WO2021193574A1 - 飛行時間型質量分析装置 - Google Patents

飛行時間型質量分析装置 Download PDF

Info

Publication number
WO2021193574A1
WO2021193574A1 PCT/JP2021/011807 JP2021011807W WO2021193574A1 WO 2021193574 A1 WO2021193574 A1 WO 2021193574A1 JP 2021011807 W JP2021011807 W JP 2021011807W WO 2021193574 A1 WO2021193574 A1 WO 2021193574A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
ions
time
electrostatic lens
ion beam
Prior art date
Application number
PCT/JP2021/011807
Other languages
English (en)
French (fr)
Inventor
師子鹿 司
康 照井
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2022510510A priority Critical patent/JPWO2021193574A1/ja
Publication of WO2021193574A1 publication Critical patent/WO2021193574A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Definitions

  • the present invention relates to a time-of-flight mass spectrometer, and particularly to a orthogonal acceleration type time-of-flight mass spectrometer.
  • the time-of-flight mass analyzer is a device that ionizes a sample, accelerates the ions to fly in a space of a certain distance, measures the time required for the flight, and obtains the mass-to-charge ratio of ions from the flight time.
  • the ionized ions are converged so that the energy and diameter are constant in the ion optical system, and are incident on the time-of-flight analyzer.
  • the flight time analyzer analyzes the mass of a sample by accelerating ions in a desired direction by applying a constant acceleration voltage and measuring the time it takes to fly in the flight space.
  • a time-of-flight mass spectrometer in general, the longer the flight time, the easier it is to discriminate the mass difference of sample ions.
  • a reflector method is known in which ions are reflected by applying a voltage for decelerating the ions flying in the flight space.
  • a multi-reflectron method is also known in which the flight distance is further extended by combining the above-mentioned reflector method a plurality of times.
  • the ion distribution and the initial energy distribution of ions in the launch space at the start of flight are important.
  • the initial energy distribution of ions has a greater influence on the resolution than the contribution of the ion distribution after flight to the resolution. This is because the ions move while flying in the flight space, and the ions diffuse or converge as compared with the initial energy distribution.
  • a time-of-flight mass analyzer of the orthogonal acceleration type that accelerates ions in a direction orthogonal to the incident direction of the ion beam has been developed.
  • the energy distribution of the ions is as narrow as possible in the acceleration direction in order to obtain high resolution.
  • the direction orthogonal to the acceleration direction it is advantageous in terms of sensitivity that the amount of ions used for analysis increases when the ions are spread to some extent.
  • an ion guide composed of multiple poles is generally used as an ion optical system.
  • the multi-pole ion guide vibrates the ions by applying a high-frequency voltage, and the ion orbits are converged by the motion in the high-frequency electric field.
  • high-frequency vibration is performed in the traveling direction, it has been pointed out that when an ion beam having such vibration is incident on the orthogonal acceleration portion, the resolution changes periodically due to the high-frequency vibration of the ions.
  • the electrostatic lens described in Patent Document 2 has a convergent position in the orthogonal accelerating portion, so that the position converges in the orthogonal accelerating portion and high resolution can be realized.
  • the energy distribution cannot be converged, it is known that the energy distribution has a distribution in the ion orbit according to the initial ion energy distribution. The effect is small when the flight time is short, but this effect becomes more pronounced as the flight time increases.
  • the present invention has been made to solve the above problems, and an object of the present invention is to realize a orthogonal acceleration type time-of-flight mass spectrometer capable of reducing the ion energy distribution in the acceleration direction and obtaining high resolution. And.
  • the flight time type mass analyzer emits an ion guide for guiding ions emitted from an ion source, an electrostatic lens including a plurality of electrodes, and the electrostatic lens.
  • An ion beam parallelizing mechanism that parallelizes the ion beam, a orthogonal accelerating unit that accelerates the ion beam emitted from the ion beam parallelizing mechanism in a direction orthogonal to the incident axis, and a reflection of ions emitted from the orthogonal accelerating unit. It includes a reflector including a reflector for making the reflector, and a detector for detecting ions incident from the reflector.
  • the appearance configuration of the electrostatic lens 3 and the ion beam parallelizing mechanism 4 is shown.
  • An example of the ion orbit in the electrostatic lens 3 is shown.
  • An example of the ion orbit in the ion beam parallelizing mechanism 4 after passing through the electrostatic lens 3 is shown.
  • An example of a graph of the ion distribution near the entrance (at the time of launch) of the orthogonal acceleration unit 5 of the time-of-flight mass spectrometer is shown.
  • An example of the graph of the distribution of the output signal of the ion detected by the detector 7 is shown.
  • the time-of-flight mass spectrometer of the orthogonal acceleration type of the first embodiment includes an ion source 1, an ion guide 2, an electrostatic lens 3, an ion beam parallelizing mechanism 4, an orthogonal acceleration unit 5, and flight.
  • a unit 15 and a data processing unit 16 are provided.
  • the ion source 1 is a device that ionizes and emits a target sample.
  • the ionization method in the ion source 1 is not particularly limited, and when the sample is gaseous, electron ionization (EI) or chemical ionization (CI) can be used.
  • EI electron ionization
  • CI chemical ionization
  • an atmospheric pressure ionization method such as an electrospray ionization (ESI) method or an atmospheric pressure chemical ionization (APCI) method can be used.
  • ESI electrospray ionization
  • APCI atmospheric pressure chemical ionization
  • MALDI matrix-assisted laser desorption / ionization method
  • the ion guide 2 has pores for passing ions, for example, and is a member for guiding the ions toward the electrostatic lens 3 in the subsequent stage.
  • FIG. 2 shows the external configuration of the electrostatic lens 3 and the ion beam parallelizing mechanism 4.
  • the electrostatic lens 3 includes a plurality of cylindrical electrodes arranged along the ion optical axis, aperture means, and an energy converging portion.
  • a voltage is applied to each of the plurality of cylindrical electrodes from the electrostatic lens power supply unit 12.
  • a voltage may be independently applied to each of the plurality of cylindrical electrodes so that the ions are accelerated or decelerated before and after the ions pass through the electrostatic lens 3.
  • the energy of the ions incident on the electrostatic lens 3 is too large, the ions are decelerated (decreased in energy) in the process of passing through the electrostatic lens 3 and sent to the orthogonal acceleration unit 5.
  • the initial energy distribution in the flight time analysis direction of the ions accelerated by the orthogonal acceleration unit 5 can be suppressed.
  • at least one of the plurality of cylindrical electrodes may be divided in the x-axis direction, and the other electrode may be divided in the z-axis direction. can.
  • Such a split electrode realizes that when ions pass through the electrostatic lens 3, the ion orbits are finely adjusted in the x-axis direction and the z-axis direction, respectively.
  • FIG. 3 shows an example of ion orbit analysis in the ion guide 2 ((a) is an orbit in the cross section in the x-axis direction, and (b) is the orbit in the cross section in the y-axis direction).
  • This orbit analysis is an example of orbit analysis when the high frequency voltage of the ion guide 2 is constant for ions having mass numbers of 200 and 600, respectively.
  • the direction from the center of the ion guide 2 toward the ion source 1 is defined as the ⁇ direction of the z-axis
  • the direction from the center of the ion guide 2 toward the electrostatic lens 3 is defined as the + direction of the z-axis.
  • the amplitude of the ion B having a mass number of 600 is larger in the ion guide 2 than that of the ion A having a mass number of 200.
  • the amplitude of the high frequency voltage may be controlled according to the mass number of the transmitted ions.
  • the amplitude increases due to the collision between the voltage applied to the ion guide 2 and the residual gas in the ion guide 2. It becomes smaller.
  • the ion guide 2 can control the ion beam to a size that matches the incident hole diameter of the electrostatic lens 3.
  • the aperture shape of the diaphragm means is generally a circular shape (symmetrical arrangement) that is rotationally symmetric with respect to the ion optical axis.
  • the aperture shape of the aperture means is rectangular or the like (asymmetrical arrangement)
  • the distance from the center of the virtual convex lens in the rear stage to the image point is increased, while the distance from the object point to the center of the virtual convex lens in the front stage is increased. Since it can be shortened, it is advantageous to reduce the total length of the electrostatic lens.
  • the shape of the leading edge of the first-stage cylindrical electrode located on the inlet side of the plurality of cylindrical electrodes constituting the electrostatic lens 3 has an ion incident opening formed at the top thereof. It can be in the shape of a skimmer. As a result, the ions arriving at the electrostatic lens 3 are accelerated and easily gathered at the top of the skimmer, and the initial angular spread of the ions passing through the ion incident aperture can be reduced. Further, the skimmer shape is suitable from the viewpoint of preventing the inflow of gas into the electrostatic lens 3 and increasing the degree of vacuum. When the degree of vacuum of the electrostatic lens 3 is low, the electrostatic lens 3 does not function as simulated due to the collision between the ions and the residual gas.
  • a device component having a relatively high gas pressure such as an ion source 1 and a collision cell, is arranged in front of the electrostatic lens 3. Therefore, in order to prevent the inflow of gas into the electrostatic lens 3, it is preferable that the leading edge portion of the first-stage cylindrical electrode has a skimmer shape and an ion incident opening is provided at the top thereof.
  • FIG. 4 shows an example of the ion orbit in the electrostatic lens 3.
  • the ion orbits in the electrostatic lens 3 can be adjusted by adjusting the voltages set in the plurality of cylindrical electrodes.
  • the voltage applied to the electrostatic lens 3 is adjusted so that the ion beam does not have a focus at the ion launching portion of the time-of-flight analyzer 6, and the electrostatic lens 3 is used. Adjust so that the ion beam becomes a substantially parallel beam near the outlet.
  • the ion orbit can be finely adjusted in the x-axis direction and the z-axis direction, respectively.
  • the ion beam parallelizing mechanism 4 includes pores 4a for forming conductance between the electrostatic lenses 3 arranged in the front-rear direction and the vacuum chamber of the orthogonal acceleration unit 5, a cylindrical electrode 4b, and a thermalizer 4c (heater).
  • the ion beam emitted from the electrostatic lens 3 can be made parallel to the ion optical axis.
  • the ion beam emitted from the ion beam parallelizing mechanism 4 is incident on the orthogonal acceleration unit 5.
  • FIG. 5 shows an example of the ion orbit in the ion beam parallelizing mechanism 4 after passing through the electrostatic lens 3.
  • the ion beam parallelizing mechanism 4 By lengthening the cylindrical electrode, it is possible to form an ion beam having a uniform energy distribution at the time of emission due to the collision between the ion and the gas and the electric field.
  • the ion beam energy may change due to the influence of the outside air temperature of the device, the degree of vacuum, and the like. Therefore, the ion beam parallelizing mechanism 4 is heated to a temperature equal to or higher than room temperature by the thermalizer 4c in order to suppress such a change in ion beam energy. Further, the ion beam parallelizing mechanism 4 is heated to a temperature of 100 ° C.
  • a thermalizer at a predetermined timing in order to prevent contamination such as adhesion of incident ions and impurities that were not sufficient for the ions in the ion source 1. obtain.
  • Such heating makes it possible to realize stable operation for a long time.
  • control methods such as constant voltage control and feedback control, but in this device, constant voltage is used to reduce noise from being superimposed in the energy convergence mechanism due to noise during feedback control. Control is desirable.
  • the orthogonal acceleration unit 5 includes a flat plate electrode 51 and a porous electrode 52 having a large number of openings for passing ions, and the operating voltage supplied from the power supply unit 13 of the orthogonal acceleration unit from the z-axis direction of FIG. It has the function of bending the incident ion beam in the x-axis direction orthogonal to the incident axis and accelerating it in the x-axis direction.
  • the flight time analyzer 6 is a so-called reflector, and includes a reflector 61 that reflects ions accelerated in the x direction by the orthogonal acceleration unit 5 in the opposite direction.
  • the time-of-flight analyzer 6 may be a reflector having a single reflector or a multi-reflectron having a plurality of reflectors.
  • a voltage is applied to the reflector 61 from the reflector power supply unit 14.
  • the detector 7 is a detector that detects ions that have flown in the flight space of the time-of-flight analyzer 6, and may be composed of a scintillator and a photomultiplier tube (PMT).
  • the detection signal of the detector 7 is transmitted to the data processing unit 16.
  • the data processing unit 16 processes the received data to create, for example, a mass spectrum or the like.
  • the basic operation of the orthogonal acceleration type time-of-flight mass spectrometer of this embodiment is as follows. For example, various ions generated in the ion source 1 by ESI are introduced into the electrostatic lens 3 through the ion guide 2. The ions that have passed through the electrostatic lens 3 are changed into parallel ion beams by the ion beam parallelizing mechanism 4, and then introduced into the orthogonal acceleration unit 5.
  • Ions emitted from the acceleration region of the orthogonal accelerating unit 5 and flying in the flight time analyzer 6 are turned back by the reflector 61 and reach the detector 7.
  • the detector 7 generates a detection signal according to the amount of ions reached.
  • the data processing unit 16 obtains a flight time spectrum from this detection signal, and further obtains a mass spectrum by converting the flight time into a mass-to-charge ratio.
  • An ion source 1 is arranged in front of the electrostatic lens 3, or a collision cell is arranged in the case of an MS / MS type mass spectrometer. All of these components are in a state of high gas pressure inside them.
  • the orthogonal accelerator 5 and the flight time analyzer 6 in the subsequent stage are required to have a sufficiently low vacuum pressure. Therefore, the ion beam parallelizing mechanism 4 in this embodiment reduces the gas conductance by reducing the ion incident aperture in the cylindrical electrode of the first stage of the electrostatic lens 3 to ⁇ 2 [mm]. As a result, the initial angular spread of the ions passing through the ion incident aperture is also reduced.
  • the initial angle spread of ions When the initial angle spread of ions is extremely large, the initial angle of ions can be reduced by adding one or more electrostatic lenses 3 in front of the ion beam parallelizing mechanism 4 (see FIG. 4). , It is possible to avoid a decrease in ionic strength.
  • the position (spatial) spread of the ions in the launch direction is small because it causes the energy spread of the ion packet to be the target of mass spectrometry.
  • the spatial spread of ions in the direction perpendicular to the launch direction does not need to be restricted as strictly as in the launch direction. Rather, in order to increase the signal strength, it is preferable that the limitation of the spatial spread of the ions in the direction perpendicular to the launch is also loose within the permissible range. Therefore, in the ion beam parallelizing mechanism 4, it is desirable that the spatial spread of the ions in the launch direction and the direction perpendicular to the launch direction can be set independently.
  • the electrostatic lens 3 is composed of a plurality of cylindrical electrodes, but the cylindrical electrode of the electrostatic lens 3 may be divided into a direction perpendicular to the ion launching direction and the launching direction.
  • the electrostatic lens 3 when ions are incident on the electrostatic lens 3 directly from the ion source 1, it is predicted that the ions have a significantly large angular spread. In that case, it is advisable to add one or more cylindrical electrodes in front of the plurality of cylindrical electrodes to suppress the angular spread of ions.
  • the amount of ions incident on the ion beam parallelizing mechanism 4 can be increased by finely adjusting the ion orbit in the launch direction and the direction perpendicular to the launch direction.
  • FIG. 6 shows an example of a graph of ion distribution near the entrance (at the time of launch) of the orthogonal acceleration unit 5 of the time-of-flight mass spectrometer.
  • the time difference dTOF (ns) with respect to the position at the time of launch is used as the horizontal axis
  • the amount of ions (count) existing in the flight space is used as the vertical axis.
  • the time difference of 0 indicates the central position of the ions in the launch space, and the narrower the spread of the horizontal axis, the more the ions converge in the acceleration direction.
  • the closer the distribution is to the normal distribution the more uniform the spread of the beam is.
  • FIG. 7 shows an example of a graph of the distribution of the output signal of the ions detected by the detector 7.
  • the time difference dTOF (ns) of the ion signal detected by the detector 7 is on the horizontal axis, and the amount of ions existing in the vertical flight space is on the vertical axis.
  • the time difference of 0 indicates that the time when the detector 7 was reached was 119.53 mcs, and the narrower the spread of the horizontal axis, the more the ions converged in the acceleration direction.
  • the closer the distribution is to the normal distribution the more uniform the spread of the beam is.
  • the ion beam parallelizing mechanism 4 is provided between the electrostatic lens 3 and the orthogonal acceleration unit 5, so that the device can be used with the conventional device.
  • accurate analysis can be performed according to the purpose of analysis, the type of sample, and the like.
  • the time-of-flight analyzer is not limited to the reflector type but may be a linear type or the like.
  • the example in which the electrostatic lens 3 is composed of a plurality of cylindrical electrodes has been described, but the cylindrical electrode of the electrostatic lens 3 is divided into the ion launching direction and the direction perpendicular to the launching direction. It may be adopted.
  • a linear type or three-dimensional quadrupole type ion trap is arranged between the ion source 1 and the electrostatic lens 3, and the ions emitted from the ion trap are electrostatically held after the ions are once held by the ion trap. It may be configured to be introduced into the lens 3.
  • a Q-TOF type device configuration in which a collision cell is arranged in front of the electrostatic lens 3 may be used. That is, the components arranged on the electrostatic lens 3 are not particularly limited.
  • the energy of the ions may be too large.
  • by decelerating the ions in the electrostatic lens 3 to reduce the energy low-energy ions can be sent to the ion beam parallelizing mechanism 4. This is effective in suppressing the ion initial energy in the acceleration direction in the orthogonal acceleration unit 5.
  • the present invention is not limited to the above-mentioned examples, but includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • Electrostatic lens 4 ... Ion beam parallelization mechanism, 4a ... Pore, 4b ... Cylindrical electrode, 4c ... Thermalizer, 5 ... Orthogonal accelerator, 6 ... Flight time analysis Instrument, 7 ... Detector, 11 ... Control unit, 12 ... Electrostatic lens power supply unit, 13 ... Orthogonal acceleration unit power supply unit, 14 ... Reflector power supply unit, 15 ... Input unit, 16 ... Data processing unit, 61 ... Reflector ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

加速方向のイオンエネルギー分布を小さくし、高い分解能を得ることが出来る直交加速方式の飛行時間型質量分析装置を実現する。この飛行時間型質量分析装置は、イオン源から出射されたイオンを導くイオンガイドと、複数の電極を含む静電レンズと、前記静電レンズから出射するイオンビームを平行にするイオンビーム平行化機構と、前記イオンビーム平行化機構から出射したイオンビームを入射軸とは直交する方向に加速する直交加速部と、前記直交加速部から出射したイオンを反射させる反射器を含むリフレクトロンと、前記リフレクトロンから入射するイオンを検出する検出器とを備える。

Description

飛行時間型質量分析装置
 本発明は、飛行時間型質量分析装置に関し、特に直交加速方式の飛行時間型質量分析装置に関する。
 飛行時間型質量分析装置は、試料をイオン化させ、イオンを加速させて一定距離の空間を飛行させ、その飛行に要する時間を計測し、その飛行時間からイオンの質量電荷比を求める装置である。イオン化されたイオンは、イオン光学系においてエネルギと径が一定となるように収束され、飛行時間分析器に入射される。飛行時間分析器では、一定の加速電圧を印加することで、イオンを所望の方向へ加速し、飛行空間内を飛行する時間を計測することにより、試料の質量を分析する。
 飛行時間型質量分析装置では、一般的に、飛行時間を長くすれば長くするほど、試料イオンの質量差を弁別しやすくなる。飛行時間を長くする技術として、飛行空間内において飛行するイオンを減速させる電圧を印加することにより、イオンを反射させるリフレクトロン方式が知られている。また、上記リフレクトロン方式を複数回組み合わせることにより、さらに飛行距離を伸ばすマルチリフレクトロン方式も知られている。
 飛行時間型質量分析装置において高分解能を実現するためには、飛行を開始する際の打ち出し空間内でのイオン分布及びイオンの初期エネルギ分布が重要である。イオン分布に関しては、飛行後のイオン分布の分解能への寄与に比べて、イオンの初期エネルギ分布は、分解能に与える影響が大きい。飛行空間内を飛行している間にもイオンは運動を行い、初期エネルギ分布に比べてイオンは拡散又は収束するからである。こうした課題を解決するための手法として、イオンビームの入射方向と直交する方向にイオンを加速する直交加速方式の飛行時間型質量分析装置が開発されてきた。
 このような直交加速方式の飛行時間型質量分析装置において、分解能を向上させる方法として、直交加速部において長方形のスリットを設けるなどして、イオンの打ち出し方向を制限する方法が知られている。
 一方、直交加速部でイオンを加速して飛行時間分析器に送り込む構成の場合、その加速方向にはイオンのエネルギ分布ができるだけ狭いことが高分解能を得るためには好ましい。一方、加速方向に直交する方向においては、イオンが或る程度広がっていた方が分析に供されるイオン量が増えて感度の点で有利である。しかし、加速方向のイオンのエネルギ分布を狭くしつつ、加速方向と直交する方向においてイオンのエネルギ分布を広くすることは従来技術では困難であった。具体的には、直交加速方式の飛行時間型質量分析装置においては、イオン光学系として、多重極で構成されたイオンガイドが一般に用いられる。多重極なイオンガイドは、高周波電圧を印加することにより、イオンを振動させ、高周波電場内での運動により、イオン軌道を収束している。しかし、進行方向に高周波振動を行うため、このような振動を有するイオンビームを直交加速部に入射させた場合、イオンの高周波振動により分解能が周期的に変化する問題が指摘されている。特許文献2に記載されている静電レンズは、収束位置を直交加速部内に持つことで、直交加速部内で位置収束を持たせ高分解能化を実現することができる。しかし、エネルギ分布については収束が得られないため、初期のイオンエネルギー分布に従いイオンの軌道に分布を持つことが知られている。飛行時間が短い場合には影響は少ないが、飛行時間が長くなるにつれてこの影響が顕著となる。
特開2003-123685号公報 国際公開2012/132550号 特表2017-511571号公報
 本発明は、上記課題を解決するためになされたものであり、加速方向のイオンエネルギー分布を小さくし、高い分解能を得ることが出来る直交加速方式の飛行時間型質量分析装置を実現することを目的とする。
 上記の課題を解決するため、本発明に係る飛行時間型質量分析装置は、イオン源から出射されたイオンを導くイオンガイドと、複数の電極を含む静電レンズと、前記静電レンズから出射するイオンビームを平行にするイオンビーム平行化機構と、前記イオンビーム平行化機構から出射したイオンビームを入射軸とは直交する方向に加速する直交加速部と、前記直交加速部から出射したイオンを反射させる反射器を含むリフレクトロンと、前記リフレクトロンから入射するイオンを検出する検出器とを備える。
 本発明によれば、加速方向のイオンエネルギー分布を小さくし、高い分解能を得ることが出来る直交加速方式の飛行時間型質量分析装置を実現することができる。
実施の形態に係る飛行時間型質量分析装置を説明する概略図である。 静電レンズ3及びイオンビーム平行化機構4の外観構成を示す。 イオンガイド2中のイオン軌道解析例であり、(a)はx軸方向の断面の軌道であり、(b)はy軸方向の断面の軌道である。 静電レンズ3内のイオン軌道の一例を示す。 静電レンズ3通過後のイオンビーム平行化機構4におけるイオン軌道の一例を示す。 飛行時間型質量分析装置の直交加速部5の入り口付近(打ち出し時)でのイオン分布のグラフの一例を示す。 検出器7において検出されたイオンの出力信号の分布のグラフの一例を示す。
 以下、添付図面を参照して本実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本開示の原理に則った実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味においても限定するものではない。
 本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
 図1の概略図を参照して、実施の形態に係る飛行時間型質量分析装置の全体構成を説明する。第1の実施の形態の直交加速方式の飛行時間型質量分析装置は、イオン源1と、イオンガイド2と、静電レンズ3と、イオンビーム平行化機構4と、直交加速部5と、飛行時間分析器6と、検出器7と、制御部11と、静電レンズ電源部12と、直交加速部電源部13と、反射器電源部14と、分析条件などをユーザが指定するための入力部15と、データ処理部16とを備えている。
 イオン源1は、目的試料をイオン化して出射する装置である。イオン源1におけるイオン化法は特に限定されず、試料がガス状である場合には、電子イオン化(EI)や化学イオン化(CI)が用いられ得る。試料が液体状である場合にはエレクトロスプレイイオン化(ESI)法や大気圧化学イオン化(APCI)法などの大気圧イオン化法が用いられ得る。試料が固体状である場合には、マトリクス支援レーザ脱離イオン化法(MALDI)などが用いられ得る。イオンガイド2は、例えばイオンを通過させるための細孔を有し、イオンを後段の静電レンズ3に向けて導くための部材である。
 図2に、静電レンズ3及びイオンビーム平行化機構4の外観構成を示す。静電レンズ3は、イオン光軸に沿って配置される複数個の円筒状電極、絞り手段、及びエネルギ収束部を備える。複数個の円筒状電極は、それぞれ静電レンズ電源部12から電圧を印加される。静電レンズ3をイオンが通過する前後でイオンが加速又は減速されるよう、複数の円筒状電極にそれぞれ独立に電圧を印加する構成としてもよい。静電レンズ3に入射するイオンのエネルギが大き過ぎる場合には、静電レンズ3を通過する過程でイオンを減速させて(エネルギを低下させて)、直交加速部5へとイオンを送る。これにより、直交加速部5で加速されるイオンの飛行時間分析方向の初期エネルギ分布を抑えることができる。静電レンズ3は、複数の円筒形の電極の内の少なくとも1枚は、x軸方向に分割されており、他の1枚の電極は、z軸方向に分割されているものとすることができる。このような分割電極は、静電レンズ3内をイオンが通過する際に、イオン軌道をそれぞれx軸方向、z軸方向に微調整することを実現する。
 図3に、イオンガイド2中のイオン軌道解析例を示す((a)はx軸方向の断面の軌道であり、(b)はy軸方向の断面の軌道である)。本軌道解析は、それぞれ質量数200と600のイオンについてイオンガイド2の高周波電圧を一定にした場合の軌道解析例である。また、イオンガイド2の長手方向の中心位置をz=0とし、イオンガイド2の径方向の中心位置をx=0とする。また、イオンガイド2の中心からイオン源1に向かう方向をz軸の-方向とし、イオンガイド2の中心から静電レンズ3へ向かう方向をz軸の+方向とする。
 本解析結果が示す通り、質量数200のイオンAと比較して、質量数600のイオンBの方が、イオンガイド2内での振幅が大きくなっている。実際の制御時には、透過させるイオンの質量数に応じて高周波電圧の振幅を制御してもよい。また、イオン源1側からイオンガイド2を介して静電レンズ3側へイオンが移動する際には、イオンガイド2に印加された電圧とイオンガイド2内の残留ガスとの衝突により、振幅が小さくなる。イオンガイド2は、印加電圧を調整することにより、静電レンズ3の入射穴径に合う大きさに、イオンビームを制御することが出来る。
 静電レンズ3が複数の円筒状電極から構成される場合、絞り手段の開口形状もイオン光軸を中心とする回転対称である円形(対称配置)とするのが一般的である。それにより、絞り手段を取り付ける際にイオン光軸を中心とする回転方向の位置合わせが必要なく、組み立てが容易である。また、絞り手段自体の作製も容易である。
 また、直交加速方式の飛行時間型質量分析装置でこのような静電レンズ3を用いる場合、直交加速部5の中心付近に像点を位置させる必要があることから、後段の仮想凸レンズの中心から像点までの距離を充分に長く確保する必要がある。上述した対称配置では、後段の仮想凸レンズの中心から像点までの距離を長くすると、物点から前段の仮想凸レンズの中心までの距離も等しく長くなるため、静電レンズの全長が長くなる。これに対し、絞り手段の開口形状を矩形等とした場合(非対称配置)、後段の仮想凸レンズの中心から像点までの距離を長くする一方、物点から前段の仮想凸レンズの中心までの距離を短くすることができるので、静電レンズの全長を抑えるのに有利である。
 また、図示は省略するが、静電レンズ3を構成する複数の円筒状電極の中で最も入口側に位置する初段の円筒状電極の前縁部の形状は、その頂部にイオン入射開口が形成されたスキマー形状とすることができる。これにより、静電レンズ3に入射しようと到来するイオンが加速されてスキマー頂部に集まり易くなり、イオン入射開口を通過するイオンの初期角度広がりを小さくすることができる。また、スキマー形状とすることは、静電レンズ3の内部へのガスの流入を防ぎ、真空度を高める観点からも好適である。静電レンズ3の真空度が低い場合には、イオンと残留ガスとの衝突によって、静電レンズ3はシミュレーション通りには機能しなくなる。一般的に、静電レンズ3の前段にはイオン源1やコリジョンセルなどガス圧が相対的に高い装置構成要素が配置される。このため、静電レンズ3内部へのガスの流入を防ぐため、初段の円筒状電極の前縁部をスキマー形状としてその頂部にイオン入射開口を設けることが好適である。
 図4に、静電レンズ3内のイオン軌道の一例を示す。静電レンズ3内のイオン軌道は、複数個の円筒状電極へ設定する電圧をそれぞれ調整することにより、イオン軌道を調整することが出来る。本実施の形態の飛行時間型質量分析装置では、飛行時間分析器6のイオン打ち出し部分においてイオンビームが焦点を持たないように、静電レンズ3への印加電圧を調整し、静電レンズ3の出射口付近でイオンビームが略平行ビームとなるように調整する。上述の分割電極への印加電圧を調整することにより、イオン軌道をそれぞれx軸方向及びz軸方向に微調整することができる。
 イオンビーム平行化機構4は、前後に配置される静電レンズ3及び直交加速部5の真空室とのコンダクタンスを形成するための細孔4aと、円筒形電極4bと、サーマライザ4c(加熱器)で構成され、静電レンズ3から射出されたイオンビームを、イオン光軸に対し平行にすることが可能に構成される。イオンビーム平行化機構4から射出されたイオンビームは、直交加速部5に入射される。
 図5に、静電レンズ3通過後のイオンビーム平行化機構4におけるイオン軌道の一例を示す。円筒形の電極を長くすることにより、イオンとガスとの衝突と電界により、出射時に均一なエネルギ分布を持つイオンビームを形成することが出来る。イオンビーム平行化機構4においては、装置外気温度や真空度などの影響によりイオンビームエネルギーが変化することが起こり得る。このため、イオンビーム平行化機構4は、このようなイオンビームエネルギーの変化を抑制するため、サーマライザ4cにより室温以上の温度に加熱される。さらに、入射するイオンやイオン源1でイオンが十分でなかった不純物の付着などの汚れを防止するため、イオンビーム平行化機構4は、所定のタイミングにおいて、サーマライザにより100℃以上の温度に加熱され得る。このような加熱により、長時間の安定動作を実現することが可能となる。なお、加熱工程において、一定電圧制御やフィードバック制御などの制御方法があるが、本装置では、フィードバック制御時のノイズなどによりエネルギ収束機構内にノイズが重畳されることを低減するためにも定電圧制御が望ましい。
 直交加速部5は、平板電極51と、イオンを通過させるための多数の開口を有する多孔電極52とを備え、直交加速部電源部13から供給される動作電圧により、図1のz軸方向から入射されたイオンビームを、入射軸と直交するx軸方向に曲げると共にx軸方向に加速させる機能を有する。
 飛行時間分析器6は、いわゆるリフレクトロンであり、直交加速部5によりx方向に加速されたイオンを反対方向に反射させる反射器61を備える。飛行時間分析器6は、単一の反射器を有するリフレクトロンであってもよいし、複数の反射器を有するマルチリフレクトロンであってもよい。反射器61は、反射器電源部14から電圧を印加される。検出器7は、飛行時間分析器6の飛行空間を飛行したイオンを検出する検出器であり、シンチレータ及び光電子増倍管(PMT)により構成され得る。検出器7の検出信号は、データ処理部16に送信される。データ処理部16は、受信したデータを処理して例えばマススペクトル等を作成する。
 この実施の形態の直交加速方式飛行時間型質量分析装置における基本的な動作は次の通りである。例えばESIによるイオン源1において生成された各種イオンはイオンガイド2を通して静電レンズ3に導入される。静電レンズ3を通過したイオンは、イオンビーム平行化機構4において平行なイオンビームに変化した後、直交加速部5に導入される。
 イオンビームが直交加速部5に導入される時点では、直交加速部5には加速電圧は印加されておらず、一定時間間隔ごとに直交加速部5内に入射されたイオンを飛行領域に打ち出す加速電圧が印加される。その加速電圧によってイオンは運動エネルギを付与されて飛行時間分析器6の飛行空間に送り込まれる。イオンビーム平行化機構4を通過するイオンビームの進行方向のエネルギが一定となっており、一定時間で直交加速部5内の有効領域内を満たすことが出来る。
 直交加速部5の加速領域から発して飛行時間分析器6内を飛行したイオンは、反射器61によって折り返され、検出器7に到達する。検出器7は到達したイオンの量に応じた検出信号を生成する。データ処理部16はこの検出信号から飛行時間スペクトルを求め、さらに飛行時間を質量電荷比に換算することでマススペクトルを求める。
 この静電レンズ3の前段には、イオン源1が配置されたり、或いはMS/MS型質量分析装置の場合にはコリジョンセルが配置されたりする。これらの構成要素はいずれもその内部のガス圧が高い状態にある。一方、後段の直交加速部5や飛行時間分析器6は、真空圧力が充分に低い状態であることが要求される。そこで、この実施形態におけるイオンビーム平行化機構4は、静電レンズ3の初段の円筒状電極におけるイオン入射開口をφ2[mm]と小さくすることでガスコンダクタンスを小さくする。これにより、イオン入射開口を通過するイオンの初期角度広がりも小さくなるようしている。なお、イオンの初期角度広がりが著しく大きい場合には、イオンビーム平行化機構4の前に静電レンズ3を1つ以上追加することとでイオンの初期角度が小さくなるようにし(図4参照)、それによりイオン強度の低下を回避するようにすることができる。
 打ち出し方向へのイオンの位置(空間)広がりは、質量分析の対象となるイオンパケットのエネルギ広がりを引き起こすので小さい方が望ましい。一方、打ち出し方向と垂直な方向へのイオンの空間広がりは、打ち出し方向ほど厳しく制限する必要はない。むしろ、信号強度を大きくするためには打ち出しと垂直な方向へのイオンの空間広がりの制限も許容範囲内で緩い方が好ましい。したがって、イオンビーム平行化機構4では、打ち出し方向と打ち出し方向に垂直な方向のイオンの空間広がりも独立に設定できることが望ましい。
 例えば上記実施例では、静電レンズ3を複数の円筒状電極から構成したが、静電レンズ3の円筒形状電極を、イオン打ち出し方向と打ち出し方向と垂直な方向に分割する構成としてもよい。例えば、イオン源1から直接、静電レンズ3にイオンを入射する場合には、イオンは著しく大きな角度広がりを持つことが予測される。その場合には、複数の円筒状電極の前段にさらに1個以上の円筒状電極を追加してイオンの角度広がりを抑えるようにするとよい。静電レンズ3において、打ち出し方向、打ち出し方向と垂直な方向にイオン軌道を微調整することにより、イオンビーム平行化機構4への入射イオン量を増加させることが可能となる。
 図6に、飛行時間型質量分析装置の直交加速部5の入り口付近(打ち出し時)でのイオン分布のグラフの一例を示す。このグラフは、打ち出し時の位置に対する時間差dTOF(ns)を横軸として、飛行空間内に存在するイオン量(count)を縦軸としている。時間差0は、イオンの打ち出し空間内での中心位置を示しており、横軸の広がりが狭いほどイオンが加速方向で収束している事を示している。また、分布が正規分布に近いほど、ビームの広がりが均一であることを示している。
 図7に検出器7において検出されたイオンの出力信号の分布のグラフの一例を示す。このグラフは、検出器7で検出されたイオン信号の時間差dTOF(ns)を横軸とし、縦飛行空間内に存在するイオン量を縦軸としている。時間差0は、検出器7に到達した時間が119.53mcsを示しており、横軸の広がりが狭いほどイオンが加速方向で収束していることを示している。また、分布が正規分布に近いほど、ビームの広がりが均一であることを示している。
[効果]
 以上説明したように、本実施の形態に係る飛行時間型質量分析装置によれば、静電レンズ3と直交加速部5との間にイオンビーム平行化機構4を備えることにより、従来の装置と比較して直交加速部5へ入射するイオンの量を充分に確保しながら、そのイオンの角度広がりを小さくすることができる。それによって、測定感度の低下を抑えながら、加速方向のイオンエネルギー分布を小さくし、高い質量分解能を達成することができる。また、分析目的や試料の種類などに応じた的確な分析を実施することができる。
[その他]
 また、本発明に係る飛行時間型質量分析装置は、飛行時間分析器がリフレクトロン型に限らずリニア型等でも構わない。また、上記実施形態は、静電レンズ3を複数の円筒状電極から構成する例を説明したが、静電レンズ3の円筒形状電極をイオン打ち出し方向と打ち出し方向に垂直な方向に分割する構成を採用してもよい。また、イオン源1と静電レンズ3との間に、リニア型又は三次元四重極型のイオントラップを配置し、イオントラップで一旦イオンを保持した後に該イオントラップから出射したイオンを静電レンズ3に導入する構成としてもよい。
 さらにまた、静電レンズ3の前段にコリジョンセルを配置するQ-TOF型の装置構成であってもよい。即ち、静電レンズ3に配置される構成要素は特に限定されない。イオン源から直接的にイオンを導入する場合やコリジョンセルなどからイオンを導入する場合には、イオンが持つエネルギが大き過ぎることがある。そうしたときに、静電レンズ3においてイオンを減速させてエネルギを落とすことで、イオンビーム平行化機構4に低エネルギのイオンを送り込むことができる。これは、直交加速部5での加速方向でのイオン初期エネルギを抑えるのに有効である。
 本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1…イオン源、2…イオンガイド、3…静電レンズ、4…イオンビーム平行化機構、4a…細孔、4b…円筒型電極、4c…サーマライザ、5…直交加速部、6…飛行時間分析器、7…検出器、11…制御部、12…静電レンズ電源部、13…直交加速部電源部、14…反射器電源部、15…入力部、16…データ処理部、61…反射器。

Claims (4)

  1.  イオン源から出射されたイオンを導くイオンガイドと、
     複数の電極を含む静電レンズと、
     前記静電レンズから出射するイオンビームを平行にするイオンビーム平行化機構と、
     前記イオンビーム平行化機構から出射したイオンビームを入射軸とは直交する方向に加速する直交加速部と、
     前記直交加速部から出射したイオンを反射させる反射器を含むリフレクトロンと、
     前記リフレクトロンから入射するイオンを検出する検出器と
     を備えたことを特徴とする飛行時間型質量分析装置。
  2.  前記イオンビーム平行化機構は、前記静電レンズ及び前記直交加速部の真空室とのコンダクタンスを形成するための細孔と、円筒形電極とを備える、請求項1に記載の飛行時間型質量分析装置。
  3.  前記イオンビーム平行化機構は、前記イオンビーム平行化機構を室温以上の温度に加熱するサーマライザを更に備える請求項2に記載の飛行時間型質量分析装置。
  4.  前記静電レンズは、その出射口付近でイオンビームが略平行とするように構成されている、請求項1~3のいずれか1項に記載の飛行時間型質量分析装置。
PCT/JP2021/011807 2020-03-24 2021-03-22 飛行時間型質量分析装置 WO2021193574A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510510A JPWO2021193574A1 (ja) 2020-03-24 2021-03-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020052063 2020-03-24
JP2020-052063 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021193574A1 true WO2021193574A1 (ja) 2021-09-30

Family

ID=77890303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011807 WO2021193574A1 (ja) 2020-03-24 2021-03-22 飛行時間型質量分析装置

Country Status (2)

Country Link
JP (1) JPWO2021193574A1 (ja)
WO (1) WO2021193574A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260765A (ja) * 1994-03-17 1995-10-13 Hitachi Ltd 質量分析装置
WO2014203305A1 (ja) * 2013-06-17 2014-12-24 株式会社島津製作所 イオン輸送装置及び該装置を用いた質量分析装置
GB2567794A (en) * 2017-05-05 2019-05-01 Micromass Ltd Multi-reflecting time of flight mass spectrometers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260765A (ja) * 1994-03-17 1995-10-13 Hitachi Ltd 質量分析装置
WO2014203305A1 (ja) * 2013-06-17 2014-12-24 株式会社島津製作所 イオン輸送装置及び該装置を用いた質量分析装置
GB2567794A (en) * 2017-05-05 2019-05-01 Micromass Ltd Multi-reflecting time of flight mass spectrometers

Also Published As

Publication number Publication date
JPWO2021193574A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
JP6287419B2 (ja) 飛行時間型質量分析装置
EP0853489B1 (en) A time-of-flight mass spectrometer with first and second order longitudinal focusing
US7709789B2 (en) TOF mass spectrometry with correction for trajectory error
JP5637299B2 (ja) 飛行時間型質量分析装置
EP3020064B1 (en) Time-of-flight mass spectrometers with cassini reflector
US11056327B2 (en) Inorganic and organic mass spectrometry systems and methods of using them
JP5885474B2 (ja) 質量分布分析方法及び質量分布分析装置
US20060138316A1 (en) Time-of-flight mass spectrometer
WO2021193574A1 (ja) 飛行時間型質量分析装置
US8314381B2 (en) Reflector for a time-of-flight mass spectrometer
US9754772B2 (en) Charged particle image measuring device and imaging mass spectrometry apparatus
JP7107378B2 (ja) 四重極質量分析装置
JP3741567B2 (ja) 垂直加速型飛行時間型質量分析装置
US20190189417A1 (en) Off-axis ionization devices and systems using them
JP3967694B2 (ja) 飛行時間型質量分析装置
JP2018010766A (ja) 飛行時間型質量分析装置
JP2023016583A (ja) 直交加速飛行時間型質量分析装置
JP2021536654A (ja) 飛行時間型質量分析器用のパルス加速器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21777177

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022510510

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21777177

Country of ref document: EP

Kind code of ref document: A1