WO2021193373A1 - 情報処理方法、情報処理装置及びコンピュータプログラム - Google Patents

情報処理方法、情報処理装置及びコンピュータプログラム Download PDF

Info

Publication number
WO2021193373A1
WO2021193373A1 PCT/JP2021/011200 JP2021011200W WO2021193373A1 WO 2021193373 A1 WO2021193373 A1 WO 2021193373A1 JP 2021011200 W JP2021011200 W JP 2021011200W WO 2021193373 A1 WO2021193373 A1 WO 2021193373A1
Authority
WO
WIPO (PCT)
Prior art keywords
depth
region
image
information processing
value
Prior art date
Application number
PCT/JP2021/011200
Other languages
English (en)
French (fr)
Inventor
琢人 元山
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021193373A1 publication Critical patent/WO2021193373A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Abstract

[課題]障害物との衝突を回避する情報処理方法、情報処理装置及びコンピュータプログラムを提供する。 [解決手段]本開示の情報処理方法は、空間における第1領域のデプス値を含むデプス画像と、前記第1領域と一部が重なる第2領域の輝度値を含む輝度画像とに基づいて、前記第2領域のうち前記第1領域に含まれない領域の少なくとも一部である第3領域のデプス値を推定する。

Description

情報処理方法、情報処理装置及びコンピュータプログラム
 本開示は、情報処理方法、情報処理装置及びコンピュータプログラムに関する。
 ドローンの障害物回避の方法として、下記特許文献1には、ドローンの自律移動時に、センサで検出できない死角領域で障害物に衝突することを防止する技術が開示されている。この技術は、死角領域を避ける経路を選択するため、ドローンが大きく遠回りするなど効率的でない経路が選択される可能性がある。
特開2019-175128号公報
 本開示は、移動体が障害物と衝突することを回避する情報処理方法、情報処理装置及びコンピュータプログラムを提供する。
 本開示の情報処理方法は、空間における第1領域のデプス値を含むデプス画像と、前記第1領域と一部が重なる第2領域の輝度値を含む輝度画像とに基づいて、前記第2領域のうち前記第1領域に含まれない領域の少なくとも一部である第3領域のデプス値を推定する。
 前記情報処理方法は、
 デプス値を測定する第1センサ装置から前記第1領域のデプス画像を取得し、
 輝度値を測定する第2センサ装置から前記第2領域の輝度画像を取得してもよい。
 前記情報処理方法は、
 前記デプス画像を前記第1センサ装置の座標系から前記第2センサ装置の座標系に変換し、
 前記変換後の前記デプス画像を前記輝度画像に位置合わせして重畳し、前記輝度画像のうち前記デプス画像に重ならない領域の少なくとも一部を前記第3領域としてもよい。
 前記情報処理方法は、
 前記第2領域の輝度画像を複数のセグメントに分割し、
 前記デプス画像と重なる第1部分と、前記デプス画像と重ならない第2部分とを含むセグメントを特定し、特定した前記セグメントの前記前記第1部分のデプス値に基づいて、特定した前記セグメントの前記第2部分のデプス値を推定してもよい。
 前記情報処理方法は、
 前記第2領域の輝度画像を複数のセグメントに分割し、
 少なくとも1つの前記セグメントにおいて前記デプス画像と重なる部分のデプス値を特定し、特定した前記デプス値が表す位置を含む3次元平面を推定し、推定した前記3次元平面に基づき、前記セグメントの前記デプス画像と重ならない部分のデプス値を推定してもよい。
 前記情報処理方法は、
 前記第2領域の輝度画像を複数のセグメントに分割し、
 前記デプス画像と重なる部分を有さない第1セグメントの少なくとも一部のデプス値を、前記デプス画像と重なる部分を有する第2セグメントの前記第1セグメントと接する部分のデプス値に基づき推定する。
 前記情報処理方法は、
 前記第2領域の輝度画像を複数のセグメントに分割し、
 前記複数のセグメントのうち予め定めた種類のセグメントのデプス値を所定値に設定してもよい。
 前記情報処理方法は、
 前記第2領域の輝度画像を複数のセグメントに分割し、
 前記複数のセグメントのうち予め定めた種類のセグメントに包含されるセグメントのデプス値を不明としてもよい。
 前記情報処理方法は、
 前記第2領域の輝度画像を複数のセグメントに分割し、
 前記デプス画像と重なる第1セグメントの前記デプス画像と重なる部分のデプス値と、 前記第1セグメントのサイズと、
 前記デプス画像と重ならない前記第2セグメントのサイズと、
 前記第1セグメントが表す対象のサイズと、
 前記第2セグメントが表す対象のサイズと
 に基づいて、前記第2セグメントの少なくとも一部のデプス値を推定してもよい。
 前記情報処理方法は、
 前記第2領域の輝度画像を複数のセグメントに分割し、
 前記デプス画像と重なる第1セグメントが表す第1対象までの距離と、前記デプス画像と重なる第2セグメントが表す第2対象までの距離とに基づき、前記デプス画像と重ならない第3セグメントの少なくとも一部のデプス値を推定してもよい。
 前記情報処理方法は、前記第3領域のデプス値に基づいて、前記空間を移動する移動体を制御してもよい。
 前記情報処理方法は、前記第2センサ装置の撮像方向を制御し、前記第2センサ装置の撮像方向を前記移動体の移動方向に向ける。
 前記情報処理方法は、複数の前記第2センサ装置のうち他の目的に使用中でない第2センサ装置を選択し、選択した第2センサ装置を用いて輝度値を測定する。
 前記第1センサ装置の検出範囲は、前記第2センサ装置の検出範囲と一部が重なってもよい。
 前記第3領域は、前記移動体の死角領域でもよい。
 前記移動体は、飛行体、自動車又はロボットでもよい。
 本開示の情報処理装置は、空間における第1領域のデプス値を含むデプス画像と、前記第1領域と一部が重なる第2領域の輝度値を含む輝度画像とに基づいて、前記第2領域のうち前記第1領域に含まれない領域の少なくとも一部である第3領域のデプス値を推定するデプス推定部を備える。
 本開示のコンピュータプログラムは、空間における第1領域のデプス値を含むデプス画像と、前記第1領域と一部が重なる第2領域の輝度値を含む輝度画像とに基づいて、前記第2領域のうち前記第1領域に含まれない領域の少なくとも一部である第3領域のデプス値を推定するステップをコンピュータに実行させる。
本開示の実施形態に係る通信システムのブロック図。 ドローンのブロック図。 基地局のブロック図。 ドローンの死角領域を説明するための平面図。 ステレオカメラを用いてデプスを測定するイメージ図。 死角領域における障害物の検出を必要とする場合の例1を説明する図。 死角領域における障害物の検出を必要とする場合の例2を説明する図。 本実施形態でデプス値を推定する死角領域を説明する図。 死角領域のデプス値を推定し、障害物の検出を行う処理に関わるブロック図。 セグメンテーション画像の例を示す図。 セグメンテーション画像にデプスマップを重ねた例を示す図。 第1の推定例を説明するための図。 第3の推定例の具体例を示す図。 空中で飛んでいる鳥を含むセグメンテーション画像の例を示す図。 第5の推定例を説明するための図。 平均値を算出する手順の一例を示す。 ある電柱の太さと、別の電柱までの距離を算出する例を示す図。 電線オブジェクトにおける任意の箇所のデプス値を推定する例を示す図。 本実施形態に係る制御部における動作の一例を示すフローチャート。 図19Aに続くフローチャート。 ドローン又は基地局のハードウェア構成の一例を示す図。
 以下、図面を参照して、本開示の実施形態について説明する。本開示において示される1以上の実施形態において、各実施形態が含む要素を互いに組み合わせることができ、かつ、当該組み合わせられた結果物も本開示が示す実施形態の一部をなす。
 図1は、本開示の実施形態に係る通信システムのブロック図である。図1の通信システムは、複数の移動体101A、101B、101Cと、基地局201とを備えている。本実施形態の移動体はドローン(無人航空機)であり、移動体101A~101Cをドローン101A~101Cと表記する。ドローンは移動体の一例であり、移動体は、ロボット無人搬送車、又は自動運転車など、自律又はマニュアル操作により移動可能な装置であれば、何でもよい。図では3台のドローンが示されるが、ドローンの台数は1台でも、2台でも、4台以上でもよい。ドローン101A、ドローン101B及びドローン101Cはそれぞれ基地局201と双方向に通信可能である。ドローン101A~101Cが互いに通信可能であってもよい。以下、任意の1台のドローンを、ドローン101と表記する。
 ドローン101は、複数のロータを駆動することにより飛行可能な移動体である。ドローン101は、基地局201と無線通信し、基地局201の制御の下、経路に沿って飛行を行う。ドローン101は出発地と目的地とから自ら経路を生成して飛行してもよいし(自律飛行)、基地局201から経路を指定され、指定された経路を飛行してもよい。あるいは、ドローン101が、ユーザにより操作されるリモコンにより操作可能である場合、ユーザから指定された経路を飛行してもよい(マニュアル飛行)。
 図2は、ドローン101のブロック図である。ドローン101は、情報処理装置1と、ロータ21A~21D、及びモータ22A~22Dを備えている。情報処理装置1は、アンテナ10、デプスセンサ(第1センサ装置)11、カメラ(第2センサ装置)12、制御部13、通信部14、センサ部16、位置検出部17、バッテリ18、及び記憶部19を備えている。
 デプスセンサ(第1センサ装置)11は、ドローン101が飛行する空間において検出範囲(撮像範囲)をセンシングし、デプス値を含む画像(以下、デプス画像)を取得する。デプスセンサ11によりセンシングする領域はドローン101が飛行する空間の第1領域に相当する。デプス画像はデプス値を有する複数の画素を含むデータである。デプスセンサ11は、取得したデプス画像を取得時刻に関連づけて記憶部19に格納する。デプスセンサ11は、取得したデプス画像を、制御部13に提供してもよい。デプスセンサ11は、デプス値を取得可能なデバイスなら何でもよい。一例として、デプスセンサ11は、ステレオカメラ、レーダ、TOF(Time Of Flight)カメラ又はLiDAR(Light Detection and Ranging)等である。デプスセンサ11の位置及び姿勢は固定でもよいし、デプスセンサ11の位置を移動及び姿勢を変更可能であってもよい。デプスセンサ11の台数は1つでも、複数でもよい。デプスセンサ11がセンシングした領域(第1領域)以外の領域はドローン101にとっての死角領域に相当する。
 カメラ(第2センサ装置)12は、ドローン101が飛行する空間における検出範囲(撮像範囲)をセンシングし、輝度値(階調値とも呼ばれる)を含む画像を取得する。画像は輝度値を有する複数の画素を含むデータである。カメラ12は、取得した画像を取得時刻に関連づけて記憶部19に格納する。カメラ12は、取得した画像を、制御部13に提供してもよい。取得した画像は、静止画像または動画像である。カメラ12は、一例としてRGBカメラ、又は赤外線カメラ等である。撮像素子は、例えば、CCD(Charge Coupled Device)イメージセンサ又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等である。カメラ12の台数及び設置位置はドローン101の目的に応じて決められる。カメラ12の台数は1つの場合、及び複数の場合のいずれもある。カメラ12の位置及び姿勢は固定でもよいし、カメラ12の位置を移動及び姿勢を変更可能であってもよい。
 本実施形態では、少なくとも1つのカメラ12の検出範囲(撮像範囲)は、デプスセンサ11の検出範囲(撮像範囲)と一部において重なるように、カメラ12の位置及び姿勢を制御可能であるが、予め固定されている。本実施形態では、カメラ12によりセンシングされた第2領域のうち、デプスセンサ11によりセンシングされた第1領域に含まれない第3領域について、第1領域のデプス画像と第2領域の輝度画像とに基づき、デプス値を推定することを特徴の1つとする。第3領域は、ドローン101の死角領域の一部又は全部である。
 ロータ21A~21Dは、回転により揚力を生じさせることでドローン101を飛行させる。ロータ21A~21Dはモータ22A~22Dにより回転させられる。モータ22A~22Dは、ロータ21A~21Dを回転させる。モータ22A~22Dの回転は制御部13によって制御される。
 制御部13は、ドローン101の動作を制御する。制御部13は、デプスセンサ11、カメラ12、通信部14、モータ22A~22D、センサ部16、位置検出部17、バッテリ18、及び記憶部19を制御する。
 制御部13は、モータ22A~22Dの回転速度の調整によりロータ21A~21Dの回転速度を調整する。ロータ21A~21Dの回転速度を調整することで、ドローン101を任意の方向及び任意の速度で移動させることができる。
 制御部13は、飛行中の間、デプスセンサ11及びカメラ12によるセンシングを制御する。例えば一定のサンプリング間隔ごとにデプスセンサ11及びカメラ12による撮像を行うよう、制御する。また、制御部13は、通信部14を用いて、基地局201、ユーザのリモコン装置又は他のドローンとの間の情報又はデータの送受信に関する処理を制御する。
 制御部13は、基地局201から指示データとして与えられる飛行の出発地及び目的地に基づき、飛行の経路を生成し、生成した経路に沿って飛行を行う。すなわち、制御部13は、自律飛行を行う。制御部13は、飛行中、障害物を回避する制御を行う。障害物の例としては、他のドローン、鳥等の生物、電柱、電線など、様々ある。制御部13が障害物を回避する制御の詳細については後述する。制御部13は、障害物との衝突を阻止するために経路を変更してもよい。制御部13は経路を変更する際、変更後の経路を自ら生成する方法、経路データを基地局201から受信し、受信した経路データが示す経路を新たな経路として飛行する方法のいずれも可能である。制御部13は、経路を変更する場合は、例えば、ドローン101の現在位置の情報等を基地局201に送信し、経路の再生成を要求してもよい。
 制御部13は、デプスセンサ11で取得された第1領域のデプス画像と、カメラ12で取得された第2領域の輝度画像とに基づき、第2領域のうち第1領域に含まれない第3領域(死角領域)のデプス値を推定する。制御部13は、推定した第3領域のデプス値を推定時刻に関連づけて記憶部19に格納する。制御部13は、第3領域のデプス値に基づいて、ドローンの飛行を制御する。制御部13は、ドローン101の死角領域である第3領域のデプス値を、第1領域のデプス値と第2領域の輝度値とを用いて推定することで、死角領域における衝突を回避した飛行を可能とする。
 例えば、死角領域に存在する障害物を回避する経路を生成し、生成した経路を変更後の経路とする。生成する経路は、死角領域に存在する障害物を回避できれば、死角領域を通過する経路であってもよい。この場合、ドローン101は元々の経路を大きく変更することなく、障害物との衝突を回避できるため、効率的な衝突回避が可能となる。また、死角領域を避ける経路を生成することも可能である。障害物が他ドローンである場合、他ドローンが死角領域を通り過ぎるまで、一時停止するか、経路から外れた位置に一時的に待避する行動を行ってもよい。このように死角領域に存在する障害物との衝突を阻止する制御を衝突回避制御と呼ぶ。なお、一時退避する動作を行った場合に、障害物が死角領域に存在しなくなった後、元の経路に戻り、飛行を再開する。あるいは、待避した位置から新たな経路を生成して、飛行を再開することも可能である。
 通信部14は、基地局201、ユーザの保持する操作デバイス又は他のドローン101と無線通信を行うことにより、情報又はデータの送受信を行う。無線通信の方式は任意でよい。一例として、IEEE802.11規格、IEEE802.15.1規格、その他の規格によるものでもよい。無線通信に使用する周波数帯域は、例えば2.4GHz帯、5GHz帯、又はその他の周波数帯域である。
 通信部14は、一例として、飛行に関する指示データを、基地局201から受信する。通信部14は、指示データを制御部13に提供する。制御部13は、指示データに従って飛行を行うよう制御する。一例として指示データは出発地及び目的地を含む。制御部13は、目的地までの経路を生成し、生成した経路に従って飛行を行うよう制御する。
 位置検出部17は、ドローン101の位置を検出する。ドローン101の位置は、一例として、ドローン101の現在位置(リアルタイムの位置)である。位置検出部17は、例えばGPS(GlobalPositioningSystem)等を用いて位置を検出する。位置検出部17は、検出した位置の情報を検出時刻に関連づけて記憶部19に格納する。位置検出部17は、検出した位置の情報を制御部13に提供してもよい。
 ドローンの位置は、一例として予め定めた座標系における位置である。予め定めた座標系は、例えば、(X,Y,Z)=(7.3m、4.1m、15.8m)のような、基地局201の位置を原点又は所定の位置とした3軸の座標系(XYZの座標系)である。あるいは、座標系は、基地局201の位置以外の点を原点としてもよい。ドローンの位置は、GPS等により取得した緯度と経度による位置でもよい。GPS等により取得した緯度と経度による位置を、予め定めた座標系の位置に変換してもよい。
 センサ部16は、ドローン101の状態を取得する1つ又は複数のセンサを備える。センサの例は、加速度センサ、方位センサ(ジャイロセンサ、GPSコンパス又は電子コンパスなど)、超音波センサ、及び気圧センサを含む。センサ部16は、取得したドローン101の状態を表す情報を取得時刻に関連づけて、記憶部19に格納する。センサ部16は、取得したドローン101の状態を表す情報を制御部13に提供してもよい。
 センサ部16により取得する情報の一例として、ドローンの速度及び進行方向等がある。進行方向は、予め定めた座標系で表してもよいし、真北方向を0度とし、東回りに359.99までの範囲で表した絶対方位で表してもよい。絶対方位を、予め定めた座標系における方向に変換してもよい。
 デプスセンサ11、カメラ12、センサ部16及び位置検出部17は、一例として、制御部13の制御により、同期して動作する。例えば、一定のサンプリング間隔で、同じ時刻で動作する。但し、デプスセンサ11、カメラ12、センサ部16及び位置検出部17のサンプリング間隔及び動作時刻の少なくとも一方が異なっていてもよい。
 バッテリ18は、ドローン101内の各要素を動作させるための電力エネルギーを蓄えている。バッテリ18は、放電のみが可能な一次電池でも、充放電可能な二次電池であってもよい。
 記憶部19は、センサ部16により取得された情報(速度、進行方向等)、位置検出部17により取得された位置の情報、デプスセンサ11により取得されたデプス画像、カメラ12により取得された輝度画像、制御部13により推定された第3領域のデプス値等を格納する。制御部13がバッテリ18の残存エネルギー量の情報を取得し、取得した情報を記憶部19に格納してもよい。
 記憶部19は、ドローン101の属性及び性能に関する情報を記憶している。一例として、記憶部19は、デプスセンサ11及びカメラ12の位置及び個数の情報を記憶している。一例として、ドローンの特定の方向に1つのみデプスセンサ11を設置、又はドローンの周囲に複数個のデプスセンサ11を設置することがある。同様に、ドローンの特定の方向に1つのみカメラ12を設置、又はドローンの周囲に複数個のカメラ12を設置することがある。なお、画角が狭いほど、遠くまで撮影できる。
 また記憶部19は、デプスセンサ11のセンシング範囲(例えばステレオカメラの画角)と、カメラ12の撮像範囲(例えば画角)とを表す情報を記憶している。また、カメラ12の撮像範囲のうちデプスセンサ11のセンシング範囲と重なる範囲(あるいは重ならない範囲)の情報を記憶している。カメラ12が複数存在する場合、デプスセンサ11とカメラ12の組み合わせごとに、重なる範囲(あるいは重ならない範囲)の情報を記憶している。また、記憶部19は、デプスセンサ11及びカメラ12のそれぞれのパラメータ情報を記憶している。具体的には、デプスセンサ11及びカメラ12の位置関係に関する情報、デプスセンサ11及びカメラ12の内部パラメータ(焦点距離等)の情報を記憶していている。パラメメータ情報は例えば予めデプスセンサ11及びカメラ12のキャリブレーションを行うことにより取得できる。
 また、記憶部19は、ドローン101の属性及び性能に関する情報として、以下の情報を記憶していてもよい。
・機体ID
・飛行目的(移動目的)
・飛行性能(移動性能)
・出発地及び目的地
・認識性能
 機体IDは、ドローンをユニークに識別するIDである。例えば、“ABC123”などである。機体IDは、使用プロトコルに応じた通信用のアドレスを含んでもよい。
 飛行目的の例として、撮影、救命(救助を含む)、物流、消火、監視などがある。撮影の例として、地上の路面を走行する車両の撮影、施設内を自律走行する搬送車の撮影、又は船舶の撮影などがある。救命の例として、被災地又は事故現場等への医療物資又は生活物資の搬送がある。消化の例として、火事現場への消化剤の投下がある。物流の例として、荷物の輸送等がある。監視の例として、不審者の検出、施設の異常検出等がある。
 複数のカメラ12が設けられている場合、飛行目的ごとにカメラ12が使い分けられてもよい。例えばカメラ12として、センサ装置A、センサ装置B、センサ装置Cがあり、センサ装置Aが車両の撮影用、センサ装置Bが救命用、センサ装置Cが監視用として定められていてもよい。ある飛行においてドローンの目的が車両の撮影の場合、センサ装置B及びセンサ装置Cが用いられなくてもよい。第3領域のデプス値の推定に用いるカメラ12として、飛行の目的に使用されていないセンサ装置(本例ではセンサ装置B及びセンサ装置Cの少なくとも一方)を用いてもよい。
 飛行性能の例として、制動性能又は小回り性能等がある。制動性能の指標として、例えば制御部が停止命令(空中で停止する命令)を発行してから実際にドローンが停止するまでの距離(制動距離)がある。制動距離は、ドローンの速度又はブレーキの強さ(制動力)に依存する。小回り性能の指標として、例えば、最小回転半径がある。
 目的地又は出発地は、予め定めた座標系における座標を用いて定められる。例えば、目的地は、(X,Y,Z)=(180m、210m、1.0m)である。目的地又は出発地として、GPSにより取得した緯度と経度による位置を用いてもよい。目的地が存在しない場合もある。監視目的などで同じ経路を循環的に飛行する場合、目的地が存在しなくてもよい。
 図3は、基地局201のブロック図である。基地局201は、アンテナ202、通信部203、制御部204、及び記憶部205を備えている。
 通信部203は、ドローン101(101A~101C)と無線通信を行うことにより、情報又はデータの送受信処理を行う。無線通信の方式は任意でよい。一例として、IEEE802.11規格、IEEE802.15.1規格、その他の規格によるでもよい。無線通信に使用する周波数帯域は、一例として、2.4GHz帯、5GHz帯、その他の周波数帯域である。
 通信部203は、制御部204からドローン101に飛行に関する指示データを取得し、指示データをドローン101に送信する。
 記憶部205には、ドローン101の属性及び性能に関する情報が格納されている。例えば、ドローン101の機体ID、スペック情報(機種、重量、サイズなど)、飛行目的(移動目的)、飛行性能(移動性能)、出発地及び目的地、認識性能に関する情報が格納されている。
 制御部204は、基地局201の動作を制御する。また、ドローン101に飛行に関する指示を行う。
 制御部204は、記憶部205におけるドローン101に関する情報に基づき、ドローン101の飛行に関する指示データを生成する。指示データは、一例として出発地及び目的地を含む。別の例として、指示データは、飛行の経路を含んでもよい。制御部204は、生成した指示データを、通信部203を介して、ドローン101に送信する。
 制御部204は、ドローン101から経路の再生成の要求を受信した場合は、経路の再生成を行う。制御部204は、再生成した経路を含む指示データを、ドローン101に送信する。
 制御部204は、ドローン101との情報又はデータの送受信を制御する。一例として、制御部204は、ドローン101から、ドローン101のセンサ部16、制御部13及び位置検出部17で取得された情報又はデータを取得し、取得した情報又はデ-タを記憶部205に格納する。
 制御部204は、ドローン101からデプスセンサ11により取得された第1領域のデプス画像と、カメラ12により取得された第2領域の輝度画像とを受信し、第3領域のデプス値を推定する処理を行ってもよい。推定した第3領域のデプス値に基づき、ドローン101の衝突を回避する制御を行ってもよい。例えばドローン101が第3領域に存在する障害物を回避する経路を生成し、生成した経路の指示データを変更後の経路としてドローン101に送信してもよい。生成する経路は、第3領域に存在する障害物を回避する経路であれば、第3領域を通過する経路であってもよいし、第3領域を回避する経路であってもよい。
 [死角領域における障害物の検出]
 以下、デプスセンサ11により取得された第1領域のデプス画像と、カメラ12により取得された第2領域の輝度画像とに基づいて、第2領域のうち第1領域に含まれない第3領域(死角領域)のデプス値を推定する処理の詳細について説明する。
 図4は、ドローン101の死角領域を説明するための平面図である。ドローン本体30と、4枚のプロペラ31とを備えたドローン101が示されている。ドローン本体30の右前、左前、左後ろ、右後にはそれぞれデプスセンサ11が設けられている。4つのデプスセンサ11は各々の撮像範囲に従って、それぞれ対応する領域(第1領域)32を撮像可能である。すなわち、4つのデプスセンサ11は、それぞれ対応する領域32内のデプス(距離)を測定可能である。しかしながら、各領域32間の4つの領域33はデプスセンサ11の撮像範囲外であり、デプスを測定できない。すなわち、領域33は、ドローン101の死角領域(第3領域)である。
 前述したようにデプスセンサ11はデプスを測定可能な限りどのようなデバイスでもよい。例えばデプスセンサ11はステレオカメラである。ステレオカメラの場合、2つのカメラで撮像した画像間の対応関係と、三角測量の原理に基づき、物体までのデプス(距離)を測定できる。
 図5は、ステレオカメラを用いてデプスを測定するイメージ図である。左カメラ34Aと右カメラ34Bとを含むステレオカメラ34が示されている。左カメラ34Aの撮像範囲35Aと右カメラ34Bの撮像範囲35Bがオーバーラップする領域32に関し、3角測量の原理に基づき、デプスを測定することが可能である。領域32は、図4のデプスを測定可能な領域32に対応する。なお、左カメラ34A及び右カメラ34Bのパラメータ情報は予めキャリブレーションにより取得されているものとする。なお、ステレオカメラを用いてデプスを測定する例は一例に過ぎず、LiDAR又はレーザなど他のセンサ装置を用いてデプスを測定することも可能である。
 図6は、死角領域における障害物の検出を必要とする場合の例1を説明する図である。ユーザがリモコンによりドローン101を操作している状況を想定する。この例ではドローン101の前方にのみデプスセンサ11が設けられている。ドローン101が図の方向51にある速度で進んでいる状況において、ユーザにより方向52に飛行方向の変更指示がなされたとする。方向52の領域は、デプスセンサ11の撮像範囲に含まれず、ドローン101にとっての死角領域である。したがって、もし死角領域に障害物が存在する場合、ユーザの指示に従って方向転換を行ってしまうと、ドローン101が障害物に衝突する可能性がある。このような場合に、死角領域における障害物を事前に検出できれば、ユーザが指示した方向には障害物が存在するとの警告を通知することが可能である。また、ユーザが指示した方向になるべく近い方向で、障害物を回避可能な方向をユーザに提示することも可能である。
 図7は、死角領域における障害物の検出を必要とする場合の例2を説明する図である。この例ではドローン101が自律飛行している。ドローン101が方向51にある速度で、目的地53に向かって進んでいる。ドローン101は前方に障害物が検出されない限りは、方向51に進むが、障害物が検出された場合には、経路を変更するため、事前に様々な方向55A、55Bの死角領域について障害物の検出を行いながら飛行している。図の例ではこのまま直進するとデプスセンサ11の検出範囲である領域32に障害物54が検出される。この場合も、ドローン101は事前に死角領域において検出した障害物の情報に基づき、死角領域における障害物を回避する最適な経路を選択し、選択した経路に切り替えることができる。なお、検出範囲内に障害物54が入り、実際に障害物54を検出したタイミングで、死角領域の障害物の検出を行い、経路を切り替えることも可能である。障害物の検出の処理速度と経路の切り替え速度が、進行方向の障害物を検出してから衝突までの時間よりも短ければ、進行方向の障害物54を検出してから経路を切り替えても障害物54との衝突を回避できる。
 図8は、本実施形態でデプスを推定する死角領域を説明する図である。ドローン101の前及び右側にそれぞれデプスセンサ11(それぞれ11A、11Bとする)が設けられており、それぞれ領域32A、32Bのデプス画像として測距可能である。またカメラ12が右前に設けられており、カメラ12は領域61(第2領域)の輝度画像を撮像可能である。ドローン101は方向62にこれから進みたい、若しくは方向62に実際に進んでいる状況を想定する。なおドローン101は図示の姿勢のまま(前方を向いた姿勢のまま)方向62に移動可能である。
 本実施形態では領域61(第2領域)のうち、領域32A及び領域32B(第1領域)と重なる領域についてはデプスセンサ11A、11Bの撮像画像からデプス値を取得可能である。この重なる領域についてはデプス値を取得できていることからドローン101の死角領域ではない。領域61のうち領域32A及び領域32Bと重ならない領域についてはデプス値が取得できていないためドローン101にとって死角領域である。本実施形態ではこの死角領域のデプス値を、領域32A及び領域32Bのデプス値と、領域61の輝度値とを用いて推定する。
 図9は、制御部103において死角領域のデプス値を推定し、障害物の検出を行う処理に関わるブロック図である。制御部103は画像補正処理部71と、セグメンテーション部72と、デプス推定部75と、衝突判定部76と、画像補正処理部81A、81Bと、デプス画像取得部82A、82Bと、座標変換部84A、84Bとを備える。記憶部19は、学習済みニューラルネットワーク74、カメラパラメータ情報73、ステレオカメラAのパラメータ情報83A、ステレオカメラBのパラメータ情報83Bを記憶している。
 図9の例では、デプスセンサ11としてステレオカメラを用いているが、LiDAR等の他のセンサを用いてもよい。この場合、デプス画像取得部82A、82Bで視差推定を行う必要はない。また画像補正処理は、デプス画像取得部82A、82Bで取得されたデプス画像に対して行い、補正後のデプス画像を座標変換部84Aに提供すればよい。
 画像補正処理部71は、カメラ12で取得された輝度画像(カメラ画像)を取得し、カメラパラメータ情報73を用いて輝度画像の補正処理を行う。画像補正処理部71は、カメラ12から輝度画像を取得する取得部(第1取得部)70を含む。カメラパラメータ情報73は、事前のキャリブレーションにより取得されたカメラ12のパラメータ情報である。補正処理の例として、ゲイン調整、黒レベル調整、白レベル調整、ノイズ除去、又はガンマ処理等がある。画像補正処理部71は、補正後の輝度画像をセグメンテーション部72に提供する。
 セグメンテーション部72は、学習済みニューラルネットワーク74を用いて、補正後の輝度画像にセマンティックセグメンテーションを行う。セマンティックセグメンテーションは、画像の各画素のクラス(種別)を、画素単位で分類する手法である。画素毎にクラスを判定し、判定されたクラスを示したラベルを画素毎に出力する。例えば、予め、人間、背景、電柱、道路、横断歩道、樹木、ビルといった複数のオブジェクトに対して各々クラスが定義されている。各クラスには特定の色が割り当てられている。各画素に対して、クラスの判定を行う。セマンティックセグメンテーションの結果として、画像の各画素に対応するクラス値が得られる各クラス値を、色とクラスの対応表に基づき色値に変換して、セグメンテーション画像が得られる。セグメンテーション画像の画像サイズ(画素数)は、輝度画像と同じである。
 セグメンテーション画像において、連続する同じ色値のまとまりが1つのオブジェクト(セグメント)に対応する。オブジェクトの最外延の画素が、オブジェクトの境界線となる。このようなセマンティックセグメンテーションを、学習済みニューラルネットワーク74を用いて行う。画像をニューラルネットワークの入力として用いる。ニューラルネットワークを用いた処理において、各画素を画素単位でクラス予測する。ニューラルネットワークの出力は、入力された画像の各画素に割り当てられたクラス値(数値)を含むクラスマップを含む。クラスと色の対応表を参照し、クラスマップの各クラス値を、各クラス値に対応する色値に置換することで、セグメンテーション画像が得られる。セグメンテーション画像により、セグメンテーション結果を可視化できる。
 本実施形態では画像のセグメンテーションのためセマンティックセグメンテーションを用いているが、画像をセグメント化できる手法であれば、色情報に基づくクラスタリング手法など、他の手法を用いてもかまわない。またセグメント化に用いるモデルも、ニューラルネットワークに限定されない。また本実施形態では補正後の輝度画像にセグメンテーションを行っているが、補正が行われていない輝度画像にセグメンテーションを行ってもよい。
 図10は、カメラ12により取得された輝度画像をセマンティックセグメンテーションして得られたセグメンテーション画像90の例を示す。5つのオブジェクト(セグメント)91A、91B、92、93、94が含まれている。オブジェクト94は人オブジェクト、オブジェクト92は地面オブジェクト、オブジェクト93は空オブジェクト、オブジェクト91A、91Bは静止構造物(壁、電柱など)オブジェクトである。各オブジェクトには異なる色が付けられている。オブジェクト91A、91Bの色は、オブジェクト91A、91Bが同じクラスである場合は同じである。
 セグメンテーション部72はセグメンテーション画像をデプス推定部75に提供する。
 画像補正処理部81Aは、ステレオカメラAの左カメラ及び右カメラにより撮像された画像を取得する。画像補正処理部81Aは、ステレオカメラAのパラメータ情報83Aに基づき、左カメラ及び右カメラにより撮像された画像の補正処理を行う。例えばノイズ除去や、左カメラと右カメラの位置関係に基づくレクティフィケーションを行う。画像補正処理部81Aは、左カメラの補正画像と右カメラの補正画像をデプス画像取得部82Aに提供する。
 デプス画像取得部82Aは、左カメラの補正画像と右カメラの補正画像と、左カメラと右カメラの視差と、三角測量の原理に基づき、左カメラと右カメラの撮像領域が重なる領域のデプス値を含むデプス画像を取得する。デプス画像取得部82Aは、ステレオカメラAの撮像領域のデプス値を含むデプス画像を取得する取得部(第2取得部)を備えている。デプス画像取得部82Aは、取得したデプス画像(デプス画像A又はデプスマップAと呼ぶ)を、座標変換部84Aと衝突判定部76に提供する。
 座標変換部84Aは、カメラ12のパラメータ情報と、ステレオカメラAのパラメータ情報と、カメラ12及びステレオカメラAの位置関係とに基づき、デプス画像A(デプスマップA)をステレオカメラAの座標系からカメラ12の座標系に変換する。変換後のデプスマップAをデプス推定部75に提供する。カメラ12とステレオカメラAの位置関係は、予め外部パラメータ情報として記憶部19に格納されている。あるいは、当該位置関係が、カメラ12のパラメータ情報又は、ステレオカメラAのパラメータ情報に含まれていてもよい。座標変換部84Aは、変換後のデプス画像(デプスマップA)を、デプス推定部75に提供する。
 画像補正処理部81Bは、画像補正処理部81Aと同様に、ステレオカメラAの左カメラ及び右カメラにより撮像された画像を取得する。画像補正処理部81Aは、ステレオカメラAのパラメータ情報83Aに基づき、左カメラ及び右カメラにより取得された画像の補正処理を行う。画像補正処理部81Bは、左カメラの補正画像と右カメラの補正画像をデプス画像取得部82Bに提供する。
 デプス画像取得部82Bは、デプス画像取得部82Aと同様に、左カメラの補正画像と右カメラの補正画像と、左カメラと右カメラの視差と、三角測量の原理に基づき、左カメラと右カメラの撮像領域が重なる領域のデプス値を含むデプス画像を取得する。デプス画像取得部82Bは、ステレオカメラBの撮像領域のデプス値を含むデプス画像を取得する取得部(第2取得部)を備えている。デプス画像取得部82Bは、取得したデプス画像(デプス画像B又はデプスマップBと呼ぶ)を、座標変換部84Bと衝突判定部76に提供する。
 座標変換部84Bは、座標変換部84Aと同様に、デプス画像B(デプスマップB)をステレオカメラBの座標系からカメラ12の座標系に変換して、変換後のデプスマップBをデプス推定部75に提供する。座標変換部84Bは、変換後のデプス画像(デプスマップB)をデプス推定部75に提供する。
 デプス推定部75は、セグメンテーション画像に対して、変換後のデプスマップA及び変換後のデプスマップBを位置合わせする。すなわち互いに対応する画素同士でセグメンテーション画像と各変換後のデプスマップを位置合わせする。3角測量の原理とエピポーラ制約、ある基準座標系における自己位置情報、及び、事前にキャリブレーションされた各センサ間の相対位置情報とから、デプスマップA及びデプスマップBの各画素が、セグメンテーション画像のどの画素に対応するかは一意に特定される。デプスマップA及びデプスマップBとセグメンテーション画像の画像サイズが異なる場合は、適宜補間処理を行えばよい。これにより重なった領域における画像部分のデプス値が特定できる。すなわち、セグメンテーション画像のうち、ステレオカメラA及びステレオカメラBの撮像領域と重なる領域のデプス値を含むデプス画像が、第3領域のデプス画像として求まる。
 図11は、図10のセグメンテーション画像に、デプスマップA(デプスマップ96A)及びデプスマップB(デプスマップ96B)を位置合わせして重ねた例を示す。デプスマップ96A及びデプスマップ96Bのうちセグメンテーション画像と重ならない部分の図示は省略している。なお、デプスマップ96A及びデプスマップ96Bはそれぞれ座標変換されている。デプスマップ96A、96Bは複数の画素を含み、各画素はデプス値を含む。セグメンテーション画像のうちデプスマップ96Aと重なる領域は、デプスマップ96Aが示すデプス値を有する。セグメンテーション画像のうちデプスマップ96Bと重なる部分の領域は、デプスマップ96Bが示すデプス値を有する。デプスマップ96A及びデプスマップ96Bがほぼ対称の形状を有するが、2つのデプスマップが全く異なる形状でもかまわない。また、2つのデプスマップが重ねられているが、1つのデプスセンサを用いた場合は1つのデプスマップが重ねられる。
 デプス推定部75は、セグメンテーション画像のうちデプスマップが重なっていない領域(非重畳領域)のデプス値を推定する。推定の動作の詳細は後述する。非重畳領域は、ドローン101の死角領域に対応する。デプス推定部75は、死角領域のデプス値を衝突判定部76に提供する。
 衝突判定部76は、死角領域のデプス値、デプス画像A及びデプス画像Bに基づき障害物の検出処理を行う。例えば、このままドローン101が進行方向(例えばカメラ12の撮像方向)に進んだ場合に、障害物に衝突するか否かを判定する。また衝突すると判定した場合に、衝突するまでの時間を、ドローン101の飛行速度に基づき予測する。
 制御部13は、衝突判定部76の判定結果を用いて、ドローン101の飛行を制御する。例えば、判定結果が衝突しないことを示す場合は、カメラ12の撮像方向にそのまま直進する。判定結果が衝突することを示す場合は、衝突するまでに時間より前までに別の経路へ変更する。
 以下、デプス推定部75が非重畳領域のデプス値を推定する処理(デプス推定処理)の詳細について説明する。
[第1の推定例]
 セグメンテーション画像に含まれるオブジェクトごと(セグメントごと)に、非重畳領域のデプス値を推定する。
 図12(A)は、デプス推定処理の第1の推定例を説明するための図である。セグメンテーション画像の一部に含まれる1つのオブジェクトである地面オブジェクト111が取り出して示されている。オブジェクト上の点群110は、デプスマップによりデプス値が特定されている点群(画素群)を模式的に示している。この例では地面オブジェクト111の一部のデプス値がデプスマップから分かっている。同一オブジェクト(この例では地面オブジェクト111)を平面と仮定し、平面フィッティングにより地面オブジェクト111を近似する3次元平面を算出する。地面オブジェクト111のうちデプスマップによりデプス値が分かっている部分以外の部分(非重畳領域)の少なくとも一部のデプス値として、3次元平面のデプス値を用いる。
 3次元平面の方程式は、NX+d=0により表される。Nは法線ベクトルであり、N=[n,n,nである。Xは3次元座標であり、X=[x,y,z]である。dは係数である。
 図12(B)は平面に対する法線ベクトルのイメージを示す。
 平面フィッティング以外の方法として、メッシュ作成により近似する平面を算出する方法もある。例えばドロネー三角形分割を用いることができる。
 図12(C)は、ドロネー三角形分割のイメージを示す。与えられた点群(ここではデプス値が分かっている点群)を辺で結ぶことで平面の図形を得る。この図形は三角形の集合である。この平面を、オブジェクトを近似する平面として用いる。この平面のうち、デプス値が分かっていない点のデプス値は、デプス値が分かっている点のデプス値の補間により推定すればよい。
[第2の推定例]
 予め定めた種類のオブジェクトには所定のデプス値を割り当てる。例えばドローンは空には衝突しないことから、空オブジェクトを無限遠点として扱う。例えば、空オブジェクトに含まれる各画素のデプス値を、無限遠点に対応する所定値(例えば、最大のデプス値)とする。例えば、前述した図11の空オブジェクト93に含まれる画素のデプス値は無限遠点に対応する値とする。
[第3の推定例]
 セグメンテーション画像に存在するオブジェクトのうち、デプスマップと重ならないオブジェクトについては、デプス値が分かっているオブジェクトとの接点におけるデプス値を、当該オブジェクトの少なくとも一部のデプス値とする。当該オブジェクトの少なくとも一部は、例えば、当該オブジェクト全体又は当該オブジェクトの接点部分である。デプス値が分かっているオブジェクトは、第1の推定例又は他の推定例により、オブジェクトの一部のデプス値が推定されたオブジェクトでもよい。
 図13は、第3の推定例の具体例を示す図である。地面オブジェクト111のうちデプスマップに重なっていない部分(非重畳領域)のデプス値が、上述した第1の推定例に従って、推定されているとする。人間オブジェクト112が存在し、人間オブジェクト112とデプスマップは重なっていないとする。すなわち人間オブジェクト112全体が非重畳領域に相当する。この場合、人間オブジェクト112と地面オブジェクト111との接点部分におけるデプス値に基づき、人間オブジェクト112の少なくとも一部(全部又は接点部分など)のデプス値を決定する。地面オブジェクト111は地面を表しているから、人間オブジェクト112が地面オブジェクト111と接する箇所は、人間オブジェクト112の一番下位の足部分(112A、112B)であると分かる。そこで、足部分(112A、112B)に接する地面オブジェクト111の部分のデプス値の統計値(平均、中央値、最小値、最大値等)を、人間オブジェクト112の少なくとも一部(全部又は接点部分など)のデプス値とする。
 セグメンテーション画像に存在するオブジェクトのうち、デプス値が分かっているオブジェクトと接していないオブジェクトについて、デプス値が不明なオブジェクト(デプス値が不明な領域)と判断する。例えば空中に飛んでいる鳥などが、このような場合のオブジェクトとして考えられる。デプス値が不明なオブジェクトは、オブジェクトまでの距離が不明なオブジェクトに相当する。距離が不明なオブジェクトが存在する場合、このオブジェクトが表す対象は障害物であると見なして、このオブジェクトへの方向の飛行を速やかに回避することが考えられる。
 図14は、空中で飛んでいる鳥を含むセグメンテーション画像の例を示す。セグメンテーション画像に鳥オブジェクト113が含まれる。鳥オブジェクト113以外は空オブジェクト114である。空オブジェクト114の一部はデプスマップ(図示せず)と重なっているが、鳥オブジェクト113はデプスマップと重なっていない。このような場合、鳥オブジェクト113はデプス値(距離)が不明なオブジェクトとする。
[第4の推定例]
 オブジェクトの一部がデプスマップと重なっている場合、オブジェクトの重なっていない部分のデプス値を、重なっている部分のデプス値から推定する。例えば重なっている部分のデプス値の統計値(平均値、中央値、最大値又は最小値など)を、当該重なっていない部分のデプス値とする。例えば人間オブジェクトが直立している場合に、人間オブジェクトの足のデプス値が分かっていれば、足のデプス値を、足以外の部分のデプス値として用いる。
[第5の推定例]
 第5の推定例ではデプス値が分かっているオブジェクトと接しておらず、かつデプスマップにも重なっていないオブジェクトのデプス値を推定する例を記載する。
 図15は、デプス推定処理の第5の推定例を説明するための図である。路面オブジェクト121の一部がデプスマップと重なっており、重なっている領域の点群(画素群)120が模式的に示されている。点群120のデプス値は分かっている。路面オブジェクト121の左手前と、右奥とに、電柱オブジェクト122A、122Bが設置されている。電柱オブジェクト122A、122Bの間には、電線オブジェクト123が架けられている。電柱オブジェクト122Aの一部はデプス値が分かっているが、電柱オブジェクト122Bについては、デプス値が分かっている領域は存在しない。第4の推定例では、電柱オブジェクト122B(非重畳領域)のデプス値、及び電線オブジェクト123の任意の箇所(非重畳領域)のデプス値を推定する。実空間における電柱オブジェクト122A及び電柱オブジェクト122Bが表す対象(電柱)の太さはいずれも同じであるとする。
 まず電柱オブジェクト122Bのデプス値を推定する例を示す。
 最初に、一部のデプス値が分かっている電柱オブジェクト122Aの太さの平均値を算出する。
 図16は、平均値を算出する手順の一例を示す。図15(A)に示すように、電柱オブジェクト122AのエッジE1、E2をセグメンテーション画像からエッジ検出処理により検出する。次に、図15(B)に示すように、エッジE1、E2の直線に対する法線方向を一定間隔で算出する。次に、図15(C)に示すように、各法線の方向にエッジE1、E2間の距離(画素数)を算出する。例えばエッジE1の法線H1について、法線H1の起点の位置を(h1、v1)、法線H1とエッジE2との交点を(h2、v2)とする。このとき、法線H1の方向におけるエッジE1、E2間の距離Aは、以下の式で算出される。
Figure JPOXMLDOC01-appb-M000001
 各法線について算出した距離の平均値Aaveを算出する。算出した平均値Aaveを電柱オブジェクト122Aの太さとする。
 次に、電柱オブジェクト122Aの横サイズである太さ(画素数)から、実空間において電柱オブジェクト122Aが表す電柱の横サイズである太さ(メートル:m)を算出する。そして、電柱オブジェクト122Aが表す電柱の太さ(m)と、電柱オブジェクト122Bの太さ(画素数)とに基づき、電柱オブジェクト122Bが表す電柱までの距離を算出する。
 図17は、実空間における電柱オブジェクト122Aの電柱の太さと、電柱オブジェクト122Bが表す電柱までの距離を算出する例を示す図である。
 カメラ画像131における電柱オブジェクト122Aの太さAaveが示されている。また、カメラ画像131における電柱オブジェクト122Bの太さBaveが示されている。カメラ画像131とセグメンテーション画像は同じ画素数であるため、カメラ画像131をセグメンテーション画像として考えても問題ない。
 光源位置132に対し、カメラ12の焦点距離をF(単位は画素)とする。電柱オブジェクト122Aが表す電柱133A(ここでは説明のため電柱の太さのみを示している)までの実距離(m)をZとする。距離Zは、例えば電柱オブジェクト122Aのデプス値の平均により算出できる。このとき、実空間における電柱133Aの太さX(m)は、以下の式で算出される。
Figure JPOXMLDOC01-appb-M000002
 次に電柱オブジェクト122Bが表す電柱133Bまでの距離をDとする。実空間における電柱133Bの太さは、電柱133Aと同じXである。よって、電柱133Bまでの距離は、以下の式で算出される。
Figure JPOXMLDOC01-appb-M000003
 以上により、電柱133Bまでの距離(m)が算出された。実空間の距離とデプス値とが1対1に対応するため、これにより、電柱オブジェクト122Bのデプス値が特定される。
 次に、電線オブジェクト123の任意の箇所のデプス値を推定する例を説明する。
 図18は、電線オブジェクト123の箇所134のデプス値を推定する例を示す図である。電線オブジェクト123は電柱オブジェクト122Aと電柱オブジェクト122Bの間に架けられている。よって、電柱オブジェクト122Aと電線オブジェクト123の結合部135Aから箇所134までの画素数Paと、電柱オブジェクト122Bと電線オブジェクト123の結合部135Bから箇所134までの画素数Pbとの比を用いて、箇所134までのデプスを算出できる。例えば、電柱オブジェクト122Aのデプス値をDa、電柱オブジェクト122bまでのデプス値をDbとすると、箇所134のデプス値Dcは、以下の式で表される。なお、電線オブジェクトと電柱オブジェクトとの結合部を特定できない場合は、電柱オブジェクトの最上部を結合部として用いてもよい。
Figure JPOXMLDOC01-appb-M000004
[その他の推定例]
 前述した図14の説明では、空を飛ぶ鳥のオブジェクトのデプス値は不明として扱ったが過去のカメラ画像のフレームで鳥オブジェクトのデプス値が算出された場合、鳥オブジェクトをトラッキングすることにより、鳥オブジェクトのデプス値を算出してもよい。例えば過去にデプス値が算出された鳥オブジェクトの大きさと、今回の鳥オブジェクトの大きさとを比較する。大きさの比率と、過去に算出したデプス値とから、今回の鳥オブジェクトのデプス値を算出する。
 図19A及び図19Bは、本実施形態に係る情報処理装置1の制御部13における動作の一例を示すフローチャートである。ドローン101はカメラ12として1つ又は複数の可動式カメラを備えているとする。可動式カメラは位置及び姿勢の少なくとも一方を変更可能なカメラである。またデプスセンサ11としてLiDAR又はレーダ等のステレオカメラでないデプスセンサA、Bの2つを用いる場合を想定する。ステレオカメラを用いる場合は、前述した図9で説明したデプス画像取得部で行う視差推定の処理を追加的に行えばよい。ドローン101の進行方向とは別の予測したい経路(予測対象の経路)の方向にカメラ12を向けて障害物の検出を行う場合を想定する。
 制御部13は、予測対象の経路に死角領域が含まれるかを判断する(S101)。すなわちデプスセンサ11で検出できない領域が経路に含まれているかを判断する。死角領域が含まれない場合、本処理を終了する。死角領域が含まれる場合、可動式カメラの内の1つを任意に選択する(S102)。
 選択した可動式カメラが障害物の検出を行いたい方向(予測対象の経路の方向)を向いているかを判断する(S103)。当該方向を向いている場合は、ステップS107に進む。向いていない場合は、可動式カメラを障害物の検出の用途に占有できるかを判断する(S104)。例えばドローン101が監視目的で飛行しており監視目的用の可動式カメラを全て使用中の場合は、占有できないと判断する。占有できない場合は、他に可動式カメラが存在するかを判断し、存在しない場合は、本処理を終了する。存在する場合は、ステップS102に戻る。可動式カメラを占有できる場合は、ステップS106に進む。
 ステップS106では可動式カメラの撮像方向を予測対象の経路の方向に向くように可動式カメラを制御する。制御部103は、可動式カメラで撮像を行い(S107)、撮像により取得した画像(輝度画像)を取得する。取得した輝度画像を補正し(S108)、セマンティックセグメンテーションを行う(S109)。
 制御部13は、可動式カメラと検出範囲の一部が重なるデプスセンサAを用いて撮像を行い、デプス値を含むデプス画像を取得する(S110)。取得したデプス画像に歪み補正等の補正を行う(S111)。なお、デプス画像の補正処理を省略する構成も可能である。デプスセンサAのデプス画像を可動式カメラの座標系に変換する(S112)。
 制御部13は、可動式カメラと検出範囲の一部が重なるデプスセンサBを用いて撮像を行い、デプス値を含むデプス画像を取得する(S113)、画像(デプス画像)を取得する。取得したデプス画像を補正する(S114)。なお、デプス画像の補正を行う処理を省略する構成も可能である。デプスセンサBのデプス画像を可動式カメラの座標系に変換する(S115)。
 セグメンテーション画像と、デプスセンサAの変換後のデプス画像と、デプスセンサBの変換後のデプス画像とを用いて、死角領域のデプス値を推定する(S116)。推定されたデプス値と、デプスセンサA、Bのデプス画像を用いて、障害物との衝突判定を行う(S117)。制御部13は、判定結果に基づきドローン101の飛行を制御する(S118)。
 以上、本実施形態によれば、デプスセンサの死角領域における障害物検出が可能となり、死角領域にドローンを進ませたときに、障害物の手前での自動停止や、障害物の回避を可能とする。また障害物を回避する場合も、死角領域を通りつつ障害物を回避する経路を決定できる。これにより、ドローンの自律移動時やRTH(Return to Home)時に、死角領域を避けて遠回りすることで非効率な飛行となる事象を低減できる。
 (変形例)
 上述の実施形態ではドローン101が死角領域のデプス値を推定したが、基地局201がドローン101からセグメンテーション画像と、デプス画像とを取得し、死角領域のデプス値を推定してもよい。基地局201は、推定したデプス値をドローン101に送信する。また基地局201が推定したデプス値に基づき障害物との衝突判定を行い、判定結果に応じてドローン101の飛行を制御してもよい。例えば死角領域に障害物が検出された場合、障害物を回避する新たな経路を決定し、決定した経路の指示データをドローン101に送信する。
(ハードウェア構成)
 図20に、ドローン101又は基地局201のハードウェア構成の一例を示す。ドローン101が備える情報処理装置1又は基地局201は、コンピュータ装置300により構成される。コンピュータ装置300は、CPU301と、入力インタフェース302と、表示装置303と、通信装置304と、主記憶装置305と、外部記憶装置306とを備え、これらはバス307により相互に接続されている。これらの要素のうちの少なくとも1つを、情報処理装置1又は基地局201が備えていなくてもよい。
 CPU(中央演算装置)301は、主記憶装置305上で、コンピュータプログラムを実行する。コンピュータプログラムは、情報処理装置1又は基地局201の上述の各機能構成を実現するプログラムのことである。コンピュータプログラムは、1つのプログラムではなく、複数のプログラムやスクリプトの組み合わせにより実現されていてもよい。CPU301が、コンピュータプログラムを実行することにより、各機能構成は実現される。
 入力インタフェース302は、キーボード、マウス、およびタッチパネルなどの入力装置からの操作信号を、情報処理装置1又は基地局201に入力するための回路である。
 表示装置303は、情報処理装置1又は基地局201に記憶されているデータ又は情報処理装置1又は基地局201で算出されたデータを表示する。表示装置303は、例えば、LCD(液晶ディスプレイ)、有機エレクトロルミネッセンスディスプレイ、CRT(ブラウン管)、またはPDP(プラズマディスプレイ)であるが、これに限られない。
 通信装置304は、情報処理装置1又は基地局201が外部装置と無線または有線で通信するための回路である。情報処理装置1又は基地局201で用いるデータを、通信装置304を介して外部装置から入力することができる。通信装置304はアンテナを含む。外部装置から入力したデータを、主記憶装置305や外部記憶装置306に格納することができる。
 主記憶装置305は、コンピュータプログラム、コンピュータプログラムの実行に必要なデータ、およびコンピュータプログラムの実行により生成されたデータなどを記憶する。コンピュータプログラムは、主記憶装置305上で展開され、実行される。主記憶装置305は、例えば、RAM、DRAM、SRAMであるが、これに限られない。図2又は図3の記憶部は、主記憶装置305上に構築されてもよい。
 外部記憶装置306は、コンピュータプログラム、コンピュータプログラムの実行に必要なデータ、およびコンピュータプログラムの実行により生成されたデータなどを記憶する。これらのコンピュータプログラムやデータは、コンピュータプログラムの実行の際に、主記憶装置305に読み出される。外部記憶装置306は、例えば、ハードディスク、光ディスク、フラッシュメモリ、及び磁気テープであるが、これに限られない。図2又は図3の記憶部は、外部記憶装置306上に構築されてもよい。
 なお、コンピュータプログラムは、コンピュータ装置300に予めインストールされていてもよいし、CD-ROMなどの記憶媒体に記憶されていてもよい。また、コンピュータプログラムは、インターネット上にアップロードされていてもよい。
 また、コンピュータ装置300は単一の装置により構成されてもよいし、相互に接続された複数のコンピュータ装置からなるシステムとして構成されてもよい。
 なお、上述の実施形態は本開示を具現化するための一例を示したものであり、その他の様々な形態で本開示を実施することが可能である。例えば、本開示の要旨を逸脱しない範囲で、種々の変形、置換、省略又はこれらの組み合わせが可能である。そのような変形、置換、省略等を行った形態も、本開示の範囲に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 また、本明細書に記載された本開示の効果は例示に過ぎず、その他の効果があってもよい。
 なお、本開示は以下のような構成を取ることもできる。
[項目1]
 空間における第1領域のデプス値を含むデプス画像と、前記第1領域と一部が重なる第2領域の輝度値を含む輝度画像とに基づいて、前記第2領域のうち前記第1領域に含まれない領域の少なくとも一部である第3領域のデプス値を推定する
 情報処理方法。
[項目2]
 デプス値を測定する第1センサ装置から前記第1領域のデプス画像を取得し、
 輝度値を測定する第2センサ装置から前記第2領域の輝度画像を取得する
 項目1に記載の情報処理方法。
[項目3]
 前記デプス画像を前記第1センサ装置の座標系から前記第2センサ装置の座標系に変換し、
 前記変換後の前記デプス画像を前記輝度画像に位置合わせして重畳し、前記輝度画像のうち前記デプス画像に重ならない領域の少なくとも一部を前記第3領域とする
 項目2に記載の情報処理方法。
[項目4]
 前記第2領域の輝度画像を複数のセグメントに分割し、
 前前記デプス画像と重なる第1部分と、前記デプス画像と重ならない第2部分とを含むセグメントを特定し、特定した前記セグメントの前記前記第1部分のデプス値に基づいて、特定した前記セグメントの前記第2部分のデプス値を推定する
 項目3に記載の情報処理方法。
[項目5]
 前記第2領域の輝度画像を複数のセグメントに分割し、
 少なくとも1つの前記セグメントにおいて前記デプス画像と重なる部分のデプス値を特定し、特定した前記デプス値が表す位置を含む3次元平面を推定し、推定した前記3次元平面に基づき、前記セグメントの前記デプス画像と重ならない部分のデプス値を推定する 項目3又は4に記載の情報処理方法。
[項目6]
 前記第2領域の輝度画像を複数のセグメントに分割し、
 前記デプス画像と重ならない第1セグメントの少なくとも一部のデプス値を、前記デプス画像と重なる第2セグメントの前記第1セグメントと接する部分のデプス値に基づき推定する
 項目3~5のいずれか一項に記載の情報処理方法。
[項目7]
 前記第2領域の輝度画像を複数のセグメントに分割し、
 前記複数のセグメントのうち予め定めた種類のセグメントのデプス値を所定値に設定する
 項目3~6のいずれか一項に記載の情報処理方法。
[項目8]
 前記第2領域の輝度画像を複数のセグメントに分割し、
 前記複数のセグメントのうち予め定めた種類のセグメントに包含されるセグメントのデプス値を不明とする
 項目3~7のいずれか一項に記載の情報処理方法。
[項目9]
 前記第2領域の輝度画像を複数のセグメントに分割し、
 前記デプス画像と重なる第1セグメントの前記デプス画像と重なる部分のデプス値と、 前記第1セグメントのサイズと、
 前記デプス画像と重ならない前記第2セグメントのサイズと、
 前記第1セグメントが表す対象のサイズと、
 前記第2セグメントが表す対象のサイズと
 に基づいて、前記第2セグメントの少なくとも一部のデプス値を推定する
 項目3~8のいずれか一項に記載の情報処理方法。
[項目10]
 前記第2領域の輝度画像を複数のセグメントに分割し、
 前記デプス画像と重なる第1セグメントが表す第1対象までの距離と、前記デプス画像と重なる第2セグメントが表す第2対象までの距離とに基づき、前記デプス画像と重ならない第3セグメントの少なくとも一部のデプス値を推定する
 項目3~9のいずれか一項に記載の情報処理方法。
[項目11]
 前記第3領域のデプス値に基づいて、前記空間を移動する移動体を制御する
 項目1~10のいずれか一項に記載の情報処理方法。
[項目12]
 デプス値を測定する第1センサ装置から前記第1領域のデプス画像を取得し、
 輝度値を測定する第2センサ装置から前記第2領域の輝度画像を取得し、
 前記第2センサ装置の撮像方向を前記移動体の移動方向に向ける
 項目11に記載の情報処理方法。
[項目13]
 複数の前記第2センサ装置のうち他の目的に使用中でない第2センサ装置を選択し、選択した第2センサ装置を用いる
 項目12に記載の情報処理方法。
[項目14]
 前記第1センサ装置の検出範囲は、前記第2センサ装置の検出範囲と一部が重なる
 項目2に記載の情報処理方法。
[項目15]
 前記第3領域は、前記移動体の死角領域である
 項目1~14のいずれか一項に記載の情報処理方法。
[項目16]
 前記移動体は、飛行体、自動車又はロボットである
 項目1~15のいずれか一項に記載の情報処理方法。
[項目17]
 空間における第1領域のデプス値を含むデプス画像と、前記第1領域と一部が重なる第2領域の輝度値を含む輝度画像とに基づいて、前記第2領域のうち前記第1領域に含まれない領域の少なくとも一部である第3領域のデプス値を推定するデプス推定部と、
 前記第3領域のデプス値に基づいて、前記空間を移動する移動体を制御する制御部と、 を備えた情報処理装置。
[項目17]
 空間における第1領域のデプス値を含むデプス画像と、前記第1領域と一部が重なる第2領域の輝度値を含む輝度画像とに基づいて、前記第2領域のうち前記第1領域に含まれない領域の少なくとも一部である第3領域のデプス値を推定するステップと、
 前記第3領域のデプス値に基づいて、前記空間を移動する移動体を制御するステップと をコンピュータに実行させるためのコンピュータプログラム。
1:情報処理装置
101、101A~101C:ドローン、
10:アンテナ、11:デプスセンサ(第1センサ装置)、12:カメラ(第2センサ装置)、14A~14D:ロータ、15A~15D:モータ、13:制御部、14:通信部、16:センサ部、17:位置検出部、18:バッテリ、19:記憶部、
71:画像補正処理部、72:セグメンテーション部、73:カメラパラメータ情報、74:学習済みニューラルネットワーク、75:デプス推定部、76:衝突判定部、81A、82B:画像補正処理部、82A、82B:デプス画像取得部、83A:ステレオカメラAのパラメータ情報、83B:ステレオカメラBのパラメータ情報、84A、84B:座標変換部、
201:基地局、202:アンテナ、203:通信部、204:制御部、205:記憶部、
300:コンピュータ装置、301:CPU、302:入力インタフェース、303:表示装置、304:通信装置、305:主記憶装置、306:外部記憶装置、307:バス

Claims (18)

  1.  空間における第1領域のデプス値を含むデプス画像と、前記第1領域と一部が重なる第2領域の輝度値を含む輝度画像とに基づいて、前記第2領域のうち前記第1領域に含まれない領域の少なくとも一部である第3領域のデプス値を推定する
     情報処理方法。
  2.  デプス値を測定する第1センサ装置から前記第1領域のデプス画像を取得し、
     輝度値を測定する第2センサ装置から前記第2領域の輝度画像を取得する
     請求項1に記載の情報処理方法。
  3.  前記デプス画像を前記第1センサ装置の座標系から前記第2センサ装置の座標系に変換し、
     前記変換後の前記デプス画像を前記輝度画像に位置合わせして重畳し、前記輝度画像のうち前記デプス画像に重ならない領域の少なくとも一部を前記第3領域とする
     請求項2に記載の情報処理方法。
  4.  前記第2領域の輝度画像を複数のセグメントに分割し、
     前前記デプス画像と重なる第1部分と、前記デプス画像と重ならない第2部分とを含むセグメントを特定し、特定した前記セグメントの前記前記第1部分のデプス値に基づいて、特定した前記セグメントの前記第2部分のデプス値を推定する
     請求項3に記載の情報処理方法。
  5.  前記第2領域の輝度画像を複数のセグメントに分割し、
     少なくとも1つの前記セグメントにおいて前記デプス画像と重なる部分のデプス値を特定し、特定した前記デプス値が表す位置を含む3次元平面を推定し、推定した前記3次元平面に基づき、前記セグメントの前記デプス画像と重ならない部分のデプス値を推定する 請求項3に記載の情報処理方法。
  6.  前記第2領域の輝度画像を複数のセグメントに分割し、
     前記デプス画像と重ならない第1セグメントの少なくとも一部のデプス値を、前記デプス画像と重なる第2セグメントの前記第1セグメントと接する部分のデプス値に基づき推定する
     請求項3に記載の情報処理方法。
  7.  前記第2領域の輝度画像を複数のセグメントに分割し、
     前記複数のセグメントのうち予め定めた種類のセグメントのデプス値を所定値に設定する
     請求項3に記載の情報処理方法。
  8.  前記第2領域の輝度画像を複数のセグメントに分割し、
     前記複数のセグメントのうち予め定めた種類のセグメントに包含されるセグメントのデプス値を不明とする
     請求項3に記載の情報処理方法。
  9.  前記第2領域の輝度画像を複数のセグメントに分割し、
     前記デプス画像と重なる第1セグメントの前記デプス画像と重なる部分のデプス値と、 前記第1セグメントのサイズと、
     前記デプス画像と重ならない前記第2セグメントのサイズと、
     前記第1セグメントが表す対象のサイズと、
     前記第2セグメントが表す対象のサイズと
     に基づいて、前記第2セグメントの少なくとも一部のデプス値を推定する
     請求項3に記載の情報処理方法。
  10.  前記第2領域の輝度画像を複数のセグメントに分割し、
     前記デプス画像と重なる第1セグメントが表す第1対象までの距離と、前記デプス画像と重なる第2セグメントが表す第2対象までの距離とに基づき、前記デプス画像と重ならない第3セグメントの少なくとも一部のデプス値を推定する
     請求項3に記載の情報処理方法。
  11.  前記第3領域のデプス値に基づいて、前記空間を移動する移動体を制御する
     請求項1に記載の情報処理方法。
  12.  デプス値を測定する第1センサ装置から前記第1領域のデプス画像を取得し、
     輝度値を測定する第2センサ装置から前記第2領域の輝度画像を取得し、
     前記第2センサ装置の撮像方向を前記移動体の移動方向に向ける
     請求項11に記載の情報処理方法。
  13.  複数の前記第2センサ装置のうち他の目的に使用中でない第2センサ装置を選択し、選択した第2センサ装置を用いる
     請求項12に記載の情報処理方法。
  14.  前記第1センサ装置の検出範囲は、前記第2センサ装置の検出範囲と一部が重なる
     請求項2に記載の情報処理方法。
  15.  前記第3領域は、前記移動体の死角領域である
     請求項1に記載の情報処理方法。
  16.  前記移動体は、飛行体、自動車又はロボットである
     請求項1に記載の情報処理方法。
  17.  空間における第1領域のデプス値を含むデプス画像と、前記第1領域と一部が重なる第2領域の輝度値を含む輝度画像とに基づいて、前記第2領域のうち前記第1領域に含まれない領域の少なくとも一部である第3領域のデプス値を推定するデプス推定部
     を備えた情報処理装置。
  18.  空間における第1領域のデプス値を含むデプス画像と、前記第1領域と一部が重なる第2領域の輝度値を含む輝度画像とに基づいて、前記第2領域のうち前記第1領域に含まれない領域の少なくとも一部である第3領域のデプス値を推定するステップ
     をコンピュータに実行させるためのコンピュータプログラム。
PCT/JP2021/011200 2020-03-27 2021-03-18 情報処理方法、情報処理装置及びコンピュータプログラム WO2021193373A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020058663A JP2023062219A (ja) 2020-03-27 2020-03-27 情報処理方法、情報処理装置及びコンピュータプログラム
JP2020-058663 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193373A1 true WO2021193373A1 (ja) 2021-09-30

Family

ID=77891758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011200 WO2021193373A1 (ja) 2020-03-27 2021-03-18 情報処理方法、情報処理装置及びコンピュータプログラム

Country Status (2)

Country Link
JP (1) JP2023062219A (ja)
WO (1) WO2021193373A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979821A (ja) * 1995-09-12 1997-03-28 Suzuki Motor Corp 障害物認識装置
JP2009157821A (ja) * 2007-12-27 2009-07-16 Toyota Central R&D Labs Inc 距離画像生成装置、環境認識装置、及びプログラム
JP2010091426A (ja) * 2008-10-08 2010-04-22 Toyota Central R&D Labs Inc 距離計測装置及びプログラム
WO2015097824A1 (ja) * 2013-12-26 2015-07-02 株式会社日立製作所 物体認識装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979821A (ja) * 1995-09-12 1997-03-28 Suzuki Motor Corp 障害物認識装置
JP2009157821A (ja) * 2007-12-27 2009-07-16 Toyota Central R&D Labs Inc 距離画像生成装置、環境認識装置、及びプログラム
JP2010091426A (ja) * 2008-10-08 2010-04-22 Toyota Central R&D Labs Inc 距離計測装置及びプログラム
WO2015097824A1 (ja) * 2013-12-26 2015-07-02 株式会社日立製作所 物体認識装置

Also Published As

Publication number Publication date
JP2023062219A (ja) 2023-05-08

Similar Documents

Publication Publication Date Title
US20210065400A1 (en) Selective processing of sensor data
US10599149B2 (en) Salient feature based vehicle positioning
US10936869B2 (en) Camera configuration on movable objects
US10645300B2 (en) Methods and apparatus for image processing
US11914369B2 (en) Multi-sensor environmental mapping
US11127202B2 (en) Search and rescue unmanned aerial system
US20170372120A1 (en) Cloud feature detection
JP2020079997A (ja) 情報処理装置、情報処理方法、及びプログラム
JP2019050007A (ja) 移動体の位置を判断する方法および装置、ならびにコンピュータ可読媒体
EP3992747B1 (en) Mobile body, control method, and program
US10210389B2 (en) Detecting and ranging cloud features
WO2020230410A1 (ja) 移動体
WO2021193373A1 (ja) 情報処理方法、情報処理装置及びコンピュータプログラム
WO2022239318A1 (ja) 移動体、移動制御方法、およびプログラム
WO2020195876A1 (ja) 移動体およびその制御方法、並びにプログラム
US20240069576A1 (en) Mobile body, information processing method, and computer program
US20220290996A1 (en) Information processing device, information processing method, information processing system, and program
WO2023155195A1 (zh) 一种障碍物的探测方法、装置、可移动平台及程序产品
JP2022003437A (ja) 移動体の制御システム及び制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP