorbing water molecules include zeolite, clay, silica gel, porous carbon, an organic structure, and acrylic fine particles. These may be combined.
  • the chemical heat storage composite according to the present invention has substantially no void derived from other than the chemical heat storage material and the elastomer, which is not substantially hollow (porous), from the viewpoint of obtaining a high heat storage density. Is preferred. Among them, it is desirable that the chemical thermal storage composite has a bulk density equal to or higher than the true density of at least the elastomer alone which does not contain a void, and equal to or lower than the true density when approximately 100% of the chemical thermal storage material is contained.
  • the bulk density of the chemical heat storage composite is desirably 0.9 to 6.0 g / cm 3 .
  • the heat storage density is determined by the type and weight of the heat storage material to be contained, and in actual use, a higher heat storage density is required based on the volume. That is, it is more preferable that the bulk density be 1.0 to 6.0 g / cm 3 , in which the amount of energy does not decrease even when converted to volume. Although a high heat storage density can be obtained by the porosity being almost zero, in the case of unintentionally including air bubbles in the process of curing, the state is not limited. Moreover, when using the additive for the purpose of thermal conductivity improvement etc., it calculates using the weight and volume except these additives.
  • the bulk density is a density obtained by dividing the weight of a substance by its volume, and the true density is a density excluding connection or an independent void contained in the substance. It is preferable not to include the foaming agent in the chemical heat storage composite and the chemical heat storage composite forming composition, in order to reduce the bulk density of the elastomer having a chemically crosslinked structure.
  • the bulk density of a chemical thermal storage composite is the density obtained by dividing the weight of a substance by its volume as described above, but the value is the true density of the elastomer and the chemical thermal storage medium, and the content thereof It is also possible to calculate from By comparing the measured value with the calculated value, it can be confirmed whether or not there is a void.
  • the method of producing the "chemical heat storage composite" of the present invention will be described below.
  • the chemical heat storage composite is formed, for example, by applying a composition for forming a chemical heat storage composite to a base or the like and heating the base.
  • the heat storage system is more advantageous than the light curing system in the preparation of the composition of the present invention because the chemical heat storage material itself has poor light transmittance due to its content and its content.
  • the composition for forming a chemical heat storage complex is a composition including a chemical heat storage material and a liquid which becomes an elastomer by curing by heating. From the viewpoint of easy handling, those which are liquid at normal temperature are preferably used.
  • any liquid which cures to an elastomer upon heating may be used, but preferably it is easy to obtain and more easily processable or durable (heat resistance, light resistance, chemical resistance, etc.), bulky.
  • a two-component curable composition which is a silicone resin, a polyester resin, an epoxy resin, or a urethane resin is preferable.
  • the chemical thermal storage composite obtained from such a suitable composition, from the chemical thermal storage composite is repeatedly used for the endothermic reaction and the exothermic reaction when installed in the heat exchanger even in actual use. Of the chemical heat storage material can be suppressed for a longer period of time.
  • liquid that cures to an elastomer upon heating examples include a combination of a main agent and a crosslinking agent or catalyst, and preferably, for example, a polymerizable double bond-containing polysiloxane and a double bond polymerization catalyst Moisture-curable terminal isocyanate group urethane prepolymers, epoxy compounds, and the like, combinations of high molecular weight polyols such as polyester polyols and polyether polyols, and polyisocyanates, repeating units of ether structure and / or ester structure, A two-part curable composition such as a combination with a compound selected from the group consisting of an amine compound, a phenol compound and an acid anhydride can be mentioned.
  • a one-component curable composition such as a solvent solution of polyamic acid which produces a polyimide resin upon heat crosslinking does not exhibit elastomeric properties due to too high an elastic modulus due to curing crosslinking, so any heat storage performance becomes insufficient.
  • a crosslinking agent, a catalyst, etc. necessary for curing may be included in advance in the composition for forming a chemical heat storage composite, or may be added to the composition for forming a chemical heat storage composite at the coating step. .
  • crosslinking agent and the catalyst examples include sulfur, a crosslinking agent having an amine group, a catalyst, a crosslinking agent having an isocyanate group, and the like, which can be appropriately selected depending on the main component.
  • crosslinking agent or catalyst having an amine group examples include aliphatic polyamines, alicyclic polyamines, Mannich bases, amine-epoxy adducts, polyamide polyamines, liquid aromatic polyamines and the like.
  • tolylene diisocyanate such as 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), 4, Diphenylmethane diisocyanate (MDI) such as 4'-diphenylmethane diisocyanate (4,4'-MDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), 1,4-phenylene diisocyanate, polymethylene polyphenylene polyisocyanate, Xylylene diisocyanate (XDI), tetramethyl xylylene diisocyanate (TMXDI), tolidine diisocyanate (TODI), 1,5-naphthalene diisocyanate (NDI), triphenylmethane triisocyanate, polymer Aromatic polyisocyanates such as diphenylmethane
  • platinum catalysts include simple platinum, platinum chloride, chloroplatinic acid, chloroplatinic acid salt, platinum chloride, chloroplatinic acid or a complex of chloroplatinic acid salt and a vinyl group-containing siloxane.
  • the content ratio of the chemically cross-linked elastomer, which is an essential component of the chemical heat storage composite, to the chemical heat storage material may be an optimum ratio according to the raw materials used, and is particularly limited.
  • the non-volatile content in the liquid component that is cured by heating to produce an elastomer, which is a raw material is For example, 5/95 to 50/50, in particular 10/90 to 35/65, in mass conversion, appropriate gas permeation can be performed even if there is a volume change of the chemical thermal storage composite due to repeated heat storage and radiation. It is preferable because high heat storage density can be maintained, and deterioration of the chemical heat storage composite due to stress relaxation is small, and can be made more excellent in durability.
  • a solvent can also be added to the composition for forming a chemical heat storage complex, if necessary.
  • the solvent at least one of an organic solvent and water can be used.
  • the organic solvent include hydrocarbons such as toluene and xylene, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, cellosolve acetate and butyl cellosolve, and alcohols such as methanol and ethanol. It is preferable not to use the organic solvent or to keep the amount as small as possible even if it is used, in order to eliminate the recovery step and to improve the handleability.
  • a thermally conductive filler can be added to the composition for forming a chemical heat storage composite in order to improve the thermal conductivity.
  • a heat conductive filler graphite, silicon carbide, aluminum oxide, magnesium oxide, boron nitride etc. are mentioned, for example. These may be used alone or in appropriate combination of two or more.
  • An additive for improving the adhesion to the substrate can be added to the composition for forming a chemical heat storage complex.
  • a rheology control agent or the like for improving the coatability can be added to the composition for forming a chemical heat storage complex.
  • a dispersant may be included in the composition for forming a chemical heat storage complex.
  • the preparation method of the composition for forming a chemical heat storage complex is not particularly limited, and a known method can be used.
  • the optional component may be a kneader (eg, single screw extruder, twin screw extruder, planetary mixer, twin screw, etc. It can prepare by knead
  • the chemical heat storage composite obtained after curing and crosslinking has a high heat storage density as high as possible, and the repeated durability of heat storage and heat radiation over a long period of time incorporated into a heat exchanger increases.
  • Such a "chemical heat storage composite" of the present invention forms a chemical heat storage material on the surface of a base of a heat exchanger or the like, and can be used in applications such as a chemical heat pump.
  • the chemical thermal storage composite of the present invention applies the above-described composition for forming a chemical thermal storage composite to the surface of a substrate, and heats the substrate on which the composition for forming a chemical thermal storage composite is applied. It can form by passing through and. Specifically, it includes a coating step described as follows and a heating step.
  • the above-mentioned composition for forming a chemical heat storage complex is applied to a substrate.
  • the composition for forming a chemical heat storage complex is preferably a liquid which does not contain a solvent and which is a normal temperature liquid because it is rich in fluidity and it is easy to apply, but if the viscosity is high at ordinary temperature without a solvent, heating etc. It is also possible to apply after improving fluidity. It is preferable that the composition for forming a chemical thermal storage composite containing a solvent is subjected to drying such as solvent removal by a known method simultaneously with or after the application.
  • any method may be used as long as the composition for forming a chemical heat storage complex is applied to the substrate, for example, a method of applying by dipping the substrate in the composition for forming a chemical heat storage complex by showering or dipping. And the application method by an applicator etc. are mentioned.
  • coats the composition for chemical thermal storage composite formation is not specifically limited, For example, aluminum which is a metal material used for the heat exchange surface of a heat exchanger, copper, steel materials, stainless steel etc. are mentioned.
  • the composition for a chemical heat storage composite on the surface of the substrate is heated after the application step.
  • the composition for a chemical thermal storage composite is heated in the heating step, so that crosslinking proceeds by curing to become an elastomer having a chemical crosslinked structure, and forms a chemical thermal storage composite also including a chemical thermal storage material.
  • a heating process can be performed by an electric furnace, a heating oven, etc., it does not specifically limit about the apparatus to heat.
  • the conditions for heat curing may be selected according to the composition of the composition for forming a chemical thermal storage complex to be used.
  • the heating temperature is in the range of room temperature to 300 ° C.
  • the heating time is 3 minutes to 3 hours
  • this heating process can also be performed under an atmosphere of oxygen gas or air, for example, when it is performed under an inert gas atmosphere such as nitrogen gas or helium gas, curing inhibition due to heating is less likely to occur.
  • the resulting chemical heat storage composite has high heat storage density and high durability of repeated heat storage and heat radiation over a long period of time when it is incorporated in a heat exchanger.
  • the reference example shows a method of preparing a resin for determining the elastic modulus of the resin contained in the chemical heat storage composite.
  • Reference Example 1 Weigh 1 g of SYLGARD 184 Silicone Elastomer (made by Toray Dow Corning Co., Ltd.) and 0.1 g of SYLGARD 184 Curing Agent (made by Toray Dow Corning Co., Ltd.) in a vial, and use Awatori Neritaro (made by Shinky Co., Ltd.) Stir and degas to obtain a liquid.
  • the obtained liquid was coated on a stainless steel (SUS 304) plate (7 cm ⁇ 3 cm) using an applicator, and the coated plate was heated in a nitrogen atmosphere at 200 ° C. for 1 hour to obtain a film of a crosslinked silicone resin elastomer. .
  • Production Example 1 (Chemical thermal storage composite of crosslinked silicone resin elastomer) 1 g of calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.), 1 g of SYLGARD 184 Silicone Elastomer (manufactured by Toray Dow Corning), 0.1 g of SYLGARD 184 Curing Agent (manufactured by Toray Dow Corning), and 1 g of toluene The mixture was weighed in a bottle and stirred and defoamed with Awatori Neritaro (manufactured by Shinky Co., Ltd.) to obtain a paste containing a silicone resin and calcium chloride.
  • Awatori Neritaro manufactured by Shinky Co., Ltd.
  • the obtained paste is applied onto a stainless steel (SUS 304) plate (7 cm ⁇ 3 cm) using an applicator, and the coated plate is heated in a nitrogen atmosphere at 200 ° C. for 1 hour to crosslink silicone resin elastomer and chemical heat storage material
  • a membrane (D1) of a chemical heat storage complex comprising
  • Reference Example 2 Poly (dimethyl siloxane), vinyl end (weight average molecular weight 25,000, manufactured by Sigma Aldrich Co., Ltd.) 10 g, methylhydrosiloxane-dimethylsiloxane copolymer, trimethylsiloxy end (number average molecular weight 950, manufactured by Sigma Aldrich Co.) 0 .5 g, 150 ⁇ g of platinum (0) -1,3-divinyl tetramethyldisiloxane complex (manufactured by Tokyo Chemical Industry Co., Ltd.) is weighed into a vial, stirred with Awatori Neritaro (manufactured by Shinky Co., Ltd.), and defoamed The liquid was obtained.
  • the obtained liquid was coated on a stainless steel (SUS 304) plate (7 cm ⁇ 3 cm) using an applicator, and the coated plate was heated in a nitrogen atmosphere at 100 ° C. for 1 hour to obtain a film of a crosslinked silicone resin elastomer. .
  • the obtained liquid is coated on a stainless steel (SUS 304) plate (7 cm ⁇ 3 cm) using an applicator, and the coated plate is heated in a nitrogen atmosphere at 100 ° C. for 1 hour to crosslink silicone resin elastomer and chemical heat storage material
  • a membrane (D2) of a chemical heat storage complex comprising
  • Reference Example 3 Measure 5 g of Pandex GW-1340 (manufactured by DIC Corporation) and 0.3 g of Bernock DN-902S (manufactured by DIC Corporation) in a vial, and stir with Awatori Neritaro (manufactured by Shinky Co., Ltd.) to remove it. Bubbled to give a liquid. The obtained liquid was applied onto a stainless (SUS304) plate (7 cm ⁇ 3 cm) using an applicator, and the applied plate was heated in air at 80 ° C. for 1 hour to obtain a film of a crosslinked urethane resin elastomer.
  • SUS304 stainless
  • Reference Example 4 Measure 4 g of Dick Dry LX-627M (manufactured by DIC Corporation) and 1 g of KW-40 (manufactured by DIC Corporation) in a vial, and stir and degas with Awatori Neritaro (manufactured by Shinky Corporation) I got a liquid.
  • the obtained liquid was coated on a stainless steel (SUS304) plate (7 cm ⁇ 3 cm) using an applicator, and the coated plate was heated in air at 50 ° C. for 3 days to obtain a film of a crosslinked polyester resin elastomer.
  • Reference Example 5 Measure 2.84 g of EPICLON EXA-4850-150 (manufactured by DIC Corporation) and 0.16 g of triethylenetetramine (manufactured by Tokyo Kasei Corporation) in a vial, and use Awatori Neritaro (manufactured by Shinky Co., Ltd.) Stir and degas to obtain a liquid.
  • the obtained liquid is applied onto a stainless steel (SUS 304) plate (7 cm ⁇ 3 cm) using an applicator, and the coated plate is heated in air at 80 ° C. for 3 hours and 150 ° C. for 2 hours to obtain a crosslinked epoxy resin elastomer I got a membrane.
  • the obtained liquid is coated on a stainless steel (SUS 304) plate (7 cm ⁇ 3 cm) using an applicator, and the coated plate is heated at 80 ° C. for 3 hours and 150 ° C. for 2 hours in a nitrogen atmosphere to crosslink epoxy resin elastomer A film (D5) of a chemical heat storage composite including the above and a chemical heat storage material was obtained.
  • Comparative Reference Example 1 Apply 1 g of U-varnish-A (Ube Industries, Ltd.) on a stainless steel (SUS 304) plate (7 cm ⁇ 3 cm) using an applicator, heat the coated plate in air at 200 ° C for 3 hours, A film of resin was obtained.
  • Comparative Production Example 1 (Chemical Heat Storage Composite of Polyimide Resin) Apply 2 g of U-varnish-A (manufactured by Ube Industries, Ltd.) and 0.1 g of calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) on a stainless steel (SUS 304) plate (7 cm ⁇ 3 cm) using an applicator. The coated plate was heated in a nitrogen atmosphere at 200 ° C. for 3 hours to obtain a film (C1) of a chemical heat storage composite containing a polyimide resin and a chemical heat storage material.
  • the elastic modulus was measured for the films obtained in Reference Examples 1, 2, 3, 4, 5 and Comparative Reference Example 1.
  • the measurement of elastic modulus used RSA III made from TA Instruments Co., Ltd. product.
  • the sample was cut into strips of width 0.5 cm and length 4 cm, and the thickness was measured using a micrometer (PMU150-25MX manufactured by Mitutoyo Corp.). This was used as a test piece for measurement.
  • the test piece was attached to a jig for tensile test, and measurement was carried out under conditions of a temperature of 30 ° C. and a frequency of 1 Hz.
  • the storage elastic modulus (E ') obtained at that time was taken as the elastic modulus.
  • Table 1 The results are shown in Table 1.
  • the bulk density of the films obtained in Reference Examples 1, 2, 3, 4, 5 and Comparative Reference Example 1 was measured.
  • the bulk density was determined by the bulk volume and weight of the test piece.
  • the external dimensions of the chemical thermal storage composite approximately 20 mm long x 20 mm wide, which has been left for at least 1 hour in an environment with a temperature of 23 ° C and a dew point of -15 ° C or less, are measured with calipers with a precision of 0.1 mm.
  • the volume was measured with an accuracy of 0.001 mm using PMU150-25MX manufactured by Mitutoyo Corporation. Then, the weight (g) of the test piece was precisely weighed.
  • the weight of the test piece determined as described above was divided by the bulk volume of the test piece and converted to a unit.
  • Five test pieces were prepared, and among the obtained bulk densities, the average value of the three results excluding the highest one and the lowest one is shown in Table 1 as an actual measurement value.
  • the temperature was raised to 200 ° C. at 10 ° C./min while flowing nitrogen gas (200 ml / min), held at 200 ° C. for 30 minutes, and subsequently cooled to 80 ° C. at 10 ° C./min.
  • the temperature was maintained at 80 ° C. for 10 minutes, and then the pressure was switched to a nitrogen mixed gas (200 ml / min) with a water vapor partial pressure of 5.6 kPa while maintaining the temperature, and a mixed gas containing water vapor was circulated for 30 minutes.
  • the calorific value was evaluated from the DTA area during adsorption of water vapor for 30 minutes, and this was used as an index of evaluation of heat storage performance.
  • the calorific value was calculated by correcting the obtained DTA area with the heat of fusion of In, Sn, Pb, and the calorific value per 1 kg of the chemical heat storage material was calculated. If the calorific value at this time is 100 kJ / kg or more, it is judged that the heat storage performance of the chemical heat storage composite is present, and if it is less than 100 kJ / kg, it is judged that the heat storage performance of the chemical heat storage composite is not present. The results are shown in Table 1.
  • the heat storage composites including the elastomer having the chemically cross-linked structure in Preparation Examples 1 to 5 have the heat storage compared with Comparative Preparation Example 1 including the polyimide resin having no elastomer property. It is shown that the performance is high, and it means that the chemical heat storage composite comprising the chemical crosslinkable elastomer and the chemical heat storage material shown in Production Examples 1 to 5 can be suitably used as a heat storage material.
  • the chemical thermal storage composite of the present invention is a chemical thermal storage composite containing an elastomer having a chemical crosslink structure and a chemical thermal storage material, the absorption of the reaction medium gas to the chemical thermal storage material in the matrix resin is It is possible to greatly relieve the stress due to the volume change associated with desorption, and it is difficult for voids to be generated in the composite described above, and the repeated durability of heat storage and heat radiation is excellent while maintaining high heat storage density.
  • a chemical heat storage composite according to the present invention can be used as a waste heat utilization system for a factory, a waste heat utilization system for a vehicle, or a heat utilization system for a house (for example, an air conditioning system) Can be suitably used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a chemical heat storage complex which cannot be separated from a heat exchanger upon the occurrence of volume expansion of a heat storage material or the like and can withstand repeated use. A chemical heat storage complex comprising an elastomer having a chemical crosslinked structure and a chemical heat storage material. As a liquid capable of being cured upon heating, a liquid capable of generating at least one resin selected from the group consisting of a silicone resin, a polyester resin, an epoxy resin and a urethane resin can be used preferably. In the use in combination with a heat exchanger, the chemical heat storage complex according to the present invention can be used suitably as a waste heat utilization system for factories, a waste heat utilization system for vehicles, a heat utilization system for residential use (e.g., an air conditioning system) or the like.

Description

化学蓄熱複合体、化学蓄熱複合体形成用組成物及び化学蓄熱複合体の形成方法Chemical heat storage composite, composition for forming chemical heat storage composite, and method for forming chemical heat storage composite
 本発明は、樹脂と化学蓄熱材とを含む化学蓄熱複合体に関する。 The present invention relates to a chemical heat storage composite including a resin and a chemical heat storage material.
 近年、エネルギーを高効率に利用するために、排熱を利用した熱エネルギーの貯蔵技術、蓄熱技術の確立が要請されている。現在実用化されている蓄熱方式としては、蓄熱媒体を用いた顕熱又は潜熱を利用した方式が挙げられる。しかしながら、これらの方式は蓄熱量が低く、また、保温のために断熱材が必要であり長期の蓄熱保存には適していない。これらの問題を解決する方式として化学蓄熱が注目されている。 In recent years, in order to use energy efficiently, establishment of heat energy storage technology and heat storage technology using exhaust heat has been required. As a heat storage system currently put into practical use, there is a system using sensible heat or latent heat using a heat storage medium. However, these systems have a low heat storage capacity, and require a heat insulating material for heat retention, and are not suitable for long-term heat storage storage. Chemical thermal storage has attracted attention as a method for solving these problems.
 化学蓄熱は、金属酸化物、塩、吸着剤などの化学蓄熱材と、水、アンモニア、メタノールなどの反応媒体ガスとが、可逆的に化学反応または吸着反応し、吸熱反応で蓄熱、発熱反応で放熱を行う蓄熱方式である。このような化学蓄熱は、他の蓄熱方式である潜熱及び顕熱と比べて、蓄熱量が大きく、保温の必要がないため、長期間安定的に蓄熱可能であるという長所がある。化学蓄熱材は、熱エネルギーの有効利用が求められているケミカルヒートポンプなどの化学蓄熱システムに用いられる。この化学蓄熱システムを用いて、自動車から出る100℃以下の排熱から冷熱を作り出し、エアコンシステムとし自動車の燃費向上を図る検討が進められている。 In chemical thermal storage, chemical thermal storage materials such as metal oxides, salts, and adsorbents, and reaction medium gases such as water, ammonia, and methanol reversibly react chemically or adsorbate, and store heat and generate exothermic reactions by endothermic reaction. It is a heat storage system that dissipates heat. Such chemical heat storage has a large heat storage amount compared with the latent heat and the sensible heat which are other heat storage methods, and has the advantage of being able to store heat stably for a long period of time because it is not necessary to keep warm. Chemical thermal storage materials are used in chemical thermal storage systems such as chemical heat pumps where effective use of thermal energy is required. Using this chemical heat storage system, cold heat is created from exhaust heat of 100 ° C. or less emitted from a car, and studies are being conducted to improve the fuel efficiency of the car as an air conditioner system.
 化学蓄熱材は、例えば熱交換器に充填されて使用される。しかし、化学蓄熱材を粉体として用いる場合、吸熱、発熱反応を繰り返す過程で、化学蓄熱材の体積が膨張、収縮し、化学蓄熱材が熱交換器から脱落し、蓄熱量が低下するという問題があった。 The chemical heat storage material is used, for example, by being packed in a heat exchanger. However, when using a chemical thermal storage material as powder, the volume of the chemical thermal storage material expands and contracts in the process of repeating heat absorption and exothermic reaction, and the chemical thermal storage material drops out of the heat exchanger, resulting in a decrease in the amount of thermal storage. was there.
 このような問題に対し、様々な検討が行われている。例えば、難揮発性有機物と化学蓄熱材を接触させて不活性雰囲気下で焼成することで、多数の孔を有するかご状の炭素構造体に化学蓄熱材を担持させる方法が開示されている(特許文献1)。また、アルコキシシランを680℃以上で焼成することによりケイ素に結合したアルコキシ基を全て脱離させて形成した緻密な三次元構造の中に化学蓄熱材を含有させることで、化学蓄熱材の崩壊を防ぐ方法が開示されている(特許文献2)。その他、化学蓄熱材を含む蓄熱材をコアとし、機械的強度が高いポリウレタンポリウレアをシェルとするコアシェル構造にし、蓄熱材の漏洩を防ぐ方法が検討されている(特許文献3)。
特開2009-256518号公報 特開2015-098582号公報 特開2017-137437号公報
Various studies have been conducted on such problems. For example, there is disclosed a method of supporting a chemical thermal storage material on a cage-like carbon structure having a large number of holes by bringing a hardly volatile organic substance and a chemical thermal storage material into contact and firing under an inert atmosphere (Patent Literature 1). In addition, the chemical thermal storage medium is included in the dense three-dimensional structure formed by desorbing all the alkoxy groups bonded to silicon by baking the alkoxysilane at 680 ° C. or more, the chemical thermal storage medium is broken. A method for prevention is disclosed (US Pat. In addition, a method of preventing leakage of the heat storage material is considered by using a core-shell structure having a heat storage material including a chemical heat storage material as a core and a polyurethane polyurea having a high mechanical strength as a shell.
JP, 2009-256518, A JP, 2015-098582, A JP 2017-137437 A
 しかしながら、特許文献1、2の方法では、焼成により蓄熱材を取り囲む三次元構造体を得る方法であるため構造体が硬脆くなってしまい、化学蓄熱材の体積膨張に追従できず、熱交換器からの脱落を十分に抑制できないという実情がある。また特許文献3の方法では、シェル部に揮発、滲出を防ぐ機能を持たせており、そのため化学蓄熱材と反応媒体ガスが充分に反応できないという問題がある。 However, in the methods of Patent Documents 1 and 2, the structure becomes hard and brittle because it is a method of obtaining a three-dimensional structure surrounding the heat storage material by firing, and the heat exchanger can not follow the volume expansion of the chemical heat storage material. There is a fact that we can not suppress dropout from Further, in the method of Patent Document 3, the shell portion is provided with a function to prevent volatilization and exudation, so there is a problem that the chemical heat storage material and the reaction medium gas can not sufficiently react with each other.
 上記実情を鑑み、本発明が解決しようとする課題は、蓄熱材の体積膨張等による熱交換器からの脱落を抑制し、繰り返し使用に耐えることが可能な化学蓄熱複合体を提供することにある。 In view of the above-mentioned situation, the problem to be solved by the present invention is to provide a chemical heat storage composite which can stand off from the heat exchanger due to volumetric expansion of the heat storage material and can endure repeated use. .
 前記根本的課題を解決するために化学蓄熱材の体積膨張時の応力を緩和することを着想し、鋭意検討した結果、化学蓄熱材を特定の樹脂に担持させることにより、前記応力を緩和できることを見出し、本発明に至った。 In order to solve the fundamental problem, it was conceived to reduce the stress at the time of volumetric expansion of the chemical heat storage material, and as a result of earnestly examining, by carrying the chemical heat storage material on a specific resin, it is possible to relieve the stress. The present invention has been achieved.
 すなわち本発明は、以下の項1~項6に関する。
項1.
 化学的な架橋構造を持つエラストマーと、化学蓄熱材と、を含有する化学蓄熱複合体であることを特徴とする化学蓄熱複合体。
項2.
 化学的な架橋構造を持つエラストマーと、化学蓄熱材と、を含有する、嵩密度1.0~6.0g/cmの化学蓄熱複合体であることを特徴とする化学蓄熱複合体。
項3.
前記エラストマーが、天然ゴム、ジエン系ゴム、オレフィン系ゴム、シリコーン樹脂、ポリエステル樹脂、エポキシ樹脂及びウレタン樹脂からなる群から選ばれる少なくとも一種の樹脂であることを特徴とする項1または2に記載の化学蓄熱複合体。
項4.
 加熱により硬化する液体と、化学蓄熱材と、を含有する化学蓄熱複合体形成用組成物であって、前記加熱により硬化する液体が、硬化した際にエラストマーとなるものであることを特徴とする化学蓄熱複合体形成用組成物。
項5.
 加熱により硬化する液体と、化学蓄熱材と、を含有する化学蓄熱複合体形成用組成物であって、前記加熱により硬化する液体が、硬化した際にエラストマーとなるものであり、かつ硬化後の化学蓄熱複合体が嵩密度1.0~6.0g/cmとなる様に調製したことを特徴とする化学蓄熱複合体形成用組成物。
項6.
更に溶剤を含む、項4または5に記載の化学蓄熱複合体形成用組成物。
項7.
 前記エラストマーが、天然ゴム、ジエン系ゴム、オレフィン系ゴム、シリコーン樹脂、ポリエステル樹脂、エポキシ樹脂及びウレタン樹脂からなる群から選ばれる少なくとも一種の樹脂であることを特徴とする項4~6いずれか一項に記載の化学蓄熱複合体形成用組成物。
項8.
 項4~7のいずれか一項に記載の化学蓄熱複合体形成用組成物を基材表面に塗布する工程と、化学蓄熱複合体形成用組成物が表面に塗布された基材を加熱する工程と、を含む化学蓄熱複合体の形成方法。
That is, the present invention relates to the following items 1 to 6.
Item 1.
What is claimed is: 1. A chemical heat storage composite comprising: a chemical heat storage composite containing an elastomer having a chemical crosslink structure and a chemical heat storage material.
Item 2.
A chemical heat storage composite characterized in that it is a chemical heat storage composite having a bulk density of 1.0 to 6.0 g / cm 3 , containing an elastomer having a chemical crosslink structure and a chemical heat storage material.
Item 3.
3. The elastomer according to item 1 or 2, wherein the elastomer is at least one resin selected from the group consisting of natural rubber, diene rubber, olefin rubber, silicone resin, polyester resin, epoxy resin and urethane resin. Chemical heat storage complex.
Item 4.
A composition for forming a chemical thermal storage composite, comprising a liquid that is cured by heating and a chemical heat storage material, wherein the liquid that is cured by the heating becomes an elastomer when it is cured. Composition for chemical thermal storage complex formation.
Item 5.
A composition for forming a chemical thermal storage composite, comprising a liquid that cures by heating, and a chemical heat storage material, wherein the liquid that cures by heating becomes an elastomer when cured, and after curing A composition for forming a chemical heat storage composite, wherein the chemical heat storage composite is prepared to have a bulk density of 1.0 to 6.0 g / cm 3 .
Item 6.
6. The composition for forming a chemical heat storage composite according to item 4 or 5, further comprising a solvent.
Item 7.
7. The elastomer according to any one of claims 4 to 6, wherein the elastomer is at least one resin selected from the group consisting of natural rubber, diene rubber, olefin rubber, silicone resin, polyester resin, epoxy resin and urethane resin. The composition for chemical thermal storage composites formation as described in a term.
Item 8.
Item 8. A step of applying the composition for forming a chemical heat storage composite according to any one of items 4 to 7 on the surface of a substrate, and a step of heating the substrate on which the composition for forming a chemical heat storage composite is applied And a method of forming a chemical thermal storage complex.
 本発明の化学蓄熱複合体は、体積当たりの蓄熱密度に優れ、かつ、吸熱、発熱反応を繰り返しても、当該複合体が内包する化学蓄熱材の体積膨張を緩和することができる。このため、本発明の化学蓄熱複合体は、高い蓄熱密度を有し、かつ、長寿命であるという優れた効果を奏する。また、本発明の化学蓄熱複合体形成用組成物によれば、これを用いて化学蓄熱複合体を形成した際に、上記したような優れた効果を奏する化学蓄熱複合体を得ることができる。 The chemical thermal storage composite of the present invention is excellent in heat storage density per volume, and can repeat volumetric expansion of a chemical thermal storage medium contained in the composite even if heat absorption and exothermic reaction are repeated. For this reason, the chemical heat storage composite of the present invention has an excellent effect of having a high heat storage density and having a long life. Moreover, according to the composition for chemical thermal storage complex formation of this invention, when a chemical thermal storage complex is formed using this, the chemical thermal storage complex which exhibits the above outstanding effects can be obtained.
 本発明における化学蓄熱複合体は、化学的な架橋構造を持つエラストマーである樹脂と化学蓄熱材とからなる複合材料(本明細書においては蓄熱材料と表現する場合がある)である。化学蓄熱材は樹脂中に分散し、内包されて存在している。樹脂が化学的な架橋構造を持つエラストマーであるので、樹脂はゴム状の構造になっており伸びやすい(柔らかい)材料である。そのためこのような構造をとることで、蓄熱、放熱時に生じる化学蓄熱材の体積膨張および収縮時の応力を樹脂で緩和することができ、化学蓄熱材料の劣化を防ぐことが可能である。また化学的な架橋構造を持つエラストマーは高い耐熱性を有し、繰返し使用しても十分なゴム状構造を維持できるため化学蓄熱材料の長寿命化が可能である。 The chemical thermal storage composite in the present invention is a composite material (sometimes referred to as a thermal storage material in the present specification) composed of a resin that is an elastomer having a chemical cross-linked structure and a chemical thermal storage material. The chemical heat storage material is dispersed in the resin and is contained in the resin. Since the resin is an elastomer having a chemically cross-linked structure, the resin has a rubber-like structure and is an easy-to-stretch (soft) material. Therefore, by taking such a structure, it is possible to relieve the stress at the time of volumetric expansion and contraction of the chemical thermal storage material which occurs at the time of heat storage and heat radiation by the resin, and it is possible to prevent deterioration of the chemical thermal storage material. Further, the elastomer having a chemically crosslinked structure has high heat resistance, and can maintain a sufficient rubber-like structure even after repeated use, so that the life of the chemical heat storage material can be extended.
 化学的な架橋構造を持つエラストマーはガス透過性が高いことが知られており、樹脂中に化学蓄熱材が内包されていても反応媒体ガスと反応する事が可能である。
 化学蓄熱材と反応媒体ガスとの反応も十分に考慮されて設計されており、担持構造に空隙を付与することが機能発揮するうえで必須の条件ではないため、蓄熱密度を向上させることが可能である。その結果、上記のような優れた効果を得ることができる。
Elastomers having a chemically crosslinked structure are known to have high gas permeability, and even if a chemical heat storage material is contained in the resin, it can react with the reaction medium gas.
Since the reaction between the chemical heat storage material and the reaction medium gas is also fully considered and designed, providing a void in the support structure is not an essential condition for functioning, so the heat storage density can be improved. It is. As a result, the above excellent effects can be obtained.
 以下、本発明について詳細に説明する。
<化学蓄熱複合体の説明>
 本発明において「化学蓄熱複合体」とは、化学蓄熱材と樹脂との複合物を示すものであある。後述する「化学蓄熱材」とは、異なるものである。なお、後述する「化学蓄熱複合体用組成物」とは、化学蓄熱複合体を形成に用いられる材料であり、後述の方法などで形成可能である。
Hereinafter, the present invention will be described in detail.
<Description of chemical heat storage complex>
In the present invention, the term "chemical heat storage composite" refers to a composite of a chemical heat storage material and a resin. The “chemical heat storage material” described later is different. In addition, the "composition for chemical thermal storage composites" mentioned later is a material used for formation of a chemical thermal storage composite, and it can form it by the below-mentioned method etc.
<エラストマーの説明>
 本発明に用いるエラストマーは、化学的な架橋構造を持つエラストマーであることを特徴とする。化学的な架橋構造を持つエラストマーとは、ソフトセグメントまたはソフトセグメントとハードセグメントとを共有結合によって架橋させたものである。この様な化学的な架橋構造を有することで、化学蓄熱複合体に求められる膨張収縮の繰り返しの体積変化における応力が緩和され、応力緩和されない場合の技術的な不具合を解決できる。エラストマーにおけるハードセグメントは、特に限定はされないが、例えば、ポリスチレン、ポリオレフィン、ポリ塩化ビニル、ポリウレタン、ポリエステル、ポリアミドなどが挙げられる。同ソフトセグメントは特に限定はされないが、例えば、ポリブタジエン、ポリイソプレン、ポリイソブチレン、脂肪族ポリエステル、脂肪族ポリエーテル、ポリジメチルシロキサン、ポリフッ化ビニリデン、エチレン・プロピレン・ジエンゴム、エチレンプロピレンゴム、アクリルゴム、フッ素ゴム、シリコーンゴムなどが挙げられる。各セグメントは1種類でもよく2種類以上を組み合わせてもよい。
 架橋は特に限定されず、例えば、硫黄または硫黄化合物による架橋(加硫)、エポキシ基を用いた架橋、イソシアネートとアルコールによる架橋(ウレタン結合)、過酸化物による架橋、ヒドロシリル化反応による架橋、脱水縮合による架橋などが挙げられる。架橋方法は特に限定されず、例えば、加熱による架橋、紫外線による架橋、放射線による架橋などが挙げられる。生産性の観点から加熱による架橋が好ましい。
 化学的な架橋構造を持つエラストマーとして特に限定されないが、例えば、天然ゴム、ジエン系ゴム、オレフィン系ゴム、シリコーン樹脂、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、ウレタンゴム、フッ素ゴム、シリコーンゴムなどが挙げられる。天然ゴム、ジエン系ゴム、オレフィン系ゴムの様なゴムは、加硫などの架橋を行う前に、素練りや粘度調製等の手間が別途必要となるので、好ましくない。原料入手等のしやすさやより優れた加工性や耐久性(耐熱性、耐光性、耐薬品性など)、下記のガス透過性や生産性を兼備できることから、シリコーン樹脂、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂が好ましい。この様な好適な化学的な架橋構造を有する樹脂は、実使用においても、熱交換器に設置した際に、吸熱反応と発熱反応の繰り返しに当たり、当該化学蓄熱複合体からの化学蓄熱材の脱落を、より長期に亘り抑制できる。
<Description of Elastomer>
The elastomer used in the present invention is characterized by being an elastomer having a chemically crosslinked structure. The elastomer having a chemically crosslinked structure is one obtained by covalently crosslinking a soft segment or a soft segment and a hard segment. By having such a chemical crosslinked structure, the stress in the volume change of the expansion and contraction required for the chemical heat storage composite can be relaxed, and the technical failure in the case where the stress is not relieved can be solved. The hard segment in the elastomer is not particularly limited, and examples thereof include polystyrene, polyolefin, polyvinyl chloride, polyurethane, polyester, polyamide and the like. Although the soft segment is not particularly limited, for example, polybutadiene, polyisoprene, polyisobutylene, aliphatic polyester, aliphatic polyether, polydimethylsiloxane, polyvinylidene fluoride, ethylene / propylene / diene rubber, ethylene / propylene rubber, acrylic rubber, Fluorine rubber, silicone rubber and the like can be mentioned. Each segment may be of one type or a combination of two or more types.
The crosslinking is not particularly limited. For example, crosslinking with sulfur or sulfur compound (vulcanization), crosslinking with epoxy group, crosslinking with isocyanate and alcohol (urethane bond), crosslinking with peroxide, crosslinking by hydrosilylation reaction, dehydration Crosslinking by condensation and the like can be mentioned. The crosslinking method is not particularly limited, and examples thereof include crosslinking by heating, crosslinking by ultraviolet light, and crosslinking by radiation. Crosslinking by heating is preferred from the viewpoint of productivity.
Although it does not specifically limit as an elastomer which has a chemical crosslinking structure, For example, natural rubber, diene system rubber, olefin system rubber, silicone resin, polyester resin, epoxy resin, urethane resin, urethane rubber, fluororubber, silicone rubber etc. are mentioned. Be Natural rubber, diene-based rubber, and rubber such as olefin-based rubber are not preferable because time and effort such as mastication and viscosity adjustment are separately required before crosslinking such as vulcanization. Silicone resins, polyester resins, epoxy resins, and so on because they can be combined with ease of obtaining raw materials, better processability and durability (heat resistance, light resistance, chemical resistance, etc.) and gas permeability and productivity as described below. Urethane resin is preferred. The resin having such a suitable chemical cross-linking structure is also attached to the heat exchanger in actual use, and when the endothermic reaction and the exothermic reaction are repeated, the chemical heat storage material falls off from the chemical heat storage composite. Can be suppressed for a longer period of time.
 化学的な架橋構造を持つエラストマーは、そのガス透過性、生産性の観点から、ガラス転移温度が-140℃以上30℃以下であることが好ましく、弾性率は30℃で0.3MPa以上500MPa以下の範囲にあることが好ましい。ガラス転移温度、弾性率は以下の評価方法により求めた値を使用した。 From the viewpoint of gas permeability and productivity, the elastomer having a chemically crosslinked structure preferably has a glass transition temperature of -140 ° C. or more and 30 ° C. or less, and an elastic modulus of 30 MPa or more and 0.3 MPa or more and 500 MPa or less It is preferable to be in the range of The glass transition temperature and the elastic modulus used the value calculated | required by the following evaluation methods.
<エラストマーのガラス転移温度の評価>
 化学蓄熱複合体中のエラストマーのガラス転移温度は、動的粘弾性測定装置により測定でき、測定により得られた損失正接(tanδ)の最大値の温度をガラス転移温度とした。測定は、短冊状にした化学蓄熱複合体を動的粘弾性測定装置で昇温温度3℃/min、振動数1Hzの条件で測定した。損失正接(tanδ)は損失弾性率(E”)を貯蔵弾性率(E’)で割った値(tanδ=E”/E’)である。
<Evaluation of glass transition temperature of elastomer>
The glass transition temperature of the elastomer in the chemical heat storage composite can be measured by a dynamic viscoelasticity measurement device, and the temperature of the maximum value of the loss tangent (tan δ) obtained by the measurement is taken as the glass transition temperature. In the measurement, a strip-shaped chemical thermal storage composite was measured with a dynamic viscoelasticity measuring device under conditions of a temperature elevation temperature of 3 ° C./min and a frequency of 1 Hz. The loss tangent (tan δ) is the value obtained by dividing the loss modulus (E ′ ′) by the storage modulus (E ′) (tan δ = E ′ ′ / E ′).
<エラストマーの弾性率の評価>
 化学蓄熱複合体からエラストマーの弾性率のみを測定する事は困難であり、化学蓄熱複合体形成用組成物中の、化学蓄熱材を除いた、加熱により硬化する液体を硬化させることにより得られたエラストマーの弾性率を、化学蓄熱複合体中のエラストマーの弾性率とした。エラストマーの弾性率は動的粘弾性測定装置で樹脂を温度30℃、周波数1Hzの条件で測定した際の貯蔵弾性率(E’)とした。
<Evaluation of elastic modulus of elastomer>
It is difficult to measure only the elastic modulus of the elastomer from the chemical thermal storage composite, and it was obtained by curing the liquid that cures by heating, excluding the chemical thermal storage material, in the composition for forming a chemical thermal storage composite. The elastic modulus of the elastomer was taken as the elastic modulus of the elastomer in the chemical heat storage composite. The elastic modulus of the elastomer was taken as the storage elastic modulus (E ') when the resin was measured at a temperature of 30 ° C. and a frequency of 1 Hz by a dynamic viscoelasticity measuring device.
<化学蓄熱材の説明>
 本発明に用いる化学蓄熱材は、反応媒体ガスと可逆的に化学反応または吸着反応し、吸熱反応で蓄熱、発熱反応で放熱を行なえるものである。化学蓄熱材としては、例えば、金属酸化物、水酸化物、塩、吸着剤などが挙げられる。
<Description of chemical heat storage material>
The chemical heat storage material used in the present invention reversibly chemically reacts or adsorbs with the reaction medium gas, and is capable of storing heat as an endothermic reaction and releasing heat as an exothermic reaction. Examples of the chemical heat storage material include metal oxides, hydroxides, salts, and adsorbents.
 反応媒体ガスとして具体的には、例えば、水(水蒸気)、アンモニア、水素、二酸化炭素、アルコール類、アンモニア、1級アミン、2級アミン、3級アミンなどのガスが挙げられる。反応媒体は1種類でもよく、また2種類以上を組み合わせて使用してもよい。アルコール類としてメタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、エチレングリコールなどが挙げられる。1級アミンとしてはメチルアミン、エチルアミン、プロピルアミンなどが挙げられる。2級アミンとしてはジメチルアミン、エチルメチルアミン、N-メチルプロピルアミンなどが挙げられる。3級アミンとしてはトリメチルアミン、N,N-ジエチルメチルアミン、N,N-ジメチルエチルアミンなどが挙げられる。化学蓄熱複合体を熱交換器に組み込んで使用した際の、蓄熱放熱の繰り返しにおける安定性に優れる観点から、例えば、水(水蒸気)、アンモニア、二酸化炭素、メタノール、エタノールが好ましい。危険性がより小さく取り扱いが容易で、取り出し熱量も比較的大きい、好適な反応媒体ガスは、水(水蒸気)である。 Specific examples of the reaction medium gas include gases such as water (steam), ammonia, hydrogen, carbon dioxide, alcohols, ammonia, primary amines, secondary amines, and tertiary amines. The reaction medium may be used alone or in combination of two or more. Alcohols include methanol, ethanol, 1-propanol, 2-propanol, n-butanol, ethylene glycol and the like. Examples of primary amines include methylamine, ethylamine and propylamine. Examples of secondary amines include dimethylamine, ethylmethylamine, N-methylpropylamine and the like. Examples of tertiary amines include trimethylamine, N, N-diethylmethylamine, N, N-dimethylethylamine and the like. For example, water (steam), ammonia, carbon dioxide, methanol, and ethanol are preferable from the viewpoint of excellent stability in repetition of heat storage and heat release when the chemical heat storage composite is used by being incorporated into a heat exchanger. A preferred reaction medium gas with less hazard and ease of handling and relatively high heat removal is water (steam).
 反応媒体ガスによりそれに適した化学蓄熱材を適宜選択可能である。化学蓄熱材としては、公知慣用のものをいずれも用いることができる。好適な実施形態である、例えば、化学蓄熱材と水(水蒸気)との反応についての場合、化学蓄熱材と水(水蒸気)との反応は水和反応、水分子の吸着反応、水酸化反応などが挙げられる。反応例を以下に示す。水和反応では水(水蒸気)と水和する時に発熱し、脱水する時に吸熱が起きる。水分子の吸着反応では水分子が蓄熱材に吸着する時に発熱し、脱水する時に吸熱が起きる。水酸化反応では水(水蒸気)と酸化物が水和反応し水酸化物を生成するときに発熱し、水酸化物から水(水蒸気)と酸化物を生成する脱水反応の時に吸熱が起きる。 A chemical heat storage material suitable for the reaction medium gas can be appropriately selected. Any of known and commonly used chemical heat storage materials can be used. In a preferred embodiment, for example, in the case of the reaction between a chemical heat storage material and water (steam), the reaction between the chemical heat storage material and water (steam) is a hydration reaction, an adsorption reaction of water molecules, a hydroxylation reaction, etc. Can be mentioned. An example of the reaction is shown below. In the hydration reaction, heat is generated upon hydration with water (steam), and endotherm occurs upon dehydration. In the adsorption reaction of water molecules, heat is generated when the water molecules are adsorbed to the heat storage material, and heat absorption occurs when dewatering. In the hydroxylation reaction, heat is generated when water (steam) and the oxide undergo a hydration reaction to form a hydroxide, and an endothermic reaction occurs at the time of a dehydration reaction to form water (steam) and the oxide from the hydroxide.
水和反応
CaCl2 + nH2O ⇔ CaCl2・nH2O
LiOH + H2O ⇔ LiOH・H2O
Ba(OH)2 + nH2O ⇔ Ba(OH)2・nH2O
Hydration reaction
CaCl 2 + nH 2 O ⇔ CaCl 2 · nH 2 O
LiOH + H 2 O ⇔ LiOH · H 2 O
Ba (OH) 2 + nH 2 O ⇔ Ba (OH) 2 · nH 2 O
水分子の吸脱着反応
Zeolite + nH2O ⇔ Zeolite・nH2O
Adsorption and desorption reactions of water molecules
Zeolite + nH 2 O ⇔ Zeolite n H 2 O
水酸化反応
MgO + H2O ⇔ Mg(OH)2
CaO + H2O ⇔ Ca(OH)2
Hydroxylation reaction
MgO + H 2 O Mg Mg (OH) 2
CaO + H 2 O ⇔ Ca (OH) 2
 水和物を形成可能な化学蓄熱材としては、例えば、無機塩、有機塩、水酸化物が挙げられる。
 無機塩として具体的には、例えば、ハロゲン化物、硫酸塩、リン酸塩、ケイ酸塩などが挙げられる。ハロゲン化物としては、例えば、フッ化物、塩化物、臭化物、ヨウ化物などが挙げられる。フッ化物として具体的には、例えば、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウムなどが挙げられる。塩化物として具体的には、例えば、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、塩化ストロンチウム、塩化バリウム、塩化鉄、塩化亜鉛、塩化コバルト、塩化ニッケル、塩化銅、塩化アンモニウムなどが挙げられる。臭化物として具体的には、例えば、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化マグネシウム、臭化カルシウム、臭化ストロンチウム、臭化バリウム、臭化鉄、臭化亜鉛、臭化コバルト、臭化ニッケル、臭化銅などが挙げられる。ヨウ化物として具体的には、例えば、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化マグネシウム、ヨウ化カルシウム、ヨウ化ストロンチウム、ヨウ化バリウム、ヨウ化鉄、ヨウ化亜鉛、ヨウ化コバルト、ヨウ化ニッケル、ヨウ化銅などが挙げられる。これらは組み合わせても良い。
As a chemical thermal storage material which can form a hydrate, an inorganic salt, an organic salt, and a hydroxide are mentioned, for example.
Specific examples of the inorganic salt include halides, sulfates, phosphates and silicates. As the halide, for example, fluoride, chloride, bromide, iodide and the like can be mentioned. Specific examples of the fluoride include lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride and calcium fluoride. Specific examples of the chloride include lithium chloride, sodium chloride, potassium chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride, iron chloride, zinc chloride, cobalt chloride, nickel chloride, copper chloride, ammonium chloride and the like. It can be mentioned. Specifically as bromide, for example, lithium bromide, sodium bromide, potassium bromide, magnesium bromide, calcium bromide, strontium bromide, barium bromide, iron bromide, zinc bromide, cobalt bromide, odor And nickel bromide and copper bromide. Specific examples of the iodide include lithium iodide, sodium iodide, potassium iodide, magnesium iodide, calcium iodide, calcium iodide, strontium iodide, barium iodide, iron iodide, zinc iodide, cobalt iodide, Nickel iodide, copper iodide and the like can be mentioned. These may be combined.
 硫酸塩として具体的には、例えば、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸ストロンチウム、硫酸バリウム、硫酸イットリウム、硫酸ランタン、硫酸クロム、硫酸マンガン、硫酸鉄、硫酸コバルト、硫酸ニッケル、硫酸銅、硫酸亜鉛、硫酸セリウム、硫酸鉛、硫酸アルミニウム、硫酸アルミニウムカリウム、硫酸アルミニウムアンモニウムなどが挙げられる。これらは組み合わせても良い。 Specific examples of the sulfate include lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, strontium sulfate, barium sulfate, yttrium sulfate, lanthanum sulfate, chromium sulfate, manganese sulfate, iron sulfate, cobalt sulfate, sulfuric acid Nickel, copper sulfate, zinc sulfate, cerium sulfate, lead sulfate, aluminum sulfate, aluminum potassium sulfate, ammonium aluminum sulfate and the like can be mentioned. These may be combined.
 リン酸塩として具体的には、例えば、リン酸リチウム、リン酸ナトリウム、リン酸カルシウム、リン酸マグネシウムなどが挙げられる。これらは組み合わせても良い。 Specific examples of the phosphate include lithium phosphate, sodium phosphate, calcium phosphate, magnesium phosphate and the like. These may be combined.
 ケイ酸として具体的には、例えば、ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸アルミニウムなどが挙げられる。 Specific examples of the silicic acid include lithium silicate, sodium silicate, potassium silicate, magnesium silicate, calcium silicate and aluminum silicate.
 有機塩として具体的には、例えば、カルボン酸塩、スルホン酸塩、ホスホン酸塩、ホスフィン酸塩などが挙げられる。これらは組み合わせても良い。 Specific examples of the organic salt include carboxylates, sulfonates, phosphonates, phosphinates and the like. These may be combined.
 カルボン酸塩はカルボン酸と金属の塩であり、カルボン酸として具体的には、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、オレイン酸、リノール酸、リノレン酸、乳酸、リンゴ酸、クエン酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸、アコニット酸、ピルビン酸、アクリル酸、メタクリル酸、ポリアクリル酸、ポリメタクリル酸などが挙げられ、金属として具体的には、例えば、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、バリウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミニウムなどが挙げられる。これらは組み合わせても良い。 Carboxylic acid salts are salts of carboxylic acids and metals, and as carboxylic acids, for example, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, oleic acid, linoleic acid, linolenic acid, lactic acid, apple Acid, citric acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid, aconitic acid, pyruvic acid, acrylic acid, methacrylic acid Acid, polyacrylic acid, polymethacrylic acid and the like, and specific examples of the metal include lithium, sodium, potassium, magnesium, calcium, barium, manganese, iron, cobalt, nickel, copper, zinc, aluminum and the like It can be mentioned. These may be combined.
 スルホン酸塩はスルホン酸と金属の塩であり、スルホン酸として具体的には、例えば、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、タウリン、フルオロスルホン酸などが挙げられ、金属として具体的には、例えば、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、バリウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミニウムなどが挙げられる。これらを組み合わせても良い。 The sulfonic acid salt is a salt of sulfonic acid and metal, and specific examples of the sulfonic acid include methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, taurine, fluorosulfonic acid and the like. Specific examples of the metal include lithium, sodium, potassium, magnesium, calcium, barium, manganese, iron, cobalt, nickel, copper, zinc, aluminum and the like. You may combine these.
 ホスホン酸塩はホスホン酸と金属の塩であり、ホスホン酸として具体的には、例えば、メチルホスホン酸、エチルホスホン酸、プロピルホスホン酸、フェニルホスホン酸、メチレンジホスホン酸、1,4-フェニレンジホスホン酸などが挙げられる。金属としては、具体的には、例えば、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、バリウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミニウムなどが挙げられる。これらは組み合わせても良い。 The phosphonate is a salt of phosphonic acid and metal, and as the phosphonic acid, specifically, for example, methyl phosphonic acid, ethyl phosphonic acid, propyl phosphonic acid, phenyl phosphonic acid, methylene diphosphonic acid, 1,4-phenylene diphosphonic acid An acid etc. are mentioned. Specific examples of the metal include lithium, sodium, potassium, magnesium, calcium, barium, manganese, iron, cobalt, nickel, copper, zinc, and aluminum. These may be combined.
 ホスフィン酸塩はホスフィン酸と金属の塩であり、ホスフィン酸としては具体的には、例えば、フェニルホスフィン酸、メチルホスフィン酸、エチルホスフィン酸、アミノエチルホスフィン酸などが挙げられ、金属として具体的には、例えば、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、バリウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミニウムなどが挙げられる。これらは組み合わせても良い。 The phosphinic acid salt is a salt of phosphinic acid and a metal. Specific examples of the phosphinic acid include phenyl phosphinic acid, methyl phosphinic acid, ethyl phosphinic acid, aminoethyl phosphinic acid and the like. For example, lithium, sodium, potassium, magnesium, calcium, barium, manganese, iron, cobalt, nickel, copper, zinc, aluminum and the like can be mentioned. These may be combined.
 水酸化物としては、例えば、水酸化リチウム、水酸化ストロンチウム、水酸化バリウムなどがあげられる。これらは組み合わせても良い。 Examples of the hydroxide include lithium hydroxide, strontium hydroxide and barium hydroxide. These may be combined.
 脱水反応により酸化物となり、水和反応により水酸化物となる化学蓄熱材としては、例えば、酸化マグネシウム、酸化カルシウム、酸化亜鉛、酸化ニッケル、酸化コバルト、酸化鉄、酸化銅、酸化ストロンチウム、酸化バリウム、酸化ランタンなどが挙げられる。これらは組み合わせても良い。 For example, magnesium oxide, calcium oxide, zinc oxide, nickel oxide, cobalt oxide, iron oxide, copper oxide, copper oxide, strontium oxide, barium oxide are converted to oxides by dehydration reaction and to hydroxides by hydration reaction. And lanthanum oxide. These may be combined.
 水分子を吸脱着可能な化学蓄熱材としては、例えば、ゼオライト、粘土、シリカゲル、多孔質炭素、有機構造体、アクリル微粒子が挙げられる。これらは組み合わせても良い。 Examples of a chemical heat storage material capable of adsorbing and desorbing water molecules include zeolite, clay, silica gel, porous carbon, an organic structure, and acrylic fine particles. These may be combined.
<化学蓄熱複合体の説明>
 本発明の化学蓄熱複合体は、高い蓄熱密度を得るという観点から、実質的には中空(多孔質)ではない、化学蓄熱材とエラストマー以外に由来する空隙を実質的に有さない(中密)ことが、好ましい。なかでも、化学蓄熱複合体は、その嵩密度が、少なくとも空隙を含まないエラストマー単独の真密度以上であり、化学蓄熱材がほぼ100%含まれる場合の真密度以下であることが望ましい。化学蓄熱複合体の嵩密度は、望ましくは、0.9~6.0g/cmである。また、蓄熱密度は、含有する蓄熱材の種類、及び重量で決定し、実使用においては、体積を基準としてより高い蓄熱密度が求められる。すなわち、体積換算をしてもエネルギー量が小さくならない、嵩密度1.0~6.0g/cmである事がより望ましい。空隙率がほぼゼロである事で高い蓄熱密度が得られるが、硬化の過程において、意図せず気泡を含む場合においては、その状態を制限するものではない。また、熱伝導率向上などを目的とした添加剤を使用する場合は、それら添加剤を除いた重量および体積を用いて算出する。
 なお、嵩密度とは、物質の重量をその体積で除する事で得られる密度であり、真密度とは、物質に含まれる連結、または独立した空隙を除いた密度である。化学的な架橋構造を持つエラストマーの嵩密度を小さくすることがあるため、発泡剤は化学蓄熱複合体及び化学蓄熱複合体形成様組成物には含ませないことが好ましい。
<Description of chemical heat storage complex>
The chemical heat storage composite according to the present invention has substantially no void derived from other than the chemical heat storage material and the elastomer, which is not substantially hollow (porous), from the viewpoint of obtaining a high heat storage density. Is preferred. Among them, it is desirable that the chemical thermal storage composite has a bulk density equal to or higher than the true density of at least the elastomer alone which does not contain a void, and equal to or lower than the true density when approximately 100% of the chemical thermal storage material is contained. The bulk density of the chemical heat storage composite is desirably 0.9 to 6.0 g / cm 3 . Further, the heat storage density is determined by the type and weight of the heat storage material to be contained, and in actual use, a higher heat storage density is required based on the volume. That is, it is more preferable that the bulk density be 1.0 to 6.0 g / cm 3 , in which the amount of energy does not decrease even when converted to volume. Although a high heat storage density can be obtained by the porosity being almost zero, in the case of unintentionally including air bubbles in the process of curing, the state is not limited. Moreover, when using the additive for the purpose of thermal conductivity improvement etc., it calculates using the weight and volume except these additives.
The bulk density is a density obtained by dividing the weight of a substance by its volume, and the true density is a density excluding connection or an independent void contained in the substance. It is preferable not to include the foaming agent in the chemical heat storage composite and the chemical heat storage composite forming composition, in order to reduce the bulk density of the elastomer having a chemically crosslinked structure.
<化学蓄熱複合体の嵩密度の評価>
 化学蓄熱複合体の嵩密度は、上記で述べたように物質の重量をその体積で除する事で得られる密度であるが、その値は、エラストマーと化学蓄熱材の真密度、およびその含有量から算出する事も可能である。実測値と計算値を比較する事で空隙が存在するかどうかを確認する事ができる。
<Evaluation of bulk density of chemical heat storage composite>
The bulk density of a chemical thermal storage composite is the density obtained by dividing the weight of a substance by its volume as described above, but the value is the true density of the elastomer and the chemical thermal storage medium, and the content thereof It is also possible to calculate from By comparing the measured value with the calculated value, it can be confirmed whether or not there is a void.
<製法の説明>
 本発明の「化学蓄熱複合体」を製造する方法を以下に説明する。
 化学蓄熱複合体は、例えば、化学蓄熱複合体形成用組成物を基材などに塗布し、加熱より基材に形成される。化学蓄熱材は、それ自体やそれの含有率によって、光透過性が乏しくなるため、本発明の組成物の調製に当たっては、光硬化系よりも熱硬化系の方が有利である。化学蓄熱複合体形成用組成物とは、化学蓄熱材と、加熱により硬化することでエラストマーとなる液体とが含まれる組成物である。取り扱いが容易な点で、常温で液状であるものが好適に用いられる。
<Description of the manufacturing method>
The method of producing the "chemical heat storage composite" of the present invention will be described below.
The chemical heat storage composite is formed, for example, by applying a composition for forming a chemical heat storage composite to a base or the like and heating the base. The heat storage system is more advantageous than the light curing system in the preparation of the composition of the present invention because the chemical heat storage material itself has poor light transmittance due to its content and its content. The composition for forming a chemical heat storage complex is a composition including a chemical heat storage material and a liquid which becomes an elastomer by curing by heating. From the viewpoint of easy handling, those which are liquid at normal temperature are preferably used.
 加熱により硬化しエラストマーとなるような液体であればどのようなものでも良いが、好ましくは入手のしやすさとより優れた加工性や耐久性(耐熱性、耐光性、耐薬品性など)、嵩密度や化学蓄熱複合体とした際の性能の高さの観点から、シリコーン樹脂、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂となる二液型硬化性組成物が好ましい。この様な好適な組成物から得た化学蓄熱複合体は、上記した様に、実使用においても、熱交換器に設置した際に、吸熱反応と発熱反応の繰り返しに当たり、当該化学蓄熱複合体からの化学蓄熱材の脱落を、より長期に亘り抑制できる。
 加熱により硬化しエラストマーとなるような液体としては、例えば、主剤と、架橋材や触媒との組み合わせが挙げられ、好ましくは、例えば、重合性二重結合含有ポリシロキサンと二重結合の重合触媒との組み合わせ、ポリエステルポリオールやポリエーテルポリオール等の高分子ポリオールとポリイソシアネートとの組み合わせ、エーテル構造及び/又はエステル構造の繰り返し単位を含有する、湿気硬化性の末端イソシアネート基ウレタンプレポリマー、エポキシ化合物と、アミン化合物、フェノール化合物及び酸無水物からなる群から選ばれる化合物との組み合わせ等の二液型硬化性組成物が挙げられる。
 加熱架橋によりポリイミド樹脂を生じる、ポリアミック酸の溶剤溶液の様な一液型硬化性組成物は、硬化架橋により高すぎる弾性率によりエラストマー性状を示さないことから、いずれも蓄熱性能が不充分となる。
 硬化するにあたり必要な架橋材、触媒などを化学蓄熱複合体形成用組成物中に予め含めても良いし、塗工する段階で化学蓄熱複合体形成用組成物に添加して使用しても良い。二液型硬化性組成物を調製する場合には、作業性、保存安定性から塗工する段階で架橋材や触媒等を添加する事が好ましい。
Any liquid which cures to an elastomer upon heating may be used, but preferably it is easy to obtain and more easily processable or durable (heat resistance, light resistance, chemical resistance, etc.), bulky. From the viewpoint of density and high performance in forming a chemical thermal storage composite, a two-component curable composition which is a silicone resin, a polyester resin, an epoxy resin, or a urethane resin is preferable. As described above, the chemical thermal storage composite obtained from such a suitable composition, from the chemical thermal storage composite, is repeatedly used for the endothermic reaction and the exothermic reaction when installed in the heat exchanger even in actual use. Of the chemical heat storage material can be suppressed for a longer period of time.
Examples of the liquid that cures to an elastomer upon heating include a combination of a main agent and a crosslinking agent or catalyst, and preferably, for example, a polymerizable double bond-containing polysiloxane and a double bond polymerization catalyst Moisture-curable terminal isocyanate group urethane prepolymers, epoxy compounds, and the like, combinations of high molecular weight polyols such as polyester polyols and polyether polyols, and polyisocyanates, repeating units of ether structure and / or ester structure, A two-part curable composition such as a combination with a compound selected from the group consisting of an amine compound, a phenol compound and an acid anhydride can be mentioned.
A one-component curable composition such as a solvent solution of polyamic acid which produces a polyimide resin upon heat crosslinking does not exhibit elastomeric properties due to too high an elastic modulus due to curing crosslinking, so any heat storage performance becomes insufficient. .
A crosslinking agent, a catalyst, etc. necessary for curing may be included in advance in the composition for forming a chemical heat storage composite, or may be added to the composition for forming a chemical heat storage composite at the coating step. . When preparing a two-component curable composition, it is preferable to add a crosslinking agent, a catalyst and the like at the stage of coating in view of workability and storage stability.
 架橋材や触媒としては、例えば、硫黄、アミン基を持つ架橋材や触媒、イソシアネート基を持つ架橋材などが挙げられ主剤成分によって適宜選択することができる。 Examples of the crosslinking agent and the catalyst include sulfur, a crosslinking agent having an amine group, a catalyst, a crosslinking agent having an isocyanate group, and the like, which can be appropriately selected depending on the main component.
 アミン基を持つ架橋材や触媒として、例えば、脂肪族ポリアミン、脂環式ポリアミン、マンニッヒ塩基、アミン-エポキシ付加生成物、ポリアミドポリアミン、液状芳香族ポリアミンなどを挙げることができる。 Examples of the crosslinking agent or catalyst having an amine group include aliphatic polyamines, alicyclic polyamines, Mannich bases, amine-epoxy adducts, polyamide polyamines, liquid aromatic polyamines and the like.
 イソシアネート基を持つ架橋材として、例えば、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)等のトリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI)、2,4’-ジフェニルメタンジイソシアネート(2,4’-MDI)等のジフェニルメタンジイソシアネート(MDI)、1,4-フェニレンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、トリジンジイソシアネート(TODI)、1,5-ナフタレンジイソシアネート(NDI)、トリフェニルメタントリイソシアネート、ポリメリックジフェニルメタンジイソシアネート等の芳香族ポリイソシアネート、エチレンジイソシアネート、プロピレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート(TMHDI)、リジンジイソシアネート、ノルボルナンジイソシアネート(NBDI)等の脂肪族ポリイソシアネートなどが上げられる。 As a crosslinking agent having an isocyanate group, for example, tolylene diisocyanate (TDI) such as 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), 4, Diphenylmethane diisocyanate (MDI) such as 4'-diphenylmethane diisocyanate (4,4'-MDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), 1,4-phenylene diisocyanate, polymethylene polyphenylene polyisocyanate, Xylylene diisocyanate (XDI), tetramethyl xylylene diisocyanate (TMXDI), tolidine diisocyanate (TODI), 1,5-naphthalene diisocyanate (NDI), triphenylmethane triisocyanate, polymer Aromatic polyisocyanates such as diphenylmethane diisocyanate, aliphatic diisocyanates such as ethylene diisocyanate, propylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMHDI), lysine diisocyanate, norbornane diisocyanate (NBDI), etc. Is raised.
 硬化架橋を促進する触媒として例えば、白金触媒などが挙げられる。白金触媒として、例えば、白金単体や、塩化白金、塩化白金酸、塩化白金酸塩や、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサンとのコンプレックスなどが挙げられる。 As a catalyst which promotes hardening crosslinking, a platinum catalyst etc. are mentioned, for example. Examples of platinum catalysts include simple platinum, platinum chloride, chloroplatinic acid, chloroplatinic acid salt, platinum chloride, chloroplatinic acid or a complex of chloroplatinic acid salt and a vinyl group-containing siloxane.
 化学蓄熱複合体を構成する必須構成成分である、化学的な架橋構造を持つエラストマーと、化学蓄熱材との含有比率は、用いる原料に応じて最適な比率とすれば良く、特に制限されるものではないが、原料である、加熱により硬化してエラストマーを生じる液体成分中の不揮発分を基準とした場合には、加熱により硬化してエラストマーを生じる液体成分中の不揮発分/化学蓄熱材は、例えば、質量換算で5/95~50/50、中でも10/90~35/65とすることが、蓄熱放熱の繰り返しに伴う化学蓄熱複合体の体積変化があっても、適切なガス透過が行われ、高い蓄熱密度を維持でき、かつ応力緩和による化学蓄熱複合体の劣化も小さく、耐久性により優れたものとできるので好ましい。 The content ratio of the chemically cross-linked elastomer, which is an essential component of the chemical heat storage composite, to the chemical heat storage material may be an optimum ratio according to the raw materials used, and is particularly limited. However, when based on the non-volatile content in the liquid component that is cured by heating to produce an elastomer, which is a raw material, the non-volatile content in the liquid component that cures by heating to produce an elastomer / chemical heat storage material is For example, 5/95 to 50/50, in particular 10/90 to 35/65, in mass conversion, appropriate gas permeation can be performed even if there is a volume change of the chemical thermal storage composite due to repeated heat storage and radiation. It is preferable because high heat storage density can be maintained, and deterioration of the chemical heat storage composite due to stress relaxation is small, and can be made more excellent in durability.
 化学蓄熱複合体形成用組成物には、必要に応じて溶剤を加える事もできる。溶剤としては、有機溶剤及び水の少なくとも一方を用いることができる。有機溶剤としては、例えば、トルエン、キシレンなどの炭化水素類、アセトン、メチルエチルケトンなどのケトン類、酢酸エチル、セロソルブアセテート、ブチルセロソルブなどのエステル類、メタノール、エタノールなどのアルコール類などが挙げられる。有機溶剤は使用しないか使用したとしても極力少量にとどめることが、回収工程を不要とし取り扱い性を高めるためにも好ましい。 A solvent can also be added to the composition for forming a chemical heat storage complex, if necessary. As the solvent, at least one of an organic solvent and water can be used. Examples of the organic solvent include hydrocarbons such as toluene and xylene, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, cellosolve acetate and butyl cellosolve, and alcohols such as methanol and ethanol. It is preferable not to use the organic solvent or to keep the amount as small as possible even if it is used, in order to eliminate the recovery step and to improve the handleability.
 化学蓄熱複合体形成用組成物は、熱伝導率を向上させるために熱伝導性フィラーを添加する事ができる。熱伝導性フィラーとしては、例えば、グラファイト、炭化ケイ素、酸化アルミニウム、酸化マグネシウム、窒化ホウ素などが挙げられる。これは単独でも2種類以上を適宜組み合わせて用いても良い。 A thermally conductive filler can be added to the composition for forming a chemical heat storage composite in order to improve the thermal conductivity. As a heat conductive filler, graphite, silicon carbide, aluminum oxide, magnesium oxide, boron nitride etc. are mentioned, for example. These may be used alone or in appropriate combination of two or more.
 化学蓄熱複合体形成用組成物には、基材との密着性を向上させるための添加物を加える事ができる。 An additive for improving the adhesion to the substrate can be added to the composition for forming a chemical heat storage complex.
 化学蓄熱複合体形成用組成物には、塗工性を向上させるためのレオロジーコントロール剤等を加える事ができる。 A rheology control agent or the like for improving the coatability can be added to the composition for forming a chemical heat storage complex.
 化学蓄熱材の分散安定性を高めるためには、分散剤を化学蓄熱複合体形成用組成物に含んでも良い。 In order to enhance the dispersion stability of the chemical heat storage material, a dispersant may be included in the composition for forming a chemical heat storage complex.
 化学蓄熱複合体形成用組成物の調製方法は、特に制限はなく、公知の方法を用いることができる。例えば、化学蓄熱材と加熱により硬化し化学的な架橋構造を持つエラストマーを生じる液体とに加えて、前記任意成分を混練機(例えば、一軸押出機、二軸押出機、プラネタリーミキサー、二軸ミキサー、高剪断型ミキサー等)を用いて混練することにより、調製することができる。
 尚、化学蓄熱複合体形成用組成物は、硬化架橋後に得られる化学蓄熱複合体が、出来るだけ高い蓄熱密度と、熱交換器に組み込んでの長期に亘っての蓄熱放熱の繰り返し耐久性が高まる様に、化学蓄熱材とエラストマー以外に由来する空隙を実質的に有さないものとなる(中密となる)様に、脱泡を行うことが好ましい。
The preparation method of the composition for forming a chemical heat storage complex is not particularly limited, and a known method can be used. For example, in addition to a chemical heat storage material and a liquid that cures by heating to form an elastomer having a chemically crosslinked structure, the optional component may be a kneader (eg, single screw extruder, twin screw extruder, planetary mixer, twin screw, etc. It can prepare by knead | mixing using a mixer, a high shear type | mold mixer etc.).
In the composition for forming a chemical heat storage composite, the chemical heat storage composite obtained after curing and crosslinking has a high heat storage density as high as possible, and the repeated durability of heat storage and heat radiation over a long period of time incorporated into a heat exchanger increases. Similarly, it is preferable to perform degassing so as to be substantially free of voids derived from other than the chemical heat storage material and the elastomer (ie, to be dense).
<用途の説明>
 このような本発明の「化学蓄熱複合体」は熱交換器の基材表面などに化学蓄熱材料を形成し、ケミカルヒートポンプなどの用途で用いることができる。
<Description of application>
Such a "chemical heat storage composite" of the present invention forms a chemical heat storage material on the surface of a base of a heat exchanger or the like, and can be used in applications such as a chemical heat pump.
<化学蓄熱複合体形成工程の説明>
 本発明の化学蓄熱複合体は、例えば、前述した化学蓄熱複合体形成用組成物を基材表面に塗布する工程と、化学蓄熱複合体形成用組成物が表面に塗布された基材を加熱する工程と、を経ることにより形成することができる。具体的には、次の通り説明される塗布工程と、加熱工程とを含むものである。
<Description of chemical heat storage complex formation process>
The chemical thermal storage composite of the present invention, for example, applies the above-described composition for forming a chemical thermal storage composite to the surface of a substrate, and heats the substrate on which the composition for forming a chemical thermal storage composite is applied. It can form by passing through and. Specifically, it includes a coating step described as follows and a heating step.
<塗布工程>
 塗布工程では、上記の化学蓄熱複合体形成用組成物を基材に塗布する。化学蓄熱複合体形成用組成物は、溶剤を含まない状態で常温液状であるものが流動性に富み塗布しやすいので好ましいが、溶剤を含まない状態で常温にて粘度が高い場合は加温等して流動性を高めた上で塗布することも可能である。溶剤を含む化学蓄熱複合体形成用組成物は、塗布と同時又は塗布後に公知の方法で脱溶剤等の乾燥を行うことが好ましい。
 化学蓄熱複合体形成用組成物を基材に塗布するのであればどのような方法でも良いが、例えばシャワー又はディッピングなどにより基材を化学蓄熱複合体形成用組成物中に浸漬して塗布する方法、アプリケーターなどによる塗布方法が挙げられる。化学蓄熱複合体形成用組成物を塗布する基材は特に限定されないが、例えば、熱交換器の熱交換面に用いられる金属材料であるアルミニウム、銅、鋼材、ステンレスなどが挙げられる。
<Coating process>
In the application step, the above-mentioned composition for forming a chemical heat storage complex is applied to a substrate. The composition for forming a chemical heat storage complex is preferably a liquid which does not contain a solvent and which is a normal temperature liquid because it is rich in fluidity and it is easy to apply, but if the viscosity is high at ordinary temperature without a solvent, heating etc. It is also possible to apply after improving fluidity. It is preferable that the composition for forming a chemical thermal storage composite containing a solvent is subjected to drying such as solvent removal by a known method simultaneously with or after the application.
Any method may be used as long as the composition for forming a chemical heat storage complex is applied to the substrate, for example, a method of applying by dipping the substrate in the composition for forming a chemical heat storage complex by showering or dipping. And the application method by an applicator etc. are mentioned. Although the base material which apply | coats the composition for chemical thermal storage composite formation is not specifically limited, For example, aluminum which is a metal material used for the heat exchange surface of a heat exchanger, copper, steel materials, stainless steel etc. are mentioned.
<加熱工程>
 加熱工程では、塗布工程後に、基材表面の化学蓄熱複合体用組成物を加熱する。化学蓄熱複合体用組成物は、加熱工程において加熱されることで、硬化により架橋が進み、化学的な架橋構造を有するエラストマーとなり、化学蓄熱材をも含む化学蓄熱複合体を形成する。加熱工程は、電気炉、加熱オーブンなどにより行うことができるが、加熱する装置については特に限定されない。加熱硬化の条件は、用いる化学蓄熱複合体形成用組成物の組成に応じて最適条件を選択すれば良いが、例えば、加熱温度は室温~300℃の範囲で、加熱時間は3分~3時間の範囲で、行なう事ができる。
 尚、この加熱工程は、酸素ガスや空気の雰囲気下にて行うこともできるが、例えば、窒素ガスやヘリウムガス等の不活性ガス雰囲気下で行う方が、加熱による硬化阻害等が起こり難く、得られる化学蓄熱複合体が、より高い蓄熱密度と、熱交換器に組み込んでの長期に亘っての蓄熱放熱の繰り返し耐久性が高いものとなる。
<Heating process>
In the heating step, the composition for a chemical heat storage composite on the surface of the substrate is heated after the application step. The composition for a chemical thermal storage composite is heated in the heating step, so that crosslinking proceeds by curing to become an elastomer having a chemical crosslinked structure, and forms a chemical thermal storage composite also including a chemical thermal storage material. Although a heating process can be performed by an electric furnace, a heating oven, etc., it does not specifically limit about the apparatus to heat. The conditions for heat curing may be selected according to the composition of the composition for forming a chemical thermal storage complex to be used. For example, the heating temperature is in the range of room temperature to 300 ° C., and the heating time is 3 minutes to 3 hours In the range of
Although this heating process can also be performed under an atmosphere of oxygen gas or air, for example, when it is performed under an inert gas atmosphere such as nitrogen gas or helium gas, curing inhibition due to heating is less likely to occur. The resulting chemical heat storage composite has high heat storage density and high durability of repeated heat storage and heat radiation over a long period of time when it is incorporated in a heat exchanger.
 以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の製造例に限定されるものではない。なお参考例は化学蓄熱複合体に含まれる樹脂の弾性率を求めるための樹脂の調製方法を示したものである。 Hereinafter, the present invention will be more specifically described by way of examples. However, the present invention is not limited to the following production examples. The reference example shows a method of preparing a resin for determining the elastic modulus of the resin contained in the chemical heat storage composite.
参考例1
 SYLGARD184 Silicone Elastomer(東レ・ダウコーニング(株)製)1g、SYLGARD184 Curing Agent(東レ・ダウコーニング(株)製)0.1gをバイアル瓶に量り取り、あわとり練太郎((株)シンキー製)で攪拌、脱泡させて液体を得た。得られた液体をステンレス(SUS304)板(7cm×3cm)の上にアプリケーターを用いて塗布し、塗布した板を窒素雰囲気中で200℃1時間加熱して、架橋シリコーン樹脂エラストマーの膜を得た。
Reference Example 1
Weigh 1 g of SYLGARD 184 Silicone Elastomer (made by Toray Dow Corning Co., Ltd.) and 0.1 g of SYLGARD 184 Curing Agent (made by Toray Dow Corning Co., Ltd.) in a vial, and use Awatori Neritaro (made by Shinky Co., Ltd.) Stir and degas to obtain a liquid. The obtained liquid was coated on a stainless steel (SUS 304) plate (7 cm × 3 cm) using an applicator, and the coated plate was heated in a nitrogen atmosphere at 200 ° C. for 1 hour to obtain a film of a crosslinked silicone resin elastomer. .
製造例1(架橋シリコーン樹脂エラストマーの化学蓄熱複合体)
 塩化カルシウム(和光純薬工業(株)製)1g、SYLGARD184 Silicone Elastomer(東レ・ダウコーニング(株)製)1g、SYLGARD184 Curing Agent(東レ・ダウコーニング(株)製)0.1g、トルエン1gをバイアル瓶に量り取り、あわとり練太郎((株)シンキー製)で攪拌、脱泡させ、シリコーン樹脂と塩化カルシウムとを含むペーストを得た。得られたペーストをステンレス(SUS304)板(7cm×3cm)の上にアプリケーターを用いて塗布し、塗布した板を窒素雰囲気中で200℃1時間加熱して、架橋シリコーン樹脂エラストマーと化学蓄熱材とを含む化学蓄熱複合体の膜(D1)を得た。
Production Example 1 (Chemical thermal storage composite of crosslinked silicone resin elastomer)
1 g of calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.), 1 g of SYLGARD 184 Silicone Elastomer (manufactured by Toray Dow Corning), 0.1 g of SYLGARD 184 Curing Agent (manufactured by Toray Dow Corning), and 1 g of toluene The mixture was weighed in a bottle and stirred and defoamed with Awatori Neritaro (manufactured by Shinky Co., Ltd.) to obtain a paste containing a silicone resin and calcium chloride. The obtained paste is applied onto a stainless steel (SUS 304) plate (7 cm × 3 cm) using an applicator, and the coated plate is heated in a nitrogen atmosphere at 200 ° C. for 1 hour to crosslink silicone resin elastomer and chemical heat storage material A membrane (D1) of a chemical heat storage complex comprising
参考例2
 ポリ(ジメチルシロキサン)、ビニル末端(重量平均分子量25,000、シグマアルドリッチ(株)製)10g、メチルヒドロシロキサン-ジメチルシロキサンコポリマー、トリメチルシロキシ末端(数平均分子量950、シグマアルドリッチ(株)製)0.5g、白金(0)-1,3-ジビニルテトラメチルジシロキサン コンプレックス(東京化成(株)製)150μgをバイアル瓶に量り取り、あわとり練太郎((株)シンキー製)で攪拌、脱泡させて液体を得た。得られた液体をステンレス(SUS304)板(7cm×3cm)の上にアプリケーターを用いて塗布し、塗布した板を窒素雰囲気中で100℃1時間加熱して、架橋シリコーン樹脂エラストマーの膜を得た。
Reference Example 2
Poly (dimethyl siloxane), vinyl end (weight average molecular weight 25,000, manufactured by Sigma Aldrich Co., Ltd.) 10 g, methylhydrosiloxane-dimethylsiloxane copolymer, trimethylsiloxy end (number average molecular weight 950, manufactured by Sigma Aldrich Co.) 0 .5 g, 150 μg of platinum (0) -1,3-divinyl tetramethyldisiloxane complex (manufactured by Tokyo Chemical Industry Co., Ltd.) is weighed into a vial, stirred with Awatori Neritaro (manufactured by Shinky Co., Ltd.), and defoamed The liquid was obtained. The obtained liquid was coated on a stainless steel (SUS 304) plate (7 cm × 3 cm) using an applicator, and the coated plate was heated in a nitrogen atmosphere at 100 ° C. for 1 hour to obtain a film of a crosslinked silicone resin elastomer. .
製造例2(シリコーン樹脂エラストマーの化学蓄熱複合体)
 ポリ(ジメチルシロキサン)、ビニル末端(重量平均分子量25,000、シグマアルドリッチ(株)製)10g、メチルヒドロシロキサン-ジメチルシロキサンコポリマー、トリメチルシロキシ末端(数平均分子量950、シグマ アルドリッチ(株)製)0.5g、白金(0)-1,3-ジビニルテトラメチルジシロキサン コンプレックス(東京化成(株)製)150μg、塩化カルシウム(和光純薬工業(株)製)10gをバイアル瓶に量り取り、あわとり練太郎((株)シンキー製)で攪拌、脱泡させて液体を得た。得られた液体をステンレス(SUS304)板(7cm×3cm)の上にアプリケーターを用いて塗布し、塗布した板を窒素雰囲気中で100℃1時間加熱して、架橋シリコーン樹脂エラストマーと化学蓄熱材とを含む化学蓄熱複合体の膜(D2)を得た。
Production Example 2 (Chemical Heat Storage Composite of Silicone Resin Elastomer)
Poly (dimethyl siloxane), vinyl end (weight average molecular weight 25,000, manufactured by Sigma-Aldrich Co., Ltd.) 10 g, methylhydrosiloxane-dimethylsiloxane copolymer, trimethylsiloxy end (number average molecular weight 950, manufactured by Sigma Aldrich Co.) 0 .5 g of platinum (0) -1,3-divinyl tetramethyldisiloxane complex (150 μg from Tokyo Kasei Co., Ltd.) and 10 g of calcium chloride (Wako Pure Chemical Industries, Ltd.) are weighed in a vial Stirring and degassing was carried out with Nerichiro (manufactured by Shinky Co., Ltd.) to obtain a liquid. The obtained liquid is coated on a stainless steel (SUS 304) plate (7 cm × 3 cm) using an applicator, and the coated plate is heated in a nitrogen atmosphere at 100 ° C. for 1 hour to crosslink silicone resin elastomer and chemical heat storage material A membrane (D2) of a chemical heat storage complex comprising
参考例3
 パンデックスGW-1340(DIC(株)製)5g、バーノックDN-902S(DIC(株)製)0.3gをバイアル瓶に量り取り、あわとり練太郎((株)シンキー製)で攪拌、脱泡させて液体を得た。得られた液体をステンレス(SUS304)板(7cm×3cm)の上にアプリケーターを用いて塗布し、塗布した板を空気中で80℃1時間加熱して、架橋ウレタン樹脂エラストマーの膜を得た。
Reference Example 3
Measure 5 g of Pandex GW-1340 (manufactured by DIC Corporation) and 0.3 g of Bernock DN-902S (manufactured by DIC Corporation) in a vial, and stir with Awatori Neritaro (manufactured by Shinky Co., Ltd.) to remove it. Bubbled to give a liquid. The obtained liquid was applied onto a stainless (SUS304) plate (7 cm × 3 cm) using an applicator, and the applied plate was heated in air at 80 ° C. for 1 hour to obtain a film of a crosslinked urethane resin elastomer.
製造例3(架橋ウレタン樹脂エラストマーの化学蓄熱複合体)
 パンデックスGW-1340(DIC(株)製)5g、バーノックDN-902S(DIC(株)製)0.3g、塩化カルシウム(和光純薬工業(株)製)5gをバイアル瓶に量り取り、あわとり練太郎((株)シンキー製)で攪拌、脱泡させて液体を得た。得られた液体をステンレス(SUS304)板(7cm×3cm)の上にアプリケーターを用いて塗布し、塗布した板を窒素雰囲気中で80℃1時間加熱して、架橋ウレタン樹脂エラストマーと化学蓄熱材とを含む化学蓄熱複合体の膜(D3)を得た。
Production Example 3 (Chemical Heat Storage Composite of Cross-linked Urethane Resin Elastomer)
Measure 5 g of Pandex GW-1340 (manufactured by DIC Corporation), 0.3 g of Bernock DN-902S (manufactured by DIC Corporation), and 5 g of calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) in a vial. Stirring and degassing with Tori Neritaro (product of Shinky Co., Ltd.) to obtain a liquid. The obtained liquid is coated on a stainless steel (SUS 304) plate (7 cm × 3 cm) using an applicator, and the coated plate is heated in a nitrogen atmosphere at 80 ° C. for 1 hour to crosslink the urethane resin elastomer and the chemical heat storage material A membrane (D3) of a chemical heat storage complex comprising
参考例4
 ディックドライLX-627M(DIC(株)製)4g、KW-40(DIC(株)製)1gをバイアル瓶に量り取り、あわとり練太郎((株)シンキー製)で攪拌、脱泡させて液体を得た。得られた液体をステンレス(SUS304)板(7cm×3cm)の上にアプリケーターを用いて塗布し、塗布した板を空気中で50℃3日間加熱して、架橋ポリエステル樹脂エラストマーの膜を得た。
Reference Example 4
Measure 4 g of Dick Dry LX-627M (manufactured by DIC Corporation) and 1 g of KW-40 (manufactured by DIC Corporation) in a vial, and stir and degas with Awatori Neritaro (manufactured by Shinky Corporation) I got a liquid. The obtained liquid was coated on a stainless steel (SUS304) plate (7 cm × 3 cm) using an applicator, and the coated plate was heated in air at 50 ° C. for 3 days to obtain a film of a crosslinked polyester resin elastomer.
製造例4(架橋ポリエステル樹脂エラストマーの化学蓄熱複合体)
 ディックドライLX-627M(DIC(株)製)4g、KW-40(DIC(株)製)1g、塩化カルシウム(和光純薬工業(株)製)5gをバイアル瓶に量り取り、あわとり練太郎((株)シンキー製)で攪拌、脱泡させて液体を得た。得られた液体をステンレス(SUS304)板(7cm×3cm)の上にアプリケーターを用いて塗布し、塗布した板を窒素雰囲気中で50℃3日間加熱して、架橋ポリエステル樹脂エラストマーと化学蓄熱材とを含む化学蓄熱複合体の膜(D4)を得た。
Production Example 4 (Chemical Heat Storage Composite of Cross-linked Polyester Resin Elastomer)
Weigh 4 g of Dick Dry LX-627M (manufactured by DIC Corporation), 1 g of KW-40 (manufactured by DIC Corporation), and 5 g of calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) in a vial. The mixture was stirred and degassed with (manufactured by Shinky Co., Ltd.) to obtain a liquid. The obtained liquid is coated on a stainless steel (SUS 304) plate (7 cm × 3 cm) using an applicator, and the coated plate is heated in a nitrogen atmosphere at 50 ° C. for 3 days to crosslink polyester resin elastomer and chemical heat storage material A membrane (D4) of a chemical heat storage complex comprising
参考例5
 EPICLON EXA-4850-150(DIC(株)製)2.84g、トリエチレンテトラミン(東京化成(株)製)0.16gをバイアル瓶に量り取り、あわとり練太郎((株)シンキー製)で攪拌、脱泡させて液体を得た。得られた液体をステンレス(SUS304)板(7cm×3cm)の上にアプリケーターを用いて塗布し、塗布した板を空気中で80℃3時間、150℃2時間加熱して、架橋エポキシ樹脂エラストマーの膜を得た。
Reference Example 5
Measure 2.84 g of EPICLON EXA-4850-150 (manufactured by DIC Corporation) and 0.16 g of triethylenetetramine (manufactured by Tokyo Kasei Corporation) in a vial, and use Awatori Neritaro (manufactured by Shinky Co., Ltd.) Stir and degas to obtain a liquid. The obtained liquid is applied onto a stainless steel (SUS 304) plate (7 cm × 3 cm) using an applicator, and the coated plate is heated in air at 80 ° C. for 3 hours and 150 ° C. for 2 hours to obtain a crosslinked epoxy resin elastomer I got a membrane.
製造例5(架橋エポキシ樹脂エラストマーの化学蓄熱複合体)
 EPICLON EXA-4850-150(DIC(株)製)2.84g、トリエチレンテトラミン(東京化成(株)製)0.16g、塩化カルシウム(和光純薬工業(株)製)3g、トルエン1gをバイアル瓶に量り取り、あわとり練太郎((株)シンキー製)で攪拌、脱泡させて液体を得た。得られた液体をステンレス(SUS304)板(7cm×3cm)の上にアプリケーターを用いて塗布し、塗布した板を窒素雰囲気中で80℃3時間、150℃2時間加熱して、架橋エポキシ樹脂エラストマーと化学蓄熱材とを含む化学蓄熱複合体の膜(D5)を得た。
Production Example 5 (Chemical Heat Storage Composite of Cross-Linked Epoxy Resin Elastomer)
2.84 g of EPICLON EXA-4850-150 (manufactured by DIC Corporation), 0.16 g of triethylenetetramine (manufactured by Tokyo Kasei Corporation), 3 g of calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.), and 1 g of toluene The mixture was weighed in a bottle and stirred and defoamed with Awatori Neritaro (manufactured by Shinky Co., Ltd.) to obtain a liquid. The obtained liquid is coated on a stainless steel (SUS 304) plate (7 cm × 3 cm) using an applicator, and the coated plate is heated at 80 ° C. for 3 hours and 150 ° C. for 2 hours in a nitrogen atmosphere to crosslink epoxy resin elastomer A film (D5) of a chemical heat storage composite including the above and a chemical heat storage material was obtained.
比較参考例1
 U-ワニス-A(宇部興産(株)製)1gをステンレス(SUS304)板(7cm×3cm)の上にアプリケーターを用いて塗布し、塗布した板を空気中で200℃3時間加熱し、ポリイミド樹脂の膜を得た。
Comparative Reference Example 1
Apply 1 g of U-varnish-A (Ube Industries, Ltd.) on a stainless steel (SUS 304) plate (7 cm × 3 cm) using an applicator, heat the coated plate in air at 200 ° C for 3 hours, A film of resin was obtained.
比較製造例1(ポリイミド樹脂の化学蓄熱複合体)
 U-ワニス-A(宇部興産(株)製)2gと塩化カルシウム(和光純薬工業(株)製)0.1gをステンレス(SUS304)板(7cm×3cm)の上にアプリケーターを用いて塗布し、塗布した板を窒素雰囲気中で200℃3時間加熱し、ポリイミド樹脂と化学蓄熱材とを含む化学蓄熱複合体の膜(C1)を得た。
Comparative Production Example 1 (Chemical Heat Storage Composite of Polyimide Resin)
Apply 2 g of U-varnish-A (manufactured by Ube Industries, Ltd.) and 0.1 g of calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) on a stainless steel (SUS 304) plate (7 cm × 3 cm) using an applicator. The coated plate was heated in a nitrogen atmosphere at 200 ° C. for 3 hours to obtain a film (C1) of a chemical heat storage composite containing a polyimide resin and a chemical heat storage material.
[ガラス転移温度の測定]
 製造例1、2、3、4、5及び比較製造例1で得られた膜についてガラス転移温度を測定した。ガラス転移温度の測定はTA Instruments(株)製のRSA IIIを使用した。試料を幅0.5cm、長さ4cmの短冊状に切り取り、厚みはマイクロメーター((株)ミツトヨ製PMU150-25MX)を使用して測定した。これを測定用の試験片とした。この試験片を引っ張り試験用の治具に取り付け、温度-50~100℃、周波数1Hzの条件で測定した。この条件よりも低温側にガラス転移温度がある場合は、-140~0℃の範囲で同じ条件で再測定し、それよりも高温側にガラス転移温度がある場合は50℃~300℃の範囲で同じ条件で測定した。測定により得られた損失正接(tanδ)の最大値の温度をガラス転移温度とした。
[Measurement of glass transition temperature]
The glass transition temperatures of the films obtained in Production Examples 1, 2, 3, 4, 5 and Comparative Production Example 1 were measured. The measurement of glass transition temperature used RSA III made from TA Instruments Co., Ltd. product. The sample was cut into strips of width 0.5 cm and length 4 cm, and the thickness was measured using a micrometer (PMU150-25MX manufactured by Mitutoyo Corp.). This was used as a test piece for measurement. The test piece was attached to a jig for tensile test, and measurement was performed under the conditions of a temperature of −50 to 100 ° C. and a frequency of 1 Hz. If there is a glass transition temperature on the lower temperature side than this condition, re-measure under the same conditions in the range of -140 to 0 ° C, if there is a glass transition temperature on the higher temperature side, the range of 50 ° C to 300 ° C In the same conditions. The temperature at the maximum value of loss tangent (tan δ) obtained by the measurement was taken as the glass transition temperature.
[弾性率の測定]
 参考例1、2、3、4、5及び比較参考例1で得られた膜について弾性率を測定した。弾性率の測定はTA Instruments(株)製のRSA IIIを使用した。試料を幅0.5cm、長さ4cmの短冊状に切り取り、厚みはマイクロメーター((株)ミツトヨ製PMU150-25MX)を使用して測定した。これを測定用の試験片とした。この試験片を引っ張り試験用の治具に取り付け、温度30℃、周波数1Hzの条件で測定した。その時に得られた貯蔵弾性率(E’)を弾性率とした。結果を表1に示す。
[Measurement of elastic modulus]
The elastic modulus was measured for the films obtained in Reference Examples 1, 2, 3, 4, 5 and Comparative Reference Example 1. The measurement of elastic modulus used RSA III made from TA Instruments Co., Ltd. product. The sample was cut into strips of width 0.5 cm and length 4 cm, and the thickness was measured using a micrometer (PMU150-25MX manufactured by Mitutoyo Corp.). This was used as a test piece for measurement. The test piece was attached to a jig for tensile test, and measurement was carried out under conditions of a temperature of 30 ° C. and a frequency of 1 Hz. The storage elastic modulus (E ') obtained at that time was taken as the elastic modulus. The results are shown in Table 1.
[嵩密度の測定]
 参考例1、2、3、4、5及び比較参考例1で得られた膜について嵩密度を測定した。嵩密度の測定は、試験片の嵩体積及び重量により求めた。温度23℃、露点-15℃以下の環境下で1時間以上放置した縦約20mm×横約20mmの化学蓄熱複合体の外形寸法をノギスにより0.1mmの精度で測定し、厚みはマイクロメーター((株)ミツトヨ製PMU150-25MX)にて0.001mmの精度で測定し、嵩体積を求めた。次いで、該試験片の重量(g)を精秤した。上記の通り求められた試験片重量を試験片の嵩体積にて除し、単位換算した。試験片は5つ作製し、得られた嵩密度のうち、一番高いものと低いものを除いた3つの結果の平均値を実測値として表1に示す。
[Measurement of bulk density]
The bulk density of the films obtained in Reference Examples 1, 2, 3, 4, 5 and Comparative Reference Example 1 was measured. The bulk density was determined by the bulk volume and weight of the test piece. The external dimensions of the chemical thermal storage composite, approximately 20 mm long x 20 mm wide, which has been left for at least 1 hour in an environment with a temperature of 23 ° C and a dew point of -15 ° C or less, are measured with calipers with a precision of 0.1 mm. The volume was measured with an accuracy of 0.001 mm using PMU150-25MX manufactured by Mitutoyo Corporation. Then, the weight (g) of the test piece was precisely weighed. The weight of the test piece determined as described above was divided by the bulk volume of the test piece and converted to a unit. Five test pieces were prepared, and among the obtained bulk densities, the average value of the three results excluding the highest one and the lowest one is shown in Table 1 as an actual measurement value.
[蓄熱性能の評価]
 製造例1、2、3、4、5及び比較製造例1で得られた化学蓄熱複合体の膜をSUS304板から約10mg切り取り、これを用いてTG-DTA測定(TG-DTA2020SA ブルカー・エイエックスエス(株))により、化学蓄熱複合体の蓄熱性能を評価した。
[Evaluation of heat storage performance]
About 10 mg of the film of the chemical heat storage composite obtained in Production Examples 1, 2, 3, 4, 5 and Comparative Production Example 1 is cut out from a SUS 304 plate, and TG-DTA measurement is performed using this (TG-DTA 2020SA Bruker AX The heat storage performance of the chemical heat storage complex was evaluated by S. Co., Ltd.).
 評価は窒素ガス(200ml/min)を流通させながら10℃/分で200℃まで昇温し、200℃で30分間保持し、続けて10℃/分で80℃まで冷却した。80℃で10分間保持し、その後、温度を維持したまま水蒸気分圧5.6kPaの窒素混合ガス(200ml/min)に切り替えて、水蒸気を含む混合ガスを30分間流通させた。30分間水蒸気を吸着させている間のDTA面積より発熱量を評価し、これを蓄熱性能の評価の指標とした。発熱量は得られたDTA面積をIn、Sn、Pbの融解熱で補正することで算出し、化学蓄熱材1kg当たりの発熱量を算出した。この時の発熱量が100kJ/kg以上であれば化学蓄熱複合体の蓄熱性能があると判断し○、100kJ/kg未満であれば化学蓄熱複合体の蓄熱性能がないと判断し×とした。結果を表1に示す。 In the evaluation, the temperature was raised to 200 ° C. at 10 ° C./min while flowing nitrogen gas (200 ml / min), held at 200 ° C. for 30 minutes, and subsequently cooled to 80 ° C. at 10 ° C./min. The temperature was maintained at 80 ° C. for 10 minutes, and then the pressure was switched to a nitrogen mixed gas (200 ml / min) with a water vapor partial pressure of 5.6 kPa while maintaining the temperature, and a mixed gas containing water vapor was circulated for 30 minutes. The calorific value was evaluated from the DTA area during adsorption of water vapor for 30 minutes, and this was used as an index of evaluation of heat storage performance. The calorific value was calculated by correcting the obtained DTA area with the heat of fusion of In, Sn, Pb, and the calorific value per 1 kg of the chemical heat storage material was calculated. If the calorific value at this time is 100 kJ / kg or more, it is judged that the heat storage performance of the chemical heat storage composite is present, and if it is less than 100 kJ / kg, it is judged that the heat storage performance of the chemical heat storage composite is not present. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、化学的な架橋構造を持つエラストマーを含む化学蓄熱複合体である製造例1~5は、エラストマー性状を有さないポリイミド樹脂を含む比較製造例1と比較して蓄熱性能が高いことが示され、製造例1~5に示す化学的な架橋構造を持つエラストマーと化学蓄熱材とからなる化学蓄熱複合体が蓄熱材料として好適に利用できることを意味する。 As is apparent from Table 1, the heat storage composites including the elastomer having the chemically cross-linked structure in Preparation Examples 1 to 5 have the heat storage compared with Comparative Preparation Example 1 including the polyimide resin having no elastomer property. It is shown that the performance is high, and it means that the chemical heat storage composite comprising the chemical crosslinkable elastomer and the chemical heat storage material shown in Production Examples 1 to 5 can be suitably used as a heat storage material.
 上記し各実施例の化学蓄熱複合体は、いずれも、より優れた加工性を有する組成物を用いて製造しているので、架橋前に特段に別の手間のかかる工程を要せず、容易に耐久性(耐熱性、耐光性、耐薬品性など)、ガス透過性や生産性を兼備した化学蓄熱複合体であった。また、実使用においても、熱交換器に設置した際に、吸熱反応と発熱反応の繰り返しに当たり、当該化学蓄熱複合体からの化学蓄熱材の脱落を、より長期に亘り抑制できた。 All of the chemical thermal storage composites of the above-described examples are manufactured using a composition having more excellent processability, so it is easy without requiring a special time-consuming process before crosslinking. In addition, it is a chemical thermal storage composite that combines durability (heat resistance, light resistance, chemical resistance, etc.), gas permeability and productivity. In addition, also in actual use, when installed in the heat exchanger, in the repetition of the endothermic reaction and the exothermic reaction, the detachment of the chemical thermal storage medium from the chemical thermal storage complex could be suppressed for a longer period of time.
 本発明の化学蓄熱複合体は、化学的な架橋構造を持つエラストマーと、化学蓄熱材と、を含有する化学蓄熱複合体であることから、マトリクス樹脂中の化学蓄熱材への反応媒体ガスの吸脱着に伴う体積変化による応力を大きく緩和でき、左記複合体中に空隙も生じ難く、高い蓄熱密度を維持したまま蓄熱放熱の繰り返し耐久性に優れる。熱交換器と組み合わせて用いることで、このような本発明の化学蓄熱複合体は、工場用の排熱利用システム、車両用の排熱利用システム又は住宅用の熱利用システム(例えば空調システム)などに好適に利用できる。 Since the chemical thermal storage composite of the present invention is a chemical thermal storage composite containing an elastomer having a chemical crosslink structure and a chemical thermal storage material, the absorption of the reaction medium gas to the chemical thermal storage material in the matrix resin is It is possible to greatly relieve the stress due to the volume change associated with desorption, and it is difficult for voids to be generated in the composite described above, and the repeated durability of heat storage and heat radiation is excellent while maintaining high heat storage density. When used in combination with a heat exchanger, such a chemical heat storage composite according to the present invention can be used as a waste heat utilization system for a factory, a waste heat utilization system for a vehicle, or a heat utilization system for a house (for example, an air conditioning system) Can be suitably used.

Claims (8)

  1.  化学的な架橋構造を持つエラストマーと、化学蓄熱材と、を含有する化学蓄熱複合体であることを特徴とする化学蓄熱複合体。 What is claimed is: 1. A chemical heat storage composite comprising: a chemical heat storage composite containing an elastomer having a chemical crosslink structure and a chemical heat storage material.
  2.  化学的な架橋構造を持つエラストマーと、化学蓄熱材と、を含有する、嵩密度0.9~6.0g/cmの化学蓄熱複合体であることを特徴とする化学蓄熱複合体。 A chemical heat storage composite characterized in that it is a chemical heat storage composite having a bulk density of 0.9 to 6.0 g / cm 3 , containing an elastomer having a chemical crosslink structure and a chemical heat storage material.
  3.  前記エラストマーが、天然ゴム、ジエン系ゴム、オレフィン系ゴム、シリコーン樹脂、ポリエステル樹脂、エポキシ樹脂及びウレタン樹脂からなる群から選ばれる少なくとも一種であることを特徴とする請求項1または2に記載の化学蓄熱複合体。 The chemistry according to claim 1 or 2, wherein the elastomer is at least one selected from the group consisting of natural rubber, diene rubber, olefin rubber, silicone resin, polyester resin, epoxy resin and urethane resin. Heat storage complex.
  4.  加熱により硬化する液体と、化学蓄熱材と、を含有する化学蓄熱複合体形成用組成物であって、前記加熱により硬化する液体が、硬化した際にエラストマーとなるものであることを特徴とする化学蓄熱複合体形成用組成物。 A composition for forming a chemical thermal storage composite, comprising a liquid that is cured by heating and a chemical heat storage material, wherein the liquid that is cured by the heating becomes an elastomer when it is cured. Composition for chemical thermal storage complex formation.
  5.  加熱により硬化する液体と、化学蓄熱材と、を含有する化学蓄熱複合体形成用組成物であって、前記加熱により硬化する液体が、硬化した際にエラストマーとなるものであり、かつ硬化後の化学蓄熱複合体が嵩密度0.9~6.0g/cmとなる様に調製したことを特徴とする化学蓄熱複合体形成用組成物。 A composition for forming a chemical thermal storage composite, comprising a liquid that cures by heating, and a chemical heat storage material, wherein the liquid that cures by heating becomes an elastomer when cured, and after curing A composition for forming a chemical heat storage composite, which is prepared so that the chemical heat storage composite has a bulk density of 0.9 to 6.0 g / cm 3 .
  6.  更に溶剤を含む、請求項4または5に記載の化学蓄熱複合体形成用組成物。 The composition for forming a chemical heat storage composite according to claim 4, further comprising a solvent.
  7.  前記エラストマーが、天然ゴム、ジエン系ゴム、オレフィン系ゴム、シリコーン樹脂、ポリエステル樹脂、エポキシ樹脂及びウレタン樹脂からなる群から選ばれる少なくとも一種の樹脂であることを特徴とする請求項4~6のいずれか一項に記載の化学蓄熱複合体形成用組成物。 7. The at least one resin selected from the group consisting of natural rubber, diene rubber, olefin rubber, silicone resin, polyester resin, epoxy resin and urethane resin. The composition for forming a chemical heat storage complex according to any one of the preceding claims.
  8.  請求項4~7のいずれか一項に記載の化学蓄熱複合体形成用組成物を基材表面に塗布する工程と、化学蓄熱複合体形成用組成物が表面に塗布された基材を加熱する工程と、を含む化学蓄熱複合体の形成方法。 A process for applying the composition for forming a chemical heat storage complex according to any one of claims 4 to 7 on the surface of a substrate, and heating the substrate on which the composition for forming a chemical heat storage complex is applied And a process of forming a chemical thermal storage composite.
PCT/JP2018/042260 2017-12-21 2018-11-15 Chemical heat storage complex, composition for forming chemical heat storage complex, and method for forming chemical heat storage complex WO2019123914A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019560878A JP6863481B2 (en) 2017-12-21 2018-11-15 Chemical heat storage complex, composition for forming chemical heat storage complex, and method for forming chemical heat storage complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-245031 2017-12-21
JP2017245031 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019123914A1 true WO2019123914A1 (en) 2019-06-27

Family

ID=66993328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042260 WO2019123914A1 (en) 2017-12-21 2018-11-15 Chemical heat storage complex, composition for forming chemical heat storage complex, and method for forming chemical heat storage complex

Country Status (2)

Country Link
JP (1) JP6863481B2 (en)
WO (1) WO2019123914A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100767A1 (en) * 2019-11-19 2021-05-27 三菱パワー株式会社 Methanation reaction device
WO2021193939A1 (en) * 2020-03-27 2021-09-30 三菱パワー株式会社 Heat storage material composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780188A (en) * 1980-11-06 1982-05-19 Sekisui Chem Co Ltd Heat transporting apparatus
JP2002105442A (en) * 2000-10-02 2002-04-10 Mitsubishi Cable Ind Ltd Heat storage material composition
JP2015098582A (en) * 2013-10-16 2015-05-28 日本ペイントホールディングス株式会社 Chemical thermal storage medium and chemical thermal storage medium-forming composition
JP2016124949A (en) * 2014-12-26 2016-07-11 永大産業株式会社 Latent heat storage material-impregnated heat storage body excellent in heat resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079230A (en) * 2014-10-10 2016-05-16 株式会社カネカ Heat storage-type heat-conductive curable composition and heat storage-type heat-conductive resin hardened material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780188A (en) * 1980-11-06 1982-05-19 Sekisui Chem Co Ltd Heat transporting apparatus
JP2002105442A (en) * 2000-10-02 2002-04-10 Mitsubishi Cable Ind Ltd Heat storage material composition
JP2015098582A (en) * 2013-10-16 2015-05-28 日本ペイントホールディングス株式会社 Chemical thermal storage medium and chemical thermal storage medium-forming composition
JP2016124949A (en) * 2014-12-26 2016-07-11 永大産業株式会社 Latent heat storage material-impregnated heat storage body excellent in heat resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100767A1 (en) * 2019-11-19 2021-05-27 三菱パワー株式会社 Methanation reaction device
WO2021193939A1 (en) * 2020-03-27 2021-09-30 三菱パワー株式会社 Heat storage material composition

Also Published As

Publication number Publication date
JP6863481B2 (en) 2021-04-21
JPWO2019123914A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
TWI621649B (en) Silicone rubber composition, silicone rubber molded article, and production method thereof
WO2019123914A1 (en) Chemical heat storage complex, composition for forming chemical heat storage complex, and method for forming chemical heat storage complex
Calabrese et al. Adsorption performance and thermodynamic analysis of SAPO-34 silicone composite foams for adsorption heat pump applications
TWI414549B (en) High foam ratio of silicone rubber sponge
TWI613257B (en) Foaming polyoxymethylene rubber composition and polyoxyethylene rubber sponge
WO2005097860A1 (en) Low-hardness thermosetting polyurethane elastomer and production method thereof
EP2158285A2 (en) Adhesive silicone rubber composition and separator seal material for fuel cells
KR20190054057A (en) Resin composition, thermally conductive soft sheet using the same, and heat radiation structure
US20040028978A1 (en) Proton conducting membrane, method for producing the same, and fuel cell using the same
Calabrese et al. Experimental evaluation of the hydrothermal stability of a silicone/zeolite composite foam for solar adsorption heating and cooling application
Palamara et al. Effect of degree of sulfonation on the performance of adsorbent SAPO-34/S-PEEK composite coatings for adsorption heat pumps
US20220023831A1 (en) Coating material for producing an adsorbent, porous, flexible coating for a heat exchanger and method for producing said coating material
US10270115B2 (en) Membrane for a proton exchange membrane fuel cell
Esmaeilzadeh et al. The effect of polydopamine coated multi‐walled carbon nanotube on the wettability of sulfonated poly (ether ether ketone) nanocomposite as a proton exchange membrane
JP4513986B2 (en) Sealing material for polymer electrolyte fuel cell separator, separator seal, and separator
JP2000077084A (en) Packing material for solid polymer fuel cell separator
JP5480578B2 (en) Proton conductive material, proton conductive electrolyte membrane, proton conductive electrolyte membrane with proton conductive electrolyte layer, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2010195987A (en) Silane-treated electrolyte membrane and method for producing the same
Calabrese et al. Assessment of high performance SAPO‐34/S‐PEEK composite coatings for adsorption heat pumps
JP2013224347A (en) Ultraviolet curing property silicone rubber composition, silicone rubber molded material, and method of manufacturing the same
JP6395351B2 (en) Resin composition, carbon dioxide separation membrane, carbon dioxide separation membrane module, and carbon dioxide separation device
US9115251B2 (en) Electrolyte membrane, fuel cell, and electrolyte membrane manufacturing method
CN108084680B (en) Resin for repairing underground pipeline points and preparation method thereof
JP4474837B2 (en) Proton conducting material, proton conducting material membrane, and fuel cell
JP4730540B2 (en) Resin composition for fuel cell electrolyte membrane and electrolyte membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891069

Country of ref document: EP

Kind code of ref document: A1