WO2021192822A1 - Resin composition for semiconductor encapsulation, and semiconductor device - Google Patents

Resin composition for semiconductor encapsulation, and semiconductor device Download PDF

Info

Publication number
WO2021192822A1
WO2021192822A1 PCT/JP2021/007508 JP2021007508W WO2021192822A1 WO 2021192822 A1 WO2021192822 A1 WO 2021192822A1 JP 2021007508 W JP2021007508 W JP 2021007508W WO 2021192822 A1 WO2021192822 A1 WO 2021192822A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
semiconductor
resin composition
mass
encapsulating
Prior art date
Application number
PCT/JP2021/007508
Other languages
French (fr)
Japanese (ja)
Inventor
前田 剛
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2021192822A1 publication Critical patent/WO2021192822A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present disclosure relates to a resin composition for encapsulating a semiconductor and a semiconductor device.
  • resin-sealed semiconductor devices have been widely used together with ceramic-sealed semiconductor devices.
  • This resin-sealed semiconductor device is formed by resin-molding semiconductor elements such as transistors, ICs, and LSIs by transfer molding using a sealing material such as an epoxy resin composition. It is excellent in terms of low price.
  • Patent Document 1 a resin composition containing a dihydroxybenzoxazine resin
  • Patent Document 2 a resin composition containing fluororesin particles whose surface is coated with fine inorganic particles
  • Patent Document 3 a resin composition containing tickerboron
  • Japanese Unexamined Patent Publication No. 2000-154225 Japanese Unexamined Patent Publication No. 2001-40182 Japanese Unexamined Patent Publication No. 2005-314568
  • the present inventor has a semiconductor in which the relative permittivity is sufficiently reduced by using a resin composition for encapsulating a semiconductor containing (E) resin particles composed of a polymer containing a structural unit derived from a predetermined cyclic olefin compound. It has been found that a resin composition for encapsulation can be obtained. The present disclosure has been completed based on such findings.
  • a resin composition for encapsulating a semiconductor which comprises a resin containing a structural unit derived from a cyclic olefin compound represented by the formula (1).
  • R 1 to R 12 may be the same or different, and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group, and are R 9 and R.
  • the content of the low stress material (F) in the semiconductor encapsulating resin composition is 0.1% by mass or more and 1.5% by mass or less.
  • the (G) benzoxazine resin further comprises (G) benzoxazine resin, and the (G) benzoxazine resin is the compound represented by the following general formula (2), according to any one of the above [1] to [8].
  • Resin composition for encapsulating semiconductors In the general formula (2), X 1 is an alkylene group having 1 to 10 carbon atoms, a group represented by the following general formula (3), -SO 2- , -CO-, an oxygen atom, or a single bond.
  • R is a hydrogen atom or a hydrocarbon group having 1 or more and 10 or less carbon atoms, respectively.
  • X 2 is a hydrocarbon group having an aromatic ring and having 6 or more and 30 or less carbon atoms, and m is an integer of 0 or 1 or more.
  • the total content of the (E) resin particles and the (G) benzoxazine resin in the semiconductor encapsulating resin composition is 5% by mass or more and 30% by mass or less.
  • the resin composition for encapsulating a semiconductor is 5% by mass or more and 30% by mass or less.
  • the resin composition for encapsulating a semiconductor is 5% by mass or more and 30% by mass or less.
  • the "average particle size” means, for example, a particle size (d50) at which the integrated volume becomes 50% in the particle size distribution measured by a laser diffraction type particle size distribution measuring device.
  • the resin composition for encapsulating a semiconductor of the present embodiment includes (A) an epoxy resin, (B) a phenol resin curing agent, (C) a curing accelerator, and ( It contains (D) an inorganic filler and (E) resin particles, and further contains (F) a low-stress material, (G) a benzoxazine resin, and (H) other components (additives), if necessary.
  • the epoxy resin (A) used in the present embodiment is not particularly limited, and examples thereof include an epoxy resin having two or more epoxy groups in one molecule, which may be a monomer, an oligomer, or a polymer. You may.
  • Specific examples of the (A) epoxy resin include crystalline epoxy resins such as biphenyl type epoxy resin, bisphenol type epoxy resin, and stillben type epoxy resin; novolak type epoxy such as phenol novolac type epoxy resin and cresol novolac type epoxy resin.
  • Polyfunctional epoxy resin such as triphenol methane type epoxy resin and alkyl-modified triphenol methane type epoxy resin; phenol aralkyl type epoxy resin having a phenylene skeleton, phenol aralkyl type epoxy resin containing biphenylene skeleton (hereinafter, "biphenyl aralkyl type epoxy”)
  • Aralkyl type epoxy resin such as "resin”
  • naphthol type epoxy resin such as dihydroxynaphthalene type epoxy resin and epoxy resin obtained by glycidyl etherification of dihydroxynaphthalene dimer
  • triglycidyl isocyanurate monoallyl Examples thereof include triazine nuclei-containing epoxy resins such as diglycidyl isocyanurate; and bridged cyclic hydrocarbon compound-modified phenol-type epoxy resins such as dicyclopentadiene-modified phenol-type epoxy resins.
  • the epoxy resin (A) may be a biphenylene skeleton-containing phenol aralkyl type epoxy resin or a dicyclopentadiene-modified phenol type epoxy resin.
  • the content of the epoxy resin (A) in the resin composition for encapsulating a semiconductor is not particularly limited, but may be 5% by mass or more and 20% by mass or less, and 6% by mass or more and 15% by mass or less. It may be 7% by mass or more and 12% by mass or less.
  • the (B) phenol resin curing agent used in the present embodiment is not particularly limited.
  • it is a phenol resin curing agent having an action of mainly enhancing moldability and reacts with the epoxy group of the (A) epoxy resin.
  • examples thereof include a phenol resin curing agent having two or more possible phenolic hydroxyl groups in one molecule.
  • the (B) phenol resin curing agent include, for example, novolak-type phenol resins such as phenol novolac resin, cresol novolak resin, trisphenol methane-type phenol novolak resin, and naphthol novolak resin; and many such as triphenol methane-type phenol resin.
  • phenolic resin modified phenolic resin
  • modified phenolic resin such as terpen-modified phenolic resin, formaldehyde-modified triphenylmethane-type phenolic resin, formaldehyde-modified trihydroxyphenylmethane-type phenolic resin, dicyclopentadiene-modified phenolic resin
  • phenylene skeleton and / or Examples thereof include a phenol aralkyl resin having a biphenylene skhenol form, a phenylene and / or an aralkyl type phenol resin such as a naphthol aralkyl resin having a biphenylene skeletron, and a biphenyl aralkyl phenol resin; a bisphenol compound such as bisphenol A and bisphenol F; and the like.
  • One of these may be used alone, or two or more thereof may be used in combination.
  • the phenol resin curing agent may be a novolak type phenol resin, a polyfunctional phenol resin, an aralkyl type phenol resin, an aralkyl type phenol resin, or a phenol aralkyl resin (for example, a biphenylene skeleton-containing phenol). Phenol formaldehyde) or biphenyl phenol formaldehyde may be used.
  • the content ratio of the (A) epoxy resin to the (B) phenol resin curing agent in the resin composition for encapsulating the semiconductor of the present embodiment is (B) with respect to one epoxy group in the (A) epoxy resin.
  • the number of phenolic hydroxyl groups in the phenol resin curing agent may be 0.5 or more and 1.5 or less, or 0.9 or more and 1.2 or less.
  • the content ratio of (A) epoxy resin and (B) phenol resin curing agent is selected so that the phenolic hydroxyl groups in (B) phenol resin curing agent are within the above range with respect to the epoxy groups in (A) epoxy resin. By doing so, a molded product of a resin composition for encapsulating a semiconductor having well-balanced performance can be obtained.
  • the (C) curing accelerator used in the present embodiment is not particularly limited, and examples thereof include a curing accelerator generally used as a curing accelerator for epoxy resins.
  • Specific examples of the (C) curing accelerator include, for example, 1,8-diazabicyclo [5.4.0] undecene-7, 1,5-diazabicyclo [4.3.0] nonen-5, 5,6-.
  • Cycloamidine compounds such as dibutylamino-1,8-diazabicyclo [5.4.0] undecene-7; these cycloamidine compounds include maleic anhydride, 1,4-benzoquinone, 2,5-turquinone, 1,4- Kinone compounds such as naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, phenyl-1,4-benzoquinone, diazophenylmethane, phenol resin Compounds with intramolecular polarization formed by adding a compound having a ⁇ bond such as; Tertiary amine compounds such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and derivatives thereof; 2 -Methylimidazole, 2-ethylimidazole, 2-phenylimidazole,
  • Organic phosphine compounds include maleic anhydride, 1,4-benzoquinone, 2,5-torquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3- A phosphorus compound having intramolecular polarization by adding a quinone compound such as dimethoxy-5-methyl-1,4-benzoquinone or phenyl-1,4-benzoquinone, or a compound having a ⁇ bond such as diazophenylmethane or phenol resin; Tetrafe Tetra-substituted phosphonium-tetra-substituted borates such as nylphosphonium tetraphenylborate, tetraphenylphosphonium ethyltriphenylborate, tetrabutylphosphonium tetrabutylborate; 2-ethyl-4
  • the content of the (C) curing accelerator is not particularly limited, but is based on 100 parts by mass of the total amount of the (A) epoxy resin, (B) phenol resin curing agent, and (G) benzoxazine resin described later. , 0.2 parts by mass or more and 8.0 parts by mass or less, or 1.0 parts by mass or more and 5.0 parts by mass or less.
  • the content of the curing accelerator (C) is within the above range, the curability becomes good and the fluidity of the resin composition for semiconductor encapsulation becomes good.
  • the inorganic filler (D) is not particularly limited, and examples thereof include known inorganic fillers generally used in resin compositions for encapsulating semiconductors. Specific examples of the inorganic filler (D) include oxide powders of fused silica, crystalline silica, crushed silica, synthetic silica, alumina, titania, magnesia and the like; hydroxide powders of aluminum hydroxide, magnesium hydroxide and the like.
  • Nitride powders such as silicon nitride, aluminum oxide, boron nitride, etc .; Zircon, calcium silicate, calcium carbonate, potassium titanate, barium titanate, silicon carbide, beryllia, zirconia, fosterite, steatite, spinel, mulite, etc. Other powders; spherical beads; single crystal fibers; glass fibers; and the like. One of these may be used alone, or two or more thereof may be used in combination. From the viewpoint of reducing the coefficient of thermal expansion, the inorganic filler (D) may be fused silica, or may be alumina from the viewpoint of enhancing high thermal conductivity.
  • the shape of the inorganic filler is not particularly limited, but may be spherical from the viewpoint of improving the fluidity during molding and suppressing the wear of the mold.
  • the average particle size of the inorganic filler (D) is not particularly limited, but may be 0.5 ⁇ m or more and 40 ⁇ m or less, 1 ⁇ m or more and 30 ⁇ m or less, or 5 ⁇ m or more and 30 ⁇ m. Further, the maximum particle size of the (D) inorganic filler may be 105 ⁇ m or less.
  • the average particle size is 0.5 ⁇ m or more, the fluidity of the resin composition can be controlled and the moldability can be improved.
  • the average particle size is 40 ⁇ m or less, it is possible to control the warp of the molded product obtained by curing the resin composition and prevent a decrease in dimensional accuracy.
  • the maximum particle size is 105 ⁇ m or less, the moldability of the resin composition can be improved.
  • the content of the (D) inorganic filler in the semiconductor encapsulating resin composition may be 60% by mass or more and 90% by mass or less, or 65% by mass or more and 85% by mass or less.
  • the content of the inorganic filler (D) is within the above range, the moldability and fluidity of the resin composition are improved, and the dimensional accuracy, moisture resistance, and mechanical strength of the molded product are improved.
  • the resin particles (E) used in the present embodiment are made of a resin containing a structural unit derived from a predetermined cyclic olefin compound.
  • the cyclic olefin compound is a compound represented by the following general formula (1).
  • R 1 to R 12 may be the same or different from each other, and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group.
  • R 9 and R 10 and R 11 and R 12 may be integrated to form a divalent hydrocarbon group.
  • R 9 or R 10 and R 11 or R 12 may be coupled to each other to form a ring.
  • n indicates 0 or a positive integer, and when n is 2 or more, R 5 to R 8 may be the same or different in each repeating unit.
  • the hydrocarbon group in R 1 to R 12 include an alkyl group having 1 to 10 carbon atoms; and the like, which may be a methyl group or an ethyl group.
  • Examples of the halogen atom in R 1 to R 12 include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like, and may be a fluorine atom and a chlorine atom.
  • R 1 to R 12 may be a hydrogen atom, a methyl group, an ethyl group, or a hydrogen atom.
  • Examples of the divalent hydrocarbon group formed by integrating R 9 and R 10 or R 11 and R 12 include an alkylene group having 1 to 10 carbon atoms; and a methylene group and an ethylene group. It may be.
  • the formed ring may be a monocyclic ring, a polycyclic ring, or a polycyclic ring having a crosslink. It may be a ring having a double bond, or it may be a ring composed of a combination of these rings. Further, these rings may have a substituent such as a methyl group. n may be 1 or 0.
  • cyclic olefin compound examples include, for example, norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-hexylnorbornene, 5-decylnorbornene, 5-cyclohexylnorbornene, 5-pentylnorbornene, and the like.
  • tetracyclododecenes such as tetracyclododecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 8-cyclohexyltetracyclododecene, 8-cyclopentyltetracyclododecene; etc. Be done. One of these may be used alone, or two or more thereof may be used in combination.
  • the cyclic olefin compound may be norbornene or tetracyclododecene from the viewpoint of low dielectric constant.
  • ⁇ Structural unit derived from cyclic olefin compound examples include structural unit X represented by the following general formula (4); structural unit Y represented by the following general formula (5), and the like.
  • the structural unit derived from the cyclic olefin compound may be a structural unit represented by the following general formula (5) from the viewpoint of low dielectric constant.
  • R 1 ⁇ R 12 and n in the general formula (4) is identical to R 1 ⁇ R 12 and n in the general formula (1).
  • the polymer X containing the structural unit X represented by the general formula (4) is, for example, a known catalyst such as a metal catalyst (Grubbs catalyst), a pyrylium-tetrafluoroborate salt, or the like, using the cyclic olefin compound. It is obtained by a known method such as ring-opening metathesis polymerization using and hydrogenation (hydrogenation).
  • R 1 ⁇ R 12 and n in Formula (5) in is the same as R 1 ⁇ R 12 and n in the general formula (1).
  • the polymer Y containing the structural unit Y represented by the general formula (5) is, for example, addition-copolymerized with the cyclic olefin compound and an ⁇ -olefin described later using a known catalyst such as a metallocene catalyst. It can be obtained by a known method such as a method.
  • Structural units other than structural units derived from cyclic olefin compounds include, for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1 Examples thereof include structural units derived from ⁇ -olefins such as nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene. One of these may be used alone, or two or more thereof may be used in combination.
  • the structural unit other than the structural unit derived from the cyclic olefin compound may be a structural unit derived from ethylene from the viewpoint of low dielectric constant.
  • the structure of the resin (that is, the resin containing a structural unit derived from a predetermined cyclic olefin compound) constituting the resin particles is, for example, a polymer represented by the following general formula (6) (the above general formula).
  • a polymer represented by the following general formula (6) (the above general formula).
  • One of these may be used alone, or two or more thereof may be used in combination.
  • the structure of the resin constituting the resin particles is a polymer represented by the following general formula (7) (a polymer having a structural unit Y represented by the above general formula (5)) from the viewpoint of low dielectric constant. It may be a kind of Y).
  • X 1 and X 2 may be the same or different, respectively, and are hydrogen atoms or hydrocarbon groups. P represents a positive integer.
  • Examples of the hydrocarbon group of X 1 and X 2 include an alkyl group having 1 or more carbon atoms and 10 or less carbon atoms; and may be a methyl group or an ethyl group.
  • the X 1 and X 2 may be a hydrogen atom, a methyl group, an ethyl group, or a hydrogen atom.
  • Y 1 and Y 2 may be the same or different, respectively, and are hydrogen atoms or hydrocarbon groups. Further, q and r represent positive integers, respectively.
  • Examples of the hydrocarbon group of Y 1 and Y 2 include an alkyl group having 1 or more carbon atoms and 10 or less carbon atoms; and may be a methyl group or an ethyl group. Examples of Y 1 and Y 2 may be a hydrogen atom, a methyl group, an ethyl group, or a hydrogen atom.
  • the resin constituting the resin particles is a copolymer, it may be a block copolymer or a random copolymer.
  • the resin constituting the resin particles (E) for example, TOPAS (registered trademark) (manufactured by Polyplastics Co., Ltd., the polymer represented by the above general formula (7) (Y1 and Y2 are all hydrogen). )), Appel (registered trademark) (manufactured by Mitsui Chemicals, Inc., polymer represented by the above general formula (7)), Zeonex (registered trademark) (manufactured by Nippon Zeon Corporation, heavy weight represented by the above general formula (6)). Combined), Zeonoa (registered trademark) (manufactured by Zeon Corporation, polymer represented by the above general formula (6)), and the like.
  • TOPAS registered trademark
  • Appel registered trademark
  • Zeonex registered trademark
  • Zeonoa registered trademark
  • the average particle size of the resin particles (E) used in the present embodiment is not particularly limited.
  • the average particle size of the resin particles (E) may be 0.1 ⁇ m or more and 50 ⁇ m or less, and 10 ⁇ m or more, from the viewpoint of the fluidity and dispersibility of the resin composition for semiconductor encapsulation and the stability of the dielectric constant. It may be 40 ⁇ m or less.
  • the shape of the resin particles (E) used in the present embodiment is not particularly limited.
  • the method for producing the resin particles (E) used in the present embodiment is not particularly limited.
  • Examples of the method for producing the resin particles (E) include a method in which the resin particles are extruded into a rod shape in a molten state, cut into an appropriate length with a cutter, and crushed with a crusher having a built-in classifier.
  • the crusher is not particularly limited as long as it can crush to a size of 5 mm or less, for example, a cutting mill, a ball mill, a cyclone mill, a hammer mill, a vibration mill, a cutter mill, a grind mill, and a speed. Mill, etc.
  • the crusher may be a speed mill.
  • the pulverization by a pulverizer may be performed in two or more steps, for example, the sheet-like composition is pulverized relatively coarsely by a coarse pulverizer or the like, and then further finely pulverized by a fine pulverizer to obtain a pulverized product.
  • the pulverization may be performed at a low temperature of 10 ° C. or lower or in a frozen atmosphere.
  • the crushing temperature is not particularly limited, but may be 0 ° C. or lower, -50 ° C. or higher and 0 ° C. or lower, -30 ° C. or higher and 0 ° C. or lower, or ⁇ 20 ° C. or higher. It may be 0 ° C. or lower.
  • the resin containing a structural unit derived from a predetermined cyclic olefin compound is low temperature brittle and is easily finely pulverized.
  • the cold source for example, a liquefied nitrogen refrigerator is used. Further, as the cold source, a dry dehumidifier using a rotary rotor (low temperature low dew point air generator) or the like may be used.
  • the pulverization may be performed by "classification pulverization" in which pulverization of a resin containing a structural unit derived from a predetermined cyclic olefin compound and classification of the pulverized product are performed at the same time.
  • the device capable of crushing and classifying at the same time include a crusher with a built-in classifier including a crushing unit for crushing the object to be crushed and a classifying unit for classifying the crushed material.
  • the crusher with a built-in classifier is not particularly limited, but for example, it has a ring shape in which a crushing object is put into the device together with a cooling gas, supported by a rotating shaft, and has a crushing blade having a plurality of irregularities on the outer surface.
  • the refrigerating crushing device When the crushing object passes between the crushing rotor and the liner that is fixedly arranged, the refrigerating crushing device is configured so that the crushing object is repeatedly crushed between these two members. You may use it.
  • Such a freezing and crushing apparatus is described in, for example, Japanese Patent Application Laid-Open No. 57-60060, Japanese Patent Application Laid-Open No. 2017-912, and the like.
  • the rotation speed of the crusher with a built-in classifier is not particularly limited, but from the viewpoint of efficiently crushing the object to be crushed, it may be 1000 rpm or more and 8000 rpm or less, 2000 rpm or more and 6000 rpm, or 2000 rpm. It may be more than 5000 rpm or less.
  • the pulverized product (resin particles) obtained by the pulverization is classified into a desired particle size by sieve classification and air classification.
  • the mesh size used for the sieve classification may be 10 ⁇ m or more and 100 ⁇ m or less, 20 ⁇ m or more and 60 ⁇ m or less, or 30 ⁇ m or more and 50 ⁇ m or less.
  • the content of the (E) resin particles in the semiconductor encapsulating resin composition is not particularly limited, but the moldability, fluidity and molding shrinkage (thermal expansion rate) of the semiconductor encapsulating resin composition, and From the viewpoint of low dielectric constant of the molded product, it may be 5% by mass or more and 20% by mass or less, or 5% by mass or more and 15% by mass or less.
  • the total content of (A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, (D) inorganic filler, and (E) resin particles in the resin composition for encapsulating semiconductors is It may be 100% by mass, that is, the resin composition for semiconductor encapsulation is (A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, (D) inorganic filler and (E). ) It may consist of only five components of the resin particles.
  • the resin composition for semiconductor encapsulation of the present embodiment may further contain (F) a low-stress material from the viewpoint of reducing the molding shrinkage rate (thermal expansion rate).
  • Examples of the (F) low stress material which is an optional component in the semiconductor encapsulating resin composition of the present embodiment include rubbers such as butadiene rubber, nitrile rubber, silicone rubber, and butadiene / styrene copolymer; epoxy-modified rubber. kind; Silicone oils; Core shell rubbers; etc., and commercially available products can also be used. One of these may be used alone, or two or more thereof may be used in combination.
  • the low-stress material (F) may be rubbers, epoxy-modified rubbers, butadiene-styrene copolymer, or epoxy-modified polybutadiene rubber (epoxy equivalent 200 or more and 600 or less).
  • the content of the (F) low stress material in the resin composition for encapsulating a semiconductor is not particularly limited.
  • the content of the low stress material (F) may be 0.1% by mass or more and 1.5% by mass or less, or 0.1% by mass or more and 1.0% by mass or less.
  • the molding shrinkage rate thermal expansion rate
  • the molding shrinkage rate can be lowered without impairing the curing characteristics even if the content of the resin particles (E) is large. ..
  • the semiconductor encapsulating resin composition of the present embodiment may further contain (G) benzoxazine resin from the viewpoint of low dielectric constant.
  • the content of the (E) resin particles can be reduced.
  • the (G) benzoxazine resin which is an optional component in the semiconductor encapsulating resin composition of the present embodiment, is a compound represented by the following general formula (2), and has two or more benzoxazine rings in one molecule. include.
  • X 1 is an alkylene group having 1 to 10 carbon atoms, a group represented by the following general formula (3), -SO 2- , -CO-, an oxygen atom, or a single bond.
  • R is a hydrogen atom or a hydrocarbon group having 1 or more and 10 or less carbon atoms, respectively.
  • X 2 is a hydrocarbon group having an aromatic ring and having 6 or more and 30 or less carbon atoms, and m is an integer of 0 or 1 or more.
  • the alkylene group having 1 or more carbon atoms and 10 or less carbon atoms of X 1 may be a methylene group or an ethylene group.
  • Examples of the hydrocarbon group having 1 to 10 carbon atoms of R include an alkyl group having 1 to 10 carbon atoms; and the like, which may be a methyl group or an ethyl group.
  • X 1 is, -SO 2 -, - CO-, or -CH 2 - it was also good, -CH 2 - may be.
  • R may be a hydrogen atom.
  • m may be 0 or 1.
  • the content of the (G) benzoxazine resin is not particularly limited, but the (A) epoxy resin 100 is in that the resin composition for encapsulating a semiconductor has a low dielectric constant and a low viscosity, and the wire flowability is good. It may be 0 parts by mass or more and 200 parts by mass or less, 20 parts by mass or more and 180 parts by mass or less, or 50 parts by mass or more and 150 parts by mass or less with respect to the mass parts.
  • a resin composition for encapsulating a semiconductor having excellent wire flowability and molding shrinkage in addition to a low dielectric constant can be obtained. This is because the content of the (E) resin particles can be reduced while maintaining a low dielectric constant by using the (E) resin particles and the (G) benzoxazine resin in combination, so that the silica content is relatively increased. This is because it is possible to do so.
  • the total content of the (E) resin particles and the (G) benzoxazine resin in the resin composition for encapsulating a semiconductor is not particularly limited, but is 5% by mass or more from the viewpoint of wire flowability and low molding shrinkage. It may be 30% by mass or less.
  • the content of the (B) phenol resin curing agent when the (A) epoxy resin and the (G) benzoxazine resin are used in combination is not particularly limited, but has moldability, wire flowability, warpage, or molding shrinkage. From the viewpoint, it may be 1 part by mass or more and 80 parts by mass or less, or 5 parts by mass or more and 60 parts by mass or less with respect to a total of 100 parts by mass of the (A) epoxy resin and (G) benzoxazine resin. good.
  • the ratio (((b) + (g)) / (a)) (equivalent ratio) to the number of epoxy groups (a) is not particularly limited, but is the same as that of the unreacted component (that is, (A) epoxy resin).
  • the hydroxyl group (g) generated when the benzoxazine contained in the (G) benzoxazine resin is ring-opened is the amount when all the benzoxazine contained in the (G) benzoxazine resin is ring-opened.
  • the semiconductor encapsulating resin composition of the present embodiment contains the semiconductor encapsulating fat composition as long as the effects of the present embodiment are not impaired.
  • Other components such as flame retardants; coupling agents; mold release agents; colorants; stabilizers such as hydrotalcites; ion scavengers; defoamers; Can be contained as needed.
  • flame retardants such as flame retardants; coupling agents; mold release agents; colorants; stabilizers such as hydrotalcites; ion scavengers; defoamers; Can be contained as needed.
  • One of these may be used alone, or two or more thereof may be used in combination.
  • the flame retardant examples include compounds containing metal elements such as brominated epoxy resin, antimony trioxide, aluminum hydroxide, magnesium hydroxide and zinc oxide; and phosphorus compounds such as phosphoric acid ester (FP-100). Be done. One of these may be used alone, or two or more thereof may be used in combination.
  • the coupling agent include epoxysilane-based coupling agent, aminosilane-based coupling agent, ureidosilane-based coupling agent, vinylsilane-based coupling agent, alkylsilane-based coupling agent, organic titanate-based coupling agent, and aluminum arco.
  • Examples include rate-based coupling agents. One of these may be used alone, or two or more thereof may be used in combination.
  • the coupling agent may be an aminosilane-based coupling agent from the viewpoint of flame retardancy and curability, and may be ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, It may be ⁇ -aminopropylmethyldiethoxysilane or N-phenyl-3-aminopropyltrimethoxysilane.
  • release agent examples include synthetic wax; natural wax such as carnauba wax; higher fatty acid; metal salt of higher fatty acid; and the like. One of these may be used alone, or two or more thereof may be used in combination.
  • Colorant examples include carbon black, cobalt blue, and the like. One of these may be used alone, or two or more thereof may be used in combination.
  • ⁇ Stabilizer> examples include a solid solution having a hydrotalcite structure such as magnesium, aluminum, hydroxide, carbonate, and hydrate. One of these may be used alone, or two or more thereof may be used in combination.
  • the total content of (H) and other components (additives) in the semiconductor encapsulant resin composition of the present embodiment is not particularly limited, but may be 0.05% by mass or more and 3% by mass or less. It may be 0.1% by mass or more and 2% by mass or less.
  • (A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, and (D) inorganic filler are used.
  • the mixture is sufficiently mixed (uniformly dispersed and mixed) using a mixer or the like, heat-kneaded by a kneading device such as a twin-screw extrusion kneader, a thermal roll, or a kneader, and if necessary, cooled and then suitable. It may be crushed to a size.
  • the resin composition for semiconductor encapsulation of the present embodiment can be used for coating, insulating, encapsulating, and the like of various electric components or various electronic components such as semiconductor elements.
  • semiconductor elements include transistors, integrated circuits, diodes, thyristors, and the like.
  • a molding method such as a transfer mold, a compression mold, or an injection mold is used. Molding can be performed, for example, at a temperature of 120 ° C. or higher and 200 ° C. or lower, and a pressure of 2 MPa or higher and 20 MPa or lower.
  • the semiconductor device of the present embodiment is formed by sealing a semiconductor element with the above-mentioned resin composition for sealing a semiconductor.
  • active elements such as semiconductor chips, transistors, diodes, and thyristers, and passive elements such as capacitors, resistors, and coils are mounted on support members such as lead frames, tape carriers, wiring boards, and silicon wafers.
  • support members such as lead frames, tape carriers, wiring boards, and silicon wafers.
  • a semiconductor device in which a necessary portion is sealed with the semiconductor encapsulating resin composition of the present embodiment can be mentioned.
  • Examples 1 to 9 and Comparative Examples 1 and 2 Each component of the type and content (part by mass) shown in Table 1 is heat-kneaded using a biaxial extrusion kneader under the conditions of a kneading temperature of 100 ° C. and a kneading time of 5 minutes to prepare a resin composition for semiconductor encapsulation.
  • Table 1 the blank part (“-” in Table 1) indicates that there is no compounding.
  • Phenolic aralkyl resin containing biphenylene skeleton (trade name: MEHC-7851-SS, manufactured by Meiwa Kasei Co., Ltd.)
  • D1 Fused silica (trade name: FB-105FC, manufactured by Denka Co., Ltd., average particle size 11 ⁇ m)
  • D2 Fused silica (trade name: SC-4500SQ, manufactured by Admatex Co., Ltd., average particle size 1 ⁇ m)
  • G1 Pd-type polybenzoxazine resin (in the general formula (2), X is a methylene group and two Rs are both hydrogen atoms, a benzoxazine resin) (manufactured by Shikoku Kasei Kogyo Co., Ltd.)
  • the obtained test piece was measured for relative permittivity and dielectric loss tangent at a frequency of 100 MHz according to a general thermocurable plastic test method (JIS K6911-1995 5.14 dielectric constant and dielectric loss tangent).
  • -Measuring instrument Impedance measuring device (manufactured by Hewlett-Packard Japan Co., Ltd .: 4291B RF impedance / material analyzer)
  • Measurement frequency 100MHz
  • Molding Shrinkage Rate by Molding and Post-Curing The molding shrinkage rate was measured according to a general test method for thermosetting plastics (JIS K6911-1995 5.7 molding shrinkage rate and heat shrinkage rate (molding material)).
  • the obtained resin composition for encapsulating a semiconductor is transfer-molded under the conditions of a mold temperature of 175 ° C., a molding pressure of 8.0 MPa, and a curing time of 2 minutes, and a test piece for measuring the molding shrinkage rate (annular band outer diameter ⁇ 80 mm).
  • a test piece for measuring the molding shrinkage rate annular band outer diameter ⁇ 80 mm.
  • the molding shrinkage rate (%) was calculated by the following formula and used as the molding shrinkage rate (molding shrinkage rate As) by molding.
  • the test piece for measuring the molding shrinkage rate (molding shrinkage rate As) was post-cured at 175 ° C.
  • Molding shrinkage rate (%) ((D 1- d 1 ) / D 1 + (D 2- d 2 ) / D 2 + (D 3- d 3 ) / D 3 + (D 4- d 4 ) / D 4 ) / 4 * 100
  • d 1 to 4 The outer diameter (mm) of the test piece annular band measured along each measurement line.
  • D 1 to 4 Outer diameter (mm) of the groove of the mold corresponding to d 1 to 4 measured at room temperature of 20 ⁇ 2 ° C.
  • the resin composition for encapsulating a semiconductor of Example 1 containing resin particles containing a structural unit derived from (E) a cyclic olefin compound (molding shrinkage rate As: 0.33%, molding shrinkage rate PMC: 0.24). %) Is compared with the resin composition for semiconductor encapsulation (molding shrinkage rate As: 0.44%, molding shrinkage rate PMC: 0.52%) of Comparative Example 3 containing other resin particles (fluororesin powder). It was found that the molding shrinkage rate became smaller. Further, from Table 1, the resin composition for semiconductor encapsulation (molding shrinkage rate As: 0.41%, molding shrinkage rate PMC: 0.37%) of Example 3 further containing (F) low stress material is (F).
  • the molding shrinkage rate is lower than that of the resin composition for semiconductor encapsulation of Example 2 which does not contain a low stress material (molding shrinkage rate As: 0.52%, molding shrinkage rate PMC: 0.46%). It turned out that it could be made to. Further, from Table 1, by comparing Example 9 further containing (G) benzoxazine resin with Example 8 not containing (G) benzoxazine resin, by further containing (G) benzoxazine resin, It was found that the content of the resin particles (E) can be reduced while maintaining a low dielectric constant.

Abstract

Provided are a resin composition for semiconductor encapsulation with a sufficiently reduced specific permittivity, and a semiconductor device resin-sealed using the resin composition for semiconductor encapsulation. This resin composition for semiconductor encapsulation comprises (A) an epoxy resin, (B) a phenol resin curing agent, (C) a curing promoter, (D) an inorganic filler, and (E) resin particles, wherein the resin particles (E) are formed from a resin containing a structural unit derived from a cyclic olefin compound represented by general formula (1) below.

Description

半導体封止用樹脂組成物及び半導体装置Resin composition for encapsulating semiconductors and semiconductor devices
 本開示は、半導体封止用樹脂組成物及び半導体装置に関する。 The present disclosure relates to a resin composition for encapsulating a semiconductor and a semiconductor device.
 従来より、樹脂封止型半導体装置が、セラミック封止型半導体装置とともに広く用いられている。この樹脂封止型半導体装置は、トランジスタ、IC、LSI等の半導体素子を、エポキシ樹脂組成物等の封止材料を用いてトランスファー成形により樹脂モールドしてなるものであり、信頼性、量産性及び低価格等の点で優れている。 Conventionally, resin-sealed semiconductor devices have been widely used together with ceramic-sealed semiconductor devices. This resin-sealed semiconductor device is formed by resin-molding semiconductor elements such as transistors, ICs, and LSIs by transfer molding using a sealing material such as an epoxy resin composition. It is excellent in terms of low price.
 ところが、近年、マイクロプロセッサ等の半導体素子の高機能化、高性能化が図られており、これに基づき、動作周波数が一段と上昇する傾向にある。また、情報通信関連分野の中でも、特に、携帯電話、PHS等の小型電子装置においては、その周波数帯域に関してギガヘルツに近い周波数帯域が使用されるようになってきており、さらに2桁のギガヘルツ帯域を使用する通信も開発が進められているのが現状である。 However, in recent years, semiconductor elements such as microprocessors have been improved in functionality and performance, and based on this, the operating frequency tends to increase further. Further, in the information and communication related fields, especially in small electronic devices such as mobile phones and PHS, a frequency band close to gigahertz is being used in terms of the frequency band, and a two-digit gigahertz band is further used. Currently, the communication to be used is also under development.
 このように、半導体素子の高周波化が進む状況において、半導体素子の高周波化に対応した樹脂封止型半導体装置に用いられるモールド用の低誘電率のエポキシ樹脂組成物の開発が要求されている。
 斯かる状況下において、例えば、ジヒドロキシベンゾオキサジン樹脂を含む樹脂組成物(特許文献1)、微細無機質粒子で表面が被覆されたフッ素樹脂粒子を含む樹脂組成物(特許文献2)、球状の六方晶チッカホウ素を含む樹脂組成物(特許文献3)、などが検討されている。
As described above, in the situation where the high frequency of the semiconductor element is increasing, the development of a low dielectric constant epoxy resin composition for molding used in the resin-sealed semiconductor device corresponding to the high frequency of the semiconductor element is required.
Under such circumstances, for example, a resin composition containing a dihydroxybenzoxazine resin (Patent Document 1), a resin composition containing fluororesin particles whose surface is coated with fine inorganic particles (Patent Document 2), and a spherical hexagonal crystal. A resin composition containing tickerboron (Patent Document 3) and the like have been studied.
特開2000-154225号公報Japanese Unexamined Patent Publication No. 2000-154225 特開2001-40182号公報Japanese Unexamined Patent Publication No. 2001-40182 特開2005-314568号公報Japanese Unexamined Patent Publication No. 2005-314568
 しかしながら、上記開示されたいずれの樹脂組成物についても、比誘電率が十分に低いものではなかった。そこで、比誘電率が十分に低減された半導体封止用樹脂組成物の開発が強く望まれていた。 However, the relative permittivity of none of the above-disclosed resin compositions was sufficiently low. Therefore, it has been strongly desired to develop a resin composition for semiconductor encapsulation in which the relative permittivity is sufficiently reduced.
 本発明者は、所定の環状オレフィン化合物に由来する構造単位を含有する重合体からなる(E)樹脂粒子を含む半導体封止用樹脂組成物を用いることで比誘電率が十分に低減された半導体封止用樹脂組成物得られることを見出した。
 本開示は、かかる知見に基づいて完成したものである。
The present inventor has a semiconductor in which the relative permittivity is sufficiently reduced by using a resin composition for encapsulating a semiconductor containing (E) resin particles composed of a polymer containing a structural unit derived from a predetermined cyclic olefin compound. It has been found that a resin composition for encapsulation can be obtained.
The present disclosure has been completed based on such findings.
 すなわち、本願開示は、以下に関する。
[1](A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、(D)無機充填材、及び(E)樹脂粒子を含み、前記(E)樹脂粒子は、下記一般式(1)で表される環状オレフィン化合物に由来する構造単位を含有する樹脂からなる、半導体封止用樹脂組成物。
Figure JPOXMLDOC01-appb-C000004

(前記一般式(1)中、R~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれるものであり、RとR10、R11とR12は、一体化して2価の炭化水素基を形成してもよく、R又はR10と、R11又はR12とは、互いに結合して環を形成していてもよい。また、nは、0又は正の整数を示し、nが2以上の場合には、R~Rは、それぞれの繰り返し単位の中で、それぞれ同一でも異なっていてもよい。)
[2]前記半導体封止用樹脂組成物中における前記(E)樹脂粒子の含有量が5質量%以上20質量%以下である、上記[1]に記載の半導体封止用樹脂組成物。
[3]前記(E)樹脂粒子の平均粒径が0.1μm以上50μm以下である、上記[1]又は[2]に記載の半導体封止用樹脂組成物。
[4]前記(E)樹脂粒子が、前記環状オレフィン化合物に由来する構造単位を含有する樹脂を10℃以下で分級粉砕した粒子である、上記[1]から[3]のいずれかに記載の半導体封止用樹脂組成物。
[5]前記半導体封止用樹脂組成物中における前記(A)エポキシ樹脂の含有量が5質量%以上20質量%以下である、上記[1]から[4]のいずれかに記載の半導体封止用樹脂組成物。
[6]前記半導体封止用樹脂組成物中における前記(D)無機充填材の含有量が60質量%以上90質量%以下である、上記[1]から[5]のいずれかに記載の半導体封止用樹脂組成物。
[7](F)低応力材をさらに含む、上記[1]から[6]に記載の半導体封止用樹脂組成物。
[8]前記半導体封止用樹脂組成物中における前記(F)低応力材の含有量が0.1質量%以上1.5質量%以下である、上記[1]から[7]のいずれかに記載の半導体封止用樹脂組成物。
[9](G)ベンゾオキサジン樹脂をさらに含み、前記(G)ベンゾオキサジン樹脂は、下記一般式(2)で表される化合物である、上記[1]から[8]のいずれかに記載の半導体封止用樹脂組成物。
Figure JPOXMLDOC01-appb-C000005

(前記一般式(2)中、Xは、炭素数1以上10以下のアルキレン基、下記一般式(3)で表される基、-SO-、-CO-、酸素原子、又は単結合であり、Rは、それぞれ独立して、水素原子又は炭素数1以上10以下の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000006

(前記一般式(3)中、Xは芳香環を有する炭素数6以上30以下の炭化水素基であり、mは0又は1以上の整数である。)
[10]前記(G)ベンゾオキサジン樹脂の含有量が、前記(A)エポキシ樹脂100質量部に対して0質量部以上200質量部以下である、上記[9]に記載の半導体封止用樹脂組成物。
[11]前記半導体封止用樹脂組成物中における前記(E)樹脂粒子及び前記(G)ベンゾオキサジン樹脂の合計含有量が、5質量%以上30質量%以下である、上記[9]又は[10]に記載の半導体封止用樹脂組成物。
[12] 上記[1]から[11]のいずれかに記載の半導体封止用樹脂組成物を用いて半導体素子を封止してなる、半導体装置。
That is, the disclosure of the present application relates to the following.
[1] Containing (A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, (D) inorganic filler, and (E) resin particles, the (E) resin particles are generally described below. A resin composition for encapsulating a semiconductor, which comprises a resin containing a structural unit derived from a cyclic olefin compound represented by the formula (1).
Figure JPOXMLDOC01-appb-C000004

(In the general formula (1), R 1 to R 12 may be the same or different, and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group, and are R 9 and R. 10 , R 11 and R 12 may be integrated to form a divalent hydrocarbon group, and R 9 or R 10 and R 11 or R 12 are bonded to each other to form a ring. Further, n represents 0 or a positive integer, and when n is 2 or more, R 5 to R 8 may be the same or different in each repeating unit.)
[2] The resin composition for semiconductor encapsulation according to the above [1], wherein the content of the resin particles (E) in the resin composition for encapsulating a semiconductor is 5% by mass or more and 20% by mass or less.
[3] The resin composition for semiconductor encapsulation according to the above [1] or [2], wherein the average particle size of the resin particles (E) is 0.1 μm or more and 50 μm or less.
[4] The above-mentioned [1] to [3], wherein the resin particles (E) are particles obtained by classifying and pulverizing a resin containing a structural unit derived from the cyclic olefin compound at 10 ° C. or lower. Resin composition for encapsulating semiconductors.
[5] The semiconductor seal according to any one of [1] to [4] above, wherein the content of the epoxy resin (A) in the resin composition for encapsulating a semiconductor is 5% by mass or more and 20% by mass or less. Epoxy composition for stopping.
[6] The semiconductor according to any one of [1] to [5] above, wherein the content of the inorganic filler (D) in the resin composition for encapsulating a semiconductor is 60% by mass or more and 90% by mass or less. Resin composition for sealing.
[7] The resin composition for semiconductor encapsulation according to the above [1] to [6], further comprising a low stress material (F).
[8] Any of the above [1] to [7], wherein the content of the low stress material (F) in the semiconductor encapsulating resin composition is 0.1% by mass or more and 1.5% by mass or less. The resin composition for encapsulating a semiconductor according to.
[9] The (G) benzoxazine resin further comprises (G) benzoxazine resin, and the (G) benzoxazine resin is the compound represented by the following general formula (2), according to any one of the above [1] to [8]. Resin composition for encapsulating semiconductors.
Figure JPOXMLDOC01-appb-C000005

(In the general formula (2), X 1 is an alkylene group having 1 to 10 carbon atoms, a group represented by the following general formula (3), -SO 2- , -CO-, an oxygen atom, or a single bond. R is a hydrogen atom or a hydrocarbon group having 1 or more and 10 or less carbon atoms, respectively.)
Figure JPOXMLDOC01-appb-C000006

(In the general formula (3), X 2 is a hydrocarbon group having an aromatic ring and having 6 or more and 30 or less carbon atoms, and m is an integer of 0 or 1 or more.)
[10] The semiconductor encapsulating resin according to the above [9], wherein the content of the (G) benzoxazine resin is 0 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the (A) epoxy resin. Composition.
[11] The total content of the (E) resin particles and the (G) benzoxazine resin in the semiconductor encapsulating resin composition is 5% by mass or more and 30% by mass or less. 10] The resin composition for encapsulating a semiconductor.
[12] A semiconductor device for encapsulating a semiconductor element using the resin composition for encapsulating a semiconductor according to any one of the above [1] to [11].
 本開示によれば、比誘電率が十分に低減された半導体封止用樹脂組成物、及び該半導体封止用樹脂組成物を用いて樹脂封止された半導体装置を提供することができる。 According to the present disclosure, it is possible to provide a semiconductor encapsulating resin composition having a sufficiently reduced relative permittivity, and a resin-encapsulated semiconductor device using the semiconductor encapsulating resin composition.
 以下、本開示について、一実施形態を参照しながら詳細に説明する。
 なお、本明細書において、「平均粒径」とは、例えば、レーザー回折式粒度分布測定装置により測定された粒度分布において積算体積が50%になる粒径(d50)をいう。
Hereinafter, the present disclosure will be described in detail with reference to one embodiment.
In the present specification, the "average particle size" means, for example, a particle size (d50) at which the integrated volume becomes 50% in the particle size distribution measured by a laser diffraction type particle size distribution measuring device.
[半導体封止用樹脂組成物]
 本実施形態の半導体封止用樹脂組成物(以下、単に「樹脂組成物」ともいう)は、(A)エポキシ樹脂と、(B)フェノール樹脂硬化剤と、(C)硬化促進剤と、(D)無機充填材と、(E)樹脂粒子とを含み、必要に応じて、(F)低応力材、(G)ベンゾオキサジン樹脂、(H)その他の成分(添加剤)、をさらに含む。
[Resin composition for semiconductor encapsulation]
The resin composition for encapsulating a semiconductor of the present embodiment (hereinafter, also simply referred to as “resin composition”) includes (A) an epoxy resin, (B) a phenol resin curing agent, (C) a curing accelerator, and ( It contains (D) an inorganic filler and (E) resin particles, and further contains (F) a low-stress material, (G) a benzoxazine resin, and (H) other components (additives), if necessary.
((A)エポキシ樹脂)
 本実施形態で用いられる(A)エポキシ樹脂としては、特に制限はなく、例えば、1分子中に2個以上のエポキシ基を有するエポキシ樹脂、などが挙げられ、モノマー、オリゴマー、ポリマーのいずれであってもよい。
 (A)エポキシ樹脂の具体例としては、例えば、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂等の結晶性エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(以下、「ビフェニルアラルキル型エポキシ樹脂」、ということもある)等のアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの二量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂;などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも低誘電率の観点から、(A)エポキシ樹脂は、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂であってもよい。
((A) Epoxy resin)
The epoxy resin (A) used in the present embodiment is not particularly limited, and examples thereof include an epoxy resin having two or more epoxy groups in one molecule, which may be a monomer, an oligomer, or a polymer. You may.
Specific examples of the (A) epoxy resin include crystalline epoxy resins such as biphenyl type epoxy resin, bisphenol type epoxy resin, and stillben type epoxy resin; novolak type epoxy such as phenol novolac type epoxy resin and cresol novolac type epoxy resin. Resin: Polyfunctional epoxy resin such as triphenol methane type epoxy resin and alkyl-modified triphenol methane type epoxy resin; phenol aralkyl type epoxy resin having a phenylene skeleton, phenol aralkyl type epoxy resin containing biphenylene skeleton (hereinafter, "biphenyl aralkyl type epoxy") Aralkyl type epoxy resin such as "resin"); naphthol type epoxy resin such as dihydroxynaphthalene type epoxy resin and epoxy resin obtained by glycidyl etherification of dihydroxynaphthalene dimer; triglycidyl isocyanurate, monoallyl Examples thereof include triazine nuclei-containing epoxy resins such as diglycidyl isocyanurate; and bridged cyclic hydrocarbon compound-modified phenol-type epoxy resins such as dicyclopentadiene-modified phenol-type epoxy resins. One of these may be used alone, or two or more thereof may be used in combination.
Among these, from the viewpoint of low dielectric constant, the epoxy resin (A) may be a biphenylene skeleton-containing phenol aralkyl type epoxy resin or a dicyclopentadiene-modified phenol type epoxy resin.
 半導体封止用樹脂組成物中における(A)エポキシ樹脂の含有量としては、特に制限はないが、5質量%以上20質量%以下であってもよく、6質量%以上15質量%以下であってもよく、7質量%以上12質量%以下であってもよい。 The content of the epoxy resin (A) in the resin composition for encapsulating a semiconductor is not particularly limited, but may be 5% by mass or more and 20% by mass or less, and 6% by mass or more and 15% by mass or less. It may be 7% by mass or more and 12% by mass or less.
((B)フェノール樹脂硬化剤)
 本実施形態で用いられる(B)フェノール樹脂硬化剤としては、特に制限はなく、例えば、主として成形性を高める作用を有するフェノール樹脂硬化剤であって、前記(A)エポキシ樹脂のエポキシ基と反応し得るフェノール性水酸基を一分子中に2個以上有するフェノール樹脂硬化剤、などが挙げられる。
((B) Phenol resin curing agent)
The (B) phenol resin curing agent used in the present embodiment is not particularly limited. For example, it is a phenol resin curing agent having an action of mainly enhancing moldability and reacts with the epoxy group of the (A) epoxy resin. Examples thereof include a phenol resin curing agent having two or more possible phenolic hydroxyl groups in one molecule.
 (B)フェノール樹脂硬化剤の具体例としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、トリスフェノールメタン型フェノールノボラック樹脂、ナフトールノボラック樹脂等のノボラック型フェノール樹脂;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ホルムアルデヒドで変性したトリフェニルメタン型フェノール樹脂、ホルムアルデヒドで変性したトリヒドロキシフェニルメタン型フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂、ビフェニルアラルキルフェノール樹脂等のアラルキル型フェノール樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物;などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the (B) phenol resin curing agent include, for example, novolak-type phenol resins such as phenol novolac resin, cresol novolak resin, trisphenol methane-type phenol novolak resin, and naphthol novolak resin; and many such as triphenol methane-type phenol resin. Functional phenolic resin; modified phenolic resin such as terpen-modified phenolic resin, formaldehyde-modified triphenylmethane-type phenolic resin, formaldehyde-modified trihydroxyphenylmethane-type phenolic resin, dicyclopentadiene-modified phenolic resin; phenylene skeleton and / or Examples thereof include a phenol aralkyl resin having a biphenylene skhenol form, a phenylene and / or an aralkyl type phenol resin such as a naphthol aralkyl resin having a biphenylene skeletron, and a biphenyl aralkyl phenol resin; a bisphenol compound such as bisphenol A and bisphenol F; and the like. One of these may be used alone, or two or more thereof may be used in combination.
 (B)フェノール樹脂硬化剤は、ノボラック型フェノール樹脂、多官能型フェノール樹脂、アラルキル型フェノール樹脂であってもよく、アラルキル型フェノール樹脂であってもよく、フェノールアラルキル樹脂(例えば、ビフェニレン骨格含有フェノールアラルキル樹脂)、ビフェニルアラルキル樹脂であってもよい。 (B) The phenol resin curing agent may be a novolak type phenol resin, a polyfunctional phenol resin, an aralkyl type phenol resin, an aralkyl type phenol resin, or a phenol aralkyl resin (for example, a biphenylene skeleton-containing phenol). Phenol formaldehyde) or biphenyl phenol formaldehyde may be used.
 本実施形態の半導体封止用樹脂組成物における(A)エポキシ樹脂と(B)フェノール樹脂硬化剤との含有量比は、(A)エポキシ樹脂中のエポキシ基1個に対して、(B)フェノール樹脂硬化剤中のフェノール性水酸基が、0.5個以上1.5個以下であってもよく、0.9個以上1.2個以下となるように選定してもよい。
 (A)エポキシ樹脂中のエポキシ基に対する(B)フェノール樹脂硬化剤中のフェノール性水酸基が前記範囲となるように、(A)エポキシ樹脂と(B)フェノール樹脂硬化剤との含有量比を選定することにより、バランスの取れた性能を有する半導体封止用樹脂組成物の成形物が得られる。
The content ratio of the (A) epoxy resin to the (B) phenol resin curing agent in the resin composition for encapsulating the semiconductor of the present embodiment is (B) with respect to one epoxy group in the (A) epoxy resin. The number of phenolic hydroxyl groups in the phenol resin curing agent may be 0.5 or more and 1.5 or less, or 0.9 or more and 1.2 or less.
The content ratio of (A) epoxy resin and (B) phenol resin curing agent is selected so that the phenolic hydroxyl groups in (B) phenol resin curing agent are within the above range with respect to the epoxy groups in (A) epoxy resin. By doing so, a molded product of a resin composition for encapsulating a semiconductor having well-balanced performance can be obtained.
((C)硬化促進剤)
 本実施形態で用いられる(C)硬化促進剤としては、特に制限はなく、例えば、エポキシ樹脂の硬化促進剤として一般に使用されている硬化促進剤、などが挙げられる。
 (C)硬化促進剤の具体例としては、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、1,5-ジアザビシクロ[4.3.0]ノネン-5、5,6-ジブチルアミノ-1,8-ジアザビシクロ[5.4.0]ウンデセン-7等のシクロアミジン化合物;これらのシクロアミジン化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合を持つ化合物を付加してなる分子内分極を有する化合物;ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物及びこれらの誘導体;2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン等のイミダゾール環を有するジアミノ-s-珪素含有トリアジン化合物等のイミダゾール化合物及びこれらの誘導体;トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン化合物;これらの有機ホスフィン化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合を持つ化合物を付加してなる分子内分極を有するリン化合物;テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムエチルトリフェニルボレート、テトラブチルホスホニウムテトラブチルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート;2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体;などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 半導体封止用樹脂組成物の流動性の観点から、(C)硬化促進剤はイミダゾール化合物であってもよい。
((C) Curing accelerator)
The (C) curing accelerator used in the present embodiment is not particularly limited, and examples thereof include a curing accelerator generally used as a curing accelerator for epoxy resins.
Specific examples of the (C) curing accelerator include, for example, 1,8-diazabicyclo [5.4.0] undecene-7, 1,5-diazabicyclo [4.3.0] nonen-5, 5,6-. Cycloamidine compounds such as dibutylamino-1,8-diazabicyclo [5.4.0] undecene-7; these cycloamidine compounds include maleic anhydride, 1,4-benzoquinone, 2,5-turquinone, 1,4- Kinone compounds such as naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, phenyl-1,4-benzoquinone, diazophenylmethane, phenol resin Compounds with intramolecular polarization formed by adding a compound having a π bond such as; Tertiary amine compounds such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and derivatives thereof; 2 -Methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-Phenyl-4-methyl-5-hydroxymethylimidazole, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [ 2'-Undecylimidazolyl- (1')] -ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl-s-triazine And other imidazole compounds such as diamino-s-silicon-containing triazine compounds having an imidazole ring and derivatives thereof; tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, phenylphosphine and the like. Organic phosphine compounds; these organic phosphine compounds include maleic anhydride, 1,4-benzoquinone, 2,5-torquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3- A phosphorus compound having intramolecular polarization by adding a quinone compound such as dimethoxy-5-methyl-1,4-benzoquinone or phenyl-1,4-benzoquinone, or a compound having a π bond such as diazophenylmethane or phenol resin; Tetrafe Tetra-substituted phosphonium-tetra-substituted borates such as nylphosphonium tetraphenylborate, tetraphenylphosphonium ethyltriphenylborate, tetrabutylphosphonium tetrabutylborate; 2-ethyl-4-methylimidazole tetraphenylborate, N-methylmorpholin tetraphenyl Tetraphenylborone salts such as borate and derivatives thereof; and the like. One of these may be used alone, or two or more thereof may be used in combination.
From the viewpoint of the fluidity of the resin composition for encapsulating a semiconductor, the (C) curing accelerator may be an imidazole compound.
 (C)硬化促進剤の含有量としては、特に制限はないが、(A)エポキシ樹脂、(B)フェノール樹脂硬化剤、及び後述する(G)ベンゾオキサジン樹脂の合計量100質量部に対して、0.2質量部以上8.0質量部以下であってもよく、1.0質量部以上5.0質量部以下であってもよい。
 (C)硬化促進剤の含有量が前記範囲にあると、硬化性が良好となる共に、半導体封止用樹脂組成物の流動性が良好となる。
The content of the (C) curing accelerator is not particularly limited, but is based on 100 parts by mass of the total amount of the (A) epoxy resin, (B) phenol resin curing agent, and (G) benzoxazine resin described later. , 0.2 parts by mass or more and 8.0 parts by mass or less, or 1.0 parts by mass or more and 5.0 parts by mass or less.
When the content of the curing accelerator (C) is within the above range, the curability becomes good and the fluidity of the resin composition for semiconductor encapsulation becomes good.
((D)無機充填材)
 (D)無機充填材としては、特に制限なく、例えば、半導体封止用樹脂組成物に一般に使用されている公知の無機充填材、などが挙げられる。
 (D)無機充填材の具体例としては、例えば、溶融シリカ、結晶シリカ、破砕シリカ、合成シリカ、アルミナ、チタニア、マグネシア等の酸化物粉末;水酸化アルミニウム、水酸化マグネシウム等の水酸化物粉末;窒化ケイ素、窒化アルミニウム、窒化ホウ素等の窒化物粉末;ジルコン、ケイ酸カルシウム、炭酸カルシウム、チタン酸カリウム、チタン酸バリウム、炭化ケイ素、ベリリア、ジルコニア、フォステライト、ステアタイト、スピネル、ムライト、等のその他粉末;これらを球形化したビーズ;単結晶繊維;ガラス繊維;などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 熱膨張係数を低減する観点から、(D)無機充填材は溶融シリカであってもよく、また、高熱伝導性を高める観点から、アルミナであってもよい。
((D) Inorganic filler)
The inorganic filler (D) is not particularly limited, and examples thereof include known inorganic fillers generally used in resin compositions for encapsulating semiconductors.
Specific examples of the inorganic filler (D) include oxide powders of fused silica, crystalline silica, crushed silica, synthetic silica, alumina, titania, magnesia and the like; hydroxide powders of aluminum hydroxide, magnesium hydroxide and the like. Nitride powders such as silicon nitride, aluminum oxide, boron nitride, etc .; Zircon, calcium silicate, calcium carbonate, potassium titanate, barium titanate, silicon carbide, beryllia, zirconia, fosterite, steatite, spinel, mulite, etc. Other powders; spherical beads; single crystal fibers; glass fibers; and the like. One of these may be used alone, or two or more thereof may be used in combination.
From the viewpoint of reducing the coefficient of thermal expansion, the inorganic filler (D) may be fused silica, or may be alumina from the viewpoint of enhancing high thermal conductivity.
 また、無機充填材の形状としては、特に制限はないが、成形時の流動性を向上させ、金型の摩耗を抑える観点から、球形であってもよい。 The shape of the inorganic filler is not particularly limited, but may be spherical from the viewpoint of improving the fluidity during molding and suppressing the wear of the mold.
 (D)無機充填材の平均粒径としては、特に制限はないが、0.5μm以上40μm以下であってもよく、1μm以上30μm以下であってもよく、5μm以上30μmであってもよい。また、(D)無機充填材の最大粒径は105μm以下であってもよい。
 平均粒径が0.5μm以上であれば、樹脂組成物の流動性を制御し、成形性を良好にすることができる。また、平均粒径が40μm以下であれば、樹脂組成物を硬化して得られる成形品の反りを制御し、寸法精度の低下を防止することができる。また、最大粒径が105μm以下であれば、樹脂組成物の成形性を良好にすることができる。
The average particle size of the inorganic filler (D) is not particularly limited, but may be 0.5 μm or more and 40 μm or less, 1 μm or more and 30 μm or less, or 5 μm or more and 30 μm. Further, the maximum particle size of the (D) inorganic filler may be 105 μm or less.
When the average particle size is 0.5 μm or more, the fluidity of the resin composition can be controlled and the moldability can be improved. Further, when the average particle size is 40 μm or less, it is possible to control the warp of the molded product obtained by curing the resin composition and prevent a decrease in dimensional accuracy. Further, when the maximum particle size is 105 μm or less, the moldability of the resin composition can be improved.
 半導体封止用樹脂組成物中における(D)無機充填材の含有量としては、60質量%以上90質量%以下であってもよく、65質量%以上85質量%以下であってもよい。(D)無機充填材の含有量が前記範囲内であると、樹脂組成物の成形性及び流動性が良好となり、成形品の寸法精度、耐湿性、及び機械的強度が良好となる。 The content of the (D) inorganic filler in the semiconductor encapsulating resin composition may be 60% by mass or more and 90% by mass or less, or 65% by mass or more and 85% by mass or less. When the content of the inorganic filler (D) is within the above range, the moldability and fluidity of the resin composition are improved, and the dimensional accuracy, moisture resistance, and mechanical strength of the molded product are improved.
((E)樹脂粒子)
 本実施形態で用いられる(E)樹脂粒子は、所定の環状オレフィン化合物に由来する構造単位を含有する樹脂からなる。
((E) Resin particles)
The resin particles (E) used in the present embodiment are made of a resin containing a structural unit derived from a predetermined cyclic olefin compound.
<環状オレフィン化合物>
 環状オレフィン化合物は、下記一般式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000007
<Cyclic olefin compound>
The cyclic olefin compound is a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
 前記一般式(1)中、R~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれるものである。RとR10、R11とR12は、一体化して2価の炭化水素基を形成してもよい。R又はR10と、R11又はR12とは、互いに結合して環を形成していてもよい。また、nは、0又は正の整数を示し、nが2以上の場合には、R~Rは、それぞれの繰り返し単位の中で、それぞれ同一でも異なっていてもよい。
 R~R12における炭化水素基としては、例えば、炭素数1以上10以下のアルキル基;などが挙げられ、メチル基、エチル基であってもよい。
 R~R12におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、など挙げられ、フッ素原子、塩素原子であってもよい。
 R~R12としては、水素原子、メチル基、エチル基であってもよく、水素原子であってもよい。
 RとR10、又は、R11とR12が一体化して形成する2価の炭化水素基としては、例えば、炭素数1以上10以下のアルキレン基;などが挙げられ、メチレン基、エチレン基であってもよい。
 R又はR10とR11又はR12とが互いに結合して形成する環としては、形成される環は単環でも多環であってもよく、架橋を有する多環であってもよく、二重結合を有する環であってもよく、またこれらの環の組み合わせからなる環であってもよい。また、これらの環はメチル基等の置換基を有していてもよい。
 nとしては、1であってもよく、0であってもよい。
In the general formula (1), R 1 to R 12 may be the same or different from each other, and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group. R 9 and R 10 and R 11 and R 12 may be integrated to form a divalent hydrocarbon group. R 9 or R 10 and R 11 or R 12 may be coupled to each other to form a ring. Further, n indicates 0 or a positive integer, and when n is 2 or more, R 5 to R 8 may be the same or different in each repeating unit.
Examples of the hydrocarbon group in R 1 to R 12 include an alkyl group having 1 to 10 carbon atoms; and the like, which may be a methyl group or an ethyl group.
Examples of the halogen atom in R 1 to R 12 include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like, and may be a fluorine atom and a chlorine atom.
R 1 to R 12 may be a hydrogen atom, a methyl group, an ethyl group, or a hydrogen atom.
Examples of the divalent hydrocarbon group formed by integrating R 9 and R 10 or R 11 and R 12 include an alkylene group having 1 to 10 carbon atoms; and a methylene group and an ethylene group. It may be.
As the ring formed by bonding R 9 or R 10 and R 11 or R 12 to each other, the formed ring may be a monocyclic ring, a polycyclic ring, or a polycyclic ring having a crosslink. It may be a ring having a double bond, or it may be a ring composed of a combination of these rings. Further, these rings may have a substituent such as a methyl group.
n may be 1 or 0.
 環状オレフィン化合物の具体例としては、例えば、ノルボルネン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-ヘキシルノルボルネン、5-デシルノルボルネン、5-シクロヘキシルノルボルネン、5-ペンチルノルボルネン、等のノルボルネン類;テトラシクロドデセン、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセン、8-シクロヘキシルテトラシクロドデセン、8-シクロペンチルテトラシクロドデセン等のテトラシクロドデセン類;などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 環状オレフィン化合物は、低誘電率の観点から、ノルボルネン、テトラシクロドデセンであってもよい。
Specific examples of the cyclic olefin compound include, for example, norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-hexylnorbornene, 5-decylnorbornene, 5-cyclohexylnorbornene, 5-pentylnorbornene, and the like. Norbornenes; tetracyclododecenes such as tetracyclododecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 8-cyclohexyltetracyclododecene, 8-cyclopentyltetracyclododecene; etc. Be done. One of these may be used alone, or two or more thereof may be used in combination.
The cyclic olefin compound may be norbornene or tetracyclododecene from the viewpoint of low dielectric constant.
<環状オレフィン化合物に由来する構造単位>
 環状オレフィン化合物に由来する構造単位としては、例えば、下記一般式(4)で表される構造単位X;下記一般式(5)で表される構造単位Y;などが挙げられる。
 環状オレフィン化合物に由来する構造単位は、低誘電率の観点から、下記一般式(5)で表される構造単位であってもよい。
<Structural unit derived from cyclic olefin compound>
Examples of the structural unit derived from the cyclic olefin compound include structural unit X represented by the following general formula (4); structural unit Y represented by the following general formula (5), and the like.
The structural unit derived from the cyclic olefin compound may be a structural unit represented by the following general formula (5) from the viewpoint of low dielectric constant.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 前記一般式(4)中におけるR~R12及びnは、前記一般式(1)中におけるR~R12及びnと同一である。
 なお、前記一般式(4)で表される構造単位Xを含有する重合体Xは、例えば、前記環状オレフィン化合物を、金属触媒(Grubbs触媒)、ピリリウム-テトラフルオロボレート塩等の公知の触媒を用いて開環メタセシス重合し、水素化(水添)する等の公知の方法によって得られる。
R 1 ~ R 12 and n in the general formula (4), is identical to R 1 ~ R 12 and n in the general formula (1).
The polymer X containing the structural unit X represented by the general formula (4) is, for example, a known catalyst such as a metal catalyst (Grubbs catalyst), a pyrylium-tetrafluoroborate salt, or the like, using the cyclic olefin compound. It is obtained by a known method such as ring-opening metathesis polymerization using and hydrogenation (hydrogenation).
Figure JPOXMLDOC01-appb-C000009

 前記一般式(5)中におけるR~R12及びnは、前記一般式(1)中におけるR~R12及びnと同一である。
 なお、前記一般式(5)で表される構造単位Yを含有する重合体Yは、例えば、前記環状オレフィン化合物と後述するα-オレフィンとをメタロセン触媒等の公知触媒を用いて付加共重合する方法等の公知の方法によって得られる。
Figure JPOXMLDOC01-appb-C000009

R 1 ~ R 12 and n in Formula (5) in is the same as R 1 ~ R 12 and n in the general formula (1).
The polymer Y containing the structural unit Y represented by the general formula (5) is, for example, addition-copolymerized with the cyclic olefin compound and an α-olefin described later using a known catalyst such as a metallocene catalyst. It can be obtained by a known method such as a method.
<環状オレフィン化合物に由来する構造単位以外の構造単位>
 環状オレフィン化合物に由来する構造単位以外の構造単位としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等のα-オレフィンに由来する構造単位などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 環状オレフィン化合物に由来する構造単位以外の構造単位は、低誘電率の観点から、エチレンに由来する構造単位であってもよい。
<Structural units other than structural units derived from cyclic olefin compounds>
Structural units other than the structural unit derived from the cyclic olefin compound include, for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1 Examples thereof include structural units derived from α-olefins such as nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene. One of these may be used alone, or two or more thereof may be used in combination.
The structural unit other than the structural unit derived from the cyclic olefin compound may be a structural unit derived from ethylene from the viewpoint of low dielectric constant.
<(E)樹脂粒子を構成する樹脂>
 (E)樹脂粒子を構成する樹脂(即ち、所定の環状オレフィン化合物に由来する構造単位を含有する樹脂)の構造としては、例えば、下記一般式(6)で表される重合体(上記一般式(4)で表される構造単位Xを有する重合体Xの一種);下記一般式(7)で表される重合体(上記一般式(5)で表される構造単位Yを有する重合体Yの一種);などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 (E)樹脂粒子を構成する樹脂の構造は、低誘電率の観点から、下記一般式(7)で表される重合体(上記一般式(5)で表される構造単位Yを有する重合体Yの一種)であってもよい。
<(E) Resin constituting resin particles>
The structure of the resin (that is, the resin containing a structural unit derived from a predetermined cyclic olefin compound) constituting the resin particles is, for example, a polymer represented by the following general formula (6) (the above general formula). (A type of polymer X having a structural unit X represented by (4)); a polymer represented by the following general formula (7) (a polymer Y having a structural unit Y represented by the above general formula (5)). ); And so on. One of these may be used alone, or two or more thereof may be used in combination.
(E) The structure of the resin constituting the resin particles is a polymer represented by the following general formula (7) (a polymer having a structural unit Y represented by the above general formula (5)) from the viewpoint of low dielectric constant. It may be a kind of Y).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(前記一般式(6)中、X及びXは、それぞれ同一でも異なっていてもよく、水素原子又は炭化水素基である。また、pは、正の整数を示す。)
 X及びXの炭化水素基としては、例えば、炭素数1以上10以下のアルキル基;などが挙げられ、メチル基、エチル基であってもよい。
 X及びXとしては、水素原子、メチル基、エチル基であってもよく、水素原子であってもよい。
(In the general formula (6), X 1 and X 2 may be the same or different, respectively, and are hydrogen atoms or hydrocarbon groups. P represents a positive integer.)
Examples of the hydrocarbon group of X 1 and X 2 include an alkyl group having 1 or more carbon atoms and 10 or less carbon atoms; and may be a methyl group or an ethyl group.
The X 1 and X 2 may be a hydrogen atom, a methyl group, an ethyl group, or a hydrogen atom.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(前記一般式(7)中、Y及びYは、それぞれ同一でも異なっていてもよく、水素原子、又は炭化水素基である。また、q及びrは、それぞれ、正の整数を示す。)
 Y及びYの炭化水素基としては、例えば、炭素数1以上10以下のアルキル基;などが挙げられ、メチル基、エチル基であってもよい。
 Y及びYとしては、水素原子、メチル基、エチル基であってもよく、水素原子であってもよい。
(In the general formula (7), Y 1 and Y 2 may be the same or different, respectively, and are hydrogen atoms or hydrocarbon groups. Further, q and r represent positive integers, respectively. )
Examples of the hydrocarbon group of Y 1 and Y 2 include an alkyl group having 1 or more carbon atoms and 10 or less carbon atoms; and may be a methyl group or an ethyl group.
Examples of Y 1 and Y 2 may be a hydrogen atom, a methyl group, an ethyl group, or a hydrogen atom.
 (E)樹脂粒子を構成する樹脂が共重合体である場合、ブロック共重合体であってもよく、ランダム共重合体であってもよい。 (E) When the resin constituting the resin particles is a copolymer, it may be a block copolymer or a random copolymer.
 また、(E)樹脂粒子を構成する樹脂の市販品としては、例えば、TOPAS(登録商標)(ポリプラスチック社製、上記一般式(7)で表される重合体(Y1及びY2がいずれも水素))、アペル(登録商標)(三井化学社製、上記一般式(7)で表される重合体)、ゼオネックス(登録商標)(日本ゼオン社製、上記一般式(6)で表される重合体)、ゼオノア(登録商標)(日本ゼオン社製、上記一般式(6)で表される重合体)、などが挙げられる。 Further, as a commercially available product of the resin constituting the resin particles (E), for example, TOPAS (registered trademark) (manufactured by Polyplastics Co., Ltd., the polymer represented by the above general formula (7) (Y1 and Y2 are all hydrogen). )), Appel (registered trademark) (manufactured by Mitsui Chemicals, Inc., polymer represented by the above general formula (7)), Zeonex (registered trademark) (manufactured by Nippon Zeon Corporation, heavy weight represented by the above general formula (6)). Combined), Zeonoa (registered trademark) (manufactured by Zeon Corporation, polymer represented by the above general formula (6)), and the like.
 本実施形態で用いられる(E)樹脂粒子の平均粒径は、特に制限はない。(E)樹脂粒子の平均粒径は、半導体封止用樹脂組成物の流動性及び分散性、並びに、誘電率の安定性の観点から、0.1μm以上50μm以下であってもよく、10μm以上40μm以下であってもよい。
 また、本実施形態で用いられる(E)樹脂粒子の形状としては、特に制限はない。
The average particle size of the resin particles (E) used in the present embodiment is not particularly limited. The average particle size of the resin particles (E) may be 0.1 μm or more and 50 μm or less, and 10 μm or more, from the viewpoint of the fluidity and dispersibility of the resin composition for semiconductor encapsulation and the stability of the dielectric constant. It may be 40 μm or less.
Further, the shape of the resin particles (E) used in the present embodiment is not particularly limited.
 本実施形態で用いられる(E)樹脂粒子の製造方法としては、特に制限はない。(E)樹脂粒子の製造方法は、例えば、溶融状態で棒状に押出し、カッターで適当な長さに切り、分級機を内蔵した粉砕機で粉砕する方法、などが挙げられる。粉砕機としては、例えば粒径5mm以下の大きさに粉砕可能なものであれば、特に制限はなく、例えば、カッティングミル、ボールミル、サイクロンミル、ハンマーミル、振動ミル、カッターミル、グラインドミル、スピードミル、などが挙げられる。粉砕機はスピードミルであってもよい。
 粉砕機による粉砕は、例えば、シート状組成物を粗粉砕機などにより比較的粗く粉砕してから、微粉砕機にてさらに細かく粉砕して粉砕物とする2段階以上で行ってもよい。
The method for producing the resin particles (E) used in the present embodiment is not particularly limited. Examples of the method for producing the resin particles (E) include a method in which the resin particles are extruded into a rod shape in a molten state, cut into an appropriate length with a cutter, and crushed with a crusher having a built-in classifier. The crusher is not particularly limited as long as it can crush to a size of 5 mm or less, for example, a cutting mill, a ball mill, a cyclone mill, a hammer mill, a vibration mill, a cutter mill, a grind mill, and a speed. Mill, etc. The crusher may be a speed mill.
The pulverization by a pulverizer may be performed in two or more steps, for example, the sheet-like composition is pulverized relatively coarsely by a coarse pulverizer or the like, and then further finely pulverized by a fine pulverizer to obtain a pulverized product.
 ここで、粉砕は、10℃以下の低温又は冷凍雰囲気で行ってもよい。粉砕温度としては、特に制限はないが、0℃以下であってもよく、-50℃以上0℃以下であってもよく、-30℃以上0℃以下であってもよく、-20℃以上0℃以下であってもよい。このような、低温又は冷凍雰囲気で粉砕することで、所定の環状オレフィン化合物に由来する構造単位を含有する樹脂が低温脆化して、容易に微細粉砕される。
 寒冷源としては、例えば、液化窒素式冷凍機が用いられる。また、寒冷源は、回転式のロータを用いた乾式除湿装置(低温度低露点空気発生装置)などを用いてもよい。
Here, the pulverization may be performed at a low temperature of 10 ° C. or lower or in a frozen atmosphere. The crushing temperature is not particularly limited, but may be 0 ° C. or lower, -50 ° C. or higher and 0 ° C. or lower, -30 ° C. or higher and 0 ° C. or lower, or −20 ° C. or higher. It may be 0 ° C. or lower. By pulverizing in such a low temperature or freezing atmosphere, the resin containing a structural unit derived from a predetermined cyclic olefin compound is low temperature brittle and is easily finely pulverized.
As the cold source, for example, a liquefied nitrogen refrigerator is used. Further, as the cold source, a dry dehumidifier using a rotary rotor (low temperature low dew point air generator) or the like may be used.
 また、粉砕は、所定の環状オレフィン化合物に由来する構造単位を含有する樹脂の粉砕と、粉砕した粉砕物の分級とを同時に行う「分級粉砕」を行ってもよい。粉砕及び分級を同時に行える装置としては、例えば、粉砕対象物を粉砕する粉砕部と、粉砕物を分級する分級部とを備える分級機内蔵型粉砕機、などが挙げられる。この分級機内蔵型粉砕機としては、特に制限はないが、例えば、冷却気体と共に粉砕対象物が装置内に投入され、回転軸に支持され外側面に複数の凹凸より成る粉砕刃を有するリング状の粉砕ロータと、固定配置されるライナとの間を粉砕対象物が通過する際、これら両部材の間で粉砕対象物の衝突が繰り返されて粉砕されるように構成されている冷凍粉砕装置を用いてもよい。このような冷凍粉砕装置は、例えば、特公昭57-60060号公報、特開2017-912号公報等に記載されている。 Further, the pulverization may be performed by "classification pulverization" in which pulverization of a resin containing a structural unit derived from a predetermined cyclic olefin compound and classification of the pulverized product are performed at the same time. Examples of the device capable of crushing and classifying at the same time include a crusher with a built-in classifier including a crushing unit for crushing the object to be crushed and a classifying unit for classifying the crushed material. The crusher with a built-in classifier is not particularly limited, but for example, it has a ring shape in which a crushing object is put into the device together with a cooling gas, supported by a rotating shaft, and has a crushing blade having a plurality of irregularities on the outer surface. When the crushing object passes between the crushing rotor and the liner that is fixedly arranged, the refrigerating crushing device is configured so that the crushing object is repeatedly crushed between these two members. You may use it. Such a freezing and crushing apparatus is described in, for example, Japanese Patent Application Laid-Open No. 57-60060, Japanese Patent Application Laid-Open No. 2017-912, and the like.
 分級機内蔵型粉砕機の回転数としては、特に制限はないが、粉砕対象物を効率的に粉砕する観点から、1000rpm以上8000rpm以下であってもよく、2000rpm以上6000rpmであってもよく、2000rpm以上5000rpm以下であってもよい。
 前記粉砕によって得られた粉砕物(樹脂粒子)を篩い分級及びエアー分級によって所望の粒度に分級する。
 篩い分級に用いられる篩目の開きは、10μm以上100μm以下であってもよく、20μm以上60μm以下であってもよく、30μm以上50μm以下であってもよい。
The rotation speed of the crusher with a built-in classifier is not particularly limited, but from the viewpoint of efficiently crushing the object to be crushed, it may be 1000 rpm or more and 8000 rpm or less, 2000 rpm or more and 6000 rpm, or 2000 rpm. It may be more than 5000 rpm or less.
The pulverized product (resin particles) obtained by the pulverization is classified into a desired particle size by sieve classification and air classification.
The mesh size used for the sieve classification may be 10 μm or more and 100 μm or less, 20 μm or more and 60 μm or less, or 30 μm or more and 50 μm or less.
 半導体封止用樹脂組成物中における(E)樹脂粒子の含有量としては、特に制限はないが、半導体封止用樹脂組成物の成形性、流動性及び成形収縮率(熱膨張率)、並びに、成形品の低誘電率の観点から、5質量%以上20質量%以下であってもよく、5質量%以上15質量%以下であってもよい。 The content of the (E) resin particles in the semiconductor encapsulating resin composition is not particularly limited, but the moldability, fluidity and molding shrinkage (thermal expansion rate) of the semiconductor encapsulating resin composition, and From the viewpoint of low dielectric constant of the molded product, it may be 5% by mass or more and 20% by mass or less, or 5% by mass or more and 15% by mass or less.
 なお、半導体封止用樹脂組成物中における、(A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、(D)無機充填材及び(E)樹脂粒子の合計含有量が100質量%であってもよく、即ち、半導体封止用樹脂組成物が、(A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、(D)無機充填材及び(E)樹脂粒子の5成分のみからなっていてもよい。 The total content of (A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, (D) inorganic filler, and (E) resin particles in the resin composition for encapsulating semiconductors is It may be 100% by mass, that is, the resin composition for semiconductor encapsulation is (A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, (D) inorganic filler and (E). ) It may consist of only five components of the resin particles.
((F)低応力材)
 本実施形態の半導体封止用樹脂組成物は、成形収縮率(熱膨張率)低下の観点から、(F)低応力材をさらに含んでもよい。
((F) Low stress material)
The resin composition for semiconductor encapsulation of the present embodiment may further contain (F) a low-stress material from the viewpoint of reducing the molding shrinkage rate (thermal expansion rate).
 本実施形態の半導体封止用樹脂組成物における任意成分である(F)低応力材としては、例えば、ブタジエンゴム、ニトリルゴム、シリコーンゴム、ブタジエン・スチレン共重合体などのゴム類;エポキシ変性ゴム類;シリコーンオイル類;コアシェルゴム類;などが挙げられ、市販品を使用することもできる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 (F)低応力材は、ゴム類、エポキシ変性ゴム類であってもよく、ブタジエン・スチレン共重合体、エポキシ変性ポリブタジエンゴム(エポキシ当量200以上600以下)であってもよい。
Examples of the (F) low stress material which is an optional component in the semiconductor encapsulating resin composition of the present embodiment include rubbers such as butadiene rubber, nitrile rubber, silicone rubber, and butadiene / styrene copolymer; epoxy-modified rubber. Kind; Silicone oils; Core shell rubbers; etc., and commercially available products can also be used. One of these may be used alone, or two or more thereof may be used in combination.
The low-stress material (F) may be rubbers, epoxy-modified rubbers, butadiene-styrene copolymer, or epoxy-modified polybutadiene rubber (epoxy equivalent 200 or more and 600 or less).
 半導体封止用樹脂組成物中における(F)低応力材の含有量としては、特に制限はない。(F)低応力材の含有量は、0.1質量%以上1.5質量%以下であってもよく、0.1質量%以上1.0質量%以下であってもよい。(F)低応力材の含有量が前記範囲内にあると、(E)樹脂粒子を多く含有しても、硬化特性を阻害することなく成形収縮率(熱膨張率)を低下させることができる。 The content of the (F) low stress material in the resin composition for encapsulating a semiconductor is not particularly limited. The content of the low stress material (F) may be 0.1% by mass or more and 1.5% by mass or less, or 0.1% by mass or more and 1.0% by mass or less. When the content of the low stress material (F) is within the above range, the molding shrinkage rate (thermal expansion rate) can be lowered without impairing the curing characteristics even if the content of the resin particles (E) is large. ..
((G)ベンゾオキサジン樹脂)
 本実施形態の半導体封止用樹脂組成物は、低誘電率の観点から、(G)ベンゾオキサジン樹脂をさらに含んでもよい。半導体封止用樹脂組成物が(G)ベンゾオキサジン樹脂をさらに含むことにより、(E)樹脂粒子の含有量を低減することができる。
((G) benzoxazine resin)
The semiconductor encapsulating resin composition of the present embodiment may further contain (G) benzoxazine resin from the viewpoint of low dielectric constant. By further containing the (G) benzoxazine resin in the semiconductor encapsulating resin composition, the content of the (E) resin particles can be reduced.
 本実施形態の半導体封止用樹脂組成物における任意成分である(G)ベンゾオキサジン樹脂は、下記一般式(2)で表される化合物であり、1分子中に2個以上のベンゾオキサジン環を含む。 The (G) benzoxazine resin, which is an optional component in the semiconductor encapsulating resin composition of the present embodiment, is a compound represented by the following general formula (2), and has two or more benzoxazine rings in one molecule. include.
Figure JPOXMLDOC01-appb-C000012

 前記一般式(2)中、Xは、炭素数1以上10以下のアルキレン基、下記一般式(3)で表される基、-SO-、-CO-、酸素原子、又は単結合であり、Rは、それぞれ独立して、水素原子又は炭素数1以上10以下の炭化水素基である。
Figure JPOXMLDOC01-appb-C000012

In the general formula (2), X 1 is an alkylene group having 1 to 10 carbon atoms, a group represented by the following general formula (3), -SO 2- , -CO-, an oxygen atom, or a single bond. Yes, R is a hydrogen atom or a hydrocarbon group having 1 or more and 10 or less carbon atoms, respectively.
Figure JPOXMLDOC01-appb-C000013

 一般式(3)中、Xは芳香環を有する炭素数6以上30以下の炭化水素基であり、mは0又は1以上の整数である。
Figure JPOXMLDOC01-appb-C000013

In the general formula (3), X 2 is a hydrocarbon group having an aromatic ring and having 6 or more and 30 or less carbon atoms, and m is an integer of 0 or 1 or more.
 Xの炭素数1以上10以下のアルキレン基としては、メチレン基、エチレン基であってもよい。
 Rの炭素数1以上10以下の炭化水素基としては、例えば、炭素数1以上10以下のアルキル基;などが挙げられ、メチル基、エチル基であってもよい。
 Xの芳香環を有する炭素数6以上30以下の炭化水素基としては、例えば、フェニレン基、などが挙げられる。
 Xは、-SO-、-CO-、又は-CH-であってもよく、-CH-であってもよい。
 Rは、水素原子であってもよい。
 mは、0又は1であってもよい。
The alkylene group having 1 or more carbon atoms and 10 or less carbon atoms of X 1 may be a methylene group or an ethylene group.
Examples of the hydrocarbon group having 1 to 10 carbon atoms of R include an alkyl group having 1 to 10 carbon atoms; and the like, which may be a methyl group or an ethyl group.
Examples of the hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring of X 2, for example, a phenylene group, and the like.
X 1 is, -SO 2 -, - CO-, or -CH 2 - it was also good, -CH 2 - may be.
R may be a hydrogen atom.
m may be 0 or 1.
 (G)ベンゾオキサジン樹脂の含有量としては、特に制限はないが、半導体封止用樹脂組成物が低誘電率且つ低粘度となり、ワイヤ流れ性が良好となる点で、(A)エポキシ樹脂100質量部に対して、0質量部以上200質量部以下であってもよく、20質量部以上180質量部以下であってもよく、50質量部以上150質量部以下であってもよい。 The content of the (G) benzoxazine resin is not particularly limited, but the (A) epoxy resin 100 is in that the resin composition for encapsulating a semiconductor has a low dielectric constant and a low viscosity, and the wire flowability is good. It may be 0 parts by mass or more and 200 parts by mass or less, 20 parts by mass or more and 180 parts by mass or less, or 50 parts by mass or more and 150 parts by mass or less with respect to the mass parts.
 (E)樹脂粒子と(G)ベンゾオキサジン樹脂とを併用することにより、低誘電率に加えて、ワイヤ流れ性及び成形収縮性に優れた半導体封止用樹脂組成物が得られる。
 これは、(E)樹脂粒子と(G)ベンゾオキサジン樹脂を併用することにより、低い誘電率を維持しながら、(E)樹脂粒子の含有量を低減できることから、相対的にシリカ含有率を増加することが可能となるためである。
 半導体封止用樹脂組成物中における(E)樹脂粒子及び(G)ベンゾオキサジン樹脂の合計含有量としては、特に制限はないが、ワイヤ流れ性及び低成形収縮率の観点から、5質量%以上30質量%以下であってもよい。
By using the resin particles (E) and the benzoxazine resin (G) in combination, a resin composition for encapsulating a semiconductor having excellent wire flowability and molding shrinkage in addition to a low dielectric constant can be obtained.
This is because the content of the (E) resin particles can be reduced while maintaining a low dielectric constant by using the (E) resin particles and the (G) benzoxazine resin in combination, so that the silica content is relatively increased. This is because it is possible to do so.
The total content of the (E) resin particles and the (G) benzoxazine resin in the resin composition for encapsulating a semiconductor is not particularly limited, but is 5% by mass or more from the viewpoint of wire flowability and low molding shrinkage. It may be 30% by mass or less.
 (A)エポキシ樹脂と(G)ベンゾオキサジン樹脂とを併用する場合における(B)フェノール樹脂硬化剤の含有量としては、特に制限はないが、成形性、ワイヤ流れ性、反り、または成形収縮の観点から、(A)エポキシ樹脂及び(G)ベンゾオキサジン樹脂の合計100質量部に対して、1質量部以上80質量部以下であってもよく、5質量部以上60質量部以下であってもよい。 The content of the (B) phenol resin curing agent when the (A) epoxy resin and the (G) benzoxazine resin are used in combination is not particularly limited, but has moldability, wire flowability, warpage, or molding shrinkage. From the viewpoint, it may be 1 part by mass or more and 80 parts by mass or less, or 5 parts by mass or more and 60 parts by mass or less with respect to a total of 100 parts by mass of the (A) epoxy resin and (G) benzoxazine resin. good.
 (G)ベンゾオキサジン樹脂が有するベンゾオキサジンが開環した際に生じる水酸基(g)と(B)フェノール樹脂硬化剤中のフェノール性水酸基(b)との合計数と、(A)エポキシ樹脂中のエポキシ基(a)の数との比(((b)+(g))/(a))(当量比)としては、特に制限はないが、未反応成分(即ち、(A)エポキシ樹脂と反応しない(G)ベンゾオキサジン樹脂及び(B)フェノール樹脂硬化剤、又は、(G)ベンゾオキサジン樹脂及び(B)フェノール樹脂硬化剤と反応しない(A)エポキシ樹脂)の残存量を少なくして、成形性または硬化物の強度低下を低減する観点から、0.5以上1.5以下であってもよく、1.0以上1.2以下であってもよい。
 なお、(G)ベンゾオキサジン樹脂が有するベンゾオキサジンが開環した際に生じる水酸基(g)とは、(G)ベンゾオキサジン樹脂が有するベンゾオキサジンが全て開環した際の量である。
The total number of hydroxyl groups (g) generated when the benzoxazine contained in the (G) benzoxazine resin is opened and the phenolic hydroxyl groups (b) in the (B) phenol resin curing agent, and (A) the epoxy resin. The ratio (((b) + (g)) / (a)) (equivalent ratio) to the number of epoxy groups (a) is not particularly limited, but is the same as that of the unreacted component (that is, (A) epoxy resin). Reduce the residual amount of (G) benzoxazine resin and (B) phenol resin curing agent that does not react, or (A) epoxy resin that does not react with (G) benzoxazine resin and (B) phenol resin curing agent). From the viewpoint of reducing the formability or the decrease in the strength of the cured product, it may be 0.5 or more and 1.5 or less, or 1.0 or more and 1.2 or less.
The hydroxyl group (g) generated when the benzoxazine contained in the (G) benzoxazine resin is ring-opened is the amount when all the benzoxazine contained in the (G) benzoxazine resin is ring-opened.
((H)その他の成分(添加剤))
 また、本実施形態の半導体封止用樹脂組成物中には、以上の各成分(A)~(G)の他、本実施の形態の効果を阻害しない範囲で、半導体封止用脂組成物に一般に配合される、難燃剤;カップリング剤;離型剤;着色剤;ハイドロタルサイト類等の安定化剤;イオン捕捉剤;消泡剤;などの(H)その他の成分(添加剤)を必要に応じて含有させることができる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
((H) Other components (additives))
In addition to the above components (A) to (G), the semiconductor encapsulating resin composition of the present embodiment contains the semiconductor encapsulating fat composition as long as the effects of the present embodiment are not impaired. (H) Other components (additives) such as flame retardants; coupling agents; mold release agents; colorants; stabilizers such as hydrotalcites; ion scavengers; defoamers; Can be contained as needed. One of these may be used alone, or two or more thereof may be used in combination.
<難燃剤>
 難燃剤としては、例えば、ブロム化エポキシ樹脂、三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛等の金属元素を含む化合物;リン酸エステル(FP-100)等のリン化合物;などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
<Flame retardant>
Examples of the flame retardant include compounds containing metal elements such as brominated epoxy resin, antimony trioxide, aluminum hydroxide, magnesium hydroxide and zinc oxide; and phosphorus compounds such as phosphoric acid ester (FP-100). Be done. One of these may be used alone, or two or more thereof may be used in combination.
<カップリング剤>
 カップリング剤としては、例えば、エポキシシラン系カップリング剤、アミノシラン系カップリング剤、ウレイドシラン系カップリング剤、ビニルシラン系カップリング剤、アルキルシラン系カップリング剤、有機チタネート系カップリング剤、アルミニウムアルコレート系カップリング剤、などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 カップリング剤は、難燃性及び硬化性の観点から、アミノシラン系カップリング剤であってもよく、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランであってもよい。
<Coupling agent>
Examples of the coupling agent include epoxysilane-based coupling agent, aminosilane-based coupling agent, ureidosilane-based coupling agent, vinylsilane-based coupling agent, alkylsilane-based coupling agent, organic titanate-based coupling agent, and aluminum arco. Examples include rate-based coupling agents. One of these may be used alone, or two or more thereof may be used in combination.
The coupling agent may be an aminosilane-based coupling agent from the viewpoint of flame retardancy and curability, and may be γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, It may be γ-aminopropylmethyldiethoxysilane or N-phenyl-3-aminopropyltrimethoxysilane.
<離型剤>
 離型剤としては、例えば、合成ワックス;カルナバワックス等の天然ワックス;高級脂肪酸;高級脂肪酸の金属塩;などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
<Release agent>
Examples of the release agent include synthetic wax; natural wax such as carnauba wax; higher fatty acid; metal salt of higher fatty acid; and the like. One of these may be used alone, or two or more thereof may be used in combination.
<着色剤>
 着色剤としては、例えば、カーボンブラック、コバルトブルー、などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
<Colorant>
Examples of the colorant include carbon black, cobalt blue, and the like. One of these may be used alone, or two or more thereof may be used in combination.
<安定化剤>
 安定化剤としては、例えば、マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート等のハイドロタルサイト構造を有する固溶体;などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
<Stabilizer>
Examples of the stabilizer include a solid solution having a hydrotalcite structure such as magnesium, aluminum, hydroxide, carbonate, and hydrate. One of these may be used alone, or two or more thereof may be used in combination.
 本実施形態の半導体封止用樹脂組成物中における(H)その他の成分(添加剤)の合計含有量としては、特に制限はないが、0.05質量%以上3質量%で以下あってもよく、0.1質量%以上2質量%以下であってもよい。 The total content of (H) and other components (additives) in the semiconductor encapsulant resin composition of the present embodiment is not particularly limited, but may be 0.05% by mass or more and 3% by mass or less. It may be 0.1% by mass or more and 2% by mass or less.
 本実施形態の半導体封止用樹脂組成物を調製するにあたっては、例えば、(A)エポキシ樹脂と、(B)フェノール樹脂硬化剤と、(C)硬化促進剤と、(D)無機充填材と、(E)樹脂粒子と、その他必要に応じて含有される各種成分((F)低応力材、(G)ベンゾオキサジン樹脂、(H)その他の成分(添加剤))とを、必要に応じて、ミキサー等を用いて十分に混合(均一に分散混合)し、二軸押し出し混錬機、熱ロール、ニーダ等の混錬装置により加熱混錬し、必要に応じて、冷却した後に適当な大きさに粉砕すればよい。 In preparing the resin composition for encapsulating the semiconductor of the present embodiment, for example, (A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, and (D) inorganic filler are used. , (E) Resin particles and various other components ((F) low stress material, (G) benzoxazine resin, (H) other components (additives)) contained as needed. Then, the mixture is sufficiently mixed (uniformly dispersed and mixed) using a mixer or the like, heat-kneaded by a kneading device such as a twin-screw extrusion kneader, a thermal roll, or a kneader, and if necessary, cooled and then suitable. It may be crushed to a size.
 本実施形態の半導体封止用樹脂組成物は、各種電気部品、又は半導体素子等の各種電子部品の、被覆、絶縁、封止等に用いることができる。半導体素子としては、トランジスタ、集積回路、ダイオード、サイリスタ、などが例示される。
 本実施形態の半導体封止用樹脂組成物によって半導体素子等の電子部品を封止する方法としては、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法が用いられる。成形は、例えば、温度120℃以上200℃以下、圧力2MPa以上20MPa以下で行うことができる。このような条件で半導体素子等の電子部品を成形封止することにより、耐リフロー性に優れ、且つ、高温動作時の信頼性に優れた樹脂封止型の電子部品装置、半導体装置を得ることができる。
The resin composition for semiconductor encapsulation of the present embodiment can be used for coating, insulating, encapsulating, and the like of various electric components or various electronic components such as semiconductor elements. Examples of semiconductor elements include transistors, integrated circuits, diodes, thyristors, and the like.
As a method for sealing an electronic component such as a semiconductor element with the semiconductor encapsulating resin composition of the present embodiment, a molding method such as a transfer mold, a compression mold, or an injection mold is used. Molding can be performed, for example, at a temperature of 120 ° C. or higher and 200 ° C. or lower, and a pressure of 2 MPa or higher and 20 MPa or lower. By molding and sealing electronic components such as semiconductor elements under such conditions, resin-sealed electronic component devices and semiconductor devices with excellent reflow resistance and high reliability during high-temperature operation can be obtained. Can be done.
[半導体装置]
 本実施形態の半導体装置は、半導体素子を、前記の半導体封止用樹脂組成物で封止してなる。具体的には、リードフレーム、テープキャリア、配線板、シリコンウエハ等の支持部材に、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子等の素子を搭載し、必要な部分を本実施形態の半導体封止用樹脂組成物で封止した半導体装置が挙げられる。
[Semiconductor device]
The semiconductor device of the present embodiment is formed by sealing a semiconductor element with the above-mentioned resin composition for sealing a semiconductor. Specifically, active elements such as semiconductor chips, transistors, diodes, and thyristers, and passive elements such as capacitors, resistors, and coils are mounted on support members such as lead frames, tape carriers, wiring boards, and silicon wafers. However, a semiconductor device in which a necessary portion is sealed with the semiconductor encapsulating resin composition of the present embodiment can be mentioned.
 次に実施例により、本開示を具体的に説明するが、本開示は、これらの例によってなんら限定されるものではない。 Next, the present disclosure will be specifically described with reference to Examples, but the present disclosure is not limited to these examples.
(実施例1~9並びに比較例1及び2)
 表1に記載の種類及び含有量(質量部)の各成分を、二軸押し出し混練機を用いて、混練温度100℃及び混練時間5分間の条件で加熱混練し、半導体封止用樹脂組成物を調製した。なお、表1中、空欄部(表1における「-」)は配合なしを表す。
(Examples 1 to 9 and Comparative Examples 1 and 2)
Each component of the type and content (part by mass) shown in Table 1 is heat-kneaded using a biaxial extrusion kneader under the conditions of a kneading temperature of 100 ° C. and a kneading time of 5 minutes to prepare a resin composition for semiconductor encapsulation. Was prepared. In Table 1, the blank part (“-” in Table 1) indicates that there is no compounding.
 半導体封止用樹脂組成物の調製に使用した表1に記載の各成分の詳細は以下のとおりである。 Details of each component shown in Table 1 used for preparing the resin composition for semiconductor encapsulation are as follows.
<(A)エポキシ樹脂>
・(A1)ジシクロペンタジエン型エポキシ樹脂(商品名:HP-7200、DIC(株)製)
・(A2)ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(商品名:NC-3000、日本化薬(株)製)
<(A) Epoxy resin>
(A1) Dicyclopentadiene type epoxy resin (trade name: HP-7200, manufactured by DIC Corporation)
(A2) Biphenylene skeleton-containing phenol aralkyl type epoxy resin (trade name: NC-3000, manufactured by Nippon Kayaku Co., Ltd.)
<(B)フェノール樹脂硬化剤>
・(B1)ビフェニレン骨格含有フェノールアラルキル樹脂(商品名:MEHC-7851-SS、明和化成(株)製)
<(B) Phenol resin curing agent>
(B1) Phenolic aralkyl resin containing biphenylene skeleton (trade name: MEHC-7851-SS, manufactured by Meiwa Kasei Co., Ltd.)
<(C)硬化促進剤>
・(C1)イミダゾール化合物(商品名:2MZA、四国化成(株)製)
<(C) Curing accelerator>
(C1) Imidazole compound (trade name: 2MZA, manufactured by Shikoku Chemicals Corporation)
<(D)無機充填材>
・(D1)溶融シリカ(商品名:FB-105FC、デンカ(株)製、平均粒径11μm)
・(D2)溶融シリカ(商品名:SC-4500SQ、(株)アドマテックス製、平均粒径1μm)
<(D) Inorganic filler>
(D1) Fused silica (trade name: FB-105FC, manufactured by Denka Co., Ltd., average particle size 11 μm)
(D2) Fused silica (trade name: SC-4500SQ, manufactured by Admatex Co., Ltd., average particle size 1 μm)
<(E)樹脂粒子>
・(E1)シクロオレフィンコポリマー(商品名:TOPAS、ポリプラスチック(株)製)を分級機内蔵型粉砕機(商品名:リンレックスミルLX、ホソカワミクロン株式会社製)に投入し、温度-10℃で、粉砕ディスク3000rpm、分級ロータ2300rpm、供給量100kg/時間の条件で粉砕し、350メッシュ(篩目の開き:38μm以上45μm以下)で篩分けして、平均粒径30μmの「TOPAS粉砕品」を得た。
・(E2)その他の樹脂粒子としてのフッ素樹脂パウダー(商品名:EA-2000 PW10、AGC株式会社製;平均粒径2μm)
<(E) Resin particles>
・ (E1) Cycloolefin copolymer (trade name: TOPAS, manufactured by Polyplastics Co., Ltd.) was put into a crusher with a built-in classifier (trade name: Linlex Mill LX, manufactured by Hosokawa Micron Co., Ltd.) at a temperature of -10 ° C. , Grinding disc 3000 rpm, classification rotor 2300 rpm, supply amount 100 kg / hour, crushing, sieving with 350 mesh (sieving opening: 38 μm or more and 45 μm or less), and “TOPAS crushed product” with an average particle size of 30 μm. Obtained.
(E2) Fluororesin powder as other resin particles (trade name: EA-2000 PW10, manufactured by AGC Inc .; average particle size 2 μm)
<(F)低応力材>
・(F1)ブタジエン・スチレン共重合体(商品名:RICON657、クレイバレー社製)
<(F) Low stress material>
-(F1) Butadiene-Styrene copolymer (trade name: RICON657, manufactured by Clay Valley)
<(G)ベンゾオキサジン樹脂>
・(G1):P-d型ポリベンゾオキサジン樹脂(前記一般式(2)において、Xがメチレン基、2つのRがいずれも水素原子であるベンゾオキサジン樹脂)(四国化成工業(株)製)
<(G) Benzoxazine resin>
(G1): Pd-type polybenzoxazine resin (in the general formula (2), X is a methylene group and two Rs are both hydrogen atoms, a benzoxazine resin) (manufactured by Shikoku Kasei Kogyo Co., Ltd.)
<(H)その他の成分>
・(H1)シランカップリング剤(商品名:KBM-573、信越化学工業(株)製)・(H2)着色剤(カーボンブラック)(商品名:MA-100RMJ、三菱ケミカル(株)製)
・(H3)難燃剤(商品名:FP-100、(株)伏見製薬所製)
・(H4)離型剤(カルナバワックス)(商品名:カルナバワックス1号、東洋アドレ(株)製)
・(H5)安定剤(商品名:ALCAMIZER1、協和化学工業(株)製)
<(H) Other ingredients>
・ (H1) Silane coupling agent (trade name: KBM-573, manufactured by Shin-Etsu Chemical Co., Ltd.) ・ (H2) Coloring agent (carbon black) (trade name: MA-100RMJ, manufactured by Mitsubishi Chemical Corporation)
・ (H3) Flame retardant (trade name: FP-100, manufactured by Fushimi Pharmaceutical Co., Ltd.)
・ (H4) Release agent (carnauba wax) (Product name: carnauba wax No. 1, manufactured by Toyo Adre Co., Ltd.)
・ (H5) Stabilizer (trade name: ALCAMIZER1, manufactured by Kyowa Chemical Industry Co., Ltd.)
 以下に示す測定条件により、実施例1~9並びに比較例1及び2で調製した半導体封止用樹脂組成物の特性の測定及び評価を行った。評価結果を表1に示す。 The characteristics of the resin compositions for semiconductor encapsulation prepared in Examples 1 to 9 and Comparative Examples 1 and 2 were measured and evaluated under the measurement conditions shown below. The evaluation results are shown in Table 1.
[評価項目]
(1)スパイラルフロー
 得られた半導体封止用樹脂組成物を、EMMI規格に準じた金型を用いて、成形温度175℃、成形圧力9.8MPaでトランスファー成形することで、スパイラルフローを測定した。
(2)比誘電率および誘電正接
 得られた半導体封止用樹脂組成物を、金型温度175℃、成形圧力8.0MPa、成形時間2分間の条件でトランスファー成形して、直径100mm×厚さ3mmの円板の成形品を作製し、さらに、175℃、8時間の後硬化を行って、試験片を得た。得られた試験片について、熱硬化性プラスチック一般試験方法(JIS K6911-1995 5.14誘電率及び誘電正接)に準じて、周波数100MHzにおける比誘電率および誘電正接を測定した。
・測定器:インピーダンス測定装置(日本ヒューレットパッカード(株)製:4291B RFインピーダンス/マテリアル・アナライザ)
・測定周波数:100MHz
(3)成形及び後硬化による成形収縮率
 熱硬化性プラスチック一般試験方法(JIS K6911-1995 5.7成形収縮率及び加熱収縮率(成形材料))に準じて成形収縮率を測定した。
 得られた半導体封止用樹脂組成物を、金型温度175℃、成形圧力8.0MPa、硬化時間2分間の条件でトランスファー成形して、成形収縮率測定用テストピース(環状帯外径φ80mm)を得た。この成形収縮率測定用テストピースの環状帯外径4ヶ所(表裏各2個所)の寸法を測定した。成形収縮率(%)は下記式によって算出し、成形による成形収縮率(成形収縮率As)とした。
 さらに、前記成形収縮率(成形収縮率As)測定用テストピースについて175℃、8時間の後硬化を行った後、下記式によって成形収縮率(%)を算出し、後硬化による成形収縮率(成形収縮率PMC)とした。
 成形収縮率(%)=((D-d)/D+(D-d)/D+(D-d)/D+(D-d)/D)/4*100
 ここで、d:それぞれの測定線に沿って測ったテストピース環状帯の外径(mm)
:20±2℃の室温で測ったdに対応する金型のみぞの外径(mm)
(4)反り
 得られた半導体封止用樹脂組成物を用いて、54mm×55mm×0.2mm(厚み)のFR4基板に、0.6mm厚みにトランスファー成形(175℃、120秒間、6MPa)でモールドを行い、後硬化(175℃×8時間)を行った後、室温でシャドーモアレ装置(製品名:THERMOIRE PS200、AKROMETRIX社製)にて、樹脂面を上にした状態で反りの測定を行った。
(5)ワイヤ流れ率(ワイヤ変形)
 得られた半導体封止用樹脂組成物を用いて、金型温度175℃、硬化時間2分間、次いで金型温度175℃、硬化時間8時間の条件でFBGAパッケージ(50mm×50mm×0.54mm、チップ厚0.31mm)をトランスファー成形法で成形した後、X線検査装置((株)島津製作所製、SMX-1000 Plus)によりワイヤの変形を観察し、最大変形部のワイヤ流れ率(封止前のワイヤの位置と封止後のワイヤの位置との最大距離のワイヤの長さに対する比率(%))を測定した。
(6)耐リフロー性
 得られた半導体封止用樹脂組成物を用いて、FBGAパッケージ(50mm×50mm×0.54mm、チップ厚0.31mm)を、トランスファー成形法で成形した後、得られた成形品に、175℃で、8時間の後硬化を行った後、30℃、相対湿度60%RH、192時間の吸湿処理を行った。その後、260℃の赤外線リフロー炉内で加熱し、冷却後、超音波探傷装置(日立建機ファインテック(株)製、商品名:FS300II)により、樹脂硬化物とフレームとの界面、及び樹脂硬化物と半導体チップとの界面における剥離の有無を調べ、剥離が発生した数(NG数)を計数した。
[Evaluation item]
(1) Spiral flow The spiral flow was measured by transfer molding the obtained resin composition for semiconductor encapsulation at a molding temperature of 175 ° C. and a molding pressure of 9.8 MPa using a mold conforming to the EMMI standard. ..
(2) Relative Pertivity and Dissipation Factor The obtained resin composition for semiconductor encapsulation is transfer-molded under the conditions of a mold temperature of 175 ° C., a molding pressure of 8.0 MPa, and a molding time of 2 minutes to have a diameter of 100 mm and a thickness of 100 mm. A molded product of a 3 mm disk was prepared, and further cured at 175 ° C. for 8 hours to obtain a test piece. The obtained test piece was measured for relative permittivity and dielectric loss tangent at a frequency of 100 MHz according to a general thermocurable plastic test method (JIS K6911-1995 5.14 dielectric constant and dielectric loss tangent).
-Measuring instrument: Impedance measuring device (manufactured by Hewlett-Packard Japan Co., Ltd .: 4291B RF impedance / material analyzer)
・ Measurement frequency: 100MHz
(3) Molding Shrinkage Rate by Molding and Post-Curing The molding shrinkage rate was measured according to a general test method for thermosetting plastics (JIS K6911-1995 5.7 molding shrinkage rate and heat shrinkage rate (molding material)).
The obtained resin composition for encapsulating a semiconductor is transfer-molded under the conditions of a mold temperature of 175 ° C., a molding pressure of 8.0 MPa, and a curing time of 2 minutes, and a test piece for measuring the molding shrinkage rate (annular band outer diameter φ80 mm). Got The dimensions of the outer diameter of the annular band at 4 points (2 points each on the front and back sides) of the test piece for measuring the molding shrinkage were measured. The molding shrinkage rate (%) was calculated by the following formula and used as the molding shrinkage rate (molding shrinkage rate As) by molding.
Further, the test piece for measuring the molding shrinkage rate (molding shrinkage rate As) was post-cured at 175 ° C. for 8 hours, and then the molding shrinkage rate (%) was calculated by the following formula to obtain the molding shrinkage rate (%) by post-curing. Molding shrinkage rate PMC).
Molding shrinkage rate (%) = ((D 1- d 1 ) / D 1 + (D 2- d 2 ) / D 2 + (D 3- d 3 ) / D 3 + (D 4- d 4 ) / D 4 ) / 4 * 100
Here, d 1 to 4 : The outer diameter (mm) of the test piece annular band measured along each measurement line.
D 1 to 4 : Outer diameter (mm) of the groove of the mold corresponding to d 1 to 4 measured at room temperature of 20 ± 2 ° C.
(4) Using the obtained warped resin composition for encapsulating a semiconductor, transfer molding (175 ° C., 120 seconds, 6 MPa) to a thickness of 0.6 mm on a FR4 substrate having a thickness of 54 mm × 55 mm × 0.2 mm (thickness). After molding and post-curing (175 ° C. x 8 hours), warpage was measured at room temperature with a shadow moire device (product name: THERMORE PS200, manufactured by AKROMETRIX) with the resin surface facing up. rice field.
(5) Wire flow rate (wire deformation)
Using the obtained resin composition for encapsulating a semiconductor, an FBGA package (50 mm × 50 mm × 0.54 mm, under the conditions of a mold temperature of 175 ° C. and a curing time of 2 minutes, then a mold temperature of 175 ° C. and a curing time of 8 hours, After molding the chip thickness (0.31 mm) by the transfer molding method, observe the wire deformation with an X-ray inspection device (SMX-1000 Plus, manufactured by Shimadzu Corporation), and observe the wire flow rate (sealing) of the maximum deformed part. The ratio (%) of the maximum distance between the position of the front wire and the position of the wire after sealing with respect to the wire length was measured.
(6) Reflow resistance Obtained after molding an FBGA package (50 mm × 50 mm × 0.54 mm, chip thickness 0.31 mm) by a transfer molding method using the obtained resin composition for encapsulating a semiconductor. The molded product was after-cured at 175 ° C. for 8 hours, and then subjected to a moisture absorption treatment at 30 ° C., a relative humidity of 60% RH, and for 192 hours. After that, it is heated in an infrared reflow furnace at 260 ° C., and after cooling, the interface between the cured resin and the frame and the resin curing are performed by an ultrasonic flaw detector (manufactured by Hitachi Construction Machinery Finetech Co., Ltd., trade name: FS300II). The presence or absence of peeling at the interface between the object and the semiconductor chip was examined, and the number of peelings (NG number) was counted.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表1より、(A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、(D)無機充填材、及び(E)樹脂粒子を含む実施例1~9の半導体封止用樹脂組成物(比誘電率:3.2以上3.6以下)は、(E)樹脂粒子を含まない比較例1及び2の半導体封止用樹脂組成物(比誘電率:3.7以上3.9以下)と比較して、比誘電率を十分に低減できることが分かった。
 また、(E)環状オレフィン化合物に由来する構造単位を含有する樹脂粒子を含む実施例1の半導体封止用樹脂組成物(成形収縮率As:0.33%、成形収縮率PMC:0.24%)は、その他の樹脂粒子(フッ素樹脂パウダー)を含む比較例3の半導体封止用樹脂組成物(成形収縮率As:0.44%、成形収縮率PMC:0.52%)と比較して、成形収縮率が小さくなることが分かった。
 また、表1より、(F)低応力材をさらに含む実施例3の半導体封止用樹脂組成物(成形収縮率As:0.41%、成形収縮率PMC:0.37%)は、(F)低応力材を含まない実施例2の半導体封止用樹脂組成物(成形収縮率As:0.52%、成形収縮率PMC:0.46%)と比較して、成形収縮率を低下させることができることが分かった。
 また、表1より、(G)ベンゾオキサジン樹脂をさらに含む実施例9と(G)ベンゾオキサジン樹脂を含まない実施例8とを比較することにより、(G)ベンゾオキサジン樹脂をさらに含むことにより、低い誘電率を維持しながら、(E)樹脂粒子の含有量を低減できることが分かった。
From Table 1, for semiconductor encapsulation of Examples 1 to 9 containing (A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, (D) inorganic filler, and (E) resin particles. The resin composition (relative permittivity: 3.2 or more and 3.6 or less) is the resin composition for semiconductor encapsulation (relative permittivity: 3.7 or more and 3) of Comparative Examples 1 and 2 containing (E) resin particles. It was found that the relative permittivity could be sufficiently reduced as compared with (0.9 or less).
Further, the resin composition for encapsulating a semiconductor of Example 1 containing resin particles containing a structural unit derived from (E) a cyclic olefin compound (molding shrinkage rate As: 0.33%, molding shrinkage rate PMC: 0.24). %) Is compared with the resin composition for semiconductor encapsulation (molding shrinkage rate As: 0.44%, molding shrinkage rate PMC: 0.52%) of Comparative Example 3 containing other resin particles (fluororesin powder). It was found that the molding shrinkage rate became smaller.
Further, from Table 1, the resin composition for semiconductor encapsulation (molding shrinkage rate As: 0.41%, molding shrinkage rate PMC: 0.37%) of Example 3 further containing (F) low stress material is (F). F) The molding shrinkage rate is lower than that of the resin composition for semiconductor encapsulation of Example 2 which does not contain a low stress material (molding shrinkage rate As: 0.52%, molding shrinkage rate PMC: 0.46%). It turned out that it could be made to.
Further, from Table 1, by comparing Example 9 further containing (G) benzoxazine resin with Example 8 not containing (G) benzoxazine resin, by further containing (G) benzoxazine resin, It was found that the content of the resin particles (E) can be reduced while maintaining a low dielectric constant.

Claims (12)

  1. (A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、(D)無機充填材、及び(E)樹脂粒子を含み、
     前記(E)樹脂粒子は、下記一般式(1)で表される環状オレフィン化合物に由来する構造単位を含有する樹脂からなる、半導体封止用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (前記一般式(1)中、R~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれるものであり、RとR10、R11とR12は、一体化して2価の炭化水素基を形成してもよく、R又はR10と、R11又はR12とは、互いに結合して環を形成していてもよい。また、nは、0又は正の整数を示し、nが2以上の場合には、R~Rは、それぞれの繰り返し単位の中で、それぞれ同一でも異なっていてもよい。)
    Contains (A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, (D) inorganic filler, and (E) resin particles.
    The resin particles (E) are a resin composition for encapsulating a semiconductor, which comprises a resin containing a structural unit derived from a cyclic olefin compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In the general formula (1), R 1 to R 12 may be the same or different, and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group, and are R 9 and R. 10 , R 11 and R 12 may be integrated to form a divalent hydrocarbon group, and R 9 or R 10 and R 11 or R 12 are bonded to each other to form a ring. Further, n represents 0 or a positive integer, and when n is 2 or more, R 5 to R 8 may be the same or different in each repeating unit.)
  2.  前記半導体封止用樹脂組成物中における前記(E)樹脂粒子の含有量が5質量%以上20質量%以下である、請求項1に記載の半導体封止用樹脂組成物。 The semiconductor encapsulating resin composition according to claim 1, wherein the content of the (E) resin particles in the semiconductor encapsulating resin composition is 5% by mass or more and 20% by mass or less.
  3.  前記(E)樹脂粒子の平均粒径が0.1μm以上50μm以下である、請求項1又は2に記載の半導体封止用樹脂組成物。 The resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the average particle size of the resin particles (E) is 0.1 μm or more and 50 μm or less.
  4.  前記(E)樹脂粒子が、前記環状オレフィン化合物に由来する構造単位を含有する樹脂を10℃以下で分級粉砕した粒子である、請求項1から3のいずれか1項に記載の半導体封止用樹脂組成物。 The semiconductor encapsulation according to any one of claims 1 to 3, wherein the resin particles (E) are particles obtained by classifying and pulverizing a resin containing a structural unit derived from the cyclic olefin compound at 10 ° C. or lower. Resin composition.
  5.  前記半導体封止用樹脂組成物中における前記(A)エポキシ樹脂の含有量が5質量%以上20質量%以下である、請求項1から4のいずれか1項に記載の半導体封止用樹脂組成物。 The semiconductor encapsulating resin composition according to any one of claims 1 to 4, wherein the content of the epoxy resin (A) in the semiconductor encapsulating resin composition is 5% by mass or more and 20% by mass or less. thing.
  6.  前記半導体封止用樹脂組成物中における前記(D)無機充填材の含有量が60質量%以上90質量%以下である、請求項1から5のいずれか1項に記載の半導体封止用樹脂組成物。 The semiconductor encapsulating resin according to any one of claims 1 to 5, wherein the content of the inorganic filler (D) in the semiconductor encapsulating resin composition is 60% by mass or more and 90% by mass or less. Composition.
  7.  (F)低応力材をさらに含む、請求項1から6のいずれか1項に記載の半導体封止用樹脂組成物。 (F) The resin composition for semiconductor encapsulation according to any one of claims 1 to 6, further comprising a low stress material.
  8.  前記半導体封止用樹脂組成物中における前記(F)低応力材の含有量が0.1質量%以上1.5質量%以下である、請求項1から7のいずれか1項に記載の半導体封止用樹脂組成物。 The semiconductor according to any one of claims 1 to 7, wherein the content of the low stress material (F) in the resin composition for encapsulating a semiconductor is 0.1% by mass or more and 1.5% by mass or less. Resin composition for sealing.
  9.  (G)ベンゾオキサジン樹脂をさらに含み、
     前記(G)ベンゾオキサジン樹脂は、下記一般式(2)で表される化合物である、請求項1から8のいずれか1項に記載の半導体封止用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002

    (前記一般式(2)中、Xは、炭素数1以上10以下のアルキレン基、下記一般式(3)で表される基、-SO-、-CO-、酸素原子、又は単結合であり、Rは、それぞれ独立して、水素原子又は炭素数1以上10以下の炭化水素基である。)
    Figure JPOXMLDOC01-appb-C000003

    (前記一般式(3)中、Xは芳香環を有する炭素数6以上30以下の炭化水素基であり、mは0又は1以上の整数である。)
    (G) Further containing a benzoxazine resin,
    The resin composition for semiconductor encapsulation according to any one of claims 1 to 8, wherein the (G) benzoxazine resin is a compound represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002

    (In the general formula (2), X 1 is an alkylene group having 1 to 10 carbon atoms, a group represented by the following general formula (3), -SO 2- , -CO-, an oxygen atom, or a single bond. R is a hydrogen atom or a hydrocarbon group having 1 or more and 10 or less carbon atoms, respectively.)
    Figure JPOXMLDOC01-appb-C000003

    (In the general formula (3), X 2 is a hydrocarbon group having an aromatic ring and having 6 or more and 30 or less carbon atoms, and m is an integer of 0 or 1 or more.)
  10.  前記(G)ベンゾオキサジン樹脂の含有量が、前記(A)エポキシ樹脂100質量部に対して0量部以上200質量部以下である、請求項9に記載の半導体封止用樹脂組成物。 The resin composition for encapsulating a semiconductor according to claim 9, wherein the content of the (G) benzoxazine resin is 0 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the (A) epoxy resin.
  11.  前記半導体封止用樹脂組成物中における前記(E)樹脂粒子及び前記(G)ベンゾオキサジン樹脂の合計含有量が、5質量%以上30質量%以下である、請求項9又は10に記載の半導体封止用樹脂組成物。 The semiconductor according to claim 9 or 10, wherein the total content of the (E) resin particles and the (G) benzoxazine resin in the semiconductor encapsulating resin composition is 5% by mass or more and 30% by mass or less. Resin composition for sealing.
  12.  請求項1から11のいずれか1項に記載の半導体封止用樹脂組成物を用いて半導体素子を封止してなる、半導体装置。 A semiconductor device for encapsulating a semiconductor element using the resin composition for encapsulating a semiconductor according to any one of claims 1 to 11.
PCT/JP2021/007508 2020-03-27 2021-02-26 Resin composition for semiconductor encapsulation, and semiconductor device WO2021192822A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020058872 2020-03-27
JP2020-058872 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021192822A1 true WO2021192822A1 (en) 2021-09-30

Family

ID=77891440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007508 WO2021192822A1 (en) 2020-03-27 2021-02-26 Resin composition for semiconductor encapsulation, and semiconductor device

Country Status (1)

Country Link
WO (1) WO2021192822A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168815A1 (en) * 2021-02-02 2022-08-11 Eneos株式会社 Composition for curable resins, cured product of said composition, method for producing said composition, method for producing said cured product, and semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240312A (en) * 1986-04-11 1987-10-21 Toshiba Chem Corp Resin composition for use in sealing
JPS641754A (en) * 1987-06-24 1989-01-06 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing use
JPH01249854A (en) * 1988-03-31 1989-10-05 Toshiba Chem Corp Sealing resin composition and production thereof
WO1998015595A1 (en) * 1996-10-09 1998-04-16 Nippon Zeon Co., Ltd. Norbornene polymer composition
JP2006096873A (en) * 2004-09-29 2006-04-13 Sumitomo Bakelite Co Ltd Resin composition, method for assembling semiconductor device using the same, and the semiconductor device
JP2006104308A (en) * 2004-10-05 2006-04-20 Sumitomo Bakelite Co Ltd Liquid sealing resin for semiconductor and semiconductor device obtained using the same
JP2017160427A (en) * 2016-03-04 2017-09-14 京セラ株式会社 Resin composition for sealing and semiconductor device
JP2019172911A (en) * 2018-03-29 2019-10-10 京セラ株式会社 Resin composition and semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240312A (en) * 1986-04-11 1987-10-21 Toshiba Chem Corp Resin composition for use in sealing
JPS641754A (en) * 1987-06-24 1989-01-06 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing use
JPH01249854A (en) * 1988-03-31 1989-10-05 Toshiba Chem Corp Sealing resin composition and production thereof
WO1998015595A1 (en) * 1996-10-09 1998-04-16 Nippon Zeon Co., Ltd. Norbornene polymer composition
JP2006096873A (en) * 2004-09-29 2006-04-13 Sumitomo Bakelite Co Ltd Resin composition, method for assembling semiconductor device using the same, and the semiconductor device
JP2006104308A (en) * 2004-10-05 2006-04-20 Sumitomo Bakelite Co Ltd Liquid sealing resin for semiconductor and semiconductor device obtained using the same
JP2017160427A (en) * 2016-03-04 2017-09-14 京セラ株式会社 Resin composition for sealing and semiconductor device
JP2019172911A (en) * 2018-03-29 2019-10-10 京セラ株式会社 Resin composition and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168815A1 (en) * 2021-02-02 2022-08-11 Eneos株式会社 Composition for curable resins, cured product of said composition, method for producing said composition, method for producing said cured product, and semiconductor device

Similar Documents

Publication Publication Date Title
JP2011184650A (en) Resin composition for electronic component encapsulation and electronic component device using the same
JP6551499B2 (en) Semiconductor molding resin material for compression molding and semiconductor device
JP2019210447A (en) Sealing resin composition, and electronic apparatus including the same and method for producing sealing resin composition
JP2019167407A (en) Epoxy resin composition, and electronic component device
JP7126186B2 (en) Resin composition for encapsulation, cured product thereof, and semiconductor device
WO2021192822A1 (en) Resin composition for semiconductor encapsulation, and semiconductor device
JP2021187980A (en) Flame-retardant resin composition, benzoxazine compound and structure
JP3295629B2 (en) Epoxy resin molding material for sealing electronic parts and electronic parts
JP2021113267A (en) Thermosetting resin composition, electronic apparatus, method for producing thermally conductive material, and method for producing thermosetting resin composition
JP5703489B2 (en) Manufacturing method and adjustment method of liquid resin composition for sealing, and semiconductor device and semiconductor element sealing method using the same
JP5290659B2 (en) Epoxy resin composition for semiconductor encapsulation of power module and power module
WO2019004458A1 (en) Resin composition for encapsulation, rearranged wafer, semiconductor package, and method for manufacturing semiconductor package
WO2020241594A1 (en) Encapsulating resin composition and electronic component device
JP2021187868A (en) Thermosetting resin composition and electronic device
JP7293623B2 (en) Thermosetting resin composition
JP5124930B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3295630B2 (en) Epoxy resin molding material for sealing electronic parts and electronic parts
KR20210091238A (en) Molding material for semiconductor encapsulation, manufacturing method of molding material for semiconductor encapsulation, and semiconductor device using the same
JP4774778B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
WO2019035431A1 (en) Sealing resin composition, method for producing sealing resin composition, semiconductor device, and method for producing semiconductor device
JPWO2019155950A1 (en) Method for producing resin composition for semiconductor encapsulation
JP2003327792A (en) Sealing resin composition and sealed semiconductor device
JP2006001986A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2004115747A (en) Resin composition for forming heat sink and device for encapsulating electronic part
JP2021187981A (en) Flame-retardant resin composition, and structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP