WO2021193215A1 - Anti-glare laminate body - Google Patents

Anti-glare laminate body Download PDF

Info

Publication number
WO2021193215A1
WO2021193215A1 PCT/JP2021/010482 JP2021010482W WO2021193215A1 WO 2021193215 A1 WO2021193215 A1 WO 2021193215A1 JP 2021010482 W JP2021010482 W JP 2021010482W WO 2021193215 A1 WO2021193215 A1 WO 2021193215A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
styrene
hard coat
meth
Prior art date
Application number
PCT/JP2021/010482
Other languages
French (fr)
Japanese (ja)
Inventor
帰心 小澤
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2022509963A priority Critical patent/JPWO2021193215A1/ja
Priority to CN202180008294.0A priority patent/CN114929479A/en
Publication of WO2021193215A1 publication Critical patent/WO2021193215A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to an antiglare laminate. More specifically, the present invention has antiglare properties used as an in-vehicle display device, a touch panel front protective plate for a mobile phone terminal, a personal computer, a tablet PC, a front plate for an OA device, a portable electronic device, a front plate for a television, and the like. Regarding the laminate.
  • the liquid crystal display device is provided with a protective plate or a front plate for the purpose of protecting the liquid crystal panel and the like.
  • a (meth) acrylic resin typified by polymethyl methacrylate (PMMA) is used for the protective plate or front plate of a conventional liquid crystal display device.
  • Such a protective plate or front plate may be subjected to antiglare treatment that can suppress the reflection of an image or reduce the reflectance by scattering or interference of light.
  • the protective plate or the front plate since the protective plate or the front plate is operated by a finger, it is also important that the protective plate or the front plate is excellent in touch when touched by a hand.
  • Patent Document 1 describes an invention relating to a touch panel having an uneven surface on the operator side. At this time, the coefficient of static friction and the arithmetic mean roughness (Ra 2.5 ) of the unevenness satisfy predetermined conditions. As a result, Patent Document 1 describes that it has outdoor antiglare properties and is excellent in touch panel operability. More specifically, Patent Document 1 describes a coating film obtained by applying a concavo-convex layer coating solution containing an acrylic monomer, organic particles, and inorganic particles on a triacetyl cellulose (TAC) film. A laminate or the like in which an uneven layer is formed by irradiating with ultraviolet rays is described.
  • TAC triacetyl cellulose
  • the shape stability is excellent in a high temperature and high humidity environment, such as when it is used as a front plate used in a temperature and humidity environment exceeding 40 ° C. such as in an automobile interior.
  • a temperature of 85 ° C. and a humidity of 85% is small.
  • polycarbonate resin has been widely used as a protective plate or a front plate because it has high impact resistance, heat resistance, secondary workability, light weight and transparency.
  • An object of the present invention is to provide an antiglare laminate having excellent antiglare properties and touch comfort when a polycarbonate resin is used.
  • the present inventor has conducted diligent studies in order to solve the above problems. As a result, it has been found that the above problems can be solved by forming a predetermined laminated structure including a base material layer containing a polycarbonate resin, a high hardness resin layer, and a hard coat layer, and controlling the surface of the hard coat layer. , The present invention has been completed. That is, the present invention is as follows.
  • An antiglare laminate in which a base material layer containing at least a polycarbonate resin (a1), a high hardness resin layer containing a high hardness resin, and a hard coat layer are arranged in this order.
  • the arithmetic mean roughness (Ra), maximum peak height (Rp), maximum valley depth (Rv), and skewness (Rsk) of the hard coat layer are the following equations (1) to (3):
  • the reflectance (SCI 550 ) including the specularly reflected light and the reflectance (SCE 550 ) excluding the specularly reflected light of the hard coat layer at a wavelength of 550 nm are calculated by the following equation (5):
  • ⁇ 3> The prevention according to ⁇ 1> or ⁇ 2>, wherein the amount of change in warpage of the antiglare laminate after being held at a temperature of 85 ° C. and a relative humidity of 85% for 120 hours is 350 ⁇ m or less. Dazzling laminate.
  • ⁇ 4> The antiglare laminate according to any one of ⁇ 1> to ⁇ 3>, wherein the high hardness resin layer has a thickness of 10 to 250 ⁇ m.
  • ⁇ 5> The antiglare laminate according to any one of ⁇ 1> to ⁇ 4>, wherein the total thickness of the base material layer and the high hardness resin layer is 100 to 3,000 ⁇ m.
  • High hardness resin (B) The following general formula (1):
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is an alkyl group having 1 to 18 carbon atoms.
  • R 3 is a hydrogen atom or a methyl group
  • R 4 is a cyclohexyl group which may have a hydrocarbon machine having 1 to 4 carbon atoms.
  • It is a copolymer resin containing the aliphatic vinyl structural unit (b) represented by, and the total ratio of the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) is the same.
  • the resin (B1) is 90 to 100 mol% of all the constituent units of the polymerized resin, and the ratio of the (meth) acrylic acid ester constituent unit (a) is 65 to 80 mol% of all the constituent units of the copolymerized resin.
  • the resin (B1) is 35 to 65% by mass
  • the styrene-unsaturated dicarboxylic acid copolymer (C) is 35 to 65% by mass
  • the styrene-unsaturated dicarboxylic acid copolymer (C) is styrene-based.
  • the resin (B2) which contains the structural unit (c1) in an amount of 65 to 90% by mass and the unsaturated dicarboxylic acid anhydride structural unit (c2) in an amount of 10 to 35% by mass.
  • the resin (D) containing a vinyl monomer is contained in an amount of 55 to 10% by mass, and the styrene-unsaturated dicarboxylic acid-based copolymer (E) is contained in an amount of 45 to 90% by mass.
  • the coalescence (E) is 50 to 80% by mass of the styrene-based constituent unit (e1), 10 to 30% by mass of the unsaturated dicarboxylic acid constituent unit (e2), and 5 to 30% by mass of the vinyl-based constituent unit (e3).
  • resin (B3) A resin copolymer (G) containing 5 to 20% by mass of a styrene constituent unit, 70 to 90% by mass of a (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of an N-substituted maleimide constituent unit, or a resin.
  • a resin (B4) which is an alloy of the polymer (G) and a styrene-unsaturated dicarboxylic acid-based copolymer (E). The following general formula (3):
  • the antiglare laminate according to any one of ⁇ 1> to ⁇ 5> above, which comprises at least one selected from the group consisting of the resin (B6), which comprises ⁇ 35% by mass.
  • the resin (B5) is based on the following general formula (4):
  • the antiglare laminate according to ⁇ 6> above which is a copolymer further containing the structural unit (J) represented by.
  • the polycarbonate resin (a1) has the following general formula (5):
  • R 5 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms
  • R 6 may independently have a hydrogen atom, a halogen, or a substituent. It represents a good alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms, and n is an integer of 0 to 4, wherein the substituent is a halogen, an alkyl group having 1 to 20 carbon atoms, and the like. Alternatively, it is an aryl group having 6 to 12 carbon atoms.
  • the antiglare laminate according to any one of ⁇ 1> to ⁇ 8> above, which contains a component derived from monohydric phenol represented by.
  • ⁇ 10> An in-vehicle display device including the antiglare laminate according to any one of ⁇ 1> to ⁇ 9> above.
  • ⁇ 11> A touch panel front protective plate including the antiglare laminate according to any one of ⁇ 1> to ⁇ 9> above.
  • ⁇ 12> A front plate for OA equipment, portable electronic equipment, or a television, which comprises the antiglare laminate according to any one of ⁇ 1> to ⁇ 9> above.
  • ⁇ 13> The method for producing an antiglare laminate according to any one of ⁇ 1> to ⁇ 9> above.
  • a manufacturing method comprising a step of crimping a patterned PET film on the surface of the hard coat layer to transfer an uneven shape.
  • an antiglare laminate having excellent antiglare properties and touch feeling when a polycarbonate resin is used.
  • a base material layer containing at least a polycarbonate resin (a1), a high hardness resin layer containing a high hardness resin, and a hard coat layer are arranged in this order.
  • the order of laminating the antiglare laminate is preferably a base material layer-a high hardness resin layer-a hard coat layer.
  • the other surface of the base material layer is not particularly specified.
  • a high hardness resin layer can be provided on the other surface of the base material layer.
  • the antiglare laminate has a structure of a high hardness resin layer-a base material layer-a high hardness resin layer-a hard coat layer.
  • a high hardness resin layer and a hard coat layer can be provided on the other surface of the base material layer.
  • the antiglare laminate has a structure of a hard coat layer-a high hardness resin layer-a base material layer-a high hardness resin layer-a hard coat layer.
  • the base material layer When the high hardness tree layer is provided on both sides of the base material layer, it is more desirable to use the same high hardness tree layer on both sides for shape stability. Further, when the hard coat layer is provided on both sides of the base material, it is more preferable to provide the same hard coat layer on both sides because the shape stability is improved.
  • the base material layer, the high-hardness resin layer, the high-hardness resin layer, and the hard coat layer may be directly laminated or may be laminated via another layer, but are preferably directly laminated. ..
  • the antiglare laminate is, for example, an in-vehicle display device such as a car navigation system, a center information display (CID), a rear seat entertainment (RSE), a cluster, a touch panel full protection plate, and an OA device, a portable electronic device. It can be used as a front plate for equipment and television. Further, for example, the front plate can be used alone as the front plate of the liquid crystal display device, but may be combined and used as the front plate, for example, by laminating with another substrate such as a touch sensor.
  • an in-vehicle display device such as a car navigation system, a center information display (CID), a rear seat entertainment (RSE), a cluster, a touch panel full protection plate, and an OA device, a portable electronic device. It can be used as a front plate for equipment and television. Further, for example, the front plate can be used alone as the front plate of the liquid crystal display device, but may be combined and used as the front plate, for example, by laminating with another substrate such
  • the base material layer contains a polycarbonate resin (a1).
  • the base material layer may further contain additives and the like.
  • the polycarbonate resin (a1) has a carbonic acid ester bond in the main chain of the molecule, that is,-[OR-OCO] -unit (R is an aliphatic group, an aromatic group, or both an aliphatic group and an aromatic group. Is not particularly limited as long as it contains (which may have a linear structure or a branched structure), but is particularly limited to a polycarbonate resin containing the structural unit of the following formula (4). It is preferable to use. By using such a polycarbonate resin, a resin laminate having excellent impact resistance can be obtained.
  • polycarbonate resin (a1) an aromatic polycarbonate resin (for example, manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade names: Iupiron S-2000, Iupiron S-1000, Iupilon E-2000) and the like can be used. However, it is not limited to this.
  • R 5 represents an alkyl group having 8 to 36 carbon atoms and an alkenyl group having 8 to 36 carbon atoms
  • R 6 has independently having a hydrogen atom, a halogen, and a substituent. It represents an alkyl group of 1 to 20 or an aryl group having 6 to 12 carbon atoms, and n is an integer of 0 to 4, wherein the substituent is a halogen, an alkyl group having 1 to 20 carbon atoms, or carbon. It is an aryl group of the number 6 to 12.
  • the "alkyl group” and the “alkenyl group” may be linear or branched chain, and may have a substituent.
  • the monohydric phenol represented by the general formula (5) is represented by the following general formula (6).
  • R 5 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.
  • Formula (5) or the number of carbon atoms of R 5 in the general formula (6) is more preferably within a specific numerical range. Specifically, 36 is preferred as the upper limit of the carbon number of R 5, and more preferably 22, 18 is particularly preferred. Further, as the lower limit of the number of carbon atoms of R 5, 8 are preferred, 12 is more preferred.
  • the carbon number of R 5 is 36 or less, high productivity in manufacturing the polycarbonate resin may be economical.
  • the number of carbon atoms in the R 5 is 22 or less, monohydric phenols are especially excellent in solubility in an organic solvent, can be very high productivity in manufacturing the polycarbonate resin is also improved economy.
  • R 5 for example in the general formula (6), when using a monohydric phenol which is alkyl group of 16 carbon atoms (terminating agent), a glass transition temperature, melt flowability, moldability, drawdown resistance, polycarbonate resin
  • the monohydric phenol at the time of production is excellent in solvent solubility, and is particularly preferable as a terminal terminator used for the polycarbonate resin in the present invention.
  • one or both of the parahydroxybenzoic acid hexadecyl ester and the parahydroxybenzoic acid 2-hexyldecyl ester are terminated. It is particularly preferable to use it as an agent.
  • the weight average molecular weight of the polycarbonate resin (a1) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000, and further preferably 20,000 to 65,000. preferable.
  • the weight average molecular weight of the polycarbonate resin (a1) is 15,000 or more, the impact resistance can be increased, which is preferable.
  • the weight average molecular weight is 75,000 or less, the base material layer can be formed with a small amount of heat source, and the thermal stability can be maintained even when the molding conditions become high temperature, which is preferable.
  • the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
  • the polycarbonate resin (a1) contained in the base material layer may be one type or two or more types.
  • the content of the polycarbonate resin (a1) in the base material layer is preferably 75% by mass or more with respect to the total mass of the base material layer, and is 90% by mass or more from the viewpoint of improving impact resistance. It is more preferable, and it is further preferable that it is 100% by mass.
  • the base material layer may further contain additives.
  • additives include, for example, antioxidants, anticolorants, antichargers, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic particles and inorganic particles. Such as reinforcing materials.
  • the amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, and particularly preferably 0 to 5% by mass with respect to the total mass of the base material layer. ..
  • the method of mixing the additive and the resin is not particularly limited, and a method of compounding the entire amount, a method of dry-blending the masterbatch, a method of dry-blending the entire amount, and the like can be used.
  • the thickness of the base material layer is preferably 0.3 to 10 mm, more preferably 0.3 to 5 mm, and particularly preferably 0.3 to 3.5 mm.
  • the high hardness resin layer contains a high hardness resin.
  • the high hardness resin layer may further contain additives and the like, if necessary.
  • the high hardness resin layer may have a function of increasing the hardness of the antiglare laminate.
  • the high hardness resin is a resin having a hardness higher than that of the polycarbonate resin used as a base material, and has a pencil hardness of HB or higher, preferably HB to 3H, more preferably H to 3H, and even more preferably. It means a resin of 2H to 3H.
  • the pencil hardness of the high-hardness resin layer is the result of evaluation by a pencil scratch hardness test based on JIS K 5600-5-4: 1999. Specifically, the hardness is gradually increased with respect to the surface of the hard coat layer at an angle of 45 degrees and a load of 750 g, and the pencil is pressed against the surface, and the hardness of the hardest pencil that does not cause scratches is evaluated as the pencil hardness.
  • the high hardness resin is not particularly limited, but preferably contains at least one selected from the group consisting of the resin (B1) to the resin (B6).
  • the resins (B1) to (B6) may be referred to as resins (B1) to resins (B6) even in the case of a resin composition containing a plurality of types of resins.
  • the resin (B1) is a copolymer containing a (meth) acrylic acid ester structural unit (a) represented by the general formula (1) and an aliphatic vinyl structural unit (b) represented by the general formula (2). It is a resin. At this time, the resin (B1) (copolymerized resin) may further have other constituent units.
  • the total ratio of the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) is 90 to 100 mol%, preferably 95 to 100 mol% of the total structural units of the copolymer resin. It is 100 mol%, more preferably 98 to 100 mol%. Further, the ratio of the (meth) acrylic acid ester structural unit (a) is 65 to 80 mol% of the total structural units of the copolymer resin.
  • (meth) acrylic means methacryl and / or acrylic.
  • R 1 is a hydrogen atom or a methyl group, preferably a methyl group.
  • R 2 is an alkyl group having 1 to 18 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a butyl group, a lauryl group, a stearyl group, a cyclohexyl group and an isobornyl group. Of these, R 2 is preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is a (meth) acrylic acid ester structural unit, and R 1 is a methyl group.
  • the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is a methyl methacrylate structural unit.
  • the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) may contain only one type or two or more types in the resin (B1).
  • R 3 is a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • R 4 is a cyclohexyl group which may be substituted with a hydrocarbon group having 1 to 4 carbon atoms, and is preferably a cyclohexyl group having no substituent.
  • the "hydrocarbon group” may be linear, branched or cyclic, and may have a substituent.
  • the aliphatic vinyl structural unit (b) represented by the general formula (2) is a vinyl cyclohexane structural unit.
  • the aliphatic vinyl constituent unit (b) represented by the general formula (2) may contain only one type or two or more types in the resin (B1).
  • the other structural unit is not particularly limited, but the resin (B1) is obtained by hydrogenating the aromatic double bond derived from the aromatic vinyl monomer after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer.
  • the resin (B1) is obtained by hydrogenating the aromatic double bond derived from the aromatic vinyl monomer after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer.
  • examples thereof include a structural unit derived from an aromatic vinyl monomer containing a non-hydrogenated aromatic double bond, which is generated in the process of producing the above.
  • Specific other structural units include styrene structural units.
  • the other constituent units may contain only one type in the resin (B1) or may contain two or more types.
  • the total ratio of the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) is 90 to 100 with respect to the total of all the structural units of the resin (B1) (copolymerized resin). It is mol%, preferably 95 to 100 mol%, and more preferably 98 to 100 mol%.
  • the content of the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is 65 to 80 mol% with respect to all the structural units of the resin (B1) (copolymerized resin). It is preferably 70 to 80 mol%.
  • the content of the (meth) acrylic acid ester structural unit (a) is 65 mol% or more, a resin layer having excellent adhesion to the base material layer and surface hardness can be obtained.
  • the content of the (meth) acrylic acid ester structural unit (a) is 80 mol% or less, the antiglare laminate is less likely to warp due to water absorption, which is preferable.
  • the content of the aliphatic vinyl constituent unit (b) represented by the general formula (2) is preferably 20 to 35 mol% with respect to all the constituent units of the resin (B1) (copolymerized resin). , More preferably 20 to 30 mol%.
  • the content of the aliphatic vinyl constituent unit (b) is 20 mol% or more, warpage under high temperature and high humidity can be prevented, which is preferable.
  • the content of the aliphatic vinyl constituent unit (b) is 35 mol% or less, peeling at the interface with the base material can be prevented, which is preferable.
  • the content of the other structural units is preferably 10 mol% or less, more preferably 5 mol% or less, and 2 mol, based on all the structural units of the resin (B1) (copolymer). It is particularly preferable that it is% or less.
  • the "copolymer” may have any structure of random, block, and alternating copolymers.
  • the weight average molecular weight of the resin (B1) is not particularly limited, but is preferably 50,000 to 400,000, more preferably 70,000 to 300,000 from the viewpoint of strength and moldability. ..
  • the glass transition temperature of the resin (B1) is preferably 110 to 140 ° C, more preferably 110 to 135 ° C, and particularly preferably 110 to 130 ° C.
  • the glass transition point is 110 ° C. or higher, the resin sheet is less likely to be deformed or cracked in a thermal environment or a moist thermal environment, which is preferable.
  • the temperature is 140 ° C. or lower, the workability is excellent when molding is performed by continuous heat shaping using a mirror surface roll or a shaping roll, or batch type heat shaping using a mirror surface mold or a shaping die.
  • the glass transition temperature in the present invention is a temperature when measured by a differential scanning calorimetry device at a sample of 10 mg and a heating rate of 10 ° C./min and calculated by the midpoint method.
  • the resin (B1) examples include Optimus 7500 and 6000 (manufactured by Mitsubishi Gas Chemical Company).
  • the above-mentioned resin (B1) may be used alone or in combination of two or more.
  • the method for producing the resin composition (B1) is not particularly limited, but after polymerizing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer, the fragrance derived from the aromatic vinyl monomer is used. Those obtained by hydrogenating a group double bond are preferable.
  • the aromatic vinyl monomer is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, p-hydroxystyrene, alkoxystyrene, chlorostyrene, and derivatives thereof. Of these, the aromatic vinyl monomer is preferably styrene.
  • a known method can be used for the polymerization of the (meth) acrylic acid ester monomer and the aromatic vinyl monomer.
  • it can be produced by a massive polymerization method, a solution polymerization method, or the like.
  • the massive polymerization method is carried out by a method in which a monomer composition containing the above-mentioned monomer and a polymerization initiator is continuously supplied to a complete mixing tank and continuously polymerized at 100 to 180 ° C.
  • the monomer composition may contain a chain transfer agent, if necessary.
  • the polymerization initiator is not particularly limited, but is t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, 1,1-di (t-).
  • the chain transfer agent is not particularly limited, and examples thereof include ⁇ -methylstyrene dimer.
  • Examples of the solvent used in the solution polymerization method include hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane; ester solvents such as ethyl acetate and methyl isobutyrate; ketone solvents such as acetone and methyl ethyl ketone; tetrahydrofuran, Ether-based solvents such as dioxane; alcohol-based solvents such as methanol and isopropanol can be mentioned. These solvents may be used alone or in combination of two or more.
  • hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane
  • ester solvents such as ethyl acetate and methyl isobutyrate
  • ketone solvents such as acetone and methyl ethyl ketone
  • tetrahydrofuran Ether-based solvents such as diox
  • the solvent used for the hydrogenation reaction after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer may be the same as or different from the above-mentioned polymerization solvent.
  • hydrocarbon solvents such as cyclohexane and methylcyclohexane
  • ester solvents such as ethyl acetate and methyl isobutyrate
  • ketone solvents such as acetone and methyl ethyl ketone
  • ether solvents such as tetrahydrofuran and dioxane
  • alcohol solvents such as methanol and isopropanol.
  • solvents include solvents.
  • the resin (B1) is obtained by polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer as described above, and then hydrogenating the aromatic double bond derived from the aromatic vinyl monomer.
  • the hydrogenation method is not particularly limited, and a known method can be used. For example, it can be carried out in a batch method or a continuous flow method at a hydrogen pressure of 3 to 30 MPa and a reaction temperature of 60 to 250 ° C. When the temperature is 60 ° C. or higher, the reaction time does not take too long, which is preferable. On the other hand, when the reaction temperature is 250 ° C. or lower, side reactions such as cleavage of the molecular chain and hydrogenation of the ester site do not occur or hardly occur, which is preferable.
  • Examples of the catalyst used in the hydrogenation reaction include metals such as nickel, palladium, platinum, cobal, ruthenium, and rhodium, or oxides, salts, or complex compounds of these metals, such as carbon, alumina, silica, and silica. Examples thereof include a solid catalyst supported on a porous carrier such as alumina and diatomaceous earth.
  • the unhydrogenation rate of the aromatic double bond contained in the structural unit derived from the aromatic vinyl monomer is preferably less than 30%, more preferably less than 10%, and less than 5%. Is even more preferable.
  • the dehydrogenation rate is less than 30%, a resin having excellent transparency can be obtained, which is preferable.
  • the structural unit of the unhydrogenated portion can be another structural unit in the resin (B1).
  • the resin (B1) can be blended with other resins as long as the transparency is not impaired. That is, the resin (B1) is a resin composition containing the above-mentioned copolymer and other resins.
  • the other resin include methyl methacrylate-styrene copolymer resin, polymethyl methacrylate, polystyrene, polycarbonate, cycloolephine (co) polymer resin, acrylonitrile-styrene copolymer resin, and acrylonitrile-butadiene-styrene copolymer resin. , Various elastomers and the like.
  • the resin (B2) contains 35 to 65% by mass, preferably 40 to 60% by mass of the resin (B1), and 35 to 65% by mass, preferably 40 to 65% by mass of the styrene-unsaturated dicarboxylic acid-based copolymer (C). Contains 60% by mass. Further, the styrene-unsaturated dicarboxylic acid copolymer (C) contains a styrene-based structural unit (c1) in an amount of 65 to 90% by mass and an unsaturated dicarboxylic acid anhydride constituent unit (c2) in an amount of 10 to 35% by mass. ..
  • the resin (B2) is a resin composition containing two or more kinds of resins.
  • the content of the resin (B1) and the content of the styrene-unsaturated dicarboxylic acid-based copolymer (C) are the contents of the resin (B2) with respect to the total mass.
  • Resin (B1) As the resin (B1), the above-mentioned one is used. At this time, the resin (B1) may be used alone or in combination of two or more.
  • the styrene-unsaturated dicarboxylic acid copolymer (C) contains a styrene-based structural unit (c1) and an unsaturated dicarboxylic acid anhydride structural unit (c2).
  • the styrene-based monomer is not particularly limited, and any known styrene-based monomer can be used. Specific examples of the styrene-based monomer include styrene, a-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like. Of these, styrene is particularly preferable from the viewpoint of compatibility. These styrene-based monomers may be used alone or in combination of two or more.
  • the content of the styrene-based structural unit (c1) is 65 to 90% by mass, preferably 70 to 85% by mass, based on the total mass of the styrene-unsaturated dicarboxylic acid-based copolymer (C).
  • Unsaturated dicarboxylic acid anhydride building block (c2) The unsaturated dicarboxylic acid anhydride monomer is not particularly limited, and examples thereof include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid. Of these, maleic anhydride is preferable from the viewpoint of compatibility with the styrene-based monomer. These unsaturated dicarboxylic acid anhydride monomers may be used alone or in combination of two or more.
  • the content of the unsaturated dicarboxylic acid anhydride constituent unit (c2) is 10 to 35% by mass, preferably 15 to 30% by mass, based on the total mass of the styrene-unsaturated dicarboxylic acid-based copolymer (C). %.
  • styrene-unsaturated dicarboxylic acid-based copolymer (C) examples include XIBOND140, XIBOND160, XIRAN SO23110, and XIRAN SO26080 (manufactured by Polyscape). These styrene-unsaturated dicarboxylic acid-based copolymers (C) may be used alone or in combination of two or more.
  • the resin (B3) contains 55 to 10% by mass of the resin (D) containing a vinyl-based monomer and 45 to 90% by mass of the styrene-unsaturated dicarboxylic acid-based copolymer (E).
  • the styrene-unsaturated dicarboxylic acid-based copolymer (E) contains 50 to 80% by mass of the styrene-based constituent unit (e1), 10 to 30% by mass of the unsaturated dicarboxylic acid-based constituent unit (e2), and vinyl-based.
  • the structural unit (e3) is contained in an amount of 5 to 30% by mass. That is, the resin (B3) is a resin composition containing two or more kinds of resins.
  • the content of the resin (D) containing the vinyl-based monomer and the content of the styrene-unsaturated dicarboxylic acid-based copolymer (E) are the contents of the resin (B3) with respect to the total mass.
  • the resin (D) containing a vinyl-based monomer is not particularly limited, but is limited to acrylonitrile, metaacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, and methacrylic acid. , Methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate and the like, which are homopolymerized vinyl monomers.
  • the resin (D) containing a vinyl-based monomer preferably contains methyl methacrylate as a constituent unit.
  • the resin (D) containing the vinyl-based monomer may be a polymer using one kind of the structural unit, or a copolymer using two or more kinds in combination.
  • the weight average molecular weight of the resin (D) containing the vinyl-based monomer is preferably 10,000 to 500,000, more preferably 50,000 to 300,000.
  • the resin (D) containing the vinyl-based monomer described above may be used alone or in combination of two or more.
  • the styrene-unsaturated dicarboxylic acid-based copolymer (E) contains a styrene-based constituent unit (e1), an unsaturated dicarboxylic acid anhydride-based constituent unit (e2), and a vinyl-based constituent unit (e3).
  • the styrene-based monomer is not particularly limited, and any known styrene-based monomer can be used. Specific examples of the styrene-based monomer include styrene, a-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like. Among these, styrene is particularly preferable from the viewpoint of compatibility. These styrene-based monomers may be used alone or in combination of two or more.
  • the content of the styrene-based structural unit (e1) is 50 to 80% by mass, preferably 50 to 75% by mass, based on the total mass of the styrene-unsaturated dicarboxylic acid-based copolymer (E).
  • Unsaturated dicarboxylic acid anhydride building block (e2) The unsaturated dicarboxylic acid anhydride monomer is not particularly limited, and examples thereof include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid. Of these, maleic anhydride is preferable from the viewpoint of compatibility with vinyl-based monomers. These unsaturated dicarboxylic acid anhydride monomers may be used alone or in combination of two or more.
  • the content of the unsaturated dicarboxylic acid anhydride constituent unit (e2) is 10 to 30% by mass, preferably 10 to 25% by mass, based on the total mass of the styrene-unsaturated dicarboxylic acid-based copolymer (E). %.
  • Vinyl-based structural unit (e3) The vinyl-based monomer is not particularly limited, but is limited to acrylonitrile, metaacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, methyl methacrylate, etc. Examples thereof include vinyl-based monomers such as ethyl methacrylate, n-butyl methacrylate, and 2-ethylhexyl methacrylate. Of these, methyl methacrylate (MMA) is preferable from the viewpoint of compatibility with the resin (D) containing a vinyl-based monomer. These vinyl-based monomers may be used alone or in combination of two or more.
  • the content of the vinyl-based structural unit (e3) is 5 to 30% by mass, preferably 7 to 27% by mass, based on the total mass of the styrene-unsaturated dicarboxylic acid-based copolymer (E).
  • the weight average molecular weight of the styrene-unsaturated dicarboxylic acid-based copolymer (E) is preferably 50,000 to 200,000, more preferably 80,000 to 200,000.
  • the weight average molecular weight is within the above range, the compatibility with the resin (D) containing the vinyl-based monomer is good, and the effect of improving the heat resistance is excellent, which is preferable.
  • styrene-unsaturated dicarboxylic acid-based copolymer (E) include, but are not limited to, Regisphi R100, R200, R310 (manufactured by Denki Kagaku Kogyo), Delpet 980N (manufactured by Asahi Kasei), and the like. ..
  • the above-mentioned styrene-unsaturated dicarboxylic acid-based copolymer (E) may be used alone or in combination of two or more.
  • the resin (B4) is a resin copolymer containing 5 to 20% by mass of a styrene constituent unit, 70 to 90% by mass of a (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of an N-substituted maleimide constituent unit. (G), or an alloy of the resin copolymer (G) and the styrene-unsaturated dicarboxylic acid-based copolymer (E).
  • the resin copolymer (G) contains a styrene structural unit, a (meth) acrylic acid ester structural unit, and an N-substituted maleimide structural unit.
  • the styrene-based monomer is not particularly limited, and any known styrene-based monomer can be used. Specific examples of the styrene-based monomer include styrene, a-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like. Of these, styrene is particularly preferable from the viewpoint of compatibility. These styrene-based monomers may be used alone or in combination of two or more.
  • the content of the styrene constituent unit is 5 to 20% by mass, preferably 5 to 15% by mass, and more preferably 5 with respect to the total mass of the resin (B4) (resin copolymer (G)). ⁇ 10% by mass.
  • the (meth) acrylic acid ester monomer is not particularly limited, and is not particularly limited, and is acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, and methacrylic acid. , Methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate and the like. Of these, methyl methacrylate is preferable.
  • These (meth) acrylic acid ester monomers may be used alone or in combination of two or more.
  • the content of the (meth) acrylic acid ester constituent unit is 60 to 90% by mass, preferably 70 to 90% by mass, based on the total mass of the resin (B4) (resin copolymer (G)). , More preferably 80 to 90% by mass.
  • N-Substituted Maleimide Constituent Unit The N-substituted maleimide monomer is not particularly limited, but N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, Examples thereof include N-arylmaleimides such as N-methoxyphenylmaleimide, N-carboxyphenylmaleimide, N-nitrophenylmaleimide, and N-tribromophenylmaleimide. Of these, N-phenylmaleimide is preferable from the viewpoint of compatibility with the (meth) acrylic acid constituent unit. These N-substituted maleimide monomers may be used alone or in combination of two or more.
  • the content of the N-substituted maleimide structural unit is 5 to 20% by mass, preferably 5 to 15% by mass, based on the total mass of the resin (B4) (resin copolymer (G)). More preferably, it is 5 to 10% by mass.
  • the weight average molecular weight of the resin copolymer (G) is preferably 50,000 to 250,000, more preferably 100,000 to 200,000.
  • resin copolymer (G) examples include, but are not limited to, Delpet PM120N (manufactured by Asahi Kasei Chemical Co., Ltd.).
  • the method for producing the resin copolymer (G) is not particularly limited, but it can be produced by solution polymerization, bulk polymerization, or the like.
  • the alloy is an alloy of the resin copolymer (G) and the styrene-unsaturated dicarboxylic acid-based copolymer (E).
  • the resin copolymer (G) and the styrene-unsaturated dicarboxylic acid-based copolymer (E) are alloys having a high glass transition temperature.
  • the alloy manufacturing method is not particularly limited, and examples thereof include a method of melt-kneading at a cylinder temperature of 240 ° C. using a twin-screw extruder having a screw diameter of 26 mm, extruding into strands, and pelletizing with a pelletizer.
  • the resin (B5) contains a structural unit (H) represented by the general formula (3).
  • the resin (B5) is preferably a copolymer further containing the structural unit (J) represented by the general formula (4).
  • the polymer may further contain other structural units.
  • the content of the structural unit (H) represented by the general formula (3) is preferably 50 to 100 mol%, preferably 60 to 100 mol%, based on all the structural units of the resin (B5). Is more preferable, and 70 to 100 mol% is further preferable.
  • the content of the structural unit (J) represented by the general formula (4) is preferably 0 to 50 mol% and 0 to 40 mol% with respect to all the structural units of the resin (B5). Is more preferable, and 0 to 30 mol% is further preferable.
  • the content of the other constituent units is preferably 10 mol% or less, more preferably 5 mol% or less, and preferably 2 mol% or less, based on all the constituent units of the resin (B5). Especially preferable.
  • the total content of the constituent unit (H) and the constituent unit (J) is preferably 90 to 100 mol%, more preferably 95 to 100 mol%, based on all the constituent units of the resin (B5). It is preferably 98 to 100 mol%, more preferably 98 to 100 mol%.
  • the weight average molecular weight of the resin (B5) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000, and particularly preferably 25,000 to 65,000.
  • the resin (B5) include, but are not limited to, Iupiron KH3410UR, KH3520UR, KS3410UR (manufactured by Mitsubishi Engineering Plastics Co., Ltd.) and the like.
  • the above-mentioned resin (B5) may be used alone or in combination of two or more.
  • the method for producing the resin composition (B5) is not particularly limited, but it can be produced by the same method as the above-mentioned method for producing the polycarbonate resin (a1) except that bisphenol C is used as the monomer.
  • the resin (B6) contains 35 to 65% by mass of the resin (D) containing a vinyl-based monomer and 35 to 65% by mass of the styrene-unsaturated dicarboxylic acid-based copolymer (C). Further, the styrene-unsaturated dicarboxylic acid copolymer (C) contains a styrene-based structural unit (c1) in an amount of 65 to 90% by mass and an unsaturated dicarboxylic acid anhydride constituent unit (c2) in an amount of 10 to 35% by mass. .. That is, the resin (B6) is a resin composition containing two or more kinds of resins. The content of the resin (D) containing the vinyl-based monomer and the content of the styrene-unsaturated dicarboxylic acid-based copolymer (C) are the contents of the resin (B6) with respect to the total mass.
  • the resin (D) containing the vinyl-based monomer As the resin (D) containing the vinyl-based monomer, the same resin as that described in the above resin (B3) is used.
  • the resin (D) containing the vinyl-based monomer may be used alone or in combination of two or more.
  • styrene-unsaturated dicarboxylic acid copolymer (C) As the styrene-unsaturated dicarboxylic acid copolymer (C), the same one as described in the above resin (B2) is used.
  • the styrene-unsaturated dicarboxylic acid copolymer (C) may be used alone or in combination of two or more.
  • the high hardness resin layer may contain additives.
  • the additive is not particularly limited, and those usually used in antiglare laminates can be used. Specific examples include antioxidants, anticolorants, antistatic agents, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic particles and inorganic particles. Reinforcement materials and the like can be mentioned.
  • the amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, and particularly preferably 0 to 5% by mass with respect to the total mass of the high hardness resin layer. preferable.
  • the method of mixing the additive and the resin is not particularly limited, and a method of compounding the entire amount, a method of dry-blending the masterbatch, a method of dry-blending the entire amount, and the like can be used.
  • the thickness of the high hardness resin layer is preferably 10 to 250 ⁇ m, more preferably 30 to 200 ⁇ m, and particularly preferably 60 to 150 ⁇ m.
  • the thickness of the high hardness resin layer is 10 ⁇ m or more, the surface hardness becomes high, which is preferable.
  • the thickness of the high hardness resin layer is 250 ⁇ m or less, the impact resistance is high, which is preferable.
  • the total thickness of the base material layer and the high hardness resin layer is preferably 100 to 3500 ⁇ m, more preferably 100 to 3000 ⁇ m, still more preferably 500 to 3000 ⁇ m, and particularly preferably 1200 to 3000 ⁇ m.
  • the total thickness is 100 ⁇ m or more, the rigidity of the sheet can be maintained, which is preferable.
  • the total thickness is 3500 ⁇ m or less, it is possible to prevent the sensitivity of the touch sensor from deteriorating when the touch panel is installed under the sheet, which is preferable.
  • the ratio of the thickness of the base material layer to the total thickness of the base material layer and the high hardness resin layer is preferably 75% to 99%, more preferably 80 to 99%, and particularly preferably 85 to 99%. be. Within the above range, both hardness and impact resistance can be achieved.
  • the method of laminating the high-hardness resin layer on the base material layer is not particularly limited, and is a method of superimposing the individually formed base material layer and the high-hardness resin layer and heat-bonding the two; individually formed groups.
  • the coextrusion method is not particularly limited.
  • a high-hardness resin layer is placed on one side of a base material layer with a feed block, extruded into a sheet shape with a T-die, and then cooled while passing through a molding roll to form a desired laminate.
  • a high-hardness resin layer is arranged on one side of the base material layer in the multi-manifold die, extruded into a sheet shape, and then cooled while passing through a molding roll to form a desired laminated body. ..
  • the hard coat layer is not particularly limited, but an acrylic hard coat is preferable.
  • the "acrylic hard coat” means a coating film formed by polymerizing a monomer or oligomer or prepolymer containing a (meth) acryloyl group as a polymerization group to form a crosslinked structure.
  • the hard coat layer may further contain a UV absorber.
  • the hard coat layer preferably does not contain organic particles and inorganic particles. Scratch resistance can be improved by not containing organic particles and inorganic particles. As will be described later, by performing the antiglare treatment of the hard coat layer by transfer using a mold, it is possible to form a hard coat layer having an uneven shape without containing organic particles and inorganic particles.
  • the content of the (meth) acrylic monomer is preferably 2 to 98% by mass with respect to the total mass of the (meth) acrylic monomer, the (meth) acrylic oligomer, and the surface modifier. It is more preferably to 50% by mass, and even more preferably 20 to 40% by mass.
  • the content of the (meth) acrylic oligomer is preferably 2 to 98% by mass with respect to the total mass of the (meth) acrylic monomer, the (meth) acrylic oligomer, and the surface modifier. , 50 to 95% by mass, more preferably 60 to 80% by mass.
  • the content of the surface modifier is preferably 0 to 15% by mass with respect to the total mass of the (meth) acrylic monomer, the (meth) acrylic oligomer, and the surface modifier. It is more preferably to 10% by mass, and even more preferably 2 to 5% by mass.
  • the content of the photopolymerizer is 0. It is preferably 001 to 7 parts by mass, more preferably 0.01 to 5 parts by mass, and even more preferably 0.1 to 3 parts by mass.
  • the photopolymerization initiator refers to a photoradical generator.
  • (meth) acrylic monomer any one in which the (meth) acryloyl group is present as a functional group in the molecule can be used. Specific examples thereof include monofunctional monomers, bifunctional monomers, and trifunctional or higher functional monomers.
  • Examples of the monofunctional monomer include (meth) acrylic acid and (meth) acrylic acid ester.
  • bifunctional and / or trifunctional or higher (meth) acrylic monomers include diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate.
  • 1,6-hexanediol di (meth) acrylate bisphenol A diglycidyl ether di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl glycol diacrylate hydroxypivalate, neopentyl glycol di (meth) acrylate, 1,4-Butanediol diacrylate, 1,3-butylene glycol di (meth) acrylate, dicyclopentanyldi (meth) acrylate, polyethylene glycol diacrylate, 1,4-butanediol oligoacrylate, neopentyl glycol oligoacrylate , 1,6-Hexanediol oligo acrylate, trimethylol propanetri (meth) acrylate, trimethylol propane ethoxytri (meth) acrylate, trimethylol propanepropoxytri (meth) acrylate, pentaerythritol tri (
  • the hard coat layer may contain one type or two or more types of (meth) acrylic monomers.
  • (Meta) Acrylic Oligomer As the (meth) acrylic oligomer, a bifunctional or higher polyfunctional urethane (meth) acrylate oligomer (hereinafter, also referred to as “polyfunctional urethane (meth) acrylate oligomer”) or a bifunctional or higher polyfunctional polyester (meth) acrylate oligomer. (Hereinafter, also referred to as “polyfunctional polyester (meth) acrylate oligomer”), bifunctional or higher functional epoxy (meth) acrylate oligomer (hereinafter, also referred to as “polyfunctional epoxy (meth) acrylate oligomer”) and the like can be mentioned.
  • polyfunctional urethane (meth) acrylate oligomer a urethanization reaction product of a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule and a polyisocyanate; polyols are poly.
  • examples thereof include a urethanization reaction product of an isocyanate compound obtained by reacting with isocyanate and a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule.
  • Examples of the (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule used in the urethanization reaction include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
  • Examples include (meth) acrylate.
  • the polyisocyanate used in the urethanization reaction includes hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and diisocyanate obtained by hydrogenating aromatic isocyanates among these diisocyanates.
  • diisocyanate such as hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate
  • di or tri polyisocyanate such as triphenylmethane triisocyanate, dimethylene triphenyl triisocyanate, or polyisocyanate obtained by increasing the amount of diisocyanate.
  • polyols used in the urethanization reaction in addition to aromatic, aliphatic and alicyclic polyols, polyester polyols, polyether polyols and the like are generally used.
  • aliphatic and alicyclic polyols include 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, ethylene glycol, propylene glycol, trimethylolethane, trimethylolpropane, dimethylolheptan, and di.
  • examples thereof include methylolpropionic acid, dimethylolbutylionic acid, glycerin, and hydrogenated bisphenol A.
  • polyester polyol examples include those obtained by a dehydration condensation reaction between the above-mentioned polyols and a polycarboxylic acid.
  • Specific compounds of the polycarboxylic acid include succinic acid, adipic acid, maleic acid, trimellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, terephthalic acid and the like. These polycarboxylic acids may be anhydrides.
  • polyether polyol examples include polyalkylene glycols and polyoxyalkylene-modified polyols obtained by reacting the above-mentioned polyols or phenols with alkylene oxide.
  • the polyfunctional polyester (meth) acrylate oligomer is obtained by a dehydration condensation reaction using (meth) acrylic acid, polycarboxylic acid and polyol.
  • the polycarboxylic acid used in the dehydration condensation reaction include succinic acid, adipic acid, maleic acid, itaconic acid, trimellitic acid, pyromellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, and terephthalic acid. These polycarboxylic acids may be anhydrides.
  • the polyols used in the dehydration condensation reaction include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, dimethylolheptan, dimethylolpropionic acid, and dimethylol.
  • Butyrionic acid, trimethylolpropane, trimethylolpropane, pentaerythritol, dipentaerythritol and the like can be mentioned.
  • the polyfunctional epoxy (meth) acrylate oligomer is obtained by an addition reaction between polyglycidyl ether and (meth) acrylic acid.
  • the polyglycidyl ether include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether.
  • the hard coat layer may contain one type or two or more types of (meth) acrylic oligomers.
  • the surface modifier changes the surface performance of the hard coat layer such as a leveling agent, an antistatic agent, a surfactant, a water-repellent oil-repellent agent, an inorganic particle, and an organic particle.
  • leveling agent examples include polyether-modified polyalkylsiloxane, polyether-modified siloxane, polyester-modified hydroxyl group-containing polyalkylsiloxane, polyether-modified polydimethylsiloxane having an alkyl group, modified polyether, and silicon-modified acrylic. ..
  • antistatic agent examples include glycerin fatty acid ester monoglyceride, glycerin fatty acid ester organic acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester, cationic surfactant, and anionic surfactant.
  • surfactant and the water- and oil-repellent agent examples include fluorine-containing surfactants such as fluorine-containing group / lipophilic group-containing oligomers, fluorine-containing groups / hydrophilic groups, lipophilic groups, and UV-reactive group-containing oligomers. Activators and water repellents and oil repellents can be mentioned.
  • examples of the inorganic particles include silica particles, alumina particles, zirconia particles, silicon particles, silver particles, and glass particles.
  • organic particles examples include acrylic particles and silicon particles.
  • the hard coat layer may contain one type or two or more types of surface modifiers.
  • Photopolymerization initiator examples include a monofunctional photopolymerization initiator. Specifically, 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone [Darocure 2959: manufactured by Merck]; ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone [Darocure 1173: Merck] Manufacture]; Acetphenone-based initiators such as methoxyacetophenone, 2,2'-dimethoxy-2-phenylacetophenone [Irgacure-651], 1-hydroxy-cyclohexylphenylketone; benzoin ether-based initiators such as benzoin ethyl ether and benzoin isopropyl ether. Agents; Other examples include ketone halides, acylphosphinoxides, acylphosphonates and the like. These photopolymerization initiators may be used alone or in combination of two or more.
  • UV absorber examples include hydroxyphenyltriazine-based, benzotriazole-based, and bengophenone-based.
  • the UV absorber may be used alone or in combination of two or more.
  • the film thickness of the hard coat layer is preferably 1 to 40 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the film thickness of the hard coat layer is preferably 1 to 40 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the film thickness of the hard coat layer is 1 ⁇ m or more, sufficient hardness can be obtained, which is preferable.
  • the film thickness of the hard coat layer is 40 ⁇ m or less, the occurrence of cracks during bending can be suppressed, which is preferable.
  • the film thickness of the hard coat layer can be measured by observing the cross section with a microscope or the like and actually measuring the area from the coating film interface to the surface.
  • the pencil hardness on the surface of the hard coat layer is preferably HB or higher, more preferably H or higher, further preferably 2H or higher, and particularly preferably 2H to 3H.
  • the pencil hardness of the hard coat layer is the result of evaluation by a pencil scratch hardness test based on JIS K 5600-5-4: 1999. Specifically, the hardness was gradually increased with respect to the surface of the hard coat layer at an angle of 45 degrees and a load of 750 g, and the pencil was pressed against the surface, and the hardness of the hardest pencil that did not cause scratches was evaluated as the pencil hardness.
  • the hard coat layer has an uneven shape, it is possible to obtain an antiglare laminate having excellent antiglare properties and touch comfort.
  • the hard coat layer has the following equations (1) to (3) for the arithmetic mean roughness (Ra), maximum mountain height (Rp), maximum valley depth (Rv), and skewness (Rsk). Fulfill.
  • the arithmetic mean roughness (Ra), the maximum peak height (Rp), the maximum valley depth (Rv), and the skewness (Rsk) are measured by JIS B0601 1994 cutoff 0.8.
  • the arithmetic mean roughness (Ra) is an index of antiglare.
  • Ra is 0.03 or less, light scattering is insufficient and antiglare is insufficient.
  • Ra is 0.10 or more, light scattering becomes excessive and whitening occurs, resulting in poor texture.
  • the formula (1) more preferably satisfies 0.035 ⁇ Ra ⁇ 0.095, and further preferably 0.040 ⁇ Ra ⁇ 0.92.
  • Rp / Rv indicates that the uneven shape of the hard coat layer has a deeper valley than the height of the mountain, and is an index for maintaining a balance between antiglare and finger slipperiness.
  • Rp / Rv is 0.15
  • the antiglare property is lowered.
  • Rp / Rv is 0.30 or more
  • the finger slipperiness deteriorates.
  • the formula (2) more preferably satisfies 0.16 ⁇ Rp / Rv ⁇ 0.29, and further preferably 0.17 ⁇ Rp / Rv ⁇ 0.28.
  • skewness (Rsk) is an index showing the symmetry of the peak portion and the valley portion.
  • the skewness (Rsk) becomes a negative value, it indicates that there are many valleys. Since the skewness (Rsk) is within the range of the equation (3), the uneven shape has more valleys than the peaks, and the balance between antiglare and finger slipperiness can be maintained. It is more preferable that the formula (3) satisfies ⁇ 4.8 ⁇ Rsk ⁇ 2.5.
  • the hard coat layer uses a tactile contact as a contact, and the dynamic friction coefficient ( ⁇ k) measured at a load of 50 g, a scanning speed of 10 mm / sec, and a scanning distance of 90 mm satisfies the following formula (4).
  • the tactile contacts used in this measurement method are contacts that imitate human fingers, so it is possible to quantitatively evaluate finger slipperiness. can.
  • the dynamic friction coefficient ( ⁇ K) is specifically measured by the method described in Examples.
  • the coefficient of dynamic friction ( ⁇ k) is an index of finger slipperiness.
  • the coefficient of kinetic friction ( ⁇ k) is in the range of the equation (4), an appropriate finger slipperiness can be obtained.
  • the hard coat layer can be formed into an uneven shape mainly having excellent antiglare properties. Further, when the hard coat layer satisfies the above formula (4), it is possible to obtain mainly excellent finger slipperiness. As a result, it is possible to obtain an antiglare laminate having excellent antiglare properties and touch comfort.
  • the reflectance (SCI 550 ) including the specularly reflected light and the reflectance (SCE 550 ) excluding the specularly reflected light of the hard coat layer satisfy the following formula (5).
  • the reflectance including the positively reflected light (SCI 550 ) and the reflectance excluding the normally reflected light (SCE 550 ) are measured using a spectrocolorimeter SD7000 (manufactured by Nippon Denshoku).
  • SCE 550 / SCI 550 is an index of anti-reflection performance.
  • SCE 550 / SCI 550 is more than 0.25, light can be preferably scattered and antiglare property is enhanced, which is preferable.
  • SCE 550 / SCI 550 is less than 0.60, light scattering does not become excessive, whitening can be prevented, and a suitable texture can be obtained, which is preferable.
  • the method for forming the hard coat layer is not particularly limited, but for example, it can be formed by applying a hard coat liquid on a layer located below the hard coat layer (for example, a high hardness resin layer) and then photopolymerizing the hard coat layer. ..
  • the method of applying the hard coat liquid is not particularly limited, and a known method can be used.
  • spin coating method dip method, spray method, slide coating method, bar coating method, roll coating method, gravure coating method, meniscus coating method, flexographic printing method, screen printing method, beat coating method, handling method and the like can be mentioned. ..
  • a lamp having a light emission distribution with a light wavelength of 420 nm or less is used.
  • Examples thereof include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps.
  • high-pressure mercury lamps or metal halide lamps efficiently emit light in the active wavelength region of the initiator, and heat short-wavelength light or reaction compositions that reduce the viscoelastic properties of the obtained polymer by cross-linking. This is preferable because it does not emit a large amount of long-wavelength light that causes evaporation.
  • the irradiation intensity of the lamp is a factor that affects the degree of polymerization of the obtained polymer, and is appropriately controlled for each performance of the target product.
  • the illuminance is preferably in the range of 0.1 to 300 mW / cm 2.
  • the photopolymerization reaction is inhibited by oxygen in the air or oxygen dissolved in the reactive composition. Therefore, it is desirable to carry out light irradiation using a method that can eliminate the reaction inhibition due to oxygen.
  • One such method is to cover the reactive composition with a film made of polyethylene terephthalate or Teflon to cut off contact with oxygen, and irradiate the reactive composition with light through the film. Further, the composition may be irradiated with light through a light-transmitting window in an inert atmosphere in which oxygen is replaced with an inert gas such as nitrogen gas or carbon dioxide gas.
  • the air velocity of the inert gas is preferably 1 m / sec or less as a relative velocity with respect to the laminate coated with the hard coat liquid moving under the atmosphere of the inert gas. It is more preferably 0.1 m / sec or less.
  • the coated surface may be pretreated for the purpose of improving the adhesion of the hard coat layer.
  • Known treatment examples include sandblasting, solvent treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet treatment, and primer treatment with a resin composition. Can be mentioned.
  • the method of forming irregularities on the hard coat layer is not particularly limited, but a method using a mold is preferable.
  • a method using a mold is preferable.
  • the high hardness resin layer, the coating film obtained by applying the reactive composition, and the mold are laminated in this order.
  • a method of photopolymerizing the reactive composition and demolding the mold can be mentioned.
  • the photopolymer (hard coat layer) of the reactive composition has a shape that reflects the rough surface of the mold on the contact surface with the mold. That is, the antiglare treatment of the hard coat layer is performed by transfer using a mold.
  • the mold is not particularly limited as long as it transmits UV light, and glass, transparent resin, or the like is used.
  • the mold includes a mold in which a transparent film and a transparent resin having a rough surface are laminated.
  • the transparent film include a PET film.
  • the transparent resin having the rough surface include acrylic resin and the like.
  • the rough surface of the transparent resin is not particularly limited, and may be formed by adding particles (organic particles, inorganic particles, etc.) to the transparent resin, or by etching the transparent resin. It may be formed, or it may be formed by printing and curing a transparent resin.
  • the shape of the rough surface is not particularly limited, but it is preferably a pattern from the viewpoint of being used for applications such as liquid crystal panels.
  • the surface (concavo-convex shape) of the hard coat layer can be controlled by controlling the type of mold used (material, surface haze, thickness, shape, etc.), the amount of particles to be added, and the like. As a result, a hard coat layer satisfying the above formulas (1) to (4) can be formed. Further, preferably, a hard coat layer satisfying the above formula (5) can be formed.
  • the manufacturing method includes a step of pressing the patterned PET film on the surface of the hard coat layer to transfer the uneven shape.
  • the patterned PET film for example, Unitika's emblem PTH, PTHA, PTHZ, Daicel's low-glare AG film PF11, PF23, and the like can be used.
  • the antiglare laminate preferably has high shape stability.
  • the amount of change in warpage after being held at a temperature of 85 ° C. and a relative humidity of 85% for 120 hours is preferably 350 ⁇ m or less, more preferably 250 ⁇ m or less, and 175 ⁇ m or less. Is more preferable, and 75 ⁇ m or less is particularly preferable.
  • the amount of change in warpage is 350 ⁇ m or less, it is preferable because it can be suitably used even in a high temperature and high humidity environment.
  • High shape stability can be obtained by using a high hardness resin layer.
  • the shape of the antiglare laminate is stable even in a high temperature and high humidity environment.
  • the shape stability can also be controlled by appropriately changing the difference, the difference in hardness, and the like.
  • the above-mentioned antiglare laminate is excellent in antiglare property and touch feeling, it is used as a protective plate or a front plate of a liquid crystal surface as described above.
  • an in-vehicle display device including an antiglare laminate is provided.
  • a touch panel front surface protective plate including an antiglare laminate is provided.
  • a front plate for an OA device, a portable electronic device, or a television is provided.
  • Cut-off value 0.8 mm Evaluation length: 5 times the cutoff value Feeding speed of stylus: 0.3 mm / s Spare length: twice the cutoff value
  • ⁇ SW hardness> For the hard coat layer having the uneven shape of the antiglare laminate, using steel wool # 0000 made by Nippon Steel Wool, the degree of damage when 15 reciprocations with a load of 100 g / cm 2 are visually evaluated on a 10-point scale. bottom. It is described by RANK1 to RANK10. The measurement was performed twice, and if different results were obtained, the range was used as the measurement result.
  • RANK1 No scratches (equivalent to inorganic glass)
  • RANK2 1 to 5 scratches
  • RANK3 6 to 10 scratches
  • RANK4 11 to 15 scratches
  • RANK5 16 to 20 scratches
  • RANK6 21 to 25 scratches
  • RANK7 26 to 30 scratches
  • RANK8 31 to 40 scratches
  • RANK9 41 or more scratches (equivalent to polymethacrylic acid)
  • RANK10 41 or more scratches (equivalent to polycarbonate)
  • the test piece (antiglare laminate) was cut out to a size of 100 mm ⁇ 60 mm.
  • the cut out test piece was set in a two-point support type holder and put into an environmental tester set at a temperature of 23% and a relative humidity of 50% for 24 hours or more to adjust the state, and then the warp was measured (before processing).
  • the test piece was set in a holder and placed in an environmental tester set at a temperature of 85 ° C. and a relative humidity of 85%, and held in that state for 120 hours. Further, the holder was moved into an environmental tester set at a temperature of 23% and a relative humidity of 50%, and the warp was measured again after holding for 4 hours in that state (after treatment).
  • Example 1 Synthetic resin using a single-screw extruder with a shaft diameter of 35 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all extruders, and a multi-layer extruder having a T-die connected to the feed block.
  • the laminate was molded.
  • Optimas 7500 manufactured by Mitsubishi Gas Chemical Company was continuously introduced as a high-hardness resin (B1) into a single-screw extruder having a shaft diameter of 35 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 2.6 kg / h.
  • polycarbonate resin manufactured by Mitsubishi Engineering Plastics, trade name: Iupiron S-1000
  • Iupiron S-1000 polycarbonate resin
  • the feed block connected to all extruders was equipped with two types and two layers of distribution pins, and a high hardness resin (B1) and a polycarbonate resin were introduced and laminated at a temperature of 270 ° C.
  • ⁇ PET film with pattern (Z-1)> Acrylic UV curable resin (100% solid content, trade name: Light acrylate DPE-6A, manufactured by Kyoeisha Chemical Co., Ltd.) 40 parts by mass, silica dispersion (18% solid content, Z-AGD-6) with respect to 35 parts by mass of MEK. , 25 parts by mass of an average particle size of 2 ⁇ m, manufactured by Aika Kogyo Co., Ltd., and 3 parts by mass of a photoinitiator (trade name: Omnirad 184, manufactured by IGM Resins) were mixed and stirred to prepare a coating liquid (i).
  • Acrylic UV curable resin (100% solid content, trade name: Light acrylate DPE-6A, manufactured by Kyoeisha Chemical Co., Ltd.) 40 parts by mass, silica dispersion (18% solid content, Z-AGD-6) with respect to 35 parts by mass of MEK. , 25 parts by mass of an average particle size of 2 ⁇ m, manufactured by Aika Kogyo Co.
  • the coating liquid (i) is applied to a PET (polyethylene terephthalate) film so as to have a dry film thickness of 2.5 ⁇ m, dried at 80 ° C. for 2 minutes, and then equipped with a high-pressure mercury lamp having a light source distance of 12 cm and an output of 80 W / cm.
  • a patterned PET film (Z-1) was produced by irradiating ultraviolet rays on a conveyor at a line speed of 1.5 m / min and curing the film.
  • the photocurable resin composition (Y-1) on the high hardness resin (B1) layer of the laminate of the high hardness resin (B1) layer (high hardness resin layer) and the polycarbonate resin layer (base material layer). was applied using a bar coater so that the thickness of the coating film was 5 to 10 ⁇ m, and the patterned surface of the patterned PET film (Z-1) was covered and pressure-bonded so as to come into contact with the coating liquid.
  • a metal halide lamp (20 mW / cm) with a light source distance of 12 cm was irradiated for 30 seconds to cure, the patterned PET film was peeled off, and an antiglare antiglare provided with an uneven hard coat layer on the high hardness resin layer (B1). A sex laminate was obtained.
  • Example 2 An antiglare laminate was produced in the same manner as in Example 1 except that the following high hardness resin (B2) was used instead of the high hardness resin (B1).
  • the high hardness resin (B2) was prepared as follows. That is, 40% by mass of the high hardness resin (B1) and 60% by mass of XIBOND140 as a styrene-unsaturated dicarboxylic acid-based copolymer (C) were charged and mixed with a blender for 30 minutes. Next, using an extruder with a screw diameter of 26 mm (manufactured by Toshiba Machine Co., Ltd., TEM-26SS, L / D ⁇ 40), melt-kneading is performed at a cylinder temperature of 230 ° C., extruded into strands, and pelletized with a pelletizer. A resin composition (B2) was obtained. Pelletization was stable.
  • Example 3 An antiglare laminate was produced in the same manner as in Example 1 except that the following high hardness resin (B3) was used instead of the high hardness resin (B1).
  • the high hardness resin (B3) was prepared as follows. That is, 75% by mass of R-100 as the styrene-unsaturated dicarboxylic acid-based copolymer (E) and 25% by mass of the methyl methacrylate resin Parapet HR-L as the resin (D) containing the vinyl-based monomer were charged and blended. Was mixed for 30 minutes. Next, using an extruder with a screw diameter of 26 mm (manufactured by Toshiba Machine Co., Ltd., TEM-26SS, L / D ⁇ 40), melt-kneading is performed at a cylinder temperature of 230 ° C., extruded into strands, and pelletized with a pelletizer. A high hardness resin (B3) was obtained. Pelletization was stable.
  • Example 4 An antiglare laminate was produced in the same manner as in Example 1 except that the following high hardness resin (B4) was used instead of the high hardness resin (B1).
  • the high hardness resin (B4) was prepared as follows. That is, as the styrene-unsaturated dicarboxylic acid-based copolymer (E), a copolymer of 21% by mass of methyl methacrylate constituent unit, 64% by mass of styrene constituent unit, and 15% by mass of maleic anhydride constituent unit (Registfy R100 (Registfy R100 (Registry R100) Denka)) 75% by mass, and as the resin copolymer (G), 7% by mass of the styrene constituent unit, 86% by mass of the methyl methacrylate constituent unit, and 7% by mass of the N-phenylmaleimide constituent unit, the copolymer Delpet.
  • PM-120N manufactured by Asahi Kasei
  • 25% by mass were charged and mixed with a blender for 30 minutes.
  • melt-kneading is performed at a cylinder temperature of 230 ° C., and the mixture is extruded into strands and pelletized with a pelletizer.
  • a high-hardness resin (B4) which is an alloy of the resin copolymer (G) and the styrene-unsaturated dicarboxylic acid-based copolymer (E), was obtained. Pelletization was stable.
  • Example 5 instead of the high hardness resin (B1), Iupiron KH3410UR (bisphenol C polycarbonate resin, manufactured by Mitsubishi Engineer Plastics), which is a high hardness resin (B5), is used, and a single shaft diameter of 35 mm is used to introduce the high hardness resin (B5).
  • An antiglare laminate was produced in the same manner as in Example 1 except that the cylinder temperature of the shaft extruder was changed from 240 ° C. to 270 ° C.
  • Example 6 An antiglare laminate was produced in the same manner as in Example 1 except that the following high hardness resin (B6) was used instead of the high hardness resin (B1).
  • the high hardness resin (B6) was prepared as follows. That is, 50% by mass of XIBOND160 as a styrene-unsaturated dicarboxylic acid-based copolymer (C) and 50% by mass of methyl methacrylate resin Parapet HR-L as a resin (D) containing a vinyl-based monomer were charged, and 30% by blender was used. The mixture was mixed for a minute.
  • melt kneading was performed at a cylinder temperature of 230 ° C., extruded into strands, pelletized with a pelletizer, and made into a high hardness resin. (B6) was obtained. Pelletization was stable.
  • Example 7 An antiglare laminate was produced in the same manner as in Example 1 except that the following patterned PET film (Z-2) was used instead of the patterned PET film (Z-1).
  • the coating liquid (ii) contains 40 parts by mass of an acrylic ultraviolet curable resin (100% solid content, trade name: light acrylate DPE-6A manufactured by Kyoeisha Chemical Co., Ltd.) and a silica dispersion liquid (solid content 18) with respect to 10 parts by mass of MEK. %, Z-AGD-6, average particle size 2 ⁇ m, manufactured by Aika Kogyo Co., Ltd.) 50 parts by mass, and photoinitiator (trade name Omnirad 184, manufactured by IGM Resins) were mixed and stirred by 3 parts by mass. ..
  • Example 8 An antiglare laminate was produced in the same manner as in Example 1 except that the following patterned PET film (Z-3) was used instead of the patterned PET film (Z-1).
  • the coating liquid (ii) is an acrylic ultraviolet curable resin (solid content 100%, trade name: light acrylate DPE-6A manufactured by Kyoeisha Chemical Co., Ltd.), 40 parts by mass, and a silica dispersion liquid (solid content 18%, Z-AGD-). 6. 60 parts by mass of an average particle size of 2 ⁇ m, manufactured by Aika Kogyo Co., Ltd., and 3 parts by mass of a photoinitiator (trade name: Omnirad 184, manufactured by IGM Resins) were mixed and stirred as an external addition.
  • a photoinitiator trade name: Omnirad 184, manufactured by IGM Resins
  • Example 9 Examples except that a high-hardness resin, methyl methacrylate resin Parapet HR-L (manufactured by Kuraray, weight average molecular weight: 90,000, pencil hardness: 2H) was used instead of the high-hardness resin (B1). An antiglare laminate was produced in the same manner as in 1.
  • a high-hardness resin methyl methacrylate resin Parapet HR-L (manufactured by Kuraray, weight average molecular weight: 90,000, pencil hardness: 2H) was used instead of the high-hardness resin (B1).
  • An antiglare laminate was produced in the same manner as in 1.
  • Example 1 Example 1 and Example 1 except that PS-27 (PET film, thickness: 100 ⁇ m, haze 34%, manufactured by Daicel) (Z-5) was used instead of the patterned PET film (Z-1). An antiglare laminate was produced in the same manner.
  • PS-27 PET film, thickness: 100 ⁇ m, haze 34%, manufactured by Daicel
  • Z-5 patterned PET film
  • Example 3 An antiglare laminate was produced in the same manner as in Example 1 except that the hard coat layer was formed as follows.
  • the photocurable composition (Y-2) was applied onto the high hardness layer of the laminate (X-1) using a bar coater so that the coating thickness after curing was 2.5 ⁇ m, and at 80 ° C. It was dried for 2 minutes.
  • An antiglare laminate was obtained by irradiating with a metal halide lamp (20 mW / cm) for 30 seconds at a light source distance of 12 cm and curing while purging nitrogen.
  • Table 1 below shows the antiglare laminates obtained in Examples 1 to 9 and Comparative Examples 1 to 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is an anti-glare laminate body having excellent anti-glare properties and excellent feeling of touch. An anti-glare laminate body comprising at least a base material layer comprising a polycarbonate resin (a1), a high-hardness resin layer comprising a high-hardness resin, and a hard coat layer which are arranged in this order, in which the arithmetic average roughness (Ra), the maximum profile peak height (Rp), the maximum profile valley depth (Rv) and the skewness (Rsk) of the hard coat layer satisfy formulae (1) to (3), and the dynamical friction factor (μk) of the hard coat layer satisfies formula (4) as measured using a touch contact probe as a contact probe at a load of 50 g, a scanning speed of 10 mm/sec. and a scanning distance of 90 mm.

Description

防眩性積層体Anti-glare laminate
 本発明は、防眩性積層体に関する。より詳細には、本発明は、車載用表示装置や携帯電話端末、パソコン、タブレットPCなどのタッチパネル前面保護板、OA機器用、携帯電子機器用、テレビ用の前面板等として用いられる防眩性積層体に関する。 The present invention relates to an antiglare laminate. More specifically, the present invention has antiglare properties used as an in-vehicle display device, a touch panel front protective plate for a mobile phone terminal, a personal computer, a tablet PC, a front plate for an OA device, a portable electronic device, a front plate for a television, and the like. Regarding the laminate.
 液晶パネルなどの保護を目的として、液晶表示装置には保護板または前面板が設けられている。従来の液晶表示装置の保護板または前面板には、ポリメタクリル酸メチル(PMMA)に代表される(メタ)アクリル樹脂が用いられている。 The liquid crystal display device is provided with a protective plate or a front plate for the purpose of protecting the liquid crystal panel and the like. A (meth) acrylic resin typified by polymethyl methacrylate (PMMA) is used for the protective plate or front plate of a conventional liquid crystal display device.
 このような保護板または前面板は、一般に光の散乱や干渉によって、像の映り込みを抑制したり反射率を低減したりできるような防眩処理が施されることがある。また、保護板または前面板は、指で操作することから手が触れたときの触り心地に優れることも重要視される。 Such a protective plate or front plate may be subjected to antiglare treatment that can suppress the reflection of an image or reduce the reflectance by scattering or interference of light. In addition, since the protective plate or the front plate is operated by a finger, it is also important that the protective plate or the front plate is excellent in touch when touched by a hand.
 例えば、特許文献1には、操作者側の表面に凹凸を有するタッチパネルに係る発明が記載されている。この際、前記凹凸は、静摩擦係数および算術平均粗さ(Ra2.5)が所定の条件を満たす。これにより、特許文献1には、屋外防眩性を有し、かつ、タッチパネルの操作性に優れることが記載されている。なお、特許文献1には、より具体的には、トリアセチルセルロース(TAC)フィルム上に、アクリル系モノマー、有機粒子、および無機粒子を含む凹凸層塗布液を塗布し、得られた塗膜を紫外線照射することで凹凸層を形成した積層体等が記載されている。 For example, Patent Document 1 describes an invention relating to a touch panel having an uneven surface on the operator side. At this time, the coefficient of static friction and the arithmetic mean roughness (Ra 2.5 ) of the unevenness satisfy predetermined conditions. As a result, Patent Document 1 describes that it has outdoor antiglare properties and is excellent in touch panel operability. More specifically, Patent Document 1 describes a coating film obtained by applying a concavo-convex layer coating solution containing an acrylic monomer, organic particles, and inorganic particles on a triacetyl cellulose (TAC) film. A laminate or the like in which an uneven layer is formed by irradiating with ultraviolet rays is described.
 また、自動車室内のような40℃を超える温湿度環境下で使用される前面板として用いられる場合など、高温高湿環境下での形状安定性が優れていることが望まれている。例えば、温度85℃湿度85%環境に暴露される前と暴露された後の反りの変化量が小さいことが好ましい。 Further, it is desired that the shape stability is excellent in a high temperature and high humidity environment, such as when it is used as a front plate used in a temperature and humidity environment exceeding 40 ° C. such as in an automobile interior. For example, it is preferable that the amount of change in warpage before and after exposure to the environment at a temperature of 85 ° C. and a humidity of 85% is small.
 ところで、近年、高い耐衝撃性、耐熱性、2次加工性、軽量性および透明性などを有する点から、保護板または前面板としてポリカーボネート樹脂が広く用いられつつある。 By the way, in recent years, polycarbonate resin has been widely used as a protective plate or a front plate because it has high impact resistance, heat resistance, secondary workability, light weight and transparency.
国際公開第2017/188186号International Publication No. 2017/188186
 本発明は、ポリカーボネート樹脂を用いた場合において、防眩性および触り心地に優れる防眩性積層体を提供することを目的とする。 An object of the present invention is to provide an antiglare laminate having excellent antiglare properties and touch comfort when a polycarbonate resin is used.
 本発明者は、上記課題を解決するべく、鋭意検討を行った。その結果、ポリカーボネート樹脂を含む基材層、高硬度樹脂層、およびハードコート層を含む所定の積層構造とし、かつ、前記ハードコート層の表面を制御することで上記課題が解決されうることを見出し、本発明を完成させるに至った。すなわち、本発明は以下の通りである。 The present inventor has conducted diligent studies in order to solve the above problems. As a result, it has been found that the above problems can be solved by forming a predetermined laminated structure including a base material layer containing a polycarbonate resin, a high hardness resin layer, and a hard coat layer, and controlling the surface of the hard coat layer. , The present invention has been completed. That is, the present invention is as follows.
 <1>少なくともポリカーボネート樹脂(a1)を含む基材層と、高硬度樹脂を含む高硬度樹脂層と、ハードコート層とがこの順に配置された防眩性積層体であって、
 前記ハードコート層の算術平均粗さ(Ra)、最大山高さ(Rp)、最大谷深さ(Rv)、およびスキューネス(Rsk)が下記式(1)~(3):
<1> An antiglare laminate in which a base material layer containing at least a polycarbonate resin (a1), a high hardness resin layer containing a high hardness resin, and a hard coat layer are arranged in this order.
The arithmetic mean roughness (Ra), maximum peak height (Rp), maximum valley depth (Rv), and skewness (Rsk) of the hard coat layer are the following equations (1) to (3):
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
を満たし、
 前記ハードコート層の接触子として触覚接触子を使用し、荷重50g、走査速度10mm/秒、走査距離90mmで測定された動摩擦係数(μk)が下記式(4):
The filling,
Using a tactile contact as the contact of the hard coat layer, the dynamic friction coefficient (μk) measured at a load of 50 g, a scanning speed of 10 mm / sec, and a scanning distance of 90 mm is the following equation (4):
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
を満たす、防眩性積層体。
 <2>前記ハードコート層の波長550nmにおける正反射光を含む反射率(SCI550)および正反射光を除いた反射率(SCE550)が、下記式(5):
Anti-glare laminate that meets the requirements.
<2> The reflectance (SCI 550 ) including the specularly reflected light and the reflectance (SCE 550 ) excluding the specularly reflected light of the hard coat layer at a wavelength of 550 nm are calculated by the following equation (5):
Figure JPOXMLDOC01-appb-M000011
を満たす、上記<1>に記載の防眩性積層体。
Figure JPOXMLDOC01-appb-M000011
The antiglare laminate according to <1> above.
 <3>前記防眩性積層体が、温度85℃で相対湿度85%の環境下に120時間保持した後の反りの変化量が350μm以下である、<1>または<2>に記載の防眩性積層体。
 <4>前記高硬度樹脂層の厚みが、10~250μmである、上記<1>~<3>のいずれかに記載の防眩性積層体。
 <5>前記基材層および前記高硬度樹脂層の合計厚みが、100~3,000μmである、上記<1>~<4>のいずれかに記載の防眩性積層体。
 <6>高硬度樹脂(B)が、
 下記一般式(1):
<3> The prevention according to <1> or <2>, wherein the amount of change in warpage of the antiglare laminate after being held at a temperature of 85 ° C. and a relative humidity of 85% for 120 hours is 350 μm or less. Dazzling laminate.
<4> The antiglare laminate according to any one of <1> to <3>, wherein the high hardness resin layer has a thickness of 10 to 250 μm.
<5> The antiglare laminate according to any one of <1> to <4>, wherein the total thickness of the base material layer and the high hardness resin layer is 100 to 3,000 μm.
<6> High hardness resin (B)
The following general formula (1):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 (式中、Rは水素原子またはメチル基であり、Rは炭素数1~18のアルキル基である。)
で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2):
(In the formula, R 1 is a hydrogen atom or a methyl group, and R 2 is an alkyl group having 1 to 18 carbon atoms.)
The (meth) acrylic acid ester structural unit (a) represented by and the following general formula (2):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 (式中、Rは水素原子またはメチル基であり、Rは炭素数1~4の炭化水素機を有してもよいシクロヘキシル基である。)
で表される脂肪族ビニル構成単位(b)とを含む共重合樹脂であり、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記共重合樹脂の全構成単位の90~100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)の割合が前記共重合樹脂の全構成単位の65~80モル%である、樹脂(B1)、
 前記樹脂(B1)を35~65質量%、スチレン-不飽和ジカルボン酸系共重合体(C)を35~65質量%含み、前記スチレン-不飽和ジカルボン酸共重合体(C)が、スチレン系構成単位(c1)を65~90質量%、不飽和ジカルボン酸無水物構成単位(c2)を10~35質量%で含む、樹脂(B2)、
 ビニル系単量体を含有する樹脂(D)を55~10質量%、スチレン-不飽和ジカルボン酸系共重合体(E)を45~90質量%含み、前記スチレン-不飽和ジカルボン酸系共重合体(E)が、スチレン系構成単位(e1)を50~80質量%、不飽和ジカルボン酸構成単位(e2)を10~30質量%、ビニル系構成単位(e3)を5~30質量%で含む、樹脂(B3)、
 スチレン構成単位を5~20質量%、(メタ)アクリル酸エステル構成単位を70~90質量%、N-置換型マレイミド構成単位を5~20質量%含む樹脂共重合体(G)、または樹脂共重合体(G)とスチレン-不飽和ジカルボン酸系共重合体(E)とのアロイである、樹脂(B4)、
 下記一般式(3):
(In the formula, R 3 is a hydrogen atom or a methyl group, and R 4 is a cyclohexyl group which may have a hydrocarbon machine having 1 to 4 carbon atoms.)
It is a copolymer resin containing the aliphatic vinyl structural unit (b) represented by, and the total ratio of the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) is the same. The resin (B1) is 90 to 100 mol% of all the constituent units of the polymerized resin, and the ratio of the (meth) acrylic acid ester constituent unit (a) is 65 to 80 mol% of all the constituent units of the copolymerized resin. ),
The resin (B1) is 35 to 65% by mass, the styrene-unsaturated dicarboxylic acid copolymer (C) is 35 to 65% by mass, and the styrene-unsaturated dicarboxylic acid copolymer (C) is styrene-based. The resin (B2), which contains the structural unit (c1) in an amount of 65 to 90% by mass and the unsaturated dicarboxylic acid anhydride structural unit (c2) in an amount of 10 to 35% by mass.
The resin (D) containing a vinyl monomer is contained in an amount of 55 to 10% by mass, and the styrene-unsaturated dicarboxylic acid-based copolymer (E) is contained in an amount of 45 to 90% by mass. The coalescence (E) is 50 to 80% by mass of the styrene-based constituent unit (e1), 10 to 30% by mass of the unsaturated dicarboxylic acid constituent unit (e2), and 5 to 30% by mass of the vinyl-based constituent unit (e3). Including, resin (B3),
A resin copolymer (G) containing 5 to 20% by mass of a styrene constituent unit, 70 to 90% by mass of a (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of an N-substituted maleimide constituent unit, or a resin. A resin (B4), which is an alloy of the polymer (G) and a styrene-unsaturated dicarboxylic acid-based copolymer (E).
The following general formula (3):
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
で表される構成単位(H)を含む、樹脂(B5)、および
 ビニル系単量体を含有する樹脂(D)を35~65質量%、スチレン-不飽和ジカルボン酸系共重合体(C)を35~65質量%含み、前記スチレン-不飽和ジカルボン酸共重合体(C)が、スチレン系構成単位(c1)を65~90質量%、不飽和ジカルボン酸無水物構成単位(c2)を10~35質量%で含む、樹脂(B6)からなる群から選択される少なくとも1つを含む、上記<1>~<5>のいずれかの1項に記載の防眩性積層体。
 <7>前記樹脂(B5)が、下記一般式(4):
35 to 65% by mass of the resin (B5) containing the structural unit (H) represented by, and the resin (D) containing a vinyl-based monomer, and the styrene-unsaturated dicarboxylic acid-based copolymer (C). 35 to 65% by mass, and the styrene-unsaturated dicarboxylic acid copolymer (C) contains 65 to 90% by mass of the styrene-based structural unit (c1) and 10 of the unsaturated dicarboxylic acid anhydride constituent unit (c2). The antiglare laminate according to any one of <1> to <5> above, which comprises at least one selected from the group consisting of the resin (B6), which comprises ~ 35% by mass.
<7> The resin (B5) is based on the following general formula (4):
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
で表される構成単位(J)をさらに含む共重合体である、上記<6>に記載の防眩性積層体。
 <8>前記ハードコート層が、有機粒子および無機粒子を含まない、上記<1>~<7>のいずれかの1項に記載の防眩性積層体。
 <9>ポリカーボネート樹脂(a1)が、下記一般式(5):
The antiglare laminate according to <6> above, which is a copolymer further containing the structural unit (J) represented by.
<8> The antiglare laminate according to any one of <1> to <7>, wherein the hard coat layer does not contain organic particles and inorganic particles.
<9> The polycarbonate resin (a1) has the following general formula (5):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 (式中、Rは、炭素数8~36のアルキル基、または炭素数8~36のアルケニル基を表し、Rはそれぞれ独立して、水素原子、ハロゲン、または置換基を有してもよい炭素数1~20のアルキル基若しくは炭素数6~12のアリール基を表し、nは0~4の整数であり、ここで、前記置換基は、ハロゲン、炭素数1~20のアルキル基、または炭素数6~12のアリール基である。)
で表される1価フェノール由来の成分を含む、上記<1>~<8>のいずれかに記載の防眩性積層体。
 <10>上記<1>~<9>のいずれかに記載の防眩性積層体を含む、車載用表示装置。
 <11>上記<1>~<9>のいずれかに記載の防眩性積層体を含む、タッチパネル前面保護板。
 <12>上記<1>~<9>のいずれかに記載の防眩性積層体を含む、OA機器用、携帯電子機器用、またはテレビ用の前面板。
 <13>上記<1>~<9>のいずれかに記載の防眩性積層体の製造方法であって、
 前記ハードコート層の表面が、柄目付きPETフィルムを圧着して凹凸形状を転写する工程を含む、製造方法。
(In the formula, R 5 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms, and R 6 may independently have a hydrogen atom, a halogen, or a substituent. It represents a good alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms, and n is an integer of 0 to 4, wherein the substituent is a halogen, an alkyl group having 1 to 20 carbon atoms, and the like. Alternatively, it is an aryl group having 6 to 12 carbon atoms.)
The antiglare laminate according to any one of <1> to <8> above, which contains a component derived from monohydric phenol represented by.
<10> An in-vehicle display device including the antiglare laminate according to any one of <1> to <9> above.
<11> A touch panel front protective plate including the antiglare laminate according to any one of <1> to <9> above.
<12> A front plate for OA equipment, portable electronic equipment, or a television, which comprises the antiglare laminate according to any one of <1> to <9> above.
<13> The method for producing an antiglare laminate according to any one of <1> to <9> above.
A manufacturing method comprising a step of crimping a patterned PET film on the surface of the hard coat layer to transfer an uneven shape.
 本発明によれば、ポリカーボネート樹脂を用いた場合において、防眩性および触り心地に優れる防眩性積層体を提供することができる。 According to the present invention, it is possible to provide an antiglare laminate having excellent antiglare properties and touch feeling when a polycarbonate resin is used.
 以下、本発明について製造例や実施例等を例示して詳細に説明するが、本発明は例示される製造例や実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の方法に変更して行うこともできる。 Hereinafter, the present invention will be described in detail by exemplifying manufacturing examples, examples, etc., but the present invention is not limited to the exemplified manufacturing examples, examples, etc., and does not deviate significantly from the contents of the present invention. If so, it can be changed to any method.
 本形態に係る防眩性積層体は、少なくともポリカーボネート樹脂(a1)を含む基材層と、高硬度樹脂を含む高硬度樹脂層と、ハードコート層とがこの順に配置される。 In the antiglare laminate according to this embodiment, a base material layer containing at least a polycarbonate resin (a1), a high hardness resin layer containing a high hardness resin, and a hard coat layer are arranged in this order.
 防眩性積層体の積層の順番としては、基材層-高硬度樹脂層-ハードコート層であることが好ましい。基材層の他方の面は特に指定はない。一実施形態において、基材層の他方の面に高硬度樹脂層を設けることができる。この場合、防眩性積層体は、高硬度樹脂層-基材層-高硬度樹脂層-ハードコート層の構成を有する。また、一実施形態において、基材層の他方の面に高硬度樹脂層およびハードコート層を設けることができる。この場合、防眩性積層体は、ハードコート層-高硬度樹脂層-基材層-高硬度樹脂層-ハードコート層の構成を有する。 The order of laminating the antiglare laminate is preferably a base material layer-a high hardness resin layer-a hard coat layer. The other surface of the base material layer is not particularly specified. In one embodiment, a high hardness resin layer can be provided on the other surface of the base material layer. In this case, the antiglare laminate has a structure of a high hardness resin layer-a base material layer-a high hardness resin layer-a hard coat layer. Further, in one embodiment, a high hardness resin layer and a hard coat layer can be provided on the other surface of the base material layer. In this case, the antiglare laminate has a structure of a hard coat layer-a high hardness resin layer-a base material layer-a high hardness resin layer-a hard coat layer.
 高硬度樹層を基材層の両面に設ける場合には、両面で同一の高硬度樹層を用いることが形状安定性のためにもより望ましい。また、ハードコート層を基材の両面に設ける場合には、両面で同様のハードコート層を設けることが、形状安定性が良くなることからより望ましい。なお、基材層および高硬度樹脂層、高硬度樹脂層およびハードコート層は直接積層されていてもよいし、他の層を介して積層されていてもよいが、直接積層されることが好ましい。 When the high hardness tree layer is provided on both sides of the base material layer, it is more desirable to use the same high hardness tree layer on both sides for shape stability. Further, when the hard coat layer is provided on both sides of the base material, it is more preferable to provide the same hard coat layer on both sides because the shape stability is improved. The base material layer, the high-hardness resin layer, the high-hardness resin layer, and the hard coat layer may be directly laminated or may be laminated via another layer, but are preferably directly laminated. ..
 一実施形態において、防眩性積層体は、例えば、車載用表示装置としてカーナビゲーション、センターインフォメーションディスプレイ(CID)、リアシートエンターテインメント(RSE)、クラスターなど、タッチパネル全面保護板、およびOA機器用、携帯電子機器用、テレビ用の前面板等に用いることができる。また、例えば前面板は、単独で液晶表示装置の前面板として使用できるが、例えばタッチセンサーなどの別の基板とラミネートするなど、複合して前面板として使用してもよい。 In one embodiment, the antiglare laminate is, for example, an in-vehicle display device such as a car navigation system, a center information display (CID), a rear seat entertainment (RSE), a cluster, a touch panel full protection plate, and an OA device, a portable electronic device. It can be used as a front plate for equipment and television. Further, for example, the front plate can be used alone as the front plate of the liquid crystal display device, but may be combined and used as the front plate, for example, by laminating with another substrate such as a touch sensor.
 以下に、本発明による防眩性積層体の各構成部材について説明する。 Hereinafter, each component of the antiglare laminate according to the present invention will be described.
 <基材層>
 基材層は、ポリカーボネート樹脂(a1)を含む。基材層は、添加剤等をさらに含んでいてもよい。
<Base layer>
The base material layer contains a polycarbonate resin (a1). The base material layer may further contain additives and the like.
 [ポリカーボネート樹脂(a1)]
 ポリカーボネート樹脂(al)としては、分子主鎖中に炭酸エステル結合、即ち、-[O-R-OCO]-単位(Rが脂肪族基、芳香族基、または脂肪族基と芳香族基の双方を含んでいてもよく、直鎖構造あるいは分岐構造を有するものであってもよい)を含むものであれば特に限定されるものではないが、特に下記式(4)の構造単位を含むポリカーボネート樹脂を使用することが好ましい。このようなポリカーボネート樹脂を使用することで、耐衝撃性に優れた樹脂積層体を得ることができる。
[Polycarbonate resin (a1)]
The polycarbonate resin (al) has a carbonic acid ester bond in the main chain of the molecule, that is,-[OR-OCO] -unit (R is an aliphatic group, an aromatic group, or both an aliphatic group and an aromatic group. Is not particularly limited as long as it contains (which may have a linear structure or a branched structure), but is particularly limited to a polycarbonate resin containing the structural unit of the following formula (4). It is preferable to use. By using such a polycarbonate resin, a resin laminate having excellent impact resistance can be obtained.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 具体的には、ポリカーボネート樹脂(a1)として、芳香族ポリカーボネート樹脂(例えば、三菱エンジニアリングプラスチックス社製、商品名:ユーピロンS-2000、ユーピロンS-1000、ユーピロンE-2000)等が使用可能であるが、これに限定されない。 Specifically, as the polycarbonate resin (a1), an aromatic polycarbonate resin (for example, manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade names: Iupiron S-2000, Iupiron S-1000, Iupilon E-2000) and the like can be used. However, it is not limited to this.
 また、近年、前面板にも曲げ加工を行うような要望が増えていることから、ポリカーボネート樹脂(al)として、下記一般式(5)で表わされる1価フェノールを末端停止剤とすることが好ましい。 Further, in recent years, since there is an increasing demand for bending the front plate as well, it is preferable to use a monohydric phenol represented by the following general formula (5) as a terminal terminator as the polycarbonate resin (al). ..
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式中、Rは、炭素数8~36のアルキル基、炭素数8~36のアルケニル基を表し、Rはそれぞれ独立して、水素原子、ハロゲン、置換基を有してもよい炭素数1~20のアルキル基、または炭素数6~12のアリール基を表し、nは0~4の整数であり、ここで、前記置換基は、ハロゲン、炭素数1~20のアルキル基、または炭素数6~12のアリール基である。なお、本明細書において、「アルキル基」および「アルケニル基」は、直鎖状であっても分岐鎖状であってもよく、置換基を有していてもよい。 In the formula, R 5 represents an alkyl group having 8 to 36 carbon atoms and an alkenyl group having 8 to 36 carbon atoms, and R 6 has independently having a hydrogen atom, a halogen, and a substituent. It represents an alkyl group of 1 to 20 or an aryl group having 6 to 12 carbon atoms, and n is an integer of 0 to 4, wherein the substituent is a halogen, an alkyl group having 1 to 20 carbon atoms, or carbon. It is an aryl group of the number 6 to 12. In the present specification, the "alkyl group" and the "alkenyl group" may be linear or branched chain, and may have a substituent.
 より好ましくは、一般式(5)で表わされる1価フェノールは、下記一般式(6)で表される。 More preferably, the monohydric phenol represented by the general formula (5) is represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式中、Rは、炭素数8~36のアルキル基または炭素数8~36のアルケニル基を表す。 In the formula, R 5 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.
 一般式(5)または一般式(6)におけるRの炭素数は、特定の数値範囲内であることがより好ましい。具体的には、Rの炭素数の上限値として36が好ましく、22がより好ましく、18が特に好ましい。また、Rの炭素数の下限値として、8が好ましく、12がより好ましい Formula (5) or the number of carbon atoms of R 5 in the general formula (6) is more preferably within a specific numerical range. Specifically, 36 is preferred as the upper limit of the carbon number of R 5, and more preferably 22, 18 is particularly preferred. Further, as the lower limit of the number of carbon atoms of R 5, 8 are preferred, 12 is more preferred.
 一般式(5)または一般式(6)におけるRの炭素数の上限値が適当であると、1価フェノール(末端停止剤)の有機溶剤溶解性が高くなる傾向があり、ポリカーボネート樹脂製造時の生産性が高くなることから好ましい。 When the upper limit of the carbon number of R 5 is suitably in the general formula (5) or the general formula (6), there is a tendency for organic solvent solubility is high monovalent phenols (terminating agent), when the polycarbonate resin production This is preferable because it increases the productivity of the resin.
 一例として、Rの炭素数が36以下であれば、ポリカーボネート樹脂を製造するにあたって生産性が高く、経済性も良い。Rの炭素数が22以下であれば、1価フェノールは、特に有機溶剤溶解性に優れており、ポリカーボネート樹脂を製造するにあたって生産性を非常に高くすることができ、経済性も向上する。 As an example, if the carbon number of R 5 is 36 or less, high productivity in manufacturing the polycarbonate resin may be economical. When the number of carbon atoms in the R 5 is 22 or less, monohydric phenols are especially excellent in solubility in an organic solvent, can be very high productivity in manufacturing the polycarbonate resin is also improved economy.
 一般式(5)または一般式(6)におけるRの炭素数の下限値が適当であると、ポリカーボネート樹脂のガラス転移点が高すぎるということにならず、好適な熱成形性を有することから好ましい。 When in formula (5) or the general formula (6) suitable lower limit of the carbon number of R 5 is in, not the fact that the glass transition temperature of the polycarbonate resin is too high, since it has a suitable thermoformability preferable.
 例えば一般式(6)においてRとして、炭素数16のアルキル基である1価フェノール(末端停止剤)を使用した場合、ガラス転移温度、溶融流動性、成形性、耐ドローダウン性、ポリカーボネート樹脂製造時の1価フェノールの溶剤溶解性が優れており、本発明におけるポリカーボネート樹脂に使用する末端停止剤として、特に好ましい。 As R 5 for example in the general formula (6), when using a monohydric phenol which is alkyl group of 16 carbon atoms (terminating agent), a glass transition temperature, melt flowability, moldability, drawdown resistance, polycarbonate resin The monohydric phenol at the time of production is excellent in solvent solubility, and is particularly preferable as a terminal terminator used for the polycarbonate resin in the present invention.
 一般式(5)または一般式(6)で示される1価フェノール(末端停止剤)の中でも、パラヒドロキシ安息香酸ヘキサデシルエステル、パラヒドロキシ安息香酸2-ヘキシルデシルエステルのいずれかもしくは両方を末端停止剤として使用することが特に好ましい。 Among the monovalent phenols (terminal terminators) represented by the general formula (5) or the general formula (6), one or both of the parahydroxybenzoic acid hexadecyl ester and the parahydroxybenzoic acid 2-hexyldecyl ester are terminated. It is particularly preferable to use it as an agent.
 ポリカーボネート樹脂(a1)の重量平均分子量は、15,000~75,000であることが好ましく、20,000~70,000であることがより好ましく、20,000~65,000であることがさらに好ましい。ポリカーボネート樹脂(a1)の重量平均分子量が15,000以上であると、耐衝撃性が高くなりうることから好ましい。一方、重量平均分子量が75,000以下であると、基材層を少ない熱源で形成できる、成形条件が高温になった場合でも熱安定性が維持できることから好ましい。なお、本明細書において、重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。 The weight average molecular weight of the polycarbonate resin (a1) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000, and further preferably 20,000 to 65,000. preferable. When the weight average molecular weight of the polycarbonate resin (a1) is 15,000 or more, the impact resistance can be increased, which is preferable. On the other hand, when the weight average molecular weight is 75,000 or less, the base material layer can be formed with a small amount of heat source, and the thermal stability can be maintained even when the molding conditions become high temperature, which is preferable. In the present specification, the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
 基材層に含まれるポリカーボネート樹脂(a1)は、1種類であっても2種類以上であってもよい。 The polycarbonate resin (a1) contained in the base material layer may be one type or two or more types.
 基材層中のポリカーボネート樹脂(a1)の含有量は、基材層の全質量に対して、75質量%以上であることが好ましく、耐衝撃性が向上する観点から、90質量%以上であることがより好ましく、100質量%であることがさらに好ましい。 The content of the polycarbonate resin (a1) in the base material layer is preferably 75% by mass or more with respect to the total mass of the base material layer, and is 90% by mass or more from the viewpoint of improving impact resistance. It is more preferable, and it is further preferable that it is 100% by mass.
 [添加剤]
 基材層は、添加剤をさらに含んでいてもよい。
[Additive]
The base material layer may further contain additives.
 添加剤としては、防眩性積層体において通常使用されるものを使用することができる。添加剤としては、例えば、抗酸化剤、抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機粒子や無機粒子のような強化材などが挙げられる。 As the additive, those usually used in the antiglare laminate can be used. Additives include, for example, antioxidants, anticolorants, antichargers, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic particles and inorganic particles. Such as reinforcing materials.
 添加剤の量は、基材層の全質量に対して、0~10質量%であることが好ましく、0~7質量%であることがより好ましく、0~5質量%であることが特に好ましい。 The amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, and particularly preferably 0 to 5% by mass with respect to the total mass of the base material layer. ..
 添加剤と樹脂とを混合する方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。 The method of mixing the additive and the resin is not particularly limited, and a method of compounding the entire amount, a method of dry-blending the masterbatch, a method of dry-blending the entire amount, and the like can be used.
 [基材層の構成]
 基材層の厚みは、0.3~10mmであることが好ましく、0.3~5mmであることがより好ましく、0.3~3.5mmであることが特に好ましい。
[Structure of base material layer]
The thickness of the base material layer is preferably 0.3 to 10 mm, more preferably 0.3 to 5 mm, and particularly preferably 0.3 to 3.5 mm.
 <高硬度樹脂層>
 高硬度樹脂層は、高硬度樹脂を含む。その他、高硬度樹脂層は必要に応じて添加剤等がさらに含まれていてもよい。高硬度樹脂層は、基材層とハードコート層との間に設けられることにより、形状安定性が高い防眩性積層体を得ることができる。また、高硬度樹脂層は、防眩性積層体の硬度を高くする等の機能を有しうる。なお、本明細書において、高硬度樹脂とは、基材となるポリカーボネート樹脂よりも硬度の高い樹脂であり、鉛筆硬度がHB以上、好ましくはHB~3H、より好ましくはH~3H、さらに好ましくは2H~3Hの樹脂を意味する。なお、高硬度樹脂層の鉛筆硬度は、JIS K 5600-5-4:1999に準拠した鉛筆ひっかき硬度試験にて評価した結果である。具体的には、ハードコート層の表面に対して角度45度、荷重750gで次第に硬度を増して鉛筆を押し付け、きず跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価する。
<High hardness resin layer>
The high hardness resin layer contains a high hardness resin. In addition, the high hardness resin layer may further contain additives and the like, if necessary. By providing the high hardness resin layer between the base material layer and the hard coat layer, it is possible to obtain an antiglare laminate having high shape stability. Further, the high hardness resin layer may have a function of increasing the hardness of the antiglare laminate. In the present specification, the high hardness resin is a resin having a hardness higher than that of the polycarbonate resin used as a base material, and has a pencil hardness of HB or higher, preferably HB to 3H, more preferably H to 3H, and even more preferably. It means a resin of 2H to 3H. The pencil hardness of the high-hardness resin layer is the result of evaluation by a pencil scratch hardness test based on JIS K 5600-5-4: 1999. Specifically, the hardness is gradually increased with respect to the surface of the hard coat layer at an angle of 45 degrees and a load of 750 g, and the pencil is pressed against the surface, and the hardness of the hardest pencil that does not cause scratches is evaluated as the pencil hardness.
 [高硬度樹脂]
 高硬度樹脂としては、特に制限されないが、樹脂(B1)~樹脂(B6)からなる群から選択される少なくとも1つを含むことが好ましい。なお、樹脂(B1)~樹脂(B6)は、複数種の樹脂を含む樹脂組成物の場合であっても、樹脂(B1)~樹脂(B6)と称することがある。
[High hardness resin]
The high hardness resin is not particularly limited, but preferably contains at least one selected from the group consisting of the resin (B1) to the resin (B6). The resins (B1) to (B6) may be referred to as resins (B1) to resins (B6) even in the case of a resin composition containing a plurality of types of resins.
 (樹脂(B1))
 樹脂(B1)は、一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、一般式(2)で表される脂肪族ビニル構成単位(b)とを含む共重合樹脂である。この際、前記樹脂(B1)(共重合樹脂)は、他の構成単位をさらに有していてもよい。なお、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記共重合樹脂の全構成単位の90~100モル%であり、好ましくは95~100モル%であり、より好ましくは98~100モル%である。また、前記(メタ)アクリル酸エステル構成単位(a)の割合が前記共重合樹脂の全構成単位の65~80モル%である。なお、本明細書において、(メタ)アクリルとは、メタクリルおよび/またはアクリルを示す。
(Resin (B1))
The resin (B1) is a copolymer containing a (meth) acrylic acid ester structural unit (a) represented by the general formula (1) and an aliphatic vinyl structural unit (b) represented by the general formula (2). It is a resin. At this time, the resin (B1) (copolymerized resin) may further have other constituent units. The total ratio of the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) is 90 to 100 mol%, preferably 95 to 100 mol% of the total structural units of the copolymer resin. It is 100 mol%, more preferably 98 to 100 mol%. Further, the ratio of the (meth) acrylic acid ester structural unit (a) is 65 to 80 mol% of the total structural units of the copolymer resin. In addition, in this specification, (meth) acrylic means methacryl and / or acrylic.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式中、Rは水素原子またはメチル基であり、好ましくはメチル基である。 In the formula, R 1 is a hydrogen atom or a methyl group, preferably a methyl group.
 またRは炭素数1~18のアルキル基であり、炭素数1~10のアルキル基であることが好ましく、炭素数1~6のアルキル基であることがより好ましい。具体的にはメチル基、エチル基、ブチル基、ラウリル基、ステアリル基、シクロヘキシル基、イソボルニル基などが挙げられる。これらのうち、Rは、メチル基、エチル基であることが好ましく、メチル基であることがより好ましい。 Further, R 2 is an alkyl group having 1 to 18 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a butyl group, a lauryl group, a stearyl group, a cyclohexyl group and an isobornyl group. Of these, R 2 is preferably a methyl group or an ethyl group, and more preferably a methyl group.
 なお、Rがメチル基、エチル基である場合、一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)は(メタ)アクリル酸エステル構成単位となり、Rがメチル基かつRがメチル基である場合、一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)はメタクリル酸メチル構成単位となる。 When R 2 is a methyl group or an ethyl group, the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is a (meth) acrylic acid ester structural unit, and R 1 is a methyl group. When R 2 is a methyl group, the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is a methyl methacrylate structural unit.
 一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)は、樹脂(B1)中に1種のみが含まれていても、2種以上含まれていてもよい。 The (meth) acrylic acid ester structural unit (a) represented by the general formula (1) may contain only one type or two or more types in the resin (B1).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式中、Rは水素原子またはメチル基であり、水素原子であることが好ましい。 In the formula, R 3 is a hydrogen atom or a methyl group, preferably a hydrogen atom.
 Rは炭素数1~4の炭化水素基で置換されていてもよいシクロヘキシル基であり、置換基を有さないシクロヘキシル基であることが好ましい。なお、本明細書中において、「炭化水素基」は、直鎖状、分岐鎖状、環状のいずれであってもよく、置換基を有していてもよい。 R 4 is a cyclohexyl group which may be substituted with a hydrocarbon group having 1 to 4 carbon atoms, and is preferably a cyclohexyl group having no substituent. In the present specification, the "hydrocarbon group" may be linear, branched or cyclic, and may have a substituent.
 Rが水素原子であり、Rがシクロヘキシル基である場合、一般式(2)で表される脂肪族ビニル構成単位(b)はビニルシクロヘキサン構成単位となる。 When R 3 is a hydrogen atom and R 4 is a cyclohexyl group, the aliphatic vinyl structural unit (b) represented by the general formula (2) is a vinyl cyclohexane structural unit.
 一般式(2)で表される脂肪族ビニル構成単位(b)は、樹脂(B1)中に1種のみが含まれていても、2種以上含まれていてもよい。 The aliphatic vinyl constituent unit (b) represented by the general formula (2) may contain only one type or two or more types in the resin (B1).
 前記他の構成単位としては、特に制限されないが、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後に該芳香族ビニルモノマー由来の芳香族二重結合を水素化して樹脂(B1)を製造する過程において生じる、水素化されていない芳香族二重結合を含む芳香族ビニルモノマー由来の構成単位などが挙げられる。具体的な他の構成単位としては、スチレン構成単位が挙げられる。 The other structural unit is not particularly limited, but the resin (B1) is obtained by hydrogenating the aromatic double bond derived from the aromatic vinyl monomer after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer. Examples thereof include a structural unit derived from an aromatic vinyl monomer containing a non-hydrogenated aromatic double bond, which is generated in the process of producing the above. Specific other structural units include styrene structural units.
 他の構成単位は、樹脂(B1)中に1種のみが含まれていても、2種以上含まれていてもよい。 The other constituent units may contain only one type in the resin (B1) or may contain two or more types.
 前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合は、前記樹脂(B1)(共重合樹脂)の全構成単位の合計に対して90~100モル%であり、好ましくは95~100モル%であり、より好ましくは98~100モル%である。 The total ratio of the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) is 90 to 100 with respect to the total of all the structural units of the resin (B1) (copolymerized resin). It is mol%, preferably 95 to 100 mol%, and more preferably 98 to 100 mol%.
 また、一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)の含有量は、前記樹脂(B1)(共重合樹脂)の全構成単位に対して、65~80モル%であり、好ましくは70~80モル%である。(メタ)アクリル酸エステル構成単位(a)の含有量が65モル%以上であると、基材層との密着性や表面硬度に優れた樹脂層を得ることができる。一方、(メタ)アクリル酸エステル構成単位(a)の含有量が80モル%以下であると、防眩性積層体の吸水による反りが発生しづらいことから好ましい。 The content of the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is 65 to 80 mol% with respect to all the structural units of the resin (B1) (copolymerized resin). It is preferably 70 to 80 mol%. When the content of the (meth) acrylic acid ester structural unit (a) is 65 mol% or more, a resin layer having excellent adhesion to the base material layer and surface hardness can be obtained. On the other hand, when the content of the (meth) acrylic acid ester structural unit (a) is 80 mol% or less, the antiglare laminate is less likely to warp due to water absorption, which is preferable.
 また、一般式(2)で表される脂肪族ビニル構成単位(b)の含有量は、樹脂(B1)(共重合樹脂)の全構成単位に対して、好ましくは20~35モル%であり、より好ましくは20~30モル%である。脂肪族ビニル構成単位(b)の含有量が20モル%以上であると、高温高湿下でのそりを防ぐことができることから好ましい。一方、脂肪族ビニル構成単位(b)の含有量が35モル%以下であると、基材との界面での剥離を防ぐことができることから好ましい。 The content of the aliphatic vinyl constituent unit (b) represented by the general formula (2) is preferably 20 to 35 mol% with respect to all the constituent units of the resin (B1) (copolymerized resin). , More preferably 20 to 30 mol%. When the content of the aliphatic vinyl constituent unit (b) is 20 mol% or more, warpage under high temperature and high humidity can be prevented, which is preferable. On the other hand, when the content of the aliphatic vinyl constituent unit (b) is 35 mol% or less, peeling at the interface with the base material can be prevented, which is preferable.
 前記他の構成単位の含有量は、樹脂(B1)(共重合体)の全構成単位に対して、10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。 The content of the other structural units is preferably 10 mol% or less, more preferably 5 mol% or less, and 2 mol, based on all the structural units of the resin (B1) (copolymer). It is particularly preferable that it is% or less.
 なお、本明細書において、「共重合体」は、ランダム、ブロック、および交互共重合体のいずれの構造であってもよい。 In the present specification, the "copolymer" may have any structure of random, block, and alternating copolymers.
 樹脂(B1)の重量平均分子量は、特に制限はないが、強度および成型性の観点から、50,000~400,000であることが好ましく、70,000~300,000であることがより好ましい。 The weight average molecular weight of the resin (B1) is not particularly limited, but is preferably 50,000 to 400,000, more preferably 70,000 to 300,000 from the viewpoint of strength and moldability. ..
 樹脂(B1)のガラス転移温度は、110~140℃であることが好ましく、110~135℃であることがより好ましく、110~130℃であることが特に好ましい。ガラス転移点が110℃以上であると、樹脂シートが熱環境あるいは湿熱環境において変形や割れを生じることが少ないことから好ましい。一方、140℃以下であると、鏡面ロールや賦形ロールによる連続式熱賦形、あるいは鏡面金型や賦形金型によるバッチ式熱賦形によって成形する場合に加工性に優れることから好ましい。なお、本発明におけるガラス転移温度とは、示差走査熱量測定装置を用い、試料10mg、昇温速度10℃/分で測定し中点法で算出したときの温度である。 The glass transition temperature of the resin (B1) is preferably 110 to 140 ° C, more preferably 110 to 135 ° C, and particularly preferably 110 to 130 ° C. When the glass transition point is 110 ° C. or higher, the resin sheet is less likely to be deformed or cracked in a thermal environment or a moist thermal environment, which is preferable. On the other hand, when the temperature is 140 ° C. or lower, the workability is excellent when molding is performed by continuous heat shaping using a mirror surface roll or a shaping roll, or batch type heat shaping using a mirror surface mold or a shaping die. The glass transition temperature in the present invention is a temperature when measured by a differential scanning calorimetry device at a sample of 10 mg and a heating rate of 10 ° C./min and calculated by the midpoint method.
 具体的な樹脂(B1)として、例えば、オプティマス7500、6000(三菱ガス化学製)が挙げられる。なお上述した樹脂(B1)は単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the resin (B1) include Optimus 7500 and 6000 (manufactured by Mitsubishi Gas Chemical Company). The above-mentioned resin (B1) may be used alone or in combination of two or more.
 樹脂組成物(B1)の製造方法は、特に限定されないが、少なくとも1種の(メタ)アクリル酸エステルモノマーと少なくとも1種の芳香族ビニルモノマーとを重合した後、該芳香族ビニルモノマー由来の芳香族二重結合を水素化して得られたものが好適である。 The method for producing the resin composition (B1) is not particularly limited, but after polymerizing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer, the fragrance derived from the aromatic vinyl monomer is used. Those obtained by hydrogenating a group double bond are preferable.
 前記芳香族ビニルモノマーとしては、特に制限されないが、スチレン、α-メチルスチレン、p-ヒドロキシスチレン、アルコキシスチレン、クロロスチレン、およびそれらの誘導体などが挙げられる。これらのうち、芳香族ビニルモノマーはスチレンであることが好ましい。 The aromatic vinyl monomer is not particularly limited, and examples thereof include styrene, α-methylstyrene, p-hydroxystyrene, alkoxystyrene, chlorostyrene, and derivatives thereof. Of these, the aromatic vinyl monomer is preferably styrene.
 (メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーの重合には、既知の方法を用いることができる。例えば、塊状重合法や溶液重合法などにより製造することができる。 A known method can be used for the polymerization of the (meth) acrylic acid ester monomer and the aromatic vinyl monomer. For example, it can be produced by a massive polymerization method, a solution polymerization method, or the like.
 塊状重合法は、上記モノマー、重合開始剤を含むモノマー組成物を完全混合槽に連続的に供給し、100~180℃で連続重合する方法などにより行われる。上記モノマー組成物は、必要に応じて連鎖移動剤を含んでもよい。 The massive polymerization method is carried out by a method in which a monomer composition containing the above-mentioned monomer and a polymerization initiator is continuously supplied to a complete mixing tank and continuously polymerized at 100 to 180 ° C. The monomer composition may contain a chain transfer agent, if necessary.
 前記重合開始剤としては、特に限定されないが、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、過酸化ベンゾイル、1,1-ジ(t-ヘキシルペルオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ジ(t-ブチルペルオキシ)シクロヘキサン、t-ヘキシルプロポキシイソプロピルモノカーボネート、t-アミルパーオキシノルマルオクトエート、t-ブチルペルオキシイソプロピルモノカーボネート、ジ-t-ブチルパーオキサイド等の有機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物が挙げられる。これらは単独でまたは2種以上を組み合わせて用いることができる。 The polymerization initiator is not particularly limited, but is t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, 1,1-di (t-). Hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-butylperoxy) cyclohexane, t-hexylpropoxyisopropylmonocarbonate, t-amyl Organic peroxides such as peroxynormal octoate, t-butylperoxyisopropyl monocarbonate, di-t-butyl peroxide, 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methyl) Butylnitrile), 2,2'-azobis (2,4-dimethylvaleronitrile) and other azo compounds can be mentioned. These can be used alone or in combination of two or more.
 前記連鎖移動剤としては、特に限定されないが、α-メチルスチレンダイマーが挙げられる。 The chain transfer agent is not particularly limited, and examples thereof include α-methylstyrene dimer.
 溶液重合法に用いられる溶媒としては、例えば、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒;酢酸エチル、イソ酪酸メチルなどのエステル系溶媒;アセトン、メチルエチルケトンなどのケトン系溶媒;テトラヒドロフラン、ジオキサンなどのエーテル系溶媒;メタノール、イソプロパノールなどのアルコール系溶媒などが挙げられる。これらの溶媒は単独で用いても、2種以上を組み合わせて用いてもよい。 Examples of the solvent used in the solution polymerization method include hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane; ester solvents such as ethyl acetate and methyl isobutyrate; ketone solvents such as acetone and methyl ethyl ketone; tetrahydrofuran, Ether-based solvents such as dioxane; alcohol-based solvents such as methanol and isopropanol can be mentioned. These solvents may be used alone or in combination of two or more.
 (メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーを重合した後の水素化反応に用いられる溶媒は、前記の重合溶媒と同じであっても異なっていてもよい。例えば、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などが挙げられる。 The solvent used for the hydrogenation reaction after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer may be the same as or different from the above-mentioned polymerization solvent. For example, hydrocarbon solvents such as cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, ether solvents such as tetrahydrofuran and dioxane, alcohol solvents such as methanol and isopropanol. Examples include solvents.
 上記のようにして(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後、該芳香族ビニルモノマー由来の芳香族二重結合を水素化することにより、樹脂(B1)が得られる。 The resin (B1) is obtained by polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer as described above, and then hydrogenating the aromatic double bond derived from the aromatic vinyl monomer.
 水素化の方法は特に限定されず、既知の方法を用いることができる。例えば、水素圧力3~30MPa、反応温度60~250℃でバッチ式あるいは連続流通式で行うことができる。温度を60℃以上であると、反応時間がかかり過ぎることがないことから好ましい。一方、反応温度が250℃以下であると、分子鎖の切断やエステル部位の水素化等の副反応が起こらないまたはほとんど起こらないことから好ましい。 The hydrogenation method is not particularly limited, and a known method can be used. For example, it can be carried out in a batch method or a continuous flow method at a hydrogen pressure of 3 to 30 MPa and a reaction temperature of 60 to 250 ° C. When the temperature is 60 ° C. or higher, the reaction time does not take too long, which is preferable. On the other hand, when the reaction temperature is 250 ° C. or lower, side reactions such as cleavage of the molecular chain and hydrogenation of the ester site do not occur or hardly occur, which is preferable.
 水素化反応に用いられる触媒としては、例えば、ニッケル、パラジウム、白金、コバル卜、ルテニウム、ロジウムなどの金属、またはそれら金属の酸化物もしくは塩もしくは錯体化合物を、カーボン、アルミナ、シリカ、シリカ.アルミナ、珪藻土などの多孔性担体に担持した固体触媒などが挙げられる。 Examples of the catalyst used in the hydrogenation reaction include metals such as nickel, palladium, platinum, cobal, ruthenium, and rhodium, or oxides, salts, or complex compounds of these metals, such as carbon, alumina, silica, and silica. Examples thereof include a solid catalyst supported on a porous carrier such as alumina and diatomaceous earth.
 水素化反応により、芳香族ビニルモノマー由来の芳香族二重結合は、70%以上が水素化されることが好ましい。即ち、芳香族ビニルモノマー由来の構成単位中に含まれる芳香族二重結合の未水素化率は、30%未満であることが好ましく、10%未満であることがより好ましく、5%未満であることがさらに好ましい。未水素化率が30%未満であると、透明性に優れた樹脂を得ることができることから好ましい。なお、未水素化部分の構成単位は、樹脂(B1)における他の構成単位となりうる。 It is preferable that 70% or more of the aromatic double bond derived from the aromatic vinyl monomer is hydrogenated by the hydrogenation reaction. That is, the unhydrogenation rate of the aromatic double bond contained in the structural unit derived from the aromatic vinyl monomer is preferably less than 30%, more preferably less than 10%, and less than 5%. Is even more preferable. When the dehydrogenation rate is less than 30%, a resin having excellent transparency can be obtained, which is preferable. The structural unit of the unhydrogenated portion can be another structural unit in the resin (B1).
 前記樹脂(B1)は、透明性を損なわない範囲で、他の樹脂をブレンドすることができる。すなわち、樹脂(B1)は、上述の共重合体および他の樹脂を含む樹脂組成物である。前記他の樹脂としては、例えば、メタクリル酸メチル-スチレン共重合樹脂、ポリメタクリル酸メチル、ポリスチレン、ポリカーボネート、シクロオレフイン(コ)ポリマー樹脂、アクリロニトリル-スチレン共重合樹脂、アクリロニトリルーブタジエンースチレン共重合樹脂、各種エラストマーなどが挙げられる。 The resin (B1) can be blended with other resins as long as the transparency is not impaired. That is, the resin (B1) is a resin composition containing the above-mentioned copolymer and other resins. Examples of the other resin include methyl methacrylate-styrene copolymer resin, polymethyl methacrylate, polystyrene, polycarbonate, cycloolephine (co) polymer resin, acrylonitrile-styrene copolymer resin, and acrylonitrile-butadiene-styrene copolymer resin. , Various elastomers and the like.
 (樹脂(B2))
 樹脂(B2)は、前記樹脂(B1)を35~65質量%、好ましくは40~60質量%、スチレン-不飽和ジカルボン酸系共重合体(C)を35~65質量%、好ましくは40~60質量%含む。また、前記スチレン-不飽和ジカルボン酸共重合体(C)が、スチレン系構成単位(c1)を65~90質量%、不飽和ジカルボン酸無水物構成単位(c2)を10~35質量%で含む。すなわち、樹脂(B2)は2種以上の樹脂を含む樹脂組成物である。なお、前記樹脂(B1)の含有量およびスチレン-不飽和ジカルボン酸系共重合体(C)の含有量は、樹脂(B2)の全質量に対する含有量である。
(Resin (B2))
The resin (B2) contains 35 to 65% by mass, preferably 40 to 60% by mass of the resin (B1), and 35 to 65% by mass, preferably 40 to 65% by mass of the styrene-unsaturated dicarboxylic acid-based copolymer (C). Contains 60% by mass. Further, the styrene-unsaturated dicarboxylic acid copolymer (C) contains a styrene-based structural unit (c1) in an amount of 65 to 90% by mass and an unsaturated dicarboxylic acid anhydride constituent unit (c2) in an amount of 10 to 35% by mass. .. That is, the resin (B2) is a resin composition containing two or more kinds of resins. The content of the resin (B1) and the content of the styrene-unsaturated dicarboxylic acid-based copolymer (C) are the contents of the resin (B2) with respect to the total mass.
 ・樹脂(B1)
 前記樹脂(B1)としては、上述のものが用いられる。この際、樹脂(B1)は単独で用いても、2種以上を組み合わせて用いてもよい。
・ Resin (B1)
As the resin (B1), the above-mentioned one is used. At this time, the resin (B1) may be used alone or in combination of two or more.
 ・スチレン-不飽和ジカルボン酸系共重合体(C)
 スチレン-不飽和ジカルボン酸共重合体(C)は、スチレン系構成単位(c1)および不飽和ジカルボン酸無水物構成単位(c2)を含む。
-Styrene-unsaturated dicarboxylic acid copolymer (C)
The styrene-unsaturated dicarboxylic acid copolymer (C) contains a styrene-based structural unit (c1) and an unsaturated dicarboxylic acid anhydride structural unit (c2).
 スチレン系構成単位(c1)
 スチレン系単量体としては、特に限定されず、任意の既知のスチレン系単量体を用いることができる。スチレン系単量体の具体例としては、スチレン、a-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等が挙げられる。これらの中でも、相溶性の観点からスチレンが特に好ましい。これらのスチレン系単量体は単独で用いても、2種以上を組み合わせて用いてもよい。
Styrene-based structural unit (c1)
The styrene-based monomer is not particularly limited, and any known styrene-based monomer can be used. Specific examples of the styrene-based monomer include styrene, a-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like. Of these, styrene is particularly preferable from the viewpoint of compatibility. These styrene-based monomers may be used alone or in combination of two or more.
 スチレン系構成単位(c1)の含有量は、スチレン-不飽和ジカルボン酸系共重合体(C)の全質量に対して、65~90質量%であり、好ましくは70~85質量%である。 The content of the styrene-based structural unit (c1) is 65 to 90% by mass, preferably 70 to 85% by mass, based on the total mass of the styrene-unsaturated dicarboxylic acid-based copolymer (C).
 不飽和ジカルボン酸無水物構成単位(c2)
 不飽和ジカルボン酸無水物単量体としては、特に制限されないが、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物が挙げられる。これらのうち、スチレン系単量体との相溶性の観点から無水マレイン酸が好ましい。これらの不飽和ジカルボン酸無水物単量体は単独で用いても、2種以上を組み合わせて用いてもよい。
Unsaturated dicarboxylic acid anhydride building block (c2)
The unsaturated dicarboxylic acid anhydride monomer is not particularly limited, and examples thereof include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid. Of these, maleic anhydride is preferable from the viewpoint of compatibility with the styrene-based monomer. These unsaturated dicarboxylic acid anhydride monomers may be used alone or in combination of two or more.
 不飽和ジカルボン酸無水物構成単位(c2)の含有量は、スチレン-不飽和ジカルボン酸系共重合体(C)の全質量に対して、10~35質量%であり、好ましくは15~30質量%である。 The content of the unsaturated dicarboxylic acid anhydride constituent unit (c2) is 10 to 35% by mass, preferably 15 to 30% by mass, based on the total mass of the styrene-unsaturated dicarboxylic acid-based copolymer (C). %.
 スチレン-不飽和ジカルボン酸系共重合体(C)の具体例としては、XIBOND140、XIBOND160、XIRAN SO23110、XIRAN SO26080(Polyscope社製)が挙げられる。これらのスチレン-不飽和ジカルボン酸系共重合体(C)は単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the styrene-unsaturated dicarboxylic acid-based copolymer (C) include XIBOND140, XIBOND160, XIRAN SO23110, and XIRAN SO26080 (manufactured by Polyscape). These styrene-unsaturated dicarboxylic acid-based copolymers (C) may be used alone or in combination of two or more.
 (樹脂(B3))
 樹脂(B3)は、ビニル系単量体を含有する樹脂(D)を55~10質量%、スチレン-不飽和ジカルボン酸系共重合体(E)を45~90質量%含む。また、前記スチレン-不飽和ジカルボン酸系共重合体(E)は、スチレン系構成単位(e1)を50~80質量%、不飽和ジカルボン酸構成単位(e2)を10~30質量%、ビニル系構成単位(e3)を5~30質量%で含む。すなわち、樹脂(B3)は2種以上の樹脂を含む樹脂組成物である。なお、前記ビニル系単量体を含有する樹脂(D)の含有量およびスチレン-不飽和ジカルボン酸系共重合体(E)の含有量は、樹脂(B3)の全質量に対する含有量である。
(Resin (B3))
The resin (B3) contains 55 to 10% by mass of the resin (D) containing a vinyl-based monomer and 45 to 90% by mass of the styrene-unsaturated dicarboxylic acid-based copolymer (E). The styrene-unsaturated dicarboxylic acid-based copolymer (E) contains 50 to 80% by mass of the styrene-based constituent unit (e1), 10 to 30% by mass of the unsaturated dicarboxylic acid-based constituent unit (e2), and vinyl-based. The structural unit (e3) is contained in an amount of 5 to 30% by mass. That is, the resin (B3) is a resin composition containing two or more kinds of resins. The content of the resin (D) containing the vinyl-based monomer and the content of the styrene-unsaturated dicarboxylic acid-based copolymer (E) are the contents of the resin (B3) with respect to the total mass.
 ・ビニル系単量体を含有する樹脂(D)
 ビニル系単量体を含有する樹脂(D)としては、特に制限されないが、アクリロニトリル、メタアクリロニトリル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2-エチルヘキシル等のビニル系単量体を単独重合したものが挙げられる。これらのうち、ビニル系単量体を含有する樹脂(D)としては、構成単位として、メタクリル酸メチルを含むことが好ましい。ビニル系単量体を含有する樹脂(D)は、前記構成単位を1種用いた重合体であってもよいし、2種以上を組み合わせて用いた共重合体であってもよい。
-Resin (D) containing a vinyl-based monomer
The resin (D) containing a vinyl-based monomer is not particularly limited, but is limited to acrylonitrile, metaacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, and methacrylic acid. , Methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate and the like, which are homopolymerized vinyl monomers. Of these, the resin (D) containing a vinyl-based monomer preferably contains methyl methacrylate as a constituent unit. The resin (D) containing the vinyl-based monomer may be a polymer using one kind of the structural unit, or a copolymer using two or more kinds in combination.
 ビニル系単量体を含有する樹脂(D)の重量平均分子量は、10,000~500,000であることが好ましく、50,000~300,000であることがより好ましい。 The weight average molecular weight of the resin (D) containing the vinyl-based monomer is preferably 10,000 to 500,000, more preferably 50,000 to 300,000.
 上述のビニル系単量体を含有する樹脂(D)は単独で用いても、2種以上を組み合わせて用いてもよい。 The resin (D) containing the vinyl-based monomer described above may be used alone or in combination of two or more.
 ・スチレン-不飽和ジカルボン酸系共重合体(E)
 スチレン-不飽和ジカルボン酸系共重合体(E)は、スチレン系構成単位(e1)、不飽和ジカルボン酸無水物構成単位(e2)、およびビニル系構成単位(e3)を含む。
-Styrene-unsaturated dicarboxylic acid copolymer (E)
The styrene-unsaturated dicarboxylic acid-based copolymer (E) contains a styrene-based constituent unit (e1), an unsaturated dicarboxylic acid anhydride-based constituent unit (e2), and a vinyl-based constituent unit (e3).
 スチレン系構成単位(e1)
 スチレン系単量体としては、特に限定されず、任意の既知のスチレン系単量体を用いることができる。スチレン系単量体の具体例としては、スチレン、a-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等が挙げられる。これらの中でも、相溶性の観点からスチレンが特に好ましい。これらのスチレン系単量体は単独で用いても、2種以上を組み合わせて用いてもよい。
Styrene-based structural unit (e1)
The styrene-based monomer is not particularly limited, and any known styrene-based monomer can be used. Specific examples of the styrene-based monomer include styrene, a-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like. Among these, styrene is particularly preferable from the viewpoint of compatibility. These styrene-based monomers may be used alone or in combination of two or more.
 スチレン系構成単位(e1)の含有量は、スチレン-不飽和ジカルボン酸系共重合体(E)の全質量に対して、50~80質量%であり、好ましくは50~75質量%である。 The content of the styrene-based structural unit (e1) is 50 to 80% by mass, preferably 50 to 75% by mass, based on the total mass of the styrene-unsaturated dicarboxylic acid-based copolymer (E).
 不飽和ジカルボン酸無水物構成単位(e2)
 不飽和ジカルボン酸無水物単量体としては、特に制限されないが、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物が挙げられる。これらのうち、ビニル系単量体との相溶性の観点から無水マレイン酸が好ましい。これらの不飽和ジカルボン酸無水物単量体は単独で用いても、2種以上を組み合わせて用いてもよい。
Unsaturated dicarboxylic acid anhydride building block (e2)
The unsaturated dicarboxylic acid anhydride monomer is not particularly limited, and examples thereof include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid. Of these, maleic anhydride is preferable from the viewpoint of compatibility with vinyl-based monomers. These unsaturated dicarboxylic acid anhydride monomers may be used alone or in combination of two or more.
 不飽和ジカルボン酸無水物構成単位(e2)の含有量は、スチレン-不飽和ジカルボン酸系共重合体(E)の全質量に対して、10~30質量%であり、好ましくは10~25質量%である。 The content of the unsaturated dicarboxylic acid anhydride constituent unit (e2) is 10 to 30% by mass, preferably 10 to 25% by mass, based on the total mass of the styrene-unsaturated dicarboxylic acid-based copolymer (E). %.
 ビニル系構成単位(e3)
 ビニル系単量体としては、特に制限されないが、アクリロニトリル、メタアクリロニトリル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2-エチルへキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2-エチルヘキシル等のビニル系単量体が挙げられる。これらのうち、ビニル系単量体を含有する樹脂(D)との相溶性の観点からメタクリル酸メチル(MMA)が好ましい。これらのビニル系単量体は単独で用いても、2種以上を組み合わせて用いてもよい。
Vinyl-based structural unit (e3)
The vinyl-based monomer is not particularly limited, but is limited to acrylonitrile, metaacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, methyl methacrylate, etc. Examples thereof include vinyl-based monomers such as ethyl methacrylate, n-butyl methacrylate, and 2-ethylhexyl methacrylate. Of these, methyl methacrylate (MMA) is preferable from the viewpoint of compatibility with the resin (D) containing a vinyl-based monomer. These vinyl-based monomers may be used alone or in combination of two or more.
 ビニル系構成単位(e3)の含有量は、スチレン-不飽和ジカルボン酸系共重合体(E)の全質量に対して、5~30質量%であり、好ましくは7~27質量%である。 The content of the vinyl-based structural unit (e3) is 5 to 30% by mass, preferably 7 to 27% by mass, based on the total mass of the styrene-unsaturated dicarboxylic acid-based copolymer (E).
 スチレン-不飽和ジカルボン酸系共重合体(E)の重量平均分子量は、50,000~200,000であることが好ましく、80,000~200,000であることがより好ましい。重量平均分子量が上記範囲内であると、ビニル系単量体を含有する樹脂(D)との相溶性が良好であり、耐熱性の向上効果に優れることから好ましい。 The weight average molecular weight of the styrene-unsaturated dicarboxylic acid-based copolymer (E) is preferably 50,000 to 200,000, more preferably 80,000 to 200,000. When the weight average molecular weight is within the above range, the compatibility with the resin (D) containing the vinyl-based monomer is good, and the effect of improving the heat resistance is excellent, which is preferable.
 スチレン-不飽和ジカルボン酸系共重合体(E)として、具体的には、レジスファイ R100、R200、R310(電気化学工業製)、デルペット980N(旭化成製)などが挙げられるが、これらに限定されない。上述のスチレン-不飽和ジカルボン酸系共重合体(E)は、単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the styrene-unsaturated dicarboxylic acid-based copolymer (E) include, but are not limited to, Regisphi R100, R200, R310 (manufactured by Denki Kagaku Kogyo), Delpet 980N (manufactured by Asahi Kasei), and the like. .. The above-mentioned styrene-unsaturated dicarboxylic acid-based copolymer (E) may be used alone or in combination of two or more.
 (樹脂(B4))
 樹脂(B4)とは、スチレン構成単位を5~20質量%、(メタ)アクリル酸エステル構成単位を70~90質量%、N-置換型マレイミド構成単位を5~20質量%含む樹脂共重合体(G)、または樹脂共重合体(G)とスチレン-不飽和ジカルボン酸系共重合体(E)とのアロイである。
(Resin (B4))
The resin (B4) is a resin copolymer containing 5 to 20% by mass of a styrene constituent unit, 70 to 90% by mass of a (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of an N-substituted maleimide constituent unit. (G), or an alloy of the resin copolymer (G) and the styrene-unsaturated dicarboxylic acid-based copolymer (E).
 ・樹脂共重合体(G)
 樹脂共重合体(G)は、スチレン構成単位、(メタ)アクリル酸エステル構成単位、N-置換型マレイミド構成単位を含む。
-Resin copolymer (G)
The resin copolymer (G) contains a styrene structural unit, a (meth) acrylic acid ester structural unit, and an N-substituted maleimide structural unit.
 スチレン構成単位
 スチレン系単量体としては、特に限定されず、任意の既知のスチレン系単量体を用いることができる。スチレン系単量体の具体例としては、スチレン、a-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等が挙げられる。これらの中でも、相溶性の観点からスチレンが特に好ましい。これらのスチレン系単量体は単独で用いても、2種以上を組み合わせて用いてもよい。
Styrene-based monomer The styrene-based monomer is not particularly limited, and any known styrene-based monomer can be used. Specific examples of the styrene-based monomer include styrene, a-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like. Of these, styrene is particularly preferable from the viewpoint of compatibility. These styrene-based monomers may be used alone or in combination of two or more.
 スチレン構成単位の含有量は、樹脂(B4)(樹脂共重合体(G))の全質量に対して、5~20質量%であり、好ましくは5~15質量%であり、より好ましくは5~10質量%である。 The content of the styrene constituent unit is 5 to 20% by mass, preferably 5 to 15% by mass, and more preferably 5 with respect to the total mass of the resin (B4) (resin copolymer (G)). ~ 10% by mass.
 (メタ)アクリル酸エステル構成単位
 (メタ)アクリル酸エステル単量体としては、特に限定されず、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2-エチルヘキシル等が挙げられる。これらのうち、メタクリル酸メチルが好ましい。これらの(メタ)アクリル酸エステル単量体は、単独で用いても、2種以上を組み合わせて用いてもよい。
(Meta) Acrylic Acid Ester Structural Unit The (meth) acrylic acid ester monomer is not particularly limited, and is not particularly limited, and is acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, and methacrylic acid. , Methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate and the like. Of these, methyl methacrylate is preferable. These (meth) acrylic acid ester monomers may be used alone or in combination of two or more.
 (メタ)アクリル酸エステル構成単位の含有量は、樹脂(B4)(樹脂共重合体(G))の全質量に対して、60~90質量%であり、好ましくは70~90質量%であり、より好ましくは80~90質量%である。 The content of the (meth) acrylic acid ester constituent unit is 60 to 90% by mass, preferably 70 to 90% by mass, based on the total mass of the resin (B4) (resin copolymer (G)). , More preferably 80 to 90% by mass.
 N-置換型マレイミド構成単位
 N-置換型マレイミド単量体としては、特に制限されないが、N―フェニルマレイミド、N―クロロフェニルマレイミド、N-メチルフェニルマレイミド、N-ナフチルマレイミド、N-ヒドロキシフェニルマレイミド、N-メトキシフェニルマレイミド、N-カルボキシフェニルマレイミド、N-ニトロフェニルマレイミド、N-トリブロモフェニルマレイミドなどのN-アリールマレイミド等が挙げられる。これらのうち、(メタ)アクリル酸構成単位との相溶性の観点からN-フェニルマレイミドが好ましい。なお、これらのN-置換型マレイミド単量体は単独で用いても、2種以上を組み合わせて用いてもよい。
N-Substituted Maleimide Constituent Unit The N-substituted maleimide monomer is not particularly limited, but N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, Examples thereof include N-arylmaleimides such as N-methoxyphenylmaleimide, N-carboxyphenylmaleimide, N-nitrophenylmaleimide, and N-tribromophenylmaleimide. Of these, N-phenylmaleimide is preferable from the viewpoint of compatibility with the (meth) acrylic acid constituent unit. These N-substituted maleimide monomers may be used alone or in combination of two or more.
 N-置換型マレイミド構成単位の含有量は、樹脂(B4)(樹脂共重合体(G))の全質量に対して、5~20質量%であり、5~15質量%であることが好ましく、5~10質量%であることがより好ましい。 The content of the N-substituted maleimide structural unit is 5 to 20% by mass, preferably 5 to 15% by mass, based on the total mass of the resin (B4) (resin copolymer (G)). More preferably, it is 5 to 10% by mass.
 樹脂共重合体(G)の重量平均分子量は、50,000~250,000であることが好ましく、100,000~200,000がより好ましい。 The weight average molecular weight of the resin copolymer (G) is preferably 50,000 to 250,000, more preferably 100,000 to 200,000.
 樹脂共重合体(G)の具体例としては、デルペットPM120N(旭化成ケミカル社製)が挙げられるが、これらに限定されない。 Specific examples of the resin copolymer (G) include, but are not limited to, Delpet PM120N (manufactured by Asahi Kasei Chemical Co., Ltd.).
 樹脂共重合体(G)の製造方法は、特に限定されないが、溶液重合、塊状重合などによって製造することができる。 The method for producing the resin copolymer (G) is not particularly limited, but it can be produced by solution polymerization, bulk polymerization, or the like.
 ・アロイ
 前記アロイは、前記樹脂共重合体(G)と前記スチレン-不飽和ジカルボン酸系共重合体(E)とのアロイである。
-Alloy The alloy is an alloy of the resin copolymer (G) and the styrene-unsaturated dicarboxylic acid-based copolymer (E).
 この際、樹脂共重合体(G)とスチレン-不飽和ジカルボン酸系共重合体(E)とは、ガラス転移温度が高いものどうしのアロイとすることが好ましい。 At this time, it is preferable that the resin copolymer (G) and the styrene-unsaturated dicarboxylic acid-based copolymer (E) are alloys having a high glass transition temperature.
 アロイの製造方法としては、特に制限されないが、スクリュー径26mmの2軸押出機を用い、シリンダー温度240℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化する方法等が挙げられる。 The alloy manufacturing method is not particularly limited, and examples thereof include a method of melt-kneading at a cylinder temperature of 240 ° C. using a twin-screw extruder having a screw diameter of 26 mm, extruding into strands, and pelletizing with a pelletizer.
 (樹脂(B5))
 樹脂(B5)は、一般式(3)で表される構成単位(H)を含む。樹脂(B5)は、一般式(4)で表される構成単位(J)をさらに含む共重合体であることが好ましい。また、前記重合体は、他の構成単位をさらに含んでいてもよい。
(Resin (B5))
The resin (B5) contains a structural unit (H) represented by the general formula (3). The resin (B5) is preferably a copolymer further containing the structural unit (J) represented by the general formula (4). In addition, the polymer may further contain other structural units.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 一般式(3)で表される構成単位(H)の含有量は、樹脂(B5)の全構成単位に対して、50~100モル%であることが好ましく、60~100モル%であることがより好ましく、70~100モル%であることがさらに好ましい。 The content of the structural unit (H) represented by the general formula (3) is preferably 50 to 100 mol%, preferably 60 to 100 mol%, based on all the structural units of the resin (B5). Is more preferable, and 70 to 100 mol% is further preferable.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 一般式(4)で表される構成単位(J)の含有量は、樹脂(B5)の全構成単位に対して、0~50モル%であることが好ましく、0~40モル%であることがより好ましく、0~30モル%であることがさらに好ましい。 The content of the structural unit (J) represented by the general formula (4) is preferably 0 to 50 mol% and 0 to 40 mol% with respect to all the structural units of the resin (B5). Is more preferable, and 0 to 30 mol% is further preferable.
 他の構成単位の含有量は、樹脂(B5)の全構成単位に対して、10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。 The content of the other constituent units is preferably 10 mol% or less, more preferably 5 mol% or less, and preferably 2 mol% or less, based on all the constituent units of the resin (B5). Especially preferable.
 構成単位(H)と構成単位(J)の合計含有量は、樹脂(B5)の全構成単位に対して、90~100モル%であることが好ましく、95~100モル%であることがより好ましく、98~100モル%であることがさらに好ましい。 The total content of the constituent unit (H) and the constituent unit (J) is preferably 90 to 100 mol%, more preferably 95 to 100 mol%, based on all the constituent units of the resin (B5). It is preferably 98 to 100 mol%, more preferably 98 to 100 mol%.
 樹脂(B5)の重量平均分子量は、15,000~75,000が好ましく、20,000~70,000がより好ましく、25,000~65,000が特に好ましい。 The weight average molecular weight of the resin (B5) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000, and particularly preferably 25,000 to 65,000.
 樹脂(B5)の具体例としては、ユーピロン KH3410UR、KH3520UR、KS3410UR(三菱エンジニアリングプラスチック社製)等が挙げられるが、これらに限定されない。上述の樹脂(B5)は単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the resin (B5) include, but are not limited to, Iupiron KH3410UR, KH3520UR, KS3410UR (manufactured by Mitsubishi Engineering Plastics Co., Ltd.) and the like. The above-mentioned resin (B5) may be used alone or in combination of two or more.
 樹脂組成物(B5)の製造方法は、特に限定されないが、モノマーとしてビスフェノールCを使用することを除いて上述したポリカーボネート樹脂(a1)の製造方法と同様の方法で製造することができる。 The method for producing the resin composition (B5) is not particularly limited, but it can be produced by the same method as the above-mentioned method for producing the polycarbonate resin (a1) except that bisphenol C is used as the monomer.
 (樹脂(B6))
 樹脂(B6)は、ビニル系単量体を含有する樹脂(D)を35~65質量%、スチレン-不飽和ジカルボン酸系共重合体(C)を35~65質量%含む。また、前記スチレン-不飽和ジカルボン酸共重合体(C)が、スチレン系構成単位(c1)を65~90質量%、不飽和ジカルボン酸無水物構成単位(c2)を10~35質量%で含む。すなわち、樹脂(B6)は2種以上の樹脂を含む樹脂組成物である。なお、前記ビニル系単量体を含有する樹脂(D)の含有量およびスチレン-不飽和ジカルボン酸系共重合体(C)の含有量は、樹脂(B6)の全質量に対する含有量である。
(Resin (B6))
The resin (B6) contains 35 to 65% by mass of the resin (D) containing a vinyl-based monomer and 35 to 65% by mass of the styrene-unsaturated dicarboxylic acid-based copolymer (C). Further, the styrene-unsaturated dicarboxylic acid copolymer (C) contains a styrene-based structural unit (c1) in an amount of 65 to 90% by mass and an unsaturated dicarboxylic acid anhydride constituent unit (c2) in an amount of 10 to 35% by mass. .. That is, the resin (B6) is a resin composition containing two or more kinds of resins. The content of the resin (D) containing the vinyl-based monomer and the content of the styrene-unsaturated dicarboxylic acid-based copolymer (C) are the contents of the resin (B6) with respect to the total mass.
 ・ビニル系単量体を含有する樹脂(D)
 ビニル系単量体を含有する樹脂(D)としては、上記樹脂(B3)に記載のものと同様のものが用いられる。当該ビニル系単量体を含有する樹脂(D)は、単独で用いても、2種以上を組み合わせて用いてもよい。
-Resin (D) containing a vinyl-based monomer
As the resin (D) containing the vinyl-based monomer, the same resin as that described in the above resin (B3) is used. The resin (D) containing the vinyl-based monomer may be used alone or in combination of two or more.
 ・スチレン-不飽和ジカルボン酸系共重合体(C)
 スチレン-不飽和ジカルボン酸共重合体(C)としては、上記樹脂(B2)に記載のものと同様のものが用いられる。当該スチレン-不飽和ジカルボン酸共重合体(C)は、単独で用いても、2種以上を組み合わせて用いてもよい。
-Styrene-unsaturated dicarboxylic acid copolymer (C)
As the styrene-unsaturated dicarboxylic acid copolymer (C), the same one as described in the above resin (B2) is used. The styrene-unsaturated dicarboxylic acid copolymer (C) may be used alone or in combination of two or more.
 高硬度樹脂として、上述の樹脂(B1)~樹脂(B6)からなる群から選択される少なくとも1つを含むことで高温高湿下での形状安定性により優れる防眩性積層体が得られうることから好ましい。 By containing at least one selected from the group consisting of the above-mentioned resins (B1) to (B6) as the high-hardness resin, an antiglare laminate having better shape stability under high temperature and high humidity can be obtained. Therefore, it is preferable.
 [添加剤]
 高硬度樹脂層は、添加剤を含んでいてもよい。
[Additive]
The high hardness resin layer may contain additives.
 前記添加剤としては、特に制限されず、防眩性積層体において通常使用されるものを使用することができる。具体例としては、抗酸化剤、抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機粒子や無機粒子のような強化材などが挙げられる。 The additive is not particularly limited, and those usually used in antiglare laminates can be used. Specific examples include antioxidants, anticolorants, antistatic agents, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic particles and inorganic particles. Reinforcement materials and the like can be mentioned.
 添加剤の量は、高硬度樹脂層の全質量に対して、0~10質量%であることが好ましく、0~7質量%であることがより好ましく、0~5質量%であることが特に好ましい。 The amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, and particularly preferably 0 to 5% by mass with respect to the total mass of the high hardness resin layer. preferable.
 添加剤と樹脂を混合する方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。 The method of mixing the additive and the resin is not particularly limited, and a method of compounding the entire amount, a method of dry-blending the masterbatch, a method of dry-blending the entire amount, and the like can be used.
 [高硬度樹脂層の構成]
 高硬度樹脂層の厚さは、好ましくは10~250μmであり、より好ましくは30~200μmであり、特に好ましくは60~150μmである。高硬度樹脂層の厚さが10μm以上であると、表面硬度が高くなることから好ましい。一方、高硬度樹脂層の厚さが250μm以下であると耐衝撃性が高くなることから好ましい。
[Structure of high hardness resin layer]
The thickness of the high hardness resin layer is preferably 10 to 250 μm, more preferably 30 to 200 μm, and particularly preferably 60 to 150 μm. When the thickness of the high hardness resin layer is 10 μm or more, the surface hardness becomes high, which is preferable. On the other hand, when the thickness of the high hardness resin layer is 250 μm or less, the impact resistance is high, which is preferable.
 [高硬度樹脂層の基材層への積層]
 上述したとおり、基材層と高硬度樹脂層の間にはさらなる層が存在していてもよいが、ここでは、基材層上に高硬度樹脂層を積層する場合について説明する。
[Lamination of high hardness resin layer on base material layer]
As described above, a further layer may exist between the base material layer and the high hardness resin layer, but here, a case where the high hardness resin layer is laminated on the base material layer will be described.
 基材層と高硬度樹脂層の合計厚みは、好ましくは100~3500μm、より好ましくは100~3000μm、さらに好ましくは500~3000μm、特に好ましくは1200~3000μmである。合計厚みが100μm以上であると、シートの剛性を保つことができることから好ましい。一方、合計厚みが3500μm以下であると、シートの下にタッチパネルを設置する場合等にタッチセンサーの感度が悪くなるのを防ぐことができることから好ましい。 The total thickness of the base material layer and the high hardness resin layer is preferably 100 to 3500 μm, more preferably 100 to 3000 μm, still more preferably 500 to 3000 μm, and particularly preferably 1200 to 3000 μm. When the total thickness is 100 μm or more, the rigidity of the sheet can be maintained, which is preferable. On the other hand, when the total thickness is 3500 μm or less, it is possible to prevent the sensitivity of the touch sensor from deteriorating when the touch panel is installed under the sheet, which is preferable.
 基材層および高硬度樹脂層の合計厚みに占める基材層の厚みの割合は、好ましくは75%~99%であり、より好ましくは80~99%であり、特に好ましくは85~99%である。上記範囲とすることにより、硬度と耐衝撃性を両立できる。 The ratio of the thickness of the base material layer to the total thickness of the base material layer and the high hardness resin layer is preferably 75% to 99%, more preferably 80 to 99%, and particularly preferably 85 to 99%. be. Within the above range, both hardness and impact resistance can be achieved.
 高硬度樹脂層を基材層に積層する方法としては、特に限定されず、個別に形成した基材層と高硬度樹脂層とを重ね合わせて、両者を加熱圧着する方法;個別に形成した基材層と高硬度樹脂層とを重ね合わせて、両者を接着剤によって接着する方法;基材層と高硬度樹脂層とを共押出成形する方法;予め形成しておいた高硬度樹脂層に、基材層をインモールド成形して一体化する方法等が挙げられる。これらのうち、製造コストや生産性の観点から、共押出成形する方法が好ましい。 The method of laminating the high-hardness resin layer on the base material layer is not particularly limited, and is a method of superimposing the individually formed base material layer and the high-hardness resin layer and heat-bonding the two; individually formed groups. A method of superimposing a material layer and a high-hardness resin layer and adhering them with an adhesive; a method of co-extruding a base material layer and a high-hardness resin layer; Examples thereof include a method in which the base material layer is in-molded and integrated. Of these, the coextrusion molding method is preferable from the viewpoint of manufacturing cost and productivity.
 共押出の方法は特に限定されない。例えば、フィードブロック方式では、フィードブロックで基材層の片面上に高硬度樹脂層を配置し、Tダイでシート状に押し出した後、成形ロールを通過させながら冷却して所望の積層体を形成する。また、マルチマニホールド方式では、マルチマニホールドダイ内で基材層の片面上に高硬度樹脂層を配置し、シート状に押し出した後、成形ロールを通過させながら冷却して所望の積層体を形成する。 The coextrusion method is not particularly limited. For example, in the feed block method, a high-hardness resin layer is placed on one side of a base material layer with a feed block, extruded into a sheet shape with a T-die, and then cooled while passing through a molding roll to form a desired laminate. do. Further, in the multi-manifold method, a high-hardness resin layer is arranged on one side of the base material layer in the multi-manifold die, extruded into a sheet shape, and then cooled while passing through a molding roll to form a desired laminated body. ..
 <ハードコート層>
 ハードコート層としては、特に制限されないが、アクリル系ハードコートであることが好ましい。なお、本明細書において、「アクリル系ハードコート」とは、重合基として(メタ)アクリロイル基を含有するモノマーまたはオリゴマーまたはプレポリマーを重合して架橋構造を形成した塗膜を意味する。なお、ハードコート層はUV吸収剤をさらに含んでいてもよい。
<Hard coat layer>
The hard coat layer is not particularly limited, but an acrylic hard coat is preferable. In the present specification, the "acrylic hard coat" means a coating film formed by polymerizing a monomer or oligomer or prepolymer containing a (meth) acryloyl group as a polymerization group to form a crosslinked structure. The hard coat layer may further contain a UV absorber.
 前記ハードコート層は、有機粒子および無機粒子を含まないことが好ましい。有機粒子および無機粒子を含まないことにより、耐擦傷性が向上しうる。なお、後述する通り、ハードコート層の防眩処理を、型を用いた転写により行うことで、有機粒子および無機粒子を含まずに凹凸形状を有するハードコート層を形成することができる。 The hard coat layer preferably does not contain organic particles and inorganic particles. Scratch resistance can be improved by not containing organic particles and inorganic particles. As will be described later, by performing the antiglare treatment of the hard coat layer by transfer using a mold, it is possible to form a hard coat layer having an uneven shape without containing organic particles and inorganic particles.
 (メタ)アクリル系モノマーの含有量としては、(メタ)アクリル系モノマー、(メタ)アクリル系オリゴマー、および表面改質剤の総質量に対して、2~98質量%であることが好ましく、5~50質量%であることがより好ましく、20~40質量%であることがさらに好ましい。 The content of the (meth) acrylic monomer is preferably 2 to 98% by mass with respect to the total mass of the (meth) acrylic monomer, the (meth) acrylic oligomer, and the surface modifier. It is more preferably to 50% by mass, and even more preferably 20 to 40% by mass.
 また、(メタ)アクリル系オリゴマーの含有量としては、(メタ)アクリル系モノマー、(メタ)アクリル系オリゴマー、および表面改質剤の総質量に対して、2~98質量%であることが好ましく、50~95質量%であることがより好ましく、60~80質量%であることがさらに好ましい。 The content of the (meth) acrylic oligomer is preferably 2 to 98% by mass with respect to the total mass of the (meth) acrylic monomer, the (meth) acrylic oligomer, and the surface modifier. , 50 to 95% by mass, more preferably 60 to 80% by mass.
 さらに、表面改質剤の含有量としては、(メタ)アクリル系モノマー、(メタ)アクリル系オリゴマー、および表面改質剤の総質量に対して、0~15質量%であることが好ましく、1~10質量%であることがより好ましく、2~5質量%であることがさらに好ましい。 Further, the content of the surface modifier is preferably 0 to 15% by mass with respect to the total mass of the (meth) acrylic monomer, the (meth) acrylic oligomer, and the surface modifier. It is more preferably to 10% by mass, and even more preferably 2 to 5% by mass.
 また、光重合剤を含む場合には、前記光重合剤の含有量は、(メタ)アクリル系モノマー、(メタ)アクリル系オリゴマー、および表面改質剤の総和100質量部に対して、0.001~7質量部であることが好ましく、0.01~5質量部であることがより好ましく、0.1~3質量部であることがさらに好ましい。なお、本明細書において、光重合開始剤とは光ラジカル発生剤を指す。 When a photopolymerizer is contained, the content of the photopolymerizer is 0. It is preferably 001 to 7 parts by mass, more preferably 0.01 to 5 parts by mass, and even more preferably 0.1 to 3 parts by mass. In the present specification, the photopolymerization initiator refers to a photoradical generator.
 [(メタ)アクリル系モノマー]
 (メタ)アクリル系モノマーとしては、分子内に(メタ)アクリロイル基が官能基として存在するものであれば使用できる。具体的には、1官能モノマー、2官能モノマー、または3官能以上のモノマーが挙げられる。
[(Meta) Acrylic Monomer]
As the (meth) acrylic monomer, any one in which the (meth) acryloyl group is present as a functional group in the molecule can be used. Specific examples thereof include monofunctional monomers, bifunctional monomers, and trifunctional or higher functional monomers.
 1官能モノマーとしては(メタ)アクリル酸、(メタ)アクリル酸エステルが例示できる。 Examples of the monofunctional monomer include (meth) acrylic acid and (meth) acrylic acid ester.
 また、2官能および/または3官能以上の(メタ)アクリル系モノマーの具体例としては、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングルコールジ(メタ)アクリレート、トリプロピレングルコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ポリエチレングリコールジアクリレート、1,4-ブタンジオールオリゴアクリレート、ネオペンチルグリコールオリゴアクリレート、1,6-ヘキサンジオールオリゴアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリルプロポキシトリ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパンエチレンオキシド付加物トリアクリレート、グリセリンプロピレンオキシド付加物トリアクリレート、ペンタエリスリトールテトラアクリレート等が例示できる。 Specific examples of bifunctional and / or trifunctional or higher (meth) acrylic monomers include diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate. 1,6-hexanediol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl glycol diacrylate hydroxypivalate, neopentyl glycol di (meth) acrylate, 1,4-Butanediol diacrylate, 1,3-butylene glycol di (meth) acrylate, dicyclopentanyldi (meth) acrylate, polyethylene glycol diacrylate, 1,4-butanediol oligoacrylate, neopentyl glycol oligoacrylate , 1,6-Hexanediol oligo acrylate, trimethylol propanetri (meth) acrylate, trimethylol propane ethoxytri (meth) acrylate, trimethylol propanepropoxytri (meth) acrylate, pentaerythritol tri (meth) acrylate, glyceryl propoxytri Examples thereof include (meth) acrylate, trimethylolpropane trimethacrylate, trimethylolpropaneethylene oxide adduct triacrylate, glycerin propylene oxide adduct triacrylate, and pentaerythritol tetraacrylate.
 ハードコート層は、(メタ)アクリル系モノマーを1種類または2種類以上含んでいてよい。 The hard coat layer may contain one type or two or more types of (meth) acrylic monomers.
 [(メタ)アクリル系オリゴマー]
 (メタ)アクリル系オリゴマーとしては、2官能以上の多官能ウレタン(メタ)アクリレートオリゴマー(以下、「多官能ウレタン(メタ)アクリレートオリゴマー」とも称する)、2官能以上の多官能ポリエステル(メタ)アクリレートオリゴマー(以下、「多官能ポリエステル(メタ)アクリレートオリゴマー」とも称する)、2官能以上の多官能エポキシ(メタ)アクリレートオリゴマー(以下、「多官能エポキシ(メタ)アクリレートオリゴマー」とも称する)等が挙げられる。
[(Meta) Acrylic Oligomer]
As the (meth) acrylic oligomer, a bifunctional or higher polyfunctional urethane (meth) acrylate oligomer (hereinafter, also referred to as “polyfunctional urethane (meth) acrylate oligomer”) or a bifunctional or higher polyfunctional polyester (meth) acrylate oligomer. (Hereinafter, also referred to as “polyfunctional polyester (meth) acrylate oligomer”), bifunctional or higher functional epoxy (meth) acrylate oligomer (hereinafter, also referred to as “polyfunctional epoxy (meth) acrylate oligomer”) and the like can be mentioned.
 前記多官能ウレタン(メタ)アクリレートオリゴマーとしては、1分子中に少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとポリイソシアネートとのウレタン化反応生成物;ポリオール類をポリイソシアネートと反応させて得られるイソシアネート化合物と1分子中に少なくとも1個以上の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとのウレタン化反応生成物等が挙げられる。 As the polyfunctional urethane (meth) acrylate oligomer, a urethanization reaction product of a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule and a polyisocyanate; polyols are poly. Examples thereof include a urethanization reaction product of an isocyanate compound obtained by reacting with isocyanate and a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule.
 ウレタン化反応に用いられる1分子中に少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。 Examples of the (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule used in the urethanization reaction include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate. 2-Hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycerindi (meth) acrylate, trimethylpropandi (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta Examples include (meth) acrylate.
 ウレタン化反応に用いられるポリイソシアネートとしては、ヘキサメチレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのうち芳香族のイソシアネート類を水素添加して得られるジイソシアネート(例えば水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネートなどのジイソシアネート)、トリフェニルメタントリイソシアネート、ジメチレントリフェニルトリイソシアネートなどのジまたはトリのポリイソシアネート、あるいはジイソシアネートを多量化させて得られるポリイソシアネートが挙げられる。 The polyisocyanate used in the urethanization reaction includes hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and diisocyanate obtained by hydrogenating aromatic isocyanates among these diisocyanates. (For example, diisocyanate such as hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate), di or tri polyisocyanate such as triphenylmethane triisocyanate, dimethylene triphenyl triisocyanate, or polyisocyanate obtained by increasing the amount of diisocyanate. Can be mentioned.
 ウレタン化反応に用いられるポリオール類としては、一般的に芳香族、脂肪族および脂環式のポリオールのほか、ポリエステルポリオール、ポリエーテルポリオール等が使用される。 As the polyols used in the urethanization reaction, in addition to aromatic, aliphatic and alicyclic polyols, polyester polyols, polyether polyols and the like are generally used.
 通常、脂肪族および脂環式のポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、トリメチロールエタン、トリメチロールプロパン、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブチリオン酸、グリセリン、水添ビスフェノールAなどが挙げられる。 Usually, aliphatic and alicyclic polyols include 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, ethylene glycol, propylene glycol, trimethylolethane, trimethylolpropane, dimethylolheptan, and di. Examples thereof include methylolpropionic acid, dimethylolbutylionic acid, glycerin, and hydrogenated bisphenol A.
 ポリエステルポリオールとしては、上述したポリオール類とポリカルボン酸との脱水縮合反応により得られるものが挙げられる。ポリカルボン酸の具体的な化合物としては、コハク酸、アジピン酸、マレイン酸、トリメリット酸、ヘキサヒドロフタル酸、フタル酸、イソフタル酸、テレフタル酸などが挙げられる。これらのポリカルボン酸は、無水物であってもよい。 Examples of the polyester polyol include those obtained by a dehydration condensation reaction between the above-mentioned polyols and a polycarboxylic acid. Specific compounds of the polycarboxylic acid include succinic acid, adipic acid, maleic acid, trimellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, terephthalic acid and the like. These polycarboxylic acids may be anhydrides.
 ポリエーテルポリオールとしては、ポリアルキレングリコールのほか、上述したポリオール類またはフェノール類とアルキレンオキサイドとの反応により得られるポリオキシアルキレン変性ポリオールが挙げられる。 Examples of the polyether polyol include polyalkylene glycols and polyoxyalkylene-modified polyols obtained by reacting the above-mentioned polyols or phenols with alkylene oxide.
 前記多官能ポリエステル(メタ)アクリレートオリゴマーは、(メタ)アクリル酸、ポリカルボン酸およびポリオールを使用した脱水縮合反応により得られる。脱水縮合反応に用いられるポリカルボン酸としては、コハク酸、アジピン酸、マレイン酸、イタコン酸、トリメリット酸、ピロメリット酸、ヘキサヒドロフタル酸、フタル酸、イソフタル酸、テレフタル酸などが挙げられる。これらのポリカルボン酸は、無水物であってもよい。また、脱水縮合反応に用いられるポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブチリオン酸、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールなどが挙げられる。 The polyfunctional polyester (meth) acrylate oligomer is obtained by a dehydration condensation reaction using (meth) acrylic acid, polycarboxylic acid and polyol. Examples of the polycarboxylic acid used in the dehydration condensation reaction include succinic acid, adipic acid, maleic acid, itaconic acid, trimellitic acid, pyromellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, and terephthalic acid. These polycarboxylic acids may be anhydrides. The polyols used in the dehydration condensation reaction include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, dimethylolheptan, dimethylolpropionic acid, and dimethylol. Butyrionic acid, trimethylolpropane, trimethylolpropane, pentaerythritol, dipentaerythritol and the like can be mentioned.
 前記多官能エポキシ(メタ)アクリレートオリゴマーは、ポリグリシジルエーテルと(メタ)アクリル酸との付加反応により得られる。ポリグリシジルエーテルとしては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルなどが挙げられる。 The polyfunctional epoxy (meth) acrylate oligomer is obtained by an addition reaction between polyglycidyl ether and (meth) acrylic acid. Examples of the polyglycidyl ether include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether.
 ハードコート層は、(メタ)アクリル系オリゴマーを1種類または2種類以上含んでいてよい。 The hard coat layer may contain one type or two or more types of (meth) acrylic oligomers.
 [表面改質剤]
 表面改質剤とは、レベリング剤、帯電防止剤、界面活性剤、撥水撥油剤、無機粒子、有機粒子などのハードコート層の表面性能を変えるものである。
[Surface modifier]
The surface modifier changes the surface performance of the hard coat layer such as a leveling agent, an antistatic agent, a surfactant, a water-repellent oil-repellent agent, an inorganic particle, and an organic particle.
 前記レベリング剤としては、例えば、ポリエーテル変性ポリアルキルシロキサン、ポリエーテル変性シロキサン、ポリエステル変性水酸基含有ポリアルキルシロキサン、アルキル基を有するポリエーテル変性ポリジメチルシロキサン、変性ポリエーテル、シリコン変性アクリルなどが挙げられる。 Examples of the leveling agent include polyether-modified polyalkylsiloxane, polyether-modified siloxane, polyester-modified hydroxyl group-containing polyalkylsiloxane, polyether-modified polydimethylsiloxane having an alkyl group, modified polyether, and silicon-modified acrylic. ..
 前記帯電防止剤としては、例えば、グリセリン脂肪酸エステルモノグリセライド、グリセリン脂肪酸エステル有機酸モノグリセライド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、陽イオン性界面活性剤、陰イオン性界面活性剤などが挙げられる。 Examples of the antistatic agent include glycerin fatty acid ester monoglyceride, glycerin fatty acid ester organic acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester, cationic surfactant, and anionic surfactant.
 前記界面活性剤および前記撥水撥油剤としては、例えば、含フッ素基・親油性基含有オリゴマー、含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマーなどのフッ素を含有した界面活性剤および撥水撥油剤が挙げられる。 Examples of the surfactant and the water- and oil-repellent agent include fluorine-containing surfactants such as fluorine-containing group / lipophilic group-containing oligomers, fluorine-containing groups / hydrophilic groups, lipophilic groups, and UV-reactive group-containing oligomers. Activators and water repellents and oil repellents can be mentioned.
 前記無機粒子としては、例えば、シリカ粒子、アルミナ粒子、ジルコニア粒子、シリコン粒子銀粒子、ガラス粒子などが挙げられる。 Examples of the inorganic particles include silica particles, alumina particles, zirconia particles, silicon particles, silver particles, and glass particles.
 前記有機粒子としては、例えば、アクリル粒子、シリコン粒子などが挙げられる。 Examples of the organic particles include acrylic particles and silicon particles.
 ハードコート層は、表面改質剤を1種類または2種類以上含んでいてよい。 The hard coat layer may contain one type or two or more types of surface modifiers.
 [光重合開始剤]
 光重合開始剤としては、単官能光重合開始剤が挙げられる。具体的には、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン[ダロキュアー2959:メルク社製];α-ヒドロキシ-α,α'-ジメチルアセトフェノン[ダロキュアー1173:メルク社製];メトキシアセトフェノン、2,2'-ジメトキシ-2-フェニルアセトフェノン[イルガキュア-651]、1-ヒドロキシ-シクロヘキシルフェニルケトンなどのアセトフェノン系開始剤;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾインエーテル系開始剤;その他、ハロゲン化ケトン、アシルホスフィノキシド、アシルホスフォナートなどを例示することができる。これらの光重合開始剤は単独で用いても、2種以上を組み合わせて用いてもよい。
[Photopolymerization initiator]
Examples of the photopolymerization initiator include a monofunctional photopolymerization initiator. Specifically, 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone [Darocure 2959: manufactured by Merck]; α-hydroxy-α, α'-dimethylacetophenone [Darocure 1173: Merck] Manufacture]; Acetphenone-based initiators such as methoxyacetophenone, 2,2'-dimethoxy-2-phenylacetophenone [Irgacure-651], 1-hydroxy-cyclohexylphenylketone; benzoin ether-based initiators such as benzoin ethyl ether and benzoin isopropyl ether. Agents; Other examples include ketone halides, acylphosphinoxides, acylphosphonates and the like. These photopolymerization initiators may be used alone or in combination of two or more.
 [UV吸収剤]
 UV吸収剤としては、例えばヒドロキシフェニルトリアジン系やベンゾトリアゾール系、ベンゴフェノン系が挙げられる。UV吸収剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
[UV absorber]
Examples of the UV absorber include hydroxyphenyltriazine-based, benzotriazole-based, and bengophenone-based. The UV absorber may be used alone or in combination of two or more.
 [ハードコート層の構成]
 ハードコート層の膜厚としては、1~40μmであることが好ましく、2~10μmであることがより好ましい。ハードコート層の膜厚が1μm以上であると、十分な硬度を得ることができることから好ましい。一方、ハードコート層の膜厚が40μm以下であると、曲げ加工時のクラックの発生を抑制することができることから好ましい。なお、ハードコート層の膜厚は、断面を顕微鏡等で観察し、塗膜界面から表面までを実測することにより測定可能である。
[Structure of hard coat layer]
The film thickness of the hard coat layer is preferably 1 to 40 μm, more preferably 2 to 10 μm. When the film thickness of the hard coat layer is 1 μm or more, sufficient hardness can be obtained, which is preferable. On the other hand, when the film thickness of the hard coat layer is 40 μm or less, the occurrence of cracks during bending can be suppressed, which is preferable. The film thickness of the hard coat layer can be measured by observing the cross section with a microscope or the like and actually measuring the area from the coating film interface to the surface.
 ハードコート層表面の鉛筆硬度は、HB以上であることが好ましく、H以上であることがより好ましく、2H以上であることがさらに好ましく、2H~3Hであることが特に好ましい。なお、ハードコート層の鉛筆硬度は、JIS K 5600-5-4:1999に準拠した鉛筆ひっかき硬度試験にて評価した結果である。具体的には、ハードコート層の表面に対して角度45度、荷重750gで次第に硬度を増して鉛筆を押し付け、きず跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価した。 The pencil hardness on the surface of the hard coat layer is preferably HB or higher, more preferably H or higher, further preferably 2H or higher, and particularly preferably 2H to 3H. The pencil hardness of the hard coat layer is the result of evaluation by a pencil scratch hardness test based on JIS K 5600-5-4: 1999. Specifically, the hardness was gradually increased with respect to the surface of the hard coat layer at an angle of 45 degrees and a load of 750 g, and the pencil was pressed against the surface, and the hardness of the hardest pencil that did not cause scratches was evaluated as the pencil hardness.
 ハードコート層は凹凸形状を有することにより、防眩性および触り心地に優れる防眩性積層体を得ることができる。具体的には、ハードコート層は、算術平均粗さ(Ra)、最大山高さ(Rp)、最大谷深さ(Rv)、およびスキューネス(Rsk)が、下記式(1)~(3)を満たす。なお、本明細書において、算術平均粗さ(Ra)、最大山高さ(Rp)、最大谷深さ(Rv)、およびスキューネス(Rsk)は、JIS B0601 1994 カットオフ0.8によって測定される。 Since the hard coat layer has an uneven shape, it is possible to obtain an antiglare laminate having excellent antiglare properties and touch comfort. Specifically, the hard coat layer has the following equations (1) to (3) for the arithmetic mean roughness (Ra), maximum mountain height (Rp), maximum valley depth (Rv), and skewness (Rsk). Fulfill. In the present specification, the arithmetic mean roughness (Ra), the maximum peak height (Rp), the maximum valley depth (Rv), and the skewness (Rsk) are measured by JIS B0601 1994 cutoff 0.8.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 前記式(1)に関し、算術平均粗さ(Ra)は防眩性の指標となる。Raが0.03以下であると、光散乱が不足して防眩性が不十分となる。一方、Raが0.10以上であると、光散乱が過度になることで白色化し、質感も悪くなる。式(1)は0.035<Ra<0.095を満たすことがより好ましく、0.040<Ra<0.92を満たすことがさらに好ましい。 Regarding the above formula (1), the arithmetic mean roughness (Ra) is an index of antiglare. When Ra is 0.03 or less, light scattering is insufficient and antiglare is insufficient. On the other hand, when Ra is 0.10 or more, light scattering becomes excessive and whitening occurs, resulting in poor texture. The formula (1) more preferably satisfies 0.035 <Ra <0.095, and further preferably 0.040 <Ra <0.92.
 前記式(2)に関し、Rp/Rvは、ハードコート層の凹凸形状が、山の高さよりも谷が深いことを示し、防眩性と指滑り性のバランスを保つ指標となる。Rp/Rvが0.15であると、防眩性が低下する。他方、Rp/Rvが0.30以上であると、指滑り性が悪化する。式(2)は0.16<Rp/Rv<0.29を満たすことがより好ましく、0.17<Rp/Rv<0.28を満たすことがさらに好ましい。 Regarding the above formula (2), Rp / Rv indicates that the uneven shape of the hard coat layer has a deeper valley than the height of the mountain, and is an index for maintaining a balance between antiglare and finger slipperiness. When Rp / Rv is 0.15, the antiglare property is lowered. On the other hand, when Rp / Rv is 0.30 or more, the finger slipperiness deteriorates. The formula (2) more preferably satisfies 0.16 <Rp / Rv <0.29, and further preferably 0.17 <Rp / Rv <0.28.
 前記式(3)に関し、スキューネス(Rsk)は、山部分と谷部分の対称性を表す指標である。なお、スキューネス(Rsk)がマイナスの値になる場合、谷部分が多いことを示す。スキューネス(Rsk)が式(3)の範囲にあることにより、凹凸形状が山部分より谷部分が多くなり、防眩性と指滑り性のバランスを保つことができる。式(3)は―4.8<Rsk<-2.5を満たすことがより好ましい。 Regarding the above equation (3), skewness (Rsk) is an index showing the symmetry of the peak portion and the valley portion. When the skewness (Rsk) becomes a negative value, it indicates that there are many valleys. Since the skewness (Rsk) is within the range of the equation (3), the uneven shape has more valleys than the peaks, and the balance between antiglare and finger slipperiness can be maintained. It is more preferable that the formula (3) satisfies −4.8 <Rsk <−2.5.
 また、ハードコート層は、接触子として触覚接触子を使用し、荷重50g、走査速度10mm/秒、走査距離90mmで測定された動摩擦係数(μk)が下記式(4)を満たす。なお、通常使用されるフェルトや針状の接触子とは異なり、本測定方法で使用する触覚接触子は人の指を模した接触子であるため、指滑り性を定量的に評価することができる。なお、前記動摩擦係数(μK)は、具体的には実施例に記載の方法で測定する。 Further, the hard coat layer uses a tactile contact as a contact, and the dynamic friction coefficient (μk) measured at a load of 50 g, a scanning speed of 10 mm / sec, and a scanning distance of 90 mm satisfies the following formula (4). Unlike the felt and needle-shaped contacts that are normally used, the tactile contacts used in this measurement method are contacts that imitate human fingers, so it is possible to quantitatively evaluate finger slipperiness. can. The dynamic friction coefficient (μK) is specifically measured by the method described in Examples.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 前記式(4)に関し、動摩擦係数(μk)は指滑り性の指標である。動摩擦係数(μk)が式(4)の範囲にあることにより、適度な指滑り性を得ることができる。 Regarding the above equation (4), the coefficient of dynamic friction (μk) is an index of finger slipperiness. When the coefficient of kinetic friction (μk) is in the range of the equation (4), an appropriate finger slipperiness can be obtained.
 ハードコート層が上記式(1)~(3)を満たすことにより、主に防眩性に優れた凹凸形状とすることができる。また、ハードコート層が上記式(4)を満たすことにより主に優れた指滑り性とすることができる。その結果、防眩性および触り心地に優れる防眩性積層体を得ることができる。 By satisfying the above formulas (1) to (3), the hard coat layer can be formed into an uneven shape mainly having excellent antiglare properties. Further, when the hard coat layer satisfies the above formula (4), it is possible to obtain mainly excellent finger slipperiness. As a result, it is possible to obtain an antiglare laminate having excellent antiglare properties and touch comfort.
 一実施形態において、ハードコート層の波長550nmにおける正反射光を含む反射率(SCI550)および正反射光を除いた反射率(SCE550)が下記式(5)を満たすことが好ましい。なお、本明細書において、正反射光を含む反射率(SCI550)および正反射光を除いた反射率(SCE550)は分光色彩計SD7000(日本電色製)を用いて測定される。なお、裏面を黒スプレーにて黒色処理することにより、裏面反射を抑制することができ、表面の反射のみを測定することが可能になる。 In one embodiment, it is preferable that the reflectance (SCI 550 ) including the specularly reflected light and the reflectance (SCE 550 ) excluding the specularly reflected light of the hard coat layer satisfy the following formula (5). In the present specification, the reflectance including the positively reflected light (SCI 550 ) and the reflectance excluding the normally reflected light (SCE 550 ) are measured using a spectrocolorimeter SD7000 (manufactured by Nippon Denshoku). By treating the back surface with a black spray to blacken the back surface, it is possible to suppress the reflection on the back surface and measure only the reflection on the front surface.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 前記式(5)に関し、SCE550/SCI550は映り込み防止性能の指標である。SCE550/SCI550が0.25超であると、好適に光を散乱させることができ防眩性が高くなることから好ましい。一方、SCE550/SCI550が0.60未満であると、光散乱が過度にならず白色化が防止でき、好適な質感が得られることから好ましい。 Regarding the above formula (5), SCE 550 / SCI 550 is an index of anti-reflection performance. When SCE 550 / SCI 550 is more than 0.25, light can be preferably scattered and antiglare property is enhanced, which is preferable. On the other hand, when SCE 550 / SCI 550 is less than 0.60, light scattering does not become excessive, whitening can be prevented, and a suitable texture can be obtained, which is preferable.
 [ハードコート層の形成方法]
 ハードコート層の形成方法は特に限定されないが、例えば、ハードコート層の下に位置する層(例えば高硬度樹脂層)上にハードコート液を塗布した後、光重合させることにより形成することができる。
[Method of forming hard coat layer]
The method for forming the hard coat layer is not particularly limited, but for example, it can be formed by applying a hard coat liquid on a layer located below the hard coat layer (for example, a high hardness resin layer) and then photopolymerizing the hard coat layer. ..
 ハードコート液(重合性組成物、反応組成物)を塗布する方法は特に限定されず、既知の方法を用いることができる。例えば、スピンコート法、ディップ法、スプレー法、スライドコート法、バーコート法、ロールコート法、グラビアコート法、メニスカスコート法、フレキソ印刷法、スクリーン印刷法、ビートコート法、捌け法などが挙げられる。 The method of applying the hard coat liquid (polymerizable composition, reaction composition) is not particularly limited, and a known method can be used. For example, spin coating method, dip method, spray method, slide coating method, bar coating method, roll coating method, gravure coating method, meniscus coating method, flexographic printing method, screen printing method, beat coating method, handling method and the like can be mentioned. ..
 光重合における光照射に用いられるランプとしては、光波長420nm以下に発光分布を有するものが用いられる。その例としては低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが挙げられる。この中でも、高圧水銀灯またはメタルハライドランプは開始剤の活性波長領域の光を効率よく発光し、得られる高分子の粘弾性的性質を架橋により低下させるような短波長の光や、反応組成物を加熱蒸発させるような長波長の光を多く発光しないために好ましい。 As the lamp used for light irradiation in photopolymerization, a lamp having a light emission distribution with a light wavelength of 420 nm or less is used. Examples thereof include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps. Among these, high-pressure mercury lamps or metal halide lamps efficiently emit light in the active wavelength region of the initiator, and heat short-wavelength light or reaction compositions that reduce the viscoelastic properties of the obtained polymer by cross-linking. This is preferable because it does not emit a large amount of long-wavelength light that causes evaporation.
 上記ランプの照射強度は、得られるポリマーの重合度を左右する因子であり、目的製品の性能毎に適宜制御される。通常のアセトフェノン基を有する開裂型の開始剤を配合した場合、照度は0.1~300mW/cmの範囲が好ましい。特に、メタルハライドランプを用いて、照度を10~40mW/cmとすることが好ましい。 The irradiation intensity of the lamp is a factor that affects the degree of polymerization of the obtained polymer, and is appropriately controlled for each performance of the target product. When a cleavage-type initiator having a normal acetophenone group is blended, the illuminance is preferably in the range of 0.1 to 300 mW / cm 2. In particular, it is preferable to use a metal halide lamp and set the illuminance to 10 to 40 mW / cm 2.
 光重合反応は、空気中の酸素または反応性組成物中に溶解する酸素により阻害される。そのため、光照射は酸素による反応阻害を消去し得る手法を用いて実施することが望ましい。そのような手法の1つとして、反応性組成物をポリエチレンテレフタレートやテフロン製のフィルムによって覆って酸素との接触を断ち、フィルムを通して光を反応性組成物へ照射する方法がある。また、窒素ガスや炭酸ガスのような不活性ガスにより酸素を置換したイナート雰囲気下で、光透過性の窓を通して組成物に光を照射してもよい。 The photopolymerization reaction is inhibited by oxygen in the air or oxygen dissolved in the reactive composition. Therefore, it is desirable to carry out light irradiation using a method that can eliminate the reaction inhibition due to oxygen. One such method is to cover the reactive composition with a film made of polyethylene terephthalate or Teflon to cut off contact with oxygen, and irradiate the reactive composition with light through the film. Further, the composition may be irradiated with light through a light-transmitting window in an inert atmosphere in which oxygen is replaced with an inert gas such as nitrogen gas or carbon dioxide gas.
 光照射をイナート雰囲気下で行う場合、その雰囲気酸素濃度を低レベルに保つために、常に一定量の不活性ガスが導入される。この不活性ガスの導入により、反応性組成物表面に気流が発生し、モノマー蒸発が起こる。モノマー蒸発のレベルを抑制するためには、不活性ガスの気流速度は、不活性ガス雰囲気下を移動するハードコート液が塗布された積層体に対する相対速度として1m/sec以下であることが好ましく、0.1m/sec以下であることがより好ましい。気流速度を上記範囲にすることにより、気流によるモノマー蒸発は実質的に抑えられる。 When light irradiation is performed in an inert atmosphere, a certain amount of inert gas is always introduced in order to keep the atmospheric oxygen concentration at a low level. Due to the introduction of this inert gas, an air flow is generated on the surface of the reactive composition, and monomer evaporation occurs. In order to suppress the level of monomer evaporation, the air velocity of the inert gas is preferably 1 m / sec or less as a relative velocity with respect to the laminate coated with the hard coat liquid moving under the atmosphere of the inert gas. It is more preferably 0.1 m / sec or less. By setting the airflow velocity within the above range, monomer evaporation due to the airflow is substantially suppressed.
 ハードコート層の密着性を向上させる目的で、塗布面に前処理を行うことがある。処理例として、サンドブラスト法、溶剤処理法、コロナ放電処理法、クロム酸処理法、火炎処理法、熱風処理法、オゾン処理法、紫外線処理法、樹脂組成物によるプライマー処理法などの既知の方法が挙げられる。 The coated surface may be pretreated for the purpose of improving the adhesion of the hard coat layer. Known treatment examples include sandblasting, solvent treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet treatment, and primer treatment with a resin composition. Can be mentioned.
 ハードコート層への凹凸の形成方法(防眩処理)としては、特に制限されないが、型を用いる方法が好ましい。例えば、まず高硬度樹脂層と、反応性組成物を塗布して得られた塗膜と、型とをこの順に積層させる。次いで、反応性組成物を光重合し、型を脱型する方法が挙げられる。反応性組成物の光重合体(ハードコート層)は、型との接触面において、型の粗面が反映された形状を有することとなる。すなわち、ハードコート層の防眩処理を、型を用いた転写により行うという方法である。 The method of forming irregularities on the hard coat layer (anti-glare treatment) is not particularly limited, but a method using a mold is preferable. For example, first, the high hardness resin layer, the coating film obtained by applying the reactive composition, and the mold are laminated in this order. Then, a method of photopolymerizing the reactive composition and demolding the mold can be mentioned. The photopolymer (hard coat layer) of the reactive composition has a shape that reflects the rough surface of the mold on the contact surface with the mold. That is, the antiglare treatment of the hard coat layer is performed by transfer using a mold.
 前記型は、UV光を透過するものであれば特に制限はなく、ガラス、透明樹脂等が用いられる。一実施形態において、前記型は、透明フィルムと、粗面を有する透明樹脂とが積層された型が挙げられる。前記透明フィルムとしては、PETフィルムが挙げられる。前記粗面を有する透明樹脂としては、アクリル樹脂等が挙げられる。この際、前記透明樹脂の粗面は、特に制限されず、透明樹脂中に粒子(有機粒子、無機粒子等)を添加して形成されたものであってもよいし、透明樹脂をエッチングして形成したものであってもよいし、透明樹脂を印刷し硬化して形成したものであってもよい。粗面の形状は特に制限されないが、液晶パネル等の用途に用いる観点から、柄目であることが好ましい。使用する型の種類(材料、表面のヘーズ、厚さ、形状等)、添加する粒子の添加量等を制御することで、ハードコート層の表面(凹凸形状)を制御することができる。これにより、上述の式(1)~(4)を満たすハードコート層を形成することができる。また、好ましくはさらに上述の式(5)を満たすハードコート層を形成することができる。 The mold is not particularly limited as long as it transmits UV light, and glass, transparent resin, or the like is used. In one embodiment, the mold includes a mold in which a transparent film and a transparent resin having a rough surface are laminated. Examples of the transparent film include a PET film. Examples of the transparent resin having the rough surface include acrylic resin and the like. At this time, the rough surface of the transparent resin is not particularly limited, and may be formed by adding particles (organic particles, inorganic particles, etc.) to the transparent resin, or by etching the transparent resin. It may be formed, or it may be formed by printing and curing a transparent resin. The shape of the rough surface is not particularly limited, but it is preferably a pattern from the viewpoint of being used for applications such as liquid crystal panels. The surface (concavo-convex shape) of the hard coat layer can be controlled by controlling the type of mold used (material, surface haze, thickness, shape, etc.), the amount of particles to be added, and the like. As a result, a hard coat layer satisfying the above formulas (1) to (4) can be formed. Further, preferably, a hard coat layer satisfying the above formula (5) can be formed.
 上述のハードコート層の形成方法のうち、柄目付きPETフィルムを圧着して凹凸形状を転写することが好ましい。すなわち、本発明の一実施形態によれば、防眩性積層体の製造方法が提供される。この際、前記製造方法は、ハードコート層の表面が、柄目付きPETフィルムを圧着して凹凸形状を転写する工程を含む。なお、柄目付きPETフィルムとしては、例えば、ユニチカ製エンブレットのPTHやPTHAやPTHZ、ダイセル製低ギラツキAGフィルムのPF11やPF23などを用いることができる。 Among the above-mentioned methods for forming the hard coat layer, it is preferable to press-bond a patterned PET film to transfer the uneven shape. That is, according to one embodiment of the present invention, there is provided a method for producing an antiglare laminate. At this time, the manufacturing method includes a step of pressing the patterned PET film on the surface of the hard coat layer to transfer the uneven shape. As the patterned PET film, for example, Unitika's emblem PTH, PTHA, PTHZ, Daicel's low-glare AG film PF11, PF23, and the like can be used.
 <防眩性積層体の物性>
 一実施形態において、防眩性積層体は、形状安定性が高いことが好ましい。具体的には、温度85℃で相対湿度85%の環境下に120時間保持した後の反りの変化量が350μm以下であることが好ましく、250μm以下であることがより好ましく、175μm以下であることがさらに好ましく、75μm以下であることが特に好ましい。反りの変化量が350μm以下であると、高温高湿環境下であっても好適に使用できることから好ましい。なお、高い形状安定性は、高硬度樹脂層を用いることによって得ることができる。基材層およびハードコート層の間に高硬度樹脂層が介在することで、高温高湿環境であっても防眩性積層体の形状が安定する。なお、基材層およびハードコート層の材料、基材層および高硬度樹脂層間のガラス転移温度(Tg)の差、硬度の差、高硬度樹脂層およびハードコート層間のガラス転移温度(Tg)の差、硬度の差等を適宜変更することによっても形状安定性を制御することができる。
<Physical characteristics of antiglare laminate>
In one embodiment, the antiglare laminate preferably has high shape stability. Specifically, the amount of change in warpage after being held at a temperature of 85 ° C. and a relative humidity of 85% for 120 hours is preferably 350 μm or less, more preferably 250 μm or less, and 175 μm or less. Is more preferable, and 75 μm or less is particularly preferable. When the amount of change in warpage is 350 μm or less, it is preferable because it can be suitably used even in a high temperature and high humidity environment. High shape stability can be obtained by using a high hardness resin layer. By interposing the high hardness resin layer between the base material layer and the hard coat layer, the shape of the antiglare laminate is stable even in a high temperature and high humidity environment. The material of the base material layer and the hard coat layer, the difference in the glass transition temperature (Tg) between the base material layer and the high hardness resin layer, the difference in hardness, and the glass transition temperature (Tg) between the high hardness resin layer and the hard coat layer. The shape stability can also be controlled by appropriately changing the difference, the difference in hardness, and the like.
 <用途>
 上述防眩性積層体は、防眩性および触り心地に優れることから、上述の通り液晶面の保護板または前面板等に使用される。一実施形態おいて、防眩性積層体を含む、車載用表示装置が提供される。また、別の井実施形態において、防眩性積層体を含む、タッチパネル前面保護板が提供される。さらに、別の一実施形態において、OA機器用、携帯電子機器用、またはテレビ用の前面板が提供される。
<Use>
Since the above-mentioned antiglare laminate is excellent in antiglare property and touch feeling, it is used as a protective plate or a front plate of a liquid crystal surface as described above. In one embodiment, an in-vehicle display device including an antiglare laminate is provided. Further, in another well embodiment, a touch panel front surface protective plate including an antiglare laminate is provided. Further, in another embodiment, a front plate for an OA device, a portable electronic device, or a television is provided.
 以下の本発明の実施例を示すが、本発明は実施例の様態に制限されるものではない。 The following examples of the present invention are shown, but the present invention is not limited to the mode of the examples.
 <表面粗さ測定>
 株式会社東京精密製の表面粗さ測定機「SURFCOM 480A」を用いて、凹凸面を有するハードコート層の表面をJIS B0601 1994に準拠して、算術平均粗さ(Ra)、最大山高さ(Rp)、最大谷深さ(Rv)、スキューネス(Rsk)を以下の条件で測定した。
<Surface roughness measurement>
Using the surface roughness measuring machine "SURFCOM 480A" manufactured by Tokyo Seimitsu Co., Ltd., the surface of the hard coat layer having an uneven surface is subjected to arithmetic average roughness (Ra) and maximum mountain height (Rp) in accordance with JIS B0601 1994. ), Maximum valley depth (Rv), and skewness (Rsk) were measured under the following conditions.
 [表面粗さ測定条件]
 カットオフ値:0.8mm
 評価長さ:カットオフ値の5倍長さ
 触針の送り速さ:0.3mm/s
 予備長さ:カットオフ値の2倍
[Surface roughness measurement conditions]
Cut-off value: 0.8 mm
Evaluation length: 5 times the cutoff value Feeding speed of stylus: 0.3 mm / s
Spare length: twice the cutoff value
 <動摩擦係数測定>
 トリニティラボ製静動摩擦測定機「TL201Tt」を用いて、ハードコート層表面の動摩擦係数(μk)を以下の条件で測定した。
<Measurement of dynamic friction coefficient>
The coefficient of dynamic friction (μk) on the surface of the hard coat layer was measured under the following conditions using a static friction measuring machine "TL201Tt" manufactured by Trinity Lab.
 [動摩擦係数測定条件]
 接触子:触覚接触子
 荷重:50g
 走査速度:10mm/s
 走査距離:90mm
[Dynamic friction coefficient measurement conditions]
Contact: Tactile contact Load: 50 g
Scanning speed: 10 mm / s
Scanning distance: 90 mm
 <反射率測定>
 日本電色製分光色彩計「SD7000」を用いて、ハードコート層の正反射光を含む反射率(SCI)と正反射光を除いた反射率(SCE)を以下の条件で測定した。それぞれ波長550nmの反射率をSCI550、SCE550とした。裏面は、裏面の反射を抑制するために黒色カラースプレーで黒色処理を実施した。
<Reflectance measurement>
Using a spectrocolorimeter "SD7000" manufactured by Nippon Denshoku Co., Ltd., the reflectance (SCI) including the positively reflected light and the reflectance (SCE) excluding the positively reflected light of the hard coat layer were measured under the following conditions. The reflectances at a wavelength of 550 nm were defined as SCI 550 and SCE 550 , respectively. The back surface was treated black with a black color spray to suppress reflection on the back surface.
 [反射率測定条件]
 光源・視野:D65/2°
 測定径:φ8mm(MAV)
 照明、受光条件:di 8°(SCI)、de 8°(SCE)
[Reflectance measurement conditions]
Light source / field of view: D65 / 2 °
Measurement diameter: φ8 mm (MAV)
Lighting and light receiving conditions: di 8 ° (SCI), de 8 ° (SCE)
 <SW硬度>
 防眩性積層体の凹凸形状を有するハードコート層に対し、日本スチールウール製のスチールウール♯0000を使用して、100g/cm荷重で15往復した際の傷つき具合を目視観察で10段階評価した。RANK1~RANK10で記載した。なお、測定は2度行い、異なる結果となる場合にはその範囲を測定結果とした。
<SW hardness>
For the hard coat layer having the uneven shape of the antiglare laminate, using steel wool # 0000 made by Nippon Steel Wool, the degree of damage when 15 reciprocations with a load of 100 g / cm 2 are visually evaluated on a 10-point scale. bottom. It is described by RANK1 to RANK10. The measurement was performed twice, and if different results were obtained, the range was used as the measurement result.
 RANK1:傷なし(無機ガラスと同等)
 RANK2:傷1~5本
 RANK3:傷6~10本
 RANK4:傷11~15本
 RANK5:傷16~20本
 RANK6:傷21~25本
 RANK7:傷26~30本
 RANK8:傷31~40本
 RANK9:傷41本以上(ポリメタクリル酸と同等)
 RANK10:傷41本以上(ポリカーボネートと同等)
RANK1: No scratches (equivalent to inorganic glass)
RANK2: 1 to 5 scratches RANK3: 6 to 10 scratches RANK4: 11 to 15 scratches RANK5: 16 to 20 scratches RANK6: 21 to 25 scratches RANK7: 26 to 30 scratches RANK8: 31 to 40 scratches RANK9 : 41 or more scratches (equivalent to polymethacrylic acid)
RANK10: 41 or more scratches (equivalent to polycarbonate)
 <形状安定性>
 試験片(防眩性積層体)を100mm×60mmに切り出した。切り出した試験片を2点支持型のホルダーにセットして温度23%、相対湿度50%に設定した環境試験機に24時間以上投入して状態調整した後、反りを測定した(処理前)。次に試験片をホルダーにセットして温度85℃、相対湿度85%に設定した環境試験機の中に投入し、その状態で120時間保持した。更に温度23%、相対湿度50%に設定した環境試験機の中にホルダーごと移動し、その状態で4時間保持後に再度反りを測定した(処理後)。反りの測定は、電動ステージ具備の3次元形状測定機(KEYENCE製KS-1000)を使用し、取り出した試験片を上に凸の状態で水平に設置し、1ミリ間隔でスキャンし中央部の盛り上がりをそりとして計測した。処理前後の反り量の差の絶対値、すなわち
     |(処理後の反り量)-(処理前の反り量)|
を形状安定性として評価した。
<Shape stability>
The test piece (antiglare laminate) was cut out to a size of 100 mm × 60 mm. The cut out test piece was set in a two-point support type holder and put into an environmental tester set at a temperature of 23% and a relative humidity of 50% for 24 hours or more to adjust the state, and then the warp was measured (before processing). Next, the test piece was set in a holder and placed in an environmental tester set at a temperature of 85 ° C. and a relative humidity of 85%, and held in that state for 120 hours. Further, the holder was moved into an environmental tester set at a temperature of 23% and a relative humidity of 50%, and the warp was measured again after holding for 4 hours in that state (after treatment). To measure the warp, use a three-dimensional shape measuring machine equipped with an electric stage (KS-1000 manufactured by KEYENCE), place the taken-out test piece horizontally in a convex state upward, scan at 1 mm intervals, and scan the central part. The excitement was measured as a sled. Absolute value of the difference in the amount of warpage before and after treatment, that is, | (warp amount after treatment)-(warp amount before treatment) |
Was evaluated as shape stability.
 [実施例1]
 <積層体>
 軸径35mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて合成樹脂積層体を成形した。軸径35mmの単軸押出機に高硬度樹脂(B1)として三菱ガス化学製Optimas7500を連続的に導入し、シリンダー温度240℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製、商品名:ユーピロンS-1000)を連続的に導入し、シリンダー温度280℃、吐出速度50.0kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、温度270℃として高硬度樹脂(B1)とポリカーボネート樹脂を導入し積層した。その先に連結された温度270℃のTダイでシート状に押し出し、上流側から温度120℃、130℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、高硬度樹脂(B1)層(高硬度樹脂層)とポリカーボネート樹脂層(基材層)との積層体を得た。得られた積層体の厚みは1.0mm、高硬度樹脂(B1)層の厚みは中央付近で60μmであった。
[Example 1]
<Laminated body>
Synthetic resin using a single-screw extruder with a shaft diameter of 35 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all extruders, and a multi-layer extruder having a T-die connected to the feed block. The laminate was molded. Optimas 7500 manufactured by Mitsubishi Gas Chemical Company was continuously introduced as a high-hardness resin (B1) into a single-screw extruder having a shaft diameter of 35 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 2.6 kg / h. In addition, polycarbonate resin (manufactured by Mitsubishi Engineering Plastics, trade name: Iupiron S-1000) is continuously introduced into a single-screw extruder with a shaft diameter of 65 mm, and extruded at a cylinder temperature of 280 ° C. and a discharge rate of 50.0 kg / h. rice field. The feed block connected to all extruders was equipped with two types and two layers of distribution pins, and a high hardness resin (B1) and a polycarbonate resin were introduced and laminated at a temperature of 270 ° C. A T-die with a temperature of 270 ° C connected to the tip extrudes it into a sheet, and three mirror-finishing rolls with temperatures of 120 ° C, 130 ° C, and 190 ° C are used to cool the resin while transferring the mirror surface. A laminate of the layer (B1) (high hardness resin layer) and the polycarbonate resin layer (base material layer) was obtained. The thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness resin (B1) layer was 60 μm near the center.
 なお、高硬度樹脂(B1)として用いた三菱ガス化学製Optimas7500は、前記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、前記一般式(2)で表される脂肪族ビニル構成単位(b)とを含む共重合樹脂である。この際、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記共重合樹脂の全構成単位の99モル%であり、前記(メタ)アクリル酸エステル構成単位(a)の割合が前記共重合樹脂の全構成単位の75モル%である。 The Optimas 7500 manufactured by Mitsubishi Gas Chemical Company, which was used as the high hardness resin (B1), is represented by the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) and the general formula (2). It is a copolymer resin containing the aliphatic vinyl constituent unit (b). At this time, the total ratio of the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) is 99 mol% of the total structural units of the copolymer resin, and the (meth) acrylic is The ratio of the acid ester constituent unit (a) is 75 mol% of the total constituent units of the copolymerized resin.
 <光硬化性樹脂組成物(Y-1)>
 U6HA(6官能ウレタンアクリレートオリゴマー、新中村化学工業(株)製)60質量%、#260(1,9-ノナンジオールジアクリレート、大阪有機化学工業(株)製)35質量%、フッ素系レべリング剤5質量%の混合物を100質量部として、光開始剤I-184(BASF(株)製〔化合物名:1-ヒドロキシ-シクロヘキシルフェニルケトン〕)を3質量部添加して、光硬化性樹脂組成物(Y-1)を得た。
<Photocurable resin composition (Y-1)>
U6HA (hexafunctional urethane acrylate oligomer, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 60% by mass, # 260 (1,9-nonanediol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.) 35% by mass, fluorine-based level A photocurable resin by adding 3 parts by mass of a photoinitiator I-184 (manufactured by BASF Co., Ltd. [Compound name: 1-hydroxy-cyclohexylphenyl ketone]) with 100 parts by mass of a mixture of 5% by mass of a ring agent. The composition (Y-1) was obtained.
 <柄目付きPETフィルム(Z-1)>
 MEK35質量部に対し、アクリル系紫外線硬化型樹脂(固形分100% 商品名:ライトアクリレートDPE-6A、共栄社化学株式会社製)40質量部、シリカ分散液(固形分18%、Z-AGD-6、平均粒子径2μm、アイカ工業社製)25質量部、および光開始剤(商品名Omnirad184、IGM Resins製)を外添で3質量部混合し攪拌することでコーティング液(i)を作製した。次に、コーティング液(i)をPET(ポリエチレンテレフタレート)フィルムにドライ膜厚2.5μmとなるように塗布し、80℃で2分間乾燥後、光源距離12cm、出力80W/cmの高圧水銀灯を備えたコンベアでラインスピード1.5m/分の条件で紫外線を照射し硬化させることで柄目付きPETフィルム(Z-1)を作製した。
<PET film with pattern (Z-1)>
Acrylic UV curable resin (100% solid content, trade name: Light acrylate DPE-6A, manufactured by Kyoeisha Chemical Co., Ltd.) 40 parts by mass, silica dispersion (18% solid content, Z-AGD-6) with respect to 35 parts by mass of MEK. , 25 parts by mass of an average particle size of 2 μm, manufactured by Aika Kogyo Co., Ltd., and 3 parts by mass of a photoinitiator (trade name: Omnirad 184, manufactured by IGM Resins) were mixed and stirred to prepare a coating liquid (i). Next, the coating liquid (i) is applied to a PET (polyethylene terephthalate) film so as to have a dry film thickness of 2.5 μm, dried at 80 ° C. for 2 minutes, and then equipped with a high-pressure mercury lamp having a light source distance of 12 cm and an output of 80 W / cm. A patterned PET film (Z-1) was produced by irradiating ultraviolet rays on a conveyor at a line speed of 1.5 m / min and curing the film.
 高硬度樹脂(B1)層(高硬度樹脂層)とポリカーボネート樹脂層(基材層)との積層体の高硬度樹脂(B1)層上に、光硬化樹脂組成物(Y-1)を硬化後の塗膜厚さが5~10μmとなるようにバーコーターを用いて塗布し、柄目付きPETフィルム(Z-1)の柄面が塗布液と接触するように覆って圧着した。その後、光源距離12cm、メタルハライドランプ(20mW/cm)を30秒間照射し硬化させて、柄目付きPETフィルムを剥離し、高硬度樹脂層(B1)上に凹凸のあるハードコート層を備えた防眩性積層体を得た。 After curing the photocurable resin composition (Y-1) on the high hardness resin (B1) layer of the laminate of the high hardness resin (B1) layer (high hardness resin layer) and the polycarbonate resin layer (base material layer). Was applied using a bar coater so that the thickness of the coating film was 5 to 10 μm, and the patterned surface of the patterned PET film (Z-1) was covered and pressure-bonded so as to come into contact with the coating liquid. After that, a metal halide lamp (20 mW / cm) with a light source distance of 12 cm was irradiated for 30 seconds to cure, the patterned PET film was peeled off, and an antiglare antiglare provided with an uneven hard coat layer on the high hardness resin layer (B1). A sex laminate was obtained.
 [実施例2]
 高硬度樹脂(B1)に代えて、以下の高硬度樹脂(B2)を用いたことを除いては、実施例1と同様の方法で防眩性積層体を製造した。
[Example 2]
An antiglare laminate was produced in the same manner as in Example 1 except that the following high hardness resin (B2) was used instead of the high hardness resin (B1).
 高硬度樹脂(B2)は以下のように調製した。すなわち、高硬度樹脂(B1)を40質量%およびスチレン-不飽和ジカルボン酸系共重合体(C)としてXIBOND140を60質量%仕込み、ブレンダーで30分混合した。次いで、スクリュー径26mmの押出機(東芝機械製、TEM-26SS、L/D≒40)を用い、シリンダー温度230℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化することで、樹脂組成物(B2)を得た。ペレット化は安定して行われた。 The high hardness resin (B2) was prepared as follows. That is, 40% by mass of the high hardness resin (B1) and 60% by mass of XIBOND140 as a styrene-unsaturated dicarboxylic acid-based copolymer (C) were charged and mixed with a blender for 30 minutes. Next, using an extruder with a screw diameter of 26 mm (manufactured by Toshiba Machine Co., Ltd., TEM-26SS, L / D≈40), melt-kneading is performed at a cylinder temperature of 230 ° C., extruded into strands, and pelletized with a pelletizer. A resin composition (B2) was obtained. Pelletization was stable.
 [実施例3]
 高硬度樹脂(B1)に代えて、以下の高硬度樹脂(B3)を用いたことを除いては、実施例1と同様の方法で防眩性積層体を製造した。
[Example 3]
An antiglare laminate was produced in the same manner as in Example 1 except that the following high hardness resin (B3) was used instead of the high hardness resin (B1).
 高硬度樹脂(B3)は以下のように調製した。すなわち、スチレン-不飽和ジカルボン酸系共重合体(E)としてR-100を75質量%およびビニル系単量体を含有する樹脂(D)としてメチルメタクリレート樹脂 パラペットHR-L25質量%を仕込み、ブレンダーで30分混合した。次いで、スクリュー径26mmの押出機(東芝機械製、TEM-26SS、L/D≒40)を用い、シリンダー温度230℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化することで、高硬度樹脂(B3)を得た。ペレット化は安定して行われた。 The high hardness resin (B3) was prepared as follows. That is, 75% by mass of R-100 as the styrene-unsaturated dicarboxylic acid-based copolymer (E) and 25% by mass of the methyl methacrylate resin Parapet HR-L as the resin (D) containing the vinyl-based monomer were charged and blended. Was mixed for 30 minutes. Next, using an extruder with a screw diameter of 26 mm (manufactured by Toshiba Machine Co., Ltd., TEM-26SS, L / D≈40), melt-kneading is performed at a cylinder temperature of 230 ° C., extruded into strands, and pelletized with a pelletizer. A high hardness resin (B3) was obtained. Pelletization was stable.
 [実施例4]
 高硬度樹脂(B1)に代えて、以下の高硬度樹脂(B4)を用いたことを除いては、実施例1と同様の方法で防眩性積層体を製造した。
[Example 4]
An antiglare laminate was produced in the same manner as in Example 1 except that the following high hardness resin (B4) was used instead of the high hardness resin (B1).
 高硬度樹脂(B4)は以下のように調製した。すなわち、スチレン-不飽和ジカルボン酸系共重合体(E)として、メタクリル酸メチル構成単位21質量%、スチレン構成単位64質量%、および無水マレイン酸構成単位15質量%の共重合体(レジスファイR100(デンカ製))75質量%、並びに樹脂共重合体(G)として、スチレン構成単位7質量%、メタクリル酸メチル構成単位86質量%、およびN-フェニルマレイミド構成単位7質量%の共重合体デルペットPM-120N(旭化成製)25質量%とを仕込みブレンダーで30分間混合した。次いで、スクリュー径26mmの押出機(東芝機械製、TEM-26SS、L/D≒40)を用い、シリンダー温度230℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化することで、樹脂共重合体(G)とスチレン-不飽和ジカルボン酸系共重合体(E)のアロイである高硬度樹脂(B4)を得た。ペレット化は安定して行われた。 The high hardness resin (B4) was prepared as follows. That is, as the styrene-unsaturated dicarboxylic acid-based copolymer (E), a copolymer of 21% by mass of methyl methacrylate constituent unit, 64% by mass of styrene constituent unit, and 15% by mass of maleic anhydride constituent unit (Registfy R100 (Registfy R100 (Registry R100) Denka)) 75% by mass, and as the resin copolymer (G), 7% by mass of the styrene constituent unit, 86% by mass of the methyl methacrylate constituent unit, and 7% by mass of the N-phenylmaleimide constituent unit, the copolymer Delpet. PM-120N (manufactured by Asahi Kasei) and 25% by mass were charged and mixed with a blender for 30 minutes. Next, using an extruder with a screw diameter of 26 mm (manufactured by Toshiba Machine Co., Ltd., TEM-26SS, L / D≈40), melt-kneading is performed at a cylinder temperature of 230 ° C., and the mixture is extruded into strands and pelletized with a pelletizer. A high-hardness resin (B4), which is an alloy of the resin copolymer (G) and the styrene-unsaturated dicarboxylic acid-based copolymer (E), was obtained. Pelletization was stable.
 [実施例5]
 高硬度樹脂(B1)に代えて、高硬度樹脂(B5)であるユーピロンKH3410UR(ビスフェノールCのポリカーボネート樹脂、三菱エンジニアプラスチックス製)を用い、高硬度樹脂(B5)を導入する軸径35mmの単軸押出機のシリンダー温度を240℃から270℃に変更したことを除いては、実施例1と同様の方法で防眩性積層体を製造した。
[Example 5]
Instead of the high hardness resin (B1), Iupiron KH3410UR (bisphenol C polycarbonate resin, manufactured by Mitsubishi Engineer Plastics), which is a high hardness resin (B5), is used, and a single shaft diameter of 35 mm is used to introduce the high hardness resin (B5). An antiglare laminate was produced in the same manner as in Example 1 except that the cylinder temperature of the shaft extruder was changed from 240 ° C. to 270 ° C.
 [実施例6]
 高硬度樹脂(B1)に代えて、以下の高硬度樹脂(B6)を用いたことを除いては、実施例1と同様の方法で防眩性積層体を製造した。
[Example 6]
An antiglare laminate was produced in the same manner as in Example 1 except that the following high hardness resin (B6) was used instead of the high hardness resin (B1).
 高硬度樹脂(B6)は以下のように調製した。すなわち、スチレン-不飽和ジカルボン酸系共重合体(C)としてXIBOND160を50質量%およびビニル系単量体を含有する樹脂(D)としてメチルメタクリレート樹脂 パラペットHR-L50質量%を仕込み、ブレンダーで30分混合した。次いで、スクリュー径26mmの押出機(東芝機械製、TEM-26SS、L/D≒40)を用い、シリンダー温度230℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化し、高硬度樹脂(B6)を得た。ペレット化は安定して行われた。 The high hardness resin (B6) was prepared as follows. That is, 50% by mass of XIBOND160 as a styrene-unsaturated dicarboxylic acid-based copolymer (C) and 50% by mass of methyl methacrylate resin Parapet HR-L as a resin (D) containing a vinyl-based monomer were charged, and 30% by blender was used. The mixture was mixed for a minute. Next, using an extruder with a screw diameter of 26 mm (manufactured by Toshiba Machine Co., Ltd., TEM-26SS, L / D ≈40), melt kneading was performed at a cylinder temperature of 230 ° C., extruded into strands, pelletized with a pelletizer, and made into a high hardness resin. (B6) was obtained. Pelletization was stable.
 [実施例7]
 柄目付きPETフィルム(Z-1)に代えて、以下の柄目付きPETフィルム(Z-2)を用いたことを除いては、実施例1と同様の方法で防眩性積層体を製造した。
[Example 7]
An antiglare laminate was produced in the same manner as in Example 1 except that the following patterned PET film (Z-2) was used instead of the patterned PET film (Z-1).
 <柄目付きPETフィルム(Z-2)>
 コーティング液(i)に代えて、以下のコーティング液(ii)を用いて柄目付きPETフィルム(Z-2)を作製した。
<PET film with pattern (Z-2)>
Instead of the coating liquid (i), the following coating liquid (ii) was used to prepare a patterned PET film (Z-2).
 前記コーティング液(ii)は、MEK10質量部に対し、アクリル系紫外線硬化型樹脂(固形分100% 商品名:ライトアクリレートDPE-6A共栄社化学株式会社製)40質量部、シリカ分散液(固形分18%、Z-AGD-6、平均粒子径2μm、アイカ工業社製)50質量部、および光開始剤(商品名Omnirad184、IGM Resins製)を外添で3質量部を混合し撹拌して作製した。 The coating liquid (ii) contains 40 parts by mass of an acrylic ultraviolet curable resin (100% solid content, trade name: light acrylate DPE-6A manufactured by Kyoeisha Chemical Co., Ltd.) and a silica dispersion liquid (solid content 18) with respect to 10 parts by mass of MEK. %, Z-AGD-6, average particle size 2 μm, manufactured by Aika Kogyo Co., Ltd.) 50 parts by mass, and photoinitiator (trade name Omnirad 184, manufactured by IGM Resins) were mixed and stirred by 3 parts by mass. ..
 [実施例8]
 柄目付きPETフィルム(Z-1)に代えて、以下の柄目付きPETフィルム(Z-3)を用いたことを除いては、実施例1と同様の方法で防眩性積層体を製造した。
[Example 8]
An antiglare laminate was produced in the same manner as in Example 1 except that the following patterned PET film (Z-3) was used instead of the patterned PET film (Z-1).
 <柄目付きPETフィルム(Z-3)>
 コーティング液(i)に代えて、以下のコーティング液(iii)を用いて柄目付きPETフィルム(Z-2)を作製した。
<PET film with pattern (Z-3)>
Instead of the coating liquid (i), the following coating liquid (iii) was used to prepare a patterned PET film (Z-2).
 前記コーティング液(ii)は、アクリル系紫外線硬化型樹脂(固形分100% 商品名:ライトアクリレートDPE-6A共栄社化学株式会社製)40質量部、シリカ分散液(固形分18%、Z-AGD-6、平均粒子径2μm、アイカ工業社製)60質量部、および光開始剤(商品名Omnirad184、IGM Resins製)を外添で3質量部を混合し撹拌して作製した。 The coating liquid (ii) is an acrylic ultraviolet curable resin (solid content 100%, trade name: light acrylate DPE-6A manufactured by Kyoeisha Chemical Co., Ltd.), 40 parts by mass, and a silica dispersion liquid (solid content 18%, Z-AGD-). 6. 60 parts by mass of an average particle size of 2 μm, manufactured by Aika Kogyo Co., Ltd., and 3 parts by mass of a photoinitiator (trade name: Omnirad 184, manufactured by IGM Resins) were mixed and stirred as an external addition.
 [実施例9]
 高硬度樹脂(B1)に代えて、高硬度樹脂であるメチルメタクリレート樹脂 パラペットHR-L(クラレ製、重量平均分子量:90,000、鉛筆硬度:2H)を用いたことを除いては、実施例1と同様の方法で防眩性積層体を製造した。
[Example 9]
Examples except that a high-hardness resin, methyl methacrylate resin Parapet HR-L (manufactured by Kuraray, weight average molecular weight: 90,000, pencil hardness: 2H) was used instead of the high-hardness resin (B1). An antiglare laminate was produced in the same manner as in 1.
 [比較例1]
 柄目付きPETフィルム(Z-1)に代えて、コスモシャイン(登録商標)A-4100(PETフィルム、厚さ:100μm、ヘイズ:0.9%、東洋紡製)(Z-4)を用いたことを除いては、実施例1と同様の方法で防眩性積層体を製造した。
[Comparative Example 1]
Cosmoshine (registered trademark) A-4100 (PET film, thickness: 100 μm, haze: 0.9%, manufactured by Toyobo) (Z-4) was used instead of the patterned PET film (Z-1). An antiglare laminate was produced in the same manner as in Example 1 except for the above.
 [比較例2]
 柄目付きPETフィルム(Z-1)に代えて、PS-27(PETフィルム、厚さ:100μm、ヘイズ34%、ダイセル製)(Z-5)を用いたことを除いては、実施例1と同様の方法で防眩性積層体を製造した。
[Comparative Example 2]
Example 1 and Example 1 except that PS-27 (PET film, thickness: 100 μm, haze 34%, manufactured by Daicel) (Z-5) was used instead of the patterned PET film (Z-1). An antiglare laminate was produced in the same manner.
 [比較例3]
 ハードコート層を以下のように形成したことを除いては、実施例1と同様の方法で防眩性積層体を製造した。
[Comparative Example 3]
An antiglare laminate was produced in the same manner as in Example 1 except that the hard coat layer was formed as follows.
 すなわち、MEK50質量部に対し、アクリル系紫外線硬化型樹脂50質量部(固形分100%商品:ライトアクリレートDPE-6A 共栄社化学社製)、シリカ微粒子(オクチルシラン処理ヒュームドシリカ、平均一次粒子径1.9μm、商品名:SE6050-SYB アドマテックス株式会社製)、および光開始剤3質量部(商品名 イルガキュア184 豊通ケミプラス社製)を混合し撹拌することで光硬化性組成物(Y-2)を作製した。 That is, with respect to 50 parts by mass of MEK, 50 parts by mass of acrylic ultraviolet curable resin (100% solid content product: light acrylate DPE-6A manufactured by Kyoeisha Chemical Co., Ltd.), silica fine particles (octylsilane-treated fumed silica, average primary particle diameter 1). .9 μm, trade name: SE6050-SYB manufactured by Admatex Co., Ltd., and 3 parts by mass of photoinitiator (trade name: Irgacure 184 manufactured by Toyotsukemi Plus Co., Ltd.) are mixed and stirred to form a photocurable composition (Y-2). ) Was prepared.
 積層体(X-1)の高硬度層上に光硬化性組成物(Y-2)を硬化後の塗膜厚さが2.5μmとなるようにバーコーターを用いて塗布し、80℃で2分間乾燥した。窒素パージをしながら光源距離12cm、メタルハライドランプ(20mW/cm)を30秒間照射し硬化させることで、防眩性積層体を得た。 The photocurable composition (Y-2) was applied onto the high hardness layer of the laminate (X-1) using a bar coater so that the coating thickness after curing was 2.5 μm, and at 80 ° C. It was dried for 2 minutes. An antiglare laminate was obtained by irradiating with a metal halide lamp (20 mW / cm) for 30 seconds at a light source distance of 12 cm and curing while purging nitrogen.
 実施例1~9、比較例1~3で得られた防眩性積層体を下記表1に示す。 Table 1 below shows the antiglare laminates obtained in Examples 1 to 9 and Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 また、実施例1~9、比較例1~3において、算術平均粗さ(Ra)、最大山高さ(Rp)、最大谷深さ(Rv)、Rp/Rv、スキューネス(Rsk)、動摩擦係数(μk)、SCI500、SCE500、SCE550/SCI500、SW硬度、および形状安定性を評価した。得られた結果を下記表2に示す。 Further, in Examples 1 to 9 and Comparative Examples 1 to 3, the arithmetic mean roughness (Ra), the maximum mountain height (Rp), the maximum valley depth (Rv), Rp / Rv, the skewness (Rsk), and the dynamic friction coefficient ( μk), SCI 500 , SCE 500 , SCE 550 / SCI 500 , SW hardness, and shape stability were evaluated. The obtained results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表2の結果からも明らかなように、実施例1~9はRa、Rp/Rv、およびRskが式(1)~(3)を満たし、かつ、μKが式(4)を満たすことから、防眩性および触り心地に優れることが分かる。また、実施例1~9は、SCE500/SCI500が式(5)を満たすことから、防眩性に優れることが確認される。なお、高硬度樹脂(B1)~(B6)を用いた実施例1~8は形状安定性にも優れることが確認された。 As is clear from the results in Table 2, in Examples 1 to 9, Ra, Rp / Rv, and Rsk satisfy the formulas (1) to (3), and μK satisfies the formula (4). It can be seen that it has excellent anti-glare properties and feel. Further, in Examples 1 to 9, it is confirmed that SCE 500 / SCI 500 is excellent in antiglare property because it satisfies the formula (5). It was confirmed that Examples 1 to 8 using the high hardness resins (B1) to (B6) were also excellent in shape stability.
 他方、比較例1は、Rp/RvおよびRskが式(2)および(3)を満たさず、μKが式(4)を満たさないことから、防眩性および触り心地が不十分であった。反射率の観点からも、SCE500/SCI500が式(5)を満たさず防眩性が不十分であったことが確認された。 On the other hand, in Comparative Example 1, since Rp / Rv and Rsk did not satisfy the formulas (2) and (3) and μK did not satisfy the formula (4), the antiglare property and the touch feeling were insufficient. From the viewpoint of reflectance , it was confirmed that SCE 500 / SCI 500 did not satisfy the formula (5) and had insufficient antiglare property.
 また、比較例2は、RaおよびRp/Rvが式(1)および(2)を満たさず、μKが式(4)を満たさないことから、防眩性および触り心地が不十分であった。反射率の観点からも、SCE500/SCI500が式(5)を満たさず防眩性が不十分であったことが確認された。 Further, in Comparative Example 2, Ra and Rp / Rv did not satisfy the formulas (1) and (2), and μK did not satisfy the formula (4), so that the antiglare property and the touch feeling were insufficient. From the viewpoint of reflectance , it was confirmed that SCE 500 / SCI 500 did not satisfy the formula (5) and had insufficient antiglare property.
 さらに比較例3は、Ra、Rp/Rv、およびRskが式(1)~(3)を満たさず、μKが式(4)を満たさないことから、防眩性および触り心地が不十分であった。SCE500/SCI500は式(5)を満たしたものの、ハードコート層にシリカ微粒子が含まれていることからSW硬度が不十分であることが確認された。
 
Further, in Comparative Example 3, since Ra, Rp / Rv, and Rsk do not satisfy the formulas (1) to (3) and μK does not satisfy the formula (4), the antiglare property and the touch feeling are insufficient. rice field. Although SCE 500 / SCI 500 satisfied the formula (5), it was confirmed that the SW hardness was insufficient because the hard coat layer contained silica fine particles.

Claims (13)

  1.  少なくともポリカーボネート樹脂(a1)を含む基材層と、高硬度樹脂を含む高硬度樹脂層と、ハードコート層とがこの順に配置された防眩性積層体であって、
     前記ハードコート層の算術平均粗さ(Ra)、最大山高さ(Rp)、最大谷深さ(Rv)、およびスキューネス(Rsk)が、下記式(1)~(3):
    Figure JPOXMLDOC01-appb-M000001
    を満たし、
     前記ハードコート層の接触子として触覚接触子を使用し、荷重50g、走査速度10mm/秒、走査距離90mmで測定された動摩擦係数(μk)が、下記式(4):
    Figure JPOXMLDOC01-appb-M000002
    を満たす、防眩性積層体。
    An antiglare laminate in which a base material layer containing at least a polycarbonate resin (a1), a high hardness resin layer containing a high hardness resin, and a hard coat layer are arranged in this order.
    The arithmetic mean roughness (Ra), maximum peak height (Rp), maximum valley depth (Rv), and skewness (Rsk) of the hard coat layer are expressed by the following equations (1) to (3):
    Figure JPOXMLDOC01-appb-M000001
    The filling,
    Using a tactile contactor as the contactor of the hard coat layer, the dynamic friction coefficient (μk) measured at a load of 50 g, a scanning speed of 10 mm / sec, and a scanning distance of 90 mm is obtained by the following equation (4):
    Figure JPOXMLDOC01-appb-M000002
    Anti-glare laminate that meets the requirements.
  2.  前記ハードコート層の波長550nmにおける正反射光を含む反射率(SCI550)および正反射光を除いた反射率(SCE550)が、下記式(5):
    Figure JPOXMLDOC01-appb-M000003
     
    を満たす、請求項1に記載の防眩性積層体。
    The reflectance (SCI 550 ) including the specularly reflected light and the reflectance (SCE 550 ) excluding the specularly reflected light of the hard coat layer at a wavelength of 550 nm are calculated by the following equation (5):
    Figure JPOXMLDOC01-appb-M000003

    The antiglare laminate according to claim 1.
  3.  前記防眩性積層体が、温度85℃で相対湿度85%の環境下に120時間保持した後の反りの変化量が350μm以下である、請求項1または2に記載の防眩性積層体。 The antiglare laminate according to claim 1 or 2, wherein the amount of change in warpage after the antiglare laminate is held at a temperature of 85 ° C. and a relative humidity of 85% for 120 hours is 350 μm or less.
  4.  前記高硬度樹脂層の厚みが、10~250μmである、請求項1~3のいずれか1項に記載の防眩性積層体。 The antiglare laminate according to any one of claims 1 to 3, wherein the high hardness resin layer has a thickness of 10 to 250 μm.
  5.  前記基材層および前記高硬度樹脂層の合計厚みが、100~3,000μmである、請求項1~4のいずれか1項に記載の防眩性積層体。 The antiglare laminate according to any one of claims 1 to 4, wherein the total thickness of the base material layer and the high hardness resin layer is 100 to 3,000 μm.
  6.  高硬度樹脂(B)が、
     下記一般式(1):
    Figure JPOXMLDOC01-appb-C000004
     (式中、Rは水素原子またはメチル基であり、Rは炭素数1~18のアルキル基である。)
    で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000005
     (式中、Rは水素原子またはメチル基であり、Rは炭素数1~4の炭化水素機を有してもよいシクロヘキシル基である。)
    で表される脂肪族ビニル構成単位(b)とを含む共重合樹脂であり、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記共重合樹脂の全構成単位の90~100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)の割合が前記共重合樹脂の全構成単位の65~80モル%である、樹脂(B1)、
     前記樹脂(B1)を35~65質量%、スチレン-不飽和ジカルボン酸系共重合体(C)を35~65質量%含み、前記スチレン-不飽和ジカルボン酸共重合体(C)が、スチレン系構成単位(c1)を65~90質量%、不飽和ジカルボン酸無水物構成単位(c2)を10~35質量%で含む、樹脂(B2)、
     ビニル系単量体を含有する樹脂(D)を55~10質量%、スチレン-不飽和ジカルボン酸系共重合体(E)を45~90質量%含み、前記スチレン-不飽和ジカルボン酸系共重合体(E)が、スチレン系構成単位(e1)を50~80質量%、不飽和ジカルボン酸構成単位(e2)を10~30質量%、ビニル系構成単位(e3)を5~30質量%で含む、樹脂(B3)、
     スチレン構成単位を5~20質量%、(メタ)アクリル酸エステル構成単位を70~90質量%、N-置換型マレイミド構成単位を5~20質量%含む樹脂共重合体(G)、または樹脂共重合体(G)とスチレン-不飽和ジカルボン酸系共重合体(E)とのアロイである、樹脂(B4)、
     下記一般式(3):
    Figure JPOXMLDOC01-appb-C000006
    で表される構成単位(H)を含む、樹脂(B5)、および
     ビニル系単量体を含有する樹脂(D)を35~65質量%、スチレン-不飽和ジカルボン酸系共重合体(C)を35~65質量%含み、前記スチレン-不飽和ジカルボン酸共重合体(C)が、スチレン系構成単位(c1)を65~90質量%、不飽和ジカルボン酸無水物構成単位(c2)を10~35質量%で含む、樹脂(B6)からなる群から選択される少なくとも1つを含む、請求項1~5のいずれかの1項に記載の防眩性積層体。
    High hardness resin (B)
    The following general formula (1):
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 1 is a hydrogen atom or a methyl group, and R 2 is an alkyl group having 1 to 18 carbon atoms.)
    The (meth) acrylic acid ester structural unit (a) represented by and the following general formula (2):
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R 3 is a hydrogen atom or a methyl group, and R 4 is a cyclohexyl group which may have a hydrocarbon machine having 1 to 4 carbon atoms.)
    It is a copolymer resin containing the aliphatic vinyl structural unit (b) represented by, and the total ratio of the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) is the same. The resin (B1) is 90 to 100 mol% of all the constituent units of the polymerized resin, and the ratio of the (meth) acrylic acid ester constituent unit (a) is 65 to 80 mol% of all the constituent units of the copolymerized resin. ),
    The resin (B1) is 35 to 65% by mass, the styrene-unsaturated dicarboxylic acid copolymer (C) is 35 to 65% by mass, and the styrene-unsaturated dicarboxylic acid copolymer (C) is styrene-based. The resin (B2), which contains the structural unit (c1) in an amount of 65 to 90% by mass and the unsaturated dicarboxylic acid anhydride structural unit (c2) in an amount of 10 to 35% by mass.
    The resin (D) containing a vinyl monomer is contained in an amount of 55 to 10% by mass, and the styrene-unsaturated dicarboxylic acid-based copolymer (E) is contained in an amount of 45 to 90% by mass. The coalescence (E) is 50 to 80% by mass of the styrene-based constituent unit (e1), 10 to 30% by mass of the unsaturated dicarboxylic acid constituent unit (e2), and 5 to 30% by mass of the vinyl-based constituent unit (e3). Including, resin (B3),
    A resin copolymer (G) containing 5 to 20% by mass of a styrene constituent unit, 70 to 90% by mass of a (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of an N-substituted maleimide constituent unit, or a resin. A resin (B4), which is an alloy of the polymer (G) and a styrene-unsaturated dicarboxylic acid-based copolymer (E).
    The following general formula (3):
    Figure JPOXMLDOC01-appb-C000006
    35 to 65% by mass of the resin (B5) containing the structural unit (H) represented by, and the resin (D) containing a vinyl-based monomer, and the styrene-unsaturated dicarboxylic acid-based copolymer (C). 35 to 65% by mass, and the styrene-unsaturated dicarboxylic acid copolymer (C) contains 65 to 90% by mass of the styrene-based structural unit (c1) and 10 of the unsaturated dicarboxylic acid anhydride constituent unit (c2). The antiglare laminate according to any one of claims 1 to 5, which comprises at least one selected from the group consisting of resin (B6), which comprises ~ 35% by mass.
  7.  前記樹脂(B5)が、下記一般式(4):
    Figure JPOXMLDOC01-appb-C000007
    で表される構成単位(J)をさらに含む共重合体である、請求項6に記載の防眩性積層体。
    The resin (B5) has the following general formula (4):
    Figure JPOXMLDOC01-appb-C000007
    The antiglare laminate according to claim 6, which is a copolymer further containing the structural unit (J) represented by.
  8.  前記ハードコート層が、有機粒子および無機粒子を含まない、請求項1~7のいずれかの1項に記載の防眩性積層体。 The antiglare laminate according to any one of claims 1 to 7, wherein the hard coat layer does not contain organic particles and inorganic particles.
  9.  ポリカーボネート樹脂(a1)が、下記一般式(5):
    Figure JPOXMLDOC01-appb-C000008
     (式中、Rは、炭素数8~36のアルキル基、または炭素数8~36のアルケニル基を表し、Rはそれぞれ独立して、水素原子、ハロゲン、または置換基を有してもよい炭素数1~20のアルキル基若しくは炭素数6~12のアリール基を表し、nは0~4の整数であり、ここで、前記置換基は、ハロゲン、炭素数1~20のアルキル基、または炭素数6~12のアリール基である。)
    で表される1価フェノール由来の成分を含む、請求項1~8のいずれか1項に記載の防眩性積層体。
    The polycarbonate resin (a1) has the following general formula (5):
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, R 5 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms, and R 6 may independently have a hydrogen atom, a halogen, or a substituent. It represents a good alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms, and n is an integer of 0 to 4, wherein the substituent is a halogen, an alkyl group having 1 to 20 carbon atoms, and the like. Alternatively, it is an aryl group having 6 to 12 carbon atoms.)
    The antiglare laminate according to any one of claims 1 to 8, which contains a component derived from monohydric phenol represented by.
  10.  請求項1~9のいずれか1項に記載の防眩性積層体を含む、車載用表示装置。 An in-vehicle display device including the antiglare laminate according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に記載の防眩性積層体を含む、タッチパネル前面保護板。 A touch panel front protective plate including the antiglare laminate according to any one of claims 1 to 9.
  12.  請求項1~9のいずれか1項に記載の防眩性積層体を含む、OA機器用、携帯電子機器用、またはテレビ用の前面板。 A front plate for OA equipment, portable electronic equipment, or a television, which comprises the antiglare laminate according to any one of claims 1 to 9.
  13.  請求項1~9のいずれか1項に記載の防眩性積層体の製造方法であって、
     前記ハードコート層の表面が、柄目付きPETフィルムを圧着して凹凸形状を転写する工程を含む、製造方法。
     
    The method for producing an antiglare laminate according to any one of claims 1 to 9.
    A manufacturing method comprising a step of crimping a patterned PET film on the surface of the hard coat layer to transfer an uneven shape.
PCT/JP2021/010482 2020-03-26 2021-03-16 Anti-glare laminate body WO2021193215A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022509963A JPWO2021193215A1 (en) 2020-03-26 2021-03-16
CN202180008294.0A CN114929479A (en) 2020-03-26 2021-03-16 Anti-glare laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-056141 2020-03-26
JP2020056141 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193215A1 true WO2021193215A1 (en) 2021-09-30

Family

ID=77892074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010482 WO2021193215A1 (en) 2020-03-26 2021-03-16 Anti-glare laminate body

Country Status (4)

Country Link
JP (1) JPWO2021193215A1 (en)
CN (1) CN114929479A (en)
TW (1) TW202144173A (en)
WO (1) WO2021193215A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057985A1 (en) * 2022-09-13 2024-03-21 三菱瓦斯化学株式会社 Anti-glare laminate and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016030738A1 (en) * 2014-08-26 2016-03-03 王子ホールディングス株式会社 Anti-glare laminate
JP2016053568A (en) * 2014-09-02 2016-04-14 旭硝子株式会社 Method for evaluating operational feeling of base material and base material
JP2018177632A (en) * 2017-04-04 2018-11-15 Agc株式会社 Processed member manufacturing method, plate-like member and opening member
JP2018180248A (en) * 2017-04-12 2018-11-15 日油株式会社 Resin composition for anti-glare hard coat and antiglare film for insert molding film using the same, resin molded article, and image display apparatus
JP2019155621A (en) * 2018-03-08 2019-09-19 東レ株式会社 Laminate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047595A (en) * 2015-09-01 2017-03-09 大日本印刷株式会社 Decorative sheet, decorative molded product and method for producing decorative molded product
CN208962599U (en) * 2015-11-12 2019-06-11 Agc株式会社 It is attached to the plate of printing layer and has used the display device of the plate and the display device for mounting on vehicle glass of subsidiary functional layer
WO2017094784A1 (en) * 2015-12-04 2017-06-08 大日本印刷株式会社 Writing sheet for touch panel pen, touch panel, touch panel system, display device, and sorting method for writing sheet for touch panel pen
JP2019203931A (en) * 2018-05-21 2019-11-28 株式会社ダイセル Anti-glare film, and manufacturing method and application of the same
JP2019207381A (en) * 2018-05-30 2019-12-05 株式会社ダイセル Anti-glare laminate and manufacturing method and application for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016030738A1 (en) * 2014-08-26 2016-03-03 王子ホールディングス株式会社 Anti-glare laminate
JP2016053568A (en) * 2014-09-02 2016-04-14 旭硝子株式会社 Method for evaluating operational feeling of base material and base material
JP2018177632A (en) * 2017-04-04 2018-11-15 Agc株式会社 Processed member manufacturing method, plate-like member and opening member
JP2018180248A (en) * 2017-04-12 2018-11-15 日油株式会社 Resin composition for anti-glare hard coat and antiglare film for insert molding film using the same, resin molded article, and image display apparatus
JP2019155621A (en) * 2018-03-08 2019-09-19 東レ株式会社 Laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057985A1 (en) * 2022-09-13 2024-03-21 三菱瓦斯化学株式会社 Anti-glare laminate and method for manufacturing same

Also Published As

Publication number Publication date
TW202144173A (en) 2021-12-01
JPWO2021193215A1 (en) 2021-09-30
CN114929479A (en) 2022-08-19

Similar Documents

Publication Publication Date Title
JP7105784B2 (en) High-hardness molding resin sheet and molded products using the same
JP6883043B2 (en) Two-stage curable laminated board
EP3936303A1 (en) Resin sheet for high hardness molding and molded article using same
WO2021193215A1 (en) Anti-glare laminate body
EP4011622A1 (en) Resin sheet for molding and molded article using same
WO2021033483A1 (en) Anti-glare layered body
WO2022091810A1 (en) Laminated resin sheet for molding, and molded article using same
WO2022097677A1 (en) Manufacturing method for bend forming product of resin sheet, and bend forming product
WO2024057985A1 (en) Anti-glare laminate and method for manufacturing same
JP7497337B2 (en) High-hardness molding resin sheet and molded product using same
WO2021166636A1 (en) Laminated resin sheet for molding, and molded article using same
JP7470597B2 (en) Transparent resin laminate, and transparent substrate material and transparent protective material using the same
WO2020203359A1 (en) Anti-glare laminate
JP2023110549A (en) Laminated resin sheet for molding, and molded article using the same
EP4163109A1 (en) Resin sheet for molding and molded article using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21777163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509963

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21777163

Country of ref document: EP

Kind code of ref document: A1