WO2016030738A1 - Anti-glare laminate - Google Patents

Anti-glare laminate Download PDF

Info

Publication number
WO2016030738A1
WO2016030738A1 PCT/IB2015/001433 IB2015001433W WO2016030738A1 WO 2016030738 A1 WO2016030738 A1 WO 2016030738A1 IB 2015001433 W IB2015001433 W IB 2015001433W WO 2016030738 A1 WO2016030738 A1 WO 2016030738A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
particle diameter
coat layer
hard coat
peaks
Prior art date
Application number
PCT/IB2015/001433
Other languages
French (fr)
Japanese (ja)
Inventor
賢 大久保
誠司 瀬口
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to JP2016545078A priority Critical patent/JPWO2016030738A1/en
Publication of WO2016030738A1 publication Critical patent/WO2016030738A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to an antiglare laminate. This application claims the priority based on Japanese Patent Application No. 2014-171385 for which it applied on August 26, 2014, and uses the content here.
  • Liquid crystal display devices are widely used for flat panel displays such as personal computers, mobile phones, and portable game devices.
  • an antiglare film may be attached to the surface in order to prevent a decrease in visibility due to light reflected from the outside.
  • Patent Document 1 a film that scatters reflection of light by providing an uneven structure on the surface is known.
  • Patent Document 2 a hard coat layer mainly composed of particles having an average particle diameter of 0.6 to 20 ⁇ m, fine particles having an average particle diameter of 1 to 500 nm, and a hard coat resin is formed on a transparent substrate film.
  • An antiglare film is disclosed.
  • Patent Document 2 discloses an optical film including an antiglare layer containing a binder resin, organic fine particles, and inorganic fine particles on a light-transmitting substrate.
  • ppi is pixel / inch and means the number of pixels per inch.
  • the glare phenomenon is a phenomenon that occurs when an anti-glare film with a concavo-convex layer is attached to the surface of a liquid crystal display device, because the pixels of the liquid crystal are enlarged by the lens effect.
  • the antiglare film disclosed in Patent Document 1 is provided with a hard coat layer containing two types of particles, large and small. Such an anti-glare film is effective for anti-glare properties, but cannot be said to be effective for glare generated in a high-definition liquid crystal display device.
  • the optical film disclosed in Patent Document 2 is provided with an antiglare layer containing two kinds of particles, organic fine particles and inorganic fine particles. Such an optical film is effective for anti-glare properties, azimuth blur, and interference fringes, but cannot be said to be effective for glare generated in a high-definition liquid crystal display device.
  • An object of the present invention is to provide an antiglare laminate excellent in antiglare properties and glare prevention, a display device including the antiglare laminate, a curable resin composition therefor, and a coating film.
  • the present inventors have studied the uneven structure on the surface of the hard coat layer. As a result, it has been found that the degree of randomness of the concavo-convex structure on the surface of the hard coat layer can be appropriately controlled by using a combination of three or more kinds of fine particles having different average particle diameters.
  • the present invention has been achieved based on such knowledge. That is, the present invention has the following configuration.
  • An antiglare laminate having a transparent substrate and a hard coat layer provided on at least one outermost layer thereof,
  • the hard coat layer contains a curable resin and a fine particle component, and has irregularities on the surface by containing the fine particle component,
  • the fine particle component has at least three or more peaks in the particle size distribution, Of the at least three or more peaks, the average particle size of the fine particles belonging to the first peak region is A ( ⁇ m), and the average particle size of the fine particles belonging to the second peak region having a particle size smaller than A is B ( ⁇ m), and when the average particle diameter of fine particles belonging to the third peak region including m peaks smaller than A and larger than B is Cm ( ⁇ m), the following equation is satisfied:
  • An antiglare laminate 1 ⁇ A ⁇ 5, 0.001 ⁇ B ⁇ 0.3, (2 ⁇ B) ⁇ Cm ⁇ (0.5 ⁇ A),
  • m is an integer of 1 or more.
  • a display device comprising the antiglare laminate according to any one of (1) to (6).
  • a curable resin composition for forming an antiglare hard coat layer contains a curable resin and a fine particle component,
  • the fine particle component has at least three or more peaks in the particle size distribution, Of the at least three or more peaks, the average particle size of the fine particles belonging to the first peak region is A ( ⁇ m), and the average particle size of the fine particles belonging to the second peak region having a particle size smaller than A is B ( ⁇ m), and when the average particle diameter of fine particles belonging to the third peak region including m peaks smaller than A and larger than B is Cm ( ⁇ m), the following equation is satisfied:
  • a curable resin composition 1 ⁇ A ⁇ 5, 0.001 ⁇ B ⁇ 0.3, (2 ⁇ B) ⁇ Cm ⁇ (0.5 ⁇ A),
  • m is an integer of 1 or more.
  • the display device provided with the antiglare laminate of the present invention and the antiglare laminate is excellent in antiglare properties and glare prevention.
  • the curable resin composition and coating film of the present invention can provide a hard coat layer of an antiglare laminate excellent in antiglare property and glare prevention.
  • the high-definition display device in this embodiment refers to a display device of 200 ppi or more. Furthermore, it is more preferable that it is a display apparatus of 250 ppi or more.
  • the antiglare laminate of the present embodiment has a transparent substrate and a hard coat layer provided on the outermost layer on at least one side thereof.
  • a transparent substrate and a hard coat layer provided on the outermost layer on at least one side thereof.
  • other layers such as an anchor layer, a refractive index adjusting layer, and a protective layer may be laminated between the transparent substrate and the hard coat layer as necessary.
  • the hard coat layer may be formed on the outermost layer on the front side (external world side) of the transparent base material, or may be formed on the outermost layer on the back side (anti-external side) of the transparent base material. It may be formed in the outermost layer.
  • a transparent base material becomes a transparent base material which forms a hard-coat layer.
  • the material for forming the transparent substrate is preferably a material excellent in optical transparency, mechanical strength, solvent resistance, and the like.
  • the transparent substrate may be an organic material or an inorganic material.
  • organic materials include polypropylene resins, polyethylene resins, cyclic polyolefin resins, polyamide resins, polyester resins, polyacrylic resins, polyvinyl chloride resins, nylon resins, urethane resins, and triacetyl cellulose.
  • Cellulosic resins such as Among these, polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polypropylene terephthalate, polypropylene naphthalate, polytrimethylene terephthalate, and polybutylene terephthalate are preferable. Furthermore, it is more preferable to use polyethylene terephthalate from the viewpoints of transparency, weather resistance, solvent resistance, rigidity, and cost.
  • the organic material may be used by mixing or laminating two or more kinds of organic materials.
  • the inorganic material examples include soda lime glass, borosilicate glass, quartz glass, and tempered glass (aluminosilicate glass). Among these, tempered glass (aluminosilicate glass) is preferable.
  • the transparent base material may contain various additives.
  • the additive include an antioxidant, a heat stabilizer, an ultraviolet absorber, a pigment, a dye, an antistatic agent, a nucleating agent, and a coupling agent.
  • the transparent substrate may be subjected to a surface treatment.
  • the surface treatment include corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, and surface oxidation treatment such as ozone / ultraviolet irradiation treatment.
  • the thickness of the transparent substrate is preferably 1 to 1,000 ⁇ m, more preferably 5 to 500 ⁇ m, and more preferably 50 to 250 ⁇ m from the viewpoints of ensuring mechanical strength, curling prevention, workability, and the like. It is more preferable.
  • the transparent substrate preferably has a retardation of 3,000 to 30,000 for the reason of reducing the rainbow pattern described later.
  • the retardation is more preferably 5,000 to 25,000.
  • the hard coat layer is provided on the outermost layer on at least one side of the transparent substrate, contains a curable resin and a fine particle component, and has irregularities on the surface by containing the fine particle component.
  • a hard coat layer By forming a hard coat layer on the surface of the transparent substrate, scratch resistance and scratch resistance can be imparted.
  • the hard coat layer can impart antifouling properties, finger slipping properties, water repellency, and the like to sebum and cosmetics on the surface of the transparent substrate.
  • the curable resin may be a thermosetting type or an active energy ray curable type.
  • the active energy ray curable type is preferable.
  • Active energy rays refer to ionizing radiation such as ultraviolet rays, electron beams, visible rays, and ⁇ rays.
  • thermosetting resin examples include phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, silicon resin, polysiloxane resin, and the like.
  • the active energy ray-curable resin examples include acrylic curable resins and urethane curable resins. Moreover, as an active energy ray, an ultraviolet ray is preferable from the viewpoint of easy handling and processing.
  • the active energy ray-curable acrylic curable resin is a polymer of a curable composition comprising a monomer or oligomer having an acrylic polymerizable unsaturated group.
  • Monomers and oligomers having an acrylic polymerizable unsaturated group include monofunctional and polyfunctional ones.
  • the monofunctional monomer having an acrylic polymerizable unsaturated group examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, (meth ) N-butyl acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, N-octyl (meth) acrylate, isooctyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, n-decyl (meth) acrylate, isodecyl (meth) acrylate, (meta ) N-undecyl
  • the monofunctional oligomer having an acrylic polymerizable unsaturated group examples include ethoxylated o-phenylphenol acrylate, methoxypolyethylene glycol acrylate, phenoxypolyethylene glycol acrylate, and the like.
  • a polyfunctional (meth) acrylic ester is used as the monomer or oligomer having an acrylic polymerizable unsaturated group. It is preferable to contain.
  • polyfunctional (meth) acrylic acid esters include dipropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate.
  • Bifunctional (meth) acrylates such as propylene oxide modified neopentyl glycol di (meth) acrylate, modified bisphenol A di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, polyethylene glycol di (meth) acrylate, Pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (meth) acrylate, polyether tri (meth) acrylate , Trifunctional (meth) acrylates such as glycerin propoxytri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, propionic acid modified dipentaerythritol Examples include t
  • the active energy ray-curable urethane-based curable resin is a polymer of urethane acrylate monomer or oligomer.
  • a urethane acrylate oligomer a polyoxyalkylene segment and / or a saturated polyester segment are linked via a urethane bond, and acryloyl groups are present at both ends.
  • thermosetting or active energy ray-curable acrylic curable resin In order to obtain a thermosetting or active energy ray-curable acrylic curable resin, a polymerization initiator is added to the monomer or oligomer having the polymerizable unsaturated group, and the thermosetting or active energy ray curing is performed. It is necessary to make the composition of the nature.
  • thermal polymerization initiator known ones can be used. Examples thereof include peroxide compounds such as benzoyl peroxide and di-t-butyl peroxide.
  • the addition amount of the thermal polymerization initiator is preferably 1 to 10% by mass relative to the monomer or oligomer having a polymerizable unsaturated group.
  • active energy ray polymerization initiator various known photopolymerization initiators can be used.
  • benzoin benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2 -Phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propane-1 -One, 4- (2-hydroxyethoxy) phenyl-2 (hydroxy-2-propyl) ketone, benzophenone, p-phenylbenzophenone, 4,4'-diethylaminobenzophenone, prop
  • One of these active energy ray polymerization initiators may be used alone, or two or more thereof may be used in combination.
  • the addition amount of the active energy ray polymerization initiator is preferably 1 to 10% by mass relative to the monomer or oligomer having a polymerizable unsaturated group.
  • a photosensitizer can be further contained.
  • the photosensitizer include n-butylamine, triethylamine, and tri-n-butylphosphine.
  • the hard coat layer may contain a flexible component as necessary.
  • a flexible component As the flexible component, (meth) acrylates having one or more polymerizable unsaturated groups in the molecule are preferable. Examples of (meth) acrylates include tricyclodecanemethylol di (meth) acrylate, ethylene oxide modified di (meth) acrylate of bisphenol F, ethylene oxide modified di (meth) acrylate of bisphenol A, and ethylene oxide modified of isocyanuric acid.
  • Bifunctional (meth) acrylates such as di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide modified tri (meth) acrylate of trimethylpropane , Trifunctional (meth) acrylates such as ethylene oxide modified tri (meth) acrylate of trimethylpropane, urethane (meth) acrylate, polyester (meth ) Acrylates, polyether (meth) acrylate.
  • trifunctional (meth) acrylate and urethane (meth) acrylate are more preferable.
  • These (meth) acrylates can be used singly or in combination of two or more.
  • the hard coat layer may contain components other than those described above as long as the effects of the present embodiment are not impaired.
  • Components that can be added to the hard coat layer include, for example, a dispersant, a flexible component, an antibacterial agent, a fluorine antifouling agent, a fluorine lubricant or a silicone lubricant, a leveling agent, an antistatic agent, an ultraviolet absorber, and a heat stabilizer. Agents, antioxidants and the like.
  • the dispersant includes those used to uniformly disperse fine particles described later in the coating liquid for forming the hard coat layer.
  • the thickness of the hard coat layer is preferably 0.5 to 8.0 ⁇ m.
  • the thickness of the hard coat layer is more preferably from 0.5 to 5.0 ⁇ m, further preferably from 1.0 to 4.0 ⁇ m, and most preferably from 1.0 to 3.5 ⁇ m.
  • the fine particle component contained in the hard coat layer has at least three or more peaks in the particle size distribution.
  • the peak is the particle size when the number of particles reaches a maximum value in a chart in which the horizontal axis represents the particle size and the vertical axis represents the number of particles.
  • the present inventors use a fine particle component having at least three or more peaks in the particle size distribution as the fine particle component contained in the hard coat layer, and when the particle diameter of each peak is in a specific numerical range, It has been found that the randomness of the concavo-convex structure on the surface of the hard coat layer can be appropriately controlled, and it is possible to achieve both the antiglare property and the glare prevention of the antiglare laminate.
  • the fine particle component has at least three or more peaks in the particle size distribution, and among the at least three or more peaks, the average particle diameter of the fine particles belonging to the first peak region is A ( ⁇ m). And the average particle diameter of the fine particles belonging to the second peak area is B ( ⁇ m), and the average particle diameter of the fine particles belonging to the third peak area including m peaks whose particle diameter is smaller than A and larger than B is
  • the diameter is Cm ( ⁇ m)
  • m is an integer of 1 or more.
  • the particle size distribution of the fine particles is measured by the following method. Using a transmission electron microscope, the surface layer of the hard coat layer is photographed to obtain a particle image. The maximum length (Dmax: maximum length at two points on the contour of the particle image) and the maximum vertical length (DV-max: two lines when the particle image is sandwiched between two straight lines parallel to the maximum length) ) Is measured, and the geometric mean value (Dmax ⁇ DV-max) 1/2 is defined as the particle diameter.
  • Dmax maximum length at two points on the contour of the particle image
  • DV-max maximum vertical length
  • the geometric mean value (Dmax ⁇ DV-max) 1/2 is defined as the particle diameter.
  • the peak area is a particle size distribution chart in which the vertical axis represents the number of fine particles and the horizontal axis represents the particle diameter of the fine particles, and one peak in the particle size distribution (the point where the number of fine particles protrudes) is horizontal. It means a certain region in the horizontal axis direction where fine particles exist as the center in the axial direction.
  • the peak area is a term that should be interpreted according to common general technical knowledge.
  • the peak area is, for example, from a minimum value (first minimum value) closest to the peak having a particle diameter smaller than the peak with a certain peak in the particle size distribution as the center in the horizontal axis direction.
  • the particle diameter is larger and the curve from the peak to the nearest minimum value (second minimum value), the horizontal axis of the particle size distribution diagram, the vertical axis with the first minimum value as a constant, It can be regarded as a region surrounded by a vertical axis having the second minimum value as a constant.
  • the distance or region from the maximum value to the minimum value is not clear, for example, one maximum value and an inflection point on the way from the maximum value to the minimum value. Twice the distance can be used as an approximate value of the distance from the maximum value to the minimum value.
  • the average particle size of the fine particles belonging to the first peak region is A ( ⁇ m)
  • the number of peaks having a particle diameter smaller than A and larger than B is one or more.
  • the average particle diameter of fine particles belonging to the peak region is defined as C1 ( ⁇ m).
  • the average particle diameters of the fine particles belonging to those peak regions are C1 ( ⁇ m) and C2 ( ⁇ m), respectively.
  • the average particle diameters of the fine particles belonging to those peak regions are respectively set to C3 ( ⁇ m) and C4 ( ⁇ m) etc.
  • the average particle diameter of peaks having a particle diameter smaller than A and larger than B is collectively expressed as Cm ( ⁇ m).
  • the average particle diameter A ( ⁇ m) of the fine particles whose particle diameter belongs to the first peak region is 1 ⁇ A ⁇ 5. Such fine particles are exclusively involved in imparting antiglare properties to the hard coat layer.
  • the average particle diameter B ( ⁇ m) of the fine particles belonging to the second peak region having a particle diameter smaller than A is 0.001 ⁇ B ⁇ 0.3. Such fine particles are exclusively involved in suppressing glare.
  • the average particle diameter Cm ( ⁇ m) of the fine particles belonging to the third peak region including m peaks smaller than A and larger than B is (2 ⁇ B) ⁇ Cm ⁇ (0.5 ⁇ A). It is. Such fine particles are exclusively involved in suppressing glare.
  • the fine particle component has N 1 as the number of fine particles belonging to the first peak region, and N 2 as the number of fine particles belonging to the second peak region whose particle size is smaller than A.
  • N 1 : N 2 : N 3 1: 30: 5 to 1:50 where N 3 is the number of fine particles belonging to the third peak region including m peaks smaller than A and larger than B. It is preferable to satisfy a ratio of 1,000,100. When the relative number of fine particles belonging to three or more kinds of peak regions is within the range of this ratio, it becomes possible to improve the antiglare property and glare prevention of the antiglare laminate at a higher level. .
  • the number of fine particles belonging to the peak region can be measured together with the particle size distribution of the fine particles by the method using the transmission electron microscope.
  • the fine particles may be inorganic fine particles or organic fine particles.
  • inorganic fine particles for example, metal oxide fine particles such as silicon dioxide, titanium dioxide, zirconium oxide, and aluminum oxide can be used, and those having high hardness are preferable.
  • organic fine particles for example, resin particles such as acrylic resin, polystyrene, polysiloxane, melamine resin, benzoguanamine resin, polytetrafluoroethylene, cellulose acetate, polycarbonate, and polyamide can be used.
  • the surface of the fine particles may be surface-treated for the purpose of uniformly dispersing the fine particles in the hard coat layer.
  • the surface treatment method include methods such as imparting a functional group such as a hydroxyl group and a carboxylic acid in addition to imparting a surfactant.
  • the content of the fine particles in the hard coat layer depends on the thickness of the hard coat layer, but from the viewpoint of glare and antiglare properties, the total content is preferably 10 to 500% by mass, and 50 to 300% by mass. It is more preferable that
  • the difference in refractive index between the fine particles and the hard coat layer is preferably 0.1 or less, and more preferably 0.01 or less.
  • the average particle diameters A, B, and Cm of the fine particles satisfy the above formula, it is effective not only for preventing glare and glare, but also for preventing rainbow patterns and whiteness.
  • the rainbow pattern is an interference pattern that appears due to a difference in refractive index between the transparent substrate and the hard coat layer.
  • WHITE is a phenomenon that appears whitish when the transmitted light of the antiglare laminate is viewed. Unlike the antiglare property, which is evaluated by the diffused state of reflected light, it is evaluated by the diffused state of transmitted light. Whitiness can be reduced by appropriately controlling the degree of unevenness on the surface of the hard coat layer.
  • the skewness of the hard coat layer is 1.0 to 4.0.
  • the skewness is an index of the degree of uneven unevenness of the hard coat layer surface. It is measured according to JIS B0601-2001. This represents the degree of symmetry deviation of the height distribution with the average plane as the center. When the skewness is 0, it indicates that the height distribution of the surface irregularities is symmetric with respect to the average line. When the skewness is a positive numerical value, the height distribution is biased downward with respect to the average surface, indicating that the unevenness tends to be sharp.
  • the haze is preferably 2 to 10%, and more preferably 4 to 8%. By setting the haze in the range of 2 to 10%, the antiglare level can be made more effective.
  • the haze is an index related to the transparency of the laminate and is also referred to as haze. This is the ratio of diffuse transmitted light to total light transmitted. In general, when haze increases, it appears whitish and blurry. It can be controlled by appropriately changing the degree of unevenness on the surface of the hard coat layer.
  • the total light transmittance is preferably 88% or more and more preferably 90% or more from the viewpoint of improving the visibility of the display device.
  • the gloss is preferably 60 to 90%, and more preferably 60 to 80%. By making the glossiness in the range of 60 to 90%, the antiglare property can be further improved.
  • the glossiness is evaluated as a 60-degree specular reflectance.
  • a curable resin composition for forming an antiglare hard coat layer is applied on a transparent substrate, and then the hard coat layer is dried, and then the hard coat layer Can be cured to form a hard coat layer coating. That is, the hard coat layer of the antiglare laminate of this embodiment is a coating film obtained by curing a curable resin composition.
  • the manufacturing process can also be performed continuously in a roll-to-roll manner.
  • the curable resin composition of this embodiment contains a curable resin and a fine particle component, and the fine particle component has at least three or more peaks in the particle size distribution, and among the at least three or more peaks.
  • m is an integer of 1 or more.
  • the number of fine particles belonging to the first peak region where the particle size belongs to N 1 and the number of fine particles belonging to the second peak region where the particle size is smaller than A is defined as N 1.
  • an average It can be obtained by adding three or more kinds of fine particles having a particle diameter ( ⁇ m) in the numerical ranges of A, B, and Cm to the curable resin composition at a predetermined blending ratio. That is, the fine particle component contained in the curable resin composition can have the above-mentioned particle size distribution of the fine particle component by adding three or more kinds of fine particles having different average particle sizes at an appropriate blending ratio. .
  • the method for setting the ratio of the number of fine particles belonging to each peak region to the above ratio is also the same.
  • Examples of the solvent for the curable resin composition include methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, toluene, n-hexane, n-butyl alcohol, methyl isobutyl ketone, methyl butyl ketone, ethyl butyl ketone, cyclohexanone, ethyl acetate, Butyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, N-methyl-2-pyrrolidone and the like are used. These may be used alone or in combination of two or more.
  • Examples of the coating method of the curable resin composition include a blade coater, an air knife coater, a roll coater, a bar coater, a gravure coater, a micro gravure coater, a rod blade coater, a lip coater, a die coater, a curtain coater, and a printing machine. The method used is mentioned.
  • the coating film is dried by heating the transparent substrate having the coating film. Usually, the heating is performed under conditions of a heating temperature of 60 to 100 ° C. and a heating time of 1 to 5 minutes. Drying is performed by a heat dryer or a vacuum dryer.
  • the uncured coating film is cured.
  • the uncured coating film contains a thermosetting resin, it is heated and cured using a heating furnace or an infrared lamp.
  • the uncured coating film contains an active energy ray-curable resin, it is cured by irradiation with active energy rays.
  • active energy ray ultraviolet rays are preferable from the viewpoint of versatility.
  • the ultraviolet light source for example, a high pressure mercury lamp, a low pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc, a xenon arc, an electrodeless ultraviolet lamp, or the like can be used.
  • Curing by irradiation with active energy rays is preferably performed in an environment filled with an inert gas such as nitrogen.
  • the curing process may be performed in two stages, a preliminary curing process and a main curing process.
  • the antiglare laminate of the present embodiment enables both antiglare properties and glare prevention in a display device including the laminate.
  • a display device including the laminate In particular, in a high-definition liquid crystal display device of 200 to 400 ppi, and further 250 to 400 ppi, the characteristics can be further exhibited.
  • the quantity of the silica described in Table 1 is a numerical value of the mass part as solid content. When actually used, it is used as a dispersion (30% by mass) dispersed in MEK.
  • PET film a manufactured by Toyobo Co., Ltd., A4100, film thickness 100 ⁇ m, retardation was 2,500 nm.
  • PET film b Polyethylene terephthalate was dissolved at 290 ° C., extruded through a film-forming die into a sheet, and then cooled with water. Then, it was made to contact
  • the film was stretched at a stretching ratio of 1.5 times in the direction of 90 degrees.
  • the obtained PET film b had a film thickness of 100 ⁇ m and a retardation of 9,000 nm.
  • retardation was measured using Oji Scientific Instruments company make, KOBURA-WPR.
  • Example 1 By applying the coating liquid HC1 for the hard coat layer having the composition shown in Table 1 to the surface of one side of the PET film a using a bar coater, drying, and then irradiating with 300 mJ / cm 2 of ultraviolet rays and curing.
  • the antiglare laminate 1 was obtained.
  • the number of fine particles, N 1 : N 2 : N 3 was 1:24, 355: 13.
  • the thickness of the hard coat layer after curing was 2.4 ⁇ m.
  • Example 2 After applying the coating liquid HC2 for hard coat layer having the composition described in Table 1 to the surface on one side of the PET film a using a bar coater, the antiglare laminate 2 was obtained in the same manner as in Example 1. .
  • the thickness of the hard coat layer after curing was 2.5 ⁇ m.
  • Example 3 After applying the hard coat layer coating solution HC3 having the composition shown in Table 1 to the surface of one side of the PET film b using a bar coater, the antiglare laminate 3 was obtained in the same manner as in Example 1. .
  • the number of fine particles, N 1 : N 2 : N 3 was 1:23, 587: 22.
  • the thickness of the hard coat layer after curing was 2.4 ⁇ m.
  • Example 4 After applying the coating liquid HC4 for hard coat layer having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 4 was obtained in the same manner as in Example 1. .
  • the thickness of the hard coat layer after curing was 2.5 ⁇ m.
  • Example 5 After applying the hard coat layer coating liquid HC5 having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 5 was obtained in the same manner as in Example 1. .
  • the thickness of the hard coat layer after curing was 2.6 ⁇ m.
  • Example 6 After applying the hard coat layer coating liquid HC6 having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 6 was obtained in the same manner as in Example 1. .
  • the number of fine particles, N 1 : N 2 : N 3 was 1:41, 474: 15.
  • the thickness of the hard coat layer after curing was 2.3 ⁇ m.
  • Example 7 After applying the hard coat layer coating solution HC7 having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 7 was obtained in the same manner as in Example 1. .
  • the number of fine particles, N 1 : N 2 : N 3 was 1:43:11.
  • the thickness of the hard coat layer after curing was 2.6 ⁇ m.
  • Example 8 After applying the coating liquid HC8 for hard coat layer having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 8 was obtained in the same manner as in Example 1. .
  • the thickness of the hard coat layer after curing was 2.3 ⁇ m.
  • Example 9 After applying the coating liquid HC9 for hard coat layer having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 9 was obtained in the same manner as in Example 1. .
  • the thickness of the hard coat layer after curing was 2.4 ⁇ m.
  • Example 1 After applying the hard coat layer coating solution HC10 having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 10 was obtained in the same manner as in Example 1. .
  • the thickness of the hard coat layer after curing was 2.7 ⁇ m.
  • Example 2 After applying the hard coat layer coating solution HC11 having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 11 was obtained in the same manner as in Example 1. .
  • the thickness of the hard coat layer after curing was 2.5 ⁇ m.
  • Example 3 After applying the hard coat layer coating solution HC12 having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 12 was obtained in the same manner as in Example 1. .
  • the thickness of the hard coat layer after curing was 2.4 ⁇ m.
  • Example 4 After applying the hard coat layer coating solution HC13 having the composition shown in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 13 was obtained in the same manner as in Example 1. .
  • the thickness of the hard coat layer after curing was 2.4 ⁇ m.
  • Example 5 After applying the hard coat layer coating solution HC14 having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 14 was obtained in the same manner as in Example 1. .
  • the number of fine particles, N 1 : N 2 : N 3 was 1:12:10.
  • the thickness of the hard coat layer after curing was 2.6 ⁇ m.
  • Haze and total light transmittance were measured using a haze meter NDH4000 manufactured by Denshoku Co., Ltd.
  • the antiglare laminate 1 to the antiglare laminate 9 of Examples 1 to 9 all have good antiglare and antiglare properties, such as rainbow patterns and whitening. It was hard to produce a gap.
  • Example 3 since the retardation of the transparent substrate was as high as 9,000, the effect of suppressing the rainbow pattern was particularly excellent.
  • Example 8 since the skewness was small, the antiglare property and the glare were slightly better than those in the other examples.
  • Example 9 since the skewness was large, the glare was slightly better than in the other examples.
  • Comparative Example 1 the average particle diameter A of the fine particles having the maximum average particle diameter exceeded 5 ⁇ m, which was inferior to glare.
  • Comparative Example 2 the average particle diameter Cm of the fine particles having an average particle diameter between A and B does not exist, and the glare is inferior.
  • Comparative Example 5 the average particle diameter B of the fine particles having the smallest average particle diameter exceeded 0.3 ⁇ m, and the glare and whitish color were inferior.

Abstract

The present invention provides an anti-glare laminate having excellent anti-glare properties and glare-preventing properties, a display device provided with the anti-glare laminate, a curable resin composition for same, and a coating film. More specifically, the present invention provides an anti-glare laminate comprising a transparent substrate and a hard-coat layer that is provided on the outermost layer on at least one side of the transparent substrate, the hard-coat layer comprising a curable resin and microparticle components and having an uneven surface due to the inclusion of the microparticle components, the microparticle components having at least three peaks in the particle size distribution thereof, and for the three or more peaks, when the average particle size of the microparticles for which the particle size belongs to the first peak area is A (μm), the average particle size of the microparticles for which the particle size belongs to the second peak area is B (μm), and the average particle size of the microparticles for which the particle size is smaller than A but bigger than B and belongs to the third peak area comprising m peaks is Cm (μm), the following formula is satisfied. 1≤A≤5, 0.001≤B≤0.3, (2XB)≤Cm≤(0.5XA), wherein m is an integer of at least 1.

Description

防眩性積層体Antiglare laminate
 本発明は、防眩性積層体に関するものである。
 本願は、2014年8月26日に出願された日本国特願2014−171385号に基づく優先権を主張し、その内容をここに援用する。
The present invention relates to an antiglare laminate.
This application claims the priority based on Japanese Patent Application No. 2014-171385 for which it applied on August 26, 2014, and uses the content here.
 パーソナルコンピューター、携帯電話、携帯ゲーム機器等のフラットパネルディスプレイには、液晶表示装置が広く利用されている。このような液晶表示装置では、外界から光が映り込むことによる視認性の低下を防止するために、表面に防眩性フィルムを貼付する場合がある。 Liquid crystal display devices are widely used for flat panel displays such as personal computers, mobile phones, and portable game devices. In such a liquid crystal display device, an antiglare film may be attached to the surface in order to prevent a decrease in visibility due to light reflected from the outside.
 防眩性フィルムとしては、表面に凹凸構造を設けることによって、光の反射を散乱させるものが知られている。例えば、特許文献1には、透明基材フィルム上に、平均粒径0.6~20μmの粒子と平均粒径1~500nmの微粒子とハードコート樹脂とを主成分とするハードコート層を形成した防眩性フィルムが開示されている。また、特許文献2には、光透過性基材上に、バインダ樹脂と有機微粒子と無機微粒子とを含む防眩層を備える光学フィルムが開示されている。 As an antiglare film, a film that scatters reflection of light by providing an uneven structure on the surface is known. For example, in Patent Document 1, a hard coat layer mainly composed of particles having an average particle diameter of 0.6 to 20 μm, fine particles having an average particle diameter of 1 to 500 nm, and a hard coat resin is formed on a transparent substrate film. An antiglare film is disclosed. Patent Document 2 discloses an optical film including an antiglare layer containing a binder resin, organic fine particles, and inorganic fine particles on a light-transmitting substrate.
 近年、スマートフォンなどの小画面サイズの携帯端末等においては、画面サイズに対する解像度が上昇しており、200ppi以上の高精細の液晶表示装置が採用されつつある。なお、ppiとは、pixel/inchのことであり、1インチあたりのピクセル数を意味する。 In recent years, in small-sized mobile terminals such as smartphones, the resolution with respect to the screen size has increased, and high-definition liquid crystal display devices of 200 ppi or more are being adopted. Note that ppi is pixel / inch and means the number of pixels per inch.
 高精細の液晶表示装置では、個々の画素のサイズが小さくなっているため、いわゆるギラツキ現象が発生し易くなってきている。ギラツキ現象とは、凹凸層がある防眩性フィルムを液晶表示装置の表面に添付した場合に、レンズ効果によって液晶の画素が拡大されるために起こる現象であり、キラキラと光ったように見える現象をいう。 In a high-definition liquid crystal display device, since the size of each pixel is small, a so-called glare phenomenon is likely to occur. The glare phenomenon is a phenomenon that occurs when an anti-glare film with a concavo-convex layer is attached to the surface of a liquid crystal display device, because the pixels of the liquid crystal are enlarged by the lens effect. Say.
日本国特開平11−286083号公報Japanese Laid-Open Patent Publication No. 11-286083 日本国特開2014−59334号公報Japanese Unexamined Patent Publication No. 2014-59334
 特許文献1に開示された防眩性フィルムは、大小2種類の粒子を含有するハードコート層を備えるものである。このような防眩性フィルムは、防眩性に対しては有効であるものの、高精細の液晶表示装置において生じるギラツキに対しては有効であるとはいえないものであった。 The antiglare film disclosed in Patent Document 1 is provided with a hard coat layer containing two types of particles, large and small. Such an anti-glare film is effective for anti-glare properties, but cannot be said to be effective for glare generated in a high-definition liquid crystal display device.
 また、特許文献2に開示された光学フィルムは、有機微粒子と無機微粒子の大小2種類の粒子を含有する防眩層を備えるものである。このような光学フィルムは、防眩性やニジムラ、干渉縞に対しては有効であるものの、高精細の液晶表示装置において生じるギラツキに対しては有効であるとはいえないものであった。 The optical film disclosed in Patent Document 2 is provided with an antiglare layer containing two kinds of particles, organic fine particles and inorganic fine particles. Such an optical film is effective for anti-glare properties, azimuth blur, and interference fringes, but cannot be said to be effective for glare generated in a high-definition liquid crystal display device.
 本発明は、このような状況に鑑みてなされたものである。本発明の課題は、防眩性とギラツキ防止に優れた防眩性積層体、当該防眩性積層体を備える表示装置、そのための硬化性樹脂組成物、塗膜を提供することである。 The present invention has been made in view of such a situation. An object of the present invention is to provide an antiglare laminate excellent in antiglare properties and glare prevention, a display device including the antiglare laminate, a curable resin composition therefor, and a coating film.
 本発明者らは、このようなギラツキ、特に高精細の液晶表示装置において発生するギラツキを防止するために、ハードコート層表面の凹凸構造について検討を加えた。その結果、平均粒子径が異なる3種類以上の微粒子を組み合わせて用いることによって、ハードコート層表面の凹凸構造のランダム性の度合いを適度に制御し得ることを見出した。本発明はこのような知見に基づいて到達することができたものである。すなわち、本発明は以下のような構成を有している。 In order to prevent such a glare, particularly a glare that occurs in a high-definition liquid crystal display device, the present inventors have studied the uneven structure on the surface of the hard coat layer. As a result, it has been found that the degree of randomness of the concavo-convex structure on the surface of the hard coat layer can be appropriately controlled by using a combination of three or more kinds of fine particles having different average particle diameters. The present invention has been achieved based on such knowledge. That is, the present invention has the following configuration.
 (1)透明基材と、その少なくとも片側の最外層に設けられたハードコート層とを有する防眩性積層体であって、
 前記ハードコート層は、硬化性樹脂と微粒子成分とを含有し、当該微粒子成分を含有することよって表面に凹凸を有し、
 前記微粒子成分は、粒子径分布において少なくとも3つ以上のピークを有し、
 前記少なくとも3つ以上のピークのうち、第1のピーク領域に属する微粒子の平均粒子径をA(μm)とし、粒子径がAより小さい第2のピーク領域に属する微粒子の平均粒子径をB(μm)とし、粒子径がAより小さくBより大きいm個のピークを含む第3のピーク領域に属する微粒子の平均粒子径をそれぞれCm(μm)としたときに、下記式を満足することを特徴とする防眩性積層体。
 1≦A≦5、
 0.001≦B≦0.3、
 (2×B)≦Cm≦(0.5×A)、
 ここで、mは1以上の整数である。
(1) An antiglare laminate having a transparent substrate and a hard coat layer provided on at least one outermost layer thereof,
The hard coat layer contains a curable resin and a fine particle component, and has irregularities on the surface by containing the fine particle component,
The fine particle component has at least three or more peaks in the particle size distribution,
Of the at least three or more peaks, the average particle size of the fine particles belonging to the first peak region is A (μm), and the average particle size of the fine particles belonging to the second peak region having a particle size smaller than A is B ( μm), and when the average particle diameter of fine particles belonging to the third peak region including m peaks smaller than A and larger than B is Cm (μm), the following equation is satisfied: An antiglare laminate.
1 ≦ A ≦ 5,
0.001 ≦ B ≦ 0.3,
(2 × B) ≦ Cm ≦ (0.5 × A),
Here, m is an integer of 1 or more.
 (2)前記ハードコート層のスキューネスが1.0~4.0であることを特徴とする前記(1)に記載の防眩性積層体。 (2) The antiglare laminate as described in (1) above, wherein the skewness of the hard coat layer is 1.0 to 4.0.
 (3)ヘイズが2~10%であり、全光線透過率が88%以上であることを特徴とする前記(1)または前記(2)に記載の防眩性積層体。 (3) The antiglare laminate according to (1) or (2) above, wherein the haze is 2 to 10% and the total light transmittance is 88% or more.
 (4)光沢度が60~90%であることを特徴とする前記(1)~(3)のいずれか1項に記載の防眩性積層体。 (4) The antiglare laminate according to any one of (1) to (3) above, wherein the glossiness is 60 to 90%.
 (5)前記透明基材のリタデーションが3,000~30,000であることを特徴とする前記(1)~(4)のいずれか1項に記載の防眩性積層体。 (5) The antiglare laminate according to any one of (1) to (4), wherein the retardation of the transparent substrate is 3,000 to 30,000.
 (6)前記粒第1のピーク領域に属する微粒子の数をNとし、前記粒子径がAより小さい第2のピーク領域に属する微粒子の数をNとし、前記粒子径がAより小さくBより大きいm個のピークを含む第3のピーク領域に属する微粒子の数をNとしたとき、N:N:N=1:30:5~1:50,000:100の比を満足することを特徴とする前記(1)~(5)のいずれか1項に記載の防眩性積層体。 (6) the number of particles belonging to the particles first peak region and N 1, the number of fine particles that the particle diameter belonging to A is less than the second peak region and N 2, the particle diameter is smaller than A B When the number of fine particles belonging to the third peak region including m larger peaks is N 3 , the ratio of N 1 : N 2 : N 3 = 1: 30: 5 to 1: 50,000: 100 is set. 6. The antiglare laminate according to any one of (1) to (5), wherein the antiglare laminate is satisfied.
 (7)前記(1)~(6)のいずれか1項に記載の防眩性積層体を備える表示装置。 (7) A display device comprising the antiglare laminate according to any one of (1) to (6).
 (8)防眩性ハードコート層を形成するための硬化性樹脂組成物であって、
 前記硬化性樹脂組成物は、硬化性樹脂と微粒子成分とを含有し、
 前記微粒子成分は、粒子径分布において少なくとも3つ以上のピークを有し、
 前記少なくとも3つ以上のピークのうち、第1のピーク領域に属する微粒子の平均粒子径をA(μm)とし、粒子径がAより小さい第2のピーク領域に属する微粒子の平均粒子径をB(μm)とし、粒子径がAより小さくBより大きいm個のピークを含む第3のピーク領域に属する微粒子の平均粒子径をそれぞれCm(μm)としたときに、下記式を満足することを特徴とする硬化性樹脂組成物。
 1≦A≦5、
 0.001≦B≦0.3、
 (2×B)≦Cm≦(0.5×A)、
 ここで、mは1以上の整数である。
(8) A curable resin composition for forming an antiglare hard coat layer,
The curable resin composition contains a curable resin and a fine particle component,
The fine particle component has at least three or more peaks in the particle size distribution,
Of the at least three or more peaks, the average particle size of the fine particles belonging to the first peak region is A (μm), and the average particle size of the fine particles belonging to the second peak region having a particle size smaller than A is B ( μm), and when the average particle diameter of fine particles belonging to the third peak region including m peaks smaller than A and larger than B is Cm (μm), the following equation is satisfied: A curable resin composition.
1 ≦ A ≦ 5,
0.001 ≦ B ≦ 0.3,
(2 × B) ≦ Cm ≦ (0.5 × A),
Here, m is an integer of 1 or more.
 (9)前記第1のピーク領域に属する微粒子の数をNとし、前記粒子径がAより小さい第2のピーク領域に属する微粒子の数をNとし、前記粒子径がAより小さくBより大きいm個のピークを含む第3のピーク領域に属する微粒子の数をNとしたとき、N:N:N=1:30:5~1:50,000:100の比を満足することを特徴とする前記(8)に記載の硬化性樹脂組成物。 (9) than said first number of particles belonging to the peak area as N 1, the number of fine particles that the particle diameter belonging to A is less than the second peak region and N 2, the particle diameter is smaller than A B Satisfying the ratio of N 1 : N 2 : N 3 = 1: 30: 5 to 1: 50,000: 100, where N 3 is the number of fine particles belonging to the third peak region including large m peaks The curable resin composition as described in (8) above, wherein
 (10)前記(8)または前記(9)に記載の硬化性樹脂組成物を硬化させて得られることを特徴とする塗膜。 (10) A coating film obtained by curing the curable resin composition according to (8) or (9).
 本発明の防眩性積層体と当該防眩性積層体を備える表示装置は、防眩性とギラツキ防止に優れている。また、本発明の硬化性樹脂組成物と塗膜は、防眩性とギラツキ防止に優れた防眩性積層体のハードコート層を提供することができる。 The display device provided with the antiglare laminate of the present invention and the antiglare laminate is excellent in antiglare properties and glare prevention. Moreover, the curable resin composition and coating film of the present invention can provide a hard coat layer of an antiglare laminate excellent in antiglare property and glare prevention.
 以下に、本発明の実施形態について具体的に説明する。但し、本発明の実施形態は、以下の実施形態のみに限定されるものではない。 Hereinafter, embodiments of the present invention will be specifically described. However, embodiments of the present invention are not limited to the following embodiments.
 本実施形態は、高精細の表示装置において有用なものである。本実施形態における高精細の表示装置とは、200ppi以上の表示装置のことをいう。さらに250ppi以上の表示装置であるとさらに好ましい。 This embodiment is useful in a high-definition display device. The high-definition display device in this embodiment refers to a display device of 200 ppi or more. Furthermore, it is more preferable that it is a display apparatus of 250 ppi or more.
(防眩性積層体の構成)
 本実施形態の防眩性積層体は、透明基材と、その少なくとも片側の最外層に設けられたハードコート層とを有している。透明基材とハードコート層以外にも、必要に応じて、アンカー層、屈折率調整層、保護層等の他の層が透明基材とハードコート層との間に積層されていてもよい。
(Configuration of antiglare laminate)
The antiglare laminate of the present embodiment has a transparent substrate and a hard coat layer provided on the outermost layer on at least one side thereof. In addition to the transparent substrate and the hard coat layer, other layers such as an anchor layer, a refractive index adjusting layer, and a protective layer may be laminated between the transparent substrate and the hard coat layer as necessary.
 ハードコート層は、透明基材の表側(外界側)の最外層に形成されていてもよいし、透明基材の裏側(反外界側)の最外層に形成されていてもよいし、両側の最外層に形成されていてもよい。 The hard coat layer may be formed on the outermost layer on the front side (external world side) of the transparent base material, or may be formed on the outermost layer on the back side (anti-external side) of the transparent base material. It may be formed in the outermost layer.
(透明基材)
 透明基材は、ハードコート層を形成する透明な基材となるものである。透明基材を形成する材料としては、光学的透明性、機械的強度、耐溶剤性等に優れている材料であることが好ましい。また、透明基材は、有機系材料であっても無機系材料であってもよい。
(Transparent substrate)
A transparent base material becomes a transparent base material which forms a hard-coat layer. The material for forming the transparent substrate is preferably a material excellent in optical transparency, mechanical strength, solvent resistance, and the like. The transparent substrate may be an organic material or an inorganic material.
 有機系材料としては、例えば、ポリプロピレン系樹脂、ポリエチレン系樹脂、環状ポリオレフィン樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアクリル系樹脂、ポリ塩化ビニル系樹脂、ナイロン系樹脂、ウレタン系樹脂、トリアセチルセルロースなどのセルロース系樹脂等が挙げられる。これらの中でも、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレンテレフタレート、ポリプロピレンナフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂が好ましい。さらに、透明性、耐候性、耐溶剤性、剛性、コストの観点から、ポリエチレンテレフタレートを用いることがより好ましい。有機系材料は、2種類以上の有機系材料を混合したり、積層したりして使用してもよい。 Examples of organic materials include polypropylene resins, polyethylene resins, cyclic polyolefin resins, polyamide resins, polyester resins, polyacrylic resins, polyvinyl chloride resins, nylon resins, urethane resins, and triacetyl cellulose. Cellulosic resins such as Among these, polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polypropylene terephthalate, polypropylene naphthalate, polytrimethylene terephthalate, and polybutylene terephthalate are preferable. Furthermore, it is more preferable to use polyethylene terephthalate from the viewpoints of transparency, weather resistance, solvent resistance, rigidity, and cost. The organic material may be used by mixing or laminating two or more kinds of organic materials.
 無機系材料としては、例えば、ソーダ石灰ガラス、ホウケイ酸ガラス、石英ガラス、強化ガラス(アルミノケイ酸塩ガラス)等が挙げられる。これらの中では、強化ガラス(アルミノケイ酸塩ガラス)が好ましい。 Examples of the inorganic material include soda lime glass, borosilicate glass, quartz glass, and tempered glass (aluminosilicate glass). Among these, tempered glass (aluminosilicate glass) is preferable.
 透明基材には、各種添加剤が含まれていてもよい。添加剤としては、例えば、酸化防止剤、耐熱安定剤、紫外線吸収剤、顔料、染料、帯電防止剤、核剤、カップリング剤等が挙げられる。 The transparent base material may contain various additives. Examples of the additive include an antioxidant, a heat stabilizer, an ultraviolet absorber, a pigment, a dye, an antistatic agent, a nucleating agent, and a coupling agent.
 透明基材とハードコート層との密着性を向上させるために、透明基材に表面処理を施してもよい。表面処理としては、例えば、コロナ放電処理、クロム酸処理、火炎処理、熱風処理、オゾン・紫外線照射処理等の表面酸化処理などが挙げられる。 In order to improve the adhesion between the transparent substrate and the hard coat layer, the transparent substrate may be subjected to a surface treatment. Examples of the surface treatment include corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, and surface oxidation treatment such as ozone / ultraviolet irradiation treatment.
 透明基材の厚さは、機械的強度の確保やカール防止、加工性等の観点から、1~1,000μmであることが好ましく、5~500μmであることがより好ましく、50~250μmであることがより好ましい。 The thickness of the transparent substrate is preferably 1 to 1,000 μm, more preferably 5 to 500 μm, and more preferably 50 to 250 μm from the viewpoints of ensuring mechanical strength, curling prevention, workability, and the like. It is more preferable.
 透明基材は、後記する虹模様の低減の理由から、リタデーションが3,000~30,000であることが好ましい。リタデーションは5,000~25,000であることがより好ましい。 The transparent substrate preferably has a retardation of 3,000 to 30,000 for the reason of reducing the rainbow pattern described later. The retardation is more preferably 5,000 to 25,000.
(ハードコート層)
 ハードコート層は、透明基材の少なくとも片側の最外層に設けられ、硬化性樹脂と微粒子成分とを含有し、当該微粒子成分を含有することよって表面に凹凸を有ししている。透明基材の表面にハードコート層を形成することによって、耐傷性や耐擦過性を付与することができる。さらに、ハードコート層は、皮脂や化粧品等に対する防汚性、指滑り性、撥水性等を透明基材の表面に付与することができる。
(Hard coat layer)
The hard coat layer is provided on the outermost layer on at least one side of the transparent substrate, contains a curable resin and a fine particle component, and has irregularities on the surface by containing the fine particle component. By forming a hard coat layer on the surface of the transparent substrate, scratch resistance and scratch resistance can be imparted. Furthermore, the hard coat layer can impart antifouling properties, finger slipping properties, water repellency, and the like to sebum and cosmetics on the surface of the transparent substrate.
 硬化性樹脂は、熱硬化型であってもよいし、活性エネルギー線硬化型であってもよい。製造時におけるカールの発生を極力抑制するためには、活性エネルギー線硬化型であることが好ましい。活性エネルギー線とは、紫外線、電子線、可視光線、γ線等の電離性放射線のことをいう。 The curable resin may be a thermosetting type or an active energy ray curable type. In order to suppress the occurrence of curling during production as much as possible, the active energy ray curable type is preferable. Active energy rays refer to ionizing radiation such as ultraviolet rays, electron beams, visible rays, and γ rays.
 熱硬化型樹脂としては、例えば、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、珪素樹脂、ポリシロキサン樹脂等が挙げられる。 Examples of the thermosetting resin include phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, silicon resin, polysiloxane resin, and the like.
 活性エネルギー線硬化型樹脂としては、例えば、アクリル系硬化性樹脂、ウレタン系硬化性樹脂等が挙げられる。また、活性エネルギー線としては、取扱いや加工のし易さから、紫外線が好ましい。 Examples of the active energy ray-curable resin include acrylic curable resins and urethane curable resins. Moreover, as an active energy ray, an ultraviolet ray is preferable from the viewpoint of easy handling and processing.
 活性エネルギー線硬化型のアクリル系硬化性樹脂とは、アクリル系の重合性不飽和基を有するモノマーまたはオリゴマーからなる硬化性組成物の重合体である。アクリル系の重合性不飽和基を有するモノマーまたはオリゴマーとしては、単官能のものと多官能のものがある。 The active energy ray-curable acrylic curable resin is a polymer of a curable composition comprising a monomer or oligomer having an acrylic polymerizable unsaturated group. Monomers and oligomers having an acrylic polymerizable unsaturated group include monofunctional and polyfunctional ones.
 アクリル系の重合性不飽和基を有する単官能のモノマーの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n−ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸n−デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸n−ウンデシル、(メタ)アクリル酸n−ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸エステルが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。 Specific examples of the monofunctional monomer having an acrylic polymerizable unsaturated group include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, (meth ) N-butyl acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, N-octyl (meth) acrylate, isooctyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, n-decyl (meth) acrylate, isodecyl (meth) acrylate, (meta ) N-undecyl acrylate, n-dodecyl (meth) acrylate, stearyl (meth) acrylate, (meth) acrylate Le methoxyethyl acrylate, ethoxyethyl (meth) acrylate, cyclohexyl (meth) acrylate, and (meth) (meth) acrylic acid esters of benzyl acrylate and the like. These may be used individually by 1 type and may use 2 or more types together.
 また、アクリル系の重合性不飽和基を有する単官能のオリゴマーの具体例としては、エトキシ化o−フェニルフェノールアクリレート、メトキシポリエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート等が挙げられる。 Specific examples of the monofunctional oligomer having an acrylic polymerizable unsaturated group include ethoxylated o-phenylphenol acrylate, methoxypolyethylene glycol acrylate, phenoxypolyethylene glycol acrylate, and the like.
 アクリル系の重合性不飽和基を有するモノマーまたはオリゴマーからなる組成物が硬化性となるためには、アクリル系の重合性不飽和基を有するモノマーまたはオリゴマーとして、多官能(メタ)アクリル酸エステルを含有していることが好ましい。多官能(メタ)アクリル酸エステルとしては、例えば、ジプロピレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレンオキサイド変性ネオペンチルグリコールジ(メタ)アクリレート、変性ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等の2官能の(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、ポリエーテルトリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート等の3官能の(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の(メタ)アクリレートが挙げられる。これらの多官能アクリレートは、1種を単独で使用してもよいし、2種以上を組み合わせて使用することもできる。
 ハードコート層としての硬度を確保するためには、4官能以上の(メタ)アクリル酸エステルを使用することが好ましい。
In order for a composition comprising a monomer or oligomer having an acrylic polymerizable unsaturated group to be curable, a polyfunctional (meth) acrylic ester is used as the monomer or oligomer having an acrylic polymerizable unsaturated group. It is preferable to contain. Examples of polyfunctional (meth) acrylic acid esters include dipropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate. , Bifunctional (meth) acrylates such as propylene oxide modified neopentyl glycol di (meth) acrylate, modified bisphenol A di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, polyethylene glycol di (meth) acrylate, Pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (meth) acrylate, polyether tri (meth) acrylate , Trifunctional (meth) acrylates such as glycerin propoxytri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, propionic acid modified dipentaerythritol Examples include tetra- or higher functional (meth) acrylates such as penta (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate. These polyfunctional acrylates may be used individually by 1 type, and can also be used in combination of 2 or more type.
In order to ensure the hardness as the hard coat layer, it is preferable to use a tetrafunctional or higher (meth) acrylic ester.
 活性エネルギー線硬化型のウレタン系硬化性樹脂とは、ウレタンアクリレートモノマーまたはオリゴマーの重合体である。ウレタンアクリレートオリゴマーとしてはウレタン結合を介してポリオキシアルキレンセグメント又は飽和ポリエステルセグメントあるいはその両方が連結し、両末端にアクリロイル基を有するものである。 The active energy ray-curable urethane-based curable resin is a polymer of urethane acrylate monomer or oligomer. As a urethane acrylate oligomer, a polyoxyalkylene segment and / or a saturated polyester segment are linked via a urethane bond, and acryloyl groups are present at both ends.
 熱硬化型または活性エネルギー線硬化型のアクリル系硬化性樹脂とするためには、上記の重合性不飽和基を有するモノマーまたはオリゴマーに、重合開始剤を加えて、熱硬化性または活性エネルギー線硬化性の組成物とすることが必要である。 In order to obtain a thermosetting or active energy ray-curable acrylic curable resin, a polymerization initiator is added to the monomer or oligomer having the polymerizable unsaturated group, and the thermosetting or active energy ray curing is performed. It is necessary to make the composition of the nature.
 熱重合開始剤としては、公知のものを使用することができる。例えば、ベンゾイルパーオキサイド、ジ−t−ブチルパーオキサイドなどのパーオキサイド化合物などを挙げることができる。熱重合開始剤の添加量は、重合性不飽和基を有するモノマーまたはオリゴマーに対して、1~10質量%であることが好ましい。 As the thermal polymerization initiator, known ones can be used. Examples thereof include peroxide compounds such as benzoyl peroxide and di-t-butyl peroxide. The addition amount of the thermal polymerization initiator is preferably 1 to 10% by mass relative to the monomer or oligomer having a polymerizable unsaturated group.
 また、活性エネルギー線重合開始剤としては、公知の各種光重合開始剤を使用することができる。例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン−n−ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−2(ヒドロキシ−2−プロプル)ケトン、ベンゾフェノン、p−フェニルベンゾフェノン、4,4’−ジエチルアミノベンゾフェノン、プロピオフェノン、ジクロロベンゾフェノン、2−メチルアントラキノン、2−エチルアントラキノン、2−ターシャリーブチルアントラキノン、2−アミノアントラキノン、2−メチルチオキサントン、2−エチルチオキサントン、2−クロロチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタール、p−ジメチルアミン安息香酸エステルなどを挙げることができる。これら活性エネルギー線重合開始剤は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。活性エネルギー線重合開始剤の添加量は、重合性不飽和基を有するモノマーまたはオリゴマーに対して、1~10質量%であることが好ましい。 Also, as the active energy ray polymerization initiator, various known photopolymerization initiators can be used. For example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2 -Phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propane-1 -One, 4- (2-hydroxyethoxy) phenyl-2 (hydroxy-2-propyl) ketone, benzophenone, p-phenylbenzophenone, 4,4'-diethylaminobenzophenone, propi Phenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertiarybutylanthraquinone, 2-aminoanthraquinone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2 , 4-diethylthioxanthone, benzyldimethyl ketal, acetophenone dimethyl ketal, p-dimethylamine benzoate, and the like. One of these active energy ray polymerization initiators may be used alone, or two or more thereof may be used in combination. The addition amount of the active energy ray polymerization initiator is preferably 1 to 10% by mass relative to the monomer or oligomer having a polymerizable unsaturated group.
 また、光重合開始剤に加えて、光増感剤をさらに含有することもできる。光増感剤としては、たとえば、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等が挙げられる。 In addition to the photopolymerization initiator, a photosensitizer can be further contained. Examples of the photosensitizer include n-butylamine, triethylamine, and tri-n-butylphosphine.
 ハードコート層には、必要に応じて、柔軟性成分が含まれてもよい。柔軟性成分が含まれていると、加工時のクラックの発生を防止することができる。柔軟性成分としては、分子内に1個以上の重合性不飽和基を有する(メタ)アクリレート類が好ましい。(メタ)アクリレート類としては、例えば、トリシクロデカンメチロールジ(メタ)アクリレート、ビスフェノールFのエチレンオキサイド変性ジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド変性ジ(メタ)アクリレート、イソシアヌル酸のエチレンオキサイド変性ジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等の2官能(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチルプロパンのプロピレンオキサイド変性トリ(メタ)アクリレート、トリメチルプロパンのエチレンオキサイド変性トリ(メタ)アクリレート等の3官能(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート等が挙げられる。特に、3官能(メタ)アクリレート、ウレタン(メタ)アクリレートがより好ましい。これらの(メタ)アクリレート類は、1種を単独で使用することも、2種以上を組み合わせて使用することもできる。 The hard coat layer may contain a flexible component as necessary. When the flexible component is contained, generation of cracks during processing can be prevented. As the flexible component, (meth) acrylates having one or more polymerizable unsaturated groups in the molecule are preferable. Examples of (meth) acrylates include tricyclodecanemethylol di (meth) acrylate, ethylene oxide modified di (meth) acrylate of bisphenol F, ethylene oxide modified di (meth) acrylate of bisphenol A, and ethylene oxide modified of isocyanuric acid. Bifunctional (meth) acrylates such as di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide modified tri (meth) acrylate of trimethylpropane , Trifunctional (meth) acrylates such as ethylene oxide modified tri (meth) acrylate of trimethylpropane, urethane (meth) acrylate, polyester (meth ) Acrylates, polyether (meth) acrylate. In particular, trifunctional (meth) acrylate and urethane (meth) acrylate are more preferable. These (meth) acrylates can be used singly or in combination of two or more.
 また、ハードコート層は、必要に応じて、本実施形態の効果を損なわない範囲で、上記以外の成分を含有しても良い。ハードコート層に添加可能な成分としては、例えば、分散剤、柔軟性成分、抗菌剤、フッ素系防汚剤、フッ素系滑剤またはシリコン系滑剤、レベリング剤、帯電防止剤、紫外線吸収剤、熱安定剤、酸化防止剤等が挙げられる。分散剤には、ハードコート層を形成するための塗布液中で後記する微粒子を均一に分散させるために使用されるものが含まれる。 In addition, the hard coat layer may contain components other than those described above as long as the effects of the present embodiment are not impaired. Components that can be added to the hard coat layer include, for example, a dispersant, a flexible component, an antibacterial agent, a fluorine antifouling agent, a fluorine lubricant or a silicone lubricant, a leveling agent, an antistatic agent, an ultraviolet absorber, and a heat stabilizer. Agents, antioxidants and the like. The dispersant includes those used to uniformly disperse fine particles described later in the coating liquid for forming the hard coat layer.
 ハードコート層の厚さは、0.5~8.0μmであることが好ましい。ハードコート層の厚さは、0.5~5.0μmであることがより好ましく、1.0~4.0μmであることがさらに好ましく、1.0~3.5μmであることが最も好ましい。 The thickness of the hard coat layer is preferably 0.5 to 8.0 μm. The thickness of the hard coat layer is more preferably from 0.5 to 5.0 μm, further preferably from 1.0 to 4.0 μm, and most preferably from 1.0 to 3.5 μm.
(微粒子)
 ハードコート層に含有される微粒子成分は、粒子径分布において少なくとも3つ以上のピークを有している。粒子径分布において、ピークとは、横軸に粒子径、縦軸に粒子数とするチャートにおいて、粒子数が極大値となるときの粒子径のことである。
(Fine particles)
The fine particle component contained in the hard coat layer has at least three or more peaks in the particle size distribution. In the particle size distribution, the peak is the particle size when the number of particles reaches a maximum value in a chart in which the horizontal axis represents the particle size and the vertical axis represents the number of particles.
 本発明者らは、ハードコート層に含有される微粒子成分として、粒子径分布において少なくとも3つ以上のピークを有する微粒子成分を用い、それぞれのピークの粒子径が特定の数値範囲にあるときに、ハードコート層表面の凹凸構造のランダム性を適度に制御し得ることを見出すとともに、防眩性積層体の防眩性とギラツキ防止を両立し得ることを見出した。 The present inventors use a fine particle component having at least three or more peaks in the particle size distribution as the fine particle component contained in the hard coat layer, and when the particle diameter of each peak is in a specific numerical range, It has been found that the randomness of the concavo-convex structure on the surface of the hard coat layer can be appropriately controlled, and it is possible to achieve both the antiglare property and the glare prevention of the antiglare laminate.
 すなわち、微粒子成分は、粒子径分布において少なくとも3つ以上のピークを有し、前記少なくとも3つ以上のピークのうち、粒子径が第1のピーク領域に属する微粒子の平均粒子径をA(μm)とし、粒子径が第2のピーク領域に属する微粒子の平均粒子径をB(μm)とし、粒子径がAより小さくBより大きいm個のピークを含む第3のピーク領域に属する微粒子の平均粒子径をそれぞれCm(μm)としたときに、下記式を満足することが必要となる。
 1≦A≦5、
 0.001≦B≦0.3、
 (2×B)≦Cm≦(0.5×A)、
 ここで、mは1以上の整数である。
That is, the fine particle component has at least three or more peaks in the particle size distribution, and among the at least three or more peaks, the average particle diameter of the fine particles belonging to the first peak region is A (μm). And the average particle diameter of the fine particles belonging to the second peak area is B (μm), and the average particle diameter of the fine particles belonging to the third peak area including m peaks whose particle diameter is smaller than A and larger than B is When the diameter is Cm (μm), it is necessary to satisfy the following formula.
1 ≦ A ≦ 5,
0.001 ≦ B ≦ 0.3,
(2 × B) ≦ Cm ≦ (0.5 × A),
Here, m is an integer of 1 or more.
 微粒子の粒子径分布は、以下の方法で測定される。
 透過型電子顕微鏡を用いて、ハードコート層の表層を撮影して、粒子画像を得る。最大長(Dmax:粒子画像の輪郭上の2点における最大長さ)と、最大長垂直長(DV−max:最大長に平行な2本の直線で粒子画像を挟んだときの、この2本の直線間の最短長さ)を測長し、その相乗平均値(Dmax×DV−max)1/2を粒子径とする。この方法で100個の測定値から粒度分布を近似的に求めることができる。より正確に粒子径分布を調べるためには、できるだけ多くの微粒子の粒子径を測定することが好ましい。
The particle size distribution of the fine particles is measured by the following method.
Using a transmission electron microscope, the surface layer of the hard coat layer is photographed to obtain a particle image. The maximum length (Dmax: maximum length at two points on the contour of the particle image) and the maximum vertical length (DV-max: two lines when the particle image is sandwiched between two straight lines parallel to the maximum length) ) Is measured, and the geometric mean value (Dmax × DV-max) 1/2 is defined as the particle diameter. By this method, the particle size distribution can be approximately obtained from 100 measured values. In order to investigate the particle size distribution more accurately, it is preferable to measure the particle size of as many fine particles as possible.
 ここで、ピーク領域とは、縦軸を微粒子の数、横軸を微粒子の粒子径とした粒子径分布図において、粒子径分布におけるある1つのピーク(微粒子の数が突出している点)を横軸方向の中心として微粒子が存在する横軸方向における一定領域を意味する。ピーク領域は、技術常識に従って解釈されるべき用語である。ピーク領域は、例えば、粒子径分布におけるある1つのピークを横軸方向の中心として、該ピークよりも粒子径が小さく、かつ、該ピークから最も近い極小値(第1極小値)から、該ピークよりも粒子径が大きく、かつ、該ピークから最も近い極小値(第2極小値)までの曲線と、粒子径分布図の横軸と、前記第1極小値を定数とする縦軸と、前記第2極小値を定数とする縦軸とによって囲まれる領域としてとらえることができる。また、粒径分布のチャートにおいて、極大値から極小値までの距離又は領域が明確でない場合には、例えば、1つの極大値と、該極大値から極小値へ向かう途中にある変曲点との距離の2倍を、極大値から極小値までの距離の近似値として採用することができる。 Here, the peak area is a particle size distribution chart in which the vertical axis represents the number of fine particles and the horizontal axis represents the particle diameter of the fine particles, and one peak in the particle size distribution (the point where the number of fine particles protrudes) is horizontal. It means a certain region in the horizontal axis direction where fine particles exist as the center in the axial direction. The peak area is a term that should be interpreted according to common general technical knowledge. The peak area is, for example, from a minimum value (first minimum value) closest to the peak having a particle diameter smaller than the peak with a certain peak in the particle size distribution as the center in the horizontal axis direction. The particle diameter is larger and the curve from the peak to the nearest minimum value (second minimum value), the horizontal axis of the particle size distribution diagram, the vertical axis with the first minimum value as a constant, It can be regarded as a region surrounded by a vertical axis having the second minimum value as a constant. In the particle size distribution chart, when the distance or region from the maximum value to the minimum value is not clear, for example, one maximum value and an inflection point on the way from the maximum value to the minimum value. Twice the distance can be used as an approximate value of the distance from the maximum value to the minimum value.
 上記式から、微粒子成分の粒子径分布において、粒子径が第1のピーク領域に属する微粒子の平均粒子径をA(μm)とし、粒子径がAより小さい第2のピーク領域に属する微粒子の平均粒子径をB(μm)としたとき、粒子径がAより小さくBより大きいピークの個数は1個以上あることとなる。 From the above formula, in the particle size distribution of the fine particle component, the average particle size of the fine particles belonging to the first peak region is A (μm), and the average of the fine particles belonging to the second peak region where the particle size is smaller than A When the particle diameter is B (μm), the number of peaks having a particle diameter smaller than A and larger than B is one or more.
 粒子径がAより小さくBより大きいピークの個数が1個のとき、そのピーク領域に属する微粒子の平均粒子径をC1(μm)とする。粒子径がAより小さくBより大きいピークの個数が2個のとき、それらのピーク領域に属する微粒子の平均粒子径をそれぞれC1(μm)、C2(μm)とする。同様に、粒子径がAより小さくBより大きいピークの個数、すなわちmが、3、4等と増加するにつれて、それらのピーク領域に属する微粒子の平均粒子径をそれぞれ、C3(μm)、C4(μm)等と規定する。
 ここで、粒子径がAより小さくBより大きいピークの平均粒子径をまとめて、Cm(μm)と表す。
When the number of peaks having a particle diameter smaller than A and larger than B is one, the average particle diameter of fine particles belonging to the peak region is defined as C1 (μm). When the number of peaks having a particle diameter smaller than A and larger than B is two, the average particle diameters of the fine particles belonging to those peak regions are C1 (μm) and C2 (μm), respectively. Similarly, as the number of peaks whose particle diameter is smaller than A and larger than B, that is, m increases to 3, 4, etc., the average particle diameters of the fine particles belonging to those peak regions are respectively set to C3 (μm) and C4 ( μm) etc.
Here, the average particle diameter of peaks having a particle diameter smaller than A and larger than B is collectively expressed as Cm (μm).
 粒子径が第1のピーク領域に属する微粒子の平均粒子径A(μm)は、1≦A≦5である。このような微粒子は、専らハードコート層に防眩性を付与することに関与する。
 粒子径がAより小さい第2のピーク領域に属する微粒子の平均粒子径B(μm)は、0.001≦B≦0.3である。このような微粒子は、専らギラツキを抑制することに関与する。
 粒子径がAより小さくBより大きいm個のピークを含む第3のピーク領域に属する微粒子の平均粒子径Cm(μm)はいずれも、(2×B)≦Cm≦(0.5×A)である。このような微粒子は、専らギラツキを抑制することに関与する。
The average particle diameter A (μm) of the fine particles whose particle diameter belongs to the first peak region is 1 ≦ A ≦ 5. Such fine particles are exclusively involved in imparting antiglare properties to the hard coat layer.
The average particle diameter B (μm) of the fine particles belonging to the second peak region having a particle diameter smaller than A is 0.001 ≦ B ≦ 0.3. Such fine particles are exclusively involved in suppressing glare.
The average particle diameter Cm (μm) of the fine particles belonging to the third peak region including m peaks smaller than A and larger than B is (2 × B) ≦ Cm ≦ (0.5 × A). It is. Such fine particles are exclusively involved in suppressing glare.
 さらに、微粒子成分は、粒子径分布において、粒子径が第1のピーク領域に属する微粒子の個数をNとし、粒子径がAより小さい第2のピーク領域に属する微粒子の個数をNとし、粒子径がAより小さくBより大きいm個のピークを含む第3のピーク領域に属する微粒子の個数をNとしたとき、N:N:N=1:30:5~1:50,000:100の比を満足することが好ましい。3種類以上のピーク領域に属する微粒子の相対的な個数が、この比率の範囲内にあるときに、防眩性積層体の防眩性とギラツキ防止をより高いレベルで改善することが可能となる。N:N:N=1:1,000:5~1:50,000:50の比を満足することがより好ましい。N:N:N=1:1,000:5~1:30,000:50の比を満足することがさらに好ましい。
 ピーク領域に属する微粒子の個数は、上記の透過型電子顕微鏡を用いる方法によって、微粒子の粒子径分布とともに測定することができる。
Furthermore, in the particle size distribution, the fine particle component has N 1 as the number of fine particles belonging to the first peak region, and N 2 as the number of fine particles belonging to the second peak region whose particle size is smaller than A. N 1 : N 2 : N 3 = 1: 30: 5 to 1:50 where N 3 is the number of fine particles belonging to the third peak region including m peaks smaller than A and larger than B. It is preferable to satisfy a ratio of 1,000,100. When the relative number of fine particles belonging to three or more kinds of peak regions is within the range of this ratio, it becomes possible to improve the antiglare property and glare prevention of the antiglare laminate at a higher level. . It is more preferable to satisfy the ratio of N 1 : N 2 : N 3 = 1: 1,000: 5 to 1: 50,000: 50. More preferably, the ratio of N 1 : N 2 : N 3 = 1: 1,000: 5 to 1: 30,000: 50 is satisfied.
The number of fine particles belonging to the peak region can be measured together with the particle size distribution of the fine particles by the method using the transmission electron microscope.
 微粒子は、無機系微粒子であってもよいし、有機系微粒子であってもよい。無機系微粒子としては、例えば、二酸化ケイ素、二酸チタン、酸化ジルコニウム、酸化アルミニウムなどの金属酸化物微粒子等を用いることができるが、硬度が高いものが好ましい。
 有機系微粒子としては、例えば、アクリル樹脂、ポリスチレン、ポリシロキサン、メラミン樹脂、ベンゾグアナミン樹脂、ポリテトラフルオロエチレン、セルロースアセテート、ポリカーボネート、ポリアミドなどの樹脂粒子などを用いることができる。
The fine particles may be inorganic fine particles or organic fine particles. As the inorganic fine particles, for example, metal oxide fine particles such as silicon dioxide, titanium dioxide, zirconium oxide, and aluminum oxide can be used, and those having high hardness are preferable.
As the organic fine particles, for example, resin particles such as acrylic resin, polystyrene, polysiloxane, melamine resin, benzoguanamine resin, polytetrafluoroethylene, cellulose acetate, polycarbonate, and polyamide can be used.
 また、ハードコート層中に微粒子を均一に分散させることを目的として、微粒子表面を表面処理してもよい。表面処理の方法としては、例えば、界面活性剤の付与の他、水酸基やカルボン酸などの官能基の付与等の方法が挙げられる。 Further, the surface of the fine particles may be surface-treated for the purpose of uniformly dispersing the fine particles in the hard coat layer. Examples of the surface treatment method include methods such as imparting a functional group such as a hydroxyl group and a carboxylic acid in addition to imparting a surfactant.
 微粒子のハードコート層中の含有量は、ハードコート層の厚さにも依るが、ギラツキおよび防眩性の観点から、合計で、10~500質量%であることが好ましく、50~300質量%であることがより好ましい。 The content of the fine particles in the hard coat layer depends on the thickness of the hard coat layer, but from the viewpoint of glare and antiglare properties, the total content is preferably 10 to 500% by mass, and 50 to 300% by mass. It is more preferable that
 また、ギラツキ低減の観点から、微粒子とハードコート層との屈折率の差は、0.1以下であることが好ましく、0.01以下であることがより好ましい。 Further, from the viewpoint of reducing glare, the difference in refractive index between the fine particles and the hard coat layer is preferably 0.1 or less, and more preferably 0.01 or less.
 微粒子の平均粒子径A、B、Cmが上記式を満足する場合には、防眩性、ギラツキ防止のみならず、虹模様の防止、白っぽさの防止にも有効である。 When the average particle diameters A, B, and Cm of the fine particles satisfy the above formula, it is effective not only for preventing glare and glare, but also for preventing rainbow patterns and whiteness.
 虹模様とは、透明基材とハードコート層との間の屈折率差で発現する干渉模様のことである。ハードコート層表面の凹凸の程度を適度に制御することによって、干渉模様の発現を緩和させることが可能である。 The rainbow pattern is an interference pattern that appears due to a difference in refractive index between the transparent substrate and the hard coat layer. By appropriately controlling the degree of unevenness on the surface of the hard coat layer, it is possible to mitigate the expression of interference patterns.
 白っぽさとは、防眩性積層体の透過光を見たときに、白っぽく見える現象のことをいう。反射光の拡散具合で評価される防眩性とは異なり、透過光の拡散具合で評価される。ハードコート層表面の凹凸の程度を適度に制御することによって、白っぽさを低減させることが可能である。 WHITE is a phenomenon that appears whitish when the transmitted light of the antiglare laminate is viewed. Unlike the antiglare property, which is evaluated by the diffused state of reflected light, it is evaluated by the diffused state of transmitted light. Whitiness can be reduced by appropriately controlling the degree of unevenness on the surface of the hard coat layer.
(防眩性積層体の特性)
 本実施形態の防眩性積層体では、ハードコート層のスキューネスが1.0~4.0であることが好ましい。このとき、防眩性とギラツキ防止において、より優れた性能のものとなる。
 ここで、スキューネスとは、ハードコート層表面の凹凸の偏りの度合いの指標である。JIS B0601−2001に準拠して測定される。平均面を中心としたときの高さ分布の対称性の偏りの度合いを表す。スキューネスが0のときは、表面の凹凸の高さ分布が平均線に対して対称であることを示している。スキューネスが正の数値であると、高さ分布が平均面に対し下側に偏っており、凹凸が鋭い傾向にあることを表している。
(Characteristics of antiglare laminate)
In the antiglare laminate of the present embodiment, it is preferable that the skewness of the hard coat layer is 1.0 to 4.0. At this time, in the antiglare property and glare prevention, it becomes a thing of the more superior performance.
Here, the skewness is an index of the degree of uneven unevenness of the hard coat layer surface. It is measured according to JIS B0601-2001. This represents the degree of symmetry deviation of the height distribution with the average plane as the center. When the skewness is 0, it indicates that the height distribution of the surface irregularities is symmetric with respect to the average line. When the skewness is a positive numerical value, the height distribution is biased downward with respect to the average surface, indicating that the unevenness tends to be sharp.
 本実施形態の防眩性積層体では、ヘイズは、2~10%であることが好ましく、4~8%であることがより好ましい。ヘイズを2~10%の範囲にすることによって、防眩性のレベルをさらに有効なものとすることができる。
 ヘイズとは、積層体の透明性に関する指標であり、曇り度ともいう。全光線透過光に対する拡散透過光の割合である。一般的にヘイズが大きくなると白っぽくぼやけて見える。ハードコート層表面の凹凸の程度を適度に変更することによって、制御することが可能である。
In the antiglare laminate of this embodiment, the haze is preferably 2 to 10%, and more preferably 4 to 8%. By setting the haze in the range of 2 to 10%, the antiglare level can be made more effective.
The haze is an index related to the transparency of the laminate and is also referred to as haze. This is the ratio of diffuse transmitted light to total light transmitted. In general, when haze increases, it appears whitish and blurry. It can be controlled by appropriately changing the degree of unevenness on the surface of the hard coat layer.
 本実施形態の防眩性積層体では、表示装置の視認性向上の観点から全光線透過率が88%以上であることが好ましく、90%以上であることがより好ましい。 In the antiglare laminate of this embodiment, the total light transmittance is preferably 88% or more and more preferably 90% or more from the viewpoint of improving the visibility of the display device.
 本実施形態の防眩性積層体では、光沢度は、60~90%であることが好ましく、60~80%であることがより好ましい。光沢度を60~90%の範囲にすることによって、防眩性をさらに優れたものとすることができる。ここで、光沢度は、60度鏡面反射率として評価される。 In the antiglare laminate of the present embodiment, the gloss is preferably 60 to 90%, and more preferably 60 to 80%. By making the glossiness in the range of 60 to 90%, the antiglare property can be further improved. Here, the glossiness is evaluated as a 60-degree specular reflectance.
(製造方法)
 本実施形態の防眩性積層体は、透明基材上に、防眩性ハードコート層を形成するための硬化性樹脂組成物を塗工し、その後ハードコート層を乾燥させ、次いでハードコート層を硬化させて、ハードコート層の塗膜を形成することによって製造することができる。すなわち、本実施形態の防眩性積層体のハードコート層は、硬化性樹脂組成物を硬化させて得られる塗膜である。製造工程は、ロールツーロール方式で連続的に行うことも可能である。
(Production method)
In the antiglare laminate of this embodiment, a curable resin composition for forming an antiglare hard coat layer is applied on a transparent substrate, and then the hard coat layer is dried, and then the hard coat layer Can be cured to form a hard coat layer coating. That is, the hard coat layer of the antiglare laminate of this embodiment is a coating film obtained by curing a curable resin composition. The manufacturing process can also be performed continuously in a roll-to-roll manner.
 本実施形態の硬化性樹脂組成物は、硬化性樹脂と微粒子成分とを含有し、前記微粒子成分は、粒子径分布において少なくとも3つ以上のピークを有し、前記少なくとも3つ以上のピークのうち、粒子径が第1のピーク領域に属する微粒子の平均粒子径をA(μm)とし、粒子径がAより小さい第2のピーク領域に属する微粒子の平均粒子径をB(μm)とし、粒子径がAより小さくBより大きいm個のピークを含む第3のピーク領域に属する微粒子の平均粒子径をそれぞれCm(μm)としたときに、下記式を満足することを特徴とする硬化性樹脂組成物である。
 1≦A≦5、
 0.001≦B≦0.3、
 (2×B)≦Cm≦(0.5×A)、
 ここで、mは1以上の整数である。
The curable resin composition of this embodiment contains a curable resin and a fine particle component, and the fine particle component has at least three or more peaks in the particle size distribution, and among the at least three or more peaks. The average particle diameter of the fine particles belonging to the first peak area whose particle diameter is A (μm), the average particle diameter of the fine particles belonging to the second peak area whose particle diameter is smaller than A is B (μm), and the particle diameter A curable resin composition satisfying the following formula when the average particle diameter of the fine particles belonging to the third peak region including m peaks smaller than A and larger than B is Cm (μm), respectively. It is a thing.
1 ≦ A ≦ 5,
0.001 ≦ B ≦ 0.3,
(2 × B) ≦ Cm ≦ (0.5 × A),
Here, m is an integer of 1 or more.
 また、本実施形態の硬化性樹脂組成物は、前記粒子径が第1のピーク領域に属する微粒子の個数をNとし、前記粒子径がAより小さい第2のピーク領域に属する微粒子の個数をNとし、前記粒子径がAより小さくBより大きいm個のピークを含む第3のピーク領域に属する微粒子の個数をNとしたとき、N:N:N=1:30:5~1:50,000:100の比を満足することが好ましい。N:N:N=1:1,000:5~1:50,000:50の比を満足することがより好ましい。N:N:N=1:1,000:5~1:30,000:50の比を満足することがさらに好ましい。 Further, in the curable resin composition of the present embodiment, the number of fine particles belonging to the first peak region where the particle size belongs to N 1 and the number of fine particles belonging to the second peak region where the particle size is smaller than A is defined as N 1. When N 2 and the number of fine particles belonging to the third peak region including m peaks smaller than A and larger than B are N 3 , N 1 : N 2 : N 3 = 1: 30: It is preferable to satisfy a ratio of 5 to 1: 50,000: 100. It is more preferable to satisfy the ratio of N 1 : N 2 : N 3 = 1: 1,000: 5 to 1: 50,000: 50. More preferably, the ratio of N 1 : N 2 : N 3 = 1: 1,000: 5 to 1: 30,000: 50 is satisfied.
 本実施形態の硬化性樹脂組成物の上記内容についての説明は、前記したとおりであるので、その説明を省略する。 Since the above description of the curable resin composition of the present embodiment is as described above, the description thereof is omitted.
 本実施形態の硬化性樹脂組成物に含有される微粒子成分が、粒子径分布において、上記式を満足する所定の平均粒子径を有する少なくとも3つ以上のピークを有するものとするためには、平均粒子径(μm)が、上記のA、B、Cmの数値範囲にある3種類以上の微粒子を所定の配合比で硬化性樹脂組成物中に添加することによって得ることができる。
 すなわち、硬化性樹脂組成物に含有される微粒子成分は、平均粒子径が異なる3種類以上の微粒子を適切な配合比で添加することによって、微粒子成分の粒子径分布を上記のものすることができる。
 各ピーク領域に属する微粒子の個数の比を上記の比とするための方法も同様である。
In order for the fine particle component contained in the curable resin composition of the present embodiment to have at least three or more peaks having a predetermined average particle size satisfying the above formula in the particle size distribution, an average It can be obtained by adding three or more kinds of fine particles having a particle diameter (μm) in the numerical ranges of A, B, and Cm to the curable resin composition at a predetermined blending ratio.
That is, the fine particle component contained in the curable resin composition can have the above-mentioned particle size distribution of the fine particle component by adding three or more kinds of fine particles having different average particle sizes at an appropriate blending ratio. .
The method for setting the ratio of the number of fine particles belonging to each peak region to the above ratio is also the same.
 硬化性樹脂組成物の溶剤としては、例えば、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、トルエン、n−ヘキサン、n−ブチルアルコール、メチルイソブチルケトン、メチルブチルケトン、エチルブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、N−メチル−2−ピロリドンなどが使用される。これらは1種以上を単独で使用してもよいし、2種以上を混合して使用してもよい。 Examples of the solvent for the curable resin composition include methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, toluene, n-hexane, n-butyl alcohol, methyl isobutyl ketone, methyl butyl ketone, ethyl butyl ketone, cyclohexanone, ethyl acetate, Butyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, N-methyl-2-pyrrolidone and the like are used. These may be used alone or in combination of two or more.
 硬化性樹脂組成物の塗工方法としては、例えば、ブレードコーター、エアナイフコーター、ロールコーター、バーコーター、グラビアコーター、マイクログラビアコーター、ロッドブレードコーター、リップコーター、ダイコーター、カーテンコーター、印刷機等を用いた方法が挙げられる。 Examples of the coating method of the curable resin composition include a blade coater, an air knife coater, a roll coater, a bar coater, a gravure coater, a micro gravure coater, a rod blade coater, a lip coater, a die coater, a curtain coater, and a printing machine. The method used is mentioned.
 塗膜を有した透明基材を加熱することによって、塗膜を乾燥させる。通常は、加熱温度60~100℃、加熱時間1~5分の条件で行う。乾燥は、加熱乾燥機や真空乾燥機などによって行う。 The coating film is dried by heating the transparent substrate having the coating film. Usually, the heating is performed under conditions of a heating temperature of 60 to 100 ° C. and a heating time of 1 to 5 minutes. Drying is performed by a heat dryer or a vacuum dryer.
 次いで、未硬化の塗膜を硬化させる。未硬化塗膜が熱硬化型樹脂を含有する場合には、加熱炉や赤外線ランプ等を用いて、加熱し、硬化させる。未硬化塗膜が活性エネルギー線硬化型樹脂を含有する場合には、活性エネルギー線の照射によって硬化させる。
 活性エネルギー線としては、汎用性の点から、紫外線が好ましい。紫外線の光源としては、例えば、高圧水銀灯、低圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク、キセノンアーク、無電極紫外線ランプ等を使用できる。
 活性エネルギー線の照射による硬化は、窒素等の不活性ガスを充満させた環境下で行うことが好ましい。硬化させる工程は、予備硬化工程と本硬化工程の2段階に分けて行ってもよい。
Next, the uncured coating film is cured. When the uncured coating film contains a thermosetting resin, it is heated and cured using a heating furnace or an infrared lamp. When the uncured coating film contains an active energy ray-curable resin, it is cured by irradiation with active energy rays.
As the active energy ray, ultraviolet rays are preferable from the viewpoint of versatility. As the ultraviolet light source, for example, a high pressure mercury lamp, a low pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc, a xenon arc, an electrodeless ultraviolet lamp, or the like can be used.
Curing by irradiation with active energy rays is preferably performed in an environment filled with an inert gas such as nitrogen. The curing process may be performed in two stages, a preliminary curing process and a main curing process.
 本実施形態の防眩性積層体は、当該積層体を備える表示装置において、防眩性とギラツキ防止の両立を可能とするものである。特に200~400ppi、さらに250~400ppiの高精細の液晶表示装置において、一層その特徴を発揮し得るものである。 The antiglare laminate of the present embodiment enables both antiglare properties and glare prevention in a display device including the laminate. In particular, in a high-definition liquid crystal display device of 200 to 400 ppi, and further 250 to 400 ppi, the characteristics can be further exhibited.
 本実施形態を下記の実施例によって、さらに具体的に説明する。 This embodiment will be described more specifically with reference to the following examples.
 ハードコート層用塗布液として、下記の材料を使用した。
(1)アクリル樹脂:アクリル系紫外線硬化型樹脂、共栄社化学社製、商品名:ライトアクリレートDPE−6A、固形分100%
(2)シリカ微粒子
(i)平均粒子径0.01μmのシリカ微粒子をMEK(メチルエチルケトン)に30質量%で分散させた溶液(日産化学社製、商品名:オルガノシリカゾル)
(ii)平均粒子径0.1μmのシリカ微粒子をMEKに30質量%で分散させた溶液(日産化学社製、商品名:オルガノシリカゾル)
(iii)平均粒子径0.2μmのシリカ微粒子をMEKに30質量%で分散させた溶液(日産化学社製、商品名:オルガノシリカゾル)
(iv)平均粒子径0.3μmのシリカ微粒子をMEKに30質量%で分散させた溶液(日産化学社製、商品名:オルガノシリカゾル)
(v)平均粒子径0.5μmのシリカ微粒子をMEKに30質量%で分散させた溶液(日産化学社製、商品名:オルガノシリカゾル)
(vi)平均粒子径0.8μmのシリカ微粒子をMEKに30質量%で分散させた溶液(日産化学社製、商品名:オルガノシリカゾル)
(vii)平均粒子径1μmのシリカ微粒子(日本触媒社製、商品名:シーホスター)
(viii)平均粒子径2μmのシリカ微粒子(日本触媒社製、商品名:シーホスター)
(ix)平均粒子径4μmのシリカ微粒子(コアフロント社製、商品名:sicastar)
(x)平均粒子径10μmのシリカ微粒子(コアフロント社製、商品名:sicastar)
 シリカ微粒子(vii)~(x)については、30質量%となるようにMEKに分散させた溶液を用いた。
(3)分散剤:ビックケミー・ジャパン社製、商品名:DISPERBYK102
(4)光重合開始剤:BASF社製、商品名:IRGACURE184
The following materials were used as the coating liquid for the hard coat layer.
(1) Acrylic resin: acrylic UV curable resin, manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate DPE-6A, solid content 100%
(2) Silica fine particles (i) A solution in which silica fine particles having an average particle size of 0.01 μm are dispersed in MEK (methyl ethyl ketone) at 30% by mass (trade name: Organosilica sol, manufactured by Nissan Chemical Co., Ltd.)
(Ii) A solution in which silica fine particles having an average particle diameter of 0.1 μm are dispersed in MEK at 30% by mass (manufactured by Nissan Chemical Co., Ltd., trade name: organosilica sol)
(Iii) Solution in which silica fine particles having an average particle size of 0.2 μm are dispersed in MEK at 30% by mass (manufactured by Nissan Chemical Co., Ltd., trade name: organosilica sol)
(Iv) A solution in which silica fine particles having an average particle size of 0.3 μm are dispersed in MEK at 30% by mass (manufactured by Nissan Chemical Co., Ltd., trade name: organosilica sol)
(V) Solution in which silica fine particles having an average particle size of 0.5 μm are dispersed in MEK at 30% by mass (product name: organosilica sol, manufactured by Nissan Chemical Industries, Ltd.)
(Vi) A solution in which silica fine particles having an average particle diameter of 0.8 μm are dispersed in MEK at 30% by mass (manufactured by Nissan Chemical Co., Ltd., trade name: organosilica sol)
(Vii) Silica fine particles having an average particle diameter of 1 μm (manufactured by Nippon Shokubai Co., Ltd., trade name: Seahoster)
(Viii) Silica fine particles having an average particle diameter of 2 μm (manufactured by Nippon Shokubai Co., Ltd., trade name: Seahoster)
(Ix) Silica fine particles having an average particle diameter of 4 μm (manufactured by Corefront Corporation, trade name: sicastar)
(X) Silica fine particles having an average particle diameter of 10 μm (manufactured by Corefront Corporation, trade name: sicastar)
For silica fine particles (vii) to (x), a solution dispersed in MEK so as to be 30% by mass was used.
(3) Dispersant: manufactured by Big Chemie Japan, trade name: DISPERBYK102
(4) Photopolymerization initiator: manufactured by BASF, trade name: IRGACURE184
 上記の材料を用い、溶剤にMEKを使用して、表1に記載した組成で混合・撹拌して、実施例1~9、比較例1~5で使用する個々のハードコート層用塗布液HC1~HC14を作製した。なお、表1に記載されたシリカの量は、固形分としての質量部の数値である。実際に使用する場合は、MEKに分散させた分散液(30質量%)として使用する。 Using the above materials, using MEK as a solvent, mixing and stirring with the compositions shown in Table 1, and then coating liquid HC1 for each hard coat layer used in Examples 1 to 9 and Comparative Examples 1 to 5 ~ HC14 was produced. In addition, the quantity of the silica described in Table 1 is a numerical value of the mass part as solid content. When actually used, it is used as a dispersion (30% by mass) dispersed in MEK.
 透明基材としては、以下のものを使用した。
(1)PETフィルムa:東洋紡社製、A4100、膜厚100μm、リタデーションは、2,500nmであった。
(2)PETフィルムb:ポリエチレンテレフタレートを290℃で溶解して、フィルム形成ダイを通して、シート状に押し出した後、水冷冷却した。その後、回転する急冷ドラム上に密着させて、冷却し、未延伸フィルムを作製した。この未延伸フィルムを二軸延伸試験装置(東洋精機製)を用いて、120℃にて1分間余熱した後、120℃にて、延伸倍率4.5倍に延伸した後、その延伸方向とは90度の方向に、延伸倍率1.5倍に延伸を行った。得られたPETフィルムbは、膜厚100μmであり、リタデーションは9,000nmであった。
 なお、リタデーションは王子計測機器社製、KOBURA−WPRを用いて測定した。
The following were used as the transparent substrate.
(1) PET film a: manufactured by Toyobo Co., Ltd., A4100, film thickness 100 μm, retardation was 2,500 nm.
(2) PET film b: Polyethylene terephthalate was dissolved at 290 ° C., extruded through a film-forming die into a sheet, and then cooled with water. Then, it was made to contact | adhere on the rotating quenching drum, it cooled, and the unstretched film was produced. This unstretched film is preheated at 120 ° C. for 1 minute using a biaxial stretching test apparatus (manufactured by Toyo Seiki Co., Ltd.), and then stretched at 120 ° C. to a stretch ratio of 4.5 times. The film was stretched at a stretching ratio of 1.5 times in the direction of 90 degrees. The obtained PET film b had a film thickness of 100 μm and a retardation of 9,000 nm.
In addition, retardation was measured using Oji Scientific Instruments company make, KOBURA-WPR.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 表1に記載した組成のハードコート層用塗布液HC1を、PETフィルムaの片側の表面へ、バーコータを用いて塗布して、乾燥後、300mJ/cmの紫外線を照射して硬化させることによって、防眩性積層体1を得た。微粒子の個数、N:N:Nは、1:24,355:13であった。硬化後のハードコート層の厚さは2.4μmであった。
(Example 1)
By applying the coating liquid HC1 for the hard coat layer having the composition shown in Table 1 to the surface of one side of the PET film a using a bar coater, drying, and then irradiating with 300 mJ / cm 2 of ultraviolet rays and curing. The antiglare laminate 1 was obtained. The number of fine particles, N 1 : N 2 : N 3 , was 1:24, 355: 13. The thickness of the hard coat layer after curing was 2.4 μm.
(実施例2)
 表1に記載した組成のハードコート層用塗布液HC2を、PETフィルムaの片側の表面へ、バーコータを用いて塗布した後、実施例1と同様にして、防眩性積層体2を得た。微粒子の個数、N:N:Nは、1:24,391:12であった。硬化後のハードコート層の厚さは2.5μmであった。
(Example 2)
After applying the coating liquid HC2 for hard coat layer having the composition described in Table 1 to the surface on one side of the PET film a using a bar coater, the antiglare laminate 2 was obtained in the same manner as in Example 1. . The number of fine particles, N 1 : N 2 : N 3 , was 1:24, 391: 12. The thickness of the hard coat layer after curing was 2.5 μm.
(実施例3)
 表1に記載した組成のハードコート層用塗布液HC3を、PETフィルムbの片側の表面へ、バーコータを用いて塗布した後、実施例1と同様にして、防眩性積層体3を得た。微粒子の個数、N:N:Nは、1:23,587:22であった。硬化後のハードコート層の厚さは2.4μmであった。
(Example 3)
After applying the hard coat layer coating solution HC3 having the composition shown in Table 1 to the surface of one side of the PET film b using a bar coater, the antiglare laminate 3 was obtained in the same manner as in Example 1. . The number of fine particles, N 1 : N 2 : N 3 was 1:23, 587: 22. The thickness of the hard coat layer after curing was 2.4 μm.
(実施例4)
 表1に記載した組成のハードコート層用塗布液HC4を、PETフィルムaの片側の表面へ、バーコータを用いて塗布した後、実施例1と同様にして、防眩性積層体4を得た。微粒子の個数、N:N:Nは、1:240:6であった。硬化後のハードコート層の厚さは2.5μmであった。
Example 4
After applying the coating liquid HC4 for hard coat layer having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 4 was obtained in the same manner as in Example 1. . The number of fine particles, N 1 : N 2 : N 3, was 1: 240: 6. The thickness of the hard coat layer after curing was 2.5 μm.
(実施例5)
 表1に記載した組成のハードコート層用塗布液HC5を、PETフィルムaの片側の表面へ、バーコータを用いて塗布した後、実施例1と同様にして、防眩性積層体5を得た。微粒子の個数、N:N:Nは、1:300:33であった。硬化後のハードコート層の厚さは2.6μmであった。
(Example 5)
After applying the hard coat layer coating liquid HC5 having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 5 was obtained in the same manner as in Example 1. . The number of fine particles, N 1 : N 2 : N 3, was 1: 300: 33. The thickness of the hard coat layer after curing was 2.6 μm.
(実施例6)
 表1に記載した組成のハードコート層用塗布液HC6を、PETフィルムaの片側の表面へ、バーコータを用いて塗布した後、実施例1と同様にして、防眩性積層体6を得た。微粒子の個数、N:N:Nは、1:41,474:15であった。硬化後のハードコート層の厚さは2.3μmであった。
(Example 6)
After applying the hard coat layer coating liquid HC6 having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 6 was obtained in the same manner as in Example 1. . The number of fine particles, N 1 : N 2 : N 3 was 1:41, 474: 15. The thickness of the hard coat layer after curing was 2.3 μm.
(実施例7)
 表1に記載した組成のハードコート層用塗布液HC7を、PETフィルムaの片側の表面へ、バーコータを用いて塗布した後、実施例1と同様にして、防眩性積層体7を得た。微粒子の個数、N:N:Nは、1:43:11であった。硬化後のハードコート層の厚さは2.6μmであった。
(Example 7)
After applying the hard coat layer coating solution HC7 having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 7 was obtained in the same manner as in Example 1. . The number of fine particles, N 1 : N 2 : N 3 , was 1:43:11. The thickness of the hard coat layer after curing was 2.6 μm.
(実施例8)
 表1に記載した組成のハードコート層用塗布液HC8を、PETフィルムaの片側の表面へ、バーコータを用いて塗布した後、実施例1と同様にして、防眩性積層体8を得た。微粒子の個数、N:N:Nは、1:869:13であった。硬化後のハードコート層の厚さは2.3μmであった。
(Example 8)
After applying the coating liquid HC8 for hard coat layer having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 8 was obtained in the same manner as in Example 1. . The number of fine particles, N 1 : N 2 : N 3, was 1: 869: 13. The thickness of the hard coat layer after curing was 2.3 μm.
(実施例9)
 表1に記載した組成のハードコート層用塗布液HC9を、PETフィルムaの片側の表面へ、バーコータを用いて塗布した後、実施例1と同様にして、防眩性積層体9を得た。微粒子の個数、N:N:Nは、1:842:13であった。硬化後のハードコート層の厚さは2.4μmであった。
Example 9
After applying the coating liquid HC9 for hard coat layer having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 9 was obtained in the same manner as in Example 1. . The number of fine particles, N 1 : N 2 : N 3, was 1: 842: 13. The thickness of the hard coat layer after curing was 2.4 μm.
(比較例1)
 表1に記載した組成のハードコート層用塗布液HC10を、PETフィルムaの片側の表面へ、バーコータを用いて塗布した後、実施例1と同様にして、防眩性積層体10を得た。微粒子の個数、N:N:Nは、1:486:13であった。硬化後のハードコート層の厚さは2.7μmであった。
(Comparative Example 1)
After applying the hard coat layer coating solution HC10 having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 10 was obtained in the same manner as in Example 1. . The number of fine particles, N 1 : N 2 : N 3, was 1: 486: 13. The thickness of the hard coat layer after curing was 2.7 μm.
(比較例2)
 表1に記載した組成のハードコート層用塗布液HC11を、PETフィルムaの片側の表面へ、バーコータを用いて塗布した後、実施例1と同様にして、防眩性積層体11を得た。微粒子の個数、N:N:Nは、1:125:0であった。硬化後のハードコート層の厚さは2.5μmであった。
(Comparative Example 2)
After applying the hard coat layer coating solution HC11 having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 11 was obtained in the same manner as in Example 1. . The number of fine particles, N 1 : N 2 : N 3, was 1: 125: 0. The thickness of the hard coat layer after curing was 2.5 μm.
(比較例3)
 表1に記載した組成のハードコート層用塗布液HC12を、PETフィルムaの片側の表面へ、バーコータを用いて塗布した後、実施例1と同様にして、防眩性積層体12を得た。微粒子の個数、N:N:Nは、1:46:2であった。硬化後のハードコート層の厚さは2.4μmであった。
(Comparative Example 3)
After applying the hard coat layer coating solution HC12 having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 12 was obtained in the same manner as in Example 1. . The number of fine particles, N 1 : N 2 : N 3, was 1: 46: 2. The thickness of the hard coat layer after curing was 2.4 μm.
(比較例4)
 表1に記載した組成のハードコート層用塗布液HC13を、PETフィルムaの片側の表面へ、バーコータを用いて塗布した後、実施例1と同様にして、防眩性積層体13を得た。微粒子の個数、N:N:Nは、1:86:6であった。硬化後のハードコート層の厚さは2.4μmであった。
(Comparative Example 4)
After applying the hard coat layer coating solution HC13 having the composition shown in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 13 was obtained in the same manner as in Example 1. . The number of fine particles, N 1 : N 2 : N 3, was 1: 86: 6. The thickness of the hard coat layer after curing was 2.4 μm.
(比較例5)
 表1に記載した組成のハードコート層用塗布液HC14を、PETフィルムaの片側の表面へ、バーコータを用いて塗布した後、実施例1と同様にして、防眩性積層体14を得た。微粒子の個数、N:N:Nは、1:12:10であった。硬化後のハードコート層の厚さは2.6μmであった。
(Comparative Example 5)
After applying the hard coat layer coating solution HC14 having the composition described in Table 1 to the surface of one side of the PET film a using a bar coater, the antiglare laminate 14 was obtained in the same manner as in Example 1. . The number of fine particles, N 1 : N 2 : N 3 , was 1:12:10. The thickness of the hard coat layer after curing was 2.6 μm.
 作製した防眩性積層体1~14を用いて、以下の特性と効果を評価した。評価結果は表2に示した。 The following properties and effects were evaluated using the produced antiglare laminates 1 to 14. The evaluation results are shown in Table 2.
(1)スキューネス
 ハードコート層表面の凹凸の粗さ曲線において、山部と谷部の対称性の偏り度合いの指標であり、JIS B0601−2001に準拠して測定した。測定装置には、キーエンス社製VK−X100を用いた。
(1) Skewness In the roughness curve of the irregularities on the surface of the hard coat layer, it is an index of the degree of symmetry deviation between the peaks and valleys, and was measured according to JIS B0601-2001. As a measuring device, VK-X100 manufactured by Keyence Corporation was used.
(2)ヘイズ、全光線透過率
 ヘイズと全光線透過率は、電色株式会社製ヘイズメーターNDH4000を用いて測定した。
(2) Haze and total light transmittance Haze and total light transmittance were measured using a haze meter NDH4000 manufactured by Denshoku Co., Ltd.
(3)光沢度
 村上色彩技術研究所製グロスメーター(GM−3D)を使用した。ハードコート層の反対面に黒色のビニールテープ(日東ビニールテープ、PROSELF No.21(幅広))を貼り、60度光沢度を測定した。
(3) Glossiness A gloss meter (GM-3D) manufactured by Murakami Color Research Laboratory was used. A black vinyl tape (Nitto vinyl tape, PROSELF No. 21 (wide)) was applied to the opposite surface of the hard coat layer, and the 60 ° gloss was measured.
(4)ギラツキ
 264(pixel/inch)の液晶ディスプレイ上に設置し、ギラツキを目視評価した。良好な場合は「◎印」、やや良好な場合は「○印」、不良の場合は「×印」とした。
(4) Glitter The image was installed on a liquid crystal display of 264 (pixel / inch), and the glare was visually evaluated. When it was good, it was marked with “◎”, when it was slightly good, it was marked with “◯”, and when it was poor, it was marked with “x”.
(5)防眩性
 防眩積層体を黒色のプラスティック板に粘着剤を介して張り付けた状態で、蛍光灯を映りこませ、防眩積層体の光の拡散具合を目視で評価した。良好な場合は「◎印」、やや良好な場合は「○印」、不良の場合は「×印」とした。
(5) Antiglare property With the antiglare laminate adhered to a black plastic plate via an adhesive, a fluorescent lamp was reflected, and the light diffusion state of the antiglare laminate was visually evaluated. When it was good, it was marked with “◎”, when it was slightly good, it was marked with “◯”, and when it was poor, it was marked with “x”.
(6)虹模様
(a)防眩性積層体を透明粘着剤を介して、黒色アクリル板に貼合し、干渉模様を目視確認する。
(b)防眩性積層体をクロスニコル状態の偏光板の間挿入し、虹模様を目視確認する。
 (a)、(b)とも虹模様が見られない場合は「◎印」、
 (a)では虹模様が見られないが、(b)では見られる場合は「○印」、
 (a)、(b)とも虹模様が確認できる場合は「×印」とした。
(6) Rainbow pattern (a) The antiglare laminate is bonded to a black acrylic plate via a transparent adhesive, and the interference pattern is visually confirmed.
(B) The antiglare laminate is inserted between polarizing plates in a crossed Nicol state, and a rainbow pattern is visually confirmed.
If a rainbow pattern is not seen in both (a) and (b),
In (a), no rainbow pattern is seen, but in (b), it is “○”
When a rainbow pattern could be confirmed in both (a) and (b), it was marked “x”.
(7)白っぽさ
 観測者から0.5mの位置に防眩性積層体を設置し、観測者から1mの位置に設置した液晶ディスプレイを観測し、液晶ディスプレイに表示された像のコントラストが良好な場合は「○印」、画面が白く見える場合は「×印」とした。
(7) Whitish The anti-glare laminate is installed at a position of 0.5m from the observer, and the liquid crystal display installed at the position of 1m from the observer is observed, and the contrast of the image displayed on the liquid crystal display is When it was good, it was marked with “○”, and when the screen appeared white, it was marked with “×”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、実施例1~9の防眩性積層体1~防眩性積層体9は、いずれも良好なギラツキ防止性、防眩性を有しており、虹模様や白っぽさが生じにくいものであった。実施例3は、透明基材のリタデーションが、9,000と高いものであるため、虹模様の抑制効果に特に優れていた。実施例8は、スキューネスが小さいため、他の実施例に比べて防眩性とギラツキがやや良好のレベルであった。一方、実施例9は、スキューネスが大きいため、他の実施例に比べてギラツキがやや良好のレベルであった。 As can be seen from Table 2, the antiglare laminate 1 to the antiglare laminate 9 of Examples 1 to 9 all have good antiglare and antiglare properties, such as rainbow patterns and whitening. It was hard to produce a gap. In Example 3, since the retardation of the transparent substrate was as high as 9,000, the effect of suppressing the rainbow pattern was particularly excellent. In Example 8, since the skewness was small, the antiglare property and the glare were slightly better than those in the other examples. On the other hand, in Example 9, since the skewness was large, the glare was slightly better than in the other examples.
 比較例1は、平均粒子径が最大である微粒子の平均粒子径Aが5μmを超えており、ギラツキに劣るものであった。比較例2は、平均粒子径がAとBの中間にある微粒子の平均粒子径Cmが存在しないものであり、ギラツキに劣るものであった。比較例3は、平均粒子径がAとBの中間にある微粒子の平均粒子径C1が(0.5×A)=1μmを超えており、ギラツキに劣るものであった。比較例4は、平均粒子径がAとBの中間にある微粒子の平均粒子径C1が(2×B)=0.4μm未満であり、ギラツキに劣るものであった。比較例5は平均粒子径が最小である微粒子の平均粒子径Bが0.3μmを超えており、ギラツキと白っぽさに劣るものであった。 In Comparative Example 1, the average particle diameter A of the fine particles having the maximum average particle diameter exceeded 5 μm, which was inferior to glare. In Comparative Example 2, the average particle diameter Cm of the fine particles having an average particle diameter between A and B does not exist, and the glare is inferior. In Comparative Example 3, the average particle diameter C1 of the fine particles having an average particle diameter between A and B exceeded (0.5 × A) = 1 μm, which was inferior to glare. In Comparative Example 4, the average particle size C1 of the fine particles having an average particle size between A and B was less than (2 × B) = 0.4 μm, which was inferior to glare. In Comparative Example 5, the average particle diameter B of the fine particles having the smallest average particle diameter exceeded 0.3 μm, and the glare and whitish color were inferior.

Claims (10)

  1.  透明基材と、その少なくとも片側の最外層に設けられたハードコート層とを有する防眩性積層体であって、
     前記ハードコート層は、硬化性樹脂と微粒子成分とを含有し、当該微粒子成分を含有することよって表面に凹凸を有し、
     前記微粒子成分は、粒子径分布において少なくとも3つ以上のピークを有し、
     前記少なくとも3つ以上のピークのうち、粒子径が第1のピーク領域に属する微粒子の平均粒子径をA(μm)とし、粒子径がAより小さい第2のピーク領域に属する微粒子の平均粒子径をB(μm)とし、粒子径がAより小さくBより大きいm個のピークを含む第3のピーク領域に属する微粒子の平均粒子径をそれぞれCm(μm)としたときに、下記式を満足することを特徴とする防眩性積層体。
     1≦A≦5、
     0.001≦B≦0.3、
     (2×B)≦Cm≦(0.5×A)、
     ここで、mは1以上の整数である。
    An antiglare laminate having a transparent substrate and a hard coat layer provided on the outermost layer on at least one side thereof,
    The hard coat layer contains a curable resin and a fine particle component, and has irregularities on the surface by containing the fine particle component,
    The fine particle component has at least three or more peaks in the particle size distribution,
    Among the at least three or more peaks, the average particle diameter of the fine particles belonging to the first peak area having a particle diameter of A (μm) and the average particle diameter of the fine particles belonging to the second peak area smaller than A is selected. Is B (μm), and when the average particle diameter of the fine particles belonging to the third peak region including m peaks smaller than A and larger than B is Cm (μm), the following formula is satisfied. An antiglare laminate characterized by the above.
    1 ≦ A ≦ 5,
    0.001 ≦ B ≦ 0.3,
    (2 × B) ≦ Cm ≦ (0.5 × A),
    Here, m is an integer of 1 or more.
  2.  前記ハードコート層のスキューネスが1.0~4.0であることを特徴とする請求項1に記載の防眩性積層体。 The antiglare laminate according to claim 1, wherein the skewness of the hard coat layer is 1.0 to 4.0.
  3.  ヘイズが2~10%であり、全光線透過率が88%以上であることを特徴とする請求項1または2に記載の防眩性積層体。 The antiglare laminate according to claim 1 or 2, wherein the haze is 2 to 10% and the total light transmittance is 88% or more.
  4.  光沢度が60~90%であることを特徴とする請求項1~3のいずれか1項に記載の防眩性積層体。 The antiglare laminate according to any one of claims 1 to 3, wherein the glossiness is 60 to 90%.
  5.  前記透明基材のリタデーションが3,000~30,000であることを特徴とする請求項1~4のいずれか1項に記載の防眩性積層体。 The antiglare laminate according to any one of claims 1 to 4, wherein the retardation of the transparent substrate is 3,000 to 30,000.
  6.  前記粒子径が第1のピーク領域に属する微粒子の数をNとし、前記粒子径がAより小さい第2のピーク領域に属する微粒子の数をNとし、前記粒子径がAより小さくBより大きいm個のピークを含む第3のピーク領域に属する微粒子の数をNとしたとき、N:N:N=1:30:5~1:50,000:100の比を満足することを特徴とする請求項1~5のいずれか1項に記載の防眩性積層体。 The number of fine particles that the particle diameter belongs to the first peak region and N 1, the number of fine particles that the particle diameter belonging to A is less than the second peak region and N 2, the particle size is smaller than than A B Satisfying the ratio of N 1 : N 2 : N 3 = 1: 30: 5 to 1: 50,000: 100, where N 3 is the number of fine particles belonging to the third peak region including large m peaks The antiglare laminate according to any one of claims 1 to 5, wherein the antiglare laminate is provided.
  7.  請求項1~6のいずれか1項に記載の防眩性積層体を備える表示装置。 A display device comprising the antiglare laminate according to any one of claims 1 to 6.
  8.  防眩性ハードコート層を形成するための硬化性樹脂組成物であって、
     前記硬化性樹脂組成物は、硬化性樹脂と微粒子成分とを含有し、
     前記微粒子成分は、粒子径分布において少なくとも3つ以上のピークを有し、
     前記少なくとも3つ以上のピークのうち、粒子径が第1のピーク領域に属する微粒子の平均粒子径をA(μm)とし、粒子径がAより小さい第2のピーク領域に属する微粒子の平均粒子径をB(μm)とし、粒子径がAより小さくBより大きいm個のピークを含む第3のピーク領域に属する微粒子の平均粒子径をそれぞれCm(μm)としたときに、下記式を満足することを特徴とする硬化性樹脂組成物。
     1≦A≦5、
     0.01≦B≦0.3、
     (2×B)≦Cm≦(0.5×A)、
     ここで、mは1以上の整数である。
    A curable resin composition for forming an antiglare hard coat layer,
    The curable resin composition contains a curable resin and a fine particle component,
    The fine particle component has at least three or more peaks in the particle size distribution,
    Among the at least three or more peaks, the average particle diameter of the fine particles belonging to the first peak area having a particle diameter of A (μm) and the average particle diameter of the fine particles belonging to the second peak area smaller than A is selected. Is B (μm), and when the average particle diameter of the fine particles belonging to the third peak region including m peaks smaller than A and larger than B is Cm (μm), the following formula is satisfied. A curable resin composition characterized by that.
    1 ≦ A ≦ 5,
    0.01 ≦ B ≦ 0.3,
    (2 × B) ≦ Cm ≦ (0.5 × A),
    Here, m is an integer of 1 or more.
  9.  前記粒子径が第1のピーク領域に属する微粒子の数をNとし、前記粒子径がAより小さい第2のピーク領域に属する微粒子の数をNとし、前記粒子径がAより小さくBより大きいm個のピークを含む第3のピーク領域に属する微粒子の数をNとしたとき、N:N:N=1:30:5~1:50,000:100の比を満足することを特徴とする請求項8に記載の硬化性樹脂組成物。 The number of fine particles that the particle diameter belongs to the first peak region and N 1, the number of fine particles that the particle diameter belonging to A is less than the second peak region and N 2, the particle size is smaller than than A B Satisfying the ratio of N 1 : N 2 : N 3 = 1: 30: 5 to 1: 50,000: 100, where N 3 is the number of fine particles belonging to the third peak region including large m peaks The curable resin composition according to claim 8.
  10.  請求項8または9に記載の硬化性樹脂組成物を硬化させて得られることを特徴とする塗膜。 A coating film obtained by curing the curable resin composition according to claim 8 or 9.
PCT/IB2015/001433 2014-08-26 2015-08-25 Anti-glare laminate WO2016030738A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016545078A JPWO2016030738A1 (en) 2014-08-26 2015-08-25 Antiglare laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014171385 2014-08-26
JP2014-171385 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016030738A1 true WO2016030738A1 (en) 2016-03-03

Family

ID=55398805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/001433 WO2016030738A1 (en) 2014-08-26 2015-08-25 Anti-glare laminate

Country Status (3)

Country Link
JP (1) JPWO2016030738A1 (en)
TW (1) TWI647487B (en)
WO (1) WO2016030738A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018533065A (en) * 2016-03-14 2018-11-08 エルジー・ケム・リミテッド Antireflection film and display device
JP2018533067A (en) * 2016-03-14 2018-11-08 エルジー・ケム・リミテッド Antireflection film and display device
US10711142B2 (en) 2016-03-04 2020-07-14 Lg Chem, Ltd. Antireflection film and display device
WO2021193215A1 (en) * 2020-03-26 2021-09-30 三菱瓦斯化学株式会社 Anti-glare laminate body
CN115104045A (en) * 2020-03-05 2022-09-23 株式会社Lg化学 Anti-glare film, polarizing plate, and display device
JP7373456B2 (en) 2020-04-30 2023-11-02 Jfe鋼板株式会社 painted steel plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156939A (en) * 2007-12-25 2009-07-16 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device
JP2010266672A (en) * 2009-05-14 2010-11-25 Lintec Corp Anti-glare hardcoat film and polarizing plate using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890770B2 (en) * 2005-02-14 2012-03-07 リンテック株式会社 Method for producing antiglare hard coat film
JP4830540B2 (en) * 2005-02-28 2011-12-07 住友化学株式会社 Method for producing antiglare film
JP2007156132A (en) * 2005-12-06 2007-06-21 Sumitomo Chemical Co Ltd Anti-glare film and image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156939A (en) * 2007-12-25 2009-07-16 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device
JP2010266672A (en) * 2009-05-14 2010-11-25 Lintec Corp Anti-glare hardcoat film and polarizing plate using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10711142B2 (en) 2016-03-04 2020-07-14 Lg Chem, Ltd. Antireflection film and display device
JP2018533065A (en) * 2016-03-14 2018-11-08 エルジー・ケム・リミテッド Antireflection film and display device
JP2018533067A (en) * 2016-03-14 2018-11-08 エルジー・ケム・リミテッド Antireflection film and display device
JP2020079959A (en) * 2016-03-14 2020-05-28 エルジー・ケム・リミテッド Antireflection film and display device
JP2020079958A (en) * 2016-03-14 2020-05-28 エルジー・ケム・リミテッド Antireflection film and display device
US10689523B2 (en) 2016-03-14 2020-06-23 Lg Chem, Ltd. Antireflection film and display device
US11112599B2 (en) 2016-03-14 2021-09-07 Lg Chem, Ltd. Antireflection film having hard coating layer and display device including the same
JP7055436B2 (en) 2016-03-14 2022-04-18 エルジー・ケム・リミテッド Anti-reflective film and display equipment
CN115104045A (en) * 2020-03-05 2022-09-23 株式会社Lg化学 Anti-glare film, polarizing plate, and display device
WO2021193215A1 (en) * 2020-03-26 2021-09-30 三菱瓦斯化学株式会社 Anti-glare laminate body
JP7373456B2 (en) 2020-04-30 2023-11-02 Jfe鋼板株式会社 painted steel plate

Also Published As

Publication number Publication date
TW201614275A (en) 2016-04-16
TWI647487B (en) 2019-01-11
JPWO2016030738A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
WO2016030738A1 (en) Anti-glare laminate
US8081385B2 (en) Antiglare film, method for manufacturing antiglare film, polarizer, and display device
JP4678437B2 (en) OPTICAL ELEMENT, ITS MANUFACTURING METHOD, AND DISPLAY DEVICE
JP6404372B2 (en) Wavelength conversion member, backlight unit, image display device, and method of manufacturing wavelength conversion member
JP6498857B2 (en) Display element front film and display element with surface member
JP5232448B2 (en) Anti-glare material
KR20160024803A (en) Photocurable resin composition, cured coating film formed from the composition, anti-glare film formed from the composition, method of producing cured coating film, and method of producing anti-glare film
JP6492683B2 (en) Anti-glare film and image display device using the same
JP2010256851A (en) Antiglare hard coat film
TWI780268B (en) Antiglare film, method for producing the same and use thereof
JP2007058204A (en) Anti-glare hard coat film and display device using the same
WO2018062442A1 (en) Anti-glare anti-reflection hard coating film, image display device, and method for producing anti-glare anti-reflection hard coating film
JP2007127823A (en) Optical film and its manufacturing method
CN109073807A (en) Polarizer protective film, the polarizer including it, the liquid crystal display including the polarizer and polarizer protective film application composition
JP2001205179A (en) Method for manufacturing hard coat film and hard coat film obtained by the method
JP7335719B2 (en) Anti-glare film and its manufacturing method and use
JP6772461B2 (en) Manufacturing method of laminate and display cover
JP2009069820A (en) Optical layered product
JP2009048092A (en) Optical laminate
CN111344608B (en) Visibility-improving film for display panel and display device including the same
JP2015132744A (en) Antiglare film
WO2017002779A1 (en) Hard coat film
KR102097610B1 (en) Visibility improvement film for display panel and display device comprising the same
WO2015156333A1 (en) Antiglare film
JP2004029672A (en) Antiglare sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835764

Country of ref document: EP

Kind code of ref document: A1