WO2021193406A1 - Substrate treatment apparatus, gas supply device, method for cleaning raw material supply pipe, method for manufacturing semiconductor device, and program - Google Patents
Substrate treatment apparatus, gas supply device, method for cleaning raw material supply pipe, method for manufacturing semiconductor device, and program Download PDFInfo
- Publication number
- WO2021193406A1 WO2021193406A1 PCT/JP2021/011311 JP2021011311W WO2021193406A1 WO 2021193406 A1 WO2021193406 A1 WO 2021193406A1 JP 2021011311 W JP2021011311 W JP 2021011311W WO 2021193406 A1 WO2021193406 A1 WO 2021193406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- raw material
- supply pipe
- material supply
- valve
- gas
- Prior art date
Links
- 239000002994 raw material Substances 0.000 title claims abstract description 263
- 238000004140 cleaning Methods 0.000 title claims abstract description 113
- 239000000758 substrate Substances 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims description 42
- 239000004065 semiconductor Substances 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000007789 gas Substances 0.000 claims abstract description 179
- 239000002904 solvent Substances 0.000 claims abstract description 84
- 239000007788 liquid Substances 0.000 claims abstract description 79
- 239000011261 inert gas Substances 0.000 claims abstract description 47
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 13
- 238000012545 processing Methods 0.000 claims description 128
- 238000010438 heat treatment Methods 0.000 claims description 11
- 230000008016 vaporization Effects 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims 4
- 238000005516 engineering process Methods 0.000 abstract description 2
- 235000012431 wafers Nutrition 0.000 description 39
- 239000012159 carrier gas Substances 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 18
- 239000001301 oxygen Substances 0.000 description 18
- 229910052760 oxygen Inorganic materials 0.000 description 18
- 239000006200 vaporizer Substances 0.000 description 16
- 238000003860 storage Methods 0.000 description 15
- 230000007246 mechanism Effects 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 238000010926 purge Methods 0.000 description 12
- 239000012495 reaction gas Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 229910044991 metal oxide Inorganic materials 0.000 description 9
- 150000004706 metal oxides Chemical class 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 7
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 230000006870 function Effects 0.000 description 4
- 229910001338 liquidmetal Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000003779 heat-resistant material Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 210000003254 palate Anatomy 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- MNWRORMXBIWXCI-UHFFFAOYSA-N tetrakis(dimethylamido)titanium Chemical compound CN(C)[Ti](N(C)C)(N(C)C)N(C)C MNWRORMXBIWXCI-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- SEQDDYPDSLOBDC-UHFFFAOYSA-N Temazepam Chemical compound N=1C(O)C(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 SEQDDYPDSLOBDC-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 125000006309 butyl amino group Chemical group 0.000 description 1
- HSAQWYXSHWFVQL-UHFFFAOYSA-N butyliminotantalum Chemical compound CCCCN=[Ta] HSAQWYXSHWFVQL-UHFFFAOYSA-N 0.000 description 1
- FQNHWXHRAUXLFU-UHFFFAOYSA-N carbon monoxide;tungsten Chemical group [W].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] FQNHWXHRAUXLFU-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- FSPJZJMSPXEGHO-UHFFFAOYSA-M chlorotitanium(3+);ethyl(methyl)azanide Chemical compound [Ti+3]Cl.CC[N-]C.CC[N-]C.CC[N-]C FSPJZJMSPXEGHO-UHFFFAOYSA-M 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- JQOAQUXIUNVRQW-UHFFFAOYSA-N hexane Chemical compound CCCCCC.CCCCCC JQOAQUXIUNVRQW-UHFFFAOYSA-N 0.000 description 1
- -1 hydrogen hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- HSXKFDGTKKAEHL-UHFFFAOYSA-N tantalum(v) ethoxide Chemical compound [Ta+5].CC[O-].CC[O-].CC[O-].CC[O-].CC[O-] HSXKFDGTKKAEHL-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
Definitions
- the present disclosure relates to a substrate processing device, a gas supply device, a method for cleaning a raw material supply pipe, a method for manufacturing a semiconductor device, and a program.
- a process of forming a film on a substrate housed in a processing chamber may be performed.
- the film to be formed include a metal oxide film.
- a liquid raw material may be vaporized and a vaporized gas may be used (see, for example, Patent Document 1).
- the liquid raw material is vaporized by the vaporizer and supplied to the processing chamber, but the liquid raw material is thermally decomposed in the vaporizer due to the influence of heating at the time of vaporization, so that the vaporizer is continuously used. If it is used continuously, there is a possibility that problems such as film quality fluctuation and foreign matter may occur in the formed film. It may be necessary to replace the vaporizer to avoid such problems.
- An object of the present disclosure is to provide a technology that enables a vaporizer (tank) that vaporizes a liquid raw material to be replaced without causing such a problem.
- a processing room for processing the substrate and A gas supply system that supplies raw material gas to the processing chamber and It is provided with an exhaust pipe connected to the processing chamber, and has an exhaust system for exhausting the atmosphere in the processing chamber.
- the gas supply system A tank that vaporizes a liquid raw material to generate the raw material gas, A raw material supply pipe that supplies the liquid raw material to the tank, A cleaning solvent container containing a cleaning solvent for cleaning the raw material supply pipe is provided.
- the raw material supply pipe is provided with a first valve for controlling the operation of supplying the inert gas to the raw material supply pipe and an operation of supplying the inert gas or the cleaning solvent to the raw material supply pipe in order from the upstream.
- a technique is provided in which a fourth valve for controlling the supply operation of the raw material is provided.
- FIG. 1 is a cross-sectional view taken along the line AA of FIG. It is the schematic of the piping relation of the substrate processing apparatus. It is a block diagram which shows the structure of a controller. It is a figure which shows the metal oxide film formation sequence. This is a first configuration example around the vaporizer. This is the cleaning flow of the raw material supply pipe. This is a second configuration example around the vaporizer.
- FIGS. 1 to 4 The drawings used in the following description are all schematic, and the dimensional relationship of each element, the ratio of each element, and the like shown in the drawings do not always match the actual ones. Further, even between a plurality of drawings, the dimensional relationship of each element, the ratio of each element, and the like do not always match.
- the substrate processing device 10 includes a processing furnace 202 provided with a heater 207 as a heating means (heating mechanism, heating system).
- the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
- a reaction tube 203 is arranged concentrically with the heater 207.
- the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end open.
- a manifold 209 is arranged concentrically with the reaction tube 203.
- the manifold 209 is made of a metal such as stainless steel (SUS), and is formed in a cylindrical shape with open upper and lower ends.
- An O-ring 220a as a sealing member is provided between the upper end of the manifold 209 and the reaction tube 203.
- the reaction tube 203 is installed perpendicular to the heater 207 by supporting the manifold 209 on the heater base.
- a processing container (reaction container) is mainly composed of the reaction tube 203 and the manifold 209.
- a processing chamber 201 is formed in the hollow portion of the processing container. The processing chamber 201 is configured to accommodate the wafer 200 as a substrate in a state of being arranged in multiple stages in the vertical direction in a horizontal posture by a boat 217 described later.
- Nozzles 410 and 420 are provided in the processing chamber 201 so as to penetrate the side wall of the manifold 209.
- Gas supply pipes 310 and 320 are connected to the nozzles 410 and 420, respectively.
- the gas supply pipes 310 and 320 function as gas supply lines.
- Nozzles 410 and 420 may be included in the gas supply line.
- the processing furnace 202 of the present embodiment is not limited to the above-described embodiment. The number of nozzles and the like is appropriately changed as necessary.
- the gas supply pipes 310 and 320 are provided with tanks (vaporizers) 610 and 620 and valves 314 and 324, which are on-off valves, in this order from the upstream direction.
- Gas supply pipes 510 and 520 are connected to the downstream side of the valves 314 and 324 of the gas supply pipes 310 and 320, respectively.
- the gas supply pipes 510 and 520 function as gas supply lines for supplying the inert gas.
- the gas supply pipes 510 and 520 are provided with MFCs 512 and 522 and valves 514, 516, 524 and 526, respectively, in order from the upstream direction.
- Gas supply pipes 530 and 540 as gas supply lines for supplying the inert gas are connected to the tanks 610 and 620.
- the gas supply pipes 530 and 540 are provided with MFC 532, 542 and valves 534 and 544, respectively, in order from the upstream direction.
- the nozzles 410 and 420 are configured as L-shaped nozzles, and their horizontal portions are provided so as to penetrate the side wall of the manifold 209 and the reaction tube 203.
- the vertical portions of the nozzles 410 and 420 form an annular space in a plan view between the reaction tube 203 and the wafer 200, along the upper part of the inner wall of the reaction tube 203 and upward in the loading direction of the wafer 200. They are provided so that they stand up and extend.
- a plurality of gas supply holes 410a and 420a for supplying gas are provided at the height corresponding to the wafer 200 on the side surfaces of the nozzles 410 and 420 (the height corresponding to the loading area of the wafer 200), respectively.
- the gas supply holes 410a and 420a are opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200.
- a plurality of gas supply holes 410a and 420a are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided with the same opening pitch.
- the gas supply holes 410a and 420a are not limited to the above-described form.
- the opening area may be gradually increased from the lower portion (upstream side) to the upper portion (downstream side) of the nozzles 410 and 420. This makes it possible to make the flow rate of the gas supplied from the gas supply holes 410a and 420a more uniform.
- the processing gas (raw material gas) is supplied into the processing chamber 201 via the valves 314, 516 and the nozzle 410.
- the raw material gas is stored in the tank (vaporizer) 610 in a liquid state.
- the inert gas is supplied from the gas supply pipe 530 into the tank 610 via the MFC 532 and the valve 534.
- a temperature adjusting mechanism for example, heating by a jacket heater, cooling by a Pelche element, etc. for adjusting the temperature of the liquid metal raw material tank 610 is provided on the outside of the liquid metal raw material tank 610, and the liquid metal raw material tank 610 is provided.
- the supplied liquid metal raw material is brought to a predetermined temperature by a temperature control mechanism, or the supply amount of the inert gas serving as a carrier gas is set to a predetermined flow rate, or both the temperature control mechanism and the supply flow rate of the inert gas.
- the raw material gas is made to flow to the gas supply pipe 310 at a predetermined flow rate.
- raw material gas when used, it means “raw material gas in a liquid state”, “raw material gas in a gaseous state", or both of them. May be done.
- an oxygen (O) -containing gas as a processing gas is supplied into the processing chamber 201 via the valves 324 and 526 and the nozzle 420.
- the oxygen-containing gas is contained in a tank (vaporizer) 620 in a liquid state.
- the inert gas is vaporized by being supplied from the gas supply pipe 540 into the tank 620 via the MFC 542 and the valve 544. Then, the vaporized gas is supplied to the gas supply pipe 320.
- oxygen-containing gas when the term "oxygen-containing gas” is used, it means “oxygen-containing gas in a liquid state", “oxygen-containing gas in a gaseous state", or those. May mean both.
- the inert gas is supplied into the processing chamber 201 via the MFC 512 and 522, the valves 514, 516 and 524,526, the gas supply pipes 310 and 320, and the nozzles 410 and 420, respectively. ..
- the raw material gas supply system is mainly composed of the gas supply pipe 310 and the valve 314.
- the nozzle 410 may be included in the raw material gas supply system, or the tank (vaporizer) 610, the gas supply pipe 530, the MFC 532, and the valve 534 may be included in the raw material gas supply system.
- the reaction gas supply system is mainly composed of the gas supply pipe 320 and the valve 324.
- the nozzle 420 may be included in the reaction gas supply system, or the tank (vaporizer) 620, the gas supply pipe 540, the MFC 542, and the valve 544 may be included in the reaction gas supply system.
- the gas supply pipes 510,520, MFC512,522, and valves 514,516,524,526 constitute an inert gas supply system.
- the raw material gas supply system and the reaction gas supply system can also be collectively referred to as a gas supply system.
- the inert gas supply system may be included in the gas supply system.
- the reaction pipe 203 is provided with an exhaust pipe 231 as an exhaust flow path for exhausting the atmosphere in the processing chamber 201.
- the exhaust pipe 231 is provided with a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 243 as an exhaust valve (pressure adjusting unit).
- a vacuum pump 246 as a vacuum exhaust device is connected.
- the APC valve 243 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, with the vacuum pump 246 operating, the APC valve 243 can perform vacuum exhaust and vacuum exhaust stop.
- the exhaust system is mainly composed of an exhaust pipe 231, an APC valve 243, and a pressure sensor 245.
- the vacuum pump 246 may be included in the exhaust system.
- a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209.
- An O-ring 220 as a seal member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219.
- a rotation mechanism 267 for rotating the boat 217 which will be described later, is installed.
- the rotation shaft 255 of the rotation mechanism 267 is connected to the boat 217 through the seal cap 219, and is configured to rotate the wafer 200 by rotating the boat 217.
- the seal cap 219 is configured to be vertically lifted and lowered by a boat elevator 115 as a lifting mechanism vertically installed outside the reaction tube 203.
- the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by raising and lowering the seal cap 219.
- the boat elevator 115 is configured as a transport device (convey mechanism) for transporting the boat 217, that is, the wafer 200, into and out of the processing chamber 201.
- a shutter is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209 while the seal cap 219 is lowered by the boat elevator 115.
- An O-ring as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the shutter.
- the shutter opening / closing operation (elevating / rotating operation, etc.) is controlled by the shutter opening / closing mechanism.
- the boat 217 as a substrate support supports a plurality of wafers, for example 25 to 200 wafers, in a horizontal position and vertically aligned with each other, that is, in a multi-stage manner. It is configured to be loaded (arranged, placed) at intervals.
- the boat 217 is made of a heat resistant material such as quartz or SiC.
- a heat insulating plate (not shown) made of a heat-resistant material such as quartz or SiC is supported in multiple stages.
- a temperature sensor 263 as a temperature detector is installed in the reaction tube 203. By adjusting the degree of energization of the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution.
- the temperature sensor 263 is L-shaped like the nozzles 410 and 420, and is provided along the inner wall of the reaction tube 203.
- the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
- the RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus 121e.
- An input / output device 122 configured as, for example, a touch panel is connected to the controller 121.
- the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
- a control program for controlling the operation of the substrate processing device, a process recipe in which the procedures and conditions for substrate processing described later are described, and the like are readablely stored.
- the process recipes are combined so that the controller 121 can execute each procedure in the film forming process described later and obtain a predetermined result, and functions as a program.
- this process recipe, control program, etc. are collectively referred to as a program.
- a process recipe is also simply referred to as a recipe.
- the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily held.
- the I / O port 121d includes MFC 512, 522, 532, 542, valves 314, 324, 514, 516, 524, 526, 534, 544, 711, 712, 713, 714, 715, 716,717, which will be described above or later. , 801, 802, pressure sensor 245,724, APC valve 243, vacuum pump 246,722, temperature sensor 263, heaters 207,723, rotation mechanism 267, boat elevator 115, shutter opening / closing mechanism and the like.
- the CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
- the CPU 121a adjusts the flow rate of various gases by the MFC 512,522,532,542 according to the contents of the read recipe, and valves 314,324,514,516,524,526,534,544,711,712,713.
- APC valve 243 opening / closing operation and pressure adjustment operation by APC valve 243 based on pressure sensor 245, start and stop of vacuum pump 246, heater based on temperature sensor 263 It is configured to control the temperature adjusting operation of the 207, the rotation and rotation speed adjusting operation of the boat 217 by the rotating mechanism 267, the raising and lowering operation of the boat 217 by the boat elevator 115, the opening and closing operation of the shutter by the shutter opening and closing mechanism, and the like.
- the controller 121 is stored in an external storage device (for example, magnetic tape, magnetic disk such as flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card) 123.
- the above-mentioned program can be configured by installing it on a computer.
- the storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
- recording medium When the term recording medium is used in the present specification, it may include only the storage device 121c alone, it may include only the external storage device 123 alone, or it may include both of them.
- the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
- Substrate processing process An example of a step of forming a metal oxide film on a substrate as one step of a manufacturing process of a semiconductor device (device) will be described.
- the step of forming the metal oxide film is carried out using the processing furnace 202 of the substrate processing apparatus 10 described above. In the following description, the operation of each part constituting the substrate processing device 10 is controlled by the controller 121.
- the word “wafer” when used in the present specification, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface thereof). “(That is, a wafer including a predetermined layer, film, etc. formed on the surface) may be used.
- the term “wafer surface” when used in the present specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
- the term “wafer” is also used in the present specification as if the term “wafer” is used.
- a plurality of wafers 200 are carried into the processing chamber 201 (boat load). Specifically, when a plurality of wafers 200 are loaded (wafer charged) into the boat 217, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 as shown in FIG. It is carried into the processing chamber 201. In this state, the seal cap 219 is in a state of closing the lower end opening of the reaction tube 203 via the O-ring 220.
- the inside of the processing chamber 201 is evacuated by the vacuum pump 246 so as to have a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 is always kept in operation until at least the processing on the wafer 200 is completed. Further, the inside of the processing chamber 201 is heated by the heater 207 so as to have a desired temperature. At this time, the amount of electricity supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment). The heating in the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
- the valves 314 and 516 are opened to allow the raw material gas to flow into the gas supply pipe 310.
- the raw material gas that has flowed through the gas supply pipe 310 is supplied into the processing chamber 201 from the gas supply hole 410a of the nozzle 410. At this time, the raw material gas is supplied to the wafer 200.
- the valve 514 is opened at the same time, and the carrier gas flows into the gas supply pipe 510.
- the flow rate of the carrier gas flowing in the gas supply pipe 510 is adjusted by the MFC 512.
- the flow-adjusted carrier gas is supplied into the processing chamber 201 together with the raw material gas, and is exhausted from the exhaust pipe 231.
- valves 524 and 526 are opened to allow the carrier gas to flow into the gas supply pipe 520.
- the carrier gas is supplied into the processing chamber 201 via the gas supply pipe 520 and the nozzle 420, and is exhausted from the exhaust pipe 231.
- the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, 1 to 1200 Pa, preferably 10 to 100 Pa, and more preferably 40 to 60 Pa (predetermined). If the pressure is higher than 1200 Pa, the residual gas that will be described later may not be sufficiently removed, and if the pressure is lower than 1 Pa, the reaction rate of the raw material gas may not be sufficiently obtained.
- the numerical value is described as, for example, 1 to 1200 Pa, it means that the lower limit value and the upper limit value are included in the range, and means 1 Pa or more and 1200 Pa or less. The same is true not only for pressure, but for all other numbers described herein.
- the supply flow rate of the raw material gas is, for example, a (predetermined) flow rate within the range of 0.008 to 0.1 slm.
- the supply flow rate of the carrier gas controlled by the MFC 512, 522, 532 is, for example, a (predetermined) flow rate within the range of 0.1 to 40 slm.
- the gas supply time (irradiation time) for supplying the raw material gas to the wafer 200 is, for example, a (predetermined) time in the range of 0.1 to 60 seconds.
- the only gases flowing in the processing chamber 201 are the raw material gas and the carrier gas.
- the raw material gas By supplying the raw material gas, a metal-containing layer containing a metal is formed on the wafer 200.
- the valve 314 is closed to stop the supply of the raw material gas.
- the APC valve 243 of the exhaust pipe 231 is left open, and the inside of the processing chamber 201 is evacuated by the vacuum pump 246 to contribute to the formation of the unreacted or the metal-containing layer remaining in the processing chamber 201.
- the raw material gas of No. 1 is excluded from the inside of the processing chamber 201.
- the valves 514 and 524 are kept open to maintain the supply of the carrier gas into the processing chamber 201.
- the carrier gas acts as a purge gas, which has the effect of removing the unreacted raw gas remaining in the treatment chamber 201 or the raw material gas after contributing to the formation of the metal-containing layer described above from the treatment chamber 201. Can be enhanced.
- the vacuum exhaust and the gas purge with the carrier gas may be simultaneously performed up to the oxygen-containing supply step described later, or the vacuum exhaust and the carrier gas purge may be alternately (cyclically) performed a predetermined number of times.
- the pressure in the processing chamber 201 at the time of gas purging is set to be higher than the pressure in the processing chamber 201 in the raw material gas supply step by supplying the carrier gas.
- the pressure in the processing chamber 201 at the time of vacuum exhaust is set to be lower than the pressure in the raw material gas supply step, for example, 1 to 100 Pa, preferably 1 to 30 Pa. Then, the pressure in the processing chamber 201 at the time of carrier gas purging is set to be higher than the pressure in the raw material gas supply step, for example, 1 to 1500 Pa, preferably 30 to 130 Pa.
- reaction gas supply step The valve 324 is opened to allow an oxygen-containing gas to flow into the gas supply pipe 320 as a reaction gas.
- the oxygen-containing gas flowing through the gas supply pipe 320 is supplied into the processing chamber 201 from the gas supply hole 420a of the nozzle 420.
- the valve 524 is opened at the same time, and the carrier gas flows into the gas supply pipe 520.
- the flow rate of the carrier gas flowing through the gas supply pipe 520 is adjusted by the MFC 522, is supplied into the processing chamber 201 together with the oxygen-containing gas, and is exhausted from the exhaust pipe 231.
- valves 514 and 516 are opened to allow the carrier gas to flow into the gas supply pipe 510.
- the carrier gas is supplied into the processing chamber 201 via the gas supply pipe 510 and the nozzle 410, and is exhausted from the exhaust pipe 231.
- the APC valve 243 When flowing the oxygen-containing gas, the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 1 to 1200 Pa, preferably 10 to 100 Pa, more preferably 30 to 50 Pa (predetermined). ) Pressure. If the pressure is higher than 1200 Pa, the residual gas that will be described later may not be sufficiently removed, and if the pressure is lower than 1 Pa, a sufficient film formation rate may not be obtained.
- the supply flow rate of the oxygen-containing gas is, for example, a (predetermined) flow rate within the range of 0.1 to 40 slm, preferably 0.2 to 20 slm, and more preferably 0.2 to 10 slm.
- the larger the flow rate the more the uptake of impurities derived from the raw material gas into the metal oxide film can be reduced, which is preferable.
- the flow rate is more than 40 slm, the residual gas described later may not be sufficiently removed.
- the supply flow rate of the carrier gas controlled by the MFC 512 and 522 is, for example, a (predetermined) flow rate within the range of 0.2 to 30 slm.
- the gas supply time (irradiation time) for supplying the oxygen-containing gas to the wafer 200 is, for example, a (predetermined) time in the range of 1 to 60 seconds.
- the only gases flowing in the processing chamber 201 are oxygen-containing gas and carrier gas.
- the oxygen-containing gas reacts with the metal-containing layer formed on the wafer 200 in the raw material gas supply step, and the metal-containing oxide layer is formed on the wafer 200.
- the valve 324 is closed to stop the supply of the oxygen-containing gas. Then, the oxygen-containing gas remaining in the treatment chamber 201 after contributing to the formation of the unreacted or metal-containing oxide layer is removed from the treatment chamber 201 by the same treatment procedure as the residual gas removal step after the raw material gas supply step. ..
- the vacuum exhaust and the carrier (inactive) gas purge may be performed at the same time, or the vacuum exhaust and the carrier gas purge may be performed alternately (cyclically) a predetermined number of times. Similar to the removal step.
- n 1 cycle (n 1 is an integer of 1 or more), a predetermined value is provided on the wafer 200.
- a metal oxide film having a thickness of (for example, 0.05 to 100 nm) is formed.
- the valves 514, 516, 524, 526 are opened, and the inert gas is supplied into the processing chamber 201 from each of the gas supply pipes 510 and 520, and exhausted from the exhaust pipe 231.
- the inert gas acts as a purge gas, whereby the inside of the treatment chamber 201 is purged with the inert gas, and the gas and by-products remaining in the treatment chamber 201 are removed from the inside of the treatment chamber 201 (purge).
- the atmosphere in the treatment chamber 201 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 201 is restored to the normal pressure (return to atmospheric pressure).
- FIG. 6 shows a first configuration example around the vaporizer (tank 610) which is a gas supply device.
- the tank 610 is connected to a raw material supply pipe 710 for supplying a liquid raw material.
- the raw material supply pipe 710 is provided with a liquid raw material container 721 for accommodating the liquid raw material and a mechanism for cleaning the raw material supply pipe 710 when the tank 610 is replaced.
- the raw material supply pipe 710 is provided with valves 711,713,715,716,717 in order from the upstream.
- the raw material supply pipe 710 is at least downstream of the valve 711 in order to facilitate the passage of a liquid raw material that is a liquid or a cleaning solvent that is a liquid for cleaning the inside of the pipe, or to easily purge the vaporized cleaning solvent described later. It is arranged vertically with respect to the tank 610.
- the valve 711 is a valve that controls the supply operation (supply / non-supply, supply / supply stop) of the inert gas to the raw material supply pipe 710.
- the valve 713 is a valve that controls the supply operation of the inert gas or the cleaning solvent contained in the cleaning solvent container 720 to the raw material supply pipe 710.
- the valve 713 is connected to the cleaning solvent container 720 via a valve 712 that controls the operation of supplying the cleaning solvent to the raw material supply pipe 710.
- hexane Hexane
- ECH epichlorohydrin
- the valve 715 is a valve that controls the supply operation of the inert gas to the raw material supply pipe 710, the cleaning solvent contained in the cleaning solvent container 720, or the liquid raw material contained in the liquid raw material container.
- the valve 715 is connected to the liquid raw material container 721 via a valve 714 that controls the supply operation of the liquid raw material to the raw material supply pipe 710.
- the valve 716 is a valve (three-way valve) that switches between the raw material supply pipe 710 and the bypass pipe 718 on the tank 610 side.
- a vacuum pump 722 is connected to the bypass pipe 718.
- An exhaust pipe 719 is connected to the vacuum pump 722.
- the bypass pipe 718 is provided with a pressure sensor 724 that measures the pressure inside the bypass pipe.
- the vacuum pump 722 can be shared with the vacuum pump 246 that exhausts the processing chamber 201.
- the valve 717 is a valve that controls the supply operation of the liquid raw material in the raw material supply pipe 710 to the tank 610, and has a flow rate control function. Further, a heater 723 as a heating unit is provided for a section of the raw material supply pipe 710 between the valve 715 and the valve 717.
- the heater 723 has an ability to heat the temperature of the raw material supply pipe 710 to a temperature at which the cleaning solvent is vaporized (for example, 60 ° C. in the case of hexane). As will be described later, since the cleaning solvent is vaporized and discharged from the raw material supply pipe 710 through the bypass pipe 718, the heater 723 can also heat the bypass pipe 718 so that the cleaning solvent does not condense in the bypass pipe 718. May be.
- valves 711, 712, 713 are closed, and the valves 714, 715, 716 (raw material supply pipe 710 side) and 717 are opened, so that the liquid raw material contained in the liquid raw material container 721 is supplied to the tank 610. ..
- the supplied liquid raw material is vaporized in the tank 610 and the substrate is processed.
- Liquid raw materials may remain in the raw material supply pipes 710 from the valve 715 to the tank 610 and the valves 715, 716, 717, in order to remove them and replace the tank 610 appropriately.
- TDMAT TDMAT or the like, which will be described later, is used as the liquid raw material
- the by-product adheres to the raw material supply pipe 710 by reacting with the atmosphere, it causes the generation of foreign matter. It is necessary to remove the liquid raw material remaining in the valve.
- FIG. 7 shows the cleaning flow of the raw material supply pipe 710 in the first configuration example. Cleaning of the raw material supply pipe 710 is executed by the CPU 121a as one of the control programs.
- step S13 It is determined whether the steps S10 to S12 have been executed a predetermined number of times, and after repeating the predetermined number of times, the process proceeds to step S14.
- the number of repetitions is set to, for example, 5 times as the number of times that the remaining liquid raw material can be sufficiently removed.
- step S15 Inert gas is supplied from the upstream of the raw material supply pipe 710 with the cleaning solvent vaporized in step S14 and the valves 711,713,715,716 (bypass pipe 718 side) open.
- the cleaning medium vaporized by the pressure of the above is exhausted from the exhaust pipe 719 via the bypass pipe 718.
- the pressure in the bypass pipe 718 is measured by the pressure sensor 724, and when the fluctuation rate of the pressure becomes less than a predetermined value, it is determined that the cleaning solvent has been discharged from the raw material supply pipe 710, and the inert gas is supplied. To finish.
- FIG. 8 shows a second configuration example around the vaporizer (tank 610) which is a gas supply device.
- the drain container 810 is provided as a discharge destination of the cleaning solvent containing the dissolved liquid raw material.
- the same configurations as those of the first configuration example shown in FIG. 6 are designated by the same reference numerals, and redundant description will be omitted.
- the discharge pipe 805 connected to the drain container 810 is a valve that controls the discharge operation (discharge / non-discharge, discharge / discharge stop) of the cleaning solvent containing the liquid raw material dissolved from the raw material supply pipe 710 into the drain container 810.
- the discharge pipe 805 is provided so as to be inclined so as to reduce the horizontal portion and abrupt bending, and more preferably, the discharge pipe 805 is arranged with an inclination degree of a predetermined value or more without using a bending of 90 degrees or more.
- valves 711,712,713,801 are closed, and the valves 714,715,802,716 (raw material supply pipe 710 side) and 717 are opened, so that the liquid raw material contained in the liquid raw material container 721 is stored in the tank 610. Is supplied to. The supplied liquid raw material is vaporized in the tank 610 and used for substrate treatment.
- the cleaning flow of the raw material supply pipe 710 in the second configuration example is the same as that in FIG.
- valve 801 After a lapse of a predetermined time, the valve 801 is opened, and the cleaning solvent containing the dissolved liquid raw material is discharged to the drain container 810 via the discharge pipe 805. After draining the cleaning solvent, the valve 801 is closed.
- the heater 723 heats the raw material supply pipe 710 to a predetermined temperature at which the cleaning solvent is vaporized.
- step S15 The cleaning solvent is vaporized in step S14, and the inert gas is supplied from the upstream of the raw material supply pipe 710 with the valves 711,713,715,802,716 (bypass pipe 718 side) open.
- the cleaning medium vaporized by the pressure of the active gas is exhausted from the exhaust pipe 719 via the bypass pipe 718.
- the pressure in the bypass pipe 718 is measured by the pressure sensor 724, and when the fluctuation rate of the pressure becomes less than a predetermined value, it is determined that the cleaning solvent has been discharged from the raw material supply pipe 710, and the inert gas is supplied. To finish.
- the valve 801 is provided in the raw material supply pipe.
- the valve 717 is a three-way valve, and the discharge pipe 805 connected to the drain container 810 is connected to the three-way valve.
- a valve 801 for controlling the discharge operation of the cleaning solvent containing the liquid raw material dissolved from the raw material supply pipe 710 to the drain container 810 may be provided in the discharge pipe 805.
- any film formed by using an organic raw material can be applied to other films.
- organic raw material gas examples include chlorotri (N-ethylmethylamino) titanium (Ti [N (CH 3 ) CH 2 CH 3 ] 3 Cl, abbreviated as TIA) and tetrakisdiethylaminotitanium (Ti [N (CH 2 CH 3)).
- TDEAT tetrakisdimethylaminotitanium
- TDMAT tetraxethylmethylaminozincyl
- Zr [N (CH 3 ) CH 2 CH 3 ] 4 abbreviated TEMAZ
- TEMAH tetraxethylmethylaminohafnium
- TMA trimethylaluminum
- Zr [N (CH 3 ) CH 2 CH 3 ] 4 abbreviated TEMAZ
- TEMAH tetraxethylmethylaminoha
- reaction gas examples include plasma-excited oxygen (O 2 ), ozone (O 3 ), water vapor (H 2 O), hydrogen hydrogen (H 2 O 2 ), and nitrous oxide (N 2). It is also possible to use a mixed gas of O), plasma-excited O 2 + H 2.
- the inert gas and N 2 gas, Ar gas, He gas, Ne gas, may be used a rare gas such as Xe gas.
- the base film for forming the metal oxide film can be appropriately selected, and examples thereof include a silicon (Si) film.
- a substrate processing apparatus which is a batch type vertical apparatus for processing a plurality of substrates at a time, and a nozzle for supplying a processing gas is erected in one reaction tube, and the reaction tube is provided.
- a processing furnace having a structure having an exhaust port at the bottom has been described
- the present disclosure can also be applied to the case of forming a film using a processing furnace having another structure.
- it has two reaction tubes having concentric cross sections (the outer reaction tube is called an outer tube and the inner reaction tube is called an inner tube), and from a nozzle erected in the inner tube, a side wall of the outer tube is used.
- the present disclosure can also be applied to the case where the film is formed using a processing furnace having a structure in which the processing gas flows to the exhaust port that opens at a position facing the nozzle (a position symmetrical with respect to the line) across the substrate.
- the processing gas may be supplied not from a nozzle erected in the inner tube but from a gas supply port opened in the side wall of the inner tube.
- the exhaust port that opens in the outer tube may be opened according to the height at which a plurality of substrates accommodated in a laminated manner in the processing chamber exist.
- the shape of the exhaust port may be a hole shape or a slit shape.
- the recipe (program that describes the treatment procedure, treatment conditions, etc.) used for the film formation treatment and cleaning treatment is the treatment content (type, composition ratio, film quality, film thickness, treatment procedure, treatment of the film to be formed or removed. It is preferable to prepare them individually according to conditions) and store them in the storage device 121c via a telecommunication line or an external storage device 123. Then, when starting the process, it is preferable that the CPU 121a appropriately selects an appropriate recipe from the plurality of recipes stored in the storage device 121c according to the processing content. As a result, it becomes possible to form films of various film types, composition ratios, film qualities, and film thicknesses with good reproducibility with one substrate processing device, and appropriate processing can be performed in each case. Will be. In addition, the burden on the operator (input burden on processing procedures, processing conditions, etc.) can be reduced, and processing can be started quickly while avoiding operation mistakes.
- the above recipe is not limited to the case of newly creating, for example, it may be prepared by changing an existing recipe already installed in the board processing apparatus.
- the changed recipe may be installed on the substrate processing apparatus via a telecommunication line or a recording medium on which the recipe is recorded.
- the input / output device 122 included in the existing board processing device may be operated to directly change the existing recipe already installed in the board processing device.
- an example of forming a film using a batch-type substrate processing apparatus that processes a plurality of substrates at one time has been described.
- the present disclosure is not limited to the above-described embodiment, and can be suitably applied to, for example, a case where a film is formed by using a single-wafer type substrate processing apparatus that processes one or several substrates at a time.
- an example of forming a film by using a substrate processing apparatus having a hot wall type processing furnace has been described.
- the present disclosure is not limited to the above-described embodiment, and can be suitably applied to the case where a film is formed by using a substrate processing apparatus having a cold wall type processing furnace. Even in these cases, the processing procedure and processing conditions can be, for example, the same processing procedure and processing conditions as those in the above-described embodiment.
- Substrate processing device 121 ... Controller, 200 ... Wafer, 201 ... Processing room, 202 ... Processing furnace.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Abstract
Provided are a technology including a treatment chamber that treats a substrate and a gas supply system that supplies raw material gas into the treatment chamber, wherein the gas supply system includes a tank that vaporizes a liquid raw material to generate the raw material gas, a raw material supply pipe that supplies the liquid raw material to the tank, and a cleaning solvent container that contains a cleaning solvent for cleaning the raw material supply pipe. The raw material supply pipe includes, from the upstream side: a first valve that controls an operation of supplying inert gas to the raw material supply pipe; a second valve that controls an operation of supplying the inert gas or cleaning solvent to the raw material supply pipe; a third valve that controls an operation of supplying the inert gas, the cleaning solvent, or the liquid raw material to the raw material supply pipe; and a fourth valve that controls an operation of supplying the liquid raw material in the raw material supply pipe to the tank.
Description
本開示は、基板処理装置、ガス供給装置、原料供給管の洗浄方法、半導体装置の製造方法およびプログラムに関する。
The present disclosure relates to a substrate processing device, a gas supply device, a method for cleaning a raw material supply pipe, a method for manufacturing a semiconductor device, and a program.
半導体装置(デバイス)の製造工程の一工程として、処理室内に収容された基板上に膜を形成する処理が行われることがある。形成される膜としては、例えば、金属酸化膜が挙げられる。このような金属酸化膜を形成する際、液体原料を気化し気化ガスを使用することがある(たとえば、特許文献1参照)。
As one step in the manufacturing process of a semiconductor device (device), a process of forming a film on a substrate housed in a processing chamber may be performed. Examples of the film to be formed include a metal oxide film. When forming such a metal oxide film, a liquid raw material may be vaporized and a vaporized gas may be used (see, for example, Patent Document 1).
特許文献1には、液体原料が気化器で気化されて処理室内に供給されるが、気化の際の加熱の影響により液体原料が気化器内で熱分解することにより、気化器を継続的に使用し続けると、形成される膜に膜質変動や異物が発生するといった不具合が生じる可能性がある。このような不具合を避けるため、気化器を交換する必要が生じる場合がある。
In Patent Document 1, the liquid raw material is vaporized by the vaporizer and supplied to the processing chamber, but the liquid raw material is thermally decomposed in the vaporizer due to the influence of heating at the time of vaporization, so that the vaporizer is continuously used. If it is used continuously, there is a possibility that problems such as film quality fluctuation and foreign matter may occur in the formed film. It may be necessary to replace the vaporizer to avoid such problems.
本開示の目的は、液体原料を気化させる気化器(タンク)を、かかる不具合を生じさせることなく交換可能とする技術を提供することにある。
An object of the present disclosure is to provide a technology that enables a vaporizer (tank) that vaporizes a liquid raw material to be replaced without causing such a problem.
本開示の一態様によれば、
基板を処理する処理室と、
前記処理室内に原料ガスを供給するガス供給系と、
前記処理室に接続された排気管を備え、前記処理室内の雰囲気を排気する排気系と、を有し、
前記ガス供給系は、
液体原料を気化させて前記原料ガスを発生させるタンクと、
前記液体原料を前記タンクに供給する原料供給管と、
前記原料供給管を洗浄する洗浄溶媒を収容する洗浄溶媒容器と、を備え、
前記原料供給管には、上流から順に、前記原料供給管への不活性ガスの供給動作を制御する第1のバルブと、前記原料供給管への前記不活性ガスまたは前記洗浄溶媒の供給動作を制御する第2のバルブと、前記原料供給管への前記不活性ガス、前記洗浄溶媒、または前記液体原料の供給動作を制御する第3のバルブと、前記タンクへの前記原料供給管内の前記液体原料の供給動作を制御する第4のバルブと、が設けられる技術が提供される。 According to one aspect of the present disclosure
A processing room for processing the substrate and
A gas supply system that supplies raw material gas to the processing chamber and
It is provided with an exhaust pipe connected to the processing chamber, and has an exhaust system for exhausting the atmosphere in the processing chamber.
The gas supply system
A tank that vaporizes a liquid raw material to generate the raw material gas,
A raw material supply pipe that supplies the liquid raw material to the tank,
A cleaning solvent container containing a cleaning solvent for cleaning the raw material supply pipe is provided.
The raw material supply pipe is provided with a first valve for controlling the operation of supplying the inert gas to the raw material supply pipe and an operation of supplying the inert gas or the cleaning solvent to the raw material supply pipe in order from the upstream. A second valve to control, a third valve to control the operation of supplying the inert gas, the cleaning solvent, or the liquid raw material to the raw material supply pipe, and the liquid in the raw material supply pipe to the tank. A technique is provided in which a fourth valve for controlling the supply operation of the raw material is provided.
基板を処理する処理室と、
前記処理室内に原料ガスを供給するガス供給系と、
前記処理室に接続された排気管を備え、前記処理室内の雰囲気を排気する排気系と、を有し、
前記ガス供給系は、
液体原料を気化させて前記原料ガスを発生させるタンクと、
前記液体原料を前記タンクに供給する原料供給管と、
前記原料供給管を洗浄する洗浄溶媒を収容する洗浄溶媒容器と、を備え、
前記原料供給管には、上流から順に、前記原料供給管への不活性ガスの供給動作を制御する第1のバルブと、前記原料供給管への前記不活性ガスまたは前記洗浄溶媒の供給動作を制御する第2のバルブと、前記原料供給管への前記不活性ガス、前記洗浄溶媒、または前記液体原料の供給動作を制御する第3のバルブと、前記タンクへの前記原料供給管内の前記液体原料の供給動作を制御する第4のバルブと、が設けられる技術が提供される。 According to one aspect of the present disclosure
A processing room for processing the substrate and
A gas supply system that supplies raw material gas to the processing chamber and
It is provided with an exhaust pipe connected to the processing chamber, and has an exhaust system for exhausting the atmosphere in the processing chamber.
The gas supply system
A tank that vaporizes a liquid raw material to generate the raw material gas,
A raw material supply pipe that supplies the liquid raw material to the tank,
A cleaning solvent container containing a cleaning solvent for cleaning the raw material supply pipe is provided.
The raw material supply pipe is provided with a first valve for controlling the operation of supplying the inert gas to the raw material supply pipe and an operation of supplying the inert gas or the cleaning solvent to the raw material supply pipe in order from the upstream. A second valve to control, a third valve to control the operation of supplying the inert gas, the cleaning solvent, or the liquid raw material to the raw material supply pipe, and the liquid in the raw material supply pipe to the tank. A technique is provided in which a fourth valve for controlling the supply operation of the raw material is provided.
本開示によれば、異物の原因を発生させることなく、液体原料を気化させる気化器を交換可能とする技術を提供することが可能となる。
According to the present disclosure, it is possible to provide a technique for exchanging a vaporizer that vaporizes a liquid raw material without generating a cause of foreign matter.
以下に、本開示の好ましい実施の形態について図1~4を参照して説明する。なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面に示される、各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
Hereinafter, preferred embodiments of the present disclosure will be described with reference to FIGS. 1 to 4. The drawings used in the following description are all schematic, and the dimensional relationship of each element, the ratio of each element, and the like shown in the drawings do not always match the actual ones. Further, even between a plurality of drawings, the dimensional relationship of each element, the ratio of each element, and the like do not always match.
(1)基板処理装置の構成
基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。 (1) Configuration of Substrate Processing Device Thesubstrate processing device 10 includes a processing furnace 202 provided with a heater 207 as a heating means (heating mechanism, heating system). The heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。 (1) Configuration of Substrate Processing Device The
ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属により構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部と、反応管203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、反応管203はヒータ207と垂直に据え付けられている。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成される。処理容器の筒中空部には処理室201が形成されている。処理室201は、基板としてのウエハ200を後述するボート217によって水平姿勢で鉛直方向に多段に配列した状態で収容可能に構成されている。
Inside the heater 207, a reaction tube 203 is arranged concentrically with the heater 207. The reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end open. Below the reaction tube 203, a manifold 209 is arranged concentrically with the reaction tube 203. The manifold 209 is made of a metal such as stainless steel (SUS), and is formed in a cylindrical shape with open upper and lower ends. An O-ring 220a as a sealing member is provided between the upper end of the manifold 209 and the reaction tube 203. The reaction tube 203 is installed perpendicular to the heater 207 by supporting the manifold 209 on the heater base. A processing container (reaction container) is mainly composed of the reaction tube 203 and the manifold 209. A processing chamber 201 is formed in the hollow portion of the processing container. The processing chamber 201 is configured to accommodate the wafer 200 as a substrate in a state of being arranged in multiple stages in the vertical direction in a horizontal posture by a boat 217 described later.
処理室201内には、ノズル410,420が、マニホールド209の側壁を貫通するように設けられている。ノズル410,420には、ガス供給管310,320が、それぞれ接続されている。ガス供給管310,320はガス供給ラインとして機能する。ノズル410,420をガス供給ラインに含めて考えてもよい。本実施形態の処理炉202は上述の形態に限定されない。ノズル等の数は、必要に応じて、適宜変更される。
Nozzles 410 and 420 are provided in the processing chamber 201 so as to penetrate the side wall of the manifold 209. Gas supply pipes 310 and 320 are connected to the nozzles 410 and 420, respectively. The gas supply pipes 310 and 320 function as gas supply lines. Nozzles 410 and 420 may be included in the gas supply line. The processing furnace 202 of the present embodiment is not limited to the above-described embodiment. The number of nozzles and the like is appropriately changed as necessary.
ガス供給管310,320には、上流方向から順に、タンク(気化器)610,620、開閉弁であるバルブ314,324がそれぞれ設けられている。ガス供給管310,320のバルブ314,324よりも下流側には、ガス供給管510,520がそれぞれ接続されている。ガス供給管510,520は不活性ガスを供給するガス供給ラインとして機能する。ガス供給管510,520には、上流方向から順に、MFC512,522およびバルブ514,516,524,526がそれぞれ設けられている。タンク610,620には、不活性ガスを供給するガス供給ラインとしてのガス供給管530,540が接続されている。ガス供給管530,540には、上流方向から順に、MFC532,542およびバルブ534,544がそれぞれ設けられている。
The gas supply pipes 310 and 320 are provided with tanks (vaporizers) 610 and 620 and valves 314 and 324, which are on-off valves, in this order from the upstream direction. Gas supply pipes 510 and 520 are connected to the downstream side of the valves 314 and 324 of the gas supply pipes 310 and 320, respectively. The gas supply pipes 510 and 520 function as gas supply lines for supplying the inert gas. The gas supply pipes 510 and 520 are provided with MFCs 512 and 522 and valves 514, 516, 524 and 526, respectively, in order from the upstream direction. Gas supply pipes 530 and 540 as gas supply lines for supplying the inert gas are connected to the tanks 610 and 620. The gas supply pipes 530 and 540 are provided with MFC 532, 542 and valves 534 and 544, respectively, in order from the upstream direction.
ノズル410,420は、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁および反応管203を貫通するように設けられている。ノズル410,420の垂直部は、反応管203とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がり、延在するようにそれぞれ設けられている。
The nozzles 410 and 420 are configured as L-shaped nozzles, and their horizontal portions are provided so as to penetrate the side wall of the manifold 209 and the reaction tube 203. The vertical portions of the nozzles 410 and 420 form an annular space in a plan view between the reaction tube 203 and the wafer 200, along the upper part of the inner wall of the reaction tube 203 and upward in the loading direction of the wafer 200. They are provided so that they stand up and extend.
ノズル410,420の側面のウエハ200と対応する高さ(ウエハ200の装填領域に対応する高さ)には、ガスを供給する複数のガス供給孔410a,420aがそれぞれ設けられている。ガス供給孔410a,420aは、反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔410a,420aは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、さらに同じ開口ピッチで設けられている。ただし、ガス供給孔410a,420aは上述の形態に限定されない。例えば、ノズル410,420の下部(上流側)から上部(下流側)に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔410a,420aから供給されるガスの流量をより均一化することが可能となる。
A plurality of gas supply holes 410a and 420a for supplying gas are provided at the height corresponding to the wafer 200 on the side surfaces of the nozzles 410 and 420 (the height corresponding to the loading area of the wafer 200), respectively. The gas supply holes 410a and 420a are opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200. A plurality of gas supply holes 410a and 420a are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided with the same opening pitch. However, the gas supply holes 410a and 420a are not limited to the above-described form. For example, the opening area may be gradually increased from the lower portion (upstream side) to the upper portion (downstream side) of the nozzles 410 and 420. This makes it possible to make the flow rate of the gas supplied from the gas supply holes 410a and 420a more uniform.
ガス供給管310からは、処理ガス(原料ガス)が、バルブ314,516、ノズル410を介して処理室201内へ供給される。原料ガスは、タンク(気化器)610に液体状態で収容されている。不活性ガスがガス供給管530から、MFC532およびバルブ534を介してタンク610内に供給される。また、液体金属原料タンク610の外側には当該液体金属原料タンク610の温度を調整する温度調整機構(例えば、ジャケットヒータによる加熱やペルチェ素子による冷却等)が設けられており液体金属原料タンク610に供給された液体金属原料を温度調整機構により所定の温度にすること、またはキャリアガスとなる不活性ガスの供給量を所定の流量とすること、もしくは温度調整機構と不活性ガスの供給流量の両方とを調整することにより、所定の流量で原料ガスがガス供給管310に流れるようにしている。本明細書において、「原料ガス」という言葉を用いた場合は、「液体状態である原料ガス」を意味する場合、「気体状態である原料ガス」を意味する場合、または、それらの両方を意味する場合がある。
From the gas supply pipe 310, the processing gas (raw material gas) is supplied into the processing chamber 201 via the valves 314, 516 and the nozzle 410. The raw material gas is stored in the tank (vaporizer) 610 in a liquid state. The inert gas is supplied from the gas supply pipe 530 into the tank 610 via the MFC 532 and the valve 534. Further, a temperature adjusting mechanism (for example, heating by a jacket heater, cooling by a Pelche element, etc.) for adjusting the temperature of the liquid metal raw material tank 610 is provided on the outside of the liquid metal raw material tank 610, and the liquid metal raw material tank 610 is provided. The supplied liquid metal raw material is brought to a predetermined temperature by a temperature control mechanism, or the supply amount of the inert gas serving as a carrier gas is set to a predetermined flow rate, or both the temperature control mechanism and the supply flow rate of the inert gas. By adjusting and, the raw material gas is made to flow to the gas supply pipe 310 at a predetermined flow rate. In the present specification, when the term "raw material gas" is used, it means "raw material gas in a liquid state", "raw material gas in a gaseous state", or both of them. May be done.
ガス供給管320からは、処理ガス(反応ガス)として、例えば、酸素(O)含有ガスが、バルブ324,526、ノズル420を介して処理室201内へ供給される。酸素含有ガスは、タンク(気化器)620に液体状態で収容されている。不活性ガスがガス供給管540から、MFC542およびバルブ544を介してタンク620内に供給されることにより気化される。そして、気化ガスがガス供給管320へ供給される。本明細書において、「酸素含有ガス」という言葉を用いた場合は、「液体状態である酸素含有ガス」を意味する場合、「気体状態である酸素含有ガス」を意味する場合、または、それらの両方を意味する場合がある。
From the gas supply pipe 320, for example, an oxygen (O) -containing gas as a processing gas (reaction gas) is supplied into the processing chamber 201 via the valves 324 and 526 and the nozzle 420. The oxygen-containing gas is contained in a tank (vaporizer) 620 in a liquid state. The inert gas is vaporized by being supplied from the gas supply pipe 540 into the tank 620 via the MFC 542 and the valve 544. Then, the vaporized gas is supplied to the gas supply pipe 320. In the present specification, when the term "oxygen-containing gas" is used, it means "oxygen-containing gas in a liquid state", "oxygen-containing gas in a gaseous state", or those. May mean both.
ガス供給管510,520からは、不活性ガスが、それぞれMFC512,522、バルブ514,516,524,526、ガス供給管310,320、ノズル410,420を介して処理室201内へ供給される。
From the gas supply pipes 510 and 520, the inert gas is supplied into the processing chamber 201 via the MFC 512 and 522, the valves 514, 516 and 524,526, the gas supply pipes 310 and 320, and the nozzles 410 and 420, respectively. ..
主に、ガス供給管310、バルブ314により、原料ガス供給系が構成される。ノズル410を原料ガス供給系に含めて考えてもよいし、タンク(気化器)610、ガス供給管530、MFC532、バルブ534を原料ガス供給系に含めて考えてもよい。
The raw material gas supply system is mainly composed of the gas supply pipe 310 and the valve 314. The nozzle 410 may be included in the raw material gas supply system, or the tank (vaporizer) 610, the gas supply pipe 530, the MFC 532, and the valve 534 may be included in the raw material gas supply system.
主に、ガス供給管320、バルブ324により、反応ガス供給系が構成される。ノズル420を反応ガス供給系に含めて考えてもよいし、タンク(気化器)620、ガス供給管540、MFC542、バルブ544を反応ガス供給系に含めて考えてもよい。
The reaction gas supply system is mainly composed of the gas supply pipe 320 and the valve 324. The nozzle 420 may be included in the reaction gas supply system, or the tank (vaporizer) 620, the gas supply pipe 540, the MFC 542, and the valve 544 may be included in the reaction gas supply system.
主に、ガス供給管510,520、MFC512,522、バルブ514,516,524,526により、不活性ガス供給系が構成される。原料ガス供給系、反応ガス供給系を合わせてガス供給系と称することもできる。不活性ガス供給系をガス供給系に含めて考えてもよい。
Mainly, the gas supply pipes 510,520, MFC512,522, and valves 514,516,524,526 constitute an inert gas supply system. The raw material gas supply system and the reaction gas supply system can also be collectively referred to as a gas supply system. The inert gas supply system may be included in the gas supply system.
反応管203には、処理室201内の雰囲気を排気する排気流路としての排気管231が設けられている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および排気バルブ(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ243を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ243、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
The reaction pipe 203 is provided with an exhaust pipe 231 as an exhaust flow path for exhausting the atmosphere in the processing chamber 201. The exhaust pipe 231 is provided with a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 243 as an exhaust valve (pressure adjusting unit). A vacuum pump 246 as a vacuum exhaust device is connected. The APC valve 243 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, with the vacuum pump 246 operating, the APC valve 243 can perform vacuum exhaust and vacuum exhaust stop. By adjusting the valve opening degree based on the pressure information detected by the pressure sensor 245, the pressure in the processing chamber 201 can be adjusted. The exhaust system is mainly composed of an exhaust pipe 231, an APC valve 243, and a pressure sensor 245. The vacuum pump 246 may be included in the exhaust system.
マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220が設けられている。シールキャップ219の処理室201と反対側には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続され、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。また、マニホールド209の下方には、ボートエレベータ115によりシールキャップ219を降下させている間、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタが設けられている。シャッタの上面には、マニホールド209の下端と当接するシール部材としてのOリングが設けられている。シャッタの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構により制御される。
Below the manifold 209, a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209. An O-ring 220 as a seal member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219. On the side of the seal cap 219 opposite to the processing chamber 201, a rotation mechanism 267 for rotating the boat 217, which will be described later, is installed. The rotation shaft 255 of the rotation mechanism 267 is connected to the boat 217 through the seal cap 219, and is configured to rotate the wafer 200 by rotating the boat 217. The seal cap 219 is configured to be vertically lifted and lowered by a boat elevator 115 as a lifting mechanism vertically installed outside the reaction tube 203. The boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by raising and lowering the seal cap 219. The boat elevator 115 is configured as a transport device (convey mechanism) for transporting the boat 217, that is, the wafer 200, into and out of the processing chamber 201. Further, below the manifold 209, a shutter is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209 while the seal cap 219 is lowered by the boat elevator 115. An O-ring as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the shutter. The shutter opening / closing operation (elevating / rotating operation, etc.) is controlled by the shutter opening / closing mechanism.
基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて装填(配列、載置)させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される図示しない断熱板が多段に支持されている。
The boat 217 as a substrate support supports a plurality of wafers, for example 25 to 200 wafers, in a horizontal position and vertically aligned with each other, that is, in a multi-stage manner. It is configured to be loaded (arranged, placed) at intervals. The boat 217 is made of a heat resistant material such as quartz or SiC. In the lower part of the boat 217, a heat insulating plate (not shown) made of a heat-resistant material such as quartz or SiC is supported in multiple stages.
反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、ノズル410,420と同様にL字型に構成されており、反応管203の内壁に沿って設けられている。
A temperature sensor 263 as a temperature detector is installed in the reaction tube 203. By adjusting the degree of energization of the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution. The temperature sensor 263 is L-shaped like the nozzles 410 and 420, and is provided along the inner wall of the reaction tube 203.
制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
The controller 121, which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. The RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus 121e. An input / output device 122 configured as, for example, a touch panel is connected to the controller 121.
記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する成膜処理における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの組み合わせを含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
The storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like. In the storage device 121c, a control program for controlling the operation of the substrate processing device, a process recipe in which the procedures and conditions for substrate processing described later are described, and the like are readablely stored. The process recipes are combined so that the controller 121 can execute each procedure in the film forming process described later and obtain a predetermined result, and functions as a program. Hereinafter, this process recipe, control program, etc. are collectively referred to as a program. In addition, a process recipe is also simply referred to as a recipe. When the term program is used in the present specification, it may include only a process recipe alone, a control program alone, or a combination thereof. The RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily held.
I/Oポート121dは、上述したまたは後述するMFC512,522,532,542、バルブ314,324,514,516,524,526,534,544,711,712,713,714,715,716,717,801,802、圧力センサ245,724、APCバルブ243、真空ポンプ246,722、温度センサ263、ヒータ207,723、回転機構267、ボートエレベータ115、シャッタ開閉機構等に接続されている。
The I / O port 121d includes MFC 512, 522, 532, 542, valves 314, 324, 514, 516, 524, 526, 534, 544, 711, 712, 713, 714, 715, 716,717, which will be described above or later. , 801, 802, pressure sensor 245,724, APC valve 243, vacuum pump 246,722, temperature sensor 263, heaters 207,723, rotation mechanism 267, boat elevator 115, shutter opening / closing mechanism and the like.
CPU121aは、記憶装置121cから制御プログラムを読み出して実行するとともに、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC512,522,532,542による各種ガスの流量調整動作、バルブ314,324,514,516,524,526,534,544,711,712,713,714,715,716,717,801,802の開閉動作、APCバルブ243の開閉動作および圧力センサ245に基づくAPCバルブ243による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構によるシャッタの開閉動作等を制御するように構成されている。
The CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like. The CPU 121a adjusts the flow rate of various gases by the MFC 512,522,532,542 according to the contents of the read recipe, and valves 314,324,514,516,524,526,534,544,711,712,713. , 714,715,716,717,801,802 opening / closing operation, APC valve 243 opening / closing operation and pressure adjustment operation by APC valve 243 based on pressure sensor 245, start and stop of vacuum pump 246, heater based on temperature sensor 263 It is configured to control the temperature adjusting operation of the 207, the rotation and rotation speed adjusting operation of the boat 217 by the rotating mechanism 267, the raising and lowering operation of the boat 217 by the boat elevator 115, the opening and closing operation of the shutter by the shutter opening and closing mechanism, and the like.
コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
The controller 121 is stored in an external storage device (for example, magnetic tape, magnetic disk such as flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card) 123. The above-mentioned program can be configured by installing it on a computer. The storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium. When the term recording medium is used in the present specification, it may include only the storage device 121c alone, it may include only the external storage device 123 alone, or it may include both of them. The program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
(2)基板処理工程(成膜工程)
半導体装置(デバイス)の製造工程の一工程として、基板上に、金属酸化膜を形成する工程の一例について説明する。金属酸化膜を形成する工程は、上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。 (2) Substrate processing process (deposition process)
An example of a step of forming a metal oxide film on a substrate as one step of a manufacturing process of a semiconductor device (device) will be described. The step of forming the metal oxide film is carried out using theprocessing furnace 202 of the substrate processing apparatus 10 described above. In the following description, the operation of each part constituting the substrate processing device 10 is controlled by the controller 121.
半導体装置(デバイス)の製造工程の一工程として、基板上に、金属酸化膜を形成する工程の一例について説明する。金属酸化膜を形成する工程は、上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。 (2) Substrate processing process (deposition process)
An example of a step of forming a metal oxide film on a substrate as one step of a manufacturing process of a semiconductor device (device) will be described. The step of forming the metal oxide film is carried out using the
なお、本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合(すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合)がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。なお、本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
When the word "wafer" is used in the present specification, it means "wafer itself" or "a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface thereof). "(That is, a wafer including a predetermined layer, film, etc. formed on the surface) may be used. Further, when the term "wafer surface" is used in the present specification, it means "the surface of the wafer itself (exposed surface)" or "the surface of a predetermined layer or film formed on the wafer". That is, it may mean "the outermost surface of the wafer as a laminated body". The term "wafer" is also used in the present specification as if the term "wafer" is used.
以下、本実施形態に係る半導体装置の製造方法について、詳細に説明する。
Hereinafter, the method for manufacturing the semiconductor device according to the present embodiment will be described in detail.
(ウエハ搬入)
複数枚のウエハ200を処理室201内に搬入(ボートロード)する。具体的には、複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入される。この状態で、シールキャップ219はOリング220を介して反応管203の下端開口を閉塞した状態となる。 (Wafer delivery)
A plurality ofwafers 200 are carried into the processing chamber 201 (boat load). Specifically, when a plurality of wafers 200 are loaded (wafer charged) into the boat 217, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 as shown in FIG. It is carried into the processing chamber 201. In this state, the seal cap 219 is in a state of closing the lower end opening of the reaction tube 203 via the O-ring 220.
複数枚のウエハ200を処理室201内に搬入(ボートロード)する。具体的には、複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入される。この状態で、シールキャップ219はOリング220を介して反応管203の下端開口を閉塞した状態となる。 (Wafer delivery)
A plurality of
(圧力・温度調整)
処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。 (Pressure / temperature adjustment)
The inside of theprocessing chamber 201 is evacuated by the vacuum pump 246 so as to have a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 is always kept in operation until at least the processing on the wafer 200 is completed. Further, the inside of the processing chamber 201 is heated by the heater 207 so as to have a desired temperature. At this time, the amount of electricity supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment). The heating in the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。 (Pressure / temperature adjustment)
The inside of the
(成膜ステップ)
その後、原料ガス供給ステップ、残留ガス除去ステップ、反応ガス供給ステップ、残留ガス除去ステップをこの順で所定回数行う。 (Film formation step)
After that, the raw material gas supply step, the residual gas removal step, the reaction gas supply step, and the residual gas removal step are performed a predetermined number of times in this order.
その後、原料ガス供給ステップ、残留ガス除去ステップ、反応ガス供給ステップ、残留ガス除去ステップをこの順で所定回数行う。 (Film formation step)
After that, the raw material gas supply step, the residual gas removal step, the reaction gas supply step, and the residual gas removal step are performed a predetermined number of times in this order.
(原料ガス供給ステップ)
バルブ314,516を開き、ガス供給管310内に原料ガスを流す。ガス供給管310内を流れた原料ガスは、ノズル410のガス供給孔410aから処理室201内へ供給される。このときウエハ200に対して原料ガスが供給されることとなる。このとき同時にバルブ514を開き、ガス供給管510内にキャリアガスを流す。ガス供給管510内を流れたキャリアガスは、MFC512により流量調整される。流量調整されたキャリアガスは原料ガスと一緒に処理室201内へ供給され、排気管231から排気される。このとき、ノズル420内への原料ガスの侵入を防止するために、バルブ524,526を開き、ガス供給管520内にキャリアガスを流す。キャリアガスは、ガス供給管520,ノズル420を介して処理室201内に供給され、排気管231から排気される。 (Raw material gas supply step)
The valves 314 and 516 are opened to allow the raw material gas to flow into the gas supply pipe 310. The raw material gas that has flowed through the gas supply pipe 310 is supplied into the processing chamber 201 from the gas supply hole 410a of the nozzle 410. At this time, the raw material gas is supplied to the wafer 200. At this time, the valve 514 is opened at the same time, and the carrier gas flows into the gas supply pipe 510. The flow rate of the carrier gas flowing in the gas supply pipe 510 is adjusted by the MFC 512. The flow-adjusted carrier gas is supplied into the processing chamber 201 together with the raw material gas, and is exhausted from the exhaust pipe 231. At this time, in order to prevent the raw material gas from entering the nozzle 420, the valves 524 and 526 are opened to allow the carrier gas to flow into the gas supply pipe 520. The carrier gas is supplied into the processing chamber 201 via the gas supply pipe 520 and the nozzle 420, and is exhausted from the exhaust pipe 231.
バルブ314,516を開き、ガス供給管310内に原料ガスを流す。ガス供給管310内を流れた原料ガスは、ノズル410のガス供給孔410aから処理室201内へ供給される。このときウエハ200に対して原料ガスが供給されることとなる。このとき同時にバルブ514を開き、ガス供給管510内にキャリアガスを流す。ガス供給管510内を流れたキャリアガスは、MFC512により流量調整される。流量調整されたキャリアガスは原料ガスと一緒に処理室201内へ供給され、排気管231から排気される。このとき、ノズル420内への原料ガスの侵入を防止するために、バルブ524,526を開き、ガス供給管520内にキャリアガスを流す。キャリアガスは、ガス供給管520,ノズル420を介して処理室201内に供給され、排気管231から排気される。 (Raw material gas supply step)
The
このときAPCバルブ243を適正に調整して、処理室201内の圧力を、例えば1~1200Pa、好ましくは10~100Pa、より好ましくは40~60Paの範囲内の(所定の)圧力とする。圧力が1200Paより高いと後述する残留ガス除去が十分に行われない場合があり、圧力が1Paより低いと、原料ガスの反応速度を十分に得られない可能性がある。なお、本明細書では、数値の範囲として、例えば1~1200Paと記載した場合は、下限値および上限値がその範囲に含まれることを意味しており、1Pa以上1200Pa以下を意味する。圧力のみならず、本明細書に記載される他の全ての数値についても同様である。
At this time, the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, 1 to 1200 Pa, preferably 10 to 100 Pa, and more preferably 40 to 60 Pa (predetermined). If the pressure is higher than 1200 Pa, the residual gas that will be described later may not be sufficiently removed, and if the pressure is lower than 1 Pa, the reaction rate of the raw material gas may not be sufficiently obtained. In this specification, when the numerical value is described as, for example, 1 to 1200 Pa, it means that the lower limit value and the upper limit value are included in the range, and means 1 Pa or more and 1200 Pa or less. The same is true not only for pressure, but for all other numbers described herein.
原料ガスの供給流量は、例えば0.008~0.1slmの範囲内の(所定の)流量とする。MFC512,522,532で制御するキャリアガスの供給流量は、それぞれ例えば0.1~40slmの範囲内の(所定の)流量とする。原料ガスをウエハ200に対して供給するガス供給時間(照射時間)は、例えば0.1~60秒の範囲内の(所定の)時間とする。
The supply flow rate of the raw material gas is, for example, a (predetermined) flow rate within the range of 0.008 to 0.1 slm. The supply flow rate of the carrier gas controlled by the MFC 512, 522, 532 is, for example, a (predetermined) flow rate within the range of 0.1 to 40 slm. The gas supply time (irradiation time) for supplying the raw material gas to the wafer 200 is, for example, a (predetermined) time in the range of 0.1 to 60 seconds.
このとき処理室201内に流しているガスは、原料ガスとキャリアガスのみである。原料ガスの供給により、ウエハ200上に金属を含む金属含有層が形成される。
At this time, the only gases flowing in the processing chamber 201 are the raw material gas and the carrier gas. By supplying the raw material gas, a metal-containing layer containing a metal is formed on the wafer 200.
(残留ガス除去ステップ)
その後、バルブ314を閉じて原料ガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応または上記した金属含有層の形成に寄与した後の原料ガスを処理室201内から排除する。なお、このときバルブ514,524は開いたままとして、キャリアガスの処理室201内への供給を維持する。キャリアガス(不活性ガス)はパージガスとして作用し、これにより、処理室201内に残留する未反応または上記した金属含有層の形成に寄与した後の原料ガスを処理室201内から排除する効果を高めることができる。このとき、後述する酸素含有供給ステップまで、真空排気とキャリアガスによるガスパージとを同時に行ってもよいし、真空排気とキャリアガスパージとを交互に(サイクリックに)所定回数ずつ行ってもよい。同時に行う場合は、キャリアガスの供給によりガスパージ時の処理室201内の圧力を、原料ガス供給ステップにおける処理室201内の圧力より高くなるよう設定する。交互に行う場合は、例えば、真空排気時の処理室201内の圧力を、原料ガス供給ステップにおける圧力より低い値であって、例えば1~100Paであって、好ましくは1~30Paとなるよう設定し、キャリアガスパージ時の処理室201内の圧力を、原料ガス供給ステップにおける圧力より高い値であって、例えば1~1500Paであって、好ましくは30~130Paとなるよう設定する。真空排気とキャリアガスパージとを交互に行うことにより、残留ガスの除去効率を向上させることが可能となる。 (Residual gas removal step)
After that, thevalve 314 is closed to stop the supply of the raw material gas. At this time, the APC valve 243 of the exhaust pipe 231 is left open, and the inside of the processing chamber 201 is evacuated by the vacuum pump 246 to contribute to the formation of the unreacted or the metal-containing layer remaining in the processing chamber 201. The raw material gas of No. 1 is excluded from the inside of the processing chamber 201. At this time, the valves 514 and 524 are kept open to maintain the supply of the carrier gas into the processing chamber 201. The carrier gas (inert gas) acts as a purge gas, which has the effect of removing the unreacted raw gas remaining in the treatment chamber 201 or the raw material gas after contributing to the formation of the metal-containing layer described above from the treatment chamber 201. Can be enhanced. At this time, the vacuum exhaust and the gas purge with the carrier gas may be simultaneously performed up to the oxygen-containing supply step described later, or the vacuum exhaust and the carrier gas purge may be alternately (cyclically) performed a predetermined number of times. When performed at the same time, the pressure in the processing chamber 201 at the time of gas purging is set to be higher than the pressure in the processing chamber 201 in the raw material gas supply step by supplying the carrier gas. In the case of alternating, for example, the pressure in the processing chamber 201 at the time of vacuum exhaust is set to be lower than the pressure in the raw material gas supply step, for example, 1 to 100 Pa, preferably 1 to 30 Pa. Then, the pressure in the processing chamber 201 at the time of carrier gas purging is set to be higher than the pressure in the raw material gas supply step, for example, 1 to 1500 Pa, preferably 30 to 130 Pa. By alternately performing vacuum exhaust and carrier gas purging, it is possible to improve the efficiency of removing residual gas.
その後、バルブ314を閉じて原料ガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応または上記した金属含有層の形成に寄与した後の原料ガスを処理室201内から排除する。なお、このときバルブ514,524は開いたままとして、キャリアガスの処理室201内への供給を維持する。キャリアガス(不活性ガス)はパージガスとして作用し、これにより、処理室201内に残留する未反応または上記した金属含有層の形成に寄与した後の原料ガスを処理室201内から排除する効果を高めることができる。このとき、後述する酸素含有供給ステップまで、真空排気とキャリアガスによるガスパージとを同時に行ってもよいし、真空排気とキャリアガスパージとを交互に(サイクリックに)所定回数ずつ行ってもよい。同時に行う場合は、キャリアガスの供給によりガスパージ時の処理室201内の圧力を、原料ガス供給ステップにおける処理室201内の圧力より高くなるよう設定する。交互に行う場合は、例えば、真空排気時の処理室201内の圧力を、原料ガス供給ステップにおける圧力より低い値であって、例えば1~100Paであって、好ましくは1~30Paとなるよう設定し、キャリアガスパージ時の処理室201内の圧力を、原料ガス供給ステップにおける圧力より高い値であって、例えば1~1500Paであって、好ましくは30~130Paとなるよう設定する。真空排気とキャリアガスパージとを交互に行うことにより、残留ガスの除去効率を向上させることが可能となる。 (Residual gas removal step)
After that, the
(反応ガス供給ステップ)
バルブ324を開き、ガス供給管320内に反応ガスとして酸素含有ガスを流す。ガス供給管320内を流れた酸素含有ガスは、ノズル420のガス供給孔420aから処理室201内に供給される。このとき同時にバルブ524を開き、ガス供給管520内にキャリアガスを流す。ガス供給管520内を流れたキャリアガスは、MFC522により流量調整され、酸素含有ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル410内への酸素含有ガスの侵入を防止するために、バルブ514,516を開き、ガス供給管510内にキャリアガスを流す。キャリアガスは、ガス供給管510,ノズル410を介して処理室201内に供給され、排気管231から排気される。 (Reaction gas supply step)
Thevalve 324 is opened to allow an oxygen-containing gas to flow into the gas supply pipe 320 as a reaction gas. The oxygen-containing gas flowing through the gas supply pipe 320 is supplied into the processing chamber 201 from the gas supply hole 420a of the nozzle 420. At this time, the valve 524 is opened at the same time, and the carrier gas flows into the gas supply pipe 520. The flow rate of the carrier gas flowing through the gas supply pipe 520 is adjusted by the MFC 522, is supplied into the processing chamber 201 together with the oxygen-containing gas, and is exhausted from the exhaust pipe 231. At this time, in order to prevent the oxygen-containing gas from entering the nozzle 410, the valves 514 and 516 are opened to allow the carrier gas to flow into the gas supply pipe 510. The carrier gas is supplied into the processing chamber 201 via the gas supply pipe 510 and the nozzle 410, and is exhausted from the exhaust pipe 231.
バルブ324を開き、ガス供給管320内に反応ガスとして酸素含有ガスを流す。ガス供給管320内を流れた酸素含有ガスは、ノズル420のガス供給孔420aから処理室201内に供給される。このとき同時にバルブ524を開き、ガス供給管520内にキャリアガスを流す。ガス供給管520内を流れたキャリアガスは、MFC522により流量調整され、酸素含有ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル410内への酸素含有ガスの侵入を防止するために、バルブ514,516を開き、ガス供給管510内にキャリアガスを流す。キャリアガスは、ガス供給管510,ノズル410を介して処理室201内に供給され、排気管231から排気される。 (Reaction gas supply step)
The
酸素含有ガスを流すときは、APCバルブ243を適正に調整して、処理室201内の圧力を、例えば1~1200Pa、好ましくは10~100Pa、より好ましくは30~50Paの範囲内の(所定の)圧力とする。圧力1200Paより高いと後述する残留ガス除去が十分に行われない場合があり、圧力が1Paより低いと、十分な成膜レートが得られない可能性がある。
When flowing the oxygen-containing gas, the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 1 to 1200 Pa, preferably 10 to 100 Pa, more preferably 30 to 50 Pa (predetermined). ) Pressure. If the pressure is higher than 1200 Pa, the residual gas that will be described later may not be sufficiently removed, and if the pressure is lower than 1 Pa, a sufficient film formation rate may not be obtained.
酸素含有ガスの供給流量は、例えば0.1~40slm、好ましくは0.2~20slm、より好ましくは0.2~10slmの範囲内の(所定の)流量とする。流量は多いほど原料ガスに由来する不純物の金属酸化膜中への取り込みを減らすことができるため好ましいが、40slmより多いと後述する残留ガス除去が十分に行われない場合がある。
The supply flow rate of the oxygen-containing gas is, for example, a (predetermined) flow rate within the range of 0.1 to 40 slm, preferably 0.2 to 20 slm, and more preferably 0.2 to 10 slm. The larger the flow rate, the more the uptake of impurities derived from the raw material gas into the metal oxide film can be reduced, which is preferable. However, if the flow rate is more than 40 slm, the residual gas described later may not be sufficiently removed.
MFC512,522で制御するキャリアガスの供給流量は、それぞれ例えば0.2~30slmの範囲内の(所定の)流量とする。酸素含有ガスをウエハ200に対して供給するガス供給時間(照射時間)は、例えば1~60秒の範囲内の(所定の)時間とする。
The supply flow rate of the carrier gas controlled by the MFC 512 and 522 is, for example, a (predetermined) flow rate within the range of 0.2 to 30 slm. The gas supply time (irradiation time) for supplying the oxygen-containing gas to the wafer 200 is, for example, a (predetermined) time in the range of 1 to 60 seconds.
このとき処理室201内に流しているガスは、酸素含有ガスとキャリアガスのみである。酸素含有ガスは、原料ガス供給ステップでウエハ200上に形成された金属含有層と反応し、ウエハ200上に金属含有酸化層が形成される。
At this time, the only gases flowing in the processing chamber 201 are oxygen-containing gas and carrier gas. The oxygen-containing gas reacts with the metal-containing layer formed on the wafer 200 in the raw material gas supply step, and the metal-containing oxide layer is formed on the wafer 200.
(残留ガス除去ステップ)
金属含有酸化層が形成された後、バルブ324を閉じて、酸素含有ガスの供給を停止する。そして、原料ガス供給ステップ後の残留ガス除去ステップと同様の処理手順により、処理室201内に残留する未反応もしくは金属含有酸化層形成に寄与した後の酸素含有ガスを処理室201内から排除する。真空排気とキャリア(不活性)ガスパージとを同時に行ってもよいし、真空排気とキャリアガスパージとを交互に(サイクリックに)所定回数ずつ行ってもよい点も、原料ガス供給ステップ後の残留ガス除去ステップと同様である。 (Residual gas removal step)
After the metal-containing oxide layer is formed, thevalve 324 is closed to stop the supply of the oxygen-containing gas. Then, the oxygen-containing gas remaining in the treatment chamber 201 after contributing to the formation of the unreacted or metal-containing oxide layer is removed from the treatment chamber 201 by the same treatment procedure as the residual gas removal step after the raw material gas supply step. .. The vacuum exhaust and the carrier (inactive) gas purge may be performed at the same time, or the vacuum exhaust and the carrier gas purge may be performed alternately (cyclically) a predetermined number of times. Similar to the removal step.
金属含有酸化層が形成された後、バルブ324を閉じて、酸素含有ガスの供給を停止する。そして、原料ガス供給ステップ後の残留ガス除去ステップと同様の処理手順により、処理室201内に残留する未反応もしくは金属含有酸化層形成に寄与した後の酸素含有ガスを処理室201内から排除する。真空排気とキャリア(不活性)ガスパージとを同時に行ってもよいし、真空排気とキャリアガスパージとを交互に(サイクリックに)所定回数ずつ行ってもよい点も、原料ガス供給ステップ後の残留ガス除去ステップと同様である。 (Residual gas removal step)
After the metal-containing oxide layer is formed, the
(所定回数実施)
図5に示すように、上記した原料ガス供給ステップ、残留ガス除去ステップ、反応ガス供給ステップ、残留ガス供給ステップを順に行うサイクルを1回以上(所定回数)行うことにより、すなわち、原料ガス供給ステップ、残留ガス除去ステップ、反応ガス供給ステップ、残留ガス供給ステップの処理を1サイクルとして、これらの処理をn1サイクル(n1は1以上の整数)だけ実行することにより、ウエハ200上に、所定の厚さ(例えば0.05~100nm)の金属酸化膜を形成する。 (Implemented a predetermined number of times)
As shown in FIG. 5, by performing the cycle of performing the above-mentioned raw material gas supply step, residual gas removal step, reaction gas supply step, and residual gas supply step in order one or more times (predetermined number of times), that is, the raw material gas supply step. The process of the residual gas removal step, the reaction gas supply step, and the residual gas supply step is set as one cycle, and by executing these processes for n 1 cycle (n 1 is an integer of 1 or more), a predetermined value is provided on thewafer 200. A metal oxide film having a thickness of (for example, 0.05 to 100 nm) is formed.
図5に示すように、上記した原料ガス供給ステップ、残留ガス除去ステップ、反応ガス供給ステップ、残留ガス供給ステップを順に行うサイクルを1回以上(所定回数)行うことにより、すなわち、原料ガス供給ステップ、残留ガス除去ステップ、反応ガス供給ステップ、残留ガス供給ステップの処理を1サイクルとして、これらの処理をn1サイクル(n1は1以上の整数)だけ実行することにより、ウエハ200上に、所定の厚さ(例えば0.05~100nm)の金属酸化膜を形成する。 (Implemented a predetermined number of times)
As shown in FIG. 5, by performing the cycle of performing the above-mentioned raw material gas supply step, residual gas removal step, reaction gas supply step, and residual gas supply step in order one or more times (predetermined number of times), that is, the raw material gas supply step. The process of the residual gas removal step, the reaction gas supply step, and the residual gas supply step is set as one cycle, and by executing these processes for n 1 cycle (n 1 is an integer of 1 or more), a predetermined value is provided on the
(パージおよび大気圧復帰)
バルブ514,516,524,526を開き、ガス供給管510,520のそれぞれから不活性ガスを処理室201内へ供給し、排気管231から排気する。不活性ガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや副生成物が処理室201内から除去される(パージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。 (Purge and atmospheric pressure return)
The valves 514, 516, 524, 526 are opened, and the inert gas is supplied into the processing chamber 201 from each of the gas supply pipes 510 and 520, and exhausted from the exhaust pipe 231. The inert gas acts as a purge gas, whereby the inside of the treatment chamber 201 is purged with the inert gas, and the gas and by-products remaining in the treatment chamber 201 are removed from the inside of the treatment chamber 201 (purge). After that, the atmosphere in the treatment chamber 201 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 201 is restored to the normal pressure (return to atmospheric pressure).
バルブ514,516,524,526を開き、ガス供給管510,520のそれぞれから不活性ガスを処理室201内へ供給し、排気管231から排気する。不活性ガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや副生成物が処理室201内から除去される(パージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。 (Purge and atmospheric pressure return)
The
(ボートアンロードおよびウエハディスチャージ)
その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。 (Boat unloading and wafer discharge)
After that, theseal cap 219 is lowered by the boat elevator 115, and the lower end of the reaction tube 203 is opened. Then, the processed wafer 200 is carried out (boat unloading) from the lower end of the reaction tube 203 to the outside of the reaction tube 203 while being supported by the boat 217. After that, the processed wafer 200 is taken out from the boat 217 (wafer discharge).
その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。 (Boat unloading and wafer discharge)
After that, the
(気化器周りの第1の構成例)
図6にガス供給装置である気化器(タンク610)周りの第1の構成例を示す。タンク610には既に説明したガス供給管310,530の他、液体原料を供給する原料供給管710が接続されている。原料供給管710には、液体原料を収容する液体原料容器721の他、タンク610を交換するときに原料供給管710を洗浄するための機構が備えられている。 (First configuration example around the vaporizer)
FIG. 6 shows a first configuration example around the vaporizer (tank 610) which is a gas supply device. In addition to the gas supply pipes 310 and 530 described above, the tank 610 is connected to a raw material supply pipe 710 for supplying a liquid raw material. The raw material supply pipe 710 is provided with a liquid raw material container 721 for accommodating the liquid raw material and a mechanism for cleaning the raw material supply pipe 710 when the tank 610 is replaced.
図6にガス供給装置である気化器(タンク610)周りの第1の構成例を示す。タンク610には既に説明したガス供給管310,530の他、液体原料を供給する原料供給管710が接続されている。原料供給管710には、液体原料を収容する液体原料容器721の他、タンク610を交換するときに原料供給管710を洗浄するための機構が備えられている。 (First configuration example around the vaporizer)
FIG. 6 shows a first configuration example around the vaporizer (tank 610) which is a gas supply device. In addition to the
原料供給管710には、上流から順にバルブ711,713,715,716,717が設けられている。原料供給管710は、液体である液体原料や管内を洗浄するための液体である洗浄溶媒を通しやすく、あるいは後述する気化させた洗浄溶媒をパージしやすくするため、少なくともバルブ711よりも下流部分はタンク610に対して鉛直に配置されている。バルブ711は、原料供給管710への不活性ガスの供給動作(供給/非供給、供給/供給停止)を制御するバルブである。バルブ713は、原料供給管710への不活性ガスまたは洗浄溶媒容器720に収容された洗浄溶媒の供給動作を制御するバルブである。バルブ713は、原料供給管710への洗浄溶媒の供給動作を制御するバルブ712を介して、洗浄溶媒容器720と接続されている。洗浄溶媒としては例えばヘキサン(Hexane)を用いることができる。液体原料であるは蒸気圧が低く、残留した液体原料を気化させて原料供給管710から排出させることが困難であるため、洗浄溶媒に溶かし込んで排出する。ヘキサンの他にもECH(エピクロロヒドリン)などを用いることができる。
The raw material supply pipe 710 is provided with valves 711,713,715,716,717 in order from the upstream. The raw material supply pipe 710 is at least downstream of the valve 711 in order to facilitate the passage of a liquid raw material that is a liquid or a cleaning solvent that is a liquid for cleaning the inside of the pipe, or to easily purge the vaporized cleaning solvent described later. It is arranged vertically with respect to the tank 610. The valve 711 is a valve that controls the supply operation (supply / non-supply, supply / supply stop) of the inert gas to the raw material supply pipe 710. The valve 713 is a valve that controls the supply operation of the inert gas or the cleaning solvent contained in the cleaning solvent container 720 to the raw material supply pipe 710. The valve 713 is connected to the cleaning solvent container 720 via a valve 712 that controls the operation of supplying the cleaning solvent to the raw material supply pipe 710. For example, hexane (Hexane) can be used as the cleaning solvent. Since the liquid raw material has a low vapor pressure and it is difficult to vaporize the remaining liquid raw material and discharge it from the raw material supply pipe 710, it is dissolved in a cleaning solvent and discharged. In addition to hexane, ECH (epichlorohydrin) and the like can be used.
バルブ715は、原料供給管710への不活性ガス、洗浄溶媒容器720に収容された洗浄溶媒、または液体原料容器に収容された液体原料の供給動作を制御するバルブである。バルブ715は、原料供給管710への液体原料の供給動作を制御するバルブ714を介して、液体原料容器721と接続されている。
The valve 715 is a valve that controls the supply operation of the inert gas to the raw material supply pipe 710, the cleaning solvent contained in the cleaning solvent container 720, or the liquid raw material contained in the liquid raw material container. The valve 715 is connected to the liquid raw material container 721 via a valve 714 that controls the supply operation of the liquid raw material to the raw material supply pipe 710.
バルブ716は、タンク610側の原料供給管710とバイパス配管718とを切り換えるバルブ(三方弁)である。バイパス配管718は真空ポンプ722が接続される。真空ポンプ722には排気管719が接続されている。バイパス配管718にはバイパス管内の圧力を測定する圧力センサ724が設けられている。なお、真空ポンプ722は、処理室201を排気する真空ポンプ246と共用させることができる。
The valve 716 is a valve (three-way valve) that switches between the raw material supply pipe 710 and the bypass pipe 718 on the tank 610 side. A vacuum pump 722 is connected to the bypass pipe 718. An exhaust pipe 719 is connected to the vacuum pump 722. The bypass pipe 718 is provided with a pressure sensor 724 that measures the pressure inside the bypass pipe. The vacuum pump 722 can be shared with the vacuum pump 246 that exhausts the processing chamber 201.
バルブ717は、タンク610への原料供給管710内の液体原料の供給動作を制御するバルブであり、流量制御機能を備えている。さらに、バルブ715とバルブ717間の原料供給管710の区間に対して加熱部としてのヒータ723が設けられている。ヒータ723は、原料供給管710の温度を、洗浄溶媒を気化させる温度(例えば、ヘキサンの場合であれば60℃)に加熱する能力を有する。後述するように、洗浄溶媒を気化させてバイパス配管718を通して原料供給管710から排出するため、ヒータ723は、洗浄溶媒がバイパス配管718内で結露しないよう、バイパス配管718についても加熱できるようになっていてもよい。
The valve 717 is a valve that controls the supply operation of the liquid raw material in the raw material supply pipe 710 to the tank 610, and has a flow rate control function. Further, a heater 723 as a heating unit is provided for a section of the raw material supply pipe 710 between the valve 715 and the valve 717. The heater 723 has an ability to heat the temperature of the raw material supply pipe 710 to a temperature at which the cleaning solvent is vaporized (for example, 60 ° C. in the case of hexane). As will be described later, since the cleaning solvent is vaporized and discharged from the raw material supply pipe 710 through the bypass pipe 718, the heater 723 can also heat the bypass pipe 718 so that the cleaning solvent does not condense in the bypass pipe 718. May be.
通常、バルブ711,712,713は閉じられ、バルブ714,715,716(原料供給管710側),717が開かれることにより、液体原料容器721に収容された液体原料はタンク610に供給される。供給された液体原料はタンク610において気化され、基板処理が行われる。
Normally, the valves 711, 712, 713 are closed, and the valves 714, 715, 716 (raw material supply pipe 710 side) and 717 are opened, so that the liquid raw material contained in the liquid raw material container 721 is supplied to the tank 610. .. The supplied liquid raw material is vaporized in the tank 610 and the substrate is processed.
タンク610の交換を行う場合、交換に先立ち原料供給管710の洗浄を行う必要がある。バルブ715からタンク610までの原料供給管710及びバルブ715,716,717に液体原料が残留している場合があり、これらを除去し、タンク610を適切に交換するためである。例えば、液体原料として、後述するTDMAT等を用いる場合、大気と反応して副生成物が原料供給管710に付着してしまうと異物の発生原因となってしまうため、上記した原料供給管710及びバルブに残留した液体原料は除去しておく必要がある。
When replacing the tank 610, it is necessary to clean the raw material supply pipe 710 prior to the replacement. Liquid raw materials may remain in the raw material supply pipes 710 from the valve 715 to the tank 610 and the valves 715, 716, 717, in order to remove them and replace the tank 610 appropriately. For example, when TDMAT or the like, which will be described later, is used as the liquid raw material, if the by-product adheres to the raw material supply pipe 710 by reacting with the atmosphere, it causes the generation of foreign matter. It is necessary to remove the liquid raw material remaining in the valve.
図7に、第1の構成例における原料供給管710の洗浄フローを示す。原料供給管710の洗浄は制御プログラムの1つとして、CPU121aにより実行される。
FIG. 7 shows the cleaning flow of the raw material supply pipe 710 in the first configuration example. Cleaning of the raw material supply pipe 710 is executed by the CPU 121a as one of the control programs.
S10:バルブ711,714,717を閉じ、バルブ712,713,715,716(原料供給管710側)を開いた状態で、洗浄溶媒容器720から洗浄溶媒を原料供給管710に供給する。
S10: With the valves 711,714,717 closed and the valves 712,713,715,716 (raw material supply pipe 710 side) open, the cleaning solvent is supplied from the cleaning solvent container 720 to the raw material supply pipe 710.
S11:所定容量の洗浄溶媒を供給した後、バルブ713を閉じ、バルブ715とバルブ717との間に洗浄溶媒を封じ込める(パッキング)。所定の時間、洗浄溶媒が原料供給管710に満たされることにより、原料供給管内壁に残留した液体原料が洗浄溶媒に溶け出す。
S11: After supplying a predetermined volume of the cleaning solvent, the valve 713 is closed and the cleaning solvent is sealed between the valve 715 and the valve 717 (packing). When the raw material supply pipe 710 is filled with the cleaning solvent for a predetermined time, the liquid raw material remaining on the inner wall of the raw material supply pipe dissolves in the cleaning solvent.
S12:所定時間経過後に、バルブ717を開いて、溶け出した液体原料を含む洗浄溶媒をタンク610に排出する。
S12: After a lapse of a predetermined time, the valve 717 is opened and the cleaning solvent containing the dissolved liquid raw material is discharged to the tank 610.
S13:ステップS10~S12の工程を所定回数実行したかを判定し、所定回数繰り返した後にステップS14に進む。繰り返し回数は、残留した液体原料を十分除去できる回数として、例えば5回というように定めておく。
S13: It is determined whether the steps S10 to S12 have been executed a predetermined number of times, and after repeating the predetermined number of times, the process proceeds to step S14. The number of repetitions is set to, for example, 5 times as the number of times that the remaining liquid raw material can be sufficiently removed.
S14:バルブ717を閉じ、ヒータ723により洗浄溶媒が気化する所定温度にまで原料供給管710を加熱する。
S14: The valve 717 is closed, and the raw material supply pipe 710 is heated to a predetermined temperature at which the cleaning solvent is vaporized by the heater 723.
S15:ステップS14により洗浄溶媒が気化し、バルブ711,713,715,716(バイパス配管718側)を開いた状態で、原料供給管710の上流から不活性ガスを供給することにより、不活性ガスの圧力により気化した洗浄媒体を、バイパス配管718を介して、排気管719から排気する。この期間、圧力センサ724により、バイパス配管718内の圧力を計測し、圧力の変動率が所定以下となったときに、洗浄溶媒が原料供給管710から排出されたと判断し、不活性ガスの供給を終了する。
S15: Inert gas is supplied from the upstream of the raw material supply pipe 710 with the cleaning solvent vaporized in step S14 and the valves 711,713,715,716 (bypass pipe 718 side) open. The cleaning medium vaporized by the pressure of the above is exhausted from the exhaust pipe 719 via the bypass pipe 718. During this period, the pressure in the bypass pipe 718 is measured by the pressure sensor 724, and when the fluctuation rate of the pressure becomes less than a predetermined value, it is determined that the cleaning solvent has been discharged from the raw material supply pipe 710, and the inert gas is supplied. To finish.
以上の洗浄フローにより、原料供給管710の洗浄は完了し、タンク610が交換可能になる。
With the above cleaning flow, the cleaning of the raw material supply pipe 710 is completed, and the tank 610 can be replaced.
(気化器周りの第2の構成例)
図8にガス供給装置である気化器(タンク610)周りの第2の構成例を示す。第1の構成例との違いは、溶け出した液体原料を含む洗浄溶媒の排出先としてドレイン容器810が設けられている点である。図6に示す第1の構成例と同じ構成については同じ符号を付し、重複する説明は省略する。ドレイン容器810に接続される排出管805には、原料供給管710から溶け出した液体原料を含む洗浄溶媒のドレイン容器810への排出動作(排出/非排出、排出/排出停止)を制御するバルブ801が設けられ、排出管805は、バルブ802を介して原料供給管710に接続される。排出管805は、水平部分や急激な屈曲が少なくなるように、傾斜して設けられ、より好ましくは、90度以上の屈曲を使用せずに、所定以上の傾斜度で配置される。 (Second configuration example around the vaporizer)
FIG. 8 shows a second configuration example around the vaporizer (tank 610) which is a gas supply device. The difference from the first configuration example is that thedrain container 810 is provided as a discharge destination of the cleaning solvent containing the dissolved liquid raw material. The same configurations as those of the first configuration example shown in FIG. 6 are designated by the same reference numerals, and redundant description will be omitted. The discharge pipe 805 connected to the drain container 810 is a valve that controls the discharge operation (discharge / non-discharge, discharge / discharge stop) of the cleaning solvent containing the liquid raw material dissolved from the raw material supply pipe 710 into the drain container 810. 801 is provided, and the discharge pipe 805 is connected to the raw material supply pipe 710 via the valve 802. The discharge pipe 805 is provided so as to be inclined so as to reduce the horizontal portion and abrupt bending, and more preferably, the discharge pipe 805 is arranged with an inclination degree of a predetermined value or more without using a bending of 90 degrees or more.
図8にガス供給装置である気化器(タンク610)周りの第2の構成例を示す。第1の構成例との違いは、溶け出した液体原料を含む洗浄溶媒の排出先としてドレイン容器810が設けられている点である。図6に示す第1の構成例と同じ構成については同じ符号を付し、重複する説明は省略する。ドレイン容器810に接続される排出管805には、原料供給管710から溶け出した液体原料を含む洗浄溶媒のドレイン容器810への排出動作(排出/非排出、排出/排出停止)を制御するバルブ801が設けられ、排出管805は、バルブ802を介して原料供給管710に接続される。排出管805は、水平部分や急激な屈曲が少なくなるように、傾斜して設けられ、より好ましくは、90度以上の屈曲を使用せずに、所定以上の傾斜度で配置される。 (Second configuration example around the vaporizer)
FIG. 8 shows a second configuration example around the vaporizer (tank 610) which is a gas supply device. The difference from the first configuration example is that the
通常、バルブ711,712,713,801は閉じられ、バルブ714,715,802,716(原料供給管710側),717が開かれることにより、液体原料容器721に収容された液体原料はタンク610に供給される。供給された液体原料はタンク610において気化され、基板処理に用いられる。
Normally, the valves 711,712,713,801 are closed, and the valves 714,715,802,716 (raw material supply pipe 710 side) and 717 are opened, so that the liquid raw material contained in the liquid raw material container 721 is stored in the tank 610. Is supplied to. The supplied liquid raw material is vaporized in the tank 610 and used for substrate treatment.
第2の構成例における原料供給管710の洗浄フローも図7と同じである。
The cleaning flow of the raw material supply pipe 710 in the second configuration example is the same as that in FIG.
S10:バルブ711,714,801,717を閉じ、バルブ712,713,715,802,716(原料供給管710側)を開いた状態で、洗浄溶媒容器720から洗浄溶媒を原料供給管710に供給する。
S10: With the valves 711,714,801,717 closed and the valves 712,713,715,802,716 (raw material supply pipe 710 side) open, the cleaning solvent is supplied from the cleaning solvent container 720 to the raw material supply pipe 710. do.
S11:第1の構成例の場合と同じである。
S11: Same as in the case of the first configuration example.
S12:所定時間経過後に、バルブ801を開いて、溶け出した液体原料を含む洗浄溶媒を、排出管805を介してドレイン容器810に排出する。洗浄溶媒の排出後、バルブ801を閉じる。
S12: After a lapse of a predetermined time, the valve 801 is opened, and the cleaning solvent containing the dissolved liquid raw material is discharged to the drain container 810 via the discharge pipe 805. After draining the cleaning solvent, the valve 801 is closed.
S13:第1の構成例の場合と同じである。
S13: Same as in the case of the first configuration example.
S14:ヒータ723により洗浄溶媒が気化する所定温度にまで原料供給管710を加熱する。
S14: The heater 723 heats the raw material supply pipe 710 to a predetermined temperature at which the cleaning solvent is vaporized.
S15:ステップS14により洗浄溶媒が気化し、バルブ711,713,715,802,716(バイパス配管718側)を開いた状態で、原料供給管710の上流から不活性ガスを供給することにより、不活性ガスの圧力により気化した洗浄媒体を、バイパス配管718を介して、排気管719から排気する。この期間、圧力センサ724により、バイパス配管718内の圧力を計測し、圧力の変動率が所定以下となったときに、洗浄溶媒が原料供給管710から排出されたと判断し、不活性ガスの供給を終了する。
S15: The cleaning solvent is vaporized in step S14, and the inert gas is supplied from the upstream of the raw material supply pipe 710 with the valves 711,713,715,802,716 (bypass pipe 718 side) open. The cleaning medium vaporized by the pressure of the active gas is exhausted from the exhaust pipe 719 via the bypass pipe 718. During this period, the pressure in the bypass pipe 718 is measured by the pressure sensor 724, and when the fluctuation rate of the pressure becomes less than a predetermined value, it is determined that the cleaning solvent has been discharged from the raw material supply pipe 710, and the inert gas is supplied. To finish.
以上の洗浄フローにより、原料供給管710の洗浄は完了し、タンク610が交換可能になる。
With the above cleaning flow, the cleaning of the raw material supply pipe 710 is completed, and the tank 610 can be replaced.
なお、第2の構成例では、原料供給管にバルブ801を設ける構成で説明したが、バルブ717を三方弁のバルブとし、この三方弁バルブに、ドレイン容器810に接続される排出管805を接続し、ドレイン容器810への原料供給管710から溶け出した液体原料を含む洗浄溶媒の排出動作を制御するバルブ801を排出管805に設けるようにしてもよい。
In the second configuration example, the valve 801 is provided in the raw material supply pipe. However, the valve 717 is a three-way valve, and the discharge pipe 805 connected to the drain container 810 is connected to the three-way valve. Then, a valve 801 for controlling the discharge operation of the cleaning solvent containing the liquid raw material dissolved from the raw material supply pipe 710 to the drain container 810 may be provided in the discharge pipe 805.
以上説明した各実施形態は、適宜組み合わせて用いることができる。さらに、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
Each of the above-described embodiments can be used in combination as appropriate. Furthermore, the present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the gist thereof.
上述の実施形態では、金属元素を用いて金属酸化膜を形成する場合について述べたが、有機系原料を使用して形成する膜であれば、他の膜にも適用可能である。例えば、ジルコニウム酸化膜(ZrO2)、ハフニウム酸化膜(HfO2)、アルミニウム酸化膜(Al2O3)、タングステン酸化膜(WO3)、チタン酸化膜(TiO)、タンタル酸化膜(Ta2O5)等が挙げられる。
In the above-described embodiment, the case where the metal oxide film is formed by using a metal element has been described, but any film formed by using an organic raw material can be applied to other films. For example, zirconium oxide film (ZrO 2 ), hafnium oxide film (HfO 2 ), aluminum oxide film (Al 2 O 3 ), tungsten oxide film (WO 3 ), titanium oxide film (TIO), tantalum oxide film (Ta 2 O). 5 ) and the like.
有機系原料ガスとしては、例えば、クロロトリ(N-エチルメチルアミノ)チタン(Ti[N(CH3)CH2CH3]3Cl、略称TIA)、テトラキスジエチルアミノチタン(Ti[N(CH2CH3)2]4、略称TDEAT)、テトラキスジメチルアミノチタン(Ti[N(CH3)2]4、略称TDMAT)、テトラキスエチルメチルアミノジルコニウム(Zr[N(CH3)CH2CH3]4、略称TEMAZ)、テトラキスエチルメチルアミノハフニウム(Hf[N(CH3)CH2CH3]4、略称TEMAH)、トリメチルアルミニウム((CH3)3Al)、略称TMA)、ビス(ターシャリブチルイミノ)ビス(ターシャリブチルアミノ)タングステン((C4H9NH)2W(C4H9N)2、)、タングステンヘキサカルボニル(W(CO)6)、ペンタエトキシタンタル(Ta(OC2H5)5、略称PET)、トリスエチルメチルアミノターシャリーブチルイミノタンタル(Ta[NC(CH3)3][N(C2H5)CH3]3、略称TBTEMT)等を用いることも可能である。
Examples of the organic raw material gas include chlorotri (N-ethylmethylamino) titanium (Ti [N (CH 3 ) CH 2 CH 3 ] 3 Cl, abbreviated as TIA) and tetrakisdiethylaminotitanium (Ti [N (CH 2 CH 3)). ) 2 ] 4 , abbreviated as TDEAT), tetrakisdimethylaminotitanium (Ti [N (CH 3 ) 2 ] 4 , abbreviated as TDMAT), tetraxethylmethylaminozincyl (Zr [N (CH 3 ) CH 2 CH 3 ] 4 , abbreviated TEMAZ), tetraxethylmethylaminohafnium (Hf [N (CH 3 ) CH 2 CH 3 ] 4 , abbreviated TEMAH), trimethylaluminum ((CH 3 ) 3 Al), abbreviated TMA), bis (tershalibutylimino) bis (Tashari Butyl Amino) Tungsten ((C 4 H 9 NH) 2 W (C 4 H 9 N) 2 ,), Tungsten Hexacarbonyl (W (CO) 6 ), Pentaethoxytantal (Ta (OC 2 H 5 )) 5 , abbreviated PET), trisethylmethylaminoterly butyliminotantal (Ta [NC (CH 3 ) 3 ] [N (C 2 H 5 ) CH 3 ] 3 , abbreviated TBTEMT) and the like can also be used.
反応ガスとしては、酸素含有ガスとして、例えば、プラズマ励起した酸素(O2)、オゾン(O3)、水蒸気(H2O)、過酸化水素(H2O2)、亜酸化窒素(N2O)、プラズマ励起したO2+H2の混合ガス等を用いることも可能である。
Examples of the reaction gas include plasma-excited oxygen (O 2 ), ozone (O 3 ), water vapor (H 2 O), hydrogen hydrogen (H 2 O 2 ), and nitrous oxide (N 2). It is also possible to use a mixed gas of O), plasma-excited O 2 + H 2.
また、上述の実施形態では、不活性ガスとしては、N2ガスや、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いてもよい。
In the embodiment described above, as the inert gas, and N 2 gas, Ar gas, He gas, Ne gas, may be used a rare gas such as Xe gas.
また、金属酸化膜を形成する下地膜は、適宜選択可能だが、例えば、シリコン(Si)膜等が挙げられる。
The base film for forming the metal oxide film can be appropriately selected, and examples thereof include a silicon (Si) film.
上述の実施の形態では、一度に複数枚の基板を処理するバッチ式の縦型装置である基板処理装置であって、1つの反応管内に処理ガスを供給するノズルが立設され、反応管の下部に排気口が設けられた構造を有する処理炉を用いて成膜する例について説明したが、他の構造を有する処理炉を用いて成膜する場合にも本開示を適用可能である。例えば、同心円状の断面を有する2つの反応管(外側の反応管をアウタチューブ、内側の反応管をインナチューブと称する)を有し、インナチューブ内に立設されたノズルから、アウタチューブの側壁であって基板を挟んでノズルと対向する位置(線対称の位置)に開口する排気口へ処理ガスが流れる構造を有する処理炉を用いて成膜する場合にも本開示を適用可能である。また、処理ガスはインナチューブ内に立設されたノズルから供給されるのではなく、インナチューブの側壁に開口するガス供給口から供給されるようにしてもよい。このとき、アウタチューブに開口する排気口は、処理室内に積層して収容された複数枚の基板が存在する高さに応じて開口していてもよい。また、排気口の形状は穴形状であってもよいし、スリット形状であってもよい。
In the above-described embodiment, it is a substrate processing apparatus which is a batch type vertical apparatus for processing a plurality of substrates at a time, and a nozzle for supplying a processing gas is erected in one reaction tube, and the reaction tube is provided. Although an example of forming a film using a processing furnace having a structure having an exhaust port at the bottom has been described, the present disclosure can also be applied to the case of forming a film using a processing furnace having another structure. For example, it has two reaction tubes having concentric cross sections (the outer reaction tube is called an outer tube and the inner reaction tube is called an inner tube), and from a nozzle erected in the inner tube, a side wall of the outer tube is used. However, the present disclosure can also be applied to the case where the film is formed using a processing furnace having a structure in which the processing gas flows to the exhaust port that opens at a position facing the nozzle (a position symmetrical with respect to the line) across the substrate. Further, the processing gas may be supplied not from a nozzle erected in the inner tube but from a gas supply port opened in the side wall of the inner tube. At this time, the exhaust port that opens in the outer tube may be opened according to the height at which a plurality of substrates accommodated in a laminated manner in the processing chamber exist. Further, the shape of the exhaust port may be a hole shape or a slit shape.
成膜処理やクリーニング処理に用いられるレシピ(処理手順や処理条件等が記載されたプログラム)は、処理内容(形成、或いは、除去する膜の種類、組成比、膜質、膜厚、処理手順、処理条件等)に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになり、それぞれの場合に適正な処理を行うことができるようになる。また、オペレータの負担(処理手順や処理条件等の入力負担等)を低減でき、操作ミスを回避しつつ、処理を迅速に開始できるようになる。
The recipe (program that describes the treatment procedure, treatment conditions, etc.) used for the film formation treatment and cleaning treatment is the treatment content (type, composition ratio, film quality, film thickness, treatment procedure, treatment of the film to be formed or removed. It is preferable to prepare them individually according to conditions) and store them in the storage device 121c via a telecommunication line or an external storage device 123. Then, when starting the process, it is preferable that the CPU 121a appropriately selects an appropriate recipe from the plurality of recipes stored in the storage device 121c according to the processing content. As a result, it becomes possible to form films of various film types, composition ratios, film qualities, and film thicknesses with good reproducibility with one substrate processing device, and appropriate processing can be performed in each case. Will be. In addition, the burden on the operator (input burden on processing procedures, processing conditions, etc.) can be reduced, and processing can be started quickly while avoiding operation mistakes.
上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。
The above recipe is not limited to the case of newly creating, for example, it may be prepared by changing an existing recipe already installed in the board processing apparatus. When changing the recipe, the changed recipe may be installed on the substrate processing apparatus via a telecommunication line or a recording medium on which the recipe is recorded. Further, the input / output device 122 included in the existing board processing device may be operated to directly change the existing recipe already installed in the board processing device.
上述の実施形態では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本開示は上述の実施形態に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも、好適に適用できる。また、上述の実施形態では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本開示は上述の実施形態に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも、好適に適用できる。これらの場合においても、処理手順、処理条件は、例えば上述の実施形態と同様な処理手順、処理条件とすることができる。
In the above-described embodiment, an example of forming a film using a batch-type substrate processing apparatus that processes a plurality of substrates at one time has been described. The present disclosure is not limited to the above-described embodiment, and can be suitably applied to, for example, a case where a film is formed by using a single-wafer type substrate processing apparatus that processes one or several substrates at a time. Further, in the above-described embodiment, an example of forming a film by using a substrate processing apparatus having a hot wall type processing furnace has been described. The present disclosure is not limited to the above-described embodiment, and can be suitably applied to the case where a film is formed by using a substrate processing apparatus having a cold wall type processing furnace. Even in these cases, the processing procedure and processing conditions can be, for example, the same processing procedure and processing conditions as those in the above-described embodiment.
10・・・基板処理装置、121・・・コントローラ、200・・・ウエハ、201・・・処理室、202・・・処理炉。
10 ... Substrate processing device, 121 ... Controller, 200 ... Wafer, 201 ... Processing room, 202 ... Processing furnace.
Claims (18)
- 基板を処理する処理室と、
前記処理室内に原料ガスを供給するガス供給系と、を有し、
前記ガス供給系は、
液体原料を気化させて前記原料ガスを発生させるタンクと、
前記液体原料を前記タンクに供給する原料供給管と、
前記原料供給管を洗浄する洗浄溶媒を収容する洗浄溶媒容器と、を備え、
前記原料供給管には、上流から順に、
前記原料供給管への不活性ガスの供給動作を制御する第1のバルブと、
前記原料供給管への前記不活性ガスまたは前記洗浄溶媒の供給動作を制御する第2のバルブと、
前記原料供給管への前記不活性ガス、前記洗浄溶媒、または前記液体原料の供給動作を制御する第3のバルブと、
前記タンクへの前記原料供給管内の前記液体原料の供給動作を制御する第4のバルブと、が設けられる基板処理装置。 A processing room for processing the substrate and
It has a gas supply system that supplies raw material gas to the processing chamber.
The gas supply system
A tank that vaporizes a liquid raw material to generate the raw material gas,
A raw material supply pipe that supplies the liquid raw material to the tank,
A cleaning solvent container containing a cleaning solvent for cleaning the raw material supply pipe is provided.
The raw material supply pipes are connected in order from the upstream.
A first valve that controls the operation of supplying the inert gas to the raw material supply pipe,
A second valve that controls the operation of supplying the inert gas or the cleaning solvent to the raw material supply pipe.
A third valve that controls the operation of supplying the inert gas, the cleaning solvent, or the liquid raw material to the raw material supply pipe.
A substrate processing apparatus provided with a fourth valve for controlling the operation of supplying the liquid raw material in the raw material supply pipe to the tank. - 前記原料供給管の少なくとも前記第1のバルブよりも下流部分は、前記タンクに対して鉛直に配置されている請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein at least a portion downstream of the first valve of the raw material supply pipe is arranged vertically with respect to the tank.
- バイパス配管と、
前記原料供給管の前記第3のバルブと前記第4のバルブとの間に設けられ、前記バイパス配管と前記タンク側の前記原料供給管とを切り換える第5のバルブと、を備え、
前記バイパス配管はポンプに接続される請求項1または請求項2に記載の基板処理装置。 Bypass piping and
A fifth valve provided between the third valve and the fourth valve of the raw material supply pipe and switching between the bypass pipe and the raw material supply pipe on the tank side is provided.
The substrate processing apparatus according to claim 1 or 2, wherein the bypass pipe is connected to a pump. - 前記原料供給管の前記第3のバルブと前記第4のバルブとの間の区間に対して加熱部を備える請求項1から請求項3のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 3, further comprising a heating unit for a section between the third valve and the fourth valve of the raw material supply pipe.
- 前記加熱部は、前記洗浄溶媒を気化させる温度に前記原料供給管を加熱する請求項4に記載の基板処理装置。 The substrate processing apparatus according to claim 4, wherein the heating unit heats the raw material supply pipe to a temperature at which the cleaning solvent is vaporized.
- 前記原料供給管内の前記洗浄溶媒が排出されるドレイン容器に接続される排出管を備える請求項1から請求項5のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 5, further comprising a discharge pipe connected to a drain container from which the cleaning solvent in the raw material supply pipe is discharged.
- 前記原料供給管の前記第3のバルブと前記第4のバルブとの間に設けられ、前記排出管に前記洗浄溶媒の排出動作を制御する第6のバルブを備える請求項6に記載の基板処理装置。 The substrate treatment according to claim 6, further comprising a sixth valve provided between the third valve and the fourth valve of the raw material supply pipe and controlling the discharge operation of the cleaning solvent in the discharge pipe. Device.
- 前記バイパス配管に、該バイパス配管の圧力を計測する圧力センサを設ける請求項3に記載の基板処理装置。 The substrate processing apparatus according to claim 3, wherein the bypass pipe is provided with a pressure sensor for measuring the pressure of the bypass pipe.
- 前記圧力センサによる前記バイパス配管の圧力の変動率が所定値以下となったときに、前記不活性ガスの供給を停止するように制御することが可能な制御部を備えた請求項8に記載の基板処理装置。 The eighth aspect of claim 8 is provided with a control unit capable of controlling the supply of the inert gas so as to stop the supply of the inert gas when the fluctuation rate of the pressure of the bypass pipe by the pressure sensor becomes equal to or less than a predetermined value. Substrate processing equipment.
- 液体原料を気化させて原料ガスを発生させるタンクと、
前記液体原料を前記タンクに供給する原料供給管と、
前記原料供給管を洗浄する洗浄溶媒を収容する洗浄溶媒容器と、を備え、
前記原料供給管には、上流から順に、前記原料供給管への不活性ガスの供給動作を制御する第1のバルブと、前記原料供給管への前記不活性ガスまたは前記洗浄溶媒の供給動作を制御する第2のバルブと、前記原料供給管への前記不活性ガス、前記洗浄溶媒、または前記液体原料の供給動作を制御する第3のバルブと、前記タンクへの前記原料供給管内の前記液体原料の供給動作を制御する第4のバルブと、が設けられるガス供給装置。 A tank that vaporizes liquid raw materials to generate raw material gas,
A raw material supply pipe that supplies the liquid raw material to the tank,
A cleaning solvent container containing a cleaning solvent for cleaning the raw material supply pipe is provided.
The raw material supply pipe is provided with a first valve for controlling the operation of supplying the inert gas to the raw material supply pipe and an operation of supplying the inert gas or the cleaning solvent to the raw material supply pipe in order from the upstream. A second valve to control, a third valve to control the operation of supplying the inert gas, the cleaning solvent, or the liquid raw material to the raw material supply pipe, and the liquid in the raw material supply pipe to the tank. A gas supply device provided with a fourth valve that controls the supply operation of raw materials. - 基板を処理する処理室と、前記処理室内に原料ガスを供給するガス供給系と、を有し、前記ガス供給系は、液体原料を気化させて前記原料ガスを発生させるタンクと、前記液体原料を前記タンクに供給する原料供給管と、前記原料供給管を洗浄する洗浄溶媒を収容する洗浄溶媒容器と、を備え、前記原料供給管には、上流から順に、前記原料供給管への不活性ガスの供給動作を制御する第1のバルブと、前記原料供給管への前記不活性ガスまたは前記洗浄溶媒の供給動作を制御する第2のバルブと、前記原料供給管への前記不活性ガス、前記洗浄溶媒、または前記液体原料の供給動作を制御する第3のバルブと、前記タンクへの前記原料供給管内の前記液体原料の供給動作を制御する第4のバルブと、が設けられる基板処理装置における前記原料供給管の洗浄方法であって、
前記原料供給管に前記洗浄溶媒を供給する第1の工程と、
前記原料供給管に前記洗浄溶媒を封じ込み、前記原料供給管に残留した前記液体原料を溶解させる第2の工程と、
前記液体原料を含む前記洗浄溶媒を前記原料供給管から排出する第3の工程と、を有する原料供給管の洗浄方法。 The processing chamber for processing the substrate and the gas supply system for supplying the raw material gas to the processing chamber are provided, and the gas supply system includes a tank for vaporizing the liquid raw material to generate the raw material gas and the liquid raw material. The raw material supply pipe is provided with a raw material supply pipe for supplying the raw material to the tank and a cleaning solvent container for containing the cleaning solvent for cleaning the raw material supply pipe. A first valve that controls the gas supply operation, a second valve that controls the supply operation of the inert gas or the cleaning solvent to the raw material supply pipe, and the inert gas to the raw material supply pipe. A substrate processing apparatus provided with a third valve for controlling the supply operation of the cleaning solvent or the liquid raw material, and a fourth valve for controlling the supply operation of the liquid raw material in the raw material supply pipe to the tank. The method for cleaning the raw material supply pipe in
The first step of supplying the cleaning solvent to the raw material supply pipe, and
A second step of sealing the cleaning solvent in the raw material supply pipe and dissolving the liquid raw material remaining in the raw material supply pipe.
A method for cleaning a raw material supply pipe, comprising a third step of discharging the cleaning solvent containing the liquid raw material from the raw material supply pipe. - 前記原料供給管の前記第3のバルブと前記第4のバルブとの間の区間に対して加熱部を備え、
前記原料供給管を加熱して前記洗浄溶媒を気化させる第4の工程と、
気化した前記洗浄溶媒を前記原料供給管から排気する第5の工程と、を有する請求項11に記載の原料供給管の洗浄方法。 A heating unit is provided for a section between the third valve and the fourth valve of the raw material supply pipe.
A fourth step of heating the raw material supply pipe to vaporize the cleaning solvent, and
The method for cleaning a raw material supply pipe according to claim 11, further comprising a fifth step of exhausting the vaporized cleaning solvent from the raw material supply pipe. - 前記第1から第3の工程を所定回数繰り返した後に、前記第4の工程を実行する請求項12に記載の原料供給管の洗浄方法。 The method for cleaning a raw material supply pipe according to claim 12, wherein the fourth step is executed after repeating the first to third steps a predetermined number of times.
- 前記第1の工程では、前記洗浄溶媒が、前記液体原料よりも上流から、前記原料供給管に供給される請求項11から請求項13のいずれか一項に記載の原料供給管の洗浄方法。 The method for cleaning a raw material supply pipe according to any one of claims 11 to 13, wherein in the first step, the cleaning solvent is supplied to the raw material supply pipe from upstream of the liquid raw material.
- バイパス配管が前記原料供給管に接続されており、
前記第5の工程では、気化した前記洗浄溶媒が、前記原料供給管に供給される前記不活性ガスの圧力により前記バイパス配管を通って排気される請求項12に記載の原料供給管の洗浄方法。 The bypass pipe is connected to the raw material supply pipe,
The method for cleaning a raw material supply pipe according to claim 12, wherein in the fifth step, the vaporized cleaning solvent is exhausted through the bypass pipe by the pressure of the inert gas supplied to the raw material supply pipe. .. - 基板を処理する処理室と、前記処理室内に原料ガスを供給するガス供給系と、を有し、前記ガス供給系は、液体原料を気化させて前記原料ガスを発生させるタンクと、前記液体原料を前記タンクに供給する原料供給管と、前記原料供給管を洗浄する洗浄溶媒を収容する洗浄溶媒容器と、を備え、前記原料供給管には、上流から順に、前記原料供給管への不活性ガスの供給動作を制御する第1のバルブと、前記原料供給管への前記不活性ガスまたは前記洗浄溶媒の供給動作を制御する第2のバルブと、前記原料供給管への前記不活性ガス、前記洗浄溶媒、または前記液体原料の供給動作を制御する第3のバルブと、前記タンクへの前記原料供給管内の前記液体原料の供給動作を制御する第4のバルブと、が設けられる基板処理装置における半導体装置の製造方法であって、
前記処理室に前記原料ガスを供給する第1の工程と、
前記基板を処理する第2の工程と、
前記原料供給管に前記洗浄溶媒を供給する第3の工程と、
前記原料供給管に前記洗浄溶媒を封じ込み、前記原料供給管に残留した前記液体原料を溶解させる第4の工程と、
前記液体原料を含む前記洗浄溶媒を前記原料供給管から排出する第5の工程と、を有する半導体装置の製造方法。 The processing chamber for processing the substrate and the gas supply system for supplying the raw material gas to the processing chamber are provided, and the gas supply system includes a tank for vaporizing the liquid raw material to generate the raw material gas and the liquid raw material. The raw material supply pipe is provided with a raw material supply pipe for supplying the raw material to the tank and a cleaning solvent container for containing the cleaning solvent for cleaning the raw material supply pipe. A first valve that controls the gas supply operation, a second valve that controls the supply operation of the inert gas or the cleaning solvent to the raw material supply pipe, and the inert gas to the raw material supply pipe. A substrate processing apparatus provided with a third valve for controlling the supply operation of the cleaning solvent or the liquid raw material, and a fourth valve for controlling the supply operation of the liquid raw material in the raw material supply pipe to the tank. It is a manufacturing method of a semiconductor device in
The first step of supplying the raw material gas to the processing chamber and
The second step of processing the substrate and
A third step of supplying the cleaning solvent to the raw material supply pipe, and
A fourth step of sealing the cleaning solvent in the raw material supply pipe and dissolving the liquid raw material remaining in the raw material supply pipe.
A method for manufacturing a semiconductor device, comprising a fifth step of discharging the cleaning solvent containing the liquid raw material from the raw material supply pipe. - 基板を処理する処理室と、前記処理室内に原料ガスを供給するガス供給系と、を有し、前記ガス供給系は、液体原料を気化させて前記原料ガスを発生させるタンクと、前記液体原料を前記タンクに供給する原料供給管と、前記原料供給管を洗浄する洗浄溶媒を収容する洗浄溶媒容器と、を備え、前記原料供給管には、上流から順に、前記原料供給管に不活性ガスの供給動作を制御する第1のバルブと、前記原料供給管への前記不活性ガスまたは前記洗浄溶媒の供給動作を制御する第2のバルブと、前記原料供給管への前記不活性ガス、前記洗浄溶媒、または前記液体原料の供給動作を制御する第3のバルブと、前記タンクへの前記原料供給管内の前記液体原料の供給動作を制御する第4のバルブと、が設けられる基板処理装置に実行させるプログラムであって、
前記原料供給管に前記洗浄溶媒を供給する第1の手順と、
前記原料供給管に前記洗浄溶媒を封じ込み、前記原料供給管に残留した前記液体原料を溶解させる第2の手順と、
前記液体原料を含む前記洗浄溶媒を前記原料供給管から排出する第3の手順と、をコンピュータにより前記基板処理装置に実行させるプログラム。 The processing chamber for processing the substrate and the gas supply system for supplying the raw material gas to the processing chamber are provided, and the gas supply system includes a tank for vaporizing the liquid raw material to generate the raw material gas and the liquid raw material. The raw material supply pipe is provided with a raw material supply pipe for supplying the gas to the tank and a cleaning solvent container for containing the cleaning solvent for cleaning the raw material supply pipe. A first valve that controls the supply operation of the raw material supply pipe, a second valve that controls the supply operation of the inert gas or the cleaning solvent to the raw material supply pipe, and the inert gas to the raw material supply pipe, said. A substrate processing apparatus provided with a third valve for controlling the supply operation of the cleaning solvent or the liquid raw material and a fourth valve for controlling the supply operation of the liquid raw material in the raw material supply pipe to the tank. A program to be executed
The first procedure of supplying the cleaning solvent to the raw material supply pipe and
A second procedure in which the cleaning solvent is sealed in the raw material supply pipe and the liquid raw material remaining in the raw material supply pipe is dissolved.
A program in which a computer causes the substrate processing apparatus to execute a third procedure of discharging the cleaning solvent containing the liquid raw material from the raw material supply pipe. - 液体原料を気化させて原料ガスを発生させるタンクと、前記液体原料を前記タンクに供給する原料供給管と、前記原料供給管を洗浄する洗浄溶媒を収容する洗浄溶媒容器と、を備え、前記原料供給管には、上流から順に、前記原料供給管への不活性ガスの供給動作を制御する第1のバルブと、前記原料供給管への前記不活性ガスまたは前記洗浄溶媒の供給動作を制御する第2のバルブと、前記原料供給管への前記不活性ガス、前記洗浄溶媒、または前記液体原料の供給動作を制御する第3のバルブと、前記タンクへの前記原料供給管内の前記液体原料の供給動作を制御する第4のバルブと、が設けられるガス供給装置に実行させるプログラムであって、
前記原料供給管に前記洗浄溶媒を供給する第1の手順と、
前記原料供給管に前記洗浄溶媒を封じ込み、前記原料供給管に残留した前記液体原料を溶解させる第2の手順と、
前記液体原料を含む前記洗浄溶媒を前記原料供給管から排出する第3の手順と、をコンピュータにより前記ガス供給装置に実行させるプログラム。 The raw material is provided with a tank for vaporizing a liquid raw material to generate a raw material gas, a raw material supply pipe for supplying the liquid raw material to the tank, and a cleaning solvent container for containing a cleaning solvent for cleaning the raw material supply pipe. In the supply pipe, in order from the upstream, a first valve that controls the supply operation of the inert gas to the raw material supply pipe and the supply operation of the inert gas or the cleaning solvent to the raw material supply pipe are controlled. A second valve, a third valve for controlling the operation of supplying the inert gas, the cleaning solvent, or the liquid raw material to the raw material supply pipe, and the liquid raw material in the raw material supply pipe to the tank. It is a program to be executed by a gas supply device provided with a fourth valve for controlling the supply operation.
The first procedure of supplying the cleaning solvent to the raw material supply pipe and
A second procedure in which the cleaning solvent is sealed in the raw material supply pipe and the liquid raw material remaining in the raw material supply pipe is dissolved.
A program in which a computer causes the gas supply device to execute a third procedure of discharging the cleaning solvent containing the liquid raw material from the raw material supply pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022510406A JP7361202B2 (en) | 2020-03-26 | 2021-03-19 | Substrate processing equipment, gas supply equipment, cleaning method for raw material supply pipes, semiconductor device manufacturing method and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-056119 | 2020-03-26 | ||
JP2020056119 | 2020-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021193406A1 true WO2021193406A1 (en) | 2021-09-30 |
Family
ID=77890279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/011311 WO2021193406A1 (en) | 2020-03-26 | 2021-03-19 | Substrate treatment apparatus, gas supply device, method for cleaning raw material supply pipe, method for manufacturing semiconductor device, and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7361202B2 (en) |
WO (1) | WO2021193406A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0817749A (en) * | 1994-06-29 | 1996-01-19 | Tokyo Electron Ltd | Device for supplying liquid material to film formation processing chamber and method for using it and its pipe line structure |
JPH1088349A (en) * | 1996-09-18 | 1998-04-07 | Anelva Corp | Vapor phase growth system |
JP2003303023A (en) * | 2002-02-07 | 2003-10-24 | Tokyo Electron Ltd | Processing device and method of maintaining the device |
-
2021
- 2021-03-19 WO PCT/JP2021/011311 patent/WO2021193406A1/en active Application Filing
- 2021-03-19 JP JP2022510406A patent/JP7361202B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0817749A (en) * | 1994-06-29 | 1996-01-19 | Tokyo Electron Ltd | Device for supplying liquid material to film formation processing chamber and method for using it and its pipe line structure |
JPH1088349A (en) * | 1996-09-18 | 1998-04-07 | Anelva Corp | Vapor phase growth system |
JP2003303023A (en) * | 2002-02-07 | 2003-10-24 | Tokyo Electron Ltd | Processing device and method of maintaining the device |
Also Published As
Publication number | Publication date |
---|---|
JP7361202B2 (en) | 2023-10-13 |
JPWO2021193406A1 (en) | 2021-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10297440B2 (en) | Method of manufacturing semiconductor device | |
JP6023854B1 (en) | Semiconductor device manufacturing method, substrate processing apparatus, and program | |
JP2017147262A (en) | Substrate processing apparatus, manufacturing method of semiconductor device, and program | |
US11201054B2 (en) | Method of manufacturing semiconductor device having higher exhaust pipe temperature and non-transitory computer-readable recording medium | |
US20240093361A1 (en) | Vaporizer, processing apparatus and method of manufacturing semiconductor device | |
KR102331046B1 (en) | Method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus | |
US20220002871A1 (en) | Substrate processing apparatus, reaction container, method of manufacturing semiconductor device, and recording medium | |
JP7064577B2 (en) | Substrate processing equipment, semiconductor equipment manufacturing methods and programs | |
JPWO2020189205A1 (en) | Substrate processing equipment, semiconductor equipment manufacturing methods and nozzles | |
KR102709850B1 (en) | Method of manufacturing semiconductor device, substrate processing apparatus and program | |
WO2021193406A1 (en) | Substrate treatment apparatus, gas supply device, method for cleaning raw material supply pipe, method for manufacturing semiconductor device, and program | |
US20200411330A1 (en) | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium | |
WO2021193480A1 (en) | Substrate processing device, method for manufacturing semiconductor device, and program | |
JP2021048233A (en) | Raw material storage system, substrate processing apparatus, cleaning method and program | |
WO2023047455A1 (en) | Semiconductor device manufacturing method, substrate processing device, and program | |
WO2020066701A1 (en) | Substrate processing apparatus, method for producing semiconductor device, and program | |
JP2022046879A (en) | Vaporizer, substrate processing apparatus, cleaning method, method for manufacturing semiconductor device and program | |
JPWO2020175427A1 (en) | Semiconductor device manufacturing methods, substrate processing devices and programs | |
CN118435321A (en) | Substrate processing apparatus, substrate processing method, semiconductor device manufacturing method, program, and gas supply unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21775793 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022510406 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21775793 Country of ref document: EP Kind code of ref document: A1 |