WO2020203359A1 - Anti-glare laminate - Google Patents

Anti-glare laminate Download PDF

Info

Publication number
WO2020203359A1
WO2020203359A1 PCT/JP2020/012357 JP2020012357W WO2020203359A1 WO 2020203359 A1 WO2020203359 A1 WO 2020203359A1 JP 2020012357 W JP2020012357 W JP 2020012357W WO 2020203359 A1 WO2020203359 A1 WO 2020203359A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
layer
meth
copolymer
Prior art date
Application number
PCT/JP2020/012357
Other languages
French (fr)
Japanese (ja)
Inventor
帰心 小澤
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN202080023444.0A priority Critical patent/CN113614585A/en
Priority to JP2021511450A priority patent/JPWO2020203359A1/ja
Publication of WO2020203359A1 publication Critical patent/WO2020203359A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to an antiglare laminate. More specifically, the present invention has excellent impact resistance, heat resistance and anti-glare performance, suppresses glare, has high scratch resistance, and has excellent shape stability for automobiles. It relates to an antiglare laminate used as a front plate in a liquid crystal display device, a mobile phone terminal, a personal computer, and a tablet PC.
  • the liquid crystal display device is provided with a front plate for the purpose of protecting the liquid crystal panel and the like.
  • Examples of the material used for the front plate of the conventional liquid crystal display device include (meth) acrylic resin typified by polymethyl methacrylate (PMMA).
  • the front plate which is hard-coated on a multilayer sheet in which acrylic resin is laminated on the surface layer of the polycarbonate resin sheet, has surface hardness and scratch resistance comparable to those of conventional hard-coated acrylic resin, and is made of polycarbonate resin. It is widely used as a front plate because it has excellent impact resistance, heat resistance, workability, and transparency.
  • the front plate of the liquid crystal display device provided with the above-mentioned polycarbonate resin sheet is generally formed by a melt extrusion method together with an acrylic resin.
  • an optical laminate for antireflection is generally provided on the outermost surface.
  • Such an optical laminate for antireflection suppresses the reflection of an image or reduces the reflectance by scattering or interference of light.
  • an antiglare film in which an antiglare layer having an uneven shape is formed on the surface of a transparent base material is known.
  • This antiglare film can scatter external light due to the uneven shape of the surface to prevent deterioration of visibility due to reflection of external light and reflection of an image.
  • this optical laminate is usually installed on the outermost surface of the liquid crystal display device, it is also required to impart hard coat property so as not to be scratched during handling.
  • a mixture of fine particles and a binder resin or a curable resin is usually applied to the base material and applied to the surface.
  • a binder resin or a curable resin is usually applied to the base material and applied to the surface.
  • specular reflection is prevented and anti-glare properties are exhibited.
  • the conventional surface uneven size causes deterioration of image quality such as screen glare and character blur. That is, in the case of a high-definition display device, the conventional surface unevenness size is close to the pixel size of the high-definition display in order, and glare occurs due to the lens effect due to the surface unevenness.
  • the intensity distribution of transmitted scattered light depends on the size of the fine particles to be added, and smaller fine particles reduce scattering around straight transmitted light and reduce glare, while larger fine particles cause scattering near straight transmitted light. Increases and glare occurs.
  • the fine particles on the outermost surface fall off during the scratch resistance test and act as an abrasive, so that the scratch resistance is significantly reduced as compared with the case where no fine particles are added, which is not preferable.
  • Patent Document 1 describes an antiglare layer containing transparent fine particles having an average particle size of 15 ⁇ m or less in a film having a thickness of twice or more the average particle size. Among them, an anti-glare layer in which the transparent fine particles are unevenly distributed on one side in contact with air to form a fine uneven structure on the surface is disclosed. However, in this anti-glare layer, since the intensity distribution of transmitted scattered light is controlled by the particle size, glare on the display surface cannot be effectively prevented. Further, since the particles are added, the scratch resistance is lowered due to the particles falling off.
  • the front panel of an in-vehicle liquid crystal display device, a mobile phone terminal, a personal computer, or a tablet PC has excellent impact resistance, heat resistance, and anti-glare performance, suppresses glare, and has high scratch resistance. There was no front plate that had the property and was also excellent in shape stability.
  • the present invention provides an antiglare laminate having excellent impact resistance, heat resistance and antiglare performance, suppressing the occurrence of glare, having high scratch resistance, and having excellent shape stability. ..
  • the present invention is as follows.
  • an antiglare laminate provided on a layer containing the high hardness resin (B) and having a concave-convex shape, and satisfying the following conditions (i) and (ii):
  • the thickness of the layer containing the high hardness resin (B) is 10 to 250 ⁇ m, and the layer containing the resin (A) containing the polycarbonate resin (a1) and the layer containing the high hardness resin (B) The total thickness is 100-3,000 ⁇ m;
  • the laminated body has a haze of 15% or more specified by JIS K 7136, and has a reflection clarity of 30% measured at an incident angle of light of 45 ° using an optical comb having a width of 2.0 mm.
  • the average brightness of the brightness standard deviation / evaluation range measured by Konica Minolta's Promethoric Y29 when the laminate is placed on a light source of 265 ppi is 2.0 or less.
  • the high hardness resin (B) is composed of any one of the following resins (B1) to (B4).
  • the resin (B1) is A copolymer resin containing a (meth) acrylic acid ester structural unit (a) represented by the following general formula (1) and an aliphatic vinyl structural unit (b) represented by the following general formula (2).
  • the total ratio of the (meth) acrylic acid ester constituent unit (a) and the aliphatic vinyl constituent unit (b) is 90 to 100 mol% of the total constituent units of the copolymer resin, and the (meth) acrylic acid.
  • the copolymer resin: the ratio of the ester constituent unit (a) is 65 to 80 mol% of the total constituent units of the copolymer resin.
  • R1 is a hydrogen atom or a methyl group
  • R2 is an alkyl group having 1 to 18 carbon atoms.
  • R3 is a hydrogen atom or a methyl group
  • R4 is a cyclohexyl group which may have a hydrocarbon machine having 1 to 4 carbon atoms.
  • the resin (B2) is 55 to 10% by mass of the resin (C) containing a vinyl-based monomer, 45 to 90% by mass of the styrene-unsaturated dicarboxylic acid-based copolymer (D), and the styrene-unsaturated dicarboxylic acid-based copolymer.
  • the coalescence (D) contains 50 to 80% by mass of the styrene-based monomer unit (d1), 10 to 30% by mass of the unsaturated dicarboxylic acid monomer unit (d2), and the vinyl-based monomer unit (d3). It is a resin contained in an amount of 5 to 30% by mass.
  • the resin (B3) is Resin copolymer (G) or resin containing 5 to 20% by mass of styrene constituent unit, 70 to 90% by mass of (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of N-substituted maleimide monomer.
  • the resin (B4) is A copolymer containing a structural unit (H) represented by the following general formula (3) and optionally a structural unit represented by the following general formula (4).
  • ⁇ 3> The uneven shape is described in ⁇ 1> or ⁇ 2> above, wherein the ratio of the inclination angle distribution of 5 ° or less measured by the white interference microscope VS-1000 manufactured by Hitachi High-Tech Science Co., Ltd. is 65 to 80%. Anti-glare laminate.
  • ⁇ 4> The antiglare laminate according to any one of ⁇ 1> to ⁇ 3> above, wherein the hard coat layer having the uneven shape does not contain inorganic particles or organic particles.
  • ⁇ 5> The above-mentioned ⁇ 1> to ⁇ 4>, wherein the hard coat layer having the uneven shape has at least one of the antireflection performance, the antifouling performance, the antistatic performance, and the weather resistance. Anti-glare laminate.
  • ⁇ 6> The antiglare laminate according to any one of ⁇ 1> to ⁇ 5> above, which comprises a second hard coat layer on a surface opposite to the hard coat layer having the unevenness.
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms
  • R 2 to R 5 each independently have a hydrogen atom, a halogen, or a substituent. It represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms, and the substituent may be a halogen, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 12 carbon atoms. is there.
  • the antiglare laminate comprising a step of transferring an uneven shape to the hard coat layer by pressing a patterned PET film onto the photocurable resin composition on the layer containing the high hardness resin (B). Manufacturing method.
  • the antiglare laminate of the present invention may be referred to as "resin sheet" may be referred to as a layer containing a resin (A) containing a polycarbonate resin (al) (hereinafter, may be referred to as a "base material layer”).
  • a layer containing the high-hardness resin composition (B) (hereinafter, may be referred to as a "high-hardness resin layer” or a “high-hardness layer”) and a hard coat layer having irregularities are formed on at least one surface. It is provided.
  • the base material layer may be a layer made of a resin (A) containing a polycarbonate resin (al).
  • the high hardness layer may be a layer made of the high hardness resin composition (B).
  • the high hardness layer exists between the base material layer and the hard coat layer, and the outermost surface of the hard coat layer, which is the outermost layer, is provided with an uneven shape.
  • the other surface of the layer containing the resin (A) containing the polycarbonate resin (al) is not particularly specified, but both the high hardness resin layer and the hard coat layer, or any one of the layers may be provided.
  • the high-hardness resin layer it is desirable to use a resin selected from the high-hardness resin composition (B), and when the high-hardness resin layer is provided on both sides of the base material layer, the same high hardness is used on both sides. It is more desirable to use the resin composition (B) for shape stability.
  • the hard coat layer has an uneven shape.
  • the antiglare laminate is, for example, a car navigation system, a center information display (CID), a rear seat entertainment (RSE), a cluster, etc. as an in-vehicle display device, a touch panel full protection plate, and an OA device. It can be used as a front plate for a device, a portable electronic device, or a television. Further, for example, the front plate can be used alone as the front plate of the liquid crystal display device, but may be combined and used as the front plate, for example, by laminating with another substrate such as a touch sensor.
  • the resin (A) containing the polycarbonate resin (a1) used in the present invention is a resin mainly containing the polycarbonate resin (a1).
  • the content of the polycarbonate resin (a1) in the resin (A) is 75% by weight or more, but it is more preferably 90% by weight or more because the impact resistance is improved by increasing the content. Is 100% by weight.
  • the polycarbonate resin (al) has a carbonic acid ester bond in the main chain of the molecule, that is,-[OR-OCO] -unit (R is an aliphatic group, an aromatic group, or both an aliphatic group and an aromatic group. It is not particularly limited as long as it contains, and further has a linear structure or a branched structure), but it is particularly preferable to use a polycarbonate resin containing the structural unit of the following formula (3). By using such a polycarbonate resin, a resin laminate having excellent impact resistance can be obtained.
  • polycarbonate resin (a1) an aromatic polycarbonate resin (for example, manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade names: Iupiron S-2000, Iupiron S-1000, Iupilon E-2000) and the like can be used. However, it is not limited to this.
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms
  • R 2 to R 5 each independently have a hydrogen atom, a halogen, or a substituent. It represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms, and the substituent may be a halogen, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 12 carbon atoms. is there.
  • the monohydric phenol represented by the general formula (5) is represented by the following general formula (6).
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.
  • the carbon number of R 1 in the general formula (5) or the general formula (6) is within a specific numerical range. Specifically, as the upper limit of the number of carbon atoms of R 1 , 36 is preferable, 22 is more preferable, and 18 is particularly preferable. Further, as the lower limit of the number of carbon atoms of R 1 , 8 is preferable, and 12 is more preferable .
  • one or both of the parahydroxybenzoic acid hexadecyl ester and the parahydroxybenzoic acid 2-hexyldecyl ester are terminally terminated. It is particularly preferable to use it as an agent.
  • R 1 in the general formula (6) for example, when using a monohydric phenol which is alkyl group of 16 carbon atoms (terminating agent), a glass transition temperature, melt flowability, moldability, drawdown resistance,
  • the monovalent phenol has excellent solvent solubility during the production of the polycarbonate resin, and is particularly preferable as the terminal terminator used for the polycarbonate resin in the present invention.
  • the productivity is high and the economy is good in producing the polycarbonate resin.
  • the carbon number of R 1 is 22 or less, the monohydric phenol is particularly excellent in organic solvent solubility, and the productivity can be made very high in the production of the polycarbonate resin, and the economic efficiency is also improved.
  • the weight average molecular weight of the polycarbonate resin (al) affects the impact resistance and molding conditions of the synthetic resin laminate. That is, if the weight average molecular weight is too small, the impact resistance of the synthetic resin laminate is lowered, which is not preferable. If the weight average molecular weight is too high, an excessive heat source may be required when laminating the layer containing the polycarbonate resin (al), which is not preferable. In addition, since a high temperature is required depending on the molding method, the polycarbonate resin (al) is exposed to a high temperature, which may adversely affect its thermal stability.
  • the weight average molecular weight of the polycarbonate resin (al) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000. More preferably, it is 25,000 to 65,000.
  • the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC) as described in Examples described later.
  • the resin (A) may further contain additives and the like.
  • additives those usually used in the resin sheet can be used.
  • Additives include, for example, antioxidants, anticolorants, antistatic agents, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic fillers and inorganic fillers. Such as reinforcing materials can be mentioned.
  • the method of mixing the additive and the resin is not particularly limited, and a method of compounding the entire amount, a method of dry-blending the masterbatch, a method of dry-blending the entire amount, and the like can be used.
  • the amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, and particularly preferably 0 to 5% by mass with respect to the total mass of the base material layer.
  • the thickness of the resin (A) is preferably 0.3 to 10 mm, more preferably 0.3 to 5 mm, and particularly preferably 0.3 to 3.5 mm.
  • the high-hardness resin composition (B) used in the present invention is any one of a resin composition (B1), a resin composition (B2), a resin composition (B3), and a resin composition (B4). Is selected from.
  • the resin composition (B1) used in the present invention includes a (meth) acrylic acid ester structural unit (a) represented by the general formula (1) and an aliphatic vinyl composition represented by the general formula (2).
  • R1 is a hydrogen atom or a methyl group
  • R2 is an alkyl group having 1 to 18 carbon atoms.
  • R3 is a hydrogen atom or a methyl group
  • R4 is a cyclohexyl group which may have a hydrocarbon group having 1 to 4 carbon atoms.
  • hydrocarbon group may be linear, branched, or cyclic, and may have a substituent.
  • R2 is an alkyl group having 1 to 18 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and carbon. More preferably, it is an alkyl group having the number 1 to 6. Specific examples thereof include a methyl group, an ethyl group, a butyl group, a lauryl group, a stearyl group, a cyclohexyl group and an isobornyl group.
  • R2 is a methyl group or an ethyl group (meth) acrylic acid ester structural unit, and more preferably R1 is a methyl group and R2 is It is a methyl methacrylate constituent unit which is a methyl group.
  • R3 is a hydrogen atom or a methyl group and is a hydrogen atom.
  • R4 is a cyclohexyl group or a cyclohexyl group having a hydrocarbon group having 1 to 4 carbon atoms.
  • R3 is a hydrogen atom and R4 is a cyclohexyl group.
  • the resin composition (B1) may contain one or more of the (meth) acrylic acid easter constituent unit (a), and one or more of the aliphatic vinyl constituent unit (b). It may be contained.
  • the total ratio of the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) is preferably 90 to 100 mol% with respect to the total of all the structural units of the copolymer resin. Is 95 to 100 mol%, more preferably 98 to 100 mol%.
  • the resin (B1) may contain a structural unit other than the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b).
  • the amount thereof is preferably 10 mol% or less, more preferably 5 mol% or less, and particularly preferably 2 mol% or less, based on all the constituent units of the resin (B1).
  • Examples of the structural unit other than the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) include the aromatic vinyl after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer.
  • Examples thereof include a structural unit derived from an aromatic vinyl monomer containing an unhydrogenated aromatic double bond, which is generated in the process of producing a resin (B1) by hydrogenating an aromatic double bond derived from the monomer.
  • the content of the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is preferably 65 to 80 mol% with respect to all the structural units in the resin (B1). It is preferably 70 to 80 mol%.
  • the ratio of the (meth) acrylic acid ester structural unit (a) to all the structural units in the resin (B1) is 65 mol% or more, a resin layer having excellent adhesion to the base material layer and surface hardness can be obtained. Can be done. Further, if it is 80 mol% or less, warpage due to water absorption of the resin sheet is unlikely to occur.
  • the content of the aliphatic vinyl constituent unit (b) represented by the general formula (2) is preferably 20 to 35 mol%, more preferably 20 with respect to all the constituent units in the resin (B1). ⁇ 30 mol%. If the content of the aliphatic vinyl constituent unit (b) is 20 mol% or more, warpage under high temperature and high humidity can be prevented, and if it is 35 mol% or less, at the interface with the substrate. Peeling can be prevented.
  • the "copolymer” may have any structure of random, block, and alternating copolymers.
  • the method for producing the resin composition (B1) is not particularly limited, but after polymerizing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer, the fragrance derived from the aromatic vinyl monomer is polymerized. Those obtained by hydrogenating the group double bond are preferable.
  • the (meth) acrylic acid means methacrylic acid and / or acrylic acid.
  • Specific examples of the aromatic vinyl monomer used at this time include styrene, ⁇ -methylstyrene, p-hydroxystyrene, alkoxystyrene, chlorostyrene, and derivatives thereof. Of these, styrene is preferred.
  • a known method can be used for the polymerization of the (meth) acrylic acid ester monomer and the aromatic vinyl monomer, and for example, it can be produced by a massive polymerization method, a solution polymerization method, or the like.
  • the massive polymerization method is carried out by a method in which a monomer composition containing the above-mentioned monomer and a polymerization initiator is continuously supplied to a complete mixing tank and continuously polymerized at 100 to 180 ° C.
  • the monomer composition may contain a chain transfer agent, if necessary.
  • the polymerization initiator is not particularly limited, but is t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, 1,1-di (t-hexyl).
  • azo compounds include lonitrile) and 2,2'-azobis (2,4-dimethylvaleronitrile). These can be used alone or in combination of two or more.
  • the chain transfer agent is used as needed, and examples thereof include ⁇ -methylstyrene dimer.
  • Examples of the solvent used in the solution polymerization method include hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, tetrahydrofuran, and the like.
  • Examples thereof include ether solvents such as dioxane and alcohol solvents such as methanol and isopropanol.
  • the solvent used for the hydrogenation reaction after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer may be the same as or different from the above-mentioned polymerization solvent.
  • hydrocarbon solvents such as cyclohexane and methylcyclohexane
  • ester solvents such as ethyl acetate and methyl isobutyrate
  • ketone solvents such as acetone and methyl ethyl ketone
  • ether solvents such as tetrahydrofuran and dioxane
  • alcohol solvents such as methanol and isopropanol.
  • solvents include solvents.
  • the resin composition used in the present invention is obtained by polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer as described above, and then hydrogenating the aromatic double bond derived from the aromatic vinyl monomer. (B1) is obtained.
  • the method of hydrogenation is not particularly limited, and a known method can be used. For example, it can be carried out in a batch system or a continuous flow system at a hydrogen pressure of 3 to 30 MPa and a reaction temperature of 60 to 250 ° C. When the temperature is 60 ° C. or higher, the reaction time does not take too long, and when the temperature is 250 ° C. or lower, the molecular chain is less likely to be cleaved or the ester site is hydrogenated.
  • Examples of the catalyst used in the hydrogenation reaction include metals such as nickel, palladium, platinum, cobal, ruthenium, and rhodium, or oxides, salts, or complex compounds of these metals, and carbon, alumina, silica, and silica. Examples thereof include a solid catalyst supported on a porous carrier such as alumina and diatomaceous earth.
  • the resin composition (B1) is preferably one in which 70% or more of the aromatic double bonds derived from the aromatic vinyl monomer are hydrogenated. That is, the proportion of the unhydrogenated portion of the aromatic double bond in the structural unit derived from the aromatic vinyl monomer is preferably 30% or less. If it exceeds 30%, the transparency of the resin composition (B1) may decrease.
  • the proportion of unhydrogenated sites is more preferably less than 10% and even more preferably less than 5%.
  • the weight average molecular weight of the resin composition (B1) is not particularly limited, but is preferably 50,000 to 400,000, preferably 70,000 to 300,000 from the viewpoint of strength and moldability. Is more preferable.
  • the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC) as described in Examples described later.
  • the resin composition (B1) can be blended with other resins as long as the transparency is not impaired.
  • examples thereof include methyl methacrylate-styrene copolymer resin, polymethyl methacrylate, polystyrene, polycarbonate, cycloolephine (co) polymer resin, acrylonitrile-styrene copolymer resin, acrylonitrile-butadiene-styrene copolymer resin, and various elastomers. ..
  • the glass transition temperature of the resin composition (B1) is preferably in the range of 110 to 140 ° C.
  • the laminate provided in the present invention is less likely to be deformed or cracked in a thermal environment or a moist heat environment, and when it is 140 ° C. or lower, it depends on a mirror surface roll or a shaping roll. It has excellent workability such as continuous heat shaping, or batch type heat shaping using a mirror surface mold or a shaping mold.
  • the glass transition temperature in the present invention is a temperature calculated by the midpoint method when measured at a sample of 10 mg and a heating rate of 10 ° C./min using a differential scanning calorimetry device.
  • Examples of the resin composition (B1) include, but are not limited to, Optimus 7500, 6000 (manufactured by Mitsubishi Gas Chemical Company).
  • the resin composition (B2) used in the present invention contains 55 to 10% by mass (preferably 50 to 20% by mass) of the resin (C) containing a vinyl-based monomer, and styrene-unsaturated dicarboxylic.
  • the monomer unit (d1) is 50 to 80% by mass
  • the unsaturated dicarboxylic acid anhydride monomer unit (d2) is 10 to 30% by mass
  • the vinyl-based monomer unit (d3) is 5 to 30% by mass. It is a resin composition contained in.
  • the resin (C) containing a vinyl-based monomer and the styrene-unsaturated dicarboxylic acid-based copolymer (D) will be sequentially described below.
  • Resin (C) containing vinyl-based monomer examples include acrylonitrile, metaacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, and methacrylic acid. Examples thereof include those obtained by homopolymerizing vinyl-based monomers such as acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, and 2-ethylhexyl methacrylate, and methyl methacrylate is particularly preferable as the monomer unit. Further, a copolymer containing two or more kinds of the monomer units may be used.
  • the weight average molecular weight of the resin (C) containing the vinyl tea monomer is preferably 10,000 to 500,000, more preferably 50,000 to 300,000.
  • the styrene-unsaturated dicarboxylic acid-based copolymer (D) used in the present invention includes a styrene-based monomer unit (d1), an unsaturated dicarboxylic acid anhydride monomer unit (d2), and a vinyl-based monomer. Includes unit (d3).
  • the styrene-based monomer is not particularly limited, and any known styrene-based monomer can be used, but from the viewpoint of easy availability, styrene, a-methylstyrene, o-methylstyrene, m- Examples thereof include methyl styrene, p-methyl styrene and t-butyl styrene. Of these, styrene is particularly preferable from the viewpoint of compatibility. Two or more of these styrene-based monomers may be mixed.
  • the unsaturated dicarboxylic acid anhydride monomer include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, and maleic anhydride is preferable from the viewpoint of compatibility with vinyl-based monomers. .. Two or more kinds of these unsaturated dicarboxylic acid anhydride monomers may be mixed.
  • the vinyl-based monomer includes, for example, acrylonitrile, metaacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, and the like.
  • vinyl-based monomers such as n-butyl methacrylate and 2-ethylhexyl methacrylate.
  • Methyl methacrylate (MMA) is preferable from the viewpoint of compatibility with the resin (C) containing a vinyl-based monomer. Two or more of these vinyl-based monomers may be mixed.
  • composition ratio of styrene-unsaturated dicarboxylic acid copolymer (D) was 50 to 80% by mass (preferably 50 to 75% by mass) of the styrene-based monomer unit (d1), and the unsaturated dicarboxylic acid anhydride alone.
  • the metric unit (d2) is 10 to 30% by mass (preferably 10 to 25% by mass)
  • the vinyl-based monomer unit (d3) is 5 to 30% by mass (preferably 7 to 27% by mass).
  • the weight average molecular weight of the styrene-unsaturated dicarboxylic acid-based copolymer (D) is preferably 50,000 to 200,000, more preferably 80,000 to 200,000.
  • the weight average molecular weight of the resin (C) and the copolymer (D) is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC) as described in Examples described later.
  • resin copolymer (D) examples include Regisphi R100, R200, R310 (manufactured by Denki Kagaku Kogyo) and Delpet 980N (manufactured by Asahi Kasei Chemical Co., Ltd.).
  • the resin composition (B3) used in the present invention includes 5 to 20% by mass of a styrene constituent unit, 60 to 90% by mass of a (meth) acrylic acid ester constituent unit, and an N-substituted maleimide monomer. It is a resin copolymer (G) containing 5 to 20%, or an alloy of the resin copolymer (G) and the resin copolymer (D).
  • N-substituted maleimide monomer in the resin copolymer (G) examples include N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, and N-methoxyphenyl.
  • N-arylmaleimide such as maleimide, N-carboxyphenylmaleimide, N-nitrophenylmaleimide, and N-tribromophenylmaleimide
  • N-phenylmaleimide is preferable from the viewpoint of compatibility with acrylic resin. Two or more kinds of these N-substituted maleimide monomers may be mixed.
  • the content of the N-substituted maleimide constituent unit is 5 to 20% by mass, preferably 5 to 15% by mass, and 5 to 10% by mass with respect to the total amount of the resin composition (B3). Is preferable.
  • the styrene constituent unit is not particularly limited, and any high-altitude styrene-based monomer can be used, but from the viewpoint of availability, styrene, methylstyrene, o-methylstyrene, m-methylstyrene, p. -Methylstyrene, t-butylstyrene and the like can be mentioned. Of these, styrene is particularly preferable from the viewpoint of compatibility. Two or more of these styrene-based monomers may be mixed.
  • the content of the styrene constituent unit is 5 to 20% by mass, preferably 5 to 15% by mass, and more preferably 5 to 10% by mass with respect to the total mass of the resin (B3).
  • the (meth) acrylic acid ester constituent unit is, for example, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-methacrylate.
  • examples thereof include butyl and 2-ethylhexyl methacrylate, and methyl methacrylate is particularly preferable as the monomer unit.
  • a copolymer containing two or more kinds of the monomer units may be used.
  • the content of the (meth) acrylic acid ester structural unit is 60 to 90% by mass, preferably 70 to 90% by mass, and 80 to 90% by mass with respect to the total mass of the resin composition (B3). More preferably.
  • the method for producing the resin copolymer (G) is not particularly limited, but it can be produced by solution polymerization, bulk polymerization, or the like.
  • Examples of the resin copolymer (G) include, but are not limited to, Delpet PM120N (manufactured by Asahi Kasei Chemical Co., Ltd.).
  • the weight average molecular weight of the resin copolymer (G) is preferably 50,000 to 250,000, more preferably 100,000 to 200,000.
  • the resin composition (B4) is a copolymer containing a structural unit (H) represented by the following general formula (3) and optionally a structural unit (J) represented by the following general formula (4). ..
  • the resin composition (B4) may or may not contain the structural unit (J), but is preferably contained.
  • the ratio of the constituent unit (H) to all the constituent units of the resin composition (B4) is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and 70 to 100 mol%. Is particularly preferred.
  • the ratio of the constituent unit (J) to all the constituent units of the resin composition (B4) is preferably 0 to 50 mol%, more preferably 0 to 40 mol%, and 0 to 30 mol%. Is particularly preferred.
  • the total content of the constituent unit (H) and the constituent unit (J) is preferably 90 to 100 mol%, more preferably 95 to 100 mol%, and particularly preferably 95 to 100 mol% with respect to the resin composition (B4). It is 98 to 100 mol%.
  • the resin composition (B4) may contain a structural unit other than the structural unit (H) and the structural unit (J). When other structural units are included, the amount thereof is preferably 10 mol% or less, more preferably 5 mol% or less, and 2 mol% or less, based on all the structural units of the resin composition (B4). Is particularly preferable.
  • Examples of other structural units include structural units represented by the following general formula (4).
  • the method for producing the resin composition (B4) is not particularly limited, but it can be produced by the same method as the above-mentioned method for producing the polycarbonate resin (a1) except that bisphenol C is used as the monomer.
  • Examples of the resin composition (B4) include, but are not limited to, Iupilon KH3410UR, KH3520UR, KS3410UR (manufactured by Mitsubishi Engineering Plastics Co., Ltd.) and the like.
  • the weight average molecular weight of the resin composition (B4) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000, and particularly preferably 25,000 to 65,000.
  • the resin compositions (B1) to (B4) may contain additives and the like.
  • the additive those usually used in a resin sheet can be used, and such an additive includes, for example, an antioxidant, an anticolorant, an anticharge agent, a release agent, a lubricant, a dye, and the like. Examples thereof include pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, and reinforcing materials such as organic fillers and inorganic fillers.
  • the method of mixing the additive and the resin is not particularly limited, and a method of compounding the entire amount, a method of dry-blending the masterbatch, a method of dry-blending the entire amount, and the like can be used.
  • the amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, and particularly preferably 0 to 5% by mass with respect to the total mass of the base material layer.
  • the thickness of the high hardness resin layer affects the surface hardness and impact resistance. That is, if the high hardness resin layer is too thin, the surface hardness will be low, and if it is too thick, the impact resistance will be lowered.
  • the thickness of the high hardness resin layer is preferably 10 to 250 ⁇ m, more preferably 30 to 200 ⁇ m, and particularly preferably 60 to 150 ⁇ m.
  • a further layer may exist between the polycarbonate layer and the high-hardness resin layer, but here, a case where the high-hardness resin layer is laminated on the base material layer will be described.
  • the laminating method is not particularly limited, and laminating can be performed in the same manner when other layers are present. For example, a method in which an individually formed base material layer and a high hardness resin layer are superposed and heat-bonded to each other; a individually formed base material layer and a high hardness resin layer are superposed and both are bonded by an adhesive.
  • Various methods such as a method of co-extruding a base material layer and a high-hardness resin layer; a method of in-molding a base material layer into a pre-formed high-hardness resin layer and integrating them. There is. Of these, the coextrusion molding method is preferable from the viewpoint of manufacturing cost and productivity.
  • the coextrusion molding method is not particularly limited.
  • a high-hardness resin layer is placed on one side of a base material layer with a feed block, extruded into a sheet shape with a T-die, and then cooled while passing through a molding roll to form a desired laminate.
  • a high-hardness resin layer is arranged on one side of the base material layer in the multi-manifold die, extruded into a sheet shape, and then cooled while passing through a molding roll to form a desired laminate. ..
  • the total thickness of the base material layer and the high hardness resin layer is preferably 0.5 to 3.5 mm, more preferably 0.5 to 3.0 mm, and particularly preferably 1.2 to 3.0 mm.
  • the ratio of the thickness of the base material layer to the total thickness of the base material layer and the high hardness resin layer is preferably 75% to 99%, more preferably 80 to 99%, and particularly preferably 85 to 99%. is there. Within the above range, both hardness and impact resistance can be achieved.
  • the antiglare laminate (resin sheet) of the present invention includes a hard coat layer.
  • a further layer may be present between the hard coat layer and the high hardness resin layer, but preferably the hard coat layer is laminated on the high hardness resin layer.
  • the hard coat layer is preferably an acrylic hard coat.
  • acrylic hard coat means a coating film formed by polymerizing a monomer or oligomer or prepolymer containing a (meth) acryloyl group as a polymerization group to form a crosslinked structure.
  • the composition of the acrylic hard coat preferably contains 2 to 98% by mass of the (meth) acrylic monomer, 2 to 98% by mass of the (meth) acrylic oligomer, and 0 to 15% by mass of the surface modifier. It is preferable to contain 0.001 to 7 parts by mass of the photopolymerization initiator with respect to 100 parts by mass of the total of the (meth) acrylic monomer, the (meth) acrylic oligomer and the surface modifier.
  • the hard coat layer more preferably contains 5 to 50% by mass of the (meth) acrylic monomer, 50 to 95% by mass of the (meth) acrylic oligomer, and 1 to 10% by mass of the surface modifier, and is particularly preferably. , 20-40% by mass of (meth) acrylic monomer, 60-80% by mass of (meth) acrylic oligomer, and 2-5% by mass of surface modifier.
  • the amount of the photopolymerization initiator is more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the total of the (meth) acrylic monomer, the (meth) acrylic oligomer and the surface modifier. It is particularly preferably 0.1 to 3 parts by mass.
  • the (meth) acrylic monomer can be used as long as the (meth) acryloyl group exists as a functional group in the molecule, and can be used as a monofunctional monomer, a bifunctional monomer, or a trifunctional monomer. It may be the above monomer.
  • Examples of the monofunctional monomer include (meth) acrylic acid and (meth) acrylic acid ester.
  • Specific examples of the bifunctional and / or trifunctional or higher (meth) acrylic monomer include diethylene glycol di (meth) acrylate and di. Propropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, tetraethylene glycol di (meth) acrylate , Hydroxypivalate neopentyl glycol diacrylate, neopentyl glycol di (meth) acrylate, 1,4-butanediol diacrylate, 1,3-butylene glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, Polyethylene glycol diacrylate, 1,4-butanediol oligo acryl
  • the hard coat layer may contain one type or two or more types of (meth) acrylic monomers.
  • the (meth) acrylic oligomer is a bifunctional or higher polyfunctional urethane (meth) acrylate oligomer (hereinafter, also referred to as “polyfunctional urethane (meth) acrylate oligomer”), which is bifunctional or higher.
  • Polyfunctional polyester (meth) acrylate oligomer hereinafter, also referred to as “polyfunctional polyester (meth) acrylate oligomer”
  • bifunctional or higher polyfunctional epoxy (meth) acrylate oligomer hereinafter, “polyfunctional epoxy (meth) acrylate oligomer”
  • the hard coat layer may contain one or more (meth) acrylic oligomers.
  • polyfunctional urethane (meth) acrylate oligomer a urethanization reaction product of a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule and polyisocyanate; polyols are polyisocyanates. Examples thereof include a urethanization reaction product of an isocyanate compound obtained by reacting with and a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule.
  • Examples of the (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule used in the urethanization reaction include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
  • Examples include (meth) acrylate.
  • the polyisocyanate used in the urethanization reaction includes hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and diisocyanate obtained by hydrogenating aromatic isocyanates among these diisocyanates.
  • diisocyanate such as hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate
  • di or tri polyisocyanate such as triphenylmethane triisocyanate, dimethylene triphenyl triisocyanate, or polyisocyanate obtained by increasing the amount of diisocyanate.
  • polys used in the urethanization reaction generally, aromatic, aliphatic and alicyclic polyols, as well as polyester polyols, polyether polyols and the like are used.
  • aliphatic and alicyclic polyols include 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, ethylene glycol, propylene glycol, trimethylolethane, trimethylolpropane, dimethylolheptan, and di. Examples thereof include methylolpropionic acid, dimethylolbutylionic acid, glycerin, and hydrogenated bisphenol A.
  • polyester polyol examples include those obtained by a dehydration condensation reaction between the above-mentioned polyols and a polycarboxylic acid.
  • Specific compounds of the polycarboxylic acid include succinic acid, adipic acid, maleic acid, trimellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, terephthalic acid and the like. These polycarboxylic acids may be anhydrides.
  • examples of the polyether polyols include the above-mentioned polyols or polyoxyalkylene-modified polyols obtained by reacting phenols with alkylene oxides.
  • the polyfunctional polyester (meth) acrylate oligomer is obtained by a dehydration condensation reaction using (meth) acrylic acid, a polycarboxylic acid and a polyol.
  • the polycarboxylic acid used in the dehydration condensation reaction include succinic acid, adipic acid, maleic acid, itaconic acid, trimellitic acid, pyromellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, and terephthalic acid. These polycarboxylic acids may be anhydrides.
  • the polyols used in the dehydration condensation reaction include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, dimethylolheptan, dimethylolpropionic acid, and dimethylol.
  • Examples thereof include butyric acid, trimethylolpropane, trimethylolpropane, pentaerythritol, and dipentaerythritol.
  • the polyfunctional epoxy (meth) acrylate oligomer is obtained by an addition reaction between polyglycidyl ether and (meth) acrylic acid.
  • the polyglycidyl ether include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether.
  • Modifier used in the present invention changes the performance of a hard coat layer such as a leveling agent, an antistatic agent, a surfactant, a water-repellent oil-repellent agent, and a UV absorber.
  • leveling agent examples include polyether-modified polyalkylsiloxane, polyether-modified siloxane, polyester-modified hydroxyl group-containing polyalkylsiloxane, polyether-modified polydimethylsiloxane having an alkyl group, modified polyether, and silicon-modified acrylic.
  • antistatic agent examples include glycerin fatty acid ester monoglyceride, glycerin fatty acid ester organic acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester, cationic surfactant, and anionic surfactant.
  • surfactants and water- and oil-repellent agents include fluorine-containing surfactants such as fluorine-containing group / lipophilic group-containing oligomers and fluorine-containing groups / hydrophilic groups / lipophilic groups / UV-reactive group-containing oligomers. And water and oil repellents.
  • UV absorbers examples include hydroxyphenyltriazine-based, benzotriazole-based, and bengophenone-based.
  • the hard coat layer may contain a photopolymerization initiator.
  • the photopolymerization initiator refers to a photoradical generator.
  • Examples of the monofunctional photopolymerization initiator that can be used in the present invention include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone [Darocure 2959: manufactured by Merck]; ⁇ -hydroxy.
  • Benzoin ether-based initiators such as benzoin ethyl ether and benzoin isopropyl ether; other examples include halogenated ketones, acylphosphinoxides, and acylphosphonates.
  • the method for forming the hard coat layer is not particularly limited, but for example, it can be formed by applying a hard coat solution on a layer located below the hard coat layer (for example, a high hardness resin layer) and then photopolymerizing the hard coat layer. ..
  • the method of applying the hard coat paint in the present invention is not particularly limited, and a known method can be used.
  • spin coating method dip method, spray method, slide coating method, bar coating method, roll coating method, gravure coating method, meniscus coating method, flexographic printing method, screen printing method, beat coating method, and handling method can be mentioned. ..
  • a lamp having a light emission distribution having a light wavelength of 420 nm or less is used, and examples thereof include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, and a black light lamp. , Microwave-excited mercury lamp, metal halide lamp, etc.
  • high-pressure mercury lamps or metal halide lamps efficiently emit light in the active wavelength region of the initiator and heat short-wavelength light or reaction compositions that reduce the viscoelastic properties of the obtained polymer by cross-linking. This is preferable because it does not emit a large amount of long-wavelength light that causes evaporation.
  • the irradiation intensity of the lamp is a factor that affects the degree of polymerization of the obtained polymer, and is appropriately controlled for each performance of the target product.
  • the illuminance is preferably in the range of 0.1 to 300 mW / cm 2 .
  • the photopolymerization reaction is inhibited by oxygen in the air or oxygen dissolved in the reactive composition. Therefore, it is desirable to perform light irradiation using a method that can eliminate the reaction inhibition by oxygen.
  • One such method is to cover the reactive composition with a film made of polyethylene terephthalate or Teflon to cut off contact with oxygen and irradiate the reactive composition with light through the film. Further, the composition may be irradiated with light through a light-transmitting window in an inert atmosphere in which oxygen is replaced by an inert gas such as nitrogen gas or carbon dioxide gas.
  • the air velocity of the inert gas is preferably 1 m / sec or less as a relative velocity with respect to the laminate coated with the hard coat liquid moving under the atmosphere of the inert gas. More preferably, it is 0.1 m / sec or less.
  • the coated surface may be pretreated for the purpose of improving the adhesion of the hard coat layer.
  • Known treatment examples include sandblasting, solvent treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet treatment, and primer treatment with a resin composition. Can be mentioned.
  • the hard coat layer preferably has a pencil hardness of 2H or more when irradiated with ultraviolet rays using a metal halide lamp having an irradiation output of UV light (254 nm) of 20 mW / cm 2 .
  • the film thickness of the hard coat layer is preferably 1 ⁇ m or more and 40 ⁇ m or less, and more preferably 2 ⁇ m or more and 10 ⁇ m or less. Sufficient hardness can be obtained when the film thickness is 1 ⁇ m or more. Further, when the film thickness is 40 ⁇ m or less, the occurrence of cracks during bending can be suppressed.
  • the film thickness of the hard coat layer can be measured by observing the cross section with a microscope or the like and actually measuring from the coating film interface to the surface.
  • the hard coat layer having an uneven shape may have at least one of antireflection performance, antifouling performance, antistatic performance, and weather resistance.
  • the treatment method such as antireflection treatment, antifouling treatment, antistatic treatment, and weather resistance treatment is not particularly limited to the hard coat layer, and known methods can be used. For example, a method of applying a reflection-reducing paint, a method of depositing a dielectric thin film, a method of applying an antistatic paint, and the like can be mentioned.
  • molding by a mold can be mentioned. Molding can be carried out by a method of producing a shape complementary to an uneven surface and curing it with ultraviolet rays in a state where a transparent base material coated with a hard coat is in close contact with the surface.
  • the haze defined in JIS K 7136 is 15% or more in order to suppress the reflection of the image, and the haze is measured at an incident angle of 45 ° using a 2.0 mm wide optical comb.
  • the reflection sharpness is preferably 30% or less.
  • the light incident surface when measuring the haze is the surface opposite to the uneven shape. Further, the reflection sharpness can be measured by suppressing the back surface reflection by attaching a black tape to the back surface of the uneven surface.
  • the specular reflection light increases and the image is likely to be reflected.
  • the ratio of the angular distribution of 5 ° or less is preferably 65 to 80%.
  • the hard coat layer having an uneven shape does not contain inorganic particles or organic particles.
  • the uneven shape in the present invention is provided by transfer.
  • the scratch resistance can be improved by not containing the inorganic particles or the organic particles in the hard coat layer.
  • Another embodiment of the present invention comprises the step of transferring the uneven shape to the hard coat layer by pressing a patterned PET film onto the photocurable resin composition on the layer containing the high hardness resin (B).
  • a method for producing the antiglare laminate including the above.
  • the patterned PET film for example, PTH, PTHA, PTHZ of Unitika emblem, PF11 or PF23 of Daicel's low-glare AG film can be used.
  • ⁇ Glitter> For glare, the uneven shape is installed upward on the 265ppi iPad6 with the antiglare laminate displayed in green (R: 29, G: 205, B: 0), and after taking an image with Konica Minolta's Promotric Y29, from the shooting screen Extract 60 mm x 60 mm.
  • the image extracted using the Random Mura sequence of the analysis software "True Test” is divided into 9 parts, and the glare value is calculated by "(Display) brightness standard deviation / average brightness of evaluation range” in each of the 9 divided areas. Can be calculated.
  • the average of the glare values calculated for each of the nine regions is preferably 2.0 or less when used as the front plate.
  • the distance between the lens and the antiglare laminate was set to 500 mm.
  • ⁇ SW hardness> The degree of scratches when making 15 reciprocations with a load of 100 g / cm2 using steel wool # 0000 is evaluated on a 10-point scale by visual observation. Described in RANK1 to RANK10.
  • RANK1 Inorganic glass (no scratches)
  • RANK10 Polycarbonate (many scratches)
  • the test piece was cut out to a size of 100 mm ⁇ 60 mm.
  • the cut out test piece was set in a two-point support type holder and put into an environmental tester set at a temperature of 23% and a relative humidity of 50% for 24 hours or more to adjust the state, and then the warp was measured (before processing).
  • the test piece was set in a holder and placed in an environmental tester set at a temperature of 85 ° C. and a relative humidity of 85%, and held in that state for 120 hours. Further, the holder was moved into an environmental tester set at a temperature of 23% and a relative humidity of 50%, and the warp was measured again after holding for 4 hours in that state (after treatment).
  • a three-dimensional shape measuring machine equipped with an electric stage (KS-1000 manufactured by KEYENCE) was used, and the taken-out test piece was placed horizontally in a convex state upward, and Mr. Takeshi Shikiya, center, at 1 mm intervals. The swelling of the part was measured as a sled.
  • was evaluated as shape stability.
  • Example 1 ⁇ Laminate plate (X-1)> Synthetic resin using a single-screw extruder with a shaft diameter of 35 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all extruders, and a multi-layer extruder having a T-die connected to the feed block.
  • the laminate was molded.
  • Optimas 7500 manufactured by Mitsubishi Gas Chemical Company was continuously introduced as a high-hardness resin (B1) into a single-screw extruder having a shaft diameter of 35 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 2.6 kg / h.
  • polycarbonate resin manufactured by Mitsubishi Engineering Plastics, trade name: Iupiron S-1000
  • Iupiron S-1000 polycarbonate resin
  • the feed block connected to all extruders was equipped with two types and two layers of distribution pins, and a high hardness resin and a polycarbonate resin were introduced and laminated at a temperature of 270 ° C.
  • a resin laminated plate (X-1) consisting of a layer and a polycarbonate resin layer was obtained.
  • the thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness resin (B1) layer was 60 ⁇ m near the center.
  • ⁇ PET film with pattern (Z-1)> PS27-1 manufactured by Daicel was used as a PET film for transferring the uneven shape.
  • the photocurable resin composition (Y) is applied onto the high hardness layer of the laminate (X-1) using a bar coater so that the coating thickness after curing is 5 to 10 ⁇ m, and a patterned PET film is applied.
  • the handle surface of (Z-1) was covered and crimped so as to come into contact with the coating liquid.
  • the light source distance is 12 cm
  • a metal halide lamp (20 mW / cm) is irradiated for 30 seconds to cure the film
  • the patterned PET film is peeled off, and the antiglare layer provided with the uneven hard coat layer on the high hardness resin layer (B1) is provided.
  • a sex laminate was obtained.
  • Example 2 An antiglare laminate was obtained in the same manner as in Example 1 except that PS27-2 (Z-2) manufactured by Daicel was used for the patterned PET film.
  • Example 3 An antiglare laminate was obtained in the same manner as in Example 1 except that PS27-3 (Z-3) manufactured by Daicel was used for the patterned PET film.
  • Example 4 Manufacturing of high hardness resin (B2)> Other than 75% by mass of R-100 as the styrene-unsaturated dicarboxylic acid-based copolymer (D) and 25% by mass of the methyl methacrylate resin parapet HR-L as the resin (C) containing the vinyl-based monomer. Obtained a resin composition (B2) in the same manner as in Production Example 5. The pellets could be produced stably.
  • the laminate was molded.
  • polycarbonate resin manufactured by Mitsubishi Engineering Plastics, trade name: Iupiron E-2000
  • Iupiron E-2000 polycarbonate resin
  • the feed block connected to all extruders was equipped with two types and two layers of distribution pins, and a high hardness resin and a polycarbonate resin were introduced and laminated at a temperature of 270 ° C.
  • the photocurable resin composition (Y) is applied onto the high hardness layer of the laminate (X-2) using a bar coater so that the coating thickness after curing is 5 to 10 ⁇ m, and a patterned PET film is applied.
  • the handle surface of (Z-1) was covered and crimped so as to come into contact with the coating liquid.
  • the light source distance is 12 cm
  • a metal halide lamp (20 mW / cm) is irradiated for 30 seconds to cure the film
  • the patterned PET film is peeled off, and the antiglare layer provided with the uneven hard coat layer on the high hardness resin layer (B2) is provided.
  • a sex laminate was obtained.
  • Example 5 An antiglare laminate was obtained in the same manner as in Example 4 except that PS27-2 (Z-2) manufactured by Daicel was used for the patterned PET film.
  • Example 6 An antiglare laminate was obtained in the same manner as in Example 4 except that PS27-3 (Z-3) manufactured by Daicel was used for the patterned PET film.
  • Example 7 ⁇ Manufacturing of high hardness resin (B3)>
  • the laminate was molded.
  • polycarbonate resin manufactured by Mitsubishi Engineering Plastics, trade name: Iupiron E-2000
  • Iupiron E-2000 polycarbonate resin
  • the feed block connected to all extruders was equipped with two types and two layers of distribution pins, and a high hardness resin and a polycarbonate resin were introduced and laminated at a temperature of 270 ° C.
  • a resin laminated plate of a layer and a polycarbonate resin layer was obtained.
  • the thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness resin (B3) layer was 60 ⁇ m near the center.
  • the photocurable resin composition (Y) is applied onto the high hardness layer of the laminate (X-3) using a bar coater so that the coating thickness after curing is 5 to 10 ⁇ m, and a patterned PET film is applied.
  • the handle surface of (Z-1) was covered and crimped so as to come into contact with the coating liquid. After that, the light source distance is 12 cm, a metal halide lamp (20 mW / cm) is irradiated for 30 seconds to cure the film, the patterned PET film is peeled off, and the antiglare layer provided with the uneven hard coat layer on the high hardness resin layer (B3) is provided. A sex laminate was obtained.
  • Example 8 An antiglare laminate was obtained in the same manner as in Example 7 except that PS27-2 (Z-2) manufactured by Daicel was used for the patterned PET film.
  • Example 9 An antiglare laminate was obtained in the same manner as in Example 7 except that PS27-3 (Z-3) manufactured by Daicel was used for the patterned PET film.
  • Example 10 Manufacturing of high hardness resin (B4)> 75% by mass of a copolymer (Regisphi R100 (manufactured by Denka)) containing 21% by mass of methyl methacrylate constituent unit, 64% by mass of styrene constituent unit, and 15% by mass of maleic anhydride constituent unit, and 7% by mass of styrene constituent unit, methacryl.
  • a copolymer (Regisphi R100 (manufactured by Denka)) containing 21% by mass of methyl methacrylate constituent unit, 64% by mass of styrene constituent unit, and 15% by mass of maleic anhydride constituent unit, and 7% by mass of styrene constituent unit, methacryl.
  • a copolymer (Delpet PM120N; manufactured by Asahi Kasei Chemical Co., Ltd.) containing 86% by mass of methyl acid constituent unit and 7% by mass of N-phenylmaleimide constituent unit is extruded with an extruder (TEM-26SS, L / D) having a screw diameter of 26 mm. ⁇ 40; manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at 240 ° C. to obtain a high-hardness resin (B4).
  • an extruder TEM-26SS, L / D having a screw diameter of 26 mm. ⁇ 40; manufactured by Toshiba Machine Co., Ltd.
  • the laminate was molded.
  • KH3410UR manufactured by Mitsubishi Engineering Plastics was continuously introduced as a high-hardness resin (B4) into a single-screw extruder having a shaft diameter of 35 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 2.6 kg / h.
  • polycarbonate resin manufactured by Mitsubishi Engineering Plastics, trade name: Iupiron S-1000
  • Iupiron S-1000 polycarbonate resin
  • the feed block connected to all extruders was equipped with two types and two layers of distribution pins, and a high hardness resin and a polycarbonate resin were introduced and laminated at a temperature of 270 ° C.
  • a resin laminated plate of a layer and a polycarbonate resin layer was obtained.
  • the thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness resin (B4) layer was 60 ⁇ m near the center.
  • the photocurable resin composition (Y) is applied onto the high-hardness resin layer of the laminate (X-4) using a bar coater so that the coating thickness after curing is 5 to 10 ⁇ m, and PET with a pattern is applied.
  • the handle surface of the film (Z-1) was covered and pressure-bonded so as to come into contact with the coating liquid. After that, the light source distance is 12 cm, a metal halide lamp (20 mW / cm) is irradiated for 30 seconds to cure the film, the patterned PET film is peeled off, and the antiglare layer provided with the uneven hard coat layer on the high hardness resin layer (B3) is provided. A sex laminate was obtained.
  • Example 11 An antiglare laminate was obtained in the same manner as in Example 10 except that PS27-2 (Z-2) manufactured by Daicel was used for the patterned PET film.
  • Example 12 An antiglare laminate was obtained in the same manner as in Example 10 except that PS27-3 (Z-3) manufactured by Daicel was used for the patterned PET film.
  • Comparative Example 1 An antiglare laminate was obtained in the same manner as in Example 1 except that PTH-50 (Z-4) manufactured by Unitika Trading Co., Ltd. was used for the patterned PET film.
  • Comparative Example 2 An antiglare laminate was obtained in the same manner as in Example 1 except that C-50 G-100 (Z-5) manufactured by Nakajima Kogyo Co., Ltd. was used for the patterned PET film.
  • Comparative Example 3 An antiglare laminate was obtained in the same manner as in Example 1 except that C-50 G-30 (Z-6) manufactured by Nakajima Kogyo Co., Ltd. was used for the patterned PET film.
  • Comparative Example 4 50 parts by mass of acrylic ultraviolet curable resin (100% solid content: Light acrylate DPE-6A manufactured by Kyoeisha Chemical Co., Ltd.), silica fine particles (octylsilane treated fumed silica, average primary particle size 12 nm) with respect to 50 parts by mass of MEK , Nippon Aerosil Co., Ltd.) 0.5 parts by mass, acrylic silane treated silica 1 part by mass (average particle size 1.9 ⁇ m, trade name: SE-6050-SYB Admatex Co., Ltd.), and 3 parts by mass of photoinitiator (manufactured by Admatex Co., Ltd.)
  • the coating liquid (i) was prepared by mixing and stirring the product (trade name: Omnirad 184 IGM Resins).
  • the coating liquid (i) is applied to a PET (polyethylene terephthalate) film so that the dry film thickness is 2.5 ⁇ m, dried at 80 ° C. for 2 minutes, and then a high-pressure mercury lamp having a light source distance of 12 cm and an output of 80 W / cm is used.
  • Anti-glare property as in Example 1 except that a patterned PET film (Z-7) produced by irradiating and curing ultraviolet rays at a line speed of 1.5 m / min on a provided conveyor was used. A laminate was obtained.
  • Comparative Example 5 Examples except that the laminate (X-5) obtained by using the methyl methacrylate resin parapet HR-L (manufactured by Kuraray, weight average molecular weight: 90,000) was used instead of the high hardness resin composition (B1). In the same manner as in 1, a laminated body was prepared and a hard coat was formed to obtain an antiglare laminated body.
  • the laminate (X-5) obtained by using the methyl methacrylate resin parapet HR-L manufactured by Kuraray, weight average molecular weight: 90,000
  • Comparative Example 6 50 parts by mass of acrylic ultraviolet curable resin (100% solid content product: light acrylate DPE-6A manufactured by Kyoeisha Chemical Co., Ltd.), silica fine particles (octylsilane treated fumed silica, average primary particle size 1.) With respect to 50% by mass of MEK. 9 ⁇ m, trade name: SE6050-SYB Admatex Co., Ltd., and 3 parts by mass of photoinitiator (trade name: Irgacure 184) A coating solution was prepared by mixing and stirring (manufactured by Toyotsu Chemiplas). Next, the laminate (X-5) described in Comparative Example 5 was coated with a dry film thickness of 2.5 ⁇ m, dried at 80 ° C. for 2 minutes, and then a metal halide lamp (20 mW / cm) was applied while purging nitrogen. By irradiating for 30 seconds and curing, an antiglare laminate was obtained.
  • acrylic ultraviolet curable resin 100% solid content product: light acryl
  • the antiglare laminates obtained in Examples 1 to 12 and Comparative Examples 1 to 6 were evaluated for haze, reflection sharpness (mapping property), glare, ratio of inclination angle of 5 ° or less, SW hardness, and morphological stability. did. The results are shown in the table below.
  • the present invention has excellent impact resistance, heat resistance and anti-glare performance, suppresses glare, has high scratch resistance, and is also excellent in shape stability. It was found that an antiglare laminate was obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is an anti-glare laminate which has suppressed glare, high scratch resistance, and excellent shape stability while having excellent impact resistance, heat resistance, and anti-glare ability. More specifically, provided is an anti-glare laminate comprising: a layer containing a resin (A) including a polycarbonate resin (a1); a layer containing a high-hardness resin (B) and provided on at least one surface of the layer containing a resin (A) including a polycarbonate resin (a1); and an additional hard-coat layer having protrusions and recesses and provided on the layer containing a high-hardness resin (B), wherein conditions (i) and (ii) below are satisfied: (i) the thickness of the layer containing a high-hardness resin (B) is 10-250 μm, and the overall thickness of the layer containing a resin (A) including a polycarbonate resin (a1) and the layer containing a high-hardness resin (B) is 100-3,000 μm; and (ii) the laminate has a haze of at least 15% as defined in JIS K7136 and has a reflection glossiness of 30% or less as measured at a light incidence angle of 45° using an optical comb having a width of 2.0 mm, and the value of luminance standard deviation/average luminance in an evaluation range is 2.0 or less as measured using Konica Minolta Prometric Y29 for the laminate placed on a 265-ppi light source.

Description

防眩性積層体Anti-glare laminate
 本発明は、防眩性積層体に関する。より詳細には、本発明は、優れた耐衝撃性、耐熱性及び防眩性能を有しつつ、ギラツキの発生を抑え、高い耐擦傷性を有し、形状安定性にも優れた、車載用液晶表示装置や携帯電話端末、パソコン、タブレットPCに前面板として用いられる防眩性積層体に関するものである。 The present invention relates to an antiglare laminate. More specifically, the present invention has excellent impact resistance, heat resistance and anti-glare performance, suppresses glare, has high scratch resistance, and has excellent shape stability for automobiles. It relates to an antiglare laminate used as a front plate in a liquid crystal display device, a mobile phone terminal, a personal computer, and a tablet PC.
 液晶パネルなどの保護を目的として、液晶表示装置には前面板が設けられている。従来の液晶表示装置の前面板に用いられる材料としては、ポリメタクリル酸メチル(PMMA)に代表される(メタ)アクリル樹脂が挙げられる。 The liquid crystal display device is provided with a front plate for the purpose of protecting the liquid crystal panel and the like. Examples of the material used for the front plate of the conventional liquid crystal display device include (meth) acrylic resin typified by polymethyl methacrylate (PMMA).
 また近年、高い耐衝撃性、耐熱性、2次加工性、軽量性及び透明性などを有する点から、ポリカーボネート樹脂からなるシートが前面板として用いられている。特にポリカーボネート樹脂シートの表層にアクリル樹脂を積層した多層シートの上にハードコートを施した前面板は、従来のハードコート付きアクリル樹脂に匹敵する表面硬度及び耐擦傷性を有しつつ、ポリカーボネート樹脂の優れた耐衝撃性、耐熱性、加工性及び透明性を併せ持つため、前面板として広く採用されている。 In recent years, a sheet made of polycarbonate resin has been used as a front plate because it has high impact resistance, heat resistance, secondary workability, light weight and transparency. In particular, the front plate, which is hard-coated on a multilayer sheet in which acrylic resin is laminated on the surface layer of the polycarbonate resin sheet, has surface hardness and scratch resistance comparable to those of conventional hard-coated acrylic resin, and is made of polycarbonate resin. It is widely used as a front plate because it has excellent impact resistance, heat resistance, workability, and transparency.
 上記ポリカーボネート樹脂シートを備える液晶表示装置の前面板については、アクリル樹脂と共に溶融押出法によって形成されることが一般的である。 The front plate of the liquid crystal display device provided with the above-mentioned polycarbonate resin sheet is generally formed by a melt extrusion method together with an acrylic resin.
液晶表示装置においては、一般に最表面には反射防止のための光学積層体が設けられている。このような反射防止用の光学積層体は、光の散乱や干渉によって、像の映り込みを抑制したり反射率を低減したりするものである。 In a liquid crystal display device, an optical laminate for antireflection is generally provided on the outermost surface. Such an optical laminate for antireflection suppresses the reflection of an image or reduces the reflectance by scattering or interference of light.
 反射防止用光学積層体の1つとして、透明性基材の表面に凹凸形状を有する防眩層を形成した防眩性フィルムが知られている。この防眩性フィルムは、表面の凹凸形状によって外光を散乱させて外光の反射や像の映り込みによる視認性の低下を防止することができる。また、この光学積層体は、通常、液晶表示装置の最表面に設置されるものであるため、取り扱い時に傷がつかないように、ハードコート性を付与することも要求される。 As one of the antireflection optical laminates, an antiglare film in which an antiglare layer having an uneven shape is formed on the surface of a transparent base material is known. This antiglare film can scatter external light due to the uneven shape of the surface to prevent deterioration of visibility due to reflection of external light and reflection of an image. Further, since this optical laminate is usually installed on the outermost surface of the liquid crystal display device, it is also required to impart hard coat property so as not to be scratched during handling.
 液晶表示装置や有機エレクトロルミネッサンス(EL)表示装置などの表示面での外景の映り込みを防止するため、通常、微粒子とバインダー樹脂又は硬化性樹脂との混合物を基材に塗布し、表面に微細な凹凸を形成することにより正反射を防ぎ、防眩性を発現させている。しかし、画素サイズの細かい高精細表示装置においては、従来の表面凹凸サイズでは画面のギラツキや文字ボケなどの画像品位低下をもたらす。すなわち、高精細表示装置の場合、従来の表面凹凸サイズは、高精細表示の画素サイズとオーダー的に近く、表面凹凸によるレンズ効果でギラツキが発生する。従来の微粒子サイズでは、直進透過光付近の散乱が増加し、画素の輪郭が曖昧となって文字ボケが発生する。さらに、透過散乱光の強度分布は、添加する微粒子サイズに依存し、より小さな微粒子では直進透過光周りの散乱が減少し、ギラツキが低減されるが、より大きな微粒子では直進透過光付近の散乱が増加し、ギラツキが発生する。 In order to prevent the reflection of the outside view on the display surface of a liquid crystal display device or an organic electroluminescence (EL) display device, a mixture of fine particles and a binder resin or a curable resin is usually applied to the base material and applied to the surface. By forming fine irregularities, specular reflection is prevented and anti-glare properties are exhibited. However, in a high-definition display device having a fine pixel size, the conventional surface uneven size causes deterioration of image quality such as screen glare and character blur. That is, in the case of a high-definition display device, the conventional surface unevenness size is close to the pixel size of the high-definition display in order, and glare occurs due to the lens effect due to the surface unevenness. With the conventional fine particle size, scattering near the straight transmitted light increases, the outline of the pixel becomes ambiguous, and character blurring occurs. Furthermore, the intensity distribution of transmitted scattered light depends on the size of the fine particles to be added, and smaller fine particles reduce scattering around straight transmitted light and reduce glare, while larger fine particles cause scattering near straight transmitted light. Increases and glare occurs.
 これらの課題を解決するため、添加する微粒子のサイズを細かくしたり、粒径分布がシャープな微粒子などを用いたりして、表面の凹凸形状を制御することが試みられている。しかし、これらの方法では、ギラツキや文字ボケを防止するためには、微粒子の重心位置を制御する必要がある。また、表面の凹凸形状が小さくなるため、充分な防眩性との両立が困難になるとともに、コスト面からも不利である In order to solve these problems, attempts have been made to control the uneven shape of the surface by making the size of the fine particles to be added finer or by using fine particles having a sharp particle size distribution. However, in these methods, it is necessary to control the position of the center of gravity of the fine particles in order to prevent glare and blurring of characters. In addition, since the uneven shape of the surface becomes smaller, it becomes difficult to achieve both sufficient anti-glare properties, and it is also disadvantageous in terms of cost.
 また、微粒子を添加すると耐擦傷試験中に最表面の微粒子が脱落して研磨剤として働くため、微粒子を添加しない場合と比較して著しく耐擦傷性が低下するため好ましくない。 Further, when fine particles are added, the fine particles on the outermost surface fall off during the scratch resistance test and act as an abrasive, so that the scratch resistance is significantly reduced as compared with the case where no fine particles are added, which is not preferable.
 特開2001-215307号公報(特許文献1)には、平均粒径15μm以下の透明微粒子を、前記平均粒径の2倍以上の厚さの被膜中に含有するアンチグレア層であって、前記被膜のうち、空気と接触する片側に前記透明微粒子が偏在して表面微細な凹凸構造を形成したアンチグレア層が開示されている。しかし、このアンチグレア層では、粒子サイズにより透過散乱光の強度分布をコントロールするため、表示面でのギラツキを有効に防止できない。また、粒子を添加していることから粒子の脱落による耐擦傷性低下が発生する。 Japanese Patent Application Laid-Open No. 2001-215307 (Patent Document 1) describes an antiglare layer containing transparent fine particles having an average particle size of 15 μm or less in a film having a thickness of twice or more the average particle size. Among them, an anti-glare layer in which the transparent fine particles are unevenly distributed on one side in contact with air to form a fine uneven structure on the surface is disclosed. However, in this anti-glare layer, since the intensity distribution of transmitted scattered light is controlled by the particle size, glare on the display surface cannot be effectively prevented. Further, since the particles are added, the scratch resistance is lowered due to the particles falling off.
 以上のように、車載用液晶表示装置や携帯電話端末、パソコン、タブレットPCの前面板では、優れた耐衝撃性、耐熱性及び防眩性能を有しつつ、ギラツキの発生を抑え、高い耐擦傷性を有し、形状安定性にも優れた前面板はなかった。 As described above, the front panel of an in-vehicle liquid crystal display device, a mobile phone terminal, a personal computer, or a tablet PC has excellent impact resistance, heat resistance, and anti-glare performance, suppresses glare, and has high scratch resistance. There was no front plate that had the property and was also excellent in shape stability.
特開2001-215307号公報Japanese Unexamined Patent Publication No. 2001-215307
 本発明は、優れた耐衝撃性、耐熱性及び防眩性能を有しつつ、ギラツキの発生を抑え、高い耐擦傷性を有し、形状安定性にも優れた防眩性積層体を提供する。 The present invention provides an antiglare laminate having excellent impact resistance, heat resistance and antiglare performance, suppressing the occurrence of glare, having high scratch resistance, and having excellent shape stability. ..
上記課題は、以下の本発明によって解決することができる。すなわち、本発明は以下の通りである。 The above problems can be solved by the following invention. That is, the present invention is as follows.
 <1>ポリカーボネート樹脂(a1)を含む樹脂(A)を含む層と、
 ポリカーボネート樹脂(a1)を含む樹脂(A)を含む層の少なくとも1方の面に設けられた、高硬度樹脂(B)を含む層と、
 更に高硬度樹脂(B)を含む層上に設けられ、凹凸形状を有するハードコート層と、を備え、下記条件(i)および(ii)を満たす防眩性積層体:
 (i)前記高硬度樹脂(B)を含む層の厚みが10~250μmであり、前記ポリカーボネート樹脂(a1)を含む樹脂(A)を含む層と前記高硬度樹脂(B)を含む層との合計厚みが100~3,000μmであり;
 (ii)前記積層体は、JIS K 7136にて規定されるヘイズが15%以上であり、2.0mm幅の光学くしを用いて光の入射角45°で測定される反射鮮明度が30%以下であり、該積層体を265ppiの光源上に設置してコニカミノルタ製Prometoric Y29にて測定された輝度標準偏差/評価範囲の平均輝度が2.0以下である。
<1> A layer containing the resin (A) containing the polycarbonate resin (a1) and
A layer containing the high hardness resin (B) provided on at least one surface of the layer containing the resin (A) containing the polycarbonate resin (a1), and a layer containing the high hardness resin (B).
Further, an antiglare laminate provided on a layer containing the high hardness resin (B) and having a concave-convex shape, and satisfying the following conditions (i) and (ii):
(I) The thickness of the layer containing the high hardness resin (B) is 10 to 250 μm, and the layer containing the resin (A) containing the polycarbonate resin (a1) and the layer containing the high hardness resin (B) The total thickness is 100-3,000 μm;
(Ii) The laminated body has a haze of 15% or more specified by JIS K 7136, and has a reflection clarity of 30% measured at an incident angle of light of 45 ° using an optical comb having a width of 2.0 mm. The average brightness of the brightness standard deviation / evaluation range measured by Konica Minolta's Promethoric Y29 when the laminate is placed on a light source of 265 ppi is 2.0 or less.
 <2>高硬度樹脂(B)が以下の樹脂(B1)から(B4)のいずれか1つからなり、
 前記樹脂(B1)は、
 下記一般式(1)であらわされる(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含む共重合樹脂であって、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記共重合樹脂の全構成単位の90~100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)の割合が前記共重合樹脂の全構成単位の65~80モル%である、共重合樹脂:
Figure JPOXMLDOC01-appb-C000006
 (式中、R1は水素原子またはメチル基であり、R2は炭素数1~18のアルキル基である。)
Figure JPOXMLDOC01-appb-C000007
 (式中、R3は水素原子またはメチル基であり、R4は炭素数1~4の炭化水素機を有しても良いシクロヘキシル基である。)であり、
 前記樹脂(B2)は、
 ビニル系単量体を含有する樹脂(C)を55~10質量%、スチレン-不飽和ジカルボン酸系共重合体(D)を45~90質量%含み、前記スチレン-不飽和ジカルボン酸系共重合体(D)が、スチレン系単量体単位(d1)を50~80質量%、不飽和ジカルボン酸単量体単位(d2)を10~30質量%、ビニル系単量体単位(d3)を5~30質量%で含む、樹脂であり、
 前記樹脂(B3)は、
 スチレン構成単位を5~20質量%、(メタ)アクリル酸エステル構成単位を70~90質量%、N-置換型マレイミド単量体を5~20質量%含む樹脂共重合体(G)、または樹脂共重合体(G)と樹脂共重合体(D)のアロイである樹脂であり、
 前記樹脂(B4)は、
 下記一般式(3)で表される構成単位(H)と、任意に下記一般式(4)で表される構成単位とを含む共重合体である、
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
上記<1>に記載の防眩性積層体。
<2> The high hardness resin (B) is composed of any one of the following resins (B1) to (B4).
The resin (B1) is
A copolymer resin containing a (meth) acrylic acid ester structural unit (a) represented by the following general formula (1) and an aliphatic vinyl structural unit (b) represented by the following general formula (2). The total ratio of the (meth) acrylic acid ester constituent unit (a) and the aliphatic vinyl constituent unit (b) is 90 to 100 mol% of the total constituent units of the copolymer resin, and the (meth) acrylic acid. The copolymer resin: the ratio of the ester constituent unit (a) is 65 to 80 mol% of the total constituent units of the copolymer resin.
Figure JPOXMLDOC01-appb-C000006
(In the formula, R1 is a hydrogen atom or a methyl group, and R2 is an alkyl group having 1 to 18 carbon atoms.)
Figure JPOXMLDOC01-appb-C000007
(In the formula, R3 is a hydrogen atom or a methyl group, and R4 is a cyclohexyl group which may have a hydrocarbon machine having 1 to 4 carbon atoms.)
The resin (B2) is
55 to 10% by mass of the resin (C) containing a vinyl-based monomer, 45 to 90% by mass of the styrene-unsaturated dicarboxylic acid-based copolymer (D), and the styrene-unsaturated dicarboxylic acid-based copolymer. The coalescence (D) contains 50 to 80% by mass of the styrene-based monomer unit (d1), 10 to 30% by mass of the unsaturated dicarboxylic acid monomer unit (d2), and the vinyl-based monomer unit (d3). It is a resin contained in an amount of 5 to 30% by mass.
The resin (B3) is
Resin copolymer (G) or resin containing 5 to 20% by mass of styrene constituent unit, 70 to 90% by mass of (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of N-substituted maleimide monomer. A resin that is an alloy of the copolymer (G) and the resin copolymer (D).
The resin (B4) is
A copolymer containing a structural unit (H) represented by the following general formula (3) and optionally a structural unit represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
The antiglare laminate according to <1> above.
 <3>前記凹凸形状は、日立ハイテクサイエンス社製白色干渉顕微鏡VS―1000で測定された傾斜角度分布の5°以下の割合が65~80%である、上記<1>または<2>に記載の防眩性積層体。 <3> The uneven shape is described in <1> or <2> above, wherein the ratio of the inclination angle distribution of 5 ° or less measured by the white interference microscope VS-1000 manufactured by Hitachi High-Tech Science Co., Ltd. is 65 to 80%. Anti-glare laminate.
 <4>前記凹凸形状を有するハードコート層は、無機粒子または有機粒子を含まない、上記<1>~<3>のいずれかに記載の防眩性積層体。 <4> The antiglare laminate according to any one of <1> to <3> above, wherein the hard coat layer having the uneven shape does not contain inorganic particles or organic particles.
 <5>前記凹凸形状を有するハードコート層は、反射防止性能、防汚性能、帯電防止性能、および耐候性のうち少なくとも1つの特性を有する、上記<1>~<4>のいずれかに記載の防眩性積層体。 <5> The above-mentioned <1> to <4>, wherein the hard coat layer having the uneven shape has at least one of the antireflection performance, the antifouling performance, the antistatic performance, and the weather resistance. Anti-glare laminate.
 <6>前記凹凸を有するハードコート層とは反対の面に第2のハードコート層を備える、上記<1>~<5>のいずれかに記載の防眩性積層体。 <6> The antiglare laminate according to any one of <1> to <5> above, which comprises a second hard coat layer on a surface opposite to the hard coat layer having the unevenness.
 <7>前記第2のハードコート層が、反射防止性能、防汚性能、帯電防止性能、および耐候性のうち少なくとも1つの特性を有する、上記<1>~<6>のいずれかに記載の防眩性積層体。 <7> The above-mentioned <1> to <6>, wherein the second hard coat layer has at least one of antireflection performance, antifouling performance, antistatic performance, and weather resistance. Anti-glare laminate.
 <8>ポリカーボネート樹脂(a1)として、下記一般式(5)で表される1価フュノール由来の成分を含む、上記<1>~<7>のいずれかに記載の防眩性積層体。
Figure JPOXMLDOC01-appb-C000010
 (式中、Rは、炭素数8~36のアルキル基、又は炭素数8~36のアルケニル基を表し、R~Rはそれぞれ独立して、水素原子、ハロゲン、又は置換基を有してもよい炭素数1~20のアルキル基若しくは炭素数6~12のアリール基を表し、前記置換基は、ハロゲン、炭素数1~20のアルキル基、又は炭素数6~12のアリール基である。)
<8> The antiglare laminate according to any one of <1> to <7> above, which comprises a component derived from a monovalent funol represented by the following general formula (5) as the polycarbonate resin (a1).
Figure JPOXMLDOC01-appb-C000010
(In the formula, R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms, and R 2 to R 5 each independently have a hydrogen atom, a halogen, or a substituent. It represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms, and the substituent may be a halogen, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 12 carbon atoms. is there.)
 <9>上記<1>~<8>のいずれかに記載の防眩性積層体を含む車載用表示装置。 <9> An in-vehicle display device including the antiglare laminate according to any one of <1> to <8> above.
 <10>上記<1>~<8>のいずれかに記載の防眩性積層体を含むタッチパネル前面保護板。 <10> A touch panel front protective plate containing the antiglare laminate according to any one of <1> to <8> above.
 <11>上記<1>~<8>のいずれかに記載の防眩性積層体を含むOA機器用、携帯電子機器用、またはテレビ用の前面板。 <11> A front plate for OA equipment, portable electronic equipment, or a television containing the antiglare laminate according to any one of <1> to <8> above.
 <12>上記<1>~<8>のいずれかに記載の防眩性積層体の製造方法であって、
 前記高硬度樹脂(B)を含む層上の光硬化性樹脂組成物に、柄目付きPETフィルムを圧着することにより、前記ハードコート層に凹凸形状を転写するステップを含む、前記防眩性積層体の製造方法。
<12> The method for producing an antiglare laminate according to any one of <1> to <8> above.
The antiglare laminate comprising a step of transferring an uneven shape to the hard coat layer by pressing a patterned PET film onto the photocurable resin composition on the layer containing the high hardness resin (B). Manufacturing method.
 以下、本発明について製造例や実施例等を例示して詳細に説明するが、本発明は例示される製造例や実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の方法に変更して行うこともできる。 Hereinafter, the present invention will be described in detail by exemplifying manufacturing examples and examples, but the present invention is not limited to the exemplified manufacturing examples and examples and does not deviate significantly from the contents of the present invention. If so, it can be changed to any method.
 本発明の防眩性積層体(以下、「樹脂シート」と呼ぶことがある)は、ポリカーボネート樹脂(al)を含む樹脂(A)を含む層(以下、「基材層」と呼ぶことがある)の少なくとも1方の面に、高硬度樹脂組成物(B)を含む層(以下、「高硬度樹脂層」、「高硬度層」と呼ぶことがある)および凹凸を有するハードコート層とが設けられている。前記基材層は、ポリカーボネート樹脂(al)を含む樹脂(A)からなる層であってもよい。また、前記高硬度層は、高硬度樹脂組成物(B)からなる層であってもよい。 The antiglare laminate of the present invention (hereinafter, may be referred to as "resin sheet") may be referred to as a layer containing a resin (A) containing a polycarbonate resin (al) (hereinafter, may be referred to as a "base material layer"). ), A layer containing the high-hardness resin composition (B) (hereinafter, may be referred to as a "high-hardness resin layer" or a "high-hardness layer") and a hard coat layer having irregularities are formed on at least one surface. It is provided. The base material layer may be a layer made of a resin (A) containing a polycarbonate resin (al). Further, the high hardness layer may be a layer made of the high hardness resin composition (B).
 積層の順番としては、高硬度層は基材層とハードコート層との間に存在し、最表層となるハードコート層の最表面に凹凸形状が付与されている。ポリカーボネート樹脂(al)を含む樹脂(A)を含む層の他方の面は特に指定はないが、高硬度樹脂層およびハードコート層の両方、あるいはいずれか1つの層を設けてもよい。 As for the order of lamination, the high hardness layer exists between the base material layer and the hard coat layer, and the outermost surface of the hard coat layer, which is the outermost layer, is provided with an uneven shape. The other surface of the layer containing the resin (A) containing the polycarbonate resin (al) is not particularly specified, but both the high hardness resin layer and the hard coat layer, or any one of the layers may be provided.
 高硬度樹脂層としては、高硬度樹脂組成物(B)から選択される樹脂を用いることが望ましく、また、高硬度樹脂層を基材層の両面に設ける場合には、両面で同一の高硬度樹脂組成物(B)を用いることが形状安定性のためにもより望ましい。 As the high-hardness resin layer, it is desirable to use a resin selected from the high-hardness resin composition (B), and when the high-hardness resin layer is provided on both sides of the base material layer, the same high hardness is used on both sides. It is more desirable to use the resin composition (B) for shape stability.
 本発明の一実施形態において、ハードコート層は、凹凸形状を有する。両面にハードコート層を形成する場合、同様のハードコート層を設けることが、形状安定性が良くなることから、より望ましい。 In one embodiment of the present invention, the hard coat layer has an uneven shape. When forming the hard coat layer on both sides, it is more preferable to provide the same hard coat layer because the shape stability is improved.
 本発明の一実施形態において、防眩性積層体は、例えば、車載用表示装置としてカーナビゲーション、センターインフォメーションディスプレイ(CID)、リアシートエンターテインメント(RSE)、クラスターなど、タッチパネル全面保護板、ならびに、OA機器用、携帯電子機器用、またはテレビ用の前面板に用いることができる。また、例えば前面板は、単独で液晶表示装置の前面板として使用できるが、例えばタッチセンサーなどの別の基板とラミネートするなど、複合して前面板として使用してもよい。 In one embodiment of the present invention, the antiglare laminate is, for example, a car navigation system, a center information display (CID), a rear seat entertainment (RSE), a cluster, etc. as an in-vehicle display device, a touch panel full protection plate, and an OA device. It can be used as a front plate for a device, a portable electronic device, or a television. Further, for example, the front plate can be used alone as the front plate of the liquid crystal display device, but may be combined and used as the front plate, for example, by laminating with another substrate such as a touch sensor.
 以下に、本発明による防眩性積層体の各構成部材について説明する。 Hereinafter, each component of the antiglare laminate according to the present invention will be described.
 (ポリカーボネート樹脂(a1)を含む樹脂(A))
 本発明に使用されるポリカーボネート樹脂(a1)を含む樹脂(A)とは、主にポリカーボネート樹脂(a1)を含む樹脂である。樹脂(A)中のポリカーボネート樹脂(a1)の含有量としては75重量%以上であるが、含有量を増やすことで耐衝撃性が向上することから、望ましくは90重量%以上であり、より望ましくは100重量%である。
(Resin (A) containing polycarbonate resin (a1))
The resin (A) containing the polycarbonate resin (a1) used in the present invention is a resin mainly containing the polycarbonate resin (a1). The content of the polycarbonate resin (a1) in the resin (A) is 75% by weight or more, but it is more preferably 90% by weight or more because the impact resistance is improved by increasing the content. Is 100% by weight.
 ポリカーボネート樹脂(al)としては、分子主鎖中に炭酸エステル結合、即ち、-[O-R-OCO]-単位(Rが脂肪族基、芳香族基、又は脂肪族基と芳香族基の双方を含むもの、さらに直鎖構造あるいは分岐構造を有するもの)を含むものであれば特に限定されるものではないが、特に下記式(3)の構造単位を含むポリカーボネート樹脂を使用することが好ましい。このようなポリカーボネート樹脂を使用することで、耐衝撃性に優れた樹脂積層体を得ることができる。 The polycarbonate resin (al) has a carbonic acid ester bond in the main chain of the molecule, that is,-[OR-OCO] -unit (R is an aliphatic group, an aromatic group, or both an aliphatic group and an aromatic group. It is not particularly limited as long as it contains, and further has a linear structure or a branched structure), but it is particularly preferable to use a polycarbonate resin containing the structural unit of the following formula (3). By using such a polycarbonate resin, a resin laminate having excellent impact resistance can be obtained.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 具体的には、ポリカーボネート樹脂(a1)として、芳香族ポリカーボネート樹脂(例えば、三菱エンジニアリングプラスチックス社製、商品名:ユーピロンS-2000、ユーピロンS-1000、ユーピロンE-2000)等が使用可能であるが、これに限定されない。 Specifically, as the polycarbonate resin (a1), an aromatic polycarbonate resin (for example, manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade names: Iupiron S-2000, Iupiron S-1000, Iupilon E-2000) and the like can be used. However, it is not limited to this.
 また、近年、前面板にも曲げ加工を行うような要望が増えていることから、ポリカーボネート樹脂(al)として、下記一般式(5)で表わされる1価フェノールを末端停止剤とすることが好ましい。 Further, in recent years, since there is an increasing demand for bending the front plate as well, it is preferable to use a monohydric phenol represented by the following general formula (5) as a terminal terminator as the polycarbonate resin (al). ..
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 (式中、Rは、炭素数8~36のアルキル基、又は炭素数8~36のアルケニル基を表し、R~Rはそれぞれ独立して、水素原子、ハロゲン、又は置換基を有してもよい炭素数1~20のアルキル基若しくは炭素数6~12のアリール基を表し、前記置換基は、ハロゲン、炭素数1~20のアルキル基、又は炭素数6~12のアリール基である。) (In the formula, R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms, and R 2 to R 5 each independently have a hydrogen atom, a halogen, or a substituent. It represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms, and the substituent may be a halogen, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 12 carbon atoms. is there.)
 より好ましくは、一般式(5)で表わされる1価フェノールは、下記一般式(6)で表わされる。 More preferably, the monohydric phenol represented by the general formula (5) is represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000013
 (式中、Rは、炭素数8~36のアルキル基、又は、炭素数8~36のアルケニル基を表す。)
Figure JPOXMLDOC01-appb-C000013
(In the formula, R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.)
 一般式(5)又は一般式(6)におけるRの炭素数は、特定の数値範囲内であることがより好ましい。具体的には、Rの炭素数の上限値として36が好ましく、22がより好ましく、18が特に好ましい。また、Rの炭素数の下限値として、8が好ましく、12がより好ましい It is more preferable that the carbon number of R 1 in the general formula (5) or the general formula (6) is within a specific numerical range. Specifically, as the upper limit of the number of carbon atoms of R 1 , 36 is preferable, 22 is more preferable, and 18 is particularly preferable. Further, as the lower limit of the number of carbon atoms of R 1 , 8 is preferable, and 12 is more preferable .
 一般式(5)又は一般式(6)で示される1価フヱノール(末端停止剤)の中でも、パラヒドロキシ安息香酸ヘキサデシルエステル、パラヒドロキシ安息香酸2-ヘキシルデシルエステルのいずれかもしくは両方を末端停止剤として使用することが特に好ましい。 Among the monovalent phenols (terminal arresting agents) represented by the general formula (5) or the general formula (6), one or both of the parahydroxybenzoic acid hexadecyl ester and the parahydroxybenzoic acid 2-hexyldecyl ester are terminally terminated. It is particularly preferable to use it as an agent.
 例えば一般式(6)においてRとして、例えば、炭素数16のアルキル基である1価フェノール(末端停止剤)を使用した場合、ガラス転移温度、溶融流動性、成形性、耐ドローダウン性、ポリカーボネート樹脂製造時の1価フヱノールの溶剤溶解性が優れており、本発明におけるポリカーボネート樹脂に使用する末端停止剤として、特に好ましい。 For example, as R 1 in the general formula (6), for example, when using a monohydric phenol which is alkyl group of 16 carbon atoms (terminating agent), a glass transition temperature, melt flowability, moldability, drawdown resistance, The monovalent phenol has excellent solvent solubility during the production of the polycarbonate resin, and is particularly preferable as the terminal terminator used for the polycarbonate resin in the present invention.
 一方、一般式(5)又は一般式(6)におけるRの炭素数が増加しすぎると、1価フェノール(末端停止剤)の有機溶剤溶解性が低下する傾向があり、ポリカーボネート樹脂製造時の生産性が低下することがある。 On the other hand, if the carbon number of R 1 in the general formula (5) or the general formula (6) is increased too much, the organic solvent solubility of the monohydric phenol (terminal terminator) tends to decrease, and the polycarbonate resin is manufactured. Productivity may decrease.
 一例として、Rの炭素数が36以下であれば、ポリカーボネート樹脂を製造するにあたって生産性が高く、経済性も良い。Rの炭素数が22以下であれば、1価フェノールは、特に有機溶剤溶解性に優れており、ポリカーボネート樹脂を製造するにあたって生産性を非常に高くすることができ、経済性も向上する。 As an example, when the carbon number of R 1 is 36 or less, the productivity is high and the economy is good in producing the polycarbonate resin. When the carbon number of R 1 is 22 or less, the monohydric phenol is particularly excellent in organic solvent solubility, and the productivity can be made very high in the production of the polycarbonate resin, and the economic efficiency is also improved.
 一般式(5)又は一般式(6)におけるRの炭素数が小さすぎると、ポリカーボネー卜樹脂のガラス転移温度が十分に低い値とはならず、熱成形性が低下することがある。 If the carbon number of R 1 in the general formula (5) or the general formula (6) is too small, the glass transition temperature of the polycarbonate resin does not become a sufficiently low value, and the thermoformability may deteriorate.
 本発明において、ポリカーボネート樹脂(al)の重量平均分子量は、合成樹脂積層体の耐衝撃性および成形条件に影響する。つまり、重量平均分子量が小さすぎる場合は、合成樹脂積層体の耐衝撃性が低下するので好ましくない。重量平均分子量が高すぎる場合は、ポリカーボネート樹脂(al)を含む層を積層させる時に過剰な熱源を必要とする場合があり、好ましくない。また、成形法によっては高い温度が必要になるので、ポリカーボネート樹脂(al)が高温にさらされることになり、その熱安定性に悪影響を及ぼすことがある。ポリカーボネート樹脂(al)の重量平均分子量は、15,000~75,000が好ましく、20,000~70,000がより好ましい。さらに好ましくは25,000~65,000である。なお、重量平均分子量は、後述する実施例に記載のとおり、ゲル浸透クロマトグラフイー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。 In the present invention, the weight average molecular weight of the polycarbonate resin (al) affects the impact resistance and molding conditions of the synthetic resin laminate. That is, if the weight average molecular weight is too small, the impact resistance of the synthetic resin laminate is lowered, which is not preferable. If the weight average molecular weight is too high, an excessive heat source may be required when laminating the layer containing the polycarbonate resin (al), which is not preferable. In addition, since a high temperature is required depending on the molding method, the polycarbonate resin (al) is exposed to a high temperature, which may adversely affect its thermal stability. The weight average molecular weight of the polycarbonate resin (al) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000. More preferably, it is 25,000 to 65,000. The weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC) as described in Examples described later.
 樹脂(A)は、添加剤等をさらに含んでいてもよい。添加剤としては、樹脂シートにおいて通常使用されるものを使用することができる。添加剤としては、例えば、抗酸化剤、抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機フィラーや無機フィラーのような強化材などが挙げられる。添加剤と樹脂とを混合する方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。添加剤の量は、基材層の全質量に対して0~10質量%であることが好ましく、0~7質量%であることがより好ましく、0~5質量%であることが特に好ましい。 The resin (A) may further contain additives and the like. As the additive, those usually used in the resin sheet can be used. Additives include, for example, antioxidants, anticolorants, antistatic agents, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic fillers and inorganic fillers. Such as reinforcing materials can be mentioned. The method of mixing the additive and the resin is not particularly limited, and a method of compounding the entire amount, a method of dry-blending the masterbatch, a method of dry-blending the entire amount, and the like can be used. The amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, and particularly preferably 0 to 5% by mass with respect to the total mass of the base material layer.
 樹脂(A)の厚みは、0.3~10mmであることが好ましく、0.3~5mmであることがより好ましく、0.3~3.5mmであることが特に好ましい。 The thickness of the resin (A) is preferably 0.3 to 10 mm, more preferably 0.3 to 5 mm, and particularly preferably 0.3 to 3.5 mm.
 (高硬度樹脂組成物(B))
 本発明に使用される高硬度樹脂組成物(B)としては、樹脂組成物(B1)、樹脂組成物(B2)、樹脂組成物(B3)、および樹脂組成物(B4)のいずれか1つから選択される。
(High hardness resin composition (B))
The high-hardness resin composition (B) used in the present invention is any one of a resin composition (B1), a resin composition (B2), a resin composition (B3), and a resin composition (B4). Is selected from.
 <樹脂組成物(B1)>
 本発明に使用される樹脂組成物(B1)とは、一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、一般式(2)で表される脂肪族ビニル構成単位(b)とを含む共重合樹脂であって、前記メタクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記共重合樹脂の全構成単位の90~100モル%であり、前記メタクリル酸エステル構成単位(a)の割合が前記共重合樹脂の全構成単位の65~80モル%である共重合樹脂である。
<Resin composition (B1)>
The resin composition (B1) used in the present invention includes a (meth) acrylic acid ester structural unit (a) represented by the general formula (1) and an aliphatic vinyl composition represented by the general formula (2). A copolymer resin containing the unit (b), wherein the total ratio of the methacrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) is 90 to 100 of all the structural units of the copolymer resin. It is a copolymer resin in which the proportion of the methacrylic acid ester structural unit (a) is 65 to 80 mol% of all the structural units of the copolymer resin.
Figure JPOXMLDOC01-appb-C000014
 (式中、R1は水素原子またはメチル基であり、R2は炭素数1~18のアルキル基である。)
Figure JPOXMLDOC01-appb-C000014
(In the formula, R1 is a hydrogen atom or a methyl group, and R2 is an alkyl group having 1 to 18 carbon atoms.)
Figure JPOXMLDOC01-appb-C000015
 (式中、R3は水素原子又はメチル基であり、R4は炭素数1~4の炭化水素基を有してもよいシクロヘキシル基である。)
Figure JPOXMLDOC01-appb-C000015
(In the formula, R3 is a hydrogen atom or a methyl group, and R4 is a cyclohexyl group which may have a hydrocarbon group having 1 to 4 carbon atoms.)
 本明細書中において、「炭化水素基」は、直鎖状、分岐鎖状、環状のいずれであってもよく、置換基を有していてもよい。 In the present specification, the "hydrocarbon group" may be linear, branched, or cyclic, and may have a substituent.
 一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)において、R2は炭素数1~18のアルキル基であり、炭素数1~10のアルキル基であることが好ましく、炭素数1~6のアルキル基であることがより好ましい。具体的にはメチル基、エチル基、ブチル基、ラウリル基、ステアリル基、シクロヘキシル基、イソボルニル基などが挙げられる。 In the (meth) acrylic acid ester structural unit (a) represented by the general formula (1), R2 is an alkyl group having 1 to 18 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and carbon. More preferably, it is an alkyl group having the number 1 to 6. Specific examples thereof include a methyl group, an ethyl group, a butyl group, a lauryl group, a stearyl group, a cyclohexyl group and an isobornyl group.
 (メタ)アクリル酸エステル構成単位(a)のうち、好ましいのはR2がメチル基またはエチル基である(メタ)アクリル酸エステル構成単位であり、更に好ましいのはR1がメチル基であり、R2がメチル基であるメタクリル酸メチル構成単位である。 Of the (meth) acrylic acid ester structural units (a), R2 is a methyl group or an ethyl group (meth) acrylic acid ester structural unit, and more preferably R1 is a methyl group and R2 is It is a methyl methacrylate constituent unit which is a methyl group.
 前記一般式(2)で表される脂肪族ビニル構成単位(b)としては、例えば、R3が水素原子又はメチル基で、水素原子であることがより好ましい。R4がシクロヘキシル基又は炭素数1~4の炭化水素基を有するシクロヘキシル基であるものが好ましく挙げられる。前記脂肪族ビニル構成単位(b)のうち、より好ましいのはR3が水素原子であり、R4がシクロヘキシル基である脂肪族ビニル構成単位である。 As the aliphatic vinyl constituent unit (b) represented by the general formula (2), for example, it is more preferable that R3 is a hydrogen atom or a methyl group and is a hydrogen atom. It is preferable that R4 is a cyclohexyl group or a cyclohexyl group having a hydrocarbon group having 1 to 4 carbon atoms. Of the aliphatic vinyl constituent units (b), more preferable is an aliphatic vinyl constituent unit in which R3 is a hydrogen atom and R4 is a cyclohexyl group.
 樹脂組成物(B1)は、前記(メタ)アクリル酸ヱステル構成単位(a)を1種又は2種以上含有していてもよく、前記脂肪族ビニル構成単位(b)を1種又は2種以上含有していてもよい。 The resin composition (B1) may contain one or more of the (meth) acrylic acid easter constituent unit (a), and one or more of the aliphatic vinyl constituent unit (b). It may be contained.
 前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合は、前記共重合樹脂の全構成単位の合計に対して90~100モル%であり、好ましくは95~100モル%であり、より好ましくは98~100モル%である。 The total ratio of the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) is preferably 90 to 100 mol% with respect to the total of all the structural units of the copolymer resin. Is 95 to 100 mol%, more preferably 98 to 100 mol%.
 すなわち、樹脂(B1)は、(メタ)アクリル酸エステル構成単位(a)および脂肪族ビニル構成単位(b)以外の構成単位を含有していてもよい。その量は、樹脂(B1)の全構成単位に対して10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。 That is, the resin (B1) may contain a structural unit other than the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b). The amount thereof is preferably 10 mol% or less, more preferably 5 mol% or less, and particularly preferably 2 mol% or less, based on all the constituent units of the resin (B1).
 (メタ)アクリル酸エステル構成単位(a)および脂肪族ビニル構成単位(b)以外の構成単位としては、例えば、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後に該芳香族ビニルモノマー由来の芳香族二重結合を水素化して樹脂(B1)を製造する過程において生じる、水素化されていない芳香族二重結合を含む芳香族ビニルモノマー由来の構成単位などが挙げられる。 Examples of the structural unit other than the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) include the aromatic vinyl after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer. Examples thereof include a structural unit derived from an aromatic vinyl monomer containing an unhydrogenated aromatic double bond, which is generated in the process of producing a resin (B1) by hydrogenating an aromatic double bond derived from the monomer.
 また、一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)の含有量は、樹脂(B1)中の全構成単位に対して好ましくは65~80モル%であり、より好ましくは70~80モル%である。樹脂(B1)中の全構成単位に対する(メタ)アクリル酸エステル構成単位(a)の割合が65モル%以上であると、基材層との密着性や表面硬度に優れた樹脂層を得ることができる。また、80モル%以下であれば、樹脂シートの吸水による反りが発生しづらい。 The content of the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is preferably 65 to 80 mol% with respect to all the structural units in the resin (B1). It is preferably 70 to 80 mol%. When the ratio of the (meth) acrylic acid ester structural unit (a) to all the structural units in the resin (B1) is 65 mol% or more, a resin layer having excellent adhesion to the base material layer and surface hardness can be obtained. Can be done. Further, if it is 80 mol% or less, warpage due to water absorption of the resin sheet is unlikely to occur.
 また、一般式(2)で表される脂肪族ビニル構成単位(b)の含有量は、樹脂(B1)中の全構成単位に対して好ましくは20~35モル%であり、より好ましくは20~30モル%である。脂肪族ビニル構成単位(b)の含有量が20モル%以上であれば、高温高湿下でのそりを防ぐことができ、また、35モル%以下であれば、基材との界面での剥離を防ぐことができる。 The content of the aliphatic vinyl constituent unit (b) represented by the general formula (2) is preferably 20 to 35 mol%, more preferably 20 with respect to all the constituent units in the resin (B1). ~ 30 mol%. If the content of the aliphatic vinyl constituent unit (b) is 20 mol% or more, warpage under high temperature and high humidity can be prevented, and if it is 35 mol% or less, at the interface with the substrate. Peeling can be prevented.
 なお、本明細書において、「共重合体」は、ランダム、ブロック、および交互共重合体のいずれの構造であってもよい。 In the present specification, the "copolymer" may have any structure of random, block, and alternating copolymers.
 樹脂組成物(B1)の製造方法は、特に限定されないが、少なくとも1種の(メタ)アクリル酸エステルモノマーと少なくとも1種の芳香族ビニルモノマーとを重合した後、該芳香族ビニルモノマー由来の芳香族二重結合を水素化して得られたものが好適である。なお、(メタ)アクリル酸とは、メタクリル酸及び/又はアクリル酸を示す。この際に使用される芳香族ビニルモノマーとしては、具体的にはスチレン、α-メチルスチレン、p-ヒドロキシスチレン、アルコキシスチレン、クロロスチレン、及びそれらの誘導体などが挙げられる。これらの中で好ましいのはスチレンである。 The method for producing the resin composition (B1) is not particularly limited, but after polymerizing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer, the fragrance derived from the aromatic vinyl monomer is polymerized. Those obtained by hydrogenating the group double bond are preferable. The (meth) acrylic acid means methacrylic acid and / or acrylic acid. Specific examples of the aromatic vinyl monomer used at this time include styrene, α-methylstyrene, p-hydroxystyrene, alkoxystyrene, chlorostyrene, and derivatives thereof. Of these, styrene is preferred.
 (メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーの重合には、既知の方法を用いることができるが、例えば、塊状重合法や溶液重合法などにより製造することができる。塊状重合法は、上記モノマー、重合開始剤を含むモノマー組成物を完全混合槽に連続的に供給し、100~180℃で連続重合する方法などにより行われる。上記モノマー組成物は、必要に応じて連鎖移動剤を含んでもよい。 A known method can be used for the polymerization of the (meth) acrylic acid ester monomer and the aromatic vinyl monomer, and for example, it can be produced by a massive polymerization method, a solution polymerization method, or the like. The massive polymerization method is carried out by a method in which a monomer composition containing the above-mentioned monomer and a polymerization initiator is continuously supplied to a complete mixing tank and continuously polymerized at 100 to 180 ° C. The monomer composition may contain a chain transfer agent, if necessary.
 重合開始剤としては、特に限定されないが、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、過酸化ベンゾイル、1,1-ジ(t-ヘキシルペルオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ジ(t-ブチルペルオキシ)シクロヘキサン、t-ヘキシルプロポキシイソプロピルモノカーボネート、t-アミルパーオキシノルマルオクトエート、t-ブチルペルオキシイソプロピルモノカーボネート、ジ-t-ブチルパーオキサイド等の有機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物が挙げられる。これらは単独でまたは2種以上を組み合わせて用いることができる。 The polymerization initiator is not particularly limited, but is t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, 1,1-di (t-hexyl). Peroxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-butylperoxy) cyclohexane, t-hexylpropoxyisopropyl monocarbonate, t-amylper Organic peroxides such as oxynormal octoate, t-butylperoxyisopropyl monocarbonate, di-t-butyl peroxide, 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbuty) Examples of azo compounds include lonitrile) and 2,2'-azobis (2,4-dimethylvaleronitrile). These can be used alone or in combination of two or more.
 連鎖移動剤は必要に応じて使用し、例えば、α-メチルスチレンダイマーが挙げられる。 The chain transfer agent is used as needed, and examples thereof include α-methylstyrene dimer.
 溶液重合法に用いられる溶媒としては、例えば、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などが挙げられる。 Examples of the solvent used in the solution polymerization method include hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, tetrahydrofuran, and the like. Examples thereof include ether solvents such as dioxane and alcohol solvents such as methanol and isopropanol.
 (メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーを重合した後の水素化反応に用いられる溶媒は、前記の重合溶媒と同じであっても異なっていてもよい。例えば、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などが挙げられる。 The solvent used for the hydrogenation reaction after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer may be the same as or different from the above-mentioned polymerization solvent. For example, hydrocarbon solvents such as cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, ether solvents such as tetrahydrofuran and dioxane, alcohol solvents such as methanol and isopropanol. Examples include solvents.
 上記のようにして(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後、該芳香族ビニルモノマー由来の芳香族二重結合を水素化することにより、本発明に用いられる樹脂組成物(B1)が得られる。 The resin composition used in the present invention is obtained by polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer as described above, and then hydrogenating the aromatic double bond derived from the aromatic vinyl monomer. (B1) is obtained.
 水素化の方法は特に限定されず、既知の方法を用いることができる。例えば、水素圧力3~30MPa、反応温度60~250℃でバッチ式あるいは連続流通式で行うことができる。温度を60℃以上とすることにより反応時間がかかり過ぎることがなく、また250℃以下とすることにより分子鎖の切断やエステル部位の水素化を起こすことが少ない。 The method of hydrogenation is not particularly limited, and a known method can be used. For example, it can be carried out in a batch system or a continuous flow system at a hydrogen pressure of 3 to 30 MPa and a reaction temperature of 60 to 250 ° C. When the temperature is 60 ° C. or higher, the reaction time does not take too long, and when the temperature is 250 ° C. or lower, the molecular chain is less likely to be cleaved or the ester site is hydrogenated.
 水素化反応に用いられる触媒としては、例えば、ニッケル、パラジウム、白金、コバル卜、ルテニウム、ロジウムなどの金属、又はそれら金属の酸化物もしくは塩もしくは錯体化合物を、カーボン、アルミナ、シリカ、シリカ.アルミナ、珪藻土などの多孔性担体に担持した固体触媒などが挙げられる。 Examples of the catalyst used in the hydrogenation reaction include metals such as nickel, palladium, platinum, cobal, ruthenium, and rhodium, or oxides, salts, or complex compounds of these metals, and carbon, alumina, silica, and silica. Examples thereof include a solid catalyst supported on a porous carrier such as alumina and diatomaceous earth.
 前記樹脂組成物(B1)は、芳香族ビニルモノマー由来の芳香族二重結合の70%以上が水素化されたものであることが好ましい。即ち、芳香族ビニルモノマー由来の構成単位中の芳香族二重結合の未水素化部位の割合は30%以下であることが好ましい。30%を超える範囲であると樹脂組成物(B1)の透明性が低下する場合がある。未水素化部位の割合は、より好ましくは10%未満であり、さらに好ましくは5%未満の範囲である。 The resin composition (B1) is preferably one in which 70% or more of the aromatic double bonds derived from the aromatic vinyl monomer are hydrogenated. That is, the proportion of the unhydrogenated portion of the aromatic double bond in the structural unit derived from the aromatic vinyl monomer is preferably 30% or less. If it exceeds 30%, the transparency of the resin composition (B1) may decrease. The proportion of unhydrogenated sites is more preferably less than 10% and even more preferably less than 5%.
 前記樹脂組成物(B1)の重量平均分子量は、特に制限はないが、強度及び成型性の観点から、50,000~400,000であることが好ましく、70,000~300,000であることがより好ましい。上記重量平均分子量は、後述する実施例に記載のとおり、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。 The weight average molecular weight of the resin composition (B1) is not particularly limited, but is preferably 50,000 to 400,000, preferably 70,000 to 300,000 from the viewpoint of strength and moldability. Is more preferable. The weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC) as described in Examples described later.
 前記樹脂組成物(B1)には、透明性を損なわない範囲で他の樹脂をブレンドすることができる。例えば、メタクリル酸メチル-スチレン共重合樹脂、ポリメタクリル酸メチル、ポリスチレン、ポリカーボネート、シクロオレフイン(コ)ポリマー樹脂、アクリロニトリル-スチレン共重合樹脂、アクリロニトリルーブタジエンースチレン共重合樹脂、各種エラストマーなどが挙げられる。 The resin composition (B1) can be blended with other resins as long as the transparency is not impaired. Examples thereof include methyl methacrylate-styrene copolymer resin, polymethyl methacrylate, polystyrene, polycarbonate, cycloolephine (co) polymer resin, acrylonitrile-styrene copolymer resin, acrylonitrile-butadiene-styrene copolymer resin, and various elastomers. ..
 前記樹脂組成物(B1)のガラス転移温度は、110~140℃の範囲であることが好ましい。ガラス転移温度が110℃以上であることにより本発明で提供される積層体が熱環境あるいは湿熱環境において変形や割れを生じることが少なく、また140℃以下であることにより鏡面ロールや賦形ロールによる連続式熱賦形、あるいは鏡面金型や賦形金型によるバッチ式熱賦形などの加工性に優れる。なお、本発明におけるガラス転移温度とは、示差走査熱量測定装置を用い、試料10mg、昇温速度10℃/分で測定し中点法で算出したときの温度である。 The glass transition temperature of the resin composition (B1) is preferably in the range of 110 to 140 ° C. When the glass transition temperature is 110 ° C. or higher, the laminate provided in the present invention is less likely to be deformed or cracked in a thermal environment or a moist heat environment, and when it is 140 ° C. or lower, it depends on a mirror surface roll or a shaping roll. It has excellent workability such as continuous heat shaping, or batch type heat shaping using a mirror surface mold or a shaping mold. The glass transition temperature in the present invention is a temperature calculated by the midpoint method when measured at a sample of 10 mg and a heating rate of 10 ° C./min using a differential scanning calorimetry device.
 樹脂組成物(B1)として、例えば、オプティマス7500,6000(三菱ガス化学製)が挙げられるが、これに限定されない。 Examples of the resin composition (B1) include, but are not limited to, Optimus 7500, 6000 (manufactured by Mitsubishi Gas Chemical Company).
 <樹脂組成物(B2)>
 本発明に使用される樹脂組成物(B2)とは、ビニル系単量体を含有する樹脂(C)を55~10質量%(好ましくは、50~20質量%)、およびスチレン-不飽和ジカルボン酸系共重合体(D)を45~90質量%、好ましくは、50~80質量%で含む樹脂組成物であって、前記スチレン-不飽和ジカルボン酸系共重合体(D)が、スチレン系単量体単位(d1)を50~80質量%、不飽和ジカルボン酸無水物単量体単位(d2)を10~30質量%、およびビニル系単量体単位(d3)を5~30質量%で含む樹脂組成物である。
<Resin composition (B2)>
The resin composition (B2) used in the present invention contains 55 to 10% by mass (preferably 50 to 20% by mass) of the resin (C) containing a vinyl-based monomer, and styrene-unsaturated dicarboxylic. A resin composition containing the acid-based copolymer (D) in an amount of 45 to 90% by mass, preferably 50 to 80% by mass, wherein the styrene-unsaturated dicarboxylic acid-based copolymer (D) is styrene-based. The monomer unit (d1) is 50 to 80% by mass, the unsaturated dicarboxylic acid anhydride monomer unit (d2) is 10 to 30% by mass, and the vinyl-based monomer unit (d3) is 5 to 30% by mass. It is a resin composition contained in.
 以下に、ビニル系単量体を含有する樹脂(C)とスチレン-不飽和ジカルボン酸系共重合体(D)について順次説明する。 The resin (C) containing a vinyl-based monomer and the styrene-unsaturated dicarboxylic acid-based copolymer (D) will be sequentially described below.
 <ビニル系単量体を含有する樹脂(C)>
 本発明で用いられるビニル系単量体を含有する樹脂(C)としては、例えばアクリロニトリル、メタアクリロニトリル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2-エチルヘキシル等のビニル系単量体を単独重合したものが挙げられ、特に単量体単位として、メタクリル酸メチルが好ましい。また、前記単量体単位を2種類以上含んだ共重合体でも良い。ビニル茶単量体を含有する樹脂(C)の重量平均分子量は、10,000~500,000が好ましく、より好ましくは50,000~300,000である。
<Resin (C) containing vinyl-based monomer>
Examples of the resin (C) containing a vinyl-based monomer used in the present invention include acrylonitrile, metaacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, and methacrylic acid. Examples thereof include those obtained by homopolymerizing vinyl-based monomers such as acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, and 2-ethylhexyl methacrylate, and methyl methacrylate is particularly preferable as the monomer unit. Further, a copolymer containing two or more kinds of the monomer units may be used. The weight average molecular weight of the resin (C) containing the vinyl tea monomer is preferably 10,000 to 500,000, more preferably 50,000 to 300,000.
 <スチレン-不飽和ジカルボン酸系共重合体(D)>
 本発明で用いられるスチレン-不飽和ジカルボン酸系共重合体(D)は、スチレン系単量体単位(d1)、不飽和ジカルボン酸無水物単量体単位(d2)、およびビニル系単量体単位(d3)を含む。
<Styrene-unsaturated dicarboxylic acid copolymer (D)>
The styrene-unsaturated dicarboxylic acid-based copolymer (D) used in the present invention includes a styrene-based monomer unit (d1), an unsaturated dicarboxylic acid anhydride monomer unit (d2), and a vinyl-based monomer. Includes unit (d3).
 <スチレン系単量体単位(d1)>
 スチレン系単量体とは、特に限定せず、任意の既知のスチレン系単量体を用いることが出来るが、入手の容易性の観点からスチレン、a-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等が挙げられる。これらの中でも、相溶性の観点からスチレンが特に好ましい。これらのスチレン系単量体は2種以上を混合しても良い。
<Styrene-based monomer unit (d1)>
The styrene-based monomer is not particularly limited, and any known styrene-based monomer can be used, but from the viewpoint of easy availability, styrene, a-methylstyrene, o-methylstyrene, m- Examples thereof include methyl styrene, p-methyl styrene and t-butyl styrene. Of these, styrene is particularly preferable from the viewpoint of compatibility. Two or more of these styrene-based monomers may be mixed.
 <不飽和ジカルボン酸無水物単量体単位(d2)>
 不飽和ジカルボン酸無水物単量体としては、例えばマレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物が挙げられ、ビニル系単量体との相溶性の観点から無水マレイン酸が好ましい。これらの不飽和ジカルボン酸無水物単量体は2種以上を混合しても良い。
<Unsaturated dicarboxylic acid anhydride monomer unit (d2)>
Examples of the unsaturated dicarboxylic acid anhydride monomer include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, and maleic anhydride is preferable from the viewpoint of compatibility with vinyl-based monomers. .. Two or more kinds of these unsaturated dicarboxylic acid anhydride monomers may be mixed.
 <ビニル系単量体単位(d3)>
 ビニル系単量体とは、例えばアクリロニトリル、メタアクリロニトリル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2-エチルへキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2-エチルヘキシル等のビニル系単量体が挙げられる。ビニル系単量体を含有する樹脂(C)との相溶性の観点からメタクリル酸メチル(MMA)が好ましい。これらのビニル系単量体は2種以上を混合しても良い。
<Vinyl-based monomer unit (d3)>
The vinyl-based monomer includes, for example, acrylonitrile, metaacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, and the like. Examples thereof include vinyl-based monomers such as n-butyl methacrylate and 2-ethylhexyl methacrylate. Methyl methacrylate (MMA) is preferable from the viewpoint of compatibility with the resin (C) containing a vinyl-based monomer. Two or more of these vinyl-based monomers may be mixed.
 <スチレン-不飽和ジカルボン酸系共重合体(D)の組成比率>
 スチレン-不飽和ジカルボン酸系共重合体(D)の組成比率は、スチレン系単量体単位(d1)50~80質量%(好ましくは、50~75質量%)、不飽和ジカルボン酸無水物単量体単位(d2)10~30質量%(好ましくは、10~25質量%)、ビニル系単量体単位(d3)5~30質量%(好ましくは、7~27質量%)である。
<Composition ratio of styrene-unsaturated dicarboxylic acid copolymer (D)>
The composition ratio of the styrene-unsaturated dicarboxylic acid-based copolymer (D) was 50 to 80% by mass (preferably 50 to 75% by mass) of the styrene-based monomer unit (d1), and the unsaturated dicarboxylic acid anhydride alone. The metric unit (d2) is 10 to 30% by mass (preferably 10 to 25% by mass), and the vinyl-based monomer unit (d3) is 5 to 30% by mass (preferably 7 to 27% by mass).
 スチレン-不飽和ジカルボン酸系共重合体(D)の重量平均分子量は、50,000~200,000が好ましく、80,000~200,000がより好ましい。重量平均分子量が50,000~200,000において、ビニル系単量体を含有する樹脂(C)との相溶性が良好であり、耐熱性の向上効果に優れる。上記樹脂(C)、共重合体(D)の重量平均分子量は、後述する実施例に記載のとおり、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。 The weight average molecular weight of the styrene-unsaturated dicarboxylic acid-based copolymer (D) is preferably 50,000 to 200,000, more preferably 80,000 to 200,000. When the weight average molecular weight is 50,000 to 200,000, the compatibility with the resin (C) containing a vinyl-based monomer is good, and the effect of improving heat resistance is excellent. The weight average molecular weight of the resin (C) and the copolymer (D) is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC) as described in Examples described later.
 樹脂共重合体(D)として、具体的には、レジスファイ R100、R200、R310(電気化学工業製)、デルペット980N(旭化成ケミカル製)などが挙げられる。 Specific examples of the resin copolymer (D) include Regisphi R100, R200, R310 (manufactured by Denki Kagaku Kogyo) and Delpet 980N (manufactured by Asahi Kasei Chemical Co., Ltd.).
 <樹脂組成物(B3)>
 本発明に使用される樹脂組成物(B3)とは、スチレン構成単位を5~20質量%、(メタ)アクリル酸エステル構成単位を60~90質量%、およびN-置換型マレイミド単量体を5~20%含む樹脂共重合体(G)、または樹脂共重合体(G)と樹脂共重合体(D)とのアロイである。
<Resin composition (B3)>
The resin composition (B3) used in the present invention includes 5 to 20% by mass of a styrene constituent unit, 60 to 90% by mass of a (meth) acrylic acid ester constituent unit, and an N-substituted maleimide monomer. It is a resin copolymer (G) containing 5 to 20%, or an alloy of the resin copolymer (G) and the resin copolymer (D).
 樹脂共重合体(G)におけるN-置換型マレイミド単量体としては、N―フェニルマレイミド、N―クロロフェニルマレイミド、N-メチルフェニルマレイミド、N-ナフチルマレイミド、N-ヒドロキシフェニルマレイミド、N-メトキシフェニルマレイミド、N-カルボキシフェニルマレイミド、N-ニトロフェニルマレイミド、N-トリブロモフェニルマレイミドなどのN-アリールマレイミド等が挙げられ、アクリル樹脂との相溶性の観点からN-フェニルマレイミドが好ましぃ。これらのN-置換型マレイミド単量体は2種以上を混合してもよい。N-置換型マレイミド構成単位の含有量は、樹脂組成物(B3)の全量に対して5~20質量%であり、5~15質量%であることが好ましく、5~10質量%であることが好ましい。 Examples of the N-substituted maleimide monomer in the resin copolymer (G) include N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, and N-methoxyphenyl. Examples thereof include N-arylmaleimide such as maleimide, N-carboxyphenylmaleimide, N-nitrophenylmaleimide, and N-tribromophenylmaleimide, and N-phenylmaleimide is preferable from the viewpoint of compatibility with acrylic resin. Two or more kinds of these N-substituted maleimide monomers may be mixed. The content of the N-substituted maleimide constituent unit is 5 to 20% by mass, preferably 5 to 15% by mass, and 5 to 10% by mass with respect to the total amount of the resin composition (B3). Is preferable.
 スチレン構成単位とは、特に限定せず、任意の高地のスチレン系単量体を用いることができるが、入手の容易性の観点からスチレン、メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレンなどが挙げられる。これらの中でも、相溶性の観点からスチレンが特に好ましい。これらのスチレン系単量体は2種以上を混合しても良い。スチレン構成単位の含有量は、樹脂(B3)の全質量に対して5~20質量%であり、5~15質量%であることが好ましく、5~10質量%であることがより好ましい。 The styrene constituent unit is not particularly limited, and any high-altitude styrene-based monomer can be used, but from the viewpoint of availability, styrene, methylstyrene, o-methylstyrene, m-methylstyrene, p. -Methylstyrene, t-butylstyrene and the like can be mentioned. Of these, styrene is particularly preferable from the viewpoint of compatibility. Two or more of these styrene-based monomers may be mixed. The content of the styrene constituent unit is 5 to 20% by mass, preferably 5 to 15% by mass, and more preferably 5 to 10% by mass with respect to the total mass of the resin (B3).
 (メタ)アクリル酸エステル構成単位とは、例えばアクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2-エチルヘキシル等が挙げられ、特に単量体単位として、メタクリル酸メチルが好ましい。また、前記単量体単位を2種類以上含んだ共重合体でも良い。 The (meth) acrylic acid ester constituent unit is, for example, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-methacrylate. Examples thereof include butyl and 2-ethylhexyl methacrylate, and methyl methacrylate is particularly preferable as the monomer unit. Further, a copolymer containing two or more kinds of the monomer units may be used.
 (メタ)アクリル酸エステル構成単位の含有量は、樹脂組成物(B3)の全質量に対して60~90質量%であり、70~90質量%であることが好ましく、80~90質量%であることがより好ましい。 The content of the (meth) acrylic acid ester structural unit is 60 to 90% by mass, preferably 70 to 90% by mass, and 80 to 90% by mass with respect to the total mass of the resin composition (B3). More preferably.
 樹脂共重合体(G)の製造方法は、特に限定されないが、溶液重合、塊状重合などによって製造することができる。 The method for producing the resin copolymer (G) is not particularly limited, but it can be produced by solution polymerization, bulk polymerization, or the like.
 樹脂共重合体(G)は、例えば、デルペットPM120N(旭化成ケミカル社製)が挙げられるが、これらに限定されない。 Examples of the resin copolymer (G) include, but are not limited to, Delpet PM120N (manufactured by Asahi Kasei Chemical Co., Ltd.).
 樹脂共重合体(G)の重量平均分子量は、50,000~250,000であることが好ましく、100,000~200,000がより好ましい。 The weight average molecular weight of the resin copolymer (G) is preferably 50,000 to 250,000, more preferably 100,000 to 200,000.
 <樹脂組成物(B4)>
 樹脂組成物(B4)は、下記一般式(3)で表される構成単位(H)と、任意に下記一般式(4)で表される構成単位(J)とを含む共重合体である。樹脂組成物(B4)は、構成単位(J)を含んでいても含んでいなくてもよいが、含んでいることが好ましい。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
<Resin composition (B4)>
The resin composition (B4) is a copolymer containing a structural unit (H) represented by the following general formula (3) and optionally a structural unit (J) represented by the following general formula (4). .. The resin composition (B4) may or may not contain the structural unit (J), but is preferably contained.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 樹脂組成物(B4)の全構成単位における構成単位(H)の割合は、50~100モル%であることが好ましく、60~100モル%であることがより好ましく、70~100モル%であることが特に好ましい。樹脂組成物(B4)の全構成単位における構成単位(J)の割合は、0~50モル%であることが好ましく、0~40モル%であることがより好ましく、0~30モル%であることが特に好ましい。 The ratio of the constituent unit (H) to all the constituent units of the resin composition (B4) is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and 70 to 100 mol%. Is particularly preferred. The ratio of the constituent unit (J) to all the constituent units of the resin composition (B4) is preferably 0 to 50 mol%, more preferably 0 to 40 mol%, and 0 to 30 mol%. Is particularly preferred.
 構成単位(H)と構成単位(J)の合計含有量は、樹脂組成物(B4)に対して好ましくは90~100モル%であり、より好ましくは95~100モル%であり、特に好ましくは98~100モル%である。 The total content of the constituent unit (H) and the constituent unit (J) is preferably 90 to 100 mol%, more preferably 95 to 100 mol%, and particularly preferably 95 to 100 mol% with respect to the resin composition (B4). It is 98 to 100 mol%.
 樹脂組成物(B4)は、構成単位(H)および構成単位(J)以外の構成単位を含んでいてもよい。その他の構成単位を含む場合、その量は、樹脂組成物(B4)の全構成単位に対して10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。 The resin composition (B4) may contain a structural unit other than the structural unit (H) and the structural unit (J). When other structural units are included, the amount thereof is preferably 10 mol% or less, more preferably 5 mol% or less, and 2 mol% or less, based on all the structural units of the resin composition (B4). Is particularly preferable.
 その他の構成単位としては、例えば、下記一般式(4)で表される構成単位などが挙げられる。
Figure JPOXMLDOC01-appb-C000018
Examples of other structural units include structural units represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000018
 樹脂組成物(B4)の製造方法は、特に限定されないが、モノマーとしてビスフェノールCを使用することを除いて上述したポリカーボネート樹脂(a1)の製造方法と同様の方法で製造することができる。 The method for producing the resin composition (B4) is not particularly limited, but it can be produced by the same method as the above-mentioned method for producing the polycarbonate resin (a1) except that bisphenol C is used as the monomer.
 樹脂組成物(B4)として、例えば、ユーピロン KH3410UR、KH3520UR、KS3410UR(三菱エンジニアリングプラスチック社製)等が挙げられるが、これらに限定されない。 Examples of the resin composition (B4) include, but are not limited to, Iupilon KH3410UR, KH3520UR, KS3410UR (manufactured by Mitsubishi Engineering Plastics Co., Ltd.) and the like.
 樹脂組成物(B4)の重量平均分子量は、15,000~75,000が好ましく、20,000~70,000がより好ましく、25,000~65,000が特に好ましい。 The weight average molecular weight of the resin composition (B4) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000, and particularly preferably 25,000 to 65,000.
 樹脂組成物(B1)~(B4)は、添加剤等を含んでいてもよい。添加剤としては、樹脂シートにおいて通常使用されるものを使用することができ、そのような添加剤としては、例えば、抗酸化剤、抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機フィラーや無機フィラーのような強化材などが挙げられる。添加剤と樹脂を混合する方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。添加剤の量は、基材層の全質量に対して0~10質量%であることが好ましく、0~7質量%であることがより好ましく、0~5質量%であることが特に好ましい。 The resin compositions (B1) to (B4) may contain additives and the like. As the additive, those usually used in a resin sheet can be used, and such an additive includes, for example, an antioxidant, an anticolorant, an anticharge agent, a release agent, a lubricant, a dye, and the like. Examples thereof include pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, and reinforcing materials such as organic fillers and inorganic fillers. The method of mixing the additive and the resin is not particularly limited, and a method of compounding the entire amount, a method of dry-blending the masterbatch, a method of dry-blending the entire amount, and the like can be used. The amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, and particularly preferably 0 to 5% by mass with respect to the total mass of the base material layer.
 高硬度樹脂層の厚さは、表面硬度や耐衝撃性に影響する。つまり、高硬度樹脂層が薄すぎると表面硬度が低くなり、厚すぎると耐衝撃性が低下する。高硬度樹脂層の厚みは、好ましくは10~250μmであり、より好ましくは30~200μmであり、特に好ましくは60~150μmである。 The thickness of the high hardness resin layer affects the surface hardness and impact resistance. That is, if the high hardness resin layer is too thin, the surface hardness will be low, and if it is too thick, the impact resistance will be lowered. The thickness of the high hardness resin layer is preferably 10 to 250 μm, more preferably 30 to 200 μm, and particularly preferably 60 to 150 μm.
 ポリカーボネート層と高硬度樹脂層の間には更なる層が存在していても良いが、ここでは、基材層上に高硬度樹脂層を積層する場合について説明する。その積層方法は、特に限定されず、他の層が存在する場合にも同様に積層することができる。例えば、個別に形成した基材層と高硬度樹脂層とを重ね合わせて、両者を加熱圧着する方法;個別に形成した基材層と高硬度樹脂層とを重ね合わせて、両者を接着剤によって接着する方法;基材層と高硬度樹脂層とを共押出成形する方法;予め形成しておいた高硬度樹脂層に、基材層をインモールド成形して一体化する方法、などの各種方法がある。これらのうち、製造コストや生産性の観点から、共押出成形する方法が好ましい。 A further layer may exist between the polycarbonate layer and the high-hardness resin layer, but here, a case where the high-hardness resin layer is laminated on the base material layer will be described. The laminating method is not particularly limited, and laminating can be performed in the same manner when other layers are present. For example, a method in which an individually formed base material layer and a high hardness resin layer are superposed and heat-bonded to each other; a individually formed base material layer and a high hardness resin layer are superposed and both are bonded by an adhesive. Various methods such as a method of co-extruding a base material layer and a high-hardness resin layer; a method of in-molding a base material layer into a pre-formed high-hardness resin layer and integrating them. There is. Of these, the coextrusion molding method is preferable from the viewpoint of manufacturing cost and productivity.
 共押出成形の方法は特に限定されない。例えば、フィードブロック方式では、フィードブロックで基材層の片面上に高硬度樹脂層を配置し、Tダイでシート状に押し出した後、成形ロールを通過させながら冷却して所望の積層体を形成する。また、マルチマニホールド方式では、マルチマニホールドダイ内で基材層の片面上に高硬度樹脂層を配置し、シート状に押し出した後、成形ロールを通過させながら冷却して所望の積層体を形成する。 The coextrusion molding method is not particularly limited. For example, in the feed block method, a high-hardness resin layer is placed on one side of a base material layer with a feed block, extruded into a sheet shape with a T-die, and then cooled while passing through a molding roll to form a desired laminate. To do. Further, in the multi-manifold method, a high-hardness resin layer is arranged on one side of the base material layer in the multi-manifold die, extruded into a sheet shape, and then cooled while passing through a molding roll to form a desired laminate. ..
 基材層と高硬度樹脂層の合計厚みは、好ましくは0.5~3.5mm、より好ましくは0.5~3.0mm、特に好ましくは1.2~3.0mmである。合計厚みを0.5mm以上とすることにより、シートの剛性を保つことができる。また、3.5mm以下とすることにより、シートの下にタッチパネルを設置する場合等にタッチセンサーの感度が悪くなるのを防ぐことができる。基材層と高硬度樹脂層の合計厚みに占める基材層の厚みの割合は、好ましくは75%~99%であり、より好ましくは80~99%であり、特に好ましくは85~99%である。上記範囲とすることにより、硬度と耐衝撃性を両立できる。 The total thickness of the base material layer and the high hardness resin layer is preferably 0.5 to 3.5 mm, more preferably 0.5 to 3.0 mm, and particularly preferably 1.2 to 3.0 mm. By setting the total thickness to 0.5 mm or more, the rigidity of the sheet can be maintained. Further, by setting the thickness to 3.5 mm or less, it is possible to prevent the sensitivity of the touch sensor from deteriorating when the touch panel is installed under the seat. The ratio of the thickness of the base material layer to the total thickness of the base material layer and the high hardness resin layer is preferably 75% to 99%, more preferably 80 to 99%, and particularly preferably 85 to 99%. is there. Within the above range, both hardness and impact resistance can be achieved.
 (ハードコート層)
 本発明の防眩性積層体(樹脂シート)は、ハードコート層を具備する。ハードコート層と高硬度樹脂層との間にさらなる層が存在していてもよいが、好ましくは、ハードコート層は高硬度樹脂層上に積層される。ハードコート層は、アクリル系ハードコートであることが好ましい。本明細書において、「アクリル系ハードコート」とは、重合基として(メタ)アクリロイル基を含有するモノマーまたはオリゴマーまたはプレポリマーを重合して架橋構造を形成した塗膜を意味する。アクリル系ハードコートの組成としては、(メタ)アクリル系モノマー2~98質量%、(メタ)アクリル系オリゴマー2~98質量%および表面改質剤0~15質量%を含むことが好ましく、さらに、(メタ)アクリル系モノマーと(メタ)アクリル系オリゴマーと表面改質剤との総和100質量部に対して、0.001~7質量部の光重合開始剤を含むことが好ましい。
(Hard coat layer)
The antiglare laminate (resin sheet) of the present invention includes a hard coat layer. A further layer may be present between the hard coat layer and the high hardness resin layer, but preferably the hard coat layer is laminated on the high hardness resin layer. The hard coat layer is preferably an acrylic hard coat. As used herein, the term "acrylic hard coat" means a coating film formed by polymerizing a monomer or oligomer or prepolymer containing a (meth) acryloyl group as a polymerization group to form a crosslinked structure. The composition of the acrylic hard coat preferably contains 2 to 98% by mass of the (meth) acrylic monomer, 2 to 98% by mass of the (meth) acrylic oligomer, and 0 to 15% by mass of the surface modifier. It is preferable to contain 0.001 to 7 parts by mass of the photopolymerization initiator with respect to 100 parts by mass of the total of the (meth) acrylic monomer, the (meth) acrylic oligomer and the surface modifier.
 ハードコート層は、より好ましくは、(メタ)アクリル系モノマーを5~50質量%、(メタ)アクリル系オリゴマーを50~95質量%および表面改質剤を1~10質量%含み、特に好ましくは、(メタ)アクリル系モノマーを20~40質量%、(メタ)アクリル系オリゴマーを60~80質量%および表面改質剤を2~5質量%含む。 The hard coat layer more preferably contains 5 to 50% by mass of the (meth) acrylic monomer, 50 to 95% by mass of the (meth) acrylic oligomer, and 1 to 10% by mass of the surface modifier, and is particularly preferably. , 20-40% by mass of (meth) acrylic monomer, 60-80% by mass of (meth) acrylic oligomer, and 2-5% by mass of surface modifier.
 光重合開始剤の量は、(メタ)アクリル系モノマーと(メタ)アクリル系オリゴマーと表面改質剤との総和100質量部に対して、0.01~5質量部であることがより好ましく、0.1~3質量部であることが特に好ましい。 The amount of the photopolymerization initiator is more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the total of the (meth) acrylic monomer, the (meth) acrylic oligomer and the surface modifier. It is particularly preferably 0.1 to 3 parts by mass.
 (1)(メタ)アクリル系モノマー
 (メタ)アクリル系モノマーとしては、分子内に(メタ)アクリロイル基が官能基として存在するものであれば使用でき、1官能モノマー、2官能モノマー、または3官能以上のモノマーであって良い。
(1) (Meta) Acrylic Monomer The (meth) acrylic monomer can be used as long as the (meth) acryloyl group exists as a functional group in the molecule, and can be used as a monofunctional monomer, a bifunctional monomer, or a trifunctional monomer. It may be the above monomer.
 1官能モノマーとしては(メタ)アクリル酸、(メタ)アクリル酸エステルが例示でき、2官能および/または3官能以上の(メタ)アクリル系モノマーの具体例としては、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングルコールジ(メタ)アクリレート、トリプロピレングルコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ポリエチレングリコールジアクリレート、1,4-ブタンジオールオリゴアクリレート、ネオペンチルグリコールオリゴアクリレート、1,6-ヘキサンジオールオリゴアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリルプロポキシトリ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパンエチレンオキシド付加物トリアクリレート、グリセリンプロピレンオキシド付加物トリアクリレート、ペンタエリスリトールテトラアクリレート等が例示できるが、これらに限定されない。 Examples of the monofunctional monomer include (meth) acrylic acid and (meth) acrylic acid ester. Specific examples of the bifunctional and / or trifunctional or higher (meth) acrylic monomer include diethylene glycol di (meth) acrylate and di. Propropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, tetraethylene glycol di (meth) acrylate , Hydroxypivalate neopentyl glycol diacrylate, neopentyl glycol di (meth) acrylate, 1,4-butanediol diacrylate, 1,3-butylene glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, Polyethylene glycol diacrylate, 1,4-butanediol oligo acrylate, neopentyl glycol oligo acrylate, 1,6-hexanediol oligo acrylate, trimethylol propanetri (meth) acrylate, trimethylol propaneethoxytri (meth) acrylate, trimethylol Propanepropoxytri (meth) acrylate, pentaerythritol tri (meth) acrylate, glyceryl propoxytri (meth) acrylate, trimethyl propoxytrimethacrylate, trimethylolpropaneethylene oxide adduct triacrylate, glycerin propylene oxide adduct triacrylate, pentaerythritol tetra Acrylate and the like can be exemplified, but the present invention is not limited thereto.
 ハードコート層は、(メタ)アクリル系モノマーを1種類または2種類以上含んでいてよい。 The hard coat layer may contain one type or two or more types of (meth) acrylic monomers.
 (2)(メタ)アクリル系オリゴマー
 (メタ)アクリル系オリゴマーとしては、2官能以上の多官能ウレタン(メタ)アクリレートオリゴマー(以下、「多官能ウレタン(メタ)アクリレートオリゴマー」ともいう)、2官能以上の多官能ポリエステル(メタ)アクリレートオリゴマー(以下、「多官能ポリエステル(メタ)アクリレートオリゴマー」ともいう)、2官能以上の多官能エポキシ(メタ)アクリレートオリゴマー(以下、「多官能エポキシ(メタ)アクリレートオリゴマー」ともいう)などが挙げられる。ハードコート層は、(メタ)アクリル系オリゴマーを1種類または2種類以上含んでいてよい。
(2) (Meta) Acrylic Oligomer The (meth) acrylic oligomer is a bifunctional or higher polyfunctional urethane (meth) acrylate oligomer (hereinafter, also referred to as “polyfunctional urethane (meth) acrylate oligomer”), which is bifunctional or higher. Polyfunctional polyester (meth) acrylate oligomer (hereinafter, also referred to as "polyfunctional polyester (meth) acrylate oligomer"), bifunctional or higher polyfunctional epoxy (meth) acrylate oligomer (hereinafter, "polyfunctional epoxy (meth) acrylate oligomer") ”) And so on. The hard coat layer may contain one or more (meth) acrylic oligomers.
 多官能ウレタン(メタ)アクリレートオリゴマーとしては、1分子中に少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとポリイソシアネートとのウレタン化反応生成物;ポリオール類をポリイソシアネートと反応させて得られるイソシアネート化合物と1分子中に少なくとも1個以上の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとのウレタン化反応生成物等が挙げられる。 As the polyfunctional urethane (meth) acrylate oligomer, a urethanization reaction product of a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule and polyisocyanate; polyols are polyisocyanates. Examples thereof include a urethanization reaction product of an isocyanate compound obtained by reacting with and a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule.
 ウレタン化反応に用いられる1分子中に少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。 Examples of the (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule used in the urethanization reaction include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate. 2-Hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycerindi (meth) acrylate, trimethylpropandi (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta Examples include (meth) acrylate.
 ウレタン化反応に用いられるポリイソシアネートとしては、ヘキサメチレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのうち芳香族のイソシアネート類を水素添加して得られるジイソシアネート(例えば水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネートなどのジイソシアネート)、トリフェニルメタントリイソシアネート、ジメチレントリフェニルトリイソシアネートなどのジまたはトリのポリイソシアネート、あるいはジイソシアネートを多量化させて得られるポリイソシアネートが挙げられる。 The polyisocyanate used in the urethanization reaction includes hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and diisocyanate obtained by hydrogenating aromatic isocyanates among these diisocyanates. (For example, diisocyanate such as hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate), di or tri polyisocyanate such as triphenylmethane triisocyanate, dimethylene triphenyl triisocyanate, or polyisocyanate obtained by increasing the amount of diisocyanate. Can be mentioned.
 ウレタン化反応に用いられるポリオール類としては、一般的に芳香族、脂肪族および脂環式のポリオールのほか、ポリエステルポリオール、ポリエーテルポリオール等が使用される。通常、脂肪族および脂環式のポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、トリメチロールエタン、トリメチロールプロパン、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブチリオン酸、グリセリン、水添ビスフェノールAなどが挙げられる。 As the polyols used in the urethanization reaction, generally, aromatic, aliphatic and alicyclic polyols, as well as polyester polyols, polyether polyols and the like are used. Usually, aliphatic and alicyclic polyols include 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, ethylene glycol, propylene glycol, trimethylolethane, trimethylolpropane, dimethylolheptan, and di. Examples thereof include methylolpropionic acid, dimethylolbutylionic acid, glycerin, and hydrogenated bisphenol A.
 ポリエステルポリオールとしては、上述したポリオール類とポリカルボン酸との脱水縮合反応により得られるものが挙げられる。ポリカルボン酸の具体的な化合物としては、コハク酸、アジピン酸、マレイン酸、トリメリット酸、ヘキサヒドロフタル酸、フタル酸、イソフタル酸、テレフタル酸などが挙げられる。これらのポリカルボン酸は、無水物であってもよい。また、ポリエーテルポリオールとしては、ポリアルキレングリコールのほか、上述したポリオール類またはフェノール類とアルキレンオキサイドとの反応により得られるポリオキシアルキレン変性ポリオールが挙げられる。 Examples of the polyester polyol include those obtained by a dehydration condensation reaction between the above-mentioned polyols and a polycarboxylic acid. Specific compounds of the polycarboxylic acid include succinic acid, adipic acid, maleic acid, trimellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, terephthalic acid and the like. These polycarboxylic acids may be anhydrides. In addition to polyalkylene glycols, examples of the polyether polyols include the above-mentioned polyols or polyoxyalkylene-modified polyols obtained by reacting phenols with alkylene oxides.
 また、多官能ポリエステル(メタ)アクリレートオリゴマーは、(メタ)アクリル酸、ポリカルボン酸およびポリオールを使用した脱水縮合反応により得られる。脱水縮合反応に用いられるポリカルボン酸としては、コハク酸、アジピン酸、マレイン酸、イタコン酸、トリメリット酸、ピロメリット酸、ヘキサヒドロフタル酸、フタル酸、イソフタル酸、テレフタル酸などが挙げられる。これらのポリカルボン酸は、無水物であってもよい。また、脱水縮合反応に用いられるポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブチリオン酸、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールなどが挙げられる。 Further, the polyfunctional polyester (meth) acrylate oligomer is obtained by a dehydration condensation reaction using (meth) acrylic acid, a polycarboxylic acid and a polyol. Examples of the polycarboxylic acid used in the dehydration condensation reaction include succinic acid, adipic acid, maleic acid, itaconic acid, trimellitic acid, pyromellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, and terephthalic acid. These polycarboxylic acids may be anhydrides. The polyols used in the dehydration condensation reaction include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, dimethylolheptan, dimethylolpropionic acid, and dimethylol. Examples thereof include butyric acid, trimethylolpropane, trimethylolpropane, pentaerythritol, and dipentaerythritol.
 多官能エポキシ(メタ)アクリレートオリゴマーは、ポリグリシジルエーテルと(メタ)アクリル酸との付加反応により得られる。ポリグリシジルエーテルとしては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルなどが挙げられる。 The polyfunctional epoxy (meth) acrylate oligomer is obtained by an addition reaction between polyglycidyl ether and (meth) acrylic acid. Examples of the polyglycidyl ether include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether.
 (3)改質剤
 本発明で使用される改質剤とは、レベリング剤、帯電防止剤、界面活性剤、撥水撥油剤、UV吸収剤などのハードコート層の性能を変えるものである。
(3) Modifier The modifier used in the present invention changes the performance of a hard coat layer such as a leveling agent, an antistatic agent, a surfactant, a water-repellent oil-repellent agent, and a UV absorber.
 レベリング剤としては、例えば、ポリエーテル変性ポリアルキルシロキサン、ポリエーテル変性シロキサン、ポリエステル変性水酸基含有ポリアルキルシロキサン、アルキル基を有するポリエーテル変性ポリジメチルシロキサン、変性ポリエーテル、シリコン変性アクリルなどが挙げられる。 Examples of the leveling agent include polyether-modified polyalkylsiloxane, polyether-modified siloxane, polyester-modified hydroxyl group-containing polyalkylsiloxane, polyether-modified polydimethylsiloxane having an alkyl group, modified polyether, and silicon-modified acrylic.
 帯電防止剤としては、例えば、グリセリン脂肪酸エステルモノグリセライド、グリセリン脂肪酸エステル有機酸モノグリセライド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、陽イオン性界面活性剤、陰イオン性界面活性剤などが挙げられる。 Examples of the antistatic agent include glycerin fatty acid ester monoglyceride, glycerin fatty acid ester organic acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester, cationic surfactant, and anionic surfactant.
 界面活性剤および撥水撥油剤としては、例えば、含フッ素基・親油性基含有オリゴマー、含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマーなどのフッ素を含有した界面活性剤および撥水撥油剤が挙げられる。 Examples of surfactants and water- and oil-repellent agents include fluorine-containing surfactants such as fluorine-containing group / lipophilic group-containing oligomers and fluorine-containing groups / hydrophilic groups / lipophilic groups / UV-reactive group-containing oligomers. And water and oil repellents.
 UV吸収剤としては、例えばヒドロキシフェニルトリアジン系やベンゾトリアゾール系、ベンゴフェノン系が挙げられる。 Examples of UV absorbers include hydroxyphenyltriazine-based, benzotriazole-based, and bengophenone-based.
 ハードコート層は、光重合開始剤を含んでいてよい。本明細書において、光重合開始剤とは光ラジカル発生剤を指す。 The hard coat layer may contain a photopolymerization initiator. In the present specification, the photopolymerization initiator refers to a photoradical generator.
 本発明で使用することができる単官能光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン[ダロキュアー2959:メルク社製];α-ヒドロキシ-α,α’-ジメチルアセトフェノン[ダロキュアー1173:メルク社製];メトキシアセトフェノン、2,2’-ジメトキシ-2-フェニルアセトフェノン[イルガキュア-651]、1-ヒドロキシ-シクロヘキシルフェニルケトンなどのアセトフェノン系開始剤;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾインエーテル系開始剤;その他、ハロゲン化ケトン、アシルホスフィノキシド、アシルホスフォナートなどを例示することができる。 Examples of the monofunctional photopolymerization initiator that can be used in the present invention include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone [Darocure 2959: manufactured by Merck]; α-hydroxy. -Α, α'-Dimethylacetophenone [Darocure 1173: manufactured by Merck]; Acetphenone-based initiators such as methoxyacetophenone, 2,2'-dimethoxy-2-phenylacetophenone [Irgacure-651], 1-hydroxy-cyclohexylphenylketone Benzoin ether-based initiators such as benzoin ethyl ether and benzoin isopropyl ether; other examples include halogenated ketones, acylphosphinoxides, and acylphosphonates.
 ハードコート層の形成方法は特に限定されないが、例えば、ハードコート層の下に位置する層(例えば高硬度樹脂層)上にハードコート液を塗布した後、光重合させることにより形成することができる。 The method for forming the hard coat layer is not particularly limited, but for example, it can be formed by applying a hard coat solution on a layer located below the hard coat layer (for example, a high hardness resin layer) and then photopolymerizing the hard coat layer. ..
 本発明におけるハードコート塗料を塗布する方法は特に限定されず、既知の方法を用いることができる。例えば、スピンコート法、ディップ法、スプレー法、スライドコート法、バーコート法、ロールコート法、グラビアコート法、メニスカスコート法、フレキソ印刷法、スクリーン印刷法、ビートコート法、捌け法などが挙げられる。 The method of applying the hard coat paint in the present invention is not particularly limited, and a known method can be used. For example, spin coating method, dip method, spray method, slide coating method, bar coating method, roll coating method, gravure coating method, meniscus coating method, flexographic printing method, screen printing method, beat coating method, and handling method can be mentioned. ..
 光重合における光照射に用いられるランプとしては、光波長420nm以下に発光分布を有するものが用いられ、その例としては低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが挙げられる。この中でも、高圧水銀灯またはメタルハライドランプは開始剤の活性波長領域の光を効率よく発光し、得られる高分子の粘弾性的性質を架橋により低下させるような短波長の光や、反応組成物を加熱蒸発させるような長波長の光を多く発光しないために好ましい。 As the lamp used for light irradiation in photopolymerization, a lamp having a light emission distribution having a light wavelength of 420 nm or less is used, and examples thereof include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, and a black light lamp. , Microwave-excited mercury lamp, metal halide lamp, etc. Among these, high-pressure mercury lamps or metal halide lamps efficiently emit light in the active wavelength region of the initiator and heat short-wavelength light or reaction compositions that reduce the viscoelastic properties of the obtained polymer by cross-linking. This is preferable because it does not emit a large amount of long-wavelength light that causes evaporation.
 上記ランプの照射強度は、得られるポリマーの重合度を左右する因子であり、目的製品の性能毎に適宜制御される。通常のアセトフェノン基を有する開裂型の開始剤を配合した場合、照度は0.1~300mW/cmの範囲が好ましい。特に、メタルハライドランプを用いて、照度を10~40mW/cmとすることが好ましい。 The irradiation intensity of the lamp is a factor that affects the degree of polymerization of the obtained polymer, and is appropriately controlled for each performance of the target product. When a cleavage-type initiator having a normal acetophenone group is blended, the illuminance is preferably in the range of 0.1 to 300 mW / cm 2 . In particular, it is preferable to use a metal halide lamp and set the illuminance to 10 to 40 mW / cm 2 .
 光重合反応は、空気中の酸素または反応性組成物中に溶解する酸素により阻害される。そのため、光照射は酸素による反応阻害を消去し得る手法を用いて実施することが望ましい。そのような手法の1つとして、反応性組成物をポリエチレンテレフタレートやテフロン製のフィルムによって覆って酸素との接触を断ち、フィルムを通して光を反応性組成物へ照射する方法がある。また、窒素ガスや炭酸ガスのような不活性ガスにより酸素を置換したイナート雰囲気下で、光透過性の窓を通して組成物に光を照射してもよい。 The photopolymerization reaction is inhibited by oxygen in the air or oxygen dissolved in the reactive composition. Therefore, it is desirable to perform light irradiation using a method that can eliminate the reaction inhibition by oxygen. One such method is to cover the reactive composition with a film made of polyethylene terephthalate or Teflon to cut off contact with oxygen and irradiate the reactive composition with light through the film. Further, the composition may be irradiated with light through a light-transmitting window in an inert atmosphere in which oxygen is replaced by an inert gas such as nitrogen gas or carbon dioxide gas.
 光照射をイナート雰囲気下で行う場合、その雰囲気酸素濃度を低レベルに保つために、常に一定量の不活性ガスが導入される。この不活性ガスの導入により、反応性組成物表面に気流が発生し、モノマー蒸発が起こる。モノマー蒸発のレベルを抑制するためには、不活性ガスの気流速度は、不活性ガス雰囲気下を移動するハードコート液が塗布された積層体に対する相対速度として1m/sec以下であることが好ましく、0.1m/sec以下であることがより好ましい。気流速度を上記範囲にすることにより、気流によるモノマー蒸発は実質的に抑えられる。 When light irradiation is performed in an inert atmosphere, a certain amount of inert gas is always introduced in order to keep the atmospheric oxygen concentration at a low level. Due to the introduction of this inert gas, an air flow is generated on the surface of the reactive composition, and monomer evaporation occurs. In order to suppress the level of monomer evaporation, the air velocity of the inert gas is preferably 1 m / sec or less as a relative velocity with respect to the laminate coated with the hard coat liquid moving under the atmosphere of the inert gas. More preferably, it is 0.1 m / sec or less. By setting the airflow velocity within the above range, monomer evaporation due to the airflow is substantially suppressed.
 ハードコート層の密着性を向上させる目的で、塗布面に前処理を行うことがある。処理例として、サンドブラスト法、溶剤処理法、コロナ放電処理法、クロム酸処理法、火炎処理法、熱風処理法、オゾン処理法、紫外線処理法、樹脂組成物によるプライマー処理法などの既知の方法が挙げられる。 The coated surface may be pretreated for the purpose of improving the adhesion of the hard coat layer. Known treatment examples include sandblasting, solvent treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet treatment, and primer treatment with a resin composition. Can be mentioned.
 ハードコート層は、UV光(254nm)の照射出力が20mW/cmのメタルハライドランプを用いて紫外線照射した場合に、鉛筆硬度が2H以上であることが好ましい。 The hard coat layer preferably has a pencil hardness of 2H or more when irradiated with ultraviolet rays using a metal halide lamp having an irradiation output of UV light (254 nm) of 20 mW / cm 2 .
 ハードコート層の膜厚としては、1μm以上40μm以下が望ましく、2μm以上10μm以下がより望ましい。膜厚が1μm以上であることにより十分な硬度を得ることができる。また、膜厚が40μm以下であることにより、曲げ加工時のクラックの発生を抑制することができる。なお、ハードコート層の膜厚は、断面を顕微鏡等で観察し、塗膜界面から表面までを実測することにより測定可能である。 The film thickness of the hard coat layer is preferably 1 μm or more and 40 μm or less, and more preferably 2 μm or more and 10 μm or less. Sufficient hardness can be obtained when the film thickness is 1 μm or more. Further, when the film thickness is 40 μm or less, the occurrence of cracks during bending can be suppressed. The film thickness of the hard coat layer can be measured by observing the cross section with a microscope or the like and actually measuring from the coating film interface to the surface.
 本発明の一実施形態において、凹凸形状を有するハードコート層は、反射防止性能、防汚性能、帯電防止性能、および耐候性のうち少なくとも1つの特性を有してよい。ハードコート層に、反射防止処理、防汚処理、帯電防止処理、耐候性処理などの処理方法は特に限定されず、既知の方法を用いることができる。例えば、反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法などが挙げられる。 In one embodiment of the present invention, the hard coat layer having an uneven shape may have at least one of antireflection performance, antifouling performance, antistatic performance, and weather resistance. The treatment method such as antireflection treatment, antifouling treatment, antistatic treatment, and weather resistance treatment is not particularly limited to the hard coat layer, and known methods can be used. For example, a method of applying a reflection-reducing paint, a method of depositing a dielectric thin film, a method of applying an antistatic paint, and the like can be mentioned.
 ハードコート層への凹凸の形成方法としては、例えば、型による成形が挙げられる。型による成形は、凹凸面と相補的な形状からなる方を作製し、ハードコートを塗工した透明基材を密着させた状態で、紫外線硬化する方法により製造することができる。 As a method of forming unevenness on the hard coat layer, for example, molding by a mold can be mentioned. Molding can be carried out by a method of producing a shape complementary to an uneven surface and curing it with ultraviolet rays in a state where a transparent base material coated with a hard coat is in close contact with the surface.
 本発明における凹凸形状としては、像の映り込みを抑制するためにJIS K 7136に規定されるヘイズが15%以上で、2.0mm幅の光学くしを用いて光の入射角45°で測定される反射鮮明度が30%以下であることが好ましい。ヘイズを測定する際の光入射面は、凹凸形状の反対の面とする。また、反射鮮明度は、凹凸面の裏面に黒テープを貼りつけることで裏面反射を抑制して測定することができる。 As the uneven shape in the present invention, the haze defined in JIS K 7136 is 15% or more in order to suppress the reflection of the image, and the haze is measured at an incident angle of 45 ° using a 2.0 mm wide optical comb. The reflection sharpness is preferably 30% or less. The light incident surface when measuring the haze is the surface opposite to the uneven shape. Further, the reflection sharpness can be measured by suppressing the back surface reflection by attaching a black tape to the back surface of the uneven surface.
 また、凹凸の形状が日立ハイテクサイエンス社製白色顕微鏡VS-1000で測定された傾斜角度分布の5°以下の割合が多いと正反射光が増えて像の映り込みが発生しやすいことから、傾斜角度分布の5°以下の割合は、65~80%であることが好ましい。 In addition, if the shape of the unevenness is 5 ° or less of the tilt angle distribution measured by Hitachi High-Tech Science White Microscope VS-1000, the specular reflection light increases and the image is likely to be reflected. The ratio of the angular distribution of 5 ° or less is preferably 65 to 80%.
 本発明において、凹凸形状を有するハードコート層は、無機粒子または有機粒子を含まない。本発明における凹凸形状は、転写により設けられる。このように、ハードコート層に無機粒子または有機粒子を含まないことにより、耐擦傷性を向上させることができる。 In the present invention, the hard coat layer having an uneven shape does not contain inorganic particles or organic particles. The uneven shape in the present invention is provided by transfer. As described above, the scratch resistance can be improved by not containing the inorganic particles or the organic particles in the hard coat layer.
 本発明の別の実施形態は、高硬度樹脂(B)を含む層上の光硬化性樹脂組成物に、柄目付きPETフィルムを圧着することにより、前記ハードコート層に凹凸形状を転写するステップを含む、前記防眩性積層体の製造方法を提供する。柄目付きPETフィルムとしては、例えば、ユニチカ製エンブレットのPTHやPTHAやPTHZ、ダイセル製低ギラツキAGフィルムのPF11やPF23などを用いることができる。 Another embodiment of the present invention comprises the step of transferring the uneven shape to the hard coat layer by pressing a patterned PET film onto the photocurable resin composition on the layer containing the high hardness resin (B). Provided is a method for producing the antiglare laminate including the above. As the patterned PET film, for example, PTH, PTHA, PTHZ of Unitika emblem, PF11 or PF23 of Daicel's low-glare AG film can be used.
 以下に本発明の実施例を示すが、本発明は実施例の態様に制限されるものではない。 Examples of the present invention are shown below, but the present invention is not limited to the aspects of the examples.
 <ヘイズ>
 村上色彩社製「HR-100」を用いて、JIS K 7136に定める方法によりヘイズを算出した。
<Haze>
The haze was calculated by the method specified in JIS K 7136 using "HR-100" manufactured by Murakami Color Co., Ltd.
 <反射鮮明度(写像性)>
 スガ試験機社製 「ICM 1T」を用いて、JIS K7374に基づき、光学積層体の流れ方向と光学櫛の櫛歯の方向が平行になるように設置して測定を行った。光学櫛のうち、2.0mmの光学櫛を用いて、光の入射角45°で測定される反射の像鮮明度を反射鮮明度とした。凹凸面の裏面に黒テープ(3Mジャパン株式会社製 黒色ビニールテープ型番117BLA)を貼りつけることで裏面反射を抑制して測定を実施した。
<Reflective sharpness (mapping property)>
Using "ICM 1T" manufactured by Suga Test Instruments Co., Ltd., measurement was performed by installing the optical laminate so that the flow direction of the optical laminate and the direction of the comb teeth of the optical comb were parallel to each other based on JIS K7374. Among the optical combs, a 2.0 mm optical comb was used, and the image sharpness of reflection measured at an incident angle of light of 45 ° was defined as the reflection sharpness. The measurement was carried out by suppressing the reflection on the back surface by attaching a black tape (black vinyl tape model number 117BLA manufactured by 3M Japan Ltd.) to the back surface of the uneven surface.
 <ギラツキ>
 ギラツキは、防眩性積層体を緑色表示(R:29、G:205、B:0)した265ppiのiPad6上に凹凸形状を上向きに設置し、コニカミノルタ製PrometricY29で画像撮影後、撮影画面から60mm×60mmを抜き出す。解析ソフト「True Test」のRandom Mura シークエンスを使用して抜き出した画像を9分割し、9分割されたそれぞれの領域で「(ディスプレイ)輝度標準偏差/評価範囲の平均輝度」にてギラツキの値を算出することができる。9領域ごとに算出されたギラツキ値の平均が前面板として使用される際に2.0以下であることが好ましい。レンズと防眩性積層体との距離は500mmとした。
 ・ギラツキの値算出方法:(ディスプレイ)輝度標準偏差/評価範囲の平均輝度
 ・ギラツキの値:2.0以下    ギラツキ〇
 ・ギラツキの値:2.0より大きい ギラツキ×
<Glitter>
For glare, the uneven shape is installed upward on the 265ppi iPad6 with the antiglare laminate displayed in green (R: 29, G: 205, B: 0), and after taking an image with Konica Minolta's Promotric Y29, from the shooting screen Extract 60 mm x 60 mm. The image extracted using the Random Mura sequence of the analysis software "True Test" is divided into 9 parts, and the glare value is calculated by "(Display) brightness standard deviation / average brightness of evaluation range" in each of the 9 divided areas. Can be calculated. The average of the glare values calculated for each of the nine regions is preferably 2.0 or less when used as the front plate. The distance between the lens and the antiglare laminate was set to 500 mm.
・ Glitter value calculation method: (Display) Brightness standard deviation / Average brightness of evaluation range ・ Glitter value: 2.0 or less Glitter 〇 ・ Glitter value: Greater than 2.0 Glitter ×
 <傾斜角度>
 日立ハイテクサイエンス製 白色干渉顕微鏡 VS-1000を使用して、測定された傾斜角度分布より算出した。
<Inclination angle>
It was calculated from the tilt angle distribution measured using a white interference microscope VS-1000 manufactured by Hitachi High-Tech Science.
 <SW硬度>
 スチールウール♯0000を使用して100g/cm2荷重で15往復した際の傷の付き具合を目視観察で10段階評価。RANK1~RANK10で記載。RANK1 :無機ガラス(傷なし)RANK10:ポリカーボネート(傷多数)
<SW hardness>
The degree of scratches when making 15 reciprocations with a load of 100 g / cm2 using steel wool # 0000 is evaluated on a 10-point scale by visual observation. Described in RANK1 to RANK10. RANK1: Inorganic glass (no scratches) RANK10: Polycarbonate (many scratches)
 <形状安定性>
 試験片を100mm×60mmに切り出した。切り出した試験片を2点支持型のホルダーにセットして温度23%、相対湿度50%に設定した環境試験機に24時間以上投入して状態調整した後、反りを測定した(処理前)。次に試験片をホルダーにセットして温度85℃、相対湿度85%に設定した環境試験機の中に投入し、その状態で120時間保持した。更に温度23% 相対湿度50%に設定した環境試験機の中にホルダーごと移動し、その状態で4時間保持後に再度反りを測定した(処理後)。反りの測定は、電動ステージ具備の3次元形状測定機(KEYENCE製KS-1000)を使用し、取り出した試験片を上に凸の状態で水平に設置し、1ミリ間隔で主喜屋武氏、中央部の盛り上がりをそりとして計測した。処理前後の反り量の差の絶対値、すなわち
     |(処理後の反り量)-(処理前の反り量)|を形状安定性として評価した。
<Shape stability>
The test piece was cut out to a size of 100 mm × 60 mm. The cut out test piece was set in a two-point support type holder and put into an environmental tester set at a temperature of 23% and a relative humidity of 50% for 24 hours or more to adjust the state, and then the warp was measured (before processing). Next, the test piece was set in a holder and placed in an environmental tester set at a temperature of 85 ° C. and a relative humidity of 85%, and held in that state for 120 hours. Further, the holder was moved into an environmental tester set at a temperature of 23% and a relative humidity of 50%, and the warp was measured again after holding for 4 hours in that state (after treatment). To measure the warp, a three-dimensional shape measuring machine equipped with an electric stage (KS-1000 manufactured by KEYENCE) was used, and the taken-out test piece was placed horizontally in a convex state upward, and Mr. Takeshi Shikiya, center, at 1 mm intervals. The swelling of the part was measured as a sled. The absolute value of the difference in the amount of warpage before and after the treatment, that is, | (warp amount after treatment)-(warp amount before treatment) | was evaluated as shape stability.
 実施例1
 <積層板(X―1)>
 軸径35mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて合成樹脂積層体を成形した。軸径35mmの単軸押出機に高硬度樹脂(B1)として三菱ガス化学製Optimas7500を連続的に導入し、シリンダー温度240℃、吐出速度2.6kg/hの条件で押し出した。また軸径65mmの単軸押出機にポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製、商品名:ユーピロンS-1000)を連続的に導入し、シリンダー温度280℃、吐出速度50.0kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、温度270℃として高硬度樹脂とポリカーボネート樹脂を導入し積層した。その先に連結された温度270℃のTダイでシート状に押し出し、上流側から温度120℃、130℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、高硬度樹脂層とポリカーボネート樹脂層との樹脂積層板(X-1)を得た。得られた積層体の厚みは1.0mm、高硬度樹脂(B1)層の厚みは中央付近で60μmであった。
Example 1
<Laminate plate (X-1)>
Synthetic resin using a single-screw extruder with a shaft diameter of 35 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all extruders, and a multi-layer extruder having a T-die connected to the feed block. The laminate was molded. Optimas 7500 manufactured by Mitsubishi Gas Chemical Company was continuously introduced as a high-hardness resin (B1) into a single-screw extruder having a shaft diameter of 35 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 2.6 kg / h. In addition, polycarbonate resin (manufactured by Mitsubishi Engineering Plastics, trade name: Iupiron S-1000) was continuously introduced into a single-screw extruder with a shaft diameter of 65 mm, and extruded at a cylinder temperature of 280 ° C. and a discharge rate of 50.0 kg / h. .. The feed block connected to all extruders was equipped with two types and two layers of distribution pins, and a high hardness resin and a polycarbonate resin were introduced and laminated at a temperature of 270 ° C. It is extruded into a sheet with a T-die with a temperature of 270 ° C connected to the tip, and cooled while transferring the mirror surface with three mirror-finishing rolls with temperatures of 120 ° C, 130 ° C, and 190 ° C from the upstream side. A resin laminated plate (X-1) consisting of a layer and a polycarbonate resin layer was obtained. The thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness resin (B1) layer was 60 μm near the center.
<光硬化性樹脂組成物(Y)>
 ・U6HA:6官能ウレタンアクリレートオリゴマー(新中村化学工業(株)製)60重量%、
 ・#260:1,9-ノナンジオールジアクリレート(大阪有機化学工業(株)製)35重量%、
 ・フッ素系レべリング剤5重量%の混合物を100重量部として
 ・光開始剤:I-184(BASF(株)製〔化合物名:1-ヒドロキシ-シクロヘキシルフェニルケトン〕)を3重量部添加して、光硬化性樹脂組成物(Y)を得た。
<Photocurable resin composition (Y)>
U6HA: 6-functional urethane acrylate oligomer (manufactured by Shin Nakamura Chemical Industry Co., Ltd.) 60% by weight,
# 260: 1,9-nonanediol diacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.) 35% by weight,
-A mixture of 5% by weight of a fluorine-based leveling agent is taken as 100 parts by weight.-Photoinitiator: I-184 (manufactured by BASF Corporation [Compound name: 1-hydroxy-cyclohexylphenylketone]) is added by 3 parts by weight. The photocurable resin composition (Y) was obtained.
 <柄目付きPETフィルム(Z-1)>
 凹凸形状を転写するためのPETフィルムとして、ダイセル製PS27-1を使用した。
<PET film with pattern (Z-1)>
PS27-1 manufactured by Daicel was used as a PET film for transferring the uneven shape.
 積層体(X-1)の高硬度層上に、光硬化樹脂組成物(Y)を硬化後の塗膜厚さが5~10μmとなるようにバーコーターを用いて塗布し、柄目付きPETフィルム(Z-1)の柄面が塗布液と接触するように覆って圧着した。その後、光源距離12cm、メタルハライドランプ(20mW/cm)を30秒間照射し硬化させて、柄目付きPETフィルムを剥離し、高硬度樹脂層(B1)上に凹凸のあるハードコート層を備えた防眩性積層体を得た。 The photocurable resin composition (Y) is applied onto the high hardness layer of the laminate (X-1) using a bar coater so that the coating thickness after curing is 5 to 10 μm, and a patterned PET film is applied. The handle surface of (Z-1) was covered and crimped so as to come into contact with the coating liquid. After that, the light source distance is 12 cm, a metal halide lamp (20 mW / cm) is irradiated for 30 seconds to cure the film, the patterned PET film is peeled off, and the antiglare layer provided with the uneven hard coat layer on the high hardness resin layer (B1) is provided. A sex laminate was obtained.
実施例2
 柄目付きPETフィルムにダイセル製PS27-2(Z-2)を使用した以外は、実施例1と同様にして、防眩性積層体を得た。
Example 2
An antiglare laminate was obtained in the same manner as in Example 1 except that PS27-2 (Z-2) manufactured by Daicel was used for the patterned PET film.
 実施例3
 柄目付きPETフィルムにダイセル製PS27-3(Z-3)を使用した以外は、実施例1と同様にして、防眩性積層体を得た。
Example 3
An antiglare laminate was obtained in the same manner as in Example 1 except that PS27-3 (Z-3) manufactured by Daicel was used for the patterned PET film.
 実施例4
 <高硬度樹脂(B2)の製造>
 スチレン-不飽和ジカルボン酸系共重合体(D)としてR-100を75質量%と、ビニル系単量体を含有する樹脂(C)としてメチルメタクリレート樹脂パラペットHR-Lを25質量%とした以外は製造例5と同様にして樹脂組成物(B2)を得た。ペレットは安定して製造できた。
Example 4
<Manufacturing of high hardness resin (B2)>
Other than 75% by mass of R-100 as the styrene-unsaturated dicarboxylic acid-based copolymer (D) and 25% by mass of the methyl methacrylate resin parapet HR-L as the resin (C) containing the vinyl-based monomer. Obtained a resin composition (B2) in the same manner as in Production Example 5. The pellets could be produced stably.
 <積層体(X-2)>
 軸径35mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて合成樹脂積層体を成形した。軸径35mmの単軸押出機に高硬度樹脂(B2)を連続的に導入し、シリンダー温度240℃、吐出速度2.6kg/hの条件で押し出した。また軸径65mmの単軸押出機にポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製、商品名:ユーピロンE-2000)を連続的に導入し、シリンダー温度280℃、吐出速度50.0kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、温度270℃として高硬度樹脂とポリカーボネート樹脂を導入し積層した。その先に連結された温度270℃のTダイでシート状に押し出し、上流側から温度120℃、130℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、高硬度樹脂層とポリカーボネート樹脂層との防眩性積層体を得た。得られた積層体の厚みは1.0mm、高硬度樹脂(B2)層の厚みは中央付近で60μmであった。
<Laminated body (X-2)>
Synthetic resin using a single-screw extruder with a shaft diameter of 35 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all extruders, and a multi-layer extruder having a T-die connected to the feed block. The laminate was molded. A high-hardness resin (B2) was continuously introduced into a single-screw extruder having a shaft diameter of 35 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 2.6 kg / h. In addition, polycarbonate resin (manufactured by Mitsubishi Engineering Plastics, trade name: Iupiron E-2000) was continuously introduced into a single-screw extruder with a shaft diameter of 65 mm, and extruded at a cylinder temperature of 280 ° C. and a discharge rate of 50.0 kg / h. .. The feed block connected to all extruders was equipped with two types and two layers of distribution pins, and a high hardness resin and a polycarbonate resin were introduced and laminated at a temperature of 270 ° C. It is extruded into a sheet with a T-die with a temperature of 270 ° C connected to the tip, and cooled while transferring the mirror surface with three mirror-finishing rolls with temperatures of 120 ° C, 130 ° C, and 190 ° C from the upstream side. An antiglare laminate of the layer and the polycarbonate resin layer was obtained. The thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness resin (B2) layer was 60 μm near the center.
 積層体(X-2)の高硬度層上に、光硬化樹脂組成物(Y)を硬化後の塗膜厚さが5~10μmとなるようにバーコーターを用いて塗布し、柄目付きPETフィルム(Z-1)の柄面が塗布液と接触するように覆って圧着した。その後、光源距離12cm、メタルハライドランプ(20mW/cm)を30秒間照射し硬化させて、柄目付きPETフィルムを剥離し、高硬度樹脂層(B2)上に凹凸のあるハードコート層を備えた防眩性積層体を得た。 The photocurable resin composition (Y) is applied onto the high hardness layer of the laminate (X-2) using a bar coater so that the coating thickness after curing is 5 to 10 μm, and a patterned PET film is applied. The handle surface of (Z-1) was covered and crimped so as to come into contact with the coating liquid. After that, the light source distance is 12 cm, a metal halide lamp (20 mW / cm) is irradiated for 30 seconds to cure the film, the patterned PET film is peeled off, and the antiglare layer provided with the uneven hard coat layer on the high hardness resin layer (B2) is provided. A sex laminate was obtained.
 実施例5
 柄目付きPETフィルムにダイセル製PS27-2(Z-2)を使用した以外は、実施例4と同様にして、防眩性積層体を得た。
Example 5
An antiglare laminate was obtained in the same manner as in Example 4 except that PS27-2 (Z-2) manufactured by Daicel was used for the patterned PET film.
 実施例6
 柄目付きPETフィルムにダイセル製PS27-3(Z-3)を使用した以外は、実施例4と同様にして、防眩性積層体を得た。
Example 6
An antiglare laminate was obtained in the same manner as in Example 4 except that PS27-3 (Z-3) manufactured by Daicel was used for the patterned PET film.
 実施例7
 <高硬度樹脂(B3)の製造>
 樹脂共重合体(D)として、メタクリル酸メチル構成単位21質量%、スチレン構成単位64質量%、および無水マレイン酸構成単位15質量%の共重合体(レジスファイ R100(デンカ製))75質量%と樹脂共重合体(G)として、スチレン構成単位7質量%、メタクリル酸メチル構成単位86質量%、およびN-フェニルマレイミド構成単位7質量%の共重合体デルペット PM-120N(旭化成ケミカル製) 25質量%とを仕込みブレンダーで30分間混合後、スクリュー径26mmの押出機(東芝機械製、TEM-26SS、L/D≒40)を用い、シリンダー温度230℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化し、樹脂組成物(B3)を得た。ペレット化は安定して行なわれた。
Example 7
<Manufacturing of high hardness resin (B3)>
As the resin copolymer (D), a copolymer (Registfy R100 (manufactured by Denka)) of 21% by mass of methyl methacrylate, 64% by mass of styrene constituent unit, and 15% by mass of maleic anhydride structural unit (manufactured by Denka) was used. As the resin copolymer (G), a copolymer Delpet PM-120N (manufactured by Asahi Kasei Chemical Co., Ltd.) having 7% by mass of styrene constituent unit, 86% by mass of methyl methacrylate constituent unit, and 7% by mass of N-phenylmaleimide constituent unit. After mixing with mass% in a blender for 30 minutes, melt-knead at a cylinder temperature of 230 ° C. using an extruder with a screw diameter of 26 mm (manufactured by Toshiba Machine Co., Ltd., TEM-26SS, L / D≈40) to form a strand. It was extruded and pelletized with a pelletizer to obtain a resin composition (B3). Pelletization was stable.
 <積層体(X-3)>
 軸径35mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて合成樹脂積層体を成形した。軸径35mmの単軸押出機に高硬度樹脂(B3)を連続的に導入し、シリンダー温度240℃、吐出速度2.6kg/hの条件で押し出した。また軸径65mmの単軸押出機にポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製、商品名:ユーピロンE-2000)を連続的に導入し、シリンダー温度280℃、吐出速度50.0kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、温度270℃として高硬度樹脂とポリカーボネート樹脂を導入し積層した。その先に連結された温度270℃のTダイでシート状に押し出し、上流側から温度120℃、130℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、高硬度樹脂層とポリカーボネート樹脂層との樹脂積層板を得た。得られた積層体の厚みは1.0mm、高硬度樹脂(B3)層の厚みは中央付近で60μmであった。
<Laminated body (X-3)>
Synthetic resin using a single-screw extruder with a shaft diameter of 35 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all extruders, and a multi-layer extruder having a T-die connected to the feed block. The laminate was molded. A high-hardness resin (B3) was continuously introduced into a single-screw extruder having a shaft diameter of 35 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 2.6 kg / h. In addition, polycarbonate resin (manufactured by Mitsubishi Engineering Plastics, trade name: Iupiron E-2000) was continuously introduced into a single-screw extruder with a shaft diameter of 65 mm, and extruded at a cylinder temperature of 280 ° C. and a discharge rate of 50.0 kg / h. .. The feed block connected to all extruders was equipped with two types and two layers of distribution pins, and a high hardness resin and a polycarbonate resin were introduced and laminated at a temperature of 270 ° C. It is extruded into a sheet with a T-die with a temperature of 270 ° C connected to the tip, and cooled while transferring the mirror surface with three mirror-finishing rolls with temperatures of 120 ° C, 130 ° C, and 190 ° C from the upstream side. A resin laminated plate of a layer and a polycarbonate resin layer was obtained. The thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness resin (B3) layer was 60 μm near the center.
 積層体(X-3)の高硬度層上に、光硬化樹脂組成物(Y)を硬化後の塗膜厚さが5~10μmとなるようにバーコーターを用いて塗布し、柄目付きPETフィルム(Z-1)の柄面が塗布液と接触するように覆って圧着した。その後、光源距離12cm、メタルハライドランプ(20mW/cm)を30秒間照射し硬化させて、柄目付きPETフィルムを剥離し、高硬度樹脂層(B3)上に凹凸のあるハードコート層を備えた防眩性積層体を得た。 The photocurable resin composition (Y) is applied onto the high hardness layer of the laminate (X-3) using a bar coater so that the coating thickness after curing is 5 to 10 μm, and a patterned PET film is applied. The handle surface of (Z-1) was covered and crimped so as to come into contact with the coating liquid. After that, the light source distance is 12 cm, a metal halide lamp (20 mW / cm) is irradiated for 30 seconds to cure the film, the patterned PET film is peeled off, and the antiglare layer provided with the uneven hard coat layer on the high hardness resin layer (B3) is provided. A sex laminate was obtained.
 実施例8
 柄目付きPETフィルムにダイセル製PS27-2(Z-2)を使用した以外は、実施例7と同様にして、防眩性積層体を得た。
Example 8
An antiglare laminate was obtained in the same manner as in Example 7 except that PS27-2 (Z-2) manufactured by Daicel was used for the patterned PET film.
 実施例9
 柄目付きPETフィルムにダイセル製PS27-3(Z-3)を使用した以外は、実施例7と同様にして、防眩性積層体を得た。
Example 9
An antiglare laminate was obtained in the same manner as in Example 7 except that PS27-3 (Z-3) manufactured by Daicel was used for the patterned PET film.
 実施例10
 <高硬度樹脂(B4)の製造>
 メタクリル酸メチル構成単位21質量%、スチレン構成単位64質量%、および無水マレイン酸構成単位15質量%の共重合体(レジスファイ R100(デンカ製))75質量%、ならびにスチレン構成単位7質量%、メタクリル酸メチル構成単位86質量%、およびN-フェニルマレイミド構成単位7質量%の共重合体(デルペット PM120N;旭化成ケミカル製)25質量%を、スクリュー径26mmの押し出し機(TEM-26SS、L/D≒40;東芝機械製)に導入し、240℃で溶融混練して高硬度樹脂(B4)を得た。
Example 10
<Manufacturing of high hardness resin (B4)>
75% by mass of a copolymer (Regisphi R100 (manufactured by Denka)) containing 21% by mass of methyl methacrylate constituent unit, 64% by mass of styrene constituent unit, and 15% by mass of maleic anhydride constituent unit, and 7% by mass of styrene constituent unit, methacryl. A copolymer (Delpet PM120N; manufactured by Asahi Kasei Chemical Co., Ltd.) containing 86% by mass of methyl acid constituent unit and 7% by mass of N-phenylmaleimide constituent unit is extruded with an extruder (TEM-26SS, L / D) having a screw diameter of 26 mm. ≈40; manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at 240 ° C. to obtain a high-hardness resin (B4).
 <積層体(X-4)>
 軸径35mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて合成樹脂積層体を成形した。軸径35mmの単軸押出機に高硬度樹脂(B4)として三菱エンジニアリングプラスチックス製KH3410URを連続的に導入し、シリンダー温度240℃、吐出速度2.6kg/hの条件で押し出した。また軸径65mmの単軸押出機にポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製、商品名:ユーピロンS-1000)を連続的に導入し、シリンダー温度280℃、吐出速度50.0kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、温度270℃として高硬度樹脂とポリカーボネート樹脂を導入し積層した。その先に連結された温度270℃のTダイでシート状に押し出し、上流側から温度120℃、130℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、高硬度樹脂層とポリカーボネート樹脂層との樹脂積層板を得た。得られた積層体の厚みは1.0mm、高硬度樹脂(B4)層の厚みは中央付近で60μmであった。
<Laminated body (X-4)>
Synthetic resin using a single-screw extruder with a shaft diameter of 35 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all extruders, and a multi-layer extruder having a T-die connected to the feed block. The laminate was molded. KH3410UR manufactured by Mitsubishi Engineering Plastics was continuously introduced as a high-hardness resin (B4) into a single-screw extruder having a shaft diameter of 35 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 2.6 kg / h. In addition, polycarbonate resin (manufactured by Mitsubishi Engineering Plastics, trade name: Iupiron S-1000) was continuously introduced into a single-screw extruder with a shaft diameter of 65 mm, and extruded at a cylinder temperature of 280 ° C. and a discharge rate of 50.0 kg / h. .. The feed block connected to all extruders was equipped with two types and two layers of distribution pins, and a high hardness resin and a polycarbonate resin were introduced and laminated at a temperature of 270 ° C. It is extruded into a sheet with a T-die with a temperature of 270 ° C connected to the tip, and cooled while transferring the mirror surface with three mirror-finishing rolls with temperatures of 120 ° C, 130 ° C, and 190 ° C from the upstream side. A resin laminated plate of a layer and a polycarbonate resin layer was obtained. The thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness resin (B4) layer was 60 μm near the center.
 積層体(X-4)の高硬度樹脂層上に、光硬化樹脂組成物(Y)を硬化後の塗膜厚さが5~10μmとなるようにバーコーターを用いて塗布し、柄目付きPETフィルム(Z-1)の柄面が塗布液と接触するように覆って圧着した。その後、光源距離12cm、メタルハライドランプ(20mW/cm)を30秒間照射し硬化させて、柄目付きPETフィルムを剥離し、高硬度樹脂層(B3)上に凹凸のあるハードコート層を備えた防眩性積層体を得た。 The photocurable resin composition (Y) is applied onto the high-hardness resin layer of the laminate (X-4) using a bar coater so that the coating thickness after curing is 5 to 10 μm, and PET with a pattern is applied. The handle surface of the film (Z-1) was covered and pressure-bonded so as to come into contact with the coating liquid. After that, the light source distance is 12 cm, a metal halide lamp (20 mW / cm) is irradiated for 30 seconds to cure the film, the patterned PET film is peeled off, and the antiglare layer provided with the uneven hard coat layer on the high hardness resin layer (B3) is provided. A sex laminate was obtained.
 実施例11
 柄目付きPETフィルムにダイセル製PS27-2(Z-2)を使用した以外は、実施例10と同様にして、防眩性積層体を得た。
Example 11
An antiglare laminate was obtained in the same manner as in Example 10 except that PS27-2 (Z-2) manufactured by Daicel was used for the patterned PET film.
 実施例12
 柄目付きPETフィルムにダイセル製PS27-3(Z-3)を使用した以外は、実施例10と同様にして、防眩性積層体を得た。
Example 12
An antiglare laminate was obtained in the same manner as in Example 10 except that PS27-3 (Z-3) manufactured by Daicel was used for the patterned PET film.
 比較例1
 柄目付きPETフィルムにユニチカトレーディング製PTH-50(Z-4)を使用した以外は、実施例1と同様にして、防眩性積層体を得た。
Comparative Example 1
An antiglare laminate was obtained in the same manner as in Example 1 except that PTH-50 (Z-4) manufactured by Unitika Trading Co., Ltd. was used for the patterned PET film.
 比較例2
 柄目付きPETフィルムに中島工業製C-50 G-100(Z-5)を使用した以外は、実施例1と同様にして、防眩性積層体を得た。
Comparative Example 2
An antiglare laminate was obtained in the same manner as in Example 1 except that C-50 G-100 (Z-5) manufactured by Nakajima Kogyo Co., Ltd. was used for the patterned PET film.
 比較例3
 柄目付きPETフィルムに中島工業製C-50 G-30(Z-6)を使用した以外は、実施例1と同様にして、防眩性積層体を得た。
Comparative Example 3
An antiglare laminate was obtained in the same manner as in Example 1 except that C-50 G-30 (Z-6) manufactured by Nakajima Kogyo Co., Ltd. was used for the patterned PET film.
 比較例4
 MEK50質量部に対し、アクリル系紫外線硬化型樹脂50質量部(固形分100% 商品名:ライトアクリレートDPE-6A共栄社化学株式会社製)、シリカ微粒子(オクチルシラン処理フュームドシリカ、平均一次粒子径12nm、日本アエロジル社製)0.5質量部、アクリルシラン処理シリカ1質量部(平均粒子径1.9μm、商品名:SE-6050-SYB アドマテックス株式会社製)、及び光開始剤3質量部(商品名Omnirad184IGM Resins製)を混合し攪拌することでコーティング液(i)を作製した。次に、コーティング液(i)をPET(ポリエチレンテレフタレート)フィルムにドライ膜厚2.5μmとなるように塗布し、80°Cで2分間乾燥後、光源距離12cm、出力80W/cmの高圧水銀灯を備えたコンベアでラインスピード1.5m/分の条件で紫外線を照射し硬化させることで作製された柄目付きPETフィルム(Z-7)を使用した以外は、実施例1と同様にして防眩性積層体を得た。
Comparative Example 4
50 parts by mass of acrylic ultraviolet curable resin (100% solid content: Light acrylate DPE-6A manufactured by Kyoeisha Chemical Co., Ltd.), silica fine particles (octylsilane treated fumed silica, average primary particle size 12 nm) with respect to 50 parts by mass of MEK , Nippon Aerosil Co., Ltd.) 0.5 parts by mass, acrylic silane treated silica 1 part by mass (average particle size 1.9 μm, trade name: SE-6050-SYB Admatex Co., Ltd.), and 3 parts by mass of photoinitiator (manufactured by Admatex Co., Ltd.) The coating liquid (i) was prepared by mixing and stirring the product (trade name: Omnirad 184 IGM Resins). Next, the coating liquid (i) is applied to a PET (polyethylene terephthalate) film so that the dry film thickness is 2.5 μm, dried at 80 ° C. for 2 minutes, and then a high-pressure mercury lamp having a light source distance of 12 cm and an output of 80 W / cm is used. Anti-glare property as in Example 1 except that a patterned PET film (Z-7) produced by irradiating and curing ultraviolet rays at a line speed of 1.5 m / min on a provided conveyor was used. A laminate was obtained.
 比較例5
 高硬度樹脂組成物(B1)の代わりにメチルメタクリレート樹脂パラペットHR-L(クラレ製、重量平均分子量:90,000)を用いて得られた積層体(X-5)を使用した以外は実施例1と同等にして、積層体の作成およびハードコートの形成し、防眩性積層体を得た。
Comparative Example 5
Examples except that the laminate (X-5) obtained by using the methyl methacrylate resin parapet HR-L (manufactured by Kuraray, weight average molecular weight: 90,000) was used instead of the high hardness resin composition (B1). In the same manner as in 1, a laminated body was prepared and a hard coat was formed to obtain an antiglare laminated body.
 比較例6
 MEK50%質量部に対し、アクリル系紫外線硬化型樹脂50質量部(固形分100%商品:ライトアクリレートDPE-6A 共栄社化学社製)、シリカ微粒子(オクチルシラン処理ヒュームドシリカ、平均一次粒子径1.9μm、商品名:SE6050-SYB
 アドマテックス株式会社製)、および光開始剤3質量部(商品名 イルガキュア184
 豊通ケミプラス社製)を混合し攪拌することでコーティング液を作成した。次に比較例5に記載の積層体(X-5)にドライ膜厚2.5μmとなるように塗布し、80℃で2分間乾燥後、窒素パージをしながらメタルハライドランプ(20mW/cm)を30秒間照射し硬化させることで、防眩性積層体を得た。
Comparative Example 6
50 parts by mass of acrylic ultraviolet curable resin (100% solid content product: light acrylate DPE-6A manufactured by Kyoeisha Chemical Co., Ltd.), silica fine particles (octylsilane treated fumed silica, average primary particle size 1.) With respect to 50% by mass of MEK. 9 μm, trade name: SE6050-SYB
Admatex Co., Ltd., and 3 parts by mass of photoinitiator (trade name: Irgacure 184)
A coating solution was prepared by mixing and stirring (manufactured by Toyotsu Chemiplas). Next, the laminate (X-5) described in Comparative Example 5 was coated with a dry film thickness of 2.5 μm, dried at 80 ° C. for 2 minutes, and then a metal halide lamp (20 mW / cm) was applied while purging nitrogen. By irradiating for 30 seconds and curing, an antiglare laminate was obtained.
 実施例1~12、比較例1~6で得られた防眩性積層体について、ヘイズ、反射鮮明度(写像性)、ギラツキ、傾斜角度5°以下の割合、SW硬度、形態安定性を評価した。結果は下記表に示す。 The antiglare laminates obtained in Examples 1 to 12 and Comparative Examples 1 to 6 were evaluated for haze, reflection sharpness (mapping property), glare, ratio of inclination angle of 5 ° or less, SW hardness, and morphological stability. did. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 以上に示されているように、本発明により、優れた耐衝撃性、耐熱性及び防眩性能を有しつつ、ギラツキの発生を抑え、高い耐擦傷性を有し、形状安定性にも優れた防眩性積層体が得られることがわかった。 As shown above, according to the present invention, the present invention has excellent impact resistance, heat resistance and anti-glare performance, suppresses glare, has high scratch resistance, and is also excellent in shape stability. It was found that an antiglare laminate was obtained.

Claims (12)

  1.  ポリカーボネート樹脂(a1)を含む樹脂(A)を含む層と、
     ポリカーボネート樹脂(a1)を含む樹脂(A)を含む層の少なくとも1方の面に設けられた、高硬度樹脂(B)を含む層と、
     更に高硬度樹脂(B)を含む層上に設けられ、凹凸形状を有するハードコート層と、を備え、下記条件(i)および(ii)を満たす防眩性積層体:
     (i)前記高硬度樹脂(B)を含む層の厚みが10~250μmであり、前記ポリカーボネート樹脂(a1)を含む樹脂(A)を含む層と前記高硬度樹脂(B)を含む層との合計厚みが100~3,000μmであり;
     (ii)前記積層体は、JIS K 7136にて規定されるヘイズが15%以上であり、2.0mm幅の光学くしを用いて光の入射角45°で測定される反射鮮明度が30%以下であり、該積層体を265ppiの光源上に設置してコニカミノルタ製Prometoric Y29にて測定された輝度標準偏差/評価範囲の平均輝度が2.0以下である。
    A layer containing the resin (A) containing the polycarbonate resin (a1) and
    A layer containing the high hardness resin (B) provided on at least one surface of the layer containing the resin (A) containing the polycarbonate resin (a1), and a layer containing the high hardness resin (B).
    Further, an antiglare laminate provided on a layer containing the high hardness resin (B) and having a concave-convex shape, and satisfying the following conditions (i) and (ii):
    (I) The thickness of the layer containing the high hardness resin (B) is 10 to 250 μm, and the layer containing the resin (A) containing the polycarbonate resin (a1) and the layer containing the high hardness resin (B) The total thickness is 100-3,000 μm;
    (Ii) The laminated body has a haze of 15% or more specified by JIS K 7136, and has a reflection clarity of 30% measured at an incident angle of light of 45 ° using an optical comb having a width of 2.0 mm. The average brightness of the brightness standard deviation / evaluation range measured by Konica Minolta's Promethoric Y29 when the laminate is placed on a light source of 265 ppi is 2.0 or less.
  2.  高硬度樹脂(B)が以下の樹脂(B1)から(B4)のいずれか1つからなり、
     前記樹脂(B1)は、
     下記一般式(1)であらわされる(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含む共重合樹脂であって、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記共重合樹脂の全構成単位の90~100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)の割合が前記共重合樹脂の全構成単位の65~80モル%である、共重合樹脂:
    Figure JPOXMLDOC01-appb-C000001
     (式中、R1は水素原子またはメチル基であり、R2は炭素数1~18のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000002
     (式中、R3は水素原子またはメチル基であり、R4は炭素数1~4の炭化水素機を有しても良いシクロヘキシル基である。)であり、
     前記樹脂(B2)は、
     ビニル系単量体を含有する樹脂(C)を55~10質量%、スチレン-不飽和ジカルボン酸系共重合体(D)を45~90質量%含み、前記スチレン-不飽和ジカルボン酸系共重合体(D)が、スチレン系単量体単位(d1)を50~80質量%、不飽和ジカルボン酸単量体単位(d2)を10~30質量%、ビニル系単量体単位(d3)を5~30質量%で含む、樹脂であり、
     前記樹脂(B3)は、
     スチレン構成単位を5~20質量%、(メタ)アクリル酸エステル構成単位を70~90質量%、N-置換型マレイミド単量体を5~20質量%含む樹脂共重合体(G)、または樹脂共重合体(G)と樹脂共重合体(D)のアロイである樹脂であり、
     前記樹脂(B4)は、
     下記一般式(3)で表される構成単位(H)と、任意に下記一般式(4)で表される構成単位(J)とを含む共重合体である、
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    請求項1に記載の防眩性積層体。
    The high hardness resin (B) is composed of any one of the following resins (B1) to (B4).
    The resin (B1) is
    A copolymer resin containing a (meth) acrylic acid ester structural unit (a) represented by the following general formula (1) and an aliphatic vinyl structural unit (b) represented by the following general formula (2). The total ratio of the (meth) acrylic acid ester constituent unit (a) and the aliphatic vinyl constituent unit (b) is 90 to 100 mol% of the total constituent units of the copolymer resin, and the (meth) acrylic acid. The copolymer resin: the ratio of the ester constituent unit (a) is 65 to 80 mol% of the total constituent units of the copolymer resin.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R1 is a hydrogen atom or a methyl group, and R2 is an alkyl group having 1 to 18 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R3 is a hydrogen atom or a methyl group, and R4 is a cyclohexyl group which may have a hydrocarbon machine having 1 to 4 carbon atoms.)
    The resin (B2) is
    55 to 10% by mass of the resin (C) containing a vinyl-based monomer, 45 to 90% by mass of the styrene-unsaturated dicarboxylic acid-based copolymer (D), and the styrene-unsaturated dicarboxylic acid-based copolymer. The coalescence (D) contains 50 to 80% by mass of the styrene-based monomer unit (d1), 10 to 30% by mass of the unsaturated dicarboxylic acid monomer unit (d2), and the vinyl-based monomer unit (d3). It is a resin contained in an amount of 5 to 30% by mass.
    The resin (B3) is
    Resin copolymer (G) or resin containing 5 to 20% by mass of styrene constituent unit, 70 to 90% by mass of (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of N-substituted maleimide monomer. A resin that is an alloy of the copolymer (G) and the resin copolymer (D).
    The resin (B4) is
    A copolymer containing a structural unit (H) represented by the following general formula (3) and a structural unit (J) optionally represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    The antiglare laminate according to claim 1.
  3.  前記凹凸形状は、日立ハイテクサイエンス社製白色干渉顕微鏡VS―1000で測定された傾斜角度分布の5°以下の割合が65~80%である、請求項1または2に記載の防眩性積層体。 The antiglare laminate according to claim 1 or 2, wherein the uneven shape has a proportion of 5 ° or less of an inclination angle distribution measured by a white interference microscope VS-1000 manufactured by Hitachi High-Tech Science Co., Ltd., which is 65 to 80%. ..
  4.  前記凹凸形状を有するハードコート層は、無機粒子または有機粒子を含まない、請求項1~3のいずれかの1項に記載の防眩性積層体。 The antiglare laminate according to any one of claims 1 to 3, wherein the hard coat layer having an uneven shape does not contain inorganic particles or organic particles.
  5.  前記凹凸形状を有するハードコート層は、反射防止性能、防汚性能、帯電防止性能、および耐候性のうち少なくとも1つの特性を有する、請求項1~4のいずれか1項に記載の防眩性積層体。 The antiglare property according to any one of claims 1 to 4, wherein the hard coat layer having an uneven shape has at least one property of antireflection performance, antifouling performance, antistatic performance, and weather resistance. Laminated body.
  6.  前記凹凸を有するハードコート層とは反対の面に第2のハードコート層を備える、請求項1~5のいずれか1項に記載の防眩性積層体。 The antiglare laminate according to any one of claims 1 to 5, wherein a second hard coat layer is provided on a surface opposite to the hard coat layer having the unevenness.
  7.  前記第2のハードコート層が、反射防止性能、防汚性能、帯電防止性能、および耐候性のうち少なくとも1つの特性を有する、請求項1~6のいずれか1項に記載の防眩性積層体。 The antiglare laminate according to any one of claims 1 to 6, wherein the second hard coat layer has at least one of antireflection performance, antifouling performance, antistatic performance, and weather resistance. body.
  8.  ポリカーボネート樹脂(a1)として、下記一般式(5)で表される1価フュノール由来の成分を含む、請求項1~7のいずれか1項に記載の防眩性積層体。
    Figure JPOXMLDOC01-appb-C000005
     (式中、Rは、炭素数8~36のアルキル基、又は炭素数8~36のアルケニル基を表し、R~Rはそれぞれ独立して、水素原子、ハロゲン、又は置換基を有してもよい炭素数1~20のアルキル基若しくは炭素数6~12のアリール基を表し、前記置換基は、ハロゲン、炭素数1~20のアルキル基、又は炭素数6~12のアリール基である。)
    The antiglare laminate according to any one of claims 1 to 7, which comprises a component derived from a monovalent funol represented by the following general formula (5) as the polycarbonate resin (a1).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms, and R 2 to R 5 each independently have a hydrogen atom, a halogen, or a substituent. It represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms, and the substituent may be a halogen, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 12 carbon atoms. is there.)
  9.  請求項1~8のいずれか1項に記載の防眩性積層体を含む車載用表示装置。 An in-vehicle display device including the antiglare laminate according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか1項に記載の防眩性積層体を含むタッチパネル前面保護板。 A touch panel front protective plate containing the antiglare laminate according to any one of claims 1 to 8.
  11.  請求項1~8のいずれか1項に記載の防眩性積層体を含むOA機器用、携帯電子機器用、またはテレビ用の前面板。 A front plate for OA equipment, portable electronic equipment, or a television containing the antiglare laminate according to any one of claims 1 to 8.
  12.  請求項1~8のいずれか1項に記載の防眩性積層体の製造方法であって、
     前記高硬度樹脂(B)を含む層上の光硬化性樹脂組成物に、柄目付きPETフィルムを圧着することにより、前記ハードコート層に凹凸形状を転写するステップを含む、前記防眩性積層体の製造方法。
    The method for producing an antiglare laminate according to any one of claims 1 to 8.
    The antiglare laminate comprising a step of transferring an uneven shape to the hard coat layer by pressing a patterned PET film onto the photocurable resin composition on the layer containing the high hardness resin (B). Manufacturing method.
PCT/JP2020/012357 2019-03-29 2020-03-19 Anti-glare laminate WO2020203359A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080023444.0A CN113614585A (en) 2019-03-29 2020-03-19 Anti-glare laminate
JP2021511450A JPWO2020203359A1 (en) 2019-03-29 2020-03-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019066977 2019-03-29
JP2019-066977 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203359A1 true WO2020203359A1 (en) 2020-10-08

Family

ID=72667741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012357 WO2020203359A1 (en) 2019-03-29 2020-03-19 Anti-glare laminate

Country Status (4)

Country Link
JP (1) JPWO2020203359A1 (en)
CN (1) CN113614585A (en)
TW (1) TW202103965A (en)
WO (1) WO2020203359A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011028245A (en) * 2009-06-25 2011-02-10 Sumitomo Chemical Co Ltd Polarizing plate, composite polarizing plate and liquid crystal display device
WO2017150646A1 (en) * 2016-03-04 2017-09-08 三菱瓦斯化学株式会社 Front plate for onboard lcd device
WO2019049704A1 (en) * 2017-09-06 2019-03-14 三菱瓦斯化学株式会社 High-hardness molding resin sheet and molded article using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101567630B1 (en) * 2010-04-27 2015-11-09 가부시키가이샤 도모에가와 세이시쇼 Optical laminate, polarising plate and display device
WO2015093516A1 (en) * 2013-12-18 2015-06-25 三菱瓦斯化学株式会社 Synthetic resin laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011028245A (en) * 2009-06-25 2011-02-10 Sumitomo Chemical Co Ltd Polarizing plate, composite polarizing plate and liquid crystal display device
WO2017150646A1 (en) * 2016-03-04 2017-09-08 三菱瓦斯化学株式会社 Front plate for onboard lcd device
WO2019049704A1 (en) * 2017-09-06 2019-03-14 三菱瓦斯化学株式会社 High-hardness molding resin sheet and molded article using same

Also Published As

Publication number Publication date
CN113614585A (en) 2021-11-05
TW202103965A (en) 2021-02-01
JPWO2020203359A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
TWI784046B (en) High-hardness molding resin sheet and molded products using it
JP6883043B2 (en) Two-stage curable laminated board
EP3936303A1 (en) Resin sheet for high hardness molding and molded article using same
WO2021193215A1 (en) Anti-glare laminate body
WO2021033483A1 (en) Anti-glare layered body
WO2020203359A1 (en) Anti-glare laminate
WO2021029266A1 (en) Resin sheet for molding and molded article using same
WO2024057985A1 (en) Anti-glare laminate and method for manufacturing same
JP7497337B2 (en) High-hardness molding resin sheet and molded product using same
WO2022091810A1 (en) Laminated resin sheet for molding, and molded article using same
WO2022097677A1 (en) Manufacturing method for bend forming product of resin sheet, and bend forming product
EP4108456A1 (en) Laminated resin sheet for molding, and molded article using same
WO2021246295A1 (en) Resin sheet for molding and molded article using same
JP2023110549A (en) Laminated resin sheet for molding, and molded article using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511450

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782560

Country of ref document: EP

Kind code of ref document: A1