WO2020066701A1 - Substrate processing apparatus, method for producing semiconductor device, and program - Google Patents

Substrate processing apparatus, method for producing semiconductor device, and program Download PDF

Info

Publication number
WO2020066701A1
WO2020066701A1 PCT/JP2019/036140 JP2019036140W WO2020066701A1 WO 2020066701 A1 WO2020066701 A1 WO 2020066701A1 JP 2019036140 W JP2019036140 W JP 2019036140W WO 2020066701 A1 WO2020066701 A1 WO 2020066701A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
processing chamber
pressure
unit
valve
Prior art date
Application number
PCT/JP2019/036140
Other languages
French (fr)
Japanese (ja)
Inventor
紀之 磯辺
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to KR1020217007098A priority Critical patent/KR20210046694A/en
Priority to JP2020548466A priority patent/JPWO2020066701A1/en
Publication of WO2020066701A1 publication Critical patent/WO2020066701A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations

Definitions

  • the present disclosure relates to a substrate processing apparatus, a method of manufacturing a semiconductor device, and a program.
  • a film formation process for forming a film on a substrate housed in a processing chamber may be performed (for example, see Patent Document 1).
  • a reaction product may adhere to a diaphragm gauge or the like.
  • the zero point of the diaphragm gauge may shift in the positive or negative direction. For this reason, the pressure actually desired to be set cannot be obtained, and there is a possibility that appropriate pressure control cannot be performed.
  • a processing chamber for accommodating the substrate; A first gas supply unit that supplies a first gas to the processing chamber, A second gas supply unit that supplies a second gas to the processing chamber, An inert gas supply unit that supplies an inert gas to the processing chamber, An exhaust unit that exhausts an atmosphere in the processing chamber; When supplying the first gas to the processing chamber, a first on-off valve and a first pressure measuring device for measuring the pressure in the processing chamber, and supplying the second gas to the processing chamber A pressure measurement unit including a second on-off valve and a second pressure measurement device for measuring the pressure in the processing chamber; The first on-off valve and the second on-off valve are opened during the evacuation of the inert gas by the evacuation unit, and the pressure in the processing chamber is measured by the first pressure measuring device and the second pressure measuring device.
  • a control unit configured to control the exhaust unit and the pressure measurement unit, Is provided.
  • FIG. 1 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus suitably used in a first embodiment of the present disclosure, and is a diagram illustrating a processing furnace portion in a vertical cross-sectional view.
  • FIG. 1 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus suitably used in a first embodiment of the present disclosure, and is a diagram illustrating a processing furnace portion in a cross-sectional view taken along line AA of FIG. 1.
  • FIG. 2 is a schematic configuration diagram of a controller of the substrate processing apparatus suitably used in the first embodiment of the present disclosure, and is a diagram illustrating a control system of the controller in a block diagram.
  • FIG. 2 is a diagram illustrating a film forming sequence according to the first embodiment of the present disclosure.
  • the processing furnace 202 has a heater 207 as a heating system (temperature adjusting unit).
  • the heater 207 has a cylindrical shape, and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • the heater 207 heats a processing chamber 201 described later at a predetermined temperature.
  • the heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) the gas with heat.
  • a reaction tube 203 is disposed concentrically with the heater 207.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with an upper end closed and a lower end opened.
  • a manifold (inlet flange) 209 is provided concentrically with the reaction tube 203.
  • the manifold 209 is made of, for example, a metal such as stainless steel (SUS) and is formed in a cylindrical shape having upper and lower ends opened. The upper end of the manifold 209 is engaged with the lower end of the reaction tube 203, and is configured to support the reaction tube 203.
  • a processing vessel mainly includes the reaction tube 203 and the manifold 209.
  • a processing chamber 201 is formed in the hollow portion of the processing container. The processing chamber 201 is configured to be able to store a plurality of wafers 200 as substrates in a state where the wafers 200 are stacked in a horizontal posture and vertically in multiple stages by a boat 217 described later.
  • nozzles 410 and 420 are provided so as to penetrate the side wall of the manifold 209.
  • Gas supply pipes 310 and 320 as gas supply lines are connected to the nozzles 410 and 420, respectively.
  • the processing vessel manifold 209 is connected with the two nozzles 410 and 420 and the two gas supply pipes 310 and 320, and supplies a plurality of types of gases into the processing chamber 201. Is possible.
  • the gas supply pipes 310 and 320 are provided with mass flow controllers (MFC) 312 and 322 as flow controllers (flow control units) and valves 314 and 324 as on-off valves, respectively, in order from the upstream direction. Downstream of the valves 314 and 324 of the gas supply pipes 310 and 320, gas supply pipes 510 and 520 as gas supply lines for supplying an inert gas are connected, respectively.
  • the gas supply pipes 510 and 520 are provided with MFCs 512 and 522 and valves 514 and 524, respectively, in order from the upstream direction.
  • Nozzles 410 and 420 are connected to the distal ends of the gas supply pipes 310 and 320, respectively. As shown in FIGS. 1 and 2, the nozzles 410 and 420 are provided in the annular space in plan view between the inner wall of the reaction tube 203 and the wafer 200, and along the upper portion of the inner wall of the reaction tube 203 from above the lower portion. 200 are provided so as to rise and extend upward in the loading direction of 200. That is, the nozzles 410 and 420 are provided in a region horizontally surrounding the wafer arrangement region on the side of the wafer arrangement region where the wafers 200 are arranged, along the wafer arrangement region.
  • the nozzles 410 and 420 are provided on the side of the end (peripheral edge) of each wafer 200 loaded into the processing chamber 201, respectively, perpendicular to the surface (flat surface) of the wafer 200.
  • the nozzles 410 and 420 are configured as L-shaped long nozzles, respectively, and their horizontal parts are provided so as to penetrate the side wall of the manifold 209, and their vertical parts are at least one end of the wafer arrangement area. It is provided so as to rise from the side toward the other end.
  • a plurality of supply holes 410a (first gas supply holes) and 420a (second gas supply holes) for supplying gas are provided at the height corresponding to the wafer 200 on the side surfaces of the nozzles 410 and 420 (height corresponding to the substrate loading region). Gas supply holes) are provided.
  • the supply holes 410a and 420a are open so as to face the center of the reaction tube 203, and can supply gas toward the wafer 200.
  • a plurality of supply holes 410a and 420a are provided in the region of the reaction tube 203 where the wafer 200 is present, that is, a position facing the substrate support 217, in other words, from the lower end to the upper portion of the heater 207.
  • a plurality of supply holes 410a and 420a are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
  • the supply holes 410a and 420a are not limited to the above-described embodiment.
  • the opening area may be gradually increased from the lower part (upstream side) to the upper part (downstream side) of the nozzles 410 and 420. Thereby, the flow rate of the gas supplied from the supply holes 410a and 420a can be made more uniform.
  • Gas is transported via nozzles 410 and 420 arranged in a vertically long space, that is, in a cylindrical space. Then, gas is jetted into the reaction tube 203 near the wafer 200 from the supply holes 410a and 420a opened to the nozzles 410 and 420, respectively.
  • the main flow of the gas in the reaction tube 203 is in a direction parallel to the surface of the wafer 200, that is, in a horizontal direction.
  • the gas is supplied into the processing chamber 201 below the region of the wafer 200 from the supply hole 410b. With the supply hole 410b, the pressure in the nozzle 410 can be reduced.
  • the gas can be uniformly supplied to each wafer 200, and the uniformity of the film thickness of the film formed on each wafer 200 can be improved.
  • the gas flowing on the surface of the wafer 200, that is, the residual gas after the reaction flows toward an exhaust port, that is, an exhaust pipe 231 described later.
  • the direction of the flow of the residual gas is appropriately specified by the position of the exhaust port, and is not limited to the vertical direction.
  • a processing gas (raw material gas) is supplied from the gas supply pipe 310 into the processing chamber 201 via the MFC 312, the valve 314, and the nozzle 410.
  • the raw material gas for example, trimethyl aluminum (Al (CH 3 ) 3 ) as an aluminum-containing raw material (Al-containing raw material gas, Al-containing gas) which is a metal-containing gas containing aluminum (Al) as a metal element, abbreviation: TMA ) Is used.
  • TMA is an organic raw material, and is an alkyl aluminum in which an alkyl group is bonded to aluminum as a ligand.
  • the raw material gas refers to a raw material in a gaseous state, for example, a gaseous raw material in a gaseous state at normal temperature and normal pressure, a gas obtained by vaporizing a liquid raw material in a liquid state at normal temperature and normal pressure, and the like.
  • raw material means “raw material in liquid state”, “raw material in gaseous state (raw material gas)”, or both of them. May be.
  • an oxygen-containing gas oxidizing gas, oxidizing agent
  • oxygen (O) as a processing gas (reactive gas) and reacting with Al
  • MFC 322 and a valve. 324 oxygen-containing gas
  • O-containing gas for example, an ozone (O 3 ) gas, a mixed gas of O 3 and O 2 , or the like can be used.
  • N 2 gas as an inert gas is introduced into the processing chamber 201 via the MFCs 512 and 522, the valves 514 and 524, the gas supply pipes 310 and 320, and the nozzles 410 and 420, respectively. Supplied.
  • a source gas supply system mainly includes the gas supply pipe 310, the MFC 312, and the valve 314.
  • the nozzle 410 may be included in the source gas supply system.
  • the source gas supply system may be referred to as a source supply system.
  • the source gas supply system When supplying the metal-containing gas from the gas supply pipe 310, the source gas supply system may be referred to as a metal-containing gas supply system.
  • the metal-containing gas supply system When an aluminum-containing raw material (Al-containing raw material gas, Al-containing gas) is used as the metal-containing gas, the metal-containing gas supply system may be referred to as an aluminum-containing raw material (Al-containing raw material gas, Al-containing gas) supply system.
  • TMA is used as the aluminum-containing raw material
  • the aluminum-containing raw material supply system When TMA is used as the aluminum-containing raw material, the aluminum-containing raw material supply system may be referred to as a TMA supply system.
  • a reaction gas supply system (reactant supply system) is mainly configured by the gas supply pipe 320, the MFC 322, and the valve 324.
  • the nozzle 420 may be included in the reaction gas supply system.
  • an oxygen-containing gas oxidizing gas, oxidant
  • the reaction gas supply system may be referred to as an oxygen-containing gas (oxidizing gas, oxidant) supply system.
  • O 3 oxygen-containing gas
  • the oxygen-containing gas supply system may be referred to as an O 3 supply system.
  • the reaction gas flows from the nozzle 420 the nozzle 420 may be referred to as a reaction gas nozzle.
  • An inert gas supply system mainly includes the gas supply pipes 510 and 520, the MFCs 512 and 522, and the valves 514 and 325.
  • the source gas supply system and the reaction gas supply system may be collectively referred to as a gas supply system.
  • the inert gas supply system may be included in the gas supply system.
  • the reaction tube 203 is provided with an exhaust pipe 231 as an exhaust passage for exhausting the atmosphere in the processing chamber 201.
  • the exhaust pipe 231 has a pressure sensor (diaphragm gauge) 293 as a first pressure measuring device for measuring the pressure in the processing chamber 201 when the source gas is supplied through a protective air valve (air valve) 291 as a first opening / closing valve. Is connected.
  • a pressure sensor (diaphragm gauge) as a second pressure measuring device that measures the pressure in the processing chamber 201 when the reaction gas is supplied through a protective air valve (air valve) 292 as a second opening / closing valve is provided in the exhaust pipe 231. ) 294 are connected.
  • a pressure measuring unit is configured including the air valves 291 and 292 and the pressure sensors 293 and 294.
  • a vacuum pump 246 as a vacuum exhaust device is connected to the exhaust pipe 231 via an APC (Auto Pressure Controller) valve 244 as an exhaust valve (pressure adjusting unit).
  • the APC valve 244 can perform evacuation and stop evacuation of the processing chamber 201 by opening and closing the valve while the vacuum pump 246 is operating. Further, with the vacuum pump 246 operating, The valve is configured such that the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245.
  • An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, the air valves 291 and 292, and the pressure sensors 293 and 294.
  • the vacuum pump 246 may be included in the exhaust system.
  • the exhaust pipe 231 is not limited to being provided in the reaction tube 203, and may be provided in the manifold 209 similarly to the nozzles 410 and 420.
  • a seal cap 219 is provided as a furnace port lid capable of hermetically closing the lower end opening of the manifold 209.
  • the seal cap 219 is configured to contact the lower end of the manifold 209 from below in the vertical direction.
  • the seal cap 219 is made of, for example, a metal such as SUS and is formed in a disk shape.
  • an O-ring 220b is provided as a seal member that contacts the lower end of the manifold 209.
  • a rotation mechanism 267 for rotating a boat 217 described later is installed on the opposite side of the seal cap 219 from the processing chamber 201.
  • the rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the boat 217 to rotate the wafer 200.
  • the seal cap 219 is configured to be vertically moved up and down by a boat elevator 115 as an elevating mechanism vertically installed outside the reaction tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafer 200, into and out of the processing chamber 201.
  • a shutter 219s is provided as a furnace port lid that can hermetically close the lower end opening of the manifold 209 while the seal cap 219 is lowered by the boat elevator 115.
  • the shutter 219s is made of a metal such as SUS, for example, and is formed in a disk shape.
  • An O-ring 220c is provided on the upper surface of the shutter 219s as a seal member that contacts the lower end of the manifold 209. The opening / closing operation of the shutter 219s (elevation operation, rotation operation, etc.) is controlled by the shutter opening / closing mechanism 115s.
  • the boat 217 as a substrate supporter supports a plurality of, for example, 25 to 200, wafers 200 in a horizontal posture and in a vertically aligned manner with their centers aligned with each other, that is, supports in multiple stages. It is configured to be arranged at intervals.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC.
  • a heat insulating plate (not shown) made of a heat-resistant material such as quartz or SiC is supported in multiple stages. This configuration makes it difficult for heat from the heater 207 to be transmitted to the seal cap 219 side.
  • the present embodiment is not limited to such an embodiment.
  • a heat insulating tube 218 configured as a cylindrical member made of a heat-resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 as a temperature detector is installed in the reaction tube 203. By adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution.
  • the temperature sensor 263 is formed in an L shape like the nozzles 410 and 420, and is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, an HDD (Hard Disk Drive), and the like.
  • a control program for controlling the operation of the substrate processing apparatus, a process recipe in which procedures and conditions of substrate processing described later are described, and a cleaning procedure and conditions of cleaning processing described later are described. Recipes and the like are stored in a readable manner.
  • the process recipe is a combination that allows the controller 121 to execute each procedure in a film forming process described later and obtain a predetermined result, and functions as a program.
  • the cleaning recipe is a combination of the cleaning procedure, which will be described later, performed by the controller 121 so as to obtain a predetermined result, and functions as a program.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes the MFCs 512, 522, 312, 322, the valves 514, 524, 314, 324, the air valves 291, 292, the pressure sensors 293, 294, the APC valve 243, the vacuum pump 246, the temperature sensor 263, and the heater. 207, a rotation mechanism 267, a boat elevator 115, a notification unit 550, and the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of various gases by the MFCs 512, 522, 312, and 322, opens and closes the valves 514, 524, 314, and 324, opens and closes the APC valve 243, and operates the air valve 291, according to the contents of the read recipe.
  • the controller 121 is stored in an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk and a hard disk, an optical disk such as a CD and a DVD, a magneto-optical disk such as an MO, and a semiconductor memory such as a USB memory and a memory card).
  • the above-described program can be configured by installing the program in a computer.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively simply referred to as a recording medium.
  • the term “recording medium” may include only the storage device 121c, include only the external storage device 123, or include both of them.
  • the provision of the program to the computer may be performed using communication means such as the Internet or a dedicated line without using the external storage device 123.
  • the processing gas is supplied to the processing chamber 201 from the plurality of supply holes 410 a opened to the nozzle 410.
  • n times a predetermined number of times (n times) of supplying a TMA gas as a reaction gas and supplying an O 3 gas as a reaction gas from a plurality of supply holes 420a opened to the nozzle 420.
  • An aluminum oxide film (AlO film) is formed as a film containing O.
  • the term “wafer” may mean the wafer itself or may refer to a laminate of the wafer and predetermined layers or films formed on the surface thereof.
  • the term “surface of the wafer” may mean the surface of the wafer itself or the surface of a predetermined layer or the like formed on the wafer.
  • the phrase "forming a predetermined layer on a wafer” means that a predetermined layer is directly formed on the surface of the wafer itself, or a layer formed on the wafer. It may mean forming a predetermined layer on the substrate.
  • the use of the word "substrate” is synonymous with the use of the word "wafer”.
  • the air valves 291 and 292 are opened, and the pressure in the processing chamber 201 is measured by the pressure sensors 293 and 294 for a certain time. Thereafter, when each of the pressure sensors 293 and 294 measures that the pressure value in the processing chamber 201 is the same, the air valve 292 is closed and the air valve 291 is kept open. Start monitoring pressure of The inside of the processing chamber 201, that is, the space where the wafer 200 exists, is evacuated by the vacuum pump 246 so as to have a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 293, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment).
  • the vacuum pump 246 keeps operating at least until the processing on the wafer 200 is completed. Further, the inside of the processing chamber 201 is heated by the heater 207 so as to reach a desired temperature. At this time, the amount of power to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment). The heating of the inside of the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed. Subsequently, the rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is started. The rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the processing on the wafer 200 is completed.
  • the valve 314 is opened, and the TMA gas flows into the gas supply pipe 310.
  • the flow rate of the TMA gas is adjusted by the MFC 312, and the TMA gas is supplied to the wafer 200 from a supply hole 410 a opened in the nozzle 410. That is, the wafer 200 is exposed to the TMA gas.
  • the TMA gas supplied from the supply hole 410a is exhausted from the exhaust pipe 231.
  • the valve 514 is opened, and the N 2 gas flows as a carrier gas into the gas supply pipe 510.
  • the flow rate of the N 2 gas is adjusted by the MFC 512, the N 2 gas is supplied into the processing chamber 201 through the supply hole 410 a of the nozzle 410 together with the TMA gas, and is exhausted from the exhaust pipe 231.
  • the air valve 291 is opened, and the pressure in the processing chamber 201 during the supply of the TMA gas is monitored by the pressure sensor 293.
  • the air valve 292 is closed so that the TMA gas does not enter the pressure sensor 294.
  • the valve 524 is opened, and the N 2 gas flows into the gas supply pipe 520.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 520 and the nozzle 420, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, 1 to 1000 Pa, preferably 1 to 100 Pa, and more preferably 10 to 50 Pa.
  • the pressure in the processing chamber 201 is, for example, 1 to 1000 Pa, preferably 1 to 100 Pa, and more preferably 10 to 50 Pa.
  • the pressure in the processing chamber 201 is set to 1000 Pa or less, it is possible to suitably perform the residual gas removal described later.
  • the pressure in the processing chamber 201 By setting the pressure in the processing chamber 201 to 1 Pa or more, the reaction speed of the TMA gas on the surface of the wafer 200 can be increased, and a practical film forming speed can be obtained.
  • the range of the numerical value is, for example, 1 to 1000 Pa, it means 1 Pa or more and 1000 Pa or less. That is, 1 Pa and 1000 Pa are included in the range of the numerical value.
  • the supply flow rate of the TMA gas controlled by the MFC 312 is, for example, a flow rate within a range of 10 to 1000 sccm, preferably 50 to 1000 sccm, and more preferably 100 to 500 sccm.
  • a flow rate within a range of 10 to 1000 sccm, preferably 50 to 1000 sccm, and more preferably 100 to 500 sccm.
  • the flow rate By setting the flow rate to 1000 sccm or less, it is possible to suitably perform the residual gas removal described later.
  • By setting the flow rate to 10 sccm or more it is possible to obtain a practical film forming rate capable of increasing the reaction rate of the TMA gas on the surface of the wafer 200.
  • the TMA gas indicates the flow rate of the TMA gas alone.
  • a supply method by bubbling may include an inert gas of 100 to 2000 sccm.
  • the supply flow rate of the N 2 gas controlled by the MFC 512 is, for example, 1 to 30 slm, preferably 1 to 20 slm, and more preferably 1 to 10 slm.
  • the time for supplying the TMA gas to the wafer 200 is, for example, in the range of 1 to 60 seconds, preferably 1 to 30 seconds, and more preferably 2 to 20 seconds.
  • the heater 207 heats the wafer 200 so that the temperature of the wafer 200 is, for example, in the range of 50 to 600 ° C., preferably 70 to 550 ° C., and more preferably 75 to 500 ° C.
  • the temperature to 600 ° C. or lower it is possible to appropriately obtain a film formation rate while suppressing excessive thermal decomposition of the TMA gas, and suppress an increase in resistivity due to impurities being taken into the film. .
  • thermal decomposition of TMA gas starts at about 450 ° C. under conditions close to the processing, and therefore, it is more effective to use the present disclosure in the processing chamber 201 heated to a temperature of 550 ° C. or lower.
  • the temperature is 400 ° C. or higher, the reactivity is high, and efficient film formation is possible.
  • an Al-containing layer is formed on the outermost surface of the wafer 200.
  • the Al-containing layer may include C and H in addition to the Al layer.
  • the Al-containing layer is formed on the outermost surface of the wafer 200 by physically adsorbing TMA, chemically adsorbing a substance obtained by partially decomposing TMA, or depositing Al by thermal decomposition of TMA. Is done. That is, the Al-containing layer may be an adsorption layer (physical adsorption layer or chemical adsorption layer) of TMA or a substance in which TMA is partially decomposed, or may be an Al deposition layer (Al layer).
  • the valve 314 After the formation of the Al-containing layer, the valve 314 is closed, and the supply of the TMA gas is stopped. At this time, while the APC valve 243 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the TMA gas remaining in the processing chamber 201 and having contributed to the formation of the Al-containing layer is removed from the processing chamber 201. Eliminate from within.
  • the valves 514 and 524 maintain the supply of the N 2 gas into the processing chamber 201 in an open state.
  • the N 2 gas acts as a purge gas (inert gas), and can increase the effect of removing unreacted TMA gas remaining in the processing chamber 201 or having contributed to the formation of the Al-containing layer from the processing chamber 201. Note that the N 2 gas from the valves 514 and 524 may be kept flowing during the residual gas removing step.
  • the air valve 291 After removing the residual gas in the processing chamber 201, the air valve 291 is kept open, and the pressure in the processing chamber 201 after the residual gas is removed is monitored by the pressure sensor 293. At this time, the air valve 292 is opened, and the pressure in the processing chamber 201 after the residual gas is removed is monitored by the pressure sensor 294. That is, in the step of removing (exhausting) the source gas (first gas) in the processing chamber 201, the air valves 291 and 292 are opened while the purge gas is exhausted, and the pressure in the processing chamber 201 is measured by the pressure sensors 293 and 294. (Monitor).
  • the pressure sensors 293 and 294 monitor the pressure in the processing chamber 201 for a certain period of time, and then each of the pressure sensors 293 and 294 measures that the value of the pressure in the processing chamber 201 is the same. May be.
  • the air valve 291 is closed, the air valve 292 is kept open, and the pressure in the processing chamber 201 is switched to a pressure sensor 294 for monitoring the pressure in the processing chamber when O 3 is supplied, which will be described later.
  • By closing the air valve 291 the O 3 gas is prevented from entering the pressure sensor 293.
  • a notifying unit 550 is provided in the substrate processing apparatus 10 and connected to the controller 121, and when the pressure values monitored (measured) by the pressure sensors 293 and 294 do not match, the notifying unit informs the user. It may be configured to notify that the pressure values do not match. By doing so, it is possible to notify the user that the reaction product has adhered to the pressure sensor 293 or 294 from the notification unit 550 by an alarm or the like.
  • reaction gas supply step When the monitoring of the pressure sensor 294 is started after removing the residual gas in the processing chamber 201, the valve 324 is opened, and the O 3 gas, which is a reaction gas, flows into the gas supply pipe 320.
  • the flow rate of the O 3 gas is adjusted by the MFC 322, the O 3 gas is supplied to the wafer 200 in the processing chamber 201 from the supply hole 420 a of the nozzle 420, and is exhausted from the exhaust pipe 231. That wafer 200 is exposed to the O 3 gas.
  • the valve 524 is opened, and the N 2 gas flows into the gas supply pipe 520.
  • the flow rate of the N 2 gas is adjusted by the MFC 522, supplied to the processing chamber 201 together with the O 3 gas, and exhausted from the exhaust pipe 231.
  • the valve 514 is opened and the N 2 gas flows into the gas supply pipe 510 in order to prevent the O 3 gas from entering the nozzle 410 (prevent backflow).
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 510 and the nozzle 410, and is exhausted from the exhaust pipe 231.
  • the air valve 292 is opened, and the pressure in the processing chamber 201 during the supply of the O 3 gas is monitored by the pressure sensor 294.
  • the air valve 291 is closed so that O 3 gas does not enter the pressure sensor 293.
  • the pressure in the processing chamber 201 is adjusted to, for example, a pressure in the range of 1 to 1000 Pa, preferably 1 to 500 Pa, and more preferably 10 to 200 Pa by appropriately adjusting the APC valve 243.
  • the supply flow rate of the O 3 gas controlled by the MFC 322 is, for example, within a range of 5 to 40 slm, preferably 5 to 30 slm, and more preferably 10 to 30 slm.
  • the time for supplying the O 3 gas to the wafer 200 is, for example, in the range of 1 to 120 seconds, preferably 2 to 60 seconds, and more preferably 5 to 60 seconds.
  • Other processing conditions are the same processing conditions as in the above-described source gas supply step.
  • the gas flowing into the processing chamber 201 is only the O 3 gas and the inert gas (N 2 gas).
  • the O 3 gas refers to a mixed gas of O 3 and O 2 .
  • the O 3 gas reacts with at least a part of the Al-containing layer formed on the wafer 200 in the source gas supply step.
  • the Al-containing layer is oxidized to form an aluminum oxide layer (AlO layer) containing Al and O as a metal oxide layer. That is, the Al-containing layer is modified into an AlO layer.
  • the valve 324 is closed to stop the supply of the O 3 gas. Then, according to the same processing procedure as the residual gas removing step after the raw material gas supplying step, the unreacted O 3 gas or reaction by-product remaining in the processing chamber 201 after contributing to the formation of the AlO layer is removed from the processing chamber 201. Eliminate from within.
  • the valves 514 and 524 maintain the supply of the N 2 gas into the processing chamber 201 in an open state.
  • the N 2 gas acts as a purge gas (inert gas) and removes unreacted O 3 gas and reaction by-products remaining in the processing chamber 201 or contributing to the formation of an AlO layer from the processing chamber 201. Can be increased. Note that the N 2 gas from the valves 514 and 524 may be kept flowing during the residual gas removing step.
  • the pressure in the processing chamber 201 after removing the residual gas is monitored by the pressure sensor 294 while keeping the air valve 292 open.
  • the air valve 291 is opened, and the pressure is monitored by the pressure sensor 293 inside the processing chamber 201 after the residual gas is removed. That is, in the step of removing (exhausting) the reaction gas (second gas) in the processing chamber 201, the air valves 292 and 291 are opened during the exhaust of the purge gas, and the pressure in the processing chamber 201 is measured by the pressure sensors 294 and 293 ( Monitor).
  • the pressure sensors 293 and 294 monitor the pressure in the processing chamber 201 for a certain period of time, and then each of the pressure sensors 293 and 294 measures that the value of the pressure in the processing chamber 201 is the same. May be.
  • the air valve 292 is closed, the air valve 291 is kept open, and the pressure in the processing chamber 201 is switched to the pressure sensor 293 for monitoring the pressure in the processing chamber 201 when the TMA gas is supplied, and the monitoring in the processing chamber 201 is started.
  • a notification unit (not shown) is provided in the substrate processing apparatus 10 and is connected to the controller 121. If the pressure values monitored (measured) by the pressure sensors 293 and 294 do not match, the notification unit 550 is used. The user may be notified that the pressure values do not match. By doing so, it is possible to notify the user that the reaction product has adhered to the pressure sensor 293 or 294 by an alarm or the like of the notification unit 550.
  • An AlO film is formed on the wafer 200 by performing at least one cycle (a predetermined number of times) of sequentially performing the above-described source gas supply step, residual gas removal step, reaction gas supply step, and residual gas supply step.
  • the number of times of this cycle is appropriately selected depending on the film thickness required for the AlO film to be finally formed, but this cycle is preferably repeated a plurality of times.
  • the thickness (film thickness) of the AlO film is, for example, 1 to 150 nm, preferably 1 to 100 nm, and more preferably 60 to 80 (1 to 20 nm).
  • N 2 gas is supplied from the gas supply pipes 310 and 320 into the processing chamber 201, and exhausted from the exhaust pipe 231.
  • the N 2 gas acts as a purge gas, and gas and by-products remaining in the processing chamber 201 are removed from the processing chamber 201 (after-purge).
  • the atmosphere in the process chamber 201 is replaced with N 2 gas (N 2 gas replacement), the pressure in the processing chamber 201 is returned to normal pressure (atmospheric pressure return).
  • TMA gas or the O 3 gas is exhausted, the air valve 291 and the air valve 292 are opened. Can be monitored.
  • the pressure sensor 294 for monitoring the pressure in the processing chamber 201 to the pressure sensor 293 is provided, upon supply of the air valve 292 and the O 3 gas for monitoring the pressure in the processing chamber 201 during the supply of the air valve 291 and TMA gas
  • the air valve 292 is closed, and the pressure sensor 294 at the time of supplying the O 3 gas is not exposed to the TMA gas, so that the film formation does not progress, and the pressure sensor such as a diagram gauge is used. It is possible to configure so that the reaction product does not adhere.
  • the air valve 291 When supplying O 3 gas, the air valve 291 is closed and the pressure sensor 293 during TMA supply is not exposed to the O 3 gas, so that film formation does not proceed and a reaction is generated by a pressure sensor such as a diagram gauge. It is possible to configure so that an object does not adhere.
  • the air valves 291 and 292 When switching the supply from the source gas to the reaction gas, or when switching the supply from the reaction gas to the source gas, the air valves 291 and 292 are opened, and the pressure in the processing chamber 201 after removing the residual gas by the pressure sensors 293 and 294. Is monitored for a certain period of time, and when the pressure sensors 293 and 294 measure that the values of the pressures in the processing chamber are the same, the pressure is determined according to the processing gas (source gas or reaction gas) supplied into the processing chamber 201. Since the sensors are switched, it is possible to confirm that the reaction products are not attached to the pressure sensors 293 and 294 and that the pressure sensors 293 and 294 are operating normally. In addition, the air valves 291 and 292 can be switched in a low pressure state where the pressure values of the pressure sensors 293 and 294 are easily uniform.
  • a notification unit (not shown) is provided in the substrate processing apparatus 10 and is connected to the controller 121. If the pressure values measured by the pressure sensors 293 and 294 do not match, the notification unit notifies the user of the user. By notifying that the pressure values do not match, it is possible to notify the user that the reaction product is attached to the pressure sensor 293 or 294.
  • the present invention is not limited thereto, and for example, aluminum chloride (AlCl 3 ) may be used.
  • AlCl 3 aluminum chloride
  • an O 3 gas is used as the O-containing gas
  • the present invention is not limited to this.
  • oxygen (O 2 ) oxygen
  • water (H 2 O) water
  • hydrogen peroxide (H 2 O 2 ) oxygen
  • H 2 O 2 hydrogen peroxide
  • O 2 plasma A combination of hydrogen and hydrogen (H 2 ) plasma can also be applied.
  • N 2 gas is used as the inert gas
  • the present invention is not limited to this.
  • a rare gas such as Ar gas, He gas, Ne gas, or Xe gas may be used.
  • the present disclosure is not limited to this aspect. It is also used for a film type that forms a film by using a source gas diluted with an inert gas or the like at the time of supplying the source gas.
  • a source gas diluted with an inert gas or the like for example, titanium (Ti), zirconium (Zr), hafnium ( A film containing Hf), tantalum (Ta), niobium (Nb), molybdenum (Mo), tungsten (W), yttrium (Y), La (lanthanum), strontium (Sr), and silicon (Si).
  • Nitride, carbonitride, oxide, oxycarbide, oxynitride, oxycarbonitride, boronitride, borocarbonitride, metal element simple film, etc. is there.
  • the recipes (programs describing processing procedures and processing conditions, etc.) used for the film formation processing include processing contents (types of films to be formed or removed, composition ratios, film quality, film thickness, processing procedures, processing conditions, etc.). It is preferable to prepare individually according to the above and store in the storage device 121c via the electric communication line or the external storage device 123. Then, when starting the processing, it is preferable that the CPU 121a appropriately selects an appropriate recipe from the plurality of recipes stored in the storage device 121c according to the processing content. This makes it possible to form films of various film types, composition ratios, film qualities, and film thicknesses with high reproducibility by one substrate processing apparatus, and to perform appropriate processing in each case. Become like In addition, the burden on the operator (such as the burden of inputting processing procedures and processing conditions) can be reduced, and processing can be started quickly while avoiding operation errors.
  • the above-described recipe is not limited to the case where the recipe is newly created, and may be prepared by, for example, changing an existing recipe already installed in the substrate processing apparatus.
  • the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded.
  • the input / output device 122 provided in the existing substrate processing apparatus may be operated to directly change the existing recipe already installed in the substrate processing apparatus.

Abstract

Provided is a technology which comprises: a processing chamber in which a substrate is contained; a first gas supply unit which supplies a first gas into the processing chamber; a second gas supply unit which supplies a second gas into the processing chamber; an inert gas supply unit which supplies an inert gas into the processing chamber; an exhaust unit which exhausts the atmosphere of the processing chamber; a pressure measurement unit which is provided with a first opening and closing valve and a first pressure measuring instrument for measuring the pressure within the processing chamber during the supply of the first gas into the processing chamber and a second opening and closing valve and a second pressure measuring instrument for measuring the pressure within the processing chamber during the supply of the second gas into the processing chamber; and a control unit which is configured to control the inert gas supply unit, the exhaust unit and the pressure measurement unit so that the first opening and closing valve and the second opening and closing valve are opened during the discharge of the inert gas by means of the exhaust unit and the pressure within the processing chamber is measured by the first pressure measuring instrument and the second pressure measuring instrument.

Description

基板処理装置、半導体装置の製造方法およびプログラムSubstrate processing apparatus, semiconductor device manufacturing method and program
 本開示は、基板処理装置、半導体装置の製造方法およびプログラムに関する。 The present disclosure relates to a substrate processing apparatus, a method of manufacturing a semiconductor device, and a program.
 半導体装置(デバイス)の製造工程の一工程として、処理室内に収容された基板上に膜を形成する成膜処理が行われることがある(例えば特許文献1を参照)。 (2) As one process of manufacturing a semiconductor device (device), a film formation process for forming a film on a substrate housed in a processing chamber may be performed (for example, see Patent Document 1).
特開2014-67877JP-A-2014-67777
 原料ガスと反応ガスとを用いて成膜を可能とする半導体製造装置では、処理室内の圧力を測定する圧力測定器として、例えば、ダイヤフラムゲージ等に反応生成物が付着する可能性があり、反応生成物が付着すると、ダイヤフラムゲージのゼロ点が、プラス方向またはマイナス方向にシフトする可能性がある。このため実際に設定したい圧力が得られず、適正な圧力制御ができなくなる可能性がある。 In a semiconductor manufacturing apparatus capable of forming a film using a source gas and a reaction gas, as a pressure measuring device for measuring a pressure in a processing chamber, for example, a reaction product may adhere to a diaphragm gauge or the like. When the product adheres, the zero point of the diaphragm gauge may shift in the positive or negative direction. For this reason, the pressure actually desired to be set cannot be obtained, and there is a possibility that appropriate pressure control cannot be performed.
 本開示の一態様によれば、
 基板を収容する処理室と、
 前記処理室へ第一ガスを供給する第一ガス供給部と、
 前記処理室へ第二ガスを供給する第二ガス供給部と、
 前記処理室へ不活性ガスを供給する不活性ガス供給部と、
 前記処理室内の雰囲気を排気する排気部と、
 前記処理室へ前記第一ガスを供給している際に、前記処理室内の圧力を測定するための第1開閉弁と第1圧力測定器と、前記処理室内へ前記第二ガスを供給している際に、前記処理室内の圧力を測定するための第2開閉弁と第2圧力測定器と、を備える圧力測定部と、
 前記排気部により前記不活性ガスの排気中に、前記第1開閉弁と前記第2開閉弁とを開け、前記第1圧力測定器と前記第2圧力測定器により前記処理室内の圧力を測定させるよう前記排気部と前記圧力測定部とを制御するよう構成される制御部と、
 を有する技術が提供される。
According to one aspect of the present disclosure,
A processing chamber for accommodating the substrate;
A first gas supply unit that supplies a first gas to the processing chamber,
A second gas supply unit that supplies a second gas to the processing chamber,
An inert gas supply unit that supplies an inert gas to the processing chamber,
An exhaust unit that exhausts an atmosphere in the processing chamber;
When supplying the first gas to the processing chamber, a first on-off valve and a first pressure measuring device for measuring the pressure in the processing chamber, and supplying the second gas to the processing chamber A pressure measurement unit including a second on-off valve and a second pressure measurement device for measuring the pressure in the processing chamber;
The first on-off valve and the second on-off valve are opened during the evacuation of the inert gas by the evacuation unit, and the pressure in the processing chamber is measured by the first pressure measuring device and the second pressure measuring device. A control unit configured to control the exhaust unit and the pressure measurement unit,
Is provided.
 本開示によれば、ダイヤフラムゲージ等の圧力測定器に反応生成物が付着することを防止し、圧力測定部によってより正確に処理室内の圧力を測定できることが可能となる。 According to the present disclosure, it is possible to prevent reaction products from adhering to a pressure measuring device such as a diaphragm gauge, and to more accurately measure the pressure in the processing chamber by the pressure measuring unit.
本開示の第1の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。FIG. 1 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus suitably used in a first embodiment of the present disclosure, and is a diagram illustrating a processing furnace portion in a vertical cross-sectional view. 本開示の第1の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA-A線断面図で示す図である。FIG. 1 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus suitably used in a first embodiment of the present disclosure, and is a diagram illustrating a processing furnace portion in a cross-sectional view taken along line AA of FIG. 1. 本開示の第1の実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。FIG. 2 is a schematic configuration diagram of a controller of the substrate processing apparatus suitably used in the first embodiment of the present disclosure, and is a diagram illustrating a control system of the controller in a block diagram. 本開示の第1の実施形態における成膜シーケンスを示す図である。FIG. 2 is a diagram illustrating a film forming sequence according to the first embodiment of the present disclosure.
(1)基板処理装置の構成
 図1、2に示すように、処理炉202は加熱系(温度調整部)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、後述する処理室201内を所定温度で加熱する。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
(1) Configuration of Substrate Processing Apparatus As shown in FIGS. 1 and 2, the processing furnace 202 has a heater 207 as a heating system (temperature adjusting unit). The heater 207 has a cylindrical shape, and is vertically installed by being supported by a heater base (not shown) as a holding plate. The heater 207 heats a processing chamber 201 described later at a predetermined temperature. The heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) the gas with heat.
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属により構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220が設けられている。マニホールド209がヒータベースに支持されることにより、反応管203は垂直に据え付けられた状態となる。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成される。処理容器の筒中空部には処理室201が形成されている。処理室201は、複数枚の基板としてのウエハ200を、後述するボート217によって水平姿勢で垂直方向に多段に積載した状態で収容可能に構成されている。 Inside the heater 207, a reaction tube 203 is disposed concentrically with the heater 207. The reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with an upper end closed and a lower end opened. Below the reaction tube 203, a manifold (inlet flange) 209 is provided concentrically with the reaction tube 203. The manifold 209 is made of, for example, a metal such as stainless steel (SUS) and is formed in a cylindrical shape having upper and lower ends opened. The upper end of the manifold 209 is engaged with the lower end of the reaction tube 203, and is configured to support the reaction tube 203. An O-ring 220 as a seal member is provided between the manifold 209 and the reaction tube 203. By supporting the manifold 209 on the heater base, the reaction tube 203 is in a vertically installed state. A processing vessel (reaction vessel) mainly includes the reaction tube 203 and the manifold 209. A processing chamber 201 is formed in the hollow portion of the processing container. The processing chamber 201 is configured to be able to store a plurality of wafers 200 as substrates in a state where the wafers 200 are stacked in a horizontal posture and vertically in multiple stages by a boat 217 described later.
 処理室201内には、ノズル410,420が、マニホールド209の側壁を貫通するように設けられている。ノズル410,420には、ガス供給ラインとしてのガス供給管310,320が、それぞれ接続されている。このように、処理容器(マニホールド209)には2本のノズル410,420と、2本のガス供給管310,320とが接続されており、処理室201内へ複数種類のガスを供給することが可能となっている。 ノ ズ ル In the processing chamber 201, nozzles 410 and 420 are provided so as to penetrate the side wall of the manifold 209. Gas supply pipes 310 and 320 as gas supply lines are connected to the nozzles 410 and 420, respectively. As described above, the processing vessel (manifold 209) is connected with the two nozzles 410 and 420 and the two gas supply pipes 310 and 320, and supplies a plurality of types of gases into the processing chamber 201. Is possible.
 ガス供給管310,320には、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)312,322および開閉弁であるバルブ314,324がそれぞれ設けられている。ガス供給管310,320のバルブ314,324よりも下流側には、不活性ガスを供給するガス供給ラインとしてのガス供給管510,520がそれぞれ接続されている。ガス供給管510,520には、上流方向から順に、MFC512,522およびバルブ514,524がそれぞれ設けられている。 The gas supply pipes 310 and 320 are provided with mass flow controllers (MFC) 312 and 322 as flow controllers (flow control units) and valves 314 and 324 as on-off valves, respectively, in order from the upstream direction. Downstream of the valves 314 and 324 of the gas supply pipes 310 and 320, gas supply pipes 510 and 520 as gas supply lines for supplying an inert gas are connected, respectively. The gas supply pipes 510 and 520 are provided with MFCs 512 and 522 and valves 514 and 524, respectively, in order from the upstream direction.
 ガス供給管310,320の先端部には、ノズル410,420がそれぞれ接続されている。ノズル410,420は、図1、2に示すように、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がり、延在するようにそれぞれ設けられている。すなわち、ノズル410,420は、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。すなわち、ノズル410,420は、処理室201内へ搬入された各ウエハ200の端部(周縁部)の側方にウエハ200の表面(平坦面)と垂直にそれぞれ設けられている。ノズル410,420はL字型のロングノズルとしてそれぞれ構成されており、それらの各水平部はマニホールド209の側壁を貫通するように設けられており、それらの各垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がるように設けられている。 Nozzles 410 and 420 are connected to the distal ends of the gas supply pipes 310 and 320, respectively. As shown in FIGS. 1 and 2, the nozzles 410 and 420 are provided in the annular space in plan view between the inner wall of the reaction tube 203 and the wafer 200, and along the upper portion of the inner wall of the reaction tube 203 from above the lower portion. 200 are provided so as to rise and extend upward in the loading direction of 200. That is, the nozzles 410 and 420 are provided in a region horizontally surrounding the wafer arrangement region on the side of the wafer arrangement region where the wafers 200 are arranged, along the wafer arrangement region. That is, the nozzles 410 and 420 are provided on the side of the end (peripheral edge) of each wafer 200 loaded into the processing chamber 201, respectively, perpendicular to the surface (flat surface) of the wafer 200. The nozzles 410 and 420 are configured as L-shaped long nozzles, respectively, and their horizontal parts are provided so as to penetrate the side wall of the manifold 209, and their vertical parts are at least one end of the wafer arrangement area. It is provided so as to rise from the side toward the other end.
ノズル410,420の側面のウエハ200と対応する高さ(基板の積載領域に対応する高さ)には、ガスを供給する複数の供給孔410a(第1のガス供給孔),420a(第2のガス供給孔)がそれぞれ設けられている。供給孔410a,420aは、反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。供給孔410a,420aは、反応管203のウエハ200の存在する領域、すなわち、基板支持具217と対向する位置、換言すると、ヒータ207の下端部から上部にわたって複数設けられている。 A plurality of supply holes 410a (first gas supply holes) and 420a (second gas supply holes) for supplying gas are provided at the height corresponding to the wafer 200 on the side surfaces of the nozzles 410 and 420 (height corresponding to the substrate loading region). Gas supply holes) are provided. The supply holes 410a and 420a are open so as to face the center of the reaction tube 203, and can supply gas toward the wafer 200. A plurality of supply holes 410a and 420a are provided in the region of the reaction tube 203 where the wafer 200 is present, that is, a position facing the substrate support 217, in other words, from the lower end to the upper portion of the heater 207.
 複数の供給孔410a、420aは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、さらに同じ開口ピッチで設けられている。ただし、供給孔410a、420aは上述の形態に限定されない。例えば、ノズル410、420の下部(上流側)から上部(下流側)に向かって開口面積を徐々に大きくしてもよい。これにより、供給孔410a、420aから供給されるガスの流量をより均一化することが可能となる。 供給 A plurality of supply holes 410a and 420a are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch. However, the supply holes 410a and 420a are not limited to the above-described embodiment. For example, the opening area may be gradually increased from the lower part (upstream side) to the upper part (downstream side) of the nozzles 410 and 420. Thereby, the flow rate of the gas supplied from the supply holes 410a and 420a can be made more uniform.
 このように、本実施形態では、反応管203の側壁の内壁と、反応管203内に配列された複数枚のウエハ200の端部(周縁部)と、で定義される平面視において円環状の縦長の空間内、すなわち、円筒状の空間内に配置したノズル410,420を経由してガスを搬送している。そして、ノズル410,420にそれぞれ開口された供給孔410a,420aから、ウエハ200の近傍で反応管203内にガスを噴出させている。そして、反応管203内におけるガスの主たる流れを、ウエハ200の表面と平行な方向、すなわち、水平方向としている。供給孔410bからウエハ200の領域より下方において、処理室201内にガスを供給している。この供給孔410bがあることによって、ノズル410内の圧力を下げることが出来る。 As described above, in the present embodiment, an annular shape in plan view defined by the inner wall of the side wall of the reaction tube 203 and the ends (peripheral portions) of the plurality of wafers 200 arranged in the reaction tube 203. Gas is transported via nozzles 410 and 420 arranged in a vertically long space, that is, in a cylindrical space. Then, gas is jetted into the reaction tube 203 near the wafer 200 from the supply holes 410a and 420a opened to the nozzles 410 and 420, respectively. The main flow of the gas in the reaction tube 203 is in a direction parallel to the surface of the wafer 200, that is, in a horizontal direction. The gas is supplied into the processing chamber 201 below the region of the wafer 200 from the supply hole 410b. With the supply hole 410b, the pressure in the nozzle 410 can be reduced.
 このような構成とすることで、各ウエハ200に均一にガスを供給でき、各ウエハ200に形成される膜の膜厚の面間均一性を向上させることが可能となる。ウエハ200の表面上を流れたガス、すなわち、反応後の残ガスは、排気口、すなわち、後述する排気管231の方向に向かって流れる。但し、この残ガスの流れの方向は、排気口の位置によって適宜特定され、垂直方向に限ったものではない。 With such a configuration, the gas can be uniformly supplied to each wafer 200, and the uniformity of the film thickness of the film formed on each wafer 200 can be improved. The gas flowing on the surface of the wafer 200, that is, the residual gas after the reaction flows toward an exhaust port, that is, an exhaust pipe 231 described later. However, the direction of the flow of the residual gas is appropriately specified by the position of the exhaust port, and is not limited to the vertical direction.
 ガス供給管310からは、処理ガス(原料ガス)が、MFC312、バルブ314、ノズル410を介して処理室201内へ供給される。原料ガスとしては、例えば、金属元素であるアルミニウム(Al)を含む金属含有ガスであるアルミニウム含有原料(Al含有原料ガス、Al含有ガス)としてのトリメチルアルミニウム(Al(CH、略称:TMA)が用いられる。TMAは有機系原料であり、アルミニウムにリガンドとしてアルキル基が結合したアルキルアルミニウムである。ノズル410から原料ガスを流す場合、ノズル410を原料ガスノズルと称してもよい。 A processing gas (raw material gas) is supplied from the gas supply pipe 310 into the processing chamber 201 via the MFC 312, the valve 314, and the nozzle 410. As the raw material gas, for example, trimethyl aluminum (Al (CH 3 ) 3 ) as an aluminum-containing raw material (Al-containing raw material gas, Al-containing gas) which is a metal-containing gas containing aluminum (Al) as a metal element, abbreviation: TMA ) Is used. TMA is an organic raw material, and is an alkyl aluminum in which an alkyl group is bonded to aluminum as a ligand. When the source gas flows from the nozzle 410, the nozzle 410 may be referred to as a source gas nozzle.
 原料ガスとは、気体状態の原料、例えば、常温常圧下で気体状態である気体原料や、常温常圧下で液体状態である液体原料を気化することで得られるガス等のことである。本明細書において「原料」という言葉を用いた場合は、「液体状態である原料」を意味する場合、「気体状態である原料(原料ガス)」を意味する場合、または、それらの両方を意味する場合がある。 The raw material gas refers to a raw material in a gaseous state, for example, a gaseous raw material in a gaseous state at normal temperature and normal pressure, a gas obtained by vaporizing a liquid raw material in a liquid state at normal temperature and normal pressure, and the like. In this specification, the term “raw material” means “raw material in liquid state”, “raw material in gaseous state (raw material gas)”, or both of them. May be.
 ガス供給管320からは、処理ガス(反応ガス)として、例えば、酸素(O)を含み、Alと反応する反応ガス(リアクタント)としての酸素含有ガス(酸化ガス、酸化剤)が、MFC322、バルブ324、ノズル420を介して処理室201内へ供給される。O含有ガスとしては、例えば、オゾン(O)ガス、OとOとを混合したガス等を用いることができる。 From the gas supply pipe 320, an oxygen-containing gas (oxidizing gas, oxidizing agent) containing, for example, oxygen (O) as a processing gas (reactive gas) and reacting with Al is supplied as an MFC 322 and a valve. 324, is supplied into the processing chamber 201 through the nozzle 420. As the O-containing gas, for example, an ozone (O 3 ) gas, a mixed gas of O 3 and O 2 , or the like can be used.
 ガス供給管510,520からは、不活性ガスとして、例えば、Nガスが、それぞれMFC512,522、バルブ514,524、ガス供給管310,320、ノズル410,420を介して処理室201内へ供給される。 From the gas supply pipes 510 and 520, for example, N 2 gas as an inert gas is introduced into the processing chamber 201 via the MFCs 512 and 522, the valves 514 and 524, the gas supply pipes 310 and 320, and the nozzles 410 and 420, respectively. Supplied.
 ガス供給管310から原料ガスを供給する場合、主に、ガス供給管310、MFC312、バルブ314により、原料ガス供給系が構成される。ノズル410を原料ガス供給系に含めて考えてもよい。原料ガス供給系を原料供給系と称することもできる。ガス供給管310から金属含有ガスを供給する場合、原料ガス供給系を金属含有ガス供給系と称することもできる。金属含有ガスとしてアルミニウム含有原料(Al含有原料ガス、Al含有ガス)を用いる場合、金属含有ガス供給系をアルミニウム含有原料(Al含有原料ガス、Al含有ガス)供給系と称することもできる。アルミニウム含有原料としてTMAを用いる場合、アルミニウム含有原料供給系をTMA供給系と称することもできる。 (4) When the source gas is supplied from the gas supply pipe 310, a source gas supply system mainly includes the gas supply pipe 310, the MFC 312, and the valve 314. The nozzle 410 may be included in the source gas supply system. The source gas supply system may be referred to as a source supply system. When supplying the metal-containing gas from the gas supply pipe 310, the source gas supply system may be referred to as a metal-containing gas supply system. When an aluminum-containing raw material (Al-containing raw material gas, Al-containing gas) is used as the metal-containing gas, the metal-containing gas supply system may be referred to as an aluminum-containing raw material (Al-containing raw material gas, Al-containing gas) supply system. When TMA is used as the aluminum-containing raw material, the aluminum-containing raw material supply system may be referred to as a TMA supply system.
 ガス供給管320から反応ガス(リアクタント)を供給する場合、主に、ガス供給管320、MFC322、バルブ324により、反応ガス供給系(リアクタント供給系)が構成される。ノズル420を反応ガス供給系に含めて考えてもよい。反応ガスとして酸素含有ガス(酸化ガス、酸化剤)を供給する場合、反応ガス供給系を、酸素含有ガス(酸化ガス、酸化剤)供給系と称することもできる。酸素含有ガスとしてOを用いる場合、酸素含有ガス供給系をO供給系と称することもできる。ノズル420から反応ガスを流す場合、ノズル420を反応ガスノズルと称してもよい。 When a reaction gas (reactant) is supplied from the gas supply pipe 320, a reaction gas supply system (reactant supply system) is mainly configured by the gas supply pipe 320, the MFC 322, and the valve 324. The nozzle 420 may be included in the reaction gas supply system. When an oxygen-containing gas (oxidizing gas, oxidant) is supplied as a reaction gas, the reaction gas supply system may be referred to as an oxygen-containing gas (oxidizing gas, oxidant) supply system. When O 3 is used as the oxygen-containing gas, the oxygen-containing gas supply system may be referred to as an O 3 supply system. When the reaction gas flows from the nozzle 420, the nozzle 420 may be referred to as a reaction gas nozzle.
 主に、ガス供給管510,520、MFC512,522、バルブ514,325により、不活性ガス供給系が構成される。 An inert gas supply system mainly includes the gas supply pipes 510 and 520, the MFCs 512 and 522, and the valves 514 and 325.
 原料ガス供給系、反応ガス供給系を合わせてガス供給系と称することもできる。不活性ガス供給系をガス供給系に含めて考えてもよい。 The source gas supply system and the reaction gas supply system may be collectively referred to as a gas supply system. The inert gas supply system may be included in the gas supply system.
 反応管203には、処理室201内の雰囲気を排気する排気流路としての排気管231が設けられている。排気管231には、第1開閉弁としての保護用エアバルブ(エアバルブ)291を介して原料ガス供給時の処理室201内の圧力を測定する第1圧力測定器としての圧力センサ(ダイヤフラムゲージ)293が接続されている。また、排気管231には、第2開閉弁としての保護用エアバルブ(エアバルブ)292を介して反応ガス供給時の処理室201内の圧力を測定する第2圧力測定器としての圧力センサ(ダイヤフラムゲージ)294が接続されている。エアバルブ291,292と圧力センサ293,294を含めて圧力測定部が構成される。また、排気管231には、排気バルブ(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。主に、排気管231、APCバルブ244、エアバルブ291,292、圧力センサ293,294により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。排気管231は、反応管203に設ける場合に限らず、ノズル410,420と同様にマニホールド209に設けてもよい。 The reaction tube 203 is provided with an exhaust pipe 231 as an exhaust passage for exhausting the atmosphere in the processing chamber 201. The exhaust pipe 231 has a pressure sensor (diaphragm gauge) 293 as a first pressure measuring device for measuring the pressure in the processing chamber 201 when the source gas is supplied through a protective air valve (air valve) 291 as a first opening / closing valve. Is connected. In addition, a pressure sensor (diaphragm gauge) as a second pressure measuring device that measures the pressure in the processing chamber 201 when the reaction gas is supplied through a protective air valve (air valve) 292 as a second opening / closing valve is provided in the exhaust pipe 231. ) 294 are connected. A pressure measuring unit is configured including the air valves 291 and 292 and the pressure sensors 293 and 294. In addition, a vacuum pump 246 as a vacuum exhaust device is connected to the exhaust pipe 231 via an APC (Auto Pressure Controller) valve 244 as an exhaust valve (pressure adjusting unit). The APC valve 244 can perform evacuation and stop evacuation of the processing chamber 201 by opening and closing the valve while the vacuum pump 246 is operating. Further, with the vacuum pump 246 operating, The valve is configured such that the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245. An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, the air valves 291 and 292, and the pressure sensors 293 and 294. The vacuum pump 246 may be included in the exhaust system. The exhaust pipe 231 is not limited to being provided in the reaction tube 203, and may be provided in the manifold 209 similarly to the nozzles 410 and 420.
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の処理室201と反対側には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。また、マニホールド209の下方には、ボートエレベータ115によりシールキャップ219を降下させている間、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。 シ ー ル Below the manifold 209, a seal cap 219 is provided as a furnace port lid capable of hermetically closing the lower end opening of the manifold 209. The seal cap 219 is configured to contact the lower end of the manifold 209 from below in the vertical direction. The seal cap 219 is made of, for example, a metal such as SUS and is formed in a disk shape. On the upper surface of the seal cap 219, an O-ring 220b is provided as a seal member that contacts the lower end of the manifold 209. On the opposite side of the seal cap 219 from the processing chamber 201, a rotation mechanism 267 for rotating a boat 217 described later is installed. The rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217. The rotation mechanism 267 is configured to rotate the boat 217 to rotate the wafer 200. The seal cap 219 is configured to be vertically moved up and down by a boat elevator 115 as an elevating mechanism vertically installed outside the reaction tube 203. The boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down. The boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafer 200, into and out of the processing chamber 201. Further, below the manifold 209, a shutter 219s is provided as a furnace port lid that can hermetically close the lower end opening of the manifold 209 while the seal cap 219 is lowered by the boat elevator 115. The shutter 219s is made of a metal such as SUS, for example, and is formed in a disk shape. An O-ring 220c is provided on the upper surface of the shutter 219s as a seal member that contacts the lower end of the manifold 209. The opening / closing operation of the shutter 219s (elevation operation, rotation operation, etc.) is controlled by the shutter opening / closing mechanism 115s.
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される図示しない断熱板が多段に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。但し、本実施形態はこのような形態に限定されない。例えば、ボート217の下部に断熱板を設けずに、石英やSiC等の耐熱性材料により構成される筒状の部材として構成された断熱筒218を設けてもよい。 The boat 217 as a substrate supporter supports a plurality of, for example, 25 to 200, wafers 200 in a horizontal posture and in a vertically aligned manner with their centers aligned with each other, that is, supports in multiple stages. It is configured to be arranged at intervals. The boat 217 is made of a heat-resistant material such as quartz or SiC. At the lower part of the boat 217, a heat insulating plate (not shown) made of a heat-resistant material such as quartz or SiC is supported in multiple stages. This configuration makes it difficult for heat from the heater 207 to be transmitted to the seal cap 219 side. However, the present embodiment is not limited to such an embodiment. For example, instead of providing a heat insulating plate below the boat 217, a heat insulating tube 218 configured as a cylindrical member made of a heat-resistant material such as quartz or SiC may be provided.
 反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、ノズル410,420と同様にL字型に構成されており、反応管203の内壁に沿って設けられている。 温度 A temperature sensor 263 as a temperature detector is installed in the reaction tube 203. By adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution. The temperature sensor 263 is formed in an L shape like the nozzles 410 and 420, and is provided along the inner wall of the reaction tube 203.
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。 As shown in FIG. 3, the controller 121, which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. Have been. The RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e. An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピや、後述するクリーニング処理の手順や条件等が記載されたクリーニングレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する成膜処理における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。クリーニングレシピは、後述するクリーニング処理における各手順を、コントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピやクリーニングレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピ、クリーニングレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、クリーニングレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらのうち任意の組み合わせを含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 121c includes, for example, a flash memory, an HDD (Hard Disk Drive), and the like. In the storage device 121c, a control program for controlling the operation of the substrate processing apparatus, a process recipe in which procedures and conditions of substrate processing described later are described, and a cleaning procedure and conditions of cleaning processing described later are described. Recipes and the like are stored in a readable manner. The process recipe is a combination that allows the controller 121 to execute each procedure in a film forming process described later and obtain a predetermined result, and functions as a program. The cleaning recipe is a combination of the cleaning procedure, which will be described later, performed by the controller 121 so as to obtain a predetermined result, and functions as a program. Hereinafter, the process recipe, the cleaning recipe, the control program, and the like are collectively referred to simply as a program. Further, the process recipe and the cleaning recipe are also simply referred to as recipes. When the word program is used in this specification, it may include only a process recipe alone, may include only a cleaning recipe, may include only a control program, or may include any combination thereof. . The RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
 I/Oポート121dは、上述のMFC512,522,312,322、バルブ514,524,314,324、エアバルブ291,292、圧力センサ293,294、APCバルブ243、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115、報知部550等に接続されている。 The I / O port 121d includes the MFCs 512, 522, 312, 322, the valves 514, 524, 314, 324, the air valves 291, 292, the pressure sensors 293, 294, the APC valve 243, the vacuum pump 246, the temperature sensor 263, and the heater. 207, a rotation mechanism 267, a boat elevator 115, a notification unit 550, and the like.
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC512,522,312,322による各種ガスの流量調整動作、バルブ514,524,314,324の開閉動作、APCバルブ243の開閉動作、エアバルブ291,293の開閉動作、圧力センサ293,294に基づくAPCバルブ243による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構115sによるシャッタ219sの開閉動作等を制御するように構成されている。 The CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like. The CPU 121a adjusts the flow rate of various gases by the MFCs 512, 522, 312, and 322, opens and closes the valves 514, 524, 314, and 324, opens and closes the APC valve 243, and operates the air valve 291, according to the contents of the read recipe. 293, the pressure adjustment operation by the APC valve 243 based on the pressure sensors 293, 294, the start and stop of the vacuum pump 246, the temperature adjustment operation of the heater 207 based on the temperature sensor 263, the rotation and rotation of the boat 217 by the rotation mechanism 267. The speed control operation, the lifting / lowering operation of the boat 217 by the boat elevator 115, and the opening / closing operation of the shutter 219s by the shutter opening / closing mechanism 115s are controlled.
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。 The controller 121 is stored in an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk and a hard disk, an optical disk such as a CD and a DVD, a magneto-optical disk such as an MO, and a semiconductor memory such as a USB memory and a memory card). The above-described program can be configured by installing the program in a computer. The storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively simply referred to as a recording medium. In this specification, the term “recording medium” may include only the storage device 121c, include only the external storage device 123, or include both of them. The provision of the program to the computer may be performed using communication means such as the Internet or a dedicated line without using the external storage device 123.
(2)成膜処理
 上述の基板処理装置10を用い、半導体装置(デバイス)の製造工程の一工程として、基板上に膜を形成するシーケンス例について、図4を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
(2) Film Forming Process An example of a sequence of forming a film on a substrate as one process of manufacturing a semiconductor device (device) using the above-described substrate processing apparatus 10 will be described with reference to FIG. In the following description, the operation of each unit constituting the substrate processing apparatus is controlled by the controller 121.
 本実施形態では、基板としての複数のウエハ200が積載された状態で収容された処理室201を所定温度で加熱しつつ、処理室201に、ノズル410に開口する複数の供給孔410aから原料ガスとしてTMAガスを供給する工程と、ノズル420に開口する複数の供給孔420aから反応ガスとしてOガスを供給する工程と、を所定回数(n回)行うことで、ウエハ200上に、AlおよびOを含む膜としてアルミニウム酸化膜(AlO膜)を形成する。 In the present embodiment, while heating the processing chamber 201 containing a plurality of wafers 200 as substrates loaded therein at a predetermined temperature, the processing gas is supplied to the processing chamber 201 from the plurality of supply holes 410 a opened to the nozzle 410. By performing a predetermined number of times (n times) of supplying a TMA gas as a reaction gas and supplying an O 3 gas as a reaction gas from a plurality of supply holes 420a opened to the nozzle 420, n An aluminum oxide film (AlO film) is formed as a film containing O.
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」をいう言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。 に お い て In this specification, the term “wafer” may mean the wafer itself or may refer to a laminate of the wafer and predetermined layers or films formed on the surface thereof. In this specification, the term “surface of the wafer” may mean the surface of the wafer itself or the surface of a predetermined layer or the like formed on the wafer. In this specification, the phrase "forming a predetermined layer on a wafer" means that a predetermined layer is directly formed on the surface of the wafer itself, or a layer formed on the wafer. It may mean forming a predetermined layer on the substrate. In this specification, the use of the word "substrate" is synonymous with the use of the word "wafer".
(ウエハチャージ・ボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)される、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200が収容されたボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(Wafer charge boat load)
When a plurality of wafers 200 are loaded on the boat 217 (wafer charging), the shutter 219s is moved by the shutter opening / closing mechanism 115s, and the lower end opening of the manifold 209 is opened (shutter open). Thereafter, as shown in FIG. 1, the boat 217 in which the plurality of wafers 200 are stored is lifted by the boat elevator 115 and is loaded into the processing chamber 201 (boat loading). In this state, the seal cap 219 is in a state where the lower end of the manifold 209 is sealed via the O-ring 220b.
(圧力・温度調整)
 エアバルブ291,292を開け、処理室201内の圧力を、圧力センサ293,294により一定時間測定する。その後、それぞれの圧力センサ293,294が処理室201内の圧力の値が同圧であることを測定すると、エアバルブ292を閉じて、エアバルブ291は開けたままとして、圧力センサ293で処理室201内の圧力のモニターを開始する。処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ293で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。続いて、回転機構267によりボート217及びウエハ200の回転を開始する。回転機構267によるボート217及びウエハ200の回転は、少なくとも、ウエハ200に対する処理が完了するまでの間は継続して行われる。
(Pressure / temperature adjustment)
The air valves 291 and 292 are opened, and the pressure in the processing chamber 201 is measured by the pressure sensors 293 and 294 for a certain time. Thereafter, when each of the pressure sensors 293 and 294 measures that the pressure value in the processing chamber 201 is the same, the air valve 292 is closed and the air valve 291 is kept open. Start monitoring pressure of The inside of the processing chamber 201, that is, the space where the wafer 200 exists, is evacuated by the vacuum pump 246 so as to have a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 293, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 keeps operating at least until the processing on the wafer 200 is completed. Further, the inside of the processing chamber 201 is heated by the heater 207 so as to reach a desired temperature. At this time, the amount of power to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment). The heating of the inside of the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed. Subsequently, the rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is started. The rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the processing on the wafer 200 is completed.
(成膜ステップ)
 その後、原料ガス供給ステップ、残留ガス除去ステップ、反応ガス供給ステップ、残留ガス除去ステップをこの順で所定回数行う。
(Deposition step)
Thereafter, a source gas supply step, a residual gas removal step, a reaction gas supply step, and a residual gas removal step are performed a predetermined number of times in this order.
〔原料ガス供給ステップ〕
 バルブ314を開き、ガス供給管310へTMAガスを流す。TMAガスは、MFC312により流量調整され、ノズル410に開口する供給孔410aからウエハ200に対して供給される。すなわちウエハ200はTMAガスに暴露される。供給孔410aから供給されたTMAガスは、排気管231から排気される。このとき同時に、バルブ514を開き、ガス供給管510内にキャリアガスとしてN2ガスを流す。Nガスは、MFC512により流量調整され、TMAガスと一緒にノズル410の供給孔410aから処理室201内に供給され、排気管231から排気される。また、原料ガス供給ステップでは、TMAガスを処理室201内に供給する際に、エアバルブ291を開け、圧力センサ293によって、TMAガス供給時の処理室201内の圧力をモニターする。一方、エアバルブ292は閉じておき、圧力センサ294内にTMAガスが侵入しないようにしておく。
[Raw material gas supply step]
The valve 314 is opened, and the TMA gas flows into the gas supply pipe 310. The flow rate of the TMA gas is adjusted by the MFC 312, and the TMA gas is supplied to the wafer 200 from a supply hole 410 a opened in the nozzle 410. That is, the wafer 200 is exposed to the TMA gas. The TMA gas supplied from the supply hole 410a is exhausted from the exhaust pipe 231. At this time, at the same time, the valve 514 is opened, and the N 2 gas flows as a carrier gas into the gas supply pipe 510. The flow rate of the N 2 gas is adjusted by the MFC 512, the N 2 gas is supplied into the processing chamber 201 through the supply hole 410 a of the nozzle 410 together with the TMA gas, and is exhausted from the exhaust pipe 231. In the source gas supply step, when the TMA gas is supplied into the processing chamber 201, the air valve 291 is opened, and the pressure in the processing chamber 201 during the supply of the TMA gas is monitored by the pressure sensor 293. On the other hand, the air valve 292 is closed so that the TMA gas does not enter the pressure sensor 294.
 また、ノズル420へのTMAガスの侵入を防止(逆流を防止)するため、バルブ524を開き、ガス供給管520内へNガスを流す。Nガスは、ガス供給管520、ノズル420を介して処理室201内へ供給され、排気管231から排気される。 Further, in order to prevent the intrusion of the TMA gas into the nozzle 420 (prevent the backflow), the valve 524 is opened, and the N 2 gas flows into the gas supply pipe 520. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 520 and the nozzle 420, and is exhausted from the exhaust pipe 231.
 このとき、APCバルブ243を適正に調整して、処理室201内の圧力を、例えば1~1000Pa、好ましくは1~100Pa、より好ましくは10~50Paの範囲内の圧力とする。処理室201内の圧力を1000Pa以下とすることで、後述する残留ガス除去を好適に行うことができる。処理室201内の圧力を1Pa以上とすることで、ウエハ200表面でのTMAガスの反応速度を高めることができ、実用的な成膜速度を得ることが可能となる。なお、本明細書では、数値の範囲として、例えば1~1000Paと記載した場合は、1Pa以上1000Pa以下を意味する。すなわち、数値の範囲内には1Paおよび1000Paが含まれる。圧力のみならず、流量、時間、温度等、本明細書に記載される全ての数値について同様である。 At this time, the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, 1 to 1000 Pa, preferably 1 to 100 Pa, and more preferably 10 to 50 Pa. By setting the pressure in the processing chamber 201 to 1000 Pa or less, it is possible to suitably perform the residual gas removal described later. By setting the pressure in the processing chamber 201 to 1 Pa or more, the reaction speed of the TMA gas on the surface of the wafer 200 can be increased, and a practical film forming speed can be obtained. In this specification, when the range of the numerical value is, for example, 1 to 1000 Pa, it means 1 Pa or more and 1000 Pa or less. That is, 1 Pa and 1000 Pa are included in the range of the numerical value. The same applies to all numerical values described in this specification, such as not only pressure but also flow rate, time, temperature and the like.
 MFC312で制御するTMAガスの供給流量は、例えば、10~1000sccm、好ましくは50~1000sccm、より好ましくは100~500sccmの範囲内の流量とする。流量を1000sccm以下とすることで、後述する残留ガス除去を好適に行うことができる。流量を10sccm以上とすることで、ウエハ200表面でのTMAガスの反応速度を高めることができる、実用的な成膜速度を得ることが可能となる。ここでのTMAガスとはTMAガス単体の流量を表している。なお、TMAガスの供給方法として、例えばバブリングによる供給方法では、100~2000sccmの不活性ガスを含んでいても構わない。 The supply flow rate of the TMA gas controlled by the MFC 312 is, for example, a flow rate within a range of 10 to 1000 sccm, preferably 50 to 1000 sccm, and more preferably 100 to 500 sccm. By setting the flow rate to 1000 sccm or less, it is possible to suitably perform the residual gas removal described later. By setting the flow rate to 10 sccm or more, it is possible to obtain a practical film forming rate capable of increasing the reaction rate of the TMA gas on the surface of the wafer 200. Here, the TMA gas indicates the flow rate of the TMA gas alone. In addition, as a supply method of the TMA gas, for example, a supply method by bubbling may include an inert gas of 100 to 2000 sccm.
 MFC512で制御するNガスの供給流量は、例えば、1~30slm、好ましくは1~20slm、より好ましくは1~10slmの範囲内の流量とする。 The supply flow rate of the N 2 gas controlled by the MFC 512 is, for example, 1 to 30 slm, preferably 1 to 20 slm, and more preferably 1 to 10 slm.
 TMAガスをウエハ200に対して供給する時間は、例えば、1~60秒、好ましく1~30秒、より好ましくは2~20秒の範囲内とする。 The time for supplying the TMA gas to the wafer 200 is, for example, in the range of 1 to 60 seconds, preferably 1 to 30 seconds, and more preferably 2 to 20 seconds.
 ヒータ207は、ウエハ200の温度が、例えば、50~600℃、好ましくは70~550℃、より好ましくは75~500℃の範囲内となるように加熱する。温度を600℃以下とすることで、TMAガスの過剰な熱分解を抑制しつつ成膜速度を適切に得ることができ、不純物が膜内に取り込まれて抵抗率が高くなることが抑制される。なお、TMAガスの熱分解は、当該処理に近い条件下においては450℃程度で開始するため、550℃以下の温度に加熱された処理室201内において本開示を用いるとより有効である。一方、温度が400℃以上であることにより、反応性が高く、効率的な膜形成が可能である。 The heater 207 heats the wafer 200 so that the temperature of the wafer 200 is, for example, in the range of 50 to 600 ° C., preferably 70 to 550 ° C., and more preferably 75 to 500 ° C. By controlling the temperature to 600 ° C. or lower, it is possible to appropriately obtain a film formation rate while suppressing excessive thermal decomposition of the TMA gas, and suppress an increase in resistivity due to impurities being taken into the film. . Note that thermal decomposition of TMA gas starts at about 450 ° C. under conditions close to the processing, and therefore, it is more effective to use the present disclosure in the processing chamber 201 heated to a temperature of 550 ° C. or lower. On the other hand, when the temperature is 400 ° C. or higher, the reactivity is high, and efficient film formation is possible.
 上述の条件下で処理室201内へTMAガスを供給することにより、ウエハ200の最表面に、Al含有層が形成される。Al含有層は、Al層の他、CおよびHを含み得る。Al含有層は、ウエハ200の最表面に、TMAが物理吸着したり、TMAの一部が分解した物質が化学吸着したり、TMAが熱分解することでAlが堆積したりすること等により形成される。すなわち、Al含有層は、TMAやTMAの一部が分解した物質の吸着層(物理吸着層や化学吸着層)であってもよく、Alの堆積層(Al層)であってもよい。 (4) By supplying the TMA gas into the processing chamber 201 under the above conditions, an Al-containing layer is formed on the outermost surface of the wafer 200. The Al-containing layer may include C and H in addition to the Al layer. The Al-containing layer is formed on the outermost surface of the wafer 200 by physically adsorbing TMA, chemically adsorbing a substance obtained by partially decomposing TMA, or depositing Al by thermal decomposition of TMA. Is done. That is, the Al-containing layer may be an adsorption layer (physical adsorption layer or chemical adsorption layer) of TMA or a substance in which TMA is partially decomposed, or may be an Al deposition layer (Al layer).
〔残留ガス除去ステップ〕
 Al含有層が形成された後、バルブ314を閉じ、TMAガスの供給を停止する。このとき、APCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応又はAl含有層形成に寄与した後のTMAガスを処理室201内から排除する。バルブ514,524は開いた状態でNガスの処理室201内への供給を維持する。Nガスはパージガス(不活性ガス)として作用し、処理室201内に残留する未反応又はAl含有層形成に寄与した後のTMAガスを処理室201内から排除する効果を高めることができる。なお、バルブ514,524からのNガスは残留ガス除去ステップの間、常に流し続けてもよい。
[Residual gas removal step]
After the formation of the Al-containing layer, the valve 314 is closed, and the supply of the TMA gas is stopped. At this time, while the APC valve 243 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the TMA gas remaining in the processing chamber 201 and having contributed to the formation of the Al-containing layer is removed from the processing chamber 201. Eliminate from within. The valves 514 and 524 maintain the supply of the N 2 gas into the processing chamber 201 in an open state. The N 2 gas acts as a purge gas (inert gas), and can increase the effect of removing unreacted TMA gas remaining in the processing chamber 201 or having contributed to the formation of the Al-containing layer from the processing chamber 201. Note that the N 2 gas from the valves 514 and 524 may be kept flowing during the residual gas removing step.
 処理室201内の残留ガスを除去した後、エアバルブ291を開けたままとし、圧力センサ293によって残留ガス除去後の処理室201内の圧力をモニターする。このとき、エアバルブ292を開け、圧力センサ294によって残留ガス除去後の処理室201内の圧力をモニターする。すなわち、処理室201内の原料ガス(第1ガス)を除去(排気)するステップで、パージガスの排気中にエアバルブ291と292を開けて、圧力センサ293と294により処理室201内の圧力を測定(モニター)するように構成されている。なお、圧力センサ293,294により一定時間処理室201内の圧力をモニターし、その後、それぞれの圧力センサ293,294が処理室201内の圧力の値が同圧であることを測定するように構成してもよい。この場合、エアバルブ291を閉じて、エアバルブ292を開けたままとし、後述するO供給時の処理室内の圧力をモニターする圧力センサ294に切り替えて処理室201内のモニターを開始する。エアバルブ291を閉めることで、Oガスが圧力センサ293内に侵入しないようにしておく。なお、処理室201内の残留ガスを除去した後に、圧力センサ293,294で処理室201内をモニターし、圧力センサ293,294が測定した処理室201の圧力の値が同圧を測定、すなわち、測定結果が同一であることで、圧力センサ293,294には反応生成物が付着しておらず、正常に動作していることを確認することが可能となる。また、基板処理装置10に報知部550を設け、コントローラ121へ接続しておき、圧力センサ293と294がモニタ(測定)した圧力の値が一致しない場合には、報知部によりユーザに対して、圧力値が一致しないことを報知するように構成してもよい。このようにすることで、圧力センサ293または294には反応生成物が付着していることを報知部550からアラーム等によりユーザに対して知らせることが可能となる。 After removing the residual gas in the processing chamber 201, the air valve 291 is kept open, and the pressure in the processing chamber 201 after the residual gas is removed is monitored by the pressure sensor 293. At this time, the air valve 292 is opened, and the pressure in the processing chamber 201 after the residual gas is removed is monitored by the pressure sensor 294. That is, in the step of removing (exhausting) the source gas (first gas) in the processing chamber 201, the air valves 291 and 292 are opened while the purge gas is exhausted, and the pressure in the processing chamber 201 is measured by the pressure sensors 293 and 294. (Monitor). The pressure sensors 293 and 294 monitor the pressure in the processing chamber 201 for a certain period of time, and then each of the pressure sensors 293 and 294 measures that the value of the pressure in the processing chamber 201 is the same. May be. In this case, the air valve 291 is closed, the air valve 292 is kept open, and the pressure in the processing chamber 201 is switched to a pressure sensor 294 for monitoring the pressure in the processing chamber when O 3 is supplied, which will be described later. By closing the air valve 291, the O 3 gas is prevented from entering the pressure sensor 293. After the residual gas in the processing chamber 201 is removed, the inside of the processing chamber 201 is monitored by the pressure sensors 293 and 294, and the value of the pressure of the processing chamber 201 measured by the pressure sensors 293 and 294 measures the same pressure, that is, Since the measurement results are the same, it is possible to confirm that the reaction products are not attached to the pressure sensors 293 and 294 and that the pressure sensors 293 and 294 are operating normally. In addition, a notifying unit 550 is provided in the substrate processing apparatus 10 and connected to the controller 121, and when the pressure values monitored (measured) by the pressure sensors 293 and 294 do not match, the notifying unit informs the user. It may be configured to notify that the pressure values do not match. By doing so, it is possible to notify the user that the reaction product has adhered to the pressure sensor 293 or 294 from the notification unit 550 by an alarm or the like.
〔反応ガス供給ステップ〕
 処理室201内の残留ガスを除去した後、圧力センサ294のモニターが開始すると、バルブ324を開き、ガス供給管320内に反応ガスであるOガスを流す。Oガスは、MFC322により流量調整され、ノズル420の供給孔420aから処理室201内のウエハ200に対して供給され、排気管231から排気される。すなわちウエハ200はOガスに暴露される。このとき、バルブ524を開き、ガス供給管520内にN2ガスを流す。Nガスは、MFC522により流量調整され、Oガスと共に処理室201内に供給されて、排気管231から排気される。このとき、ノズル410内へのOガスの侵入を防止(逆流を防止)するために、バルブ514を開き、ガス供給管510内へNガスを流す。Nガスは、ガス供給管510、ノズル410を介して処理室201内に供給され、排気管231から排気される。反応ガス供給ステップでは、Oを処理室201内に供給する際に、エアバルブ292を開け、圧力センサ294によって、Oガス供給時の処理室201内の圧力をモニターする。一方、エアバルブ291は閉じて、圧力センサ293内にOガスが侵入しないようにしておく。
[Reaction gas supply step]
When the monitoring of the pressure sensor 294 is started after removing the residual gas in the processing chamber 201, the valve 324 is opened, and the O 3 gas, which is a reaction gas, flows into the gas supply pipe 320. The flow rate of the O 3 gas is adjusted by the MFC 322, the O 3 gas is supplied to the wafer 200 in the processing chamber 201 from the supply hole 420 a of the nozzle 420, and is exhausted from the exhaust pipe 231. That wafer 200 is exposed to the O 3 gas. At this time, the valve 524 is opened, and the N 2 gas flows into the gas supply pipe 520. The flow rate of the N 2 gas is adjusted by the MFC 522, supplied to the processing chamber 201 together with the O 3 gas, and exhausted from the exhaust pipe 231. At this time, the valve 514 is opened and the N 2 gas flows into the gas supply pipe 510 in order to prevent the O 3 gas from entering the nozzle 410 (prevent backflow). The N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 510 and the nozzle 410, and is exhausted from the exhaust pipe 231. In the reaction gas supply step, when supplying O 3 into the processing chamber 201, the air valve 292 is opened, and the pressure in the processing chamber 201 during the supply of the O 3 gas is monitored by the pressure sensor 294. On the other hand, the air valve 291 is closed so that O 3 gas does not enter the pressure sensor 293.
 このとき、APCバルブ243を適正に調整して、処理室201内の圧力を、例えば1~1000Pa、好ましくは1~500Pa、より好ましくは10~200Paの範囲内の圧力とする。MFC322で制御するOガスの供給流量は、例えば、5~40slm、好ましくは5~30slm、より好ましくは10~30slmの範囲内の流量とする。Oガスをウエハ200に対して供給する時間は、例えば、1~120秒、好ましくは2~60秒、より好ましくは5~60秒の範囲内とする。その他の処理条件は、上述の原料ガス供給ステップと同様の処理条件とする。 At this time, the pressure in the processing chamber 201 is adjusted to, for example, a pressure in the range of 1 to 1000 Pa, preferably 1 to 500 Pa, and more preferably 10 to 200 Pa by appropriately adjusting the APC valve 243. The supply flow rate of the O 3 gas controlled by the MFC 322 is, for example, within a range of 5 to 40 slm, preferably 5 to 30 slm, and more preferably 10 to 30 slm. The time for supplying the O 3 gas to the wafer 200 is, for example, in the range of 1 to 120 seconds, preferably 2 to 60 seconds, and more preferably 5 to 60 seconds. Other processing conditions are the same processing conditions as in the above-described source gas supply step.
 このとき処理室201内に流しているガスは、Oガスと不活性ガス(Nガス)のみである。なお、ここでのOガスとはOとOとの混合ガスのことを言う。Oガスは、原料ガス供給ステップでウエハ200上に形成されたAl含有層の少なくとも一部と反応する。Al含有層は酸化され、金属酸化層としてAlとOとを含むアルミニウム酸化層(AlO層)が形成される。すなわちAl含有層はAlO層へと改質される。 At this time, the gas flowing into the processing chamber 201 is only the O 3 gas and the inert gas (N 2 gas). Here, the O 3 gas refers to a mixed gas of O 3 and O 2 . The O 3 gas reacts with at least a part of the Al-containing layer formed on the wafer 200 in the source gas supply step. The Al-containing layer is oxidized to form an aluminum oxide layer (AlO layer) containing Al and O as a metal oxide layer. That is, the Al-containing layer is modified into an AlO layer.
〔残留ガス除去ステップ〕
 AlO層が形成された後、バルブ324を閉じて、Oガスの供給を停止する。そして、原料ガス供給ステップ後の残留ガス除去ステップと同様の処理手順により、処理室201内に残留する未反応もしくはAlO層の形成に寄与した後のOガスや反応副生成物を処理室201内から排除する。バルブ514,524は開いた状態でNガスの処理室201内への供給を維持する。Nガスはパージガス(不活性ガス)として作用し、処理室201内に残留する未反応もしくはAlO層の形成に寄与した後のOガスや反応副生成物を処理室201内から排除する効果を高めることができる。なお、バルブ514,524からのNガスは残留ガス除去ステップの間、常に流し続けてもよい。
[Residual gas removal step]
After the AlO layer is formed, the valve 324 is closed to stop the supply of the O 3 gas. Then, according to the same processing procedure as the residual gas removing step after the raw material gas supplying step, the unreacted O 3 gas or reaction by-product remaining in the processing chamber 201 after contributing to the formation of the AlO layer is removed from the processing chamber 201. Eliminate from within. The valves 514 and 524 maintain the supply of the N 2 gas into the processing chamber 201 in an open state. The N 2 gas acts as a purge gas (inert gas) and removes unreacted O 3 gas and reaction by-products remaining in the processing chamber 201 or contributing to the formation of an AlO layer from the processing chamber 201. Can be increased. Note that the N 2 gas from the valves 514 and 524 may be kept flowing during the residual gas removing step.
 残留ガス除去ステップから原料ガス供給ステップへ移行する際には、エアバルブ292を開けたままとし、圧力センサ294によって残留ガス除去後の処理室201内の圧力をモニターする。このとき、エアバルブ291を開け、圧力を圧力センサ293により残留ガス除去後の処理室201内をモニターする。すなわち、処理室201内の反応ガス(第2ガス)を除去(排気)するステップで、パージガス排気中にエアバルブ292と291を開けて、圧力センサ294と293により処理室201内の圧力を測定(モニター)するように構成されている。なお、圧力センサ293,294により一定時間処理室201内の圧力をモニターし、その後、それぞれの圧力センサ293,294が処理室201内の圧力の値が同圧であることを測定するように構成してもよい。この場合エアバルブ292を閉じて、エアバルブ291は開けたままとし、TMAガス供給時の処理室201内の圧力のモニターする圧力センサ293に切り替えて、処理室201内のモニターを開始する。また、基板処理装置10に報知部(図示せず)を設け、コントローラ121へ接続しておき、圧力センサ293と294がモニタ(測定)した圧力の値が一致しない場合には、報知部550によりユーザに対して、圧力値が一致しないことを報知するように構成してもよい。このようにすることで、圧力センサ293または294には反応生成物が付着していることを報知部550のアラーム等によりユーザに対して知らせることが可能となる。 (4) When shifting from the residual gas removing step to the raw material gas supplying step, the pressure in the processing chamber 201 after removing the residual gas is monitored by the pressure sensor 294 while keeping the air valve 292 open. At this time, the air valve 291 is opened, and the pressure is monitored by the pressure sensor 293 inside the processing chamber 201 after the residual gas is removed. That is, in the step of removing (exhausting) the reaction gas (second gas) in the processing chamber 201, the air valves 292 and 291 are opened during the exhaust of the purge gas, and the pressure in the processing chamber 201 is measured by the pressure sensors 294 and 293 ( Monitor). The pressure sensors 293 and 294 monitor the pressure in the processing chamber 201 for a certain period of time, and then each of the pressure sensors 293 and 294 measures that the value of the pressure in the processing chamber 201 is the same. May be. In this case, the air valve 292 is closed, the air valve 291 is kept open, and the pressure in the processing chamber 201 is switched to the pressure sensor 293 for monitoring the pressure in the processing chamber 201 when the TMA gas is supplied, and the monitoring in the processing chamber 201 is started. In addition, a notification unit (not shown) is provided in the substrate processing apparatus 10 and is connected to the controller 121. If the pressure values monitored (measured) by the pressure sensors 293 and 294 do not match, the notification unit 550 is used. The user may be notified that the pressure values do not match. By doing so, it is possible to notify the user that the reaction product has adhered to the pressure sensor 293 or 294 by an alarm or the like of the notification unit 550.
〔所定回数実施〕
 上述の原料ガス供給ステップ、残留ガス除去ステップ、反応ガス供給ステップ、残留ガス供給ステップを順に行うサイクルを1回以上(所定回数)行うことにより、ウエハ200上にAlO膜が形成される。このサイクルの回数は、最終的に形成するAlO膜において必要とされる膜厚に応じて適宜選択されるが、このサイクルは、複数回繰り返すことが好ましい。AlO膜の厚さ(膜厚)は、例えば、1~150nm、好ましくは1~100nm、より好ましくは60~80(1~20nm)とする。
[Conducted a predetermined number of times]
An AlO film is formed on the wafer 200 by performing at least one cycle (a predetermined number of times) of sequentially performing the above-described source gas supply step, residual gas removal step, reaction gas supply step, and residual gas supply step. The number of times of this cycle is appropriately selected depending on the film thickness required for the AlO film to be finally formed, but this cycle is preferably repeated a plurality of times. The thickness (film thickness) of the AlO film is, for example, 1 to 150 nm, preferably 1 to 100 nm, and more preferably 60 to 80 (1 to 20 nm).
(アフターパージ・大気圧復帰)
 成膜ステップが終了したら、バルブ514,524を開き、ガス供給管310,320のそれぞれからNガスを処理室201内へ供給し、排気管231から排気する。Nガスはパージガスとして作用し、処理室201内に残留するガスや副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気がNガスに置換され(Nガス置換)、処理室201内の圧力は常圧に復帰される(大気圧復帰)。
(After-purge, return to atmospheric pressure)
When the film forming step is completed, the valves 514 and 524 are opened, N 2 gas is supplied from the gas supply pipes 310 and 320 into the processing chamber 201, and exhausted from the exhaust pipe 231. The N 2 gas acts as a purge gas, and gas and by-products remaining in the processing chamber 201 are removed from the processing chamber 201 (after-purge). Thereafter, the atmosphere in the process chamber 201 is replaced with N 2 gas (N 2 gas replacement), the pressure in the processing chamber 201 is returned to normal pressure (atmospheric pressure return).
(ボートアンロード・ウエハディスチャージ)
 その後、ボートエレベータ115によりシールキャップ219が下降され、マニホールド209の下端が開口されるとともに、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出されるウエハディスチャージ)。
(Boat unload / wafer discharge)
Thereafter, the seal cap 219 is lowered by the boat elevator 115, the lower end of the manifold 209 is opened, and the processed wafer 200 is unloaded from the lower end of the manifold 209 to the outside of the reaction tube 203 while being supported by the boat 217. (Boat unloading). After the boat is unloaded, the shutter 219s is moved, and the lower end opening of the manifold 209 is sealed by the shutter 219s via the O-ring 220c (shutter closed). The processed wafer 200 is carried out of the reaction tube 203 and then discharged from the boat 217 (wafer discharge).
(3)本実施形態による効果
 上述の実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(3) Effects of the present embodiment According to the above-described embodiment, one or more effects described below can be obtained.
 上述のように、エアバルブ291とTMAガス(第1ガス)の排気時に処理室201内の圧力を測定するための圧力センサ293を設け、エアバルブ292とOガス(第2ガス)の排気時に処理室201内の圧力を測定するための圧力センサ294を設け、TMAガスまたはOガスの排気時に、エアバルブ291およびエアバルブ292を開けることで、圧力センサ293及び圧力センサ294により処理室201内の圧力をモニターすることが可能となる。 As described above, the pressure sensor 293 for measuring the pressure in the treatment chamber 201 when the exhaust air valve 291 and TMA gas (first gas) is provided, the process at the time of exhaust of the air valve 292 and the O 3 gas (second gas) A pressure sensor 294 for measuring the pressure in the chamber 201 is provided. When the TMA gas or the O 3 gas is exhausted, the air valve 291 and the air valve 292 are opened. Can be monitored.
 また、エアバルブ291とTMAガスの供給時に処理室201内の圧力をモニターするための圧力センサ293を設け、エアバルブ292とOガスの供給時に処理室201内の圧力をモニターするための圧力センサ294を設け、TMAガスを供給する際には、エアバルブ292を閉じておき、Oガス供給時の圧力センサ294はTMAガスに暴露されないので、成膜が進行せず、ダイヤグラムゲージ等の圧力センサに反応生成物が付着しないように構成することが可能となる。また、Oガスを供給する際には、エアバルブ291を閉じて、TMA供給時の圧力センサ293はOガスに暴露されないので、成膜が進行せず、ダイヤグラムゲージ等の圧力センサに反応生成物が付着しないように構成することが可能となる。 Further, the pressure sensor 294 for monitoring the pressure in the processing chamber 201 to the pressure sensor 293 is provided, upon supply of the air valve 292 and the O 3 gas for monitoring the pressure in the processing chamber 201 during the supply of the air valve 291 and TMA gas When supplying the TMA gas, the air valve 292 is closed, and the pressure sensor 294 at the time of supplying the O 3 gas is not exposed to the TMA gas, so that the film formation does not progress, and the pressure sensor such as a diagram gauge is used. It is possible to configure so that the reaction product does not adhere. When supplying O 3 gas, the air valve 291 is closed and the pressure sensor 293 during TMA supply is not exposed to the O 3 gas, so that film formation does not proceed and a reaction is generated by a pressure sensor such as a diagram gauge. It is possible to configure so that an object does not adhere.
 原料ガスから反応ガスへ供給を切り替える際、または、反応ガスから原料ガスへ供給を切り替える際には、エアバルブ291,292を開け、圧力センサ293,294により残留ガス除去後の処理室201内の圧力を一定時間モニターし、圧力センサ293,294が処理室内の圧力の値が同圧であることを測定すると、処理室201内に供給される処理ガス(原料ガスまたは反応ガス)に応じて、圧力センサを切り替えるようにしているため、圧力センサ293および294には反応生成物が付着しておらず、正常に動作していることを確認することが可能となる。また、圧力センサ293、294の圧力値が揃いやすい低圧状態でエアバルブ291,292の切り替えが可能となる。 When switching the supply from the source gas to the reaction gas, or when switching the supply from the reaction gas to the source gas, the air valves 291 and 292 are opened, and the pressure in the processing chamber 201 after removing the residual gas by the pressure sensors 293 and 294. Is monitored for a certain period of time, and when the pressure sensors 293 and 294 measure that the values of the pressures in the processing chamber are the same, the pressure is determined according to the processing gas (source gas or reaction gas) supplied into the processing chamber 201. Since the sensors are switched, it is possible to confirm that the reaction products are not attached to the pressure sensors 293 and 294 and that the pressure sensors 293 and 294 are operating normally. In addition, the air valves 291 and 292 can be switched in a low pressure state where the pressure values of the pressure sensors 293 and 294 are easily uniform.
 また、基板処理装置10に報知部(図示せず)を設け、コントローラ121へ接続しておき、圧力センサ293と294が測定した圧力の値が一致しない場合には、報知部によりユーザに対して、圧力値が一致しないことを報知するように構成することで、圧力センサ293または294に反応生成物が付着していることをユーザに対して知らせることが可能となる。 In addition, a notification unit (not shown) is provided in the substrate processing apparatus 10 and is connected to the controller 121. If the pressure values measured by the pressure sensors 293 and 294 do not match, the notification unit notifies the user of the user. By notifying that the pressure values do not match, it is possible to notify the user that the reaction product is attached to the pressure sensor 293 or 294.
 以上、本開示の実施形態について具体的に説明した。しかし、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 The embodiments of the present disclosure have been specifically described above. However, the present disclosure is not limited to the above-described embodiment, and can be variously modified without departing from the gist thereof.
 例えば、上述の実施形態では、Al含有ガスとしてTMAガスを用いる例について説明したが、これに限らず、例えば、塩化アルミニウム(AlCl)等を用いてもよい。O含有ガスとしては、Oガスを用いる例について説明したが、これに限らず、例えば、酸素(O)、水(HO)、過酸化水素(H)、Oプラズマと水素(H)プラズマの組合せ等も適用可能である。不活性ガスとしては、Nガスを用いる例について説明したが、これに限らず、例えば、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いてもよい。 For example, in the above-described embodiment, an example in which the TMA gas is used as the Al-containing gas has been described. However, the present invention is not limited thereto, and for example, aluminum chloride (AlCl 3 ) may be used. Although an example in which an O 3 gas is used as the O-containing gas has been described, the present invention is not limited to this. For example, oxygen (O 2 ), water (H 2 O), hydrogen peroxide (H 2 O 2 ), O 2 plasma A combination of hydrogen and hydrogen (H 2 ) plasma can also be applied. Although an example in which N 2 gas is used as the inert gas has been described, the present invention is not limited to this. For example, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas may be used.
 また、上述の実施形態では、基板上にAlO膜を形成する例について説明した。しかし、本開示はこの態様に限定されない。また、原料ガスを供給する際に、同時に不活性ガス等で希釈する原料ガスを用いて膜を形成する膜種に対しても用いられ、例えば、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、モリブデン(Mo)、タングステン(W)、イットリウム(Y)、La(ランタン)、ストロンチウム(Sr)、シリコン(Si)を含む膜であって、これらの元素の少なくとも1つを含む窒化膜、炭窒化膜、酸化膜、酸炭化膜、酸窒化膜、酸炭窒化膜、硼窒化膜、硼炭窒化膜、金属元素単体膜等にも適用可能である。 In the above-described embodiment, the example in which the AlO film is formed on the substrate has been described. However, the present disclosure is not limited to this aspect. It is also used for a film type that forms a film by using a source gas diluted with an inert gas or the like at the time of supplying the source gas. For example, titanium (Ti), zirconium (Zr), hafnium ( A film containing Hf), tantalum (Ta), niobium (Nb), molybdenum (Mo), tungsten (W), yttrium (Y), La (lanthanum), strontium (Sr), and silicon (Si). Nitride, carbonitride, oxide, oxycarbide, oxynitride, oxycarbonitride, boronitride, borocarbonitride, metal element simple film, etc. is there.
 成膜処理に用いられるレシピ(処理手順や処理条件等が記載されたプログラム)は、処理内容(形成、或いは、除去する膜の種類、組成比、膜質、膜厚、処理手順、処理条件等)に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになり、それぞれの場合に適正な処理を行うことができるようになる。また、オペレータの負担(処理手順や処理条件等の入力負担等)を低減でき、操作ミスを回避しつつ、処理を迅速に開始できるようになる。 The recipes (programs describing processing procedures and processing conditions, etc.) used for the film formation processing include processing contents (types of films to be formed or removed, composition ratios, film quality, film thickness, processing procedures, processing conditions, etc.). It is preferable to prepare individually according to the above and store in the storage device 121c via the electric communication line or the external storage device 123. Then, when starting the processing, it is preferable that the CPU 121a appropriately selects an appropriate recipe from the plurality of recipes stored in the storage device 121c according to the processing content. This makes it possible to form films of various film types, composition ratios, film qualities, and film thicknesses with high reproducibility by one substrate processing apparatus, and to perform appropriate processing in each case. Become like In addition, the burden on the operator (such as the burden of inputting processing procedures and processing conditions) can be reduced, and processing can be started quickly while avoiding operation errors.
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。 The above-described recipe is not limited to the case where the recipe is newly created, and may be prepared by, for example, changing an existing recipe already installed in the substrate processing apparatus. When changing the recipe, the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded. Further, the input / output device 122 provided in the existing substrate processing apparatus may be operated to directly change the existing recipe already installed in the substrate processing apparatus.
 また、上述の実施形態や変形例等は、適宜組み合わせて用いることができる。また、このときの処理手順、処理条件は、上述の実施形態や変形例等の処理手順、処理条件と同様とすることができる。  In addition, the above-described embodiments and modified examples can be used in appropriate combinations. Further, the processing procedure and processing conditions at this time can be the same as the processing procedures and processing conditions of the above-described embodiment and modified examples.

Claims (9)

  1.  基板を収容する処理室と、
     前記処理室へ第1ガスを供給する第1ガス供給部と、
     前記処理室へ第2ガスを供給する第2ガス供給部と、
     前記処理室へ不活性ガスを供給する不活性ガス供給部と、
     前記処理室内の雰囲気を排気する排気部と、
     前記処理室へ前記第1ガスを供給している際に、前記処理室内の圧力を測定するための第1開閉弁と第1圧力測定器と、前記処理室内へ前記第2ガスを供給している際に、前記処理室内の圧力を測定するための第2開閉弁と第2圧力測定器と、を備える圧力測定部と、
     前記排気部により前記不活性ガスの排気中に、前記第1開閉弁と前記第2開閉弁とを開け、前記第1圧力測定器と前記第2圧力測定器により前記処理室内の圧力を測定させるよう前記不活性ガス供給部と前記排気部と前記圧力測定部とを制御するよう構成される制御部と、を有する基板処理装置。
    A processing chamber for accommodating the substrate;
    A first gas supply unit that supplies a first gas to the processing chamber;
    A second gas supply unit that supplies a second gas to the processing chamber;
    An inert gas supply unit that supplies an inert gas to the processing chamber,
    An exhaust unit that exhausts an atmosphere in the processing chamber;
    While supplying the first gas to the processing chamber, a first on-off valve and a first pressure measuring device for measuring the pressure in the processing chamber, and supplying the second gas to the processing chamber A pressure measurement unit including a second on-off valve and a second pressure measurement device for measuring the pressure in the processing chamber;
    The first on-off valve and the second on-off valve are opened during the evacuation of the inert gas by the evacuation unit, and the pressure in the processing chamber is measured by the first pressure measuring device and the second pressure measuring device. A substrate processing apparatus having a control unit configured to control the inert gas supply unit, the exhaust unit, and the pressure measurement unit.
  2.  前記制御部は、前記第1圧力測定器と前記第2圧力測定器とが測定した前記処理室の圧力の値が同圧となった場合に、前記第1ガスを供給する際には、前記第2開閉弁を閉じ、前記第2ガスを供給する際には、前記第1開閉弁を閉じるよう前記圧力測定部を制御する請求項1に記載の基板処理装置。 The control unit, when the value of the pressure of the processing chamber measured by the first pressure measurement device and the second pressure measurement device is the same pressure, when supplying the first gas, The substrate processing apparatus according to claim 1, wherein when the second on-off valve is closed and the second gas is supplied, the pressure measurement unit is controlled to close the first on-off valve.
  3.  前記第1圧力測定器と前記第2圧力測定器とが測定した前記処理室の圧力の値が同圧とならなかった場合に、アラームを報知する報知部を備え、
     前記制御部は、所定時間内に、前記第1圧力測定器と前記第2圧力測定器とが測定した前記処理室の圧力の値が同圧とならなかった場合に、前記アラームを報知するよう前記報知部を制御するよう構成される請求項1に記載の基板処理装置。
    When the value of the pressure of the processing chamber measured by the first pressure measuring device and the second pressure measuring device is not the same pressure, a notification unit that notifies an alarm,
    The control unit notifies the alarm when a value of the pressure of the processing chamber measured by the first pressure measuring device and the second pressure measuring device does not become the same pressure within a predetermined time. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is configured to control the notification unit.
  4.  前記制御部は、前記第1ガス供給部から前記処理室へ前記第1ガスが供給されている際に前記第2開閉弁を閉めるよう構成され、また、前記第2供給部から前記処理室へ前記第2ガスが供給されている際に前記第1開閉弁を閉じるように構成される請求項1に記載の基板処理装置。 The control unit is configured to close the second on-off valve when the first gas is being supplied from the first gas supply unit to the processing chamber, and to control the processing chamber from the second supply unit to the processing chamber. The substrate processing apparatus according to claim 1, wherein the first processing valve is configured to close the first on-off valve when the second gas is supplied.
  5.  前記圧力測定部は、ダイヤフラムゲージである請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the pressure measuring unit is a diaphragm gauge.
  6.  前記第1ガスは原料ガスであり、前記第2ガスは反応ガスである請求項1~4に記載の基板処理装置。 5. The substrate processing apparatus according to claim 1, wherein the first gas is a source gas, and the second gas is a reaction gas.
  7.  前記原料ガスは金属含有ガスであり、前記反応ガスは酸素含有ガスである請求項7に記載の基板処理装置。 8. The substrate processing apparatus according to claim 7, wherein the source gas is a metal-containing gas, and the reaction gas is an oxygen-containing gas.
  8.  基板を収容する処理室と、前記処理室へ第1ガスを供給する第1ガス供給部と、前記処理室へ第2ガスを供給する第2ガス供給部と、 前記処理室へ不活性ガスを供給する不活性ガス供給部と、前記処理室内の雰囲気を排気する排気部と、前記処理室へ前記第1ガスを供給している際に、前記処理室内の圧力を測定するための第1開閉弁と第1圧力測定器と、前記処理室内へ前記第2ガスを供給している際に、前記処理室内の圧力を測定するための第2開閉弁と第2圧力測定器と、を備える圧力測定部と、を有する基板処理装置の前記処理室に基板を搬入する工程と、
     前記第1ガス供給部により、前記処理室内に前記第1ガスを供給する工程と、
     前記排気部により、前記反応室から前記第1ガスを排気する工程と、
     前記第2ガス供給部により、前記処理室内に前記第2ガスを供給する工程と、
     前記排気部により前記処理室内から前記第2ガスを排気する工程と、を有し、
     前記第1ガスを排気する工程または前記第2ガスを排気する工程で、前記不活性ガスの排気中に、前記第1開閉弁と前記第2開閉弁を開け、前記第1圧力測定器と前記第2圧力測定器により前記処理室の圧力を測定する半導体装置の製造方法。
    A processing chamber accommodating a substrate, a first gas supply unit for supplying a first gas to the processing chamber, a second gas supply unit for supplying a second gas to the processing chamber, and an inert gas to the processing chamber. An inert gas supply unit for supplying, an exhaust unit for exhausting an atmosphere in the processing chamber, and a first opening / closing unit for measuring a pressure in the processing chamber when the first gas is supplied to the processing chamber. A pressure, comprising: a valve, a first pressure measuring device, and a second on-off valve for measuring a pressure in the processing chamber when the second gas is supplied into the processing chamber, and a second pressure measuring device. A measuring unit, and a step of carrying the substrate into the processing chamber of the substrate processing apparatus having
    Supplying the first gas into the processing chamber by the first gas supply unit;
    Exhausting the first gas from the reaction chamber by the exhaust unit;
    Supplying the second gas into the processing chamber by the second gas supply unit;
    Exhausting the second gas from the processing chamber by the exhaust unit,
    In the step of exhausting the first gas or the step of exhausting the second gas, during the exhaustion of the inert gas, the first on-off valve and the second on-off valve are opened, and the first pressure measuring device and the A method for manufacturing a semiconductor device, wherein a pressure in the processing chamber is measured by a second pressure measuring device.
  9.  基板を収容する処理室と、前記処理室へ第1ガスを供給する第1ガス供給部と、前記処理室へ第2ガスを供給する第2ガス供給部と、 前記処理室へ不活性ガスを供給する不活性ガス供給部と、前記処理室内の雰囲気を排気する排気部と、前記処理室へ前記第1ガスを供給している際に、前記処理室内の圧力を測定するための第1開閉弁と第1圧力測定器と、前記処理室内へ前記第2ガスを供給している際に、前記処理室内の圧力を測定するための第2開閉弁と第2圧力測定器と、を備える圧力測定部と、を有する基板処理装置の前記処理室に基板を搬入する手順と、
     前記第1ガス供給部により、前記処理室内に前記第1ガスを供給する手順と、
     前記排気部により、前記反応室から前記第1ガスを排気する手順と、
     前記第2ガス供給部により、前記処理室内に前記第2ガスを供給する手順と、
     前記排気部により前記処理室内から前記第2ガスを排気する手順と、を有し、
     前記第1ガスを排気する手順または前記第2ガスを排気する手順で、前記不活性ガスの排気中に、前記第1開閉弁と前記第2開閉弁を開け、前記第1圧力測定器と、前記第2圧力測定器により前記処理室の圧力を測定する手順と、をコンピュータにより前記基板処理装置に実行させるプログラム。
    A processing chamber accommodating a substrate, a first gas supply unit for supplying a first gas to the processing chamber, a second gas supply unit for supplying a second gas to the processing chamber, and an inert gas to the processing chamber. An inert gas supply unit for supplying, an exhaust unit for exhausting an atmosphere in the processing chamber, and a first opening / closing unit for measuring a pressure in the processing chamber when the first gas is supplied to the processing chamber. A pressure, comprising: a valve, a first pressure measuring device, and a second on-off valve for measuring a pressure in the processing chamber when the second gas is supplied into the processing chamber, and a second pressure measuring device. A procedure for carrying a substrate into the processing chamber of the substrate processing apparatus having a measuring unit;
    Supplying the first gas into the processing chamber by the first gas supply unit;
    A step of exhausting the first gas from the reaction chamber by the exhaust unit;
    Supplying the second gas into the processing chamber by the second gas supply unit;
    Exhausting the second gas from the processing chamber by the exhaust unit,
    In the step of exhausting the first gas or the step of exhausting the second gas, during exhaustion of the inert gas, the first on-off valve and the second on-off valve are opened, and the first pressure measurement device includes: A program for causing the substrate processing apparatus to execute, by a computer, a procedure of measuring the pressure of the processing chamber by the second pressure measuring device.
PCT/JP2019/036140 2018-09-26 2019-09-13 Substrate processing apparatus, method for producing semiconductor device, and program WO2020066701A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217007098A KR20210046694A (en) 2018-09-26 2019-09-13 Substrate processing apparatus, manufacturing method and program of semiconductor device
JP2020548466A JPWO2020066701A1 (en) 2018-09-26 2019-09-13 Substrate processing equipment, semiconductor equipment manufacturing methods and programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-180013 2018-09-26
JP2018180013 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020066701A1 true WO2020066701A1 (en) 2020-04-02

Family

ID=69952590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036140 WO2020066701A1 (en) 2018-09-26 2019-09-13 Substrate processing apparatus, method for producing semiconductor device, and program

Country Status (3)

Country Link
JP (1) JPWO2020066701A1 (en)
KR (1) KR20210046694A (en)
WO (1) WO2020066701A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267224A (en) * 1992-03-19 1993-10-15 Nec Yamaguchi Ltd Dryetching system
KR20070025382A (en) * 2005-09-01 2007-03-08 삼성전자주식회사 Semiconductor chemical vapor deposition apparatus comprising of multiple pressure sensors
WO2007037233A1 (en) * 2005-09-27 2007-04-05 Hitachi Kokusai Electric Inc. Substrate processing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6147480B2 (en) 2012-09-26 2017-06-14 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267224A (en) * 1992-03-19 1993-10-15 Nec Yamaguchi Ltd Dryetching system
KR20070025382A (en) * 2005-09-01 2007-03-08 삼성전자주식회사 Semiconductor chemical vapor deposition apparatus comprising of multiple pressure sensors
WO2007037233A1 (en) * 2005-09-27 2007-04-05 Hitachi Kokusai Electric Inc. Substrate processing apparatus

Also Published As

Publication number Publication date
KR20210046694A (en) 2021-04-28
JPWO2020066701A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
JP6538582B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and program
US20240093361A1 (en) Vaporizer, processing apparatus and method of manufacturing semiconductor device
JP6994483B2 (en) Semiconductor device manufacturing methods, programs, and substrate processing devices
WO2020189205A1 (en) Substrate treatment device, production method for semiconductor device, and nozzle
WO2020188857A1 (en) Substrate processing device, reaction vessel, method for manufacturing semiconductor device, and recording medium
TWI771742B (en) Evaporation apparatus, substrate processing apparatus, cleaning method, manufacturing method of semiconductor device, and program
JP7016920B2 (en) Substrate processing equipment, substrate support, semiconductor device manufacturing method and substrate processing method
WO2017212728A1 (en) Treatment method, method for manufacturing semiconductor device, and substrate treatment apparatus
WO2020066701A1 (en) Substrate processing apparatus, method for producing semiconductor device, and program
JP7184857B2 (en) Vaporizing apparatus, substrate processing apparatus, cleaning method, semiconductor device manufacturing method, program, and substrate processing method
WO2020066800A1 (en) Method for manufacturing semiconductor device, substrate processing apparatus, and program
WO2019188128A1 (en) Semiconductor device manufacturing method, substrate processing device, and program
JP7179962B2 (en) Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program
JP7361202B2 (en) Substrate processing equipment, gas supply equipment, cleaning method for raw material supply pipes, semiconductor device manufacturing method and program
TWI818311B (en) Substrate processing method, semiconductor device manufacturing method, substrate processing device and program
TW202339054A (en) A substrate processing device, a substrate processing method, a semiconductor device manufacturing method, a program, and a gas supply unit
TW202343571A (en) Substrate treatment device, gas supply system, substrate treatment method, production method for semiconductor device, and program
JP2023142776A (en) Substrate processing device, semiconductor device manufacturing method, and substrate support

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217007098

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020548466

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866725

Country of ref document: EP

Kind code of ref document: A1