WO2019035431A1 - Sealing resin composition, method for producing sealing resin composition, semiconductor device, and method for producing semiconductor device - Google Patents

Sealing resin composition, method for producing sealing resin composition, semiconductor device, and method for producing semiconductor device Download PDF

Info

Publication number
WO2019035431A1
WO2019035431A1 PCT/JP2018/030140 JP2018030140W WO2019035431A1 WO 2019035431 A1 WO2019035431 A1 WO 2019035431A1 JP 2018030140 W JP2018030140 W JP 2018030140W WO 2019035431 A1 WO2019035431 A1 WO 2019035431A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
sealing resin
sealing
inorganic filler
epoxy resin
Prior art date
Application number
PCT/JP2018/030140
Other languages
French (fr)
Japanese (ja)
Inventor
彩 水島
貴広 中田
恵太 湧口
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201880052652.6A priority Critical patent/CN111032780A/en
Priority to JP2019536766A priority patent/JPWO2019035431A1/en
Publication of WO2019035431A1 publication Critical patent/WO2019035431A1/en
Priority to JP2023063089A priority patent/JP2023083365A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a sealing resin composition, a method of manufacturing a sealing resin composition, a semiconductor device, and a method of manufacturing a semiconductor device.
  • the power semiconductor device is a kind of semiconductor device mainly used for control of voltage or frequency of electric power, direct current to alternating current, or conversion from alternating current to direct current, and is a source of power for electronic devices, motors, power generators and the like. It is used in various fields. For this reason, the semiconductor device (power semiconductor device) provided with the power semiconductor element is required to have electrical reliability that can withstand use under high voltage and large current conditions. For example, it is required that the leak current generated in a high temperature reverse bias test (High Temperature Reverse Bias, HTRB) be sufficiently small (see, for example, Patent Document 1).
  • HTRB High Temperature Reverse Bias
  • a resin composition containing an epoxy resin such as an epoxy resin is widely used as a sealing resin composition for sealing a power semiconductor element.
  • an epoxy resin such as an epoxy resin
  • studies are being conducted on resin compositions suitable for sealing power semiconductor elements from the viewpoint of glass transition temperature, impurity content, etc. There are some parts that can not be explained.
  • the present invention provides a sealing resin composition capable of producing a semiconductor device having excellent electrical reliability, a method of producing a sealing resin composition, and a semiconductor device and a method of producing a semiconductor device using the same. The purpose is to
  • the sealing resin composition containing a ⁇ 1> epoxy resin and an inorganic filler, and the specific surface area of the said inorganic filler is 3.28 m ⁇ 2 > / g or less.
  • curing state is 20 or less.
  • curing state is 13 or less.
  • the epoxy resin contains an inorganic filler, or crosslink density in the cured state is 0.9 mol / cm 3 or less, or 1.0 mol / cm 3 or more, the resin composition for sealing object.
  • the sealing resin composition as described in ⁇ 5> whose dielectric relaxation value measured by frequency 0.001 Hz in ⁇ 6> hardening
  • ⁇ 9> crosslink density in the cured state or at 0.9 mol / cm 3 or less, or 1.0 mol / cm comprising the three steps of controlling so that the above, one of ⁇ 1> to ⁇ 8>
  • the manufacturing method of the resin composition for sealing of 1 item ⁇ 10> A support, a semiconductor element disposed on the support, and the sealing resin composition according to any one of ⁇ 1> to ⁇ 8>, which seals the semiconductor element And a cured product.
  • a semiconductor device including a step of disposing a semiconductor element on a support, and a step of sealing with the sealing resin composition according to any one of the above-mentioned semiconductor elements ⁇ 1> to ⁇ 8>. Manufacturing method.
  • a sealing resin composition and a method for producing a sealing resin composition capable of producing a semiconductor device excellent in electric reliability, and a semiconductor device and a method for producing a semiconductor device using the same are provided. .
  • the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps.
  • numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
  • particles corresponding to each component may contain a plurality of types.
  • the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
  • the sealing resin composition of the present embodiment contains an epoxy resin and an inorganic filler, and the specific surface area of the inorganic filler is 3.28 m 2 / g or less.
  • the specific surface area of the inorganic filler contained in the sealing resin composition is correlated with the dielectric relaxation value measured at 0.001 Hz in the cured resin composition. It turned out that it is related. The reason for this is not necessarily clear, but it is assumed that the number of hydroxyl groups present on the surface of the inorganic filler changes in accordance with the specific surface area, which is responsible for the increase or decrease of the dielectric relaxation value measured at low frequencies. ing.
  • the specific surface area of the inorganic filler is a value measured by the BET method.
  • the dielectric relaxation value measured in the cured state of the sealing resin composition in the present embodiment is a value measured by low-frequency dielectric measurement. From the viewpoint of the electrical reliability of the semiconductor device, the dielectric relaxation value measured at a frequency of 0.001 Hz is preferably 20 or less, more preferably 17 or less, and still more preferably 15 or less. Is particularly preferred.
  • the dielectric relaxation value measured in a cured state of the sealing resin composition is considered to decrease as the amount of the inorganic filler is large (for example, 70% by volume or more of the entire sealing resin composition).
  • increasing the amount of the inorganic filler tends to cause problems such as difficulty in the kneading operation and deterioration of the dispersibility.
  • the dielectric relaxation value measured at a frequency of 0.001 Hz can be controlled by adjusting the specific surface area of the inorganic filler. Therefore, the effect of improving the electrical reliability can be expected regardless of the increase in the amount of the inorganic filler.
  • the sealing resin composition of the present embodiment may contain the silane coupling agent defined in the second embodiment, and may satisfy the conditions of the crosslink density defined in the third embodiment.
  • the sealing resin composition of the present embodiment contains an epoxy resin, an inorganic filler, and a silane coupling agent having —NH 2 or —SH.
  • a silane coupling agent having —NH 2 N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyl Trimethoxysilane, 3-aminopropyltriethoxysilane and the like can be mentioned.
  • silane coupling agent having —SH examples include 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like.
  • the coupling agent may be used in combination with a coupling agent other than a silane coupling agent having —NH 2 or —SH.
  • a sealing resin composition containing a silane coupling agent having -NH 2 or -SH has a sealing resin composition containing a silane coupling agent having another functional group. It has been found that the dielectric relaxation value measured at a frequency of 0.001 Hz tends to be smaller than that of the object. The reason for this is not necessarily clear, but it is speculated that -NH 2 or -SH is more reactive with the epoxy group of the epoxy resin than other functional groups, and has a greater effect of suppressing molecular motion of the epoxy resin. ing.
  • the dielectric relaxation value measured in the cured state of the sealing resin composition in the present embodiment is a value measured by low-frequency dielectric measurement.
  • the dielectric relaxation value measured at a frequency of 0.001 Hz of the sealing resin composition is preferably 20 or less, more preferably 15 or less, and 13 or less. Is more preferred.
  • the maximum value of the dielectric relaxation value obtained at a frequency of 0 Hz to 0.01 Hz is preferably 40 or less, more preferably 30 or less, and still more preferably 20 or less.
  • the dielectric relaxation value of the sealing resin composition is considered to decrease as the amount of the inorganic filler is large (for example, 70% by volume or more of the total of the sealing resin composition).
  • increasing the amount of the inorganic filler tends to cause problems such as difficulty in the kneading operation and deterioration of the dispersibility.
  • the dielectric relaxation value measured at a frequency of 0.001 Hz can be controlled by using a silane coupling agent having a specific substituent. Therefore, the effect of improving the electrical reliability can be expected regardless of the increase in the amount of the inorganic filler.
  • the dielectric loss tangent value of the resin composition for sealing falls by surface-treating an inorganic filler using the silane coupling agent which has a glycidyl group (for example, Unexamined-Japanese-Patent No. 9-194690)
  • the contribution to the dielectric constant in the low frequency region has not been reported so far.
  • the sealing resin composition of the present embodiment may satisfy the conditions of the inorganic filler defined in the first embodiment, and may satisfy the conditions of the crosslink density defined in the third embodiment.
  • ⁇ Resin composition for sealing (third embodiment)> Encapsulating resin composition of the present embodiment, an epoxy resin, containing an inorganic filler, the crosslinking density in the cured state is 0.9 mol / cm 3 or less or where 1.0 mol / cm 3 It is above.
  • the semiconductor device manufactured using the resin composition for sealing of this embodiment is excellent in electrical reliability.
  • cured material (Hereafter, it is also only called "crosslink density.”
  • the unit of crosslink density may also be called mol / cc.)
  • the dielectric relaxation value measured at a frequency of 0.001 Hz tends to increase as the crosslinking density increases, 1 It was found that in the range of 0 mol / cm 3 or more, the dielectric relaxation value measured at a frequency of 0.001 Hz tends to decrease as the crosslink density increases.
  • crosslink density of the sealing resin composition is related to the dielectric relaxation value measured at a frequency of 0.001 Hz as described above is not necessarily clear, but the higher the crosslink density, the more the dipolar motion While it tends to be suppressed, it is presumed that the amount of dipole tends to increase as the crosslink density increases.
  • a semiconductor device using a sealing resin composition having a sufficiently small dielectric relaxation value measured at a frequency of 0.001 Hz in a cured state is a leak generated in a high temperature reverse bias test. It was found that the current was sufficiently small and the electrical reliability was excellent.
  • the sealing resin composition of the present disclosure is a semiconductor excellent in electrical reliability as a result of the crosslink density being within a specific range and the dielectric relaxation value measured at a frequency of 0.001 Hz being suppressed to a small value. It is believed that the device can be manufactured.
  • the crosslink density of the sealing resin composition is a value calculated according to the following equation using the dynamic storage elastic modulus of the rubber region obtained by the dynamic viscoelasticity measurement device.
  • n E '/ 3 RT
  • n Crosslink density [mol / cm 3 ]
  • E ' dynamic storage elastic modulus [Pa]
  • R Gas constant 8.31 [J / mol ⁇ K]
  • T Absolute temperature [K]
  • the lower limit value of the crosslinking density of the sealing resin composition is not particularly limited, but is preferably 0.3 mol / cm 3 or more from the viewpoint of curability.
  • the upper limit of the crosslink density of the sealing resin composition is not particularly limited, but is preferably 3.0 mol / cm 3 or less from the viewpoint of temperature cycling.
  • the dielectric relaxation value measured in the cured state of the sealing resin composition in the present embodiment is a value measured by the low frequency side dielectric constant. From the viewpoint of the electrical reliability of the semiconductor device, the dielectric relaxation value measured at a frequency of 0.001 Hz in the cured state of the sealing resin composition is preferably 20 or less, and more preferably 16 or less. . In addition, the maximum value of the dielectric relaxation value measured at a frequency of 0 Hz to 0.01 Hz is preferably 40 or less, and more preferably 16 or less.
  • the dielectric relaxation value of the sealing resin composition is considered to decrease as much as the amount of the inorganic filler (for example, 70% by volume or more of the entire sealing resin composition).
  • increasing the amount of the inorganic filler tends to cause problems such as difficulty in the kneading operation and deterioration of the dispersibility.
  • the dielectric relaxation value can be controlled by adjusting the crosslink density of the sealing resin composition. Therefore, the effect of improving the electrical reliability can be expected regardless of the increase in the amount of the inorganic filler.
  • the sealing resin composition of the present embodiment may satisfy the conditions of the inorganic filler defined in the first embodiment, and may contain the coupling agent defined in the second embodiment.
  • Epoxy resin The kind in particular of the epoxy resin contained in the resin composition for closure is not restricted, but can be chosen from what is generally used for the resin composition for closure. Specifically, at least one phenol selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcine, catechol, bisphenol A and bisphenol F and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • phenol compounds such as phenol, cresol, xylenol, resorcine, catechol, bisphenol A and bisphenol F
  • naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • Novolak type epoxy resin obtained by epoxidizing a novolak resin obtained by condensation or cocondensation of an organic compound with an aliphatic aldehyde compound such as formaldehyde, acetaldehyde or propionaldehyde under an acidic catalyst Ortho cresol novolac type epoxy resin etc.
  • phenol novolac type epoxy resin obtained by epoxidizing a novolak resin obtained by condensation or cocondensation of an organic compound with an aliphatic aldehyde compound such as formaldehyde, acetaldehyde or propionaldehyde under an acidic catalyst
  • Ortho cresol novolac type epoxy resin etc. obtained by condensation or co-condensation of the above-mentioned phenolic compound with an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde under an acid catalyst
  • Triphenylmethane-type epoxy resin which is obtained by epoxidizing triphenylmethane-type
  • diphenylmethane type epoxy resin biphenyl type epoxy resin which is a diglycidyl ether of an alkyl-substituted or unsubstituted biphenol; diglycidyl of a stilbene type phenol compound Ethers: stilbene type epoxy resins; diglycidyl ethers such as bisphenol S: sulfur atom-containing epoxy resins; butanediol, polyethylene glycol, polypropylene glycol, etc.
  • Epoxy resins which are glycidyl ethers of coals; glycidyl ester type epoxy resins which are glycidyl esters of polyvalent carboxylic acid compounds such as phthalic acid, isophthalic acid and tetrahydrophthalic acid; bonded to nitrogen atoms such as aniline, diaminodiphenylmethane and isocyanuric acid
  • Glycidyl amine type epoxy resin which is obtained by substituting the active hydrogen with glycidyl group
  • dicyclopentadiene type epoxy resin which is obtained by epoxidizing a co-condensed resin of dicyclopentadiene and a phenol compound; epoxidized olefin bond in the molecule Vinylcyclohexene diepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5,5-s
  • the epoxy equivalent (molecular weight / epoxy group number) of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability, it is preferably 100 g / eq to 1000 g / eq, and more preferably 150 g / eq to 500 g / eq.
  • the temperature is preferably 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and more preferably 50 ° C. to 130 ° C. from the viewpoint of handleability at the time of preparation of the sealing resin composition.
  • the melting point of the epoxy resin is a value measured by differential scanning calorimetry (DSC), and the softening point of the epoxy resin is a value measured by a method (ring and ball method) according to JIS K 7234: 1986.
  • the content of the epoxy resin in the sealing resin composition is preferably 0.5% by mass to 50% by mass, and more preferably 2% by mass to 30% from the viewpoint of strength, fluidity, heat resistance, moldability, etc. More preferably, it is%.
  • the sealing resin composition may contain a curing agent.
  • the type of curing agent is not particularly limited, and examples thereof include phenol curing agents, amine curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, blocked isocyanate curing agents, and the like. From the viewpoint of improving heat resistance, those having two or more phenolic hydroxyl groups in one molecule (phenol curing agent) are preferable.
  • phenolic curing agents polyhydric phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenols; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol And at least one phenolic compound selected from the group consisting of phenol compounds such as aminophenol and naphthol compounds such as .alpha.-naphthol, .beta.-naphthol, dihydroxynaphthalene and aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde
  • phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenols
  • phenol curing agents may be used alone or in combination of two or more.
  • the functional group equivalent of the curing agent (hydroxyl equivalent in the case of a phenol curing agent) is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, electrical reliability, etc., 70 g / eq to 1000 g / eq is preferable, and 80 g / eq to 500 g / eq is more preferable.
  • the functional group equivalent of the curing agent is a value measured by a method according to JIS K 0070: 1992.
  • the temperature is preferably 40 ° C. to 180 ° C., and from the viewpoint of handleability at the time of production of the sealing resin composition, it is more preferably 50 ° C. to 130 ° C. .
  • the melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
  • the compounding ratio of the epoxy resin and the curing agent is not particularly limited. From the viewpoint of reducing the amount of each unreacted component, the ratio of the number of functional groups of the curing agent to the number of epoxy groups of the epoxy resin (number of epoxy groups of epoxy resin / number of functional groups of curing agent) is in the range of 0.5 to 2.0. It is preferable to set as such, it is more preferable to set it in the range of 0.6 to 1.3, and it is further preferable to set it in the range of 0.8 to 1.2.
  • the sealing resin composition may contain a curing accelerator.
  • the type of curing accelerator is not particularly limited, and can be selected according to the type of epoxy resin, the desired properties of the sealing resin composition, and the like.
  • diazabicycloalkenes such as 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), etc.
  • Cyclic amidine compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole; derivatives of the cyclic amidine compounds; phenol novolac salts of the cyclic amidine compounds or derivatives thereof; Of maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1 , 4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1, Compounds having an intramolecular polarization formed by addition of compounds having a ⁇ bond such as quinone compounds such as -benzoquinone and diazophenylmethane; tetraphenyl borate salts of DBU, tetraphen
  • tertiary amine compounds tetra-n-butylammonium acetate, tetra-n-butylammonium phosphate, tetraethylammonium acetate, tetra-n-hexyl benzoate
  • Ammonium salt compounds such as ammonium sulfate and tetrapropylammonium hydroxide; triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkyl alkoxyphenyl) phosphine, tris (Dialkylphenyl) phosphine, tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl)
  • Sphin compounds Sphin compounds; said tertiary phosphine or said phosphine compound and maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2, Quinone compounds such as 3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, and compounds having a ⁇ bond such as diazophenylmethane
  • a compound having an internal polarization obtained through the step of dehydrohalogenation; tetra-substituted phosphonium such as tetraphenyl phosphonium; tetra-substituted phosphonium having no phenyl group bonded to a boron atom such as tetra-p-tolylborate Tetra-substituted borate; salts of tetraphenylphosphonium and phenol compounds, etc.
  • the amount thereof is 0.1 parts by mass to 100 parts by mass of the resin component (the total of the epoxy resin and the curing agent contained as necessary, and the same applies hereinafter)
  • the amount is preferably 30 parts by mass, and more preferably 1 part by mass to 15 parts by mass. If the amount of the curing accelerator is 0.1 parts by mass or more with respect to 100 parts by mass of the resin component, it tends to be cured well in a short time. If the amount of the curing accelerator is 30 parts by mass or less with respect to 100 parts by mass of the resin component, the curing rate tends to be too fast to obtain a good molded product.
  • the kind in particular of the inorganic filler contained in the resin composition for closure is not restricted. Specifically, fused silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon silicate, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite And inorganic materials such as titania, talc, clay and mica. You may use the inorganic filler which has a flame-retardant effect. Examples of the inorganic filler having a flame retardant effect include composite metal hydroxides such as aluminum hydroxide, magnesium hydroxide, a composite hydroxide of magnesium and zinc, zinc borate and the like.
  • silica such as fused silica is preferable from the viewpoint of reducing the linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity.
  • the inorganic filler may be used alone or in combination of two or more.
  • the content of the inorganic filler in the sealing resin composition is not particularly limited. From the viewpoint of flowability and strength, the content is preferably 30% by volume to 90% by volume, and more preferably 50% by volume to 85% by volume, of the entire sealing resin composition. If the content of the inorganic filler is 30% by volume or more of the whole resin composition for sealing, properties such as the thermal expansion coefficient, thermal conductivity, and elastic modulus of the cured product tend to be further improved. When the content of the inorganic filler is 90% by volume or less of the whole of the sealing resin composition, the increase in viscosity of the sealing resin composition is suppressed, the flowability is further improved, and the moldability is better. Tend to
  • the inorganic filler When the inorganic filler is particulate, its average particle size is not particularly limited.
  • the volume average particle diameter of the entire inorganic filler is preferably 0.2 ⁇ m to 10 ⁇ m, and more preferably 0.5 ⁇ m to 5 ⁇ m.
  • the volume average particle diameter When the volume average particle diameter is 0.2 ⁇ m or more, the increase in the viscosity of the sealing resin composition tends to be further suppressed.
  • the volume average particle diameter When the volume average particle diameter is 10 ⁇ m or less, the filling property in the narrow gap tends to be further improved.
  • the volume average particle diameter of the inorganic filler can be measured as a volume average particle diameter (D50) by a laser scattering diffraction particle size distribution measuring apparatus.
  • the sealing resin composition may contain a coupling agent.
  • the coupling agent include known coupling agents such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, silane compounds such as vinylsilane, titanium compounds, aluminum chelate compounds, and aluminum / zirconium compounds. .
  • the amount of the coupling agent is preferably 0.05 parts by mass to 5 parts by mass with respect to 100 parts by mass of the inorganic filler. It is more preferable that the amount is about 2.5 parts by mass.
  • the amount of the coupling agent is 0.05 parts by mass or more with respect to 100 parts by mass of the inorganic filler, adhesion to the frame tends to be further improved.
  • the amount of the coupling agent is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
  • the sealing resin composition may contain an ion exchanger.
  • the ion exchanger may be included from the viewpoint of improving the moisture resistance and the high-temperature standing characteristics of the electronic component device provided with the element to be sealed.
  • the ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples thereof include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth.
  • the ion exchangers may be used alone or in combination of two or more. Among them, hydrotalcite represented by the following general formula (A) is preferable.
  • the sealing resin composition contains an ion exchanger
  • the content thereof is not particularly limited as long as it is an amount sufficient to capture ions such as halogen ions.
  • the amount is preferably 0.1 parts by mass to 30 parts by mass, and more preferably 1 part by mass to 5 parts by mass with respect to 100 parts by mass of the resin component.
  • the sealing resin composition may contain a release agent from the viewpoint of obtaining good releasability with the mold at the time of molding.
  • the release agent is not particularly limited, and conventionally known ones can be used. Specific examples thereof include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene.
  • the mold release agent may be used alone or in combination of two or more.
  • the amount is preferably 0.01 parts by mass to 10 parts by mass, and more preferably 0.1 parts by mass to 5 parts by mass with respect to 100 parts by mass of the resin component.
  • the amount of the release agent is 0.01 parts by mass or more based on 100 parts by mass of the resin component, the releasability tends to be sufficiently obtained. If the amount is 10 parts by mass or less, better adhesion tends to be obtained.
  • the sealing resin composition may contain a flame retardant.
  • the flame retardant is not particularly limited, and conventionally known flame retardants can be used. Specifically, organic or inorganic compounds containing a halogen atom, an antimony atom, a nitrogen atom or a phosphorus atom, metal hydroxides and the like can be mentioned.
  • the flame retardant may be used alone or in combination of two or more.
  • the amount thereof is not particularly limited as long as it is an amount sufficient to obtain a desired flame retardant effect.
  • the amount is preferably 1 part by mass to 30 parts by mass, and more preferably 2 parts by mass to 15 parts by mass with respect to 100 parts by mass of the resin component.
  • the sealing resin composition may further contain a colorant.
  • colorants include known colorants such as carbon black, organic dyes, organic pigments, titanium oxide, red lead, red iron oxide and the like.
  • the content of the coloring agent can be appropriately selected according to the purpose and the like.
  • the colorants may be used alone or in combination of two or more.
  • the sealing resin composition may contain a stress relaxation agent such as silicone oil or silicone rubber particles. By including a stress relaxation agent, warpage of the package and occurrence of package cracks can be further reduced.
  • the stress relieving agent includes known stress relieving agents (flexible agents) generally used.
  • thermoplastic elastomers such as silicone, styrene, olefin, urethane, polyester, polyether, polyamide, and polybutadiene, NR (natural rubber), NBR (acrylonitrile-butadiene rubber), acrylic Core particles such as rubber particles such as rubber, urethane rubber and silicone powder, methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer and methyl methacrylate-butyl acrylate copolymer
  • MBS methyl methacrylate-styrene-butadiene copolymer
  • MVS methyl methacrylate-silicone copolymer
  • methyl methacrylate-butyl acrylate copolymer The rubber particle etc. which have a structure are mentioned.
  • the stress relaxation agents may be used alone or in combination of two or more.
  • the method for preparing the sealing resin composition is not particularly limited.
  • a general method there is a method in which components of a predetermined blending amount are sufficiently mixed by a mixer or the like, then melt-kneaded by a mixing roll, an extruder or the like, cooled, and crushed. More specifically, for example, a method of uniformly stirring and mixing predetermined amounts of the above-mentioned components, kneading with a kneader, roll, extruder or the like which has been heated to 70 ° C. to 140 ° C. in advance, cooling and crushing Can be mentioned.
  • the sealing resin composition is preferably solid at normal temperature and normal pressure (for example, 25 ° C. and atmospheric pressure).
  • the shape in the case where the sealing resin composition is solid is not particularly limited, and examples thereof include powder, particles, and tablets.
  • Method of manufacturing the encapsulating resin composition of the present disclosure includes a step of controlling so that the crosslink density in the cured state is 0.9 mol / cm 3 or less or where 1.0 mol / cm 3 or more .
  • crosslink density of the sealing resin composition is controlled to be 0.9 mol / cm 3 or less or 1.0 mol / cm 3 or more is not particularly limited.
  • the crosslink density can be controlled to be in the above range by changing the type, the content, and the like of each component contained in the sealing resin composition.
  • the resin composition for sealing which can manufacture the semiconductor device which is excellent in electrical reliability can be manufactured.
  • the details and the preferred embodiment of the sealing resin composition produced by the above method are as described above as the details and the preferred embodiment of the sealing resin composition of the present disclosure.
  • sealing resin composition (Use of sealing resin composition)
  • the use in particular of the sealing resin composition is not restrict
  • the sealing resin composition of the present disclosure is excellent in the electrical reliability when used under high voltage and large current conditions. For this reason, although it is used suitably especially for sealing of a power semiconductor element, you may use for sealing of the semiconductor element used for a calculation, a memory, etc.
  • a semiconductor device of the present disclosure includes a support, a semiconductor element disposed on the support, and a cured product of the above-described sealing resin composition sealing the semiconductor element.
  • the type of support and semiconductor element used for the semiconductor device is not particularly limited, and those generally used for manufacturing the semiconductor device can be used.
  • the semiconductor device of the present disclosure is excellent in electrical reliability when used under high voltage and large current conditions by using the above-described sealing resin composition for sealing a semiconductor element. Therefore, although it is particularly suitably used as a power semiconductor device, it may be a semiconductor device used for calculation, storage and the like.
  • the method of manufacturing a semiconductor device of the present disclosure includes the steps of: arranging a semiconductor element on a support; and sealing the semiconductor element with the sealing resin composition described above.
  • the method for carrying out each of the above steps is not particularly limited, and can be carried out by a general method.
  • the types of the support and the semiconductor element used in the manufacture of the semiconductor device are not particularly limited, and those generally used in the manufacture of the semiconductor device can be used.
  • the manufacturing method of the semiconductor device of this indication manufactures the semiconductor device which is excellent in the electric reliability at the time of using on high voltage and a large electric current condition by using the resin composition for sealing mentioned above for sealing of a semiconductor element. it can. Therefore, the method is particularly suitable as a method of manufacturing a power semiconductor device, but it may be a method of manufacturing a semiconductor device used for calculation, storage, and the like.
  • Epoxy resin A biphenylene skeleton-containing phenol aralkyl type epoxy resin having an epoxy equivalent of 241 and a softening point of 96 ° C.
  • Curing agent xylylene type phenol resin having a hydroxyl equivalent of 175 and a softening point of 70 ° C.
  • Hardening accelerator Betaine-type adduct of triphenylphosphine and 1,4-benzoquinone ⁇ Inorganic filler 1 ...
  • spherical fused silica with an average particle diameter of 24.3 ⁇ m and a specific surface area of 2.86 m 2 / g ⁇ inorganic filler 2 ... a spherical fused silica with an average particle shape of 0.13 ⁇ m and a specific surface area of 7.00 m 2 / g ⁇ Silane coupling agent ... ⁇ -Glycidoxypropyltrimethoxysilane
  • the prepared resin composition for sealing was cured to prepare a test piece for evaluation of dielectric relaxation value.
  • a molding resin composition is molded using a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 120 seconds, and then cured for 5 hours at 175 ° C. went.
  • the size of the test piece was a disc having a diameter of 50 mm and a thickness of 1 mm.
  • the dielectric relaxation value was measured about the produced test piece.
  • the measurement was performed using a dielectric relaxation measurement device comprising a combination of an impedance measurement device having a dielectric constant measurement interface as shown in FIG. 1 and a dynamic viscoelasticity measurement device.
  • 1a indicates a dielectric constant measurement interface
  • 1b indicates an impedance measurement device
  • 2 indicates a dynamic viscoelasticity measurement device
  • 2a indicates a measurement electrode. That is, in this dielectric relaxation measuring apparatus, the interface 1a for dielectric constant measurement connected and disposed on the impedance measuring apparatus 1b is connected to the dynamic viscoelasticity measuring apparatus 2, and measurement is performed on the dynamic viscoelasticity measuring apparatus 2 The electrode 2a is attached. Then, a sample to be measured is held between the measurement electrodes 2a to perform measurement.
  • a 1296 type permittivity measurement interface manufactured by Solartron, UK is used
  • the impedance measurement device 1b a 1255B type impedance analyzer manufactured by Solartron, UK is used, and a dynamic viscoelasticity measuring device As (2), RSA manufactured by TA Instruments was used.
  • the measurement was performed to the low dielectric side (frequency: 0.0001 to 0.00001 Hz) according to the time-temperature conversion rule (WLF formula), and the final reaching dielectric constant was measured.
  • WLF formula time-temperature conversion rule
  • FIG. 2 is a scatter diagram in which the specific surface area (surface area per g, m 2 ) of the inorganic filler contained in each sample is taken as the X coordinate and the dielectric relaxation value is taken as the Y coordinate. As shown in FIG. 2, a positive correlation was recognized between the specific surface area of the inorganic filler and the dielectric relaxation value measured at a frequency of 0.001 Hz.
  • Second Embodiment The following components were compounded in amounts shown in Table 2 (unit: parts by mass), roll kneading was carried out under conditions of kneading temperature 100 ° C., kneading time 10 minutes, and a sealing resin composition was prepared.
  • Epoxy resin A biphenylene skeleton-containing phenol aralkyl type epoxy resin having an epoxy equivalent of 241 and a softening point of 96 ° C. (Nippon Kayaku Co., Ltd., trade name CER-3000 L)
  • Curing agent xylylene type phenol resin having a hydroxyl equivalent of 175 and a softening point of 70 ° C.
  • Test pieces were produced in the same manner as in the first embodiment using the prepared resin composition for sealing, and the dielectric relaxation value was measured. The results are shown in Table 2.
  • the sealing resin composition of the example using a silane coupling agent having -NH 2 or -SH as a coupling agent used a silane coupling agent having another functional group.
  • the dielectric relaxation value at 0.001 Hz was smaller than that of the sealing resin composition of the comparative example.
  • Epoxy resin C Biphenyl novolac epoxy resin (NC-3000, Nippon Kayaku Co., Ltd.)
  • Epoxy resin D O-cresol novolac glycidyl ether (N500P, DIC Corporation)
  • Epoxy resin E Naphthalene-modified novolac epoxy resin having a softening point of 58 ° C.
  • Epoxy resin F DCPD type epoxy resin (HP-7200, DIC Corporation) ⁇ Epoxy resin G: Epoxy resin with a melting point of 107 ° C (EXA-5300, DIC Corporation) ⁇ Epoxy resin H: Dicyclopentadiene-dimethylol diglycyl ether (EP-HA01, ADEKA Co., Ltd.) Hardener a: Phenolic resin (MEW-1800, Meiwa Kasei Co., Ltd.) Hardener b: Polycondensate of phenol and p-xylene glycol dimethyl ether (MEH-7800, Meiwa Kasei Co., Ltd.) Hardening accelerator: Betaine-type adduct of triphenylphosphine and 1,4-benzoquinone Coupling agent: 3- (phenylamino) propyltrimethoxysilane (KBM-573, Shin-Etsu Chemical Co., Ltd.) Carbon:
  • Test pieces were produced in the same manner as in the first embodiment using the prepared resin composition for sealing, and the dielectric relaxation value was measured. Furthermore, using the dynamic storage elastic modulus of the rubber region obtained by the dynamic viscoelasticity measurement device, the value calculated according to the following equation was taken as the crosslink density.
  • RSA 3 manufactured by TA Instruments was used as a measurement device.
  • Formula: n E '/ 3 RT n: Crosslink density [mol / cm 3 ]
  • E ' dynamic storage elastic modulus [Pa]
  • R Gas constant 8.31 [J / mol ⁇ K]
  • T Absolute temperature [K]
  • FIG. 3 is a scatter diagram in which the crosslink density (mol / cm 3 ) of the sealing resin composition is taken as the X coordinate, and the dielectric relaxation value measured at a frequency of 0.001 Hz is shown as the Y coordinate.
  • the crosslinking density of the sealing resin composition is 0.9 mol / cm 3 or less, a positive correlation is recognized between the crosslinking density and the dielectric relaxation value measured at a frequency of 0.001 Hz. It was done. Further, when the crosslink density of the sealing resin composition was 1.0 mol / cm 3 or more, a negative correlation was recognized between the crosslink density and the dielectric relaxation value measured at a frequency of 0.001 Hz. Further, the crosslinking density of the sealing resin composition is dielectric relaxation values measured at frequencies 0.001Hz when it 0.9 mol / cm 3 or less or 1.0 mol / cm 3 or more was 20 or less.
  • Epoxy resin B reaction product of 2,2'-dimethyl-4,4'-dihydroxy-5,5'-di-tert-butyldiphenyl sulfide and chloromethyl oxirane (YSLV-120TE, Nippon Steel Sumikin Chemical Co., Ltd.
  • Epoxy resin C tetramethyl biphenol type solid epoxy resin (YX-4000, Mitsubishi Chemical Corporation)
  • Epoxy resin D mixture of ⁇ solid epoxy resin and 4,4'-biphenol type epoxy resin (YX-7399, Mitsubishi Chemical Corporation)
  • Hardener Polycondensate of phenol and p-xylene glycol dimethyl ether (MEH-7800, Meiwa Kasei Co., Ltd.)
  • Curing agent accelerator b' Triphenyl phosphine and 1,4-benzoquinone adduct ⁇ Coupling agent a ...
  • Coupling agent b Methyltrimethoxysilane (KBM-13, Shin-Etsu Chemical Co., Ltd.)
  • Coupling agent c 3-glycidyloxypropyltrimethoxysilane (KBM-403, Shin-Etsu Chemical Co., Ltd.)
  • Coupling agent d Diphenyldimethoxysilane (KBM-202SS, Shin-Etsu Chemical Co., Ltd.) ⁇ Inorganic filler ... Amorphous silicon dioxide (containing less than 5% of crystalline material) (FB-9454, Denka Co., Ltd.)
  • the dielectric relaxation value was measured in the same manner as in the first embodiment using the prepared sealing resin composition. The measurement was performed at a frequency of 0.001 Hz and a frequency of 1 MHz, respectively.
  • a diode was die-bonded to a discrete package (TO-247) using a solder, and an Al wire was further bonded, and then sealed with a sealing resin composition to prepare an evaluation package.
  • This package was placed in a high-temperature dryer, and a voltage was applied in consideration of the package thermal capacity obtained by the transient thermal analyzer (T3Ster).
  • T3Ster transient thermal analyzer
  • the temperature in the high-temperature dryer was 170 ° C.
  • the voltage was 1280 V.
  • the package was left in a high-temperature dryer for 1000 hours with a voltage applied, and then removed.
  • the leak current was measured using a Curve Tracer (CS-3200) manufactured by Iwasaki Communication Co., Ltd.
  • FIG. 4 shows the leakage current in the high temperature reverse bias test with the measured value of the dielectric relaxation value (frequency 0.001 Hz) performed on a sample prepared from the sealing resin composition of Reference Examples 1 to 5 as the X coordinate. It is a scatter diagram which showed (micro
  • FIG. 5 shows measured values of dielectric relaxation value (frequency 1 MHz) of samples prepared from the sealing resin compositions of Reference Examples 2 to 5 as X coordinates, and leakage current ( ⁇ A) in the high temperature reverse bias test. Is a scatter diagram showing Y as a Y coordinate.

Abstract

This sealing resin composition satisfies at least any of conditions (1)-(3) below: condition (1) an epoxy resin and an inorganic filler material are included, and the specific surface area of the inorganic filler material is not more than 3.28 m2/g; condition (2) an epoxy resin, an inorganic filler material, and a silane coupling agent including –NH2 or –SH are included; and condition (3) an epoxy resin and an inorganic filler material are included, and the crosslink density in a cured state is either 0.9 mol/cm3 or lower, or 1.0 mol/cm3 or higher.

Description

封止用樹脂組成物、封止用樹脂組成物の製造方法、半導体装置及び半導体装置の製造方法Sealing resin composition, method of manufacturing sealing resin composition, semiconductor device, and method of manufacturing semiconductor device
 本発明は、封止用樹脂組成物、封止用樹脂組成物の製造方法、半導体装置及び半導体装置の製造方法に関する。 The present invention relates to a sealing resin composition, a method of manufacturing a sealing resin composition, a semiconductor device, and a method of manufacturing a semiconductor device.
 パワー半導体素子は、電力の電圧又は周波数の制御、直流から交流又は交流から直流の変換等に主に使用される半導体素子の1種であり、電子機器、モーター、発電装置等の電力を動源とする各種分野において用いられている。このため、パワー半導体素子を備える半導体装置(パワー半導体装置)は、高電圧かつ大電流条件下での使用にも耐えうる電気信頼性が求められる。例えば、高温逆バイアス試験(High Temperature Reverse Bias、HTRB)において発生するリーク電流が充分に小さいことが求められる(例えば、特許文献1参照)。 The power semiconductor device is a kind of semiconductor device mainly used for control of voltage or frequency of electric power, direct current to alternating current, or conversion from alternating current to direct current, and is a source of power for electronic devices, motors, power generators and the like. It is used in various fields. For this reason, the semiconductor device (power semiconductor device) provided with the power semiconductor element is required to have electrical reliability that can withstand use under high voltage and large current conditions. For example, it is required that the leak current generated in a high temperature reverse bias test (High Temperature Reverse Bias, HTRB) be sufficiently small (see, for example, Patent Document 1).
特開2017-45747号公報Unexamined-Japanese-Patent No. 2017-45747
 パワー半導体素子を封止する封止用樹脂組成物としては、エポキシ樹脂等のエポキシ樹脂を含む樹脂組成物が広く用いられている。パワー半導体装置の電気信頼性の向上のために、ガラス転移温度、不純物含有率等の観点からのパワー半導体素子の封止用に適した樹脂組成物の検討が進められているが、これらの特性では説明がつかない部分も存在している。
 本発明は上記事情に鑑み、電気信頼性に優れる半導体装置を製造可能な封止用樹脂組成物及び封止用樹脂組成物の製造方法、並びにこれを用いる半導体装置及び半導体装置の製造方法を提供することを目的とする。
A resin composition containing an epoxy resin such as an epoxy resin is widely used as a sealing resin composition for sealing a power semiconductor element. In order to improve the electrical reliability of power semiconductor devices, studies are being conducted on resin compositions suitable for sealing power semiconductor elements from the viewpoint of glass transition temperature, impurity content, etc. There are some parts that can not be explained.
In view of the above circumstances, the present invention provides a sealing resin composition capable of producing a semiconductor device having excellent electrical reliability, a method of producing a sealing resin composition, and a semiconductor device and a method of producing a semiconductor device using the same. The purpose is to
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>エポキシ樹脂と、無機充填材とを含有し、前記無機充填材の比表面積が3.28m/g以下である、封止用樹脂組成物。
<2>硬化した状態で周波数0.001Hzで測定される誘電緩和値が20以下である、<1>に記載の封止用樹脂組成物。
<3>エポキシ樹脂と、無機充填材と、-NH又は-SHを有するシランカップリング剤とを含有する、封止用樹脂組成物。
<4>硬化した状態で周波数0.001Hzで測定される誘電緩和値が13以下である、<3>に記載の封止用樹脂組成物。
<5>エポキシ樹脂と、無機充填材とを含有し、硬化した状態での架橋密度が0.9mol/cm以下であるか、又は1.0mol/cm以上である、封止用樹脂組成物。
<6>硬化した状態で周波数0.001Hzで測定される誘電緩和値が20以下である、<5>に記載の封止用樹脂組成物。
<7>パワー半導体素子の封止に用いられる、<1>~<6>のいずれか1項に記載の封止用樹脂組成物。
<8>前記無機充填材の含有率が、前記封止用樹脂組成物の70体積%以上である、<1>~<7>のいずれか1項に記載の封止用樹脂組成物。
<9>硬化した状態での架橋密度が0.9mol/cm以下であるか、又は1.0mol/cm以上となるように制御する工程を含む、<1>~<8>のいずれか1項に記載の封止用樹脂組成物の製造方法。
<10>支持体と、前記支持体上に配置される半導体素子と、前記半導体素子を封止している<1>~<8>のいずれか1項に記載の封止用樹脂組成物の硬化物と、を備える半導体装置。
<11>半導体素子を支持体上に配置する工程と、前記半導体素子<1>~<8>のいずれか1項に記載の封止用樹脂組成物で封止する工程と、を含む半導体装置の製造方法。
Means for solving the above problems include the following embodiments.
The sealing resin composition containing a <1> epoxy resin and an inorganic filler, and the specific surface area of the said inorganic filler is 3.28 m < 2 > / g or less.
The sealing resin composition as described in <1> whose dielectric relaxation value measured by frequency 0.001 Hz in <2> hardening | curing state is 20 or less.
<3> the epoxy resin, an inorganic filler, containing a silane coupling agent having an -NH 2 or -SH, encapsulating resin composition.
The sealing resin composition as described in <3> whose dielectric relaxation value measured by frequency 0.001 Hz in <4> hardening | curing state is 13 or less.
<5> the epoxy resin contains an inorganic filler, or crosslink density in the cured state is 0.9 mol / cm 3 or less, or 1.0 mol / cm 3 or more, the resin composition for sealing object.
The sealing resin composition as described in <5> whose dielectric relaxation value measured by frequency 0.001 Hz in <6> hardening | curing state is 20 or less.
The sealing resin composition according to any one of <1> to <6>, which is used for sealing a <7> power semiconductor element.
The sealing resin composition according to any one of <1> to <7>, wherein a content of the inorganic filler is 70% by volume or more of the sealing resin composition.
<9> crosslink density in the cured state or at 0.9 mol / cm 3 or less, or 1.0 mol / cm comprising the three steps of controlling so that the above, one of <1> to <8> The manufacturing method of the resin composition for sealing of 1 item.
<10> A support, a semiconductor element disposed on the support, and the sealing resin composition according to any one of <1> to <8>, which seals the semiconductor element And a cured product.
<11> A semiconductor device including a step of disposing a semiconductor element on a support, and a step of sealing with the sealing resin composition according to any one of the above-mentioned semiconductor elements <1> to <8>. Manufacturing method.
 本発明によれば、電気信頼性に優れる半導体装置を製造可能な封止用樹脂組成物及び封止用樹脂組成物の製造方法、並びにこれを用いる半導体装置及び半導体装置の製造方法が提供される。 ADVANTAGE OF THE INVENTION According to the present invention, a sealing resin composition and a method for producing a sealing resin composition capable of producing a semiconductor device excellent in electric reliability, and a semiconductor device and a method for producing a semiconductor device using the same are provided. .
誘電緩和測定装置の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of a dielectric relaxation measuring apparatus. 実施例(第1実施形態)で作製した封止用樹脂組成物に含まれる無機充填材の比表面積と誘電緩和値(周波数0.001Hz)の相関関係を示す散布図である。It is a scatter diagram which shows the correlation of the specific surface area of the inorganic filler contained in the resin composition for sealing produced in the Example (1st Embodiment), and a dielectric relaxation value (frequency 0.001 Hz). 実施例(第3実施形態)で作製した封止用樹脂組成物の架橋密度と誘電緩和値の相関関係を示す散布図である。It is a scatter diagram which shows the correlation of the crosslinking density of the resin composition for sealing produced by the Example (3rd Embodiment), and a dielectric relaxation value. 参考例で作製した封止用樹脂組成物の誘電緩和値(周波数0.001Hz)と高温逆バイアス試験結果の相関関係を示す散布図である。It is a scatter diagram which shows the correlation of the dielectric relaxation value (frequency 0.001 Hz) of the resin composition for sealing produced by the reference example, and a high temperature reverse bias test result. 参考例で作製した封止用樹脂組成物の誘電緩和値(周波数1MHz)と高温逆バイアス試験結果の相関関係を示す散布図である。It is a scatter diagram which shows the correlation of the dielectric relaxation value (frequency 1 MHz) of the resin composition for sealing produced by the reference example, and a high temperature reverse bias test result.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and does not limit the present invention.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
In the present disclosure, the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps. .
In the present disclosure, numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
The upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure. . In addition, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
In the present disclosure, each component may contain a plurality of corresponding substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, particles corresponding to each component may contain a plurality of types. When there are a plurality of particles corresponding to each component in the composition, the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
<封止用樹脂組成物(第1実施形態)>
 本実施形態の封止用樹脂組成物は、エポキシ樹脂と、無機充填材とを含有し、前記無機充填材の比表面積が3.28m/g以下である。
<Resin composition for sealing (first embodiment)>
The sealing resin composition of the present embodiment contains an epoxy resin and an inorganic filler, and the specific surface area of the inorganic filler is 3.28 m 2 / g or less.
 本発明者らの検討の結果、封止用樹脂組成物に含まれる無機充填材の比表面積と、封止用樹脂組成物が硬化した状態で0.001Hzで測定される誘電緩和値とが相関関係にあることがわかった。この理由は必ずしも明らかではないが、無機充填材の表面に存在する水酸基の数が比表面積に応じて変化し、これが低周波数で測定される誘電緩和値の増減に関与しているためと推測している。 As a result of studies by the present inventors, the specific surface area of the inorganic filler contained in the sealing resin composition is correlated with the dielectric relaxation value measured at 0.001 Hz in the cured resin composition. It turned out that it is related. The reason for this is not necessarily clear, but it is assumed that the number of hydroxyl groups present on the surface of the inorganic filler changes in accordance with the specific surface area, which is responsible for the increase or decrease of the dielectric relaxation value measured at low frequencies. ing.
 上記知見をもとにさらに検討したところ、封止用樹脂組成物が硬化した状態で0.001Hzで測定される誘電緩和値が小さいほど、これを用いた半導体装置は、高温逆バイアス試験において発生するリーク電流が充分に少なく、電気信頼性に優れていることがわかった。 As a result of further investigation based on the above findings, the smaller the dielectric relaxation value measured at 0.001 Hz in the cured resin composition, the smaller the semiconductor device using this is in the high temperature reverse bias test. Leakage current was sufficiently small, and it was found that the electrical reliability was excellent.
 本実施形態において無機充填材の比表面積は、BET法により測定される値である。  In the present embodiment, the specific surface area of the inorganic filler is a value measured by the BET method.
 本実施形態において封止用樹脂組成物が硬化した状態で測定される誘電緩和値は、低周波側誘電率測定により測定される値である。半導体装置の電気信頼性の観点からは、周波数0.001Hzで測定した誘電緩和値は20以下であることが好ましく、17以下であることがより好ましく、15以下であることがさらに好ましく、13以下であることが特に好ましい。 The dielectric relaxation value measured in the cured state of the sealing resin composition in the present embodiment is a value measured by low-frequency dielectric measurement. From the viewpoint of the electrical reliability of the semiconductor device, the dielectric relaxation value measured at a frequency of 0.001 Hz is preferably 20 or less, more preferably 17 or less, and still more preferably 15 or less. Is particularly preferred.
 封止用樹脂組成物が硬化した状態で測定される誘電緩和値は、無機充填材の量が多い(例えば、封止用樹脂組成物全体の70体積%以上)ほど低下すると考えられる。一方、無機充填材の増量は混練作業が困難になる、分散性が低下する等の問題を伴う傾向にある。本実施形態によれば、無機充填材の比表面積を調節することで、周波数0.001Hzで測定した誘電緩和値を制御することができる。このため、無機充填材の増量によらずに電気信頼性が向上するという効果が期待できる。 The dielectric relaxation value measured in a cured state of the sealing resin composition is considered to decrease as the amount of the inorganic filler is large (for example, 70% by volume or more of the entire sealing resin composition). On the other hand, increasing the amount of the inorganic filler tends to cause problems such as difficulty in the kneading operation and deterioration of the dispersibility. According to this embodiment, the dielectric relaxation value measured at a frequency of 0.001 Hz can be controlled by adjusting the specific surface area of the inorganic filler. Therefore, the effect of improving the electrical reliability can be expected regardless of the increase in the amount of the inorganic filler.
 本実施形態の封止用樹脂組成物は、第2実施形態で規定するシランカップリング剤を含有してもよく、第3実施形態で規定する架橋密度の条件を満たしてもよい。 The sealing resin composition of the present embodiment may contain the silane coupling agent defined in the second embodiment, and may satisfy the conditions of the crosslink density defined in the third embodiment.
<封止用樹脂組成物(第2実施形態)>
 本実施形態の封止用樹脂組成物は、エポキシ樹脂と、無機充填材と、-NH又は-SHを有するシランカップリング剤とを含有する。
 -NHを有するシランカップリング剤としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等が挙げられる。
 -SHを有するシランカップリング剤としては、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等が挙げられる。
 カップリング剤は、-NH又は-SHを有するシランカップリング剤以外のカップリング剤との併用であってもよい。
<Resin composition for sealing (second embodiment)>
The sealing resin composition of the present embodiment contains an epoxy resin, an inorganic filler, and a silane coupling agent having —NH 2 or —SH.
As a silane coupling agent having —NH 2 , N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyl Trimethoxysilane, 3-aminopropyltriethoxysilane and the like can be mentioned.
Examples of the silane coupling agent having —SH include 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like.
The coupling agent may be used in combination with a coupling agent other than a silane coupling agent having —NH 2 or —SH.
 本発明者らの検討の結果、-NH又は-SHを有するシランカップリング剤を含有する封止用樹脂組成物は、他の官能基を有するシランカップリング剤を含有する封止用樹脂組成物に比べ、周波数0.001Hzで測定した誘電緩和値が小さい傾向にあることがわかった。この理由は必ずしも明らかではないが、-NH又は-SHはエポキシ樹脂のエポキシ基との反応性が他の官能基よりも大きく、エポキシ樹脂の分子運動を抑制する効果がより大きいためと推測している。 As a result of studies by the present inventors, a sealing resin composition containing a silane coupling agent having -NH 2 or -SH has a sealing resin composition containing a silane coupling agent having another functional group. It has been found that the dielectric relaxation value measured at a frequency of 0.001 Hz tends to be smaller than that of the object. The reason for this is not necessarily clear, but it is speculated that -NH 2 or -SH is more reactive with the epoxy group of the epoxy resin than other functional groups, and has a greater effect of suppressing molecular motion of the epoxy resin. ing.
 上記知見をもとにさらに検討したところ、封止用樹脂組成物が硬化した状態で0.001Hzで測定した誘電緩和値が小さいほど、これを用いた半導体装置は、高温逆バイアス試験において発生するリーク電流が充分に少なく、電気信頼性に優れていることがわかった。 As a result of further investigation based on the above findings, the smaller the dielectric relaxation value measured at 0.001 Hz in the cured resin composition, the semiconductor device using the same occurs in a high temperature reverse bias test. It was found that the leakage current was sufficiently small and the electrical reliability was excellent.
 本実施形態において封止用樹脂組成物が硬化した状態で測定される誘電緩和値は、低周波側誘電率測定により測定される値である。半導体装置の電気信頼性の観点からは、封止用樹脂組成物の周波数0.001Hzで測定した誘電緩和値は20以下であることが好ましく、15以下であることがより好ましく、13以下であることがさらに好ましい。また、周波数0Hz~0.01Hzの間で得られる誘電緩和値の最大値が40以下であることが好ましく、30以下であることがより好ましく、20以下であることがさらに好ましい。 The dielectric relaxation value measured in the cured state of the sealing resin composition in the present embodiment is a value measured by low-frequency dielectric measurement. From the viewpoint of the electrical reliability of the semiconductor device, the dielectric relaxation value measured at a frequency of 0.001 Hz of the sealing resin composition is preferably 20 or less, more preferably 15 or less, and 13 or less. Is more preferred. Further, the maximum value of the dielectric relaxation value obtained at a frequency of 0 Hz to 0.01 Hz is preferably 40 or less, more preferably 30 or less, and still more preferably 20 or less.
 封止用樹脂組成物の誘電緩和値は、無機充填材の量が多い(例えば、封止用樹脂組成物全体の70体積%以上である)ほど低下すると考えられる。一方、無機充填材の増量は混練作業が困難になる、分散性が低下する等の問題を伴う傾向にある。本実施形態によれば、特定の置換基を有するシランカップリング剤を用いることで周波数0.001Hzで測定した誘電緩和値を制御することができる。このため、無機充填材の増量によらずに電気信頼性が向上するという効果が期待できる。 The dielectric relaxation value of the sealing resin composition is considered to decrease as the amount of the inorganic filler is large (for example, 70% by volume or more of the total of the sealing resin composition). On the other hand, increasing the amount of the inorganic filler tends to cause problems such as difficulty in the kneading operation and deterioration of the dispersibility. According to this embodiment, the dielectric relaxation value measured at a frequency of 0.001 Hz can be controlled by using a silane coupling agent having a specific substituent. Therefore, the effect of improving the electrical reliability can be expected regardless of the increase in the amount of the inorganic filler.
 なお、グリシジル基を有するシランカップリング剤を用いて無機充填材を表面処理することで封止用樹脂組成物の誘電正接値が低下することは知られている(例えば、特開平9-194690号公報参照)が、低周波数領域での誘電率への寄与についてはこれまで報告されていない。 In addition, it is known that the dielectric loss tangent value of the resin composition for sealing falls by surface-treating an inorganic filler using the silane coupling agent which has a glycidyl group (for example, Unexamined-Japanese-Patent No. 9-194690) However, the contribution to the dielectric constant in the low frequency region has not been reported so far.
 本実施形態の封止用樹脂組成物は、第1実施形態で規定する無機充填材の条件を満たしてもよく、第3実施形態で規定する架橋密度の条件を満たしてもよい。 The sealing resin composition of the present embodiment may satisfy the conditions of the inorganic filler defined in the first embodiment, and may satisfy the conditions of the crosslink density defined in the third embodiment.
<封止用樹脂組成物(第3実施形態)>
 本実施形態の封止用樹脂組成物は、エポキシ樹脂と、無機充填材とを含有し、硬化した状態での架橋密度が0.9mol/cm以下であるか、又は1.0mol/cm以上である。
<Resin composition for sealing (third embodiment)>
Encapsulating resin composition of the present embodiment, an epoxy resin, containing an inorganic filler, the crosslinking density in the cured state is 0.9 mol / cm 3 or less or where 1.0 mol / cm 3 It is above.
 本実施形態の封止用樹脂組成物を用いて製造した半導体装置は、電気信頼性に優れている。この理由について検討したところ、封止用樹脂組成物が硬化物した状態での架橋密度(以下、単に「架橋密度」とも称する。架橋密度の単位はmol/ccとも称する場合がある。)と、周波数0.001Hzで測定される誘電緩和値との間に関連性が認められた。具体的には、封止用樹脂組成物の架橋密度が0.9mol/cm以下の範囲では架橋密度が大きくなるにつれて周波数0.001Hzで測定される誘電緩和値が増大する傾向にあり、1.0mol/cm以上の範囲では架橋密度が大きくなるにつれて周波数0.001Hzで測定される誘電緩和値が低減する傾向にあることがわかった。 The semiconductor device manufactured using the resin composition for sealing of this embodiment is excellent in electrical reliability. When this reason was examined, the crosslink density in the state which the resin composition for sealing hardened | cured material (Hereafter, it is also only called "crosslink density." The unit of crosslink density may also be called mol / cc.), An association was found between the dielectric relaxation values measured at a frequency of 0.001 Hz. Specifically, when the crosslinking density of the sealing resin composition is 0.9 mol / cm 3 or less, the dielectric relaxation value measured at a frequency of 0.001 Hz tends to increase as the crosslinking density increases, 1 It was found that in the range of 0 mol / cm 3 or more, the dielectric relaxation value measured at a frequency of 0.001 Hz tends to decrease as the crosslink density increases.
 封止用樹脂組成物の架橋密度と周波数0.001Hzで測定される誘電緩和値との間に上記のような関連性がある理由は必ずしも明らかではないが、架橋密度が高くなるほど双極子運動が抑制される傾向にある一方で、架橋密度が高くなるほど双極子量が増大する傾向にあるためと推測される。 The reason why the crosslink density of the sealing resin composition is related to the dielectric relaxation value measured at a frequency of 0.001 Hz as described above is not necessarily clear, but the higher the crosslink density, the more the dipolar motion While it tends to be suppressed, it is presumed that the amount of dipole tends to increase as the crosslink density increases.
 さらに、本発明者らの検討により、硬化した状態で周波数0.001Hzで測定される誘電緩和値が充分に小さい封止用樹脂組成物を用いた半導体装置は、高温逆バイアス試験において発生するリーク電流が充分に少なく、電気信頼性に優れていることがわかった。 Furthermore, according to the study of the present inventors, a semiconductor device using a sealing resin composition having a sufficiently small dielectric relaxation value measured at a frequency of 0.001 Hz in a cured state is a leak generated in a high temperature reverse bias test. It was found that the current was sufficiently small and the electrical reliability was excellent.
 以上から、本開示の封止用樹脂組成物は、架橋密度が特定の範囲内であることで周波数0.001Hzで測定される誘電緩和値が小さく抑えられている結果、電気信頼性に優れる半導体装置を製造可能であると考えられる。 From the above, the sealing resin composition of the present disclosure is a semiconductor excellent in electrical reliability as a result of the crosslink density being within a specific range and the dielectric relaxation value measured at a frequency of 0.001 Hz being suppressed to a small value. It is believed that the device can be manufactured.
 本開示において封止用樹脂組成物の架橋密度は、動的粘弾性測定装置にて求められるゴム領域の動的貯蔵弾性率を用いて、下記の式に則り算出された値とする。 In the present disclosure, the crosslink density of the sealing resin composition is a value calculated according to the following equation using the dynamic storage elastic modulus of the rubber region obtained by the dynamic viscoelasticity measurement device.
   計算式:n=E’/3RT
   n:架橋密度 [mol/cm
   E’:動的貯蔵弾性率[Pa]
   R:気体定数 8.31[J/mol・K]
   T:絶対温度[K]
Formula: n = E '/ 3 RT
n: Crosslink density [mol / cm 3 ]
E ': dynamic storage elastic modulus [Pa]
R: Gas constant 8.31 [J / mol · K]
T: Absolute temperature [K]
 封止用樹脂組成物の架橋密度の下限値は特に制限されないが、硬化性の観点からは0.3mol/cm以上であることが好ましい。
 封止用樹脂組成物の架橋密度の上限値は特に制限されないが、温度サイクルの観点からは3.0mol/cm以下であることが好ましい。
The lower limit value of the crosslinking density of the sealing resin composition is not particularly limited, but is preferably 0.3 mol / cm 3 or more from the viewpoint of curability.
The upper limit of the crosslink density of the sealing resin composition is not particularly limited, but is preferably 3.0 mol / cm 3 or less from the viewpoint of temperature cycling.
 本実施形態において封止用樹脂組成物が硬化した状態で測定される誘電緩和値は、低周波側誘電率により測定される値である。半導体装置の電気信頼性の観点からは、封止用樹脂組成物が硬化した状態で周波数0.001Hzで測定される誘電緩和値は20以下であることが好ましく、16以下であることがより好ましい。また、周波数0Hz~0.01Hzの間で測定される誘電緩和値の最大値が40以下であることが好ましく、16以下であることがより好ましい。 The dielectric relaxation value measured in the cured state of the sealing resin composition in the present embodiment is a value measured by the low frequency side dielectric constant. From the viewpoint of the electrical reliability of the semiconductor device, the dielectric relaxation value measured at a frequency of 0.001 Hz in the cured state of the sealing resin composition is preferably 20 or less, and more preferably 16 or less. . In addition, the maximum value of the dielectric relaxation value measured at a frequency of 0 Hz to 0.01 Hz is preferably 40 or less, and more preferably 16 or less.
 封止用樹脂組成物の誘電緩和値は、無機充填材の量が多い(例えば、封止用樹脂組成物全体の70体積%以上)ほど低下すると考えられる。一方、無機充填材の増量は混練作業が困難になる、分散性が低下する等の問題を伴う傾向にある。本開示によれば、封止用樹脂組成物の架橋密度を調節することで誘電緩和値を制御することができる。このため、無機充填材の増量によらずに電気信頼性が向上するという効果が期待できる。 The dielectric relaxation value of the sealing resin composition is considered to decrease as much as the amount of the inorganic filler (for example, 70% by volume or more of the entire sealing resin composition). On the other hand, increasing the amount of the inorganic filler tends to cause problems such as difficulty in the kneading operation and deterioration of the dispersibility. According to the present disclosure, the dielectric relaxation value can be controlled by adjusting the crosslink density of the sealing resin composition. Therefore, the effect of improving the electrical reliability can be expected regardless of the increase in the amount of the inorganic filler.
 本実施形態の封止用樹脂組成物は、第1実施形態で規定する無機充填材の条件を満たしてもよく、第2実施形態で規定するカップリング剤を含有してもよい。 The sealing resin composition of the present embodiment may satisfy the conditions of the inorganic filler defined in the first embodiment, and may contain the coupling agent defined in the second embodiment.
(エポキシ樹脂)
 封止用樹脂組成物に含まれるエポキシ樹脂の種類は特に制限されず、封止用樹脂組成物に一般的に使用されるものから選択できる。
 具体的には、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物とを酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはシリコーン樹脂のエポキシ化物、アクリル樹脂のエポキシ化物等もエポキシ樹脂として挙げられる。これらのエポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Epoxy resin)
The kind in particular of the epoxy resin contained in the resin composition for closure is not restricted, but can be chosen from what is generally used for the resin composition for closure.
Specifically, at least one phenol selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcine, catechol, bisphenol A and bisphenol F and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene. Novolak type epoxy resin (phenol novolac type epoxy resin) obtained by epoxidizing a novolak resin obtained by condensation or cocondensation of an organic compound with an aliphatic aldehyde compound such as formaldehyde, acetaldehyde or propionaldehyde under an acidic catalyst Ortho cresol novolac type epoxy resin etc.) obtained by condensation or co-condensation of the above-mentioned phenolic compound with an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde under an acid catalyst Triphenylmethane-type epoxy resin which is obtained by epoxidizing triphenylmethane-type phenol resin; epoxidized novolac resin obtained by cocondensing the above-mentioned phenol compound and naphthol compound with an aldehyde compound under an acid catalyst Copolymer type epoxy resin which is a diglycidyl ether such as bisphenol A, bisphenol F, etc. diphenylmethane type epoxy resin; biphenyl type epoxy resin which is a diglycidyl ether of an alkyl-substituted or unsubstituted biphenol; diglycidyl of a stilbene type phenol compound Ethers: stilbene type epoxy resins; diglycidyl ethers such as bisphenol S: sulfur atom-containing epoxy resins; butanediol, polyethylene glycol, polypropylene glycol, etc. Epoxy resins which are glycidyl ethers of coals; glycidyl ester type epoxy resins which are glycidyl esters of polyvalent carboxylic acid compounds such as phthalic acid, isophthalic acid and tetrahydrophthalic acid; bonded to nitrogen atoms such as aniline, diaminodiphenylmethane and isocyanuric acid Glycidyl amine type epoxy resin which is obtained by substituting the active hydrogen with glycidyl group; dicyclopentadiene type epoxy resin which is obtained by epoxidizing a co-condensed resin of dicyclopentadiene and a phenol compound; epoxidized olefin bond in the molecule Vinylcyclohexene diepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5,5-spiro (3,4 Epoxy) Alicyclic epoxy resin such as cyclohexane-m-dioxane; paraxylylene modified epoxy resin which is a glycidyl ether of paraxylylene modified phenolic resin; metaxylylene modified epoxy resin which is a glycidyl ether of metaxylylene modified phenolic resin; glycidyl ether of terpene modified phenolic resin Terpene-modified epoxy resin; dicyclopentadiene-modified epoxy resin which is a glycidyl ether of dicyclopentadiene-modified phenolic resin; cyclopentadiene-modified epoxy resin which is a glycidyl ether of cyclopentadiene-modified phenolic resin; glycidyl of polycyclic aromatic ring-modified phenolic resin Polycyclic aromatic ring-modified epoxy resin which is ether; naphtha which is glycidyl ether of naphthalene ring-containing phenolic resin Len type epoxy resin; halogenated phenol novolac type epoxy resin; hydroquinone type epoxy resin; trimethylolpropane type epoxy resin; linear aliphatic epoxy resin obtained by oxidizing olefin bond with peroxy acid such as peracetic acid; phenol aralkyl resin And an aralkyl type epoxy resin which is obtained by epoxidizing an aralkyl type phenol resin such as a naphthol aralkyl resin; Further, epoxy resin of silicone resin, epoxy resin of acrylic resin, etc. may be mentioned as epoxy resin. These epoxy resins may be used alone or in combination of two or more.
 エポキシ樹脂のエポキシ当量(分子量/エポキシ基数)は、特に制限されない。成形性、耐リフロー性及び電気的信頼等の各種特性バランスの観点からは、100g/eq~1000g/eqであることが好ましく、150g/eq~500g/eqであることがより好ましい。 The epoxy equivalent (molecular weight / epoxy group number) of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability, it is preferably 100 g / eq to 1000 g / eq, and more preferably 150 g / eq to 500 g / eq.
 エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。 Let the epoxy equivalent of an epoxy resin be a value measured by the method according to JISK7236: 2009.
 エポキシ樹脂が固体である場合、その軟化点又は融点は特に制限されない。成形性と耐リフロー性の観点からは40℃~180℃であることが好ましく、封止用樹脂組成物の調製の際の取扱い性の観点からは50℃~130℃であることがより好ましい。 When the epoxy resin is solid, its softening point or melting point is not particularly limited. The temperature is preferably 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and more preferably 50 ° C. to 130 ° C. from the viewpoint of handleability at the time of preparation of the sealing resin composition.
 エポキシ樹脂の融点は示差走査熱量測定(DSC)で測定される値とし、エポキシ樹脂の軟化点はJIS K 7234:1986に準じた方法(環球法)で測定される値とする。 The melting point of the epoxy resin is a value measured by differential scanning calorimetry (DSC), and the softening point of the epoxy resin is a value measured by a method (ring and ball method) according to JIS K 7234: 1986.
 封止用樹脂組成物中のエポキシ樹脂の含有率は、強度、流動性、耐熱性、成形性等の観点から0.5質量%~50質量%であることが好ましく、2質量%~30質量%であることがより好ましい。 The content of the epoxy resin in the sealing resin composition is preferably 0.5% by mass to 50% by mass, and more preferably 2% by mass to 30% from the viewpoint of strength, fluidity, heat resistance, moldability, etc. More preferably, it is%.
(硬化剤)
 封止用樹脂組成物は、硬化剤を含んでもよい。硬化剤の種類は特に制限されず、フェノール硬化剤、アミン硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。耐熱性向上の観点からは、フェノール性水酸基を1分子中に2個以上有するもの(フェノール硬化剤)が好ましい。
(Hardening agent)
The sealing resin composition may contain a curing agent. The type of curing agent is not particularly limited, and examples thereof include phenol curing agents, amine curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, blocked isocyanate curing agents, and the like. From the viewpoint of improving heat resistance, those having two or more phenolic hydroxyl groups in one molecule (phenol curing agent) are preferable.
 フェノール硬化剤として具体的には、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも一種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等とから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;パラキシリレン又はメタキシリレンで変性したフェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;上記フェノール性化合物と、ジシクロペンタジエンとから共重合により合成されるジシクロペンタジエン型フェノール樹脂及びジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂などが挙げられる。これらのフェノール硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Specifically as phenolic curing agents, polyhydric phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenols; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol And at least one phenolic compound selected from the group consisting of phenol compounds such as aminophenol and naphthol compounds such as .alpha.-naphthol, .beta.-naphthol, dihydroxynaphthalene and aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde Novolak-type phenol resin obtained by condensation or co-condensation with a compound under acidic catalyst; the above-mentioned phenolic compound, dimethoxy para Aralkyl type phenol resin such as phenolaralkyl resin, naphtholaralkyl resin, etc. synthesized from xylene, bis (methoxymethyl) biphenyl etc .; phenolic resin modified with paraxylylene or metaxylylene; melamine modified phenolic resin; terpene modified phenolic resin; Dicyclopentadiene-type phenolic resin and dicyclopentadiene-type naphthol resin synthesized from the compound and dicyclopentadiene by copolymerization; cyclopentadiene-modified phenolic resin; polycyclic aromatic ring-modified phenolic resin; biphenyl-type phenolic resin; Triphenylmethane-type phenol obtained by condensation or co-condensation of a compound with an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde under an acidic catalyst Fats; including these two or more phenolic resin obtained by co-polymerization. These phenol curing agents may be used alone or in combination of two or more.
 硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、70g/eq~1000g/eqであることが好ましく、80g/eq~500g/eqであることがより好ましい。   The functional group equivalent of the curing agent (hydroxyl equivalent in the case of a phenol curing agent) is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, electrical reliability, etc., 70 g / eq to 1000 g / eq is preferable, and 80 g / eq to 500 g / eq is more preferable.
 硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、JIS K 0070:1992に準じた方法により測定される値とする。 The functional group equivalent of the curing agent (hydroxyl equivalent in the case of a phenol curing agent) is a value measured by a method according to JIS K 0070: 1992.
 硬化剤が固体である場合、その軟化点又は融点は、特に制限されない。成形性と耐リフロー性の観点からは、40℃~180℃であることが好ましく、封止用樹脂組成物の製造時における取扱い性の観点からは、50℃~130℃であることがより好ましい。   When the curing agent is solid, its softening point or melting point is not particularly limited. From the viewpoint of moldability and reflow resistance, the temperature is preferably 40 ° C. to 180 ° C., and from the viewpoint of handleability at the time of production of the sealing resin composition, it is more preferably 50 ° C. to 130 ° C. .
 硬化剤の融点又は軟化点は、エポキシ樹脂の融点又は軟化点と同様にして測定される値とする。 The melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
 エポキシ樹脂と硬化剤の配合比は、特に制限されない。それぞれの未反応分を少なく抑える観点からは、エポキシ樹脂のエポキシ基数に対する硬化剤の官能基数の比(エポキシ樹脂のエポキシ基数/硬化剤の官能基数)が0.5~2.0の範囲となるように設定されることが好ましく、0.6~1.3の範囲となるように設定されることがより好ましく、0.8~1.2の範囲に設定されることがさらに好ましい。 The compounding ratio of the epoxy resin and the curing agent is not particularly limited. From the viewpoint of reducing the amount of each unreacted component, the ratio of the number of functional groups of the curing agent to the number of epoxy groups of the epoxy resin (number of epoxy groups of epoxy resin / number of functional groups of curing agent) is in the range of 0.5 to 2.0. It is preferable to set as such, it is more preferable to set it in the range of 0.6 to 1.3, and it is further preferable to set it in the range of 0.8 to 1.2.
(硬化促進剤)
 封止用樹脂組成物は、硬化促進剤を含んでもよい。硬化促進剤の種類は特に制限されず、エポキシ樹脂の種類、封止用樹脂組成物の所望の特性等に応じて選択できる。
 硬化促進剤としては、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)等のジアザビシクロアルケン、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-ヘプタデシルイミダゾール等の環状アミジン化合物;前記環状アミジン化合物の誘導体;前記環状アミジン化合物又はその誘導体のフェノールノボラック塩;これらの化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;DBUのテトラフェニルボレート塩、DBNのテトラフェニルボレート塩、2-エチル-4-メチルイミダゾールのテトラフェニルボレート塩、N-メチルモルホリンのテトラフェニルボレート塩等の環状アミジニウム化合物;ピリジン、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物;前記三級アミン化合物の誘導体;酢酸テトラ-n-ブチルアンモニウム、リン酸テトラ-n-ブチルアンモニウム、酢酸テトラエチルアンモニウム、安息香酸テトラ-n-ヘキシルアンモニウム、水酸化テトラプロピルアンモニウム等のアンモニウム塩化合物;トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の三級ホスフィン;前記三級ホスフィンと有機ボロン類との錯体等のホスフィン化合物;前記三級ホスフィン又は前記ホスフィン化合物と無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;前記三級ホスフィン又は前記ホスフィン化合物と4-ブロモフェノール、3-ブロモフェノール、2-ブロモフェノール、4-クロロフェノール、3-クロロフェノール、2-クロロフェノール、4-ヨウ化フェノール、3-ヨウ化フェノール、2-ヨウ化フェノール、4-ブロモ-2-メチルフェノール、4-ブロモ-3-メチルフェノール、4-ブロモ-2,6-ジメチルフェノール、4-ブロモ-3,5-ジメチルフェノール、4-ブロモ-2,6-ジ-tert-ブチルフェノール、4-クロロ-1-ナフトール、1-ブロモ-2-ナフトール、6-ブロモ-2-ナフトール、4-ブロモ-4’-ヒドロキシビフェニル等のハロゲン化フェノール化合物を反応させた後に、脱ハロゲン化水素の工程を経て得られる、分子内分極を有する化合物;テトラフェニルホスホニウム等のテトラ置換ホスホニウム、テトラ-p-トリルボレート等のホウ素原子に結合したフェニル基がないテトラ置換ホスホニウム及びテトラ置換ボレート;テトラフェニルホスホニウムとフェノール化合物との塩などが挙げられる。
(Hardening accelerator)
The sealing resin composition may contain a curing accelerator. The type of curing accelerator is not particularly limited, and can be selected according to the type of epoxy resin, the desired properties of the sealing resin composition, and the like.
As the curing accelerator, diazabicycloalkenes such as 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), etc. Cyclic amidine compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole; derivatives of the cyclic amidine compounds; phenol novolac salts of the cyclic amidine compounds or derivatives thereof; Of maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1 , 4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1, Compounds having an intramolecular polarization formed by addition of compounds having a π bond such as quinone compounds such as -benzoquinone and diazophenylmethane; tetraphenyl borate salts of DBU, tetraphenyl borate salts of DBN, 2-ethyl-4- Cyclic amidinium compounds such as methylimidazole tetraphenylborate salt, N-methylmorpholine tetraphenylborate salt, etc .; pyridine, triethylamine, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol etc. Derivatives of the above-mentioned tertiary amine compounds; tetra-n-butylammonium acetate, tetra-n-butylammonium phosphate, tetraethylammonium acetate, tetra-n-hexyl benzoate Ammonium salt compounds such as ammonium sulfate and tetrapropylammonium hydroxide; triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkyl alkoxyphenyl) phosphine, tris (Dialkylphenyl) phosphine, tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, Tertiary phosphines such as dialkyl aryl phosphines and alkyl diaryl phosphines; complexes of the above tertiary phosphines with organic borons, etc. Sphin compounds; said tertiary phosphine or said phosphine compound and maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2, Quinone compounds such as 3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, and compounds having a π bond such as diazophenylmethane A compound having an intramolecular polarization formed by addition; said tertiary phosphine or said phosphine compound and 4-bromophenol, 3-bromophenol, 2-bromophenol, 4-chlorophenol, 3-chlorophenol, 2-chlorophenol, 4-iodophenol, 3-iodophenol, 2-iodophenol , 4-bromo-2-methylphenol, 4-bromo-3-methylphenol, 4-bromo-2,6-dimethylphenol, 4-bromo-3,5-dimethylphenol, 4-bromo-2,6 Halogenated phenolic compounds such as 4-di-tert-butylphenol, 4-chloro-1-naphthol, 1-bromo-2-naphthol, 6-bromo-2-naphthol, 4-bromo-4'-hydroxybiphenyl etc. Later, a compound having an internal polarization obtained through the step of dehydrohalogenation; tetra-substituted phosphonium such as tetraphenyl phosphonium; tetra-substituted phosphonium having no phenyl group bonded to a boron atom such as tetra-p-tolylborate Tetra-substituted borate; salts of tetraphenylphosphonium and phenol compounds, etc. Be
 封止用樹脂組成物が硬化促進剤を含む場合、その量は、樹脂成分(エポキシ樹脂と必要に応じて含まれる硬化剤の合計、以下同様)100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~15質量部であることがより好ましい。硬化促進剤の量が樹脂成分100質量部に対して0.1質量部以上であると、短時間で良好に硬化する傾向にある。硬化促進剤の量が樹脂成分100質量部に対して30質量部以下であると、硬化速度が速すぎず良好な成形品が得られる傾向にある。 When the sealing resin composition contains a curing accelerator, the amount thereof is 0.1 parts by mass to 100 parts by mass of the resin component (the total of the epoxy resin and the curing agent contained as necessary, and the same applies hereinafter) The amount is preferably 30 parts by mass, and more preferably 1 part by mass to 15 parts by mass. If the amount of the curing accelerator is 0.1 parts by mass or more with respect to 100 parts by mass of the resin component, it tends to be cured well in a short time. If the amount of the curing accelerator is 30 parts by mass or less with respect to 100 parts by mass of the resin component, the curing rate tends to be too fast to obtain a good molded product.
(無機充填材)
 封止用樹脂組成物に含まれる無機充填材の種類は、特に制限されない。具体的には、溶融シリカ、結晶シリカ、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、窒化珪素、窒化アルミニウム、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ等の無機材料が挙げられる。難燃効果を有する無機充填材を用いてもよい。難燃効果を有する無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、ホウ酸亜鉛などが挙げられる。
(Inorganic filler)
The kind in particular of the inorganic filler contained in the resin composition for closure is not restricted. Specifically, fused silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon silicate, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite And inorganic materials such as titania, talc, clay and mica. You may use the inorganic filler which has a flame-retardant effect. Examples of the inorganic filler having a flame retardant effect include composite metal hydroxides such as aluminum hydroxide, magnesium hydroxide, a composite hydroxide of magnesium and zinc, zinc borate and the like.
 無機充填材の中でも、線膨張係数低減の観点からは溶融シリカ等のシリカが好ましく、高熱伝導性の観点からはアルミナが好ましい。無機充填材は1種を単独で用いても2種以上を組み合わせて用いてもよい。 Among the inorganic fillers, silica such as fused silica is preferable from the viewpoint of reducing the linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity. The inorganic filler may be used alone or in combination of two or more.
 封止用樹脂組成物における無機充填材の含有率は、特に制限されない。流動性及び強度の観点からは、封止用樹脂組成物全体の30体積%~90体積%であることが好ましく、50体積%~85体積%であることがより好ましい。無機充填材の含有率が封止用樹脂組成物全体の30体積%以上であると、硬化物の熱膨張係数、熱伝導率、弾性率等の特性がより向上する傾向にある。無機充填材の含有率が封止用樹脂組成物全体の90体積%以下であると、封止用樹脂組成物の粘度の上昇が抑制され、流動性がより向上して成形性がより良好になる傾向にある。 The content of the inorganic filler in the sealing resin composition is not particularly limited. From the viewpoint of flowability and strength, the content is preferably 30% by volume to 90% by volume, and more preferably 50% by volume to 85% by volume, of the entire sealing resin composition. If the content of the inorganic filler is 30% by volume or more of the whole resin composition for sealing, properties such as the thermal expansion coefficient, thermal conductivity, and elastic modulus of the cured product tend to be further improved. When the content of the inorganic filler is 90% by volume or less of the whole of the sealing resin composition, the increase in viscosity of the sealing resin composition is suppressed, the flowability is further improved, and the moldability is better. Tend to
 無機充填材が粒子状である場合、その平均粒子径は、特に制限されない。例えば、無機充填材全体の体積平均粒子径が0.2μm~10μmであることが好ましく、0.5μm~5μmであることがより好ましい。体積平均粒子径が0.2μm以上であると、封止用樹脂組成物の粘度の上昇がより抑制される傾向がある。体積平均粒子径が10μm以下であると、狭い隙間への充填性がより向上する傾向にある。無機充填材の体積平均粒子径は、レーザー散乱回折法粒度分布測定装置により、体積平均粒径(D50)として測定することができる。 When the inorganic filler is particulate, its average particle size is not particularly limited. For example, the volume average particle diameter of the entire inorganic filler is preferably 0.2 μm to 10 μm, and more preferably 0.5 μm to 5 μm. When the volume average particle diameter is 0.2 μm or more, the increase in the viscosity of the sealing resin composition tends to be further suppressed. When the volume average particle diameter is 10 μm or less, the filling property in the narrow gap tends to be further improved. The volume average particle diameter of the inorganic filler can be measured as a volume average particle diameter (D50) by a laser scattering diffraction particle size distribution measuring apparatus.
(カップリング剤)
 封止用樹脂組成物は、カップリング剤を含んでもよい。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシラン系化合物、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物などの公知のカップリング剤が挙げられる。
(Coupling agent)
The sealing resin composition may contain a coupling agent. Examples of the coupling agent include known coupling agents such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, silane compounds such as vinylsilane, titanium compounds, aluminum chelate compounds, and aluminum / zirconium compounds. .
 封止用樹脂組成物がカップリング剤を含む場合、カップリング剤の量は、無機充填材100質量部に対して0.05質量部~5質量部であることが好ましく、0.1質量部~2.5質量部であることがより好ましい。カップリング剤の量が無機充填材100質量部に対して0.05質量部以上であると、フレームとの接着性がより向上する傾向にある。カップリング剤の量が無機充填材100質量部に対して5質量部以下であると、パッケージの成形性がより向上する傾向にある。 When the sealing resin composition contains a coupling agent, the amount of the coupling agent is preferably 0.05 parts by mass to 5 parts by mass with respect to 100 parts by mass of the inorganic filler. It is more preferable that the amount is about 2.5 parts by mass. When the amount of the coupling agent is 0.05 parts by mass or more with respect to 100 parts by mass of the inorganic filler, adhesion to the frame tends to be further improved. When the amount of the coupling agent is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
(イオン交換体)
 封止用樹脂組成物は、イオン交換体を含んでもよい。特に、封止用樹脂組成物を封止用成形材料として用いる場合には、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、イオン交換体を含むことが好ましい。イオン交換体は特に制限されず、従来公知のものを用いることができる。具体的には、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。イオン交換体は、1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、下記一般式(A)で表されるハイドロタルサイトが好ましい。
(Ion exchanger)
The sealing resin composition may contain an ion exchanger. In particular, when the sealing resin composition is used as the sealing molding material, the ion exchanger may be included from the viewpoint of improving the moisture resistance and the high-temperature standing characteristics of the electronic component device provided with the element to be sealed. preferable. The ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples thereof include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth. The ion exchangers may be used alone or in combination of two or more. Among them, hydrotalcite represented by the following general formula (A) is preferable.
  Mg(1-X)Al(OH)(COX/2・mHO ……(A)
  (0<X≦0.5、mは正の数)
Mg (1-X) Al X (OH) 2 (CO 3 ) X / 2 · mH 2 O ... (A)
(0 <X ≦ 0.5, m is a positive number)
 封止用樹脂組成物がイオン交換体を含む場合、その含有量は、ハロゲンイオン等のイオンを捕捉するのに充分な量であれば特に制限はない。例えば、樹脂成分100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~5質量部であることがより好ましい。 When the sealing resin composition contains an ion exchanger, the content thereof is not particularly limited as long as it is an amount sufficient to capture ions such as halogen ions. For example, the amount is preferably 0.1 parts by mass to 30 parts by mass, and more preferably 1 part by mass to 5 parts by mass with respect to 100 parts by mass of the resin component.
(離型剤)
 封止用樹脂組成物は、成形時における金型との良好な離型性を得る観点から、離型剤を含んでもよい。離型剤は特に制限されず、従来公知のものを用いることができる。具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Release agent)
The sealing resin composition may contain a release agent from the viewpoint of obtaining good releasability with the mold at the time of molding. The release agent is not particularly limited, and conventionally known ones can be used. Specific examples thereof include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene. The mold release agent may be used alone or in combination of two or more.
 封止用樹脂組成物が離型剤を含む場合、その量は樹脂成分100質量部に対して0.01質量部~10質量部が好ましく、0.1質量部~5質量部がより好ましい。離型剤の量が樹脂成分100質量部に対して0.01質量部以上であると、離型性が充分に得られる傾向にある。10質量部以下であると、より良好な接着性が得られる傾向にある。 When the sealing resin composition contains a release agent, the amount is preferably 0.01 parts by mass to 10 parts by mass, and more preferably 0.1 parts by mass to 5 parts by mass with respect to 100 parts by mass of the resin component. When the amount of the release agent is 0.01 parts by mass or more based on 100 parts by mass of the resin component, the releasability tends to be sufficiently obtained. If the amount is 10 parts by mass or less, better adhesion tends to be obtained.
(難燃剤)
 封止用樹脂組成物は、難燃剤を含んでもよい。難燃剤は特に制限されず、従来公知のものを用いることができる。具体的には、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む有機又は無機の化合物、金属水酸化物等が挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Flame retardants)
The sealing resin composition may contain a flame retardant. The flame retardant is not particularly limited, and conventionally known flame retardants can be used. Specifically, organic or inorganic compounds containing a halogen atom, an antimony atom, a nitrogen atom or a phosphorus atom, metal hydroxides and the like can be mentioned. The flame retardant may be used alone or in combination of two or more.
 封止用樹脂組成物が難燃剤を含む場合、その量は、所望の難燃効果を得るのに充分な量であれば特に制限されない。例えば、樹脂成分100質量部に対して1質量部~30質量部であることが好ましく、2質量部~15質量部であることがより好ましい。 When the sealing resin composition contains a flame retardant, the amount thereof is not particularly limited as long as it is an amount sufficient to obtain a desired flame retardant effect. For example, the amount is preferably 1 part by mass to 30 parts by mass, and more preferably 2 parts by mass to 15 parts by mass with respect to 100 parts by mass of the resin component.
(着色剤)
 封止用樹脂組成物は、着色剤をさらに含んでもよい。着色剤としてはカーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。着色剤の含有量は目的等に応じて適宜選択できる。着色剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Colorant)
The sealing resin composition may further contain a colorant. Examples of colorants include known colorants such as carbon black, organic dyes, organic pigments, titanium oxide, red lead, red iron oxide and the like. The content of the coloring agent can be appropriately selected according to the purpose and the like. The colorants may be used alone or in combination of two or more.
(応力緩和剤)
 封止用樹脂組成物は、シリコーンオイル、シリコーンゴム粒子等の応力緩和剤を含んでもよい。応力緩和剤を含むことにより、パッケージの反り変形及びパッケージクラックの発生をより低減させることができる。応力緩和剤としては、一般に使用されている公知の応力緩和剤(可とう剤)が挙げられる。具体的には、シリコーン系、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリエーテル系、ポリアミド系、ポリブタジエン系等の熱可塑性エラストマー、NR(天然ゴム)、NBR(アクリロニトリル-ブタジエンゴム)、アクリルゴム、ウレタンゴム、シリコーンパウダー等のゴム粒子、メタクリル酸メチル-スチレン-ブタジエン共重合体(MBS)、メタクリル酸メチル-シリコーン共重合体、メタクリル酸メチル-アクリル酸ブチル共重合体等のコア-シェル構造を有するゴム粒子などが挙げられる。応力緩和剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Stress relaxation agent)
The sealing resin composition may contain a stress relaxation agent such as silicone oil or silicone rubber particles. By including a stress relaxation agent, warpage of the package and occurrence of package cracks can be further reduced. The stress relieving agent includes known stress relieving agents (flexible agents) generally used. Specifically, thermoplastic elastomers such as silicone, styrene, olefin, urethane, polyester, polyether, polyamide, and polybutadiene, NR (natural rubber), NBR (acrylonitrile-butadiene rubber), acrylic Core particles such as rubber particles such as rubber, urethane rubber and silicone powder, methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer and methyl methacrylate-butyl acrylate copolymer The rubber particle etc. which have a structure are mentioned. The stress relaxation agents may be used alone or in combination of two or more.
(封止用樹脂組成物の調製方法)
 封止用樹脂組成物の調製方法は、特に制限されない。一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分の所定量を均一に撹拌及び混合し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
(Preparation method of sealing resin composition)
The method for preparing the sealing resin composition is not particularly limited. As a general method, there is a method in which components of a predetermined blending amount are sufficiently mixed by a mixer or the like, then melt-kneaded by a mixing roll, an extruder or the like, cooled, and crushed. More specifically, for example, a method of uniformly stirring and mixing predetermined amounts of the above-mentioned components, kneading with a kneader, roll, extruder or the like which has been heated to 70 ° C. to 140 ° C. in advance, cooling and crushing Can be mentioned.
 封止用樹脂組成物は、常温常圧下(例えば、25℃、大気圧下)において固体であることが好ましい。封止用樹脂組成物が固体である場合の形状は特に制限されず、粉状、粒状、タブレット状等が挙げられる。 The sealing resin composition is preferably solid at normal temperature and normal pressure (for example, 25 ° C. and atmospheric pressure). The shape in the case where the sealing resin composition is solid is not particularly limited, and examples thereof include powder, particles, and tablets.
<封止用樹脂組成物の製造方法>
 本開示の封止用樹脂組成物の製造方法は、硬化した状態での架橋密度が0.9mol/cm以下であるか、又は1.0mol/cm以上となるように制御する工程を含む。
<Method of producing sealing resin composition>
Method of manufacturing the encapsulating resin composition of the present disclosure includes a step of controlling so that the crosslink density in the cured state is 0.9 mol / cm 3 or less or where 1.0 mol / cm 3 or more .
 封止用樹脂組成物の架橋密度が0.9mol/cm以下又は1.0mol/cm以上となるように制御する方法は、特に制限されない。例えば、封止用樹脂組成物に含まれる各成分の種類、含有率等を変更することにより、架橋密度が上記範囲となるように制御することができる。 How crosslink density of the sealing resin composition is controlled to be 0.9 mol / cm 3 or less or 1.0 mol / cm 3 or more is not particularly limited. For example, the crosslink density can be controlled to be in the above range by changing the type, the content, and the like of each component contained in the sealing resin composition.
 上記方法によれば、電気信頼性に優れる半導体装置を製造可能な封止用樹脂組成物を製造することができる。
 上記方法で製造される封止用樹脂組成物の詳細及び好ましい態様は、本開示の封止用樹脂組成物の詳細及び好ましい態様として上述したとおりである。
According to the said method, the resin composition for sealing which can manufacture the semiconductor device which is excellent in electrical reliability can be manufactured.
The details and the preferred embodiment of the sealing resin composition produced by the above method are as described above as the details and the preferred embodiment of the sealing resin composition of the present disclosure.
(封止用樹脂組成物の用途)
 封止用樹脂組成物の用途は特に制限されず、種々の半導体装置に用いることができる。上述したように、本開示の封止用樹脂組成物は高電圧かつ大電流条件下で使用した場合の電気信頼性に優れている。このため、パワー半導体素子の封止に特に好適に用いられるが、演算、記憶等のために用いる半導体素子の封止に用いてもよい。
(Use of sealing resin composition)
The use in particular of the sealing resin composition is not restrict | limited, It can use for various semiconductor devices. As described above, the sealing resin composition of the present disclosure is excellent in the electrical reliability when used under high voltage and large current conditions. For this reason, although it is used suitably especially for sealing of a power semiconductor element, you may use for sealing of the semiconductor element used for a calculation, a memory, etc.
<半導体装置>
 本開示の半導体装置は、支持体と、前記支持体上に配置される半導体素子と、前記半導体素子を封止している上述した封止用樹脂組成物の硬化物と、を備える。
<Semiconductor device>
A semiconductor device of the present disclosure includes a support, a semiconductor element disposed on the support, and a cured product of the above-described sealing resin composition sealing the semiconductor element.
 半導体装置に使用する支持体及び半導体素子の種類は特に制限されず、半導体装置の製造に一般的に用いられるものを使用できる。本開示の半導体装置は、半導体素子の封止に上述した封止用樹脂組成物を用いることで、高電圧かつ大電流条件下で使用した場合の電気信頼性に優れている。このため、パワー半導体装置として特に好適に用いられるが、演算、記憶等のために用いる半導体装置であってもよい。 The type of support and semiconductor element used for the semiconductor device is not particularly limited, and those generally used for manufacturing the semiconductor device can be used. The semiconductor device of the present disclosure is excellent in electrical reliability when used under high voltage and large current conditions by using the above-described sealing resin composition for sealing a semiconductor element. Therefore, although it is particularly suitably used as a power semiconductor device, it may be a semiconductor device used for calculation, storage and the like.
<半導体装置の製造方法>
 本開示の半導体装置の製造方法は、半導体素子を支持体上に配置する工程と、前記半導体素子を上述した封止用樹脂組成物で封止する工程と、を含む。
<Method of Manufacturing Semiconductor Device>
The method of manufacturing a semiconductor device of the present disclosure includes the steps of: arranging a semiconductor element on a support; and sealing the semiconductor element with the sealing resin composition described above.
 上記各工程を実施する方法は特に制限されず、一般的な手法により行うことができる。また、半導体装置の製造に使用する支持体及び半導体素子の種類は特に制限されず、半導体装置の製造に一般的に用いられるものを使用できる。本開示の半導体装置の製造方法は、半導体素子の封止に上述した封止用樹脂組成物を用いることで、高電圧かつ大電流条件下で使用した場合の電気信頼性に優れる半導体装置を製造できる。このため、パワー半導体装置の製造方法として特に好適であるが、演算、記憶等のために用いる半導体装置の製造方法であってもよい。 The method for carrying out each of the above steps is not particularly limited, and can be carried out by a general method. Further, the types of the support and the semiconductor element used in the manufacture of the semiconductor device are not particularly limited, and those generally used in the manufacture of the semiconductor device can be used. The manufacturing method of the semiconductor device of this indication manufactures the semiconductor device which is excellent in the electric reliability at the time of using on high voltage and a large electric current condition by using the resin composition for sealing mentioned above for sealing of a semiconductor element. it can. Therefore, the method is particularly suitable as a method of manufacturing a power semiconductor device, but it may be a method of manufacturing a semiconductor device used for calculation, storage, and the like.
 以下、上述した実施形態を実施例により具体的に説明するが、本開示の範囲はこれらの実施例に限定されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。  Hereinafter, although the embodiment mentioned above is concretely described by an example, the scope of the present disclosure is not limited to these examples. In addition, unless there is particular notice, "part" and "%" are mass references.
<第1実施形態>
(封止用樹脂組成物の調製)
 以下の成分を表1に示す量(単位:質量部)で配合し、混練温度100℃、混練時間10分の条件でロール混練を行い、封止用樹脂組成物を調製した。 
First Embodiment
(Preparation of resin composition for sealing)
The following components were compounded in amounts shown in Table 1 (unit: mass part), roll kneading was carried out under conditions of kneading temperature 100 ° C., kneading time 10 minutes, and a sealing resin composition was prepared.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表中に記載の各材料の詳細は、下記のとおりである。
・エポキシ樹脂…エポキシ当量241、軟化点96℃のビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(日本化薬株式会社、商品名CER-3000L) 
・硬化剤…水酸基当量175、軟化点70℃のキシリレン型フェノール樹脂(明和化成株式会社、商品名MEHC-7800SS) 
・硬化促進剤…トリフェニルホスフィンと1,4-ベンゾキノンとのベタイン型付加物 
・無機充填材1…平均粒径24.3μm、比表面積2.86m/gの球状溶融シリカ
・無機充填材2…平均粒形0.13μm、比表面積7.00m/gの球状溶融シリカ
・シランカップリング剤…γ-グリシドキシプロピルトリメトキシシラン
The details of each material described in the table are as follows.
Epoxy resin: A biphenylene skeleton-containing phenol aralkyl type epoxy resin having an epoxy equivalent of 241 and a softening point of 96 ° C. (Nippon Kayaku Co., Ltd., trade name CER-3000 L)
Curing agent: xylylene type phenol resin having a hydroxyl equivalent of 175 and a softening point of 70 ° C. (Meiwa Chemical Co., Ltd., trade name MEHC-7800 SS)
Hardening accelerator: Betaine-type adduct of triphenylphosphine and 1,4-benzoquinone
· Inorganic filler 1 ... spherical fused silica with an average particle diameter of 24.3 μm and a specific surface area of 2.86 m 2 / g · inorganic filler 2 ... a spherical fused silica with an average particle shape of 0.13 μm and a specific surface area of 7.00 m 2 / g・ Silane coupling agent ... γ-Glycidoxypropyltrimethoxysilane
(誘電緩和値の測定)
 調製した封止用樹脂組成物を硬化させて、誘電緩和値の評価用の試験片を作製した。具体的には、トランスファ成形機を用いて、金型温度180℃、成形圧力6.9MPa、硬化時間120secの条件で封止用樹脂組成物を成形した後、175℃で5時間硬化することにより行った。試験片のサイズは、直径50mm、厚み1mmの円板物とした。
(Measurement of dielectric relaxation value)
The prepared resin composition for sealing was cured to prepare a test piece for evaluation of dielectric relaxation value. Specifically, a molding resin composition is molded using a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 120 seconds, and then cured for 5 hours at 175 ° C. went. The size of the test piece was a disc having a diameter of 50 mm and a thickness of 1 mm.
 作製した試験片について、誘電緩和値を測定した。測定は、図1に示すような誘電率測定用インターフェースを有するインピーダンス測定装置と動的粘弾性測定装置との組み合わせからなる誘電緩和測定装置を用いて行った。図1において、1aは誘電率測定用インターフェースを、1bはインピーダンス測定装置を、2は動的粘弾性測定装置を、2aは測定用電極をそれぞれ示す。すなわち、この誘電緩和測定装置においては、インピーダンス測定装置1b上に接続され配置された誘電率測定用インターフェース1aが動的粘弾性測定装置2に接続されており、動的粘弾性測定装置2に測定用電極2aが取り付けられている。そして、上記測定用電極2a間に、測定対象となるサンプルを挟持させて測定を行う。 The dielectric relaxation value was measured about the produced test piece. The measurement was performed using a dielectric relaxation measurement device comprising a combination of an impedance measurement device having a dielectric constant measurement interface as shown in FIG. 1 and a dynamic viscoelasticity measurement device. In FIG. 1, 1a indicates a dielectric constant measurement interface, 1b indicates an impedance measurement device, 2 indicates a dynamic viscoelasticity measurement device, and 2a indicates a measurement electrode. That is, in this dielectric relaxation measuring apparatus, the interface 1a for dielectric constant measurement connected and disposed on the impedance measuring apparatus 1b is connected to the dynamic viscoelasticity measuring apparatus 2, and measurement is performed on the dynamic viscoelasticity measuring apparatus 2 The electrode 2a is attached. Then, a sample to be measured is held between the measurement electrodes 2a to perform measurement.
 誘電率測定用インターフェース1aとしては、英国ソーラトロン社製の1296型誘電率測定インターフェースを使用し、インピーダンス測定装置1bとしては、英国ソーラトロン社製の1255B型インピーダンスアナライザーを使用し、動的粘弾性測定装置2としては、TAインスツルメント社製のRSAを使用した。
 測定は、時間-温度換算則(WLF式)に則り、低誘電側(周波数0.0001~0.00001Hz)まで実施し、最終到達誘電率を測定した。
As the interface 1a for permittivity measurement, a 1296 type permittivity measurement interface manufactured by Solartron, UK is used, and as the impedance measurement device 1b, a 1255B type impedance analyzer manufactured by Solartron, UK is used, and a dynamic viscoelasticity measuring device As (2), RSA manufactured by TA Instruments was used.
The measurement was performed to the low dielectric side (frequency: 0.0001 to 0.00001 Hz) according to the time-temperature conversion rule (WLF formula), and the final reaching dielectric constant was measured.
 無機充填材の比表面積と、誘電緩和値の関係を図2に示す。図2は、各サンプルに含まれる無機充填材の比表面積(gあたり表面積、m)をX座標とし、誘電緩和値をY座標として示した散布図である。図2に示すように、無機充填材の比表面積と周波数0.001Hzで測定した誘電緩和値の間には正の相関関係が認められた。 The relationship between the specific surface area of the inorganic filler and the dielectric relaxation value is shown in FIG. FIG. 2 is a scatter diagram in which the specific surface area (surface area per g, m 2 ) of the inorganic filler contained in each sample is taken as the X coordinate and the dielectric relaxation value is taken as the Y coordinate. As shown in FIG. 2, a positive correlation was recognized between the specific surface area of the inorganic filler and the dielectric relaxation value measured at a frequency of 0.001 Hz.
<第2実施形態>
 以下の成分を表2に示す量(単位:質量部)で配合し、混練温度100℃、混練時間10分の条件でロール混練を行い、封止用樹脂組成物を調製した。
Second Embodiment
The following components were compounded in amounts shown in Table 2 (unit: parts by mass), roll kneading was carried out under conditions of kneading temperature 100 ° C., kneading time 10 minutes, and a sealing resin composition was prepared.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表中に示す各成分の詳細は、下記のとおりである。
・エポキシ樹脂…エポキシ当量241、軟化点96℃のビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(日本化薬株式会社、商品名CER-3000L)
・硬化剤…水酸基当量175、軟化点70℃のキシリレン型フェノール樹脂(明和化成株式会社、商品名MEHC-7800SS)
・硬化促進剤…トリフェニルホスフィンと1,4-ベンゾキノンとのベタイン型付加物
・シランカップリング剤1…3-メルカプトプロピルトリメトキシシラン
・シランカップリング剤2…3-アミノプロピルトリエトキシシラン
・シランカップリング剤3…メチルトリメトキシシラン
・シランカップリング剤4…N-フェニル-3-アミノプロピルトリメトキシシラン
・シランカップリング剤5…3-グリシドキシプロピルトリメトキシシラン
・着色剤…カーボンブラック
・無機充填材1…平均粒径24.3μm、比表面積2.86m/gの球状溶融シリカ
・無機充填材2…平均粒形0.13μm、比表面積7.00m/gの球状溶融シリカ
The details of each component shown in the table are as follows.
Epoxy resin: A biphenylene skeleton-containing phenol aralkyl type epoxy resin having an epoxy equivalent of 241 and a softening point of 96 ° C. (Nippon Kayaku Co., Ltd., trade name CER-3000 L)
Curing agent: xylylene type phenol resin having a hydroxyl equivalent of 175 and a softening point of 70 ° C. (Meiwa Chemical Co., Ltd., trade name MEHC-7800 SS)
-Curing accelerator-Betaine type adduct of triphenylphosphine and 1,4-benzoquinone-Silane coupling agent 1-3-Mercaptopropyltrimethoxysilane-Silane coupling agent 2-3-Aminopropyltriethoxysilane-Silane Coupling agent 3 ... methyltrimethoxysilane · silane coupling agent 4 ... N-phenyl 3-aminopropyltrimethoxysilane · silane coupling agent 5 ... 3-glycidoxypropyltrimethoxysilane · coloring agent ... carbon black · Inorganic filler 1. Spherical fused silica with an average particle diameter of 24.3 μm and a specific surface area of 2.86 m 2 / g Inorganic filler 2. Spherical fused silica with an average particle shape of 0.13 μm and a specific surface area of 7.00 m 2 / g
 調製した封止用樹脂組成物を用いて、第1実施形態と同様にして試験片を作製し、誘電緩和値を測定した。結果を表2に示す。 Test pieces were produced in the same manner as in the first embodiment using the prepared resin composition for sealing, and the dielectric relaxation value was measured. The results are shown in Table 2.
 表2に示すように、カップリング剤として-NH又は-SHを有するシランカップリング剤を用いた実施例の封止用樹脂組成物は、その他の官能基を有するシランカップリング剤を用いた比較例の封止用樹脂組成物に比べて0.001Hzでの誘電緩和値が小さかった。 As shown in Table 2, the sealing resin composition of the example using a silane coupling agent having -NH 2 or -SH as a coupling agent used a silane coupling agent having another functional group. The dielectric relaxation value at 0.001 Hz was smaller than that of the sealing resin composition of the comparative example.
<第3実施形態>
 以下の成分を表3に示す量(単位:質量部)で配合し、混練温度100℃、混練時間10分の条件でロール混練を行い、封止用樹脂組成物を調製した。
Third Embodiment
The following components were compounded in amounts shown in Table 3 (unit: parts by mass), roll kneading was performed under the conditions of a kneading temperature of 100 ° C. and a kneading time of 10 minutes to prepare a sealing resin composition.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表中に示す各成分の詳細は、下記のとおりである。
・エポキシ樹脂A…テトラメチルビフェノール型固形エポキシ樹脂(YX-4000H、三菱ケミカル株式会社)
・エポキシ樹脂B…α―2,3-エポキシプロキシルフェニル‐ω‐ヒドロポリ(n=1~7)[2-(2,3-エポキシプロポキシ)ベンジリデン-2,3-エポキシプロポキシフェニレン(EPPN-501HY、日本化薬株式会社)
・エポキシ樹脂C…ビフェニルノボラックエポキシ樹脂(NC-3000、日本化薬株式会社)
・エポキシ樹脂D…O-クレゾールノボラックグリシジルエーテル(N500P、DIC株式会社)
・エポキシ樹脂E…軟化点58℃のナフタレン変性ノボラック型エポキシ樹脂(HP-5000、DIC株式会社)
・エポキシ樹脂F…DCPD型エポキシ樹脂(HP-7200、DIC株式会社)
・エポキシ樹脂G…融点107℃のエポキシ樹脂(EXA-5300、DIC株式会社)
・エポキシ樹脂H…ジシクロペンタジエン-ジメチロールジクリシルエーテル(EP-HA01、株式会社ADEKA)
・硬化剤a…フェノール樹脂(MEW-1800、明和化成株式会社)
・硬化剤b…フェノールとp-キシレングリコールジメチルエーテルとの重縮合体(MEH-7800、明和化成株式会社)
・硬化促進剤…トリフェニルホスフィンと1,4-ベンゾキノンとのベタイン型付加物
・カップリング剤…3-(フェニルアミノ)プロピルトリメトシキシラン(KBM-573、信越化学工業株式会社)
・カーボン…カーボンブラック(MA-600、三菱ケミカル株式会社)
・無機充填材…非晶質二酸化ケイ素(5%未満の結晶質を含む)(FB-9454、デンカ株式会社)
The details of each component shown in the table are as follows.
Epoxy resin A: tetramethyl biphenol type solid epoxy resin (YX-4000H, Mitsubishi Chemical Corporation)
・ Epoxy resin B ... α-2,3-epoxy proxylphenyl-ω-hydropoly (n = 1-7) [2- (2,3-epoxypropoxy) benzylidene-2,3-epoxypropoxyphenylene (EPPN-501HY , Nippon Kayaku Co., Ltd.)
Epoxy resin C: Biphenyl novolac epoxy resin (NC-3000, Nippon Kayaku Co., Ltd.)
Epoxy resin D: O-cresol novolac glycidyl ether (N500P, DIC Corporation)
Epoxy resin E: Naphthalene-modified novolac epoxy resin having a softening point of 58 ° C. (HP-5000, DIC Corporation)
· Epoxy resin F: DCPD type epoxy resin (HP-7200, DIC Corporation)
· Epoxy resin G: Epoxy resin with a melting point of 107 ° C (EXA-5300, DIC Corporation)
・ Epoxy resin H: Dicyclopentadiene-dimethylol diglycyl ether (EP-HA01, ADEKA Co., Ltd.)
Hardener a: Phenolic resin (MEW-1800, Meiwa Kasei Co., Ltd.)
Hardener b: Polycondensate of phenol and p-xylene glycol dimethyl ether (MEH-7800, Meiwa Kasei Co., Ltd.)
Hardening accelerator: Betaine-type adduct of triphenylphosphine and 1,4-benzoquinone Coupling agent: 3- (phenylamino) propyltrimethoxysilane (KBM-573, Shin-Etsu Chemical Co., Ltd.)
Carbon: carbon black (MA-600, Mitsubishi Chemical Corporation)
· Inorganic filler ... Amorphous silicon dioxide (containing less than 5% of crystalline material) (FB-9454, Denka Co., Ltd.)
 調製した封止用樹脂組成物を用いて、第1実施形態と同様にして試験片を作製し、誘電緩和値を測定した。さらに、動的粘弾性測定装置にて求められたゴム領域の動的貯蔵弾性率を用いて、下記の式にのっとり算出された値を架橋密度とした。本実施例では、測定装置としてTAインスルメント社のRSA3を使用した。
 計算式:n=E’/3RT
 n:架橋密度[mol/cm
 E’:動的貯蔵弾性率[Pa]
 R:気体定数 8.31[J/mol・K]
 T:絶対温度[K]
Test pieces were produced in the same manner as in the first embodiment using the prepared resin composition for sealing, and the dielectric relaxation value was measured. Furthermore, using the dynamic storage elastic modulus of the rubber region obtained by the dynamic viscoelasticity measurement device, the value calculated according to the following equation was taken as the crosslink density. In this example, RSA 3 manufactured by TA Instruments was used as a measurement device.
Formula: n = E '/ 3 RT
n: Crosslink density [mol / cm 3 ]
E ': dynamic storage elastic modulus [Pa]
R: Gas constant 8.31 [J / mol · K]
T: Absolute temperature [K]
 封止用樹脂組成物の架橋密度と、周波数0.001Hzで測定した誘電緩和値との関係を図3に示す。図3は、封止用樹脂組成物の架橋密度(mol/cm)をX座標とし、周波数0.001Hzで測定した誘電緩和値をY座標として示した散布図である。 The relationship between the crosslink density of the sealing resin composition and the dielectric relaxation value measured at a frequency of 0.001 Hz is shown in FIG. FIG. 3 is a scatter diagram in which the crosslink density (mol / cm 3 ) of the sealing resin composition is taken as the X coordinate, and the dielectric relaxation value measured at a frequency of 0.001 Hz is shown as the Y coordinate.
 図3に示すように、封止用樹脂組成物の架橋密度が0.9mol/cm以下の範囲では、架橋密度と周波数0.001Hzで測定した誘電緩和値の間に正の相関関係が認められた。また、封止用樹脂組成物の架橋密度が1.0mol/cm以上の範囲では、架橋密度と周波数0.001Hzで測定した誘電緩和値の間に負の相関関係が認められた。
 さらに、封止用樹脂組成物の架橋密度が0.9mol/cm以下又は1.0mol/cm以上であるときの周波数0.001Hzで測定した誘電緩和値は20以下であった。
As shown in FIG. 3, when the crosslinking density of the sealing resin composition is 0.9 mol / cm 3 or less, a positive correlation is recognized between the crosslinking density and the dielectric relaxation value measured at a frequency of 0.001 Hz. It was done. Further, when the crosslink density of the sealing resin composition was 1.0 mol / cm 3 or more, a negative correlation was recognized between the crosslink density and the dielectric relaxation value measured at a frequency of 0.001 Hz.
Further, the crosslinking density of the sealing resin composition is dielectric relaxation values measured at frequencies 0.001Hz when it 0.9 mol / cm 3 or less or 1.0 mol / cm 3 or more was 20 or less.
<参考例>
 封止用樹脂組成物が硬化した状態で周波数0.001Hzで測定される誘電緩和値と、封止用樹脂組成物を用いて作製した半導体装置の電気信頼性の関係を調べるため、下記の試験を実施した。
<Reference example>
In order to investigate the relationship between the dielectric relaxation value measured at a frequency of 0.001 Hz with the resin composition for sealing cured and the electrical reliability of the semiconductor device manufactured using the resin composition for sealing, the following test Carried out.
(封止用樹脂組成物の調製)
 下記に示す成分を表4に示す配合割合(質量部)で配合し、混練温度80℃、混練時間10分の条件でロール混練を行い、封止用樹脂組成物を調製した。
(Preparation of resin composition for sealing)
The components shown below were blended at blending ratios (parts by mass) shown in Table 4, and roll kneading was performed under conditions of a kneading temperature of 80 ° C. and a kneading time of 10 minutes to prepare a sealing resin composition.
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000004

 
 表中に示す各成分の詳細は、下記のとおりである。
・エポキシ樹脂A…α-ヒドロキシフェニル-ω-ヒドロポリ(n=1~7)(ビフェニルジメチレン-ヒドロキシフェニレン)と1-クロロ-2,3-エポキシプロパンとの重縮合物(CER-3000L、日本化薬株式会社)
・エポキシ樹脂B…2,2’-ジメチル-4,4’-ジヒドロキシ-5,5’-ジ-tert-ブチルジフェニルスルフィドとクロロメチルオキシランとの反応生成物(YSLV-120TE、新日鉄住金化学株式会社)
・エポキシ樹脂C…テトラメチルビフェノール型固形エポキシ樹脂(YX-4000、三菱ケミカル株式会社)
・エポキシ樹脂D…α固形エポキシ樹脂と4,4’-ビフェノール型エポキシ樹脂の混合物(YX-7399、三菱ケミカル株式会社)
・硬化剤…フェノールとp-キシレングリコールジメチルエーテルとの重縮合物(MEH-7800、明和化成株式会社)
・硬化剤促進剤a’…トリパラトリルホスフィンと1,4-ベンゾキノン付加体
・硬化剤促進剤b’…トリフェニルホスフィンと1,4-ベンゾキノン付加体
・カップリング剤a…3-(フェニルアミノ)プロピルトリメトキシシラン(KBM-573、信越化学工業株式会社)
・カップリング剤b…メチルトリメトキシシラン(KBM-13、信越化学工業株式会社)
・カップリング剤c…3-グリシジルオキシプロピルトリメトキシシラン(KBM-403、信越化学工業株式会社)
・カップリング剤d…ジフェニルジメトキシシラン(KBM-202SS、信越化学工業株式会社)
・無機充填材…非晶質二酸化ケイ素(5%未満の結晶質を含む)(FB-9454、デンカ株式会社)
The details of each component shown in the table are as follows.
Epoxy resin A: polycondensate of α-hydroxyphenyl-ω-hydropoly (n = 1 to 7) (biphenyl dimethylene-hydroxyphenylene) with 1-chloro-2,3-epoxypropane (CER-3000 L, Japan Kayaku Co., Ltd.)
Epoxy resin B: reaction product of 2,2'-dimethyl-4,4'-dihydroxy-5,5'-di-tert-butyldiphenyl sulfide and chloromethyl oxirane (YSLV-120TE, Nippon Steel Sumikin Chemical Co., Ltd. )
Epoxy resin C: tetramethyl biphenol type solid epoxy resin (YX-4000, Mitsubishi Chemical Corporation)
· Epoxy resin D: mixture of α solid epoxy resin and 4,4'-biphenol type epoxy resin (YX-7399, Mitsubishi Chemical Corporation)
Hardener: Polycondensate of phenol and p-xylene glycol dimethyl ether (MEH-7800, Meiwa Kasei Co., Ltd.)
· Curing agent accelerator a '-... Triparatryl phosphine and 1,4-benzoquinone adduct · Curing agent accelerator b' ... Triphenyl phosphine and 1,4-benzoquinone adduct · Coupling agent a ... 3- (phenylamino) Propyltrimethoxysilane (KBM-573, Shin-Etsu Chemical Co., Ltd.)
・ Coupling agent b ... Methyltrimethoxysilane (KBM-13, Shin-Etsu Chemical Co., Ltd.)
・ Coupling agent c ... 3-glycidyloxypropyltrimethoxysilane (KBM-403, Shin-Etsu Chemical Co., Ltd.)
Coupling agent d: Diphenyldimethoxysilane (KBM-202SS, Shin-Etsu Chemical Co., Ltd.)
· Inorganic filler ... Amorphous silicon dioxide (containing less than 5% of crystalline material) (FB-9454, Denka Co., Ltd.)
(誘電緩和値の測定)
 調製した封止用樹脂組成物を用いて、第1実施形態と同様にして誘電緩和値を測定した。測定は、周波数0.001Hzと周波数1MHzでそれぞれ行った。
(Measurement of dielectric relaxation value)
The dielectric relaxation value was measured in the same manner as in the first embodiment using the prepared sealing resin composition. The measurement was performed at a frequency of 0.001 Hz and a frequency of 1 MHz, respectively.
(高温逆バイアス試験)
 ディスクリートパッケージ(TO-247)にダイオードをはんだを用いてダイボンディングし、Alワイヤをさらにボンディングした後、封止用樹脂組成物で封止して評価用パッケージを作製した。このパッケージを高温乾燥機内に配置し、過渡熱解析装置(T3Ster)にて得られたパッケージ熱容量を考慮した電圧を印加した。本参考例では、高温乾燥機内の温度を170℃とし、電圧を1280Vとした。電圧を印加した状態でパッケージを1000時間高温乾燥機内に放置した後に取り出し、岩崎通信機株式会社のCurve Tracer(CS-3200)を用いてリーク電流を測定した。
(High temperature reverse bias test)
A diode was die-bonded to a discrete package (TO-247) using a solder, and an Al wire was further bonded, and then sealed with a sealing resin composition to prepare an evaluation package. This package was placed in a high-temperature dryer, and a voltage was applied in consideration of the package thermal capacity obtained by the transient thermal analyzer (T3Ster). In this reference example, the temperature in the high-temperature dryer was 170 ° C., and the voltage was 1280 V. The package was left in a high-temperature dryer for 1000 hours with a voltage applied, and then removed. The leak current was measured using a Curve Tracer (CS-3200) manufactured by Iwasaki Communication Co., Ltd.
 誘電緩和値の測定値と高温逆バイアス試験の結果を、表4、図4及び図5に示す。
 図4は、参考例1~5の封止用樹脂組成物から作製したサンプルに対して行った誘電緩和値(周波数0.001Hz)の測定値をX座標とし、高温逆バイアス試験におけるリーク電流(μA)をY座標として示した散布図である。
 図5は、参考例2~5の封止用樹脂組成物から作製したサンプルに対して行った誘電緩和値(周波数1MHz)の測定値をX座標とし、高温逆バイアス試験におけるリーク電流(μA)をY座標として示した散布図である。
The measured dielectric relaxation values and the results of the high temperature reverse bias test are shown in Table 4, FIG. 4 and FIG.
FIG. 4 shows the leakage current in the high temperature reverse bias test with the measured value of the dielectric relaxation value (frequency 0.001 Hz) performed on a sample prepared from the sealing resin composition of Reference Examples 1 to 5 as the X coordinate. It is a scatter diagram which showed (micro | micron | mu) A as Y coordinate.
FIG. 5 shows measured values of dielectric relaxation value (frequency 1 MHz) of samples prepared from the sealing resin compositions of Reference Examples 2 to 5 as X coordinates, and leakage current (μA) in the high temperature reverse bias test. Is a scatter diagram showing Y as a Y coordinate.
 図4に示すように、周波数0.001Hzで測定した誘電緩和値と高温逆バイアス試験におけるリーク電流(μA)の間には正の相関関係が認められた。
 また、周波数0.001Hzで測定した誘電緩和値が20以下であるときには高温逆バイアス試験の結果が良好であった。
As shown in FIG. 4, a positive correlation was recognized between the dielectric relaxation value measured at a frequency of 0.001 Hz and the leakage current (μA) in the high temperature reverse bias test.
Also, when the dielectric relaxation value measured at a frequency of 0.001 Hz was 20 or less, the result of the high temperature reverse bias test was good.
 図5に示すように、周波数1MHzで測定した誘電緩和値と高温逆バイアス試験におけるリーク電流(μA)の間には相関関係が認められなかった。 As shown in FIG. 5, no correlation was found between the dielectric relaxation value measured at a frequency of 1 MHz and the leakage current (μA) in the high temperature reverse bias test.
 以上より、本開示の封止用樹脂組成物によれば電気信頼性に優れる半導体装置を製造可能であることがわかった。 As mentioned above, according to the resin composition for sealing of this indication, it turned out that the semiconductor device which is excellent in electric reliability is producible.
 日本国特許出願第2017-156441号、第2017-156442号及び第2017-156443号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
The disclosures of Japanese patent applications 2017-156441, 2017-156442 and 2017-156443 are incorporated herein by reference in their entirety.
All documents, patent applications, and technical standards described herein are as specific and individually as individual documents, patent applications, and technical standards are incorporated by reference. Hereby incorporated by reference.

Claims (11)

  1.  エポキシ樹脂と、無機充填材とを含有し、前記無機充填材の比表面積が3.28m/g以下である、封止用樹脂組成物。 The sealing resin composition which contains an epoxy resin and an inorganic filler and whose specific surface area of the said inorganic filler is 3.28 m < 2 > / g or less.
  2.  硬化した状態で周波数0.001Hzで測定される誘電緩和値が20以下である、請求項1に記載の封止用樹脂組成物。 The sealing resin composition according to claim 1, wherein a dielectric relaxation value measured at a frequency of 0.001 Hz in a cured state is 20 or less.
  3.  エポキシ樹脂と、無機充填材と、-NH又は-SHを有するシランカップリング剤とを含有する、封止用樹脂組成物。 A sealing resin composition comprising an epoxy resin, an inorganic filler, and a silane coupling agent having -NH 2 or -SH.
  4.  硬化した状態で周波数0.001Hzで測定される誘電緩和値が13以下である、請求項3に記載の封止用樹脂組成物。 The sealing resin composition according to claim 3, wherein a dielectric relaxation value measured at a frequency of 0.001 Hz in a cured state is 13 or less.
  5.  エポキシ樹脂と、無機充填材とを含有し、硬化した状態での架橋密度が0.9mol/cm以下であるか、又は1.0mol/cm以上である、封止用樹脂組成物。 An epoxy resin, containing an inorganic filler, or crosslink density in the cured state is 0.9 mol / cm 3 or less, or 1.0 mol / cm 3 or more, the sealing resin composition.
  6.  硬化した状態で周波数0.001Hzで測定される誘電緩和値が20以下である、請求項5に記載の封止用樹脂組成物。 The sealing resin composition according to claim 5, wherein a dielectric relaxation value measured at a frequency of 0.001 Hz in a cured state is 20 or less.
  7.  パワー半導体素子の封止に用いられる、請求項1~請求項6のいずれか1項に記載の封止用樹脂組成物。 The sealing resin composition according to any one of claims 1 to 6, which is used for sealing a power semiconductor element.
  8.  前記無機充填材の含有率が、前記封止用樹脂組成物の70体積%以上である、請求項1~請求項7のいずれか1項に記載の封止用樹脂組成物。 The sealing resin composition according to any one of claims 1 to 7, wherein a content of the inorganic filler is 70% by volume or more of the sealing resin composition.
  9.  硬化した状態での架橋密度が0.9mol/cm以下であるか、又は1.0mol/cm以上となるように制御する工程を含む、請求項1~請求項8のいずれか1項に記載の封止用樹脂組成物の製造方法。 Or crosslink density in the cured state is 0.9 mol / cm 3 or less, or 1.0 mol / cm comprising 3 the steps of controlling so that the above, in any one of claims 1 to 8 The manufacturing method of the resin composition for sealing as described.
  10.  支持体と、前記支持体上に配置される半導体素子と、前記半導体素子を封止している請求項1~請求項8のいずれか1項に記載の封止用樹脂組成物の硬化物と、を備える半導体装置。 9. A cured product of a sealing resin composition according to any one of claims 1 to 8, which encapsulates a support, a semiconductor element disposed on the support, and the semiconductor element. And a semiconductor device.
  11.  半導体素子を支持体上に配置する工程と、前記半導体素子を請求項1~請求項8のいずれか1項に記載の封止用樹脂組成物で封止する工程と、を含む半導体装置の製造方法。 A semiconductor device comprising: a step of disposing a semiconductor element on a support; and a step of sealing the semiconductor element with the sealing resin composition according to any one of claims 1 to 8. Method.
PCT/JP2018/030140 2017-08-14 2018-08-10 Sealing resin composition, method for producing sealing resin composition, semiconductor device, and method for producing semiconductor device WO2019035431A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880052652.6A CN111032780A (en) 2017-08-14 2018-08-10 Sealing resin composition, method for producing sealing resin composition, semiconductor device, and method for producing semiconductor device
JP2019536766A JPWO2019035431A1 (en) 2017-08-14 2018-08-10 Sealing resin composition, method for manufacturing sealing resin composition, semiconductor device, and method for manufacturing semiconductor device
JP2023063089A JP2023083365A (en) 2017-08-14 2023-04-07 Resin composition for sealing, method for producing resin composition for sealing, semiconductor device, and method for manufacturing semiconductor device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017156441 2017-08-14
JP2017-156443 2017-08-14
JP2017-156441 2017-08-14
JP2017156442 2017-08-14
JP2017156443 2017-08-14
JP2017-156442 2017-08-14

Publications (1)

Publication Number Publication Date
WO2019035431A1 true WO2019035431A1 (en) 2019-02-21

Family

ID=65362682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030140 WO2019035431A1 (en) 2017-08-14 2018-08-10 Sealing resin composition, method for producing sealing resin composition, semiconductor device, and method for producing semiconductor device

Country Status (4)

Country Link
JP (2) JPWO2019035431A1 (en)
CN (1) CN111032780A (en)
TW (1) TWI815816B (en)
WO (1) WO2019035431A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176268A1 (en) * 2022-03-17 2023-09-21 日本ケミコン株式会社 Sealing body and electrolytic capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063571A (en) * 2006-08-09 2008-03-21 Hitachi Chem Co Ltd Epoxy resin composition and electronic component device
JP2008081590A (en) * 2006-09-27 2008-04-10 Hitachi Chem Co Ltd Epoxy resin composition and electronic part device
JP2014062173A (en) * 2012-09-21 2014-04-10 Sumitomo Bakelite Co Ltd Resin composition and electronic component device
JP2016044211A (en) * 2014-08-20 2016-04-04 日立化成株式会社 Resin composition for molded underfill and electronic component device
JP2016104862A (en) * 2015-12-04 2016-06-09 日立化成株式会社 Resin composition, resin sheet, resin sheet with metal foil, resin cured article sheet, semiconductor device for power source or for light source

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685535B (en) * 2015-05-06 2020-02-21 日商住友電木股份有限公司 Resin composition for encapsulation and electronic component device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063571A (en) * 2006-08-09 2008-03-21 Hitachi Chem Co Ltd Epoxy resin composition and electronic component device
JP2008081590A (en) * 2006-09-27 2008-04-10 Hitachi Chem Co Ltd Epoxy resin composition and electronic part device
JP2014062173A (en) * 2012-09-21 2014-04-10 Sumitomo Bakelite Co Ltd Resin composition and electronic component device
JP2016044211A (en) * 2014-08-20 2016-04-04 日立化成株式会社 Resin composition for molded underfill and electronic component device
JP2016104862A (en) * 2015-12-04 2016-06-09 日立化成株式会社 Resin composition, resin sheet, resin sheet with metal foil, resin cured article sheet, semiconductor device for power source or for light source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176268A1 (en) * 2022-03-17 2023-09-21 日本ケミコン株式会社 Sealing body and electrolytic capacitor

Also Published As

Publication number Publication date
CN111032780A (en) 2020-04-17
JP2023083365A (en) 2023-06-15
JPWO2019035431A1 (en) 2020-08-06
TW201910478A (en) 2019-03-16
TWI815816B (en) 2023-09-21

Similar Documents

Publication Publication Date Title
JP6870778B1 (en) Resin composition for molding and electronic component equipment
WO2019069870A1 (en) Curable resin composition, electronic component device, and production method for electronic component device
JP2023100761A (en) Resin composition for encapsulation, electronic component device and method for manufacturing electronic component device
JP2019167407A (en) Epoxy resin composition, and electronic component device
JP2023083365A (en) Resin composition for sealing, method for producing resin composition for sealing, semiconductor device, and method for manufacturing semiconductor device
JP7388160B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2023036633A (en) Resin composition for sealing, semiconductor device, and method for manufacturing semiconductor device
JP2021116331A (en) Sealing resin composition, electronic component device, and method for producing electronic component device
WO2019004458A1 (en) Resin composition for encapsulation, rearranged wafer, semiconductor package, and method for manufacturing semiconductor package
JP2021084980A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2020122071A (en) Sealing resin composition, electronic component device, and method for manufacturing same
WO2018123745A1 (en) Resin composition and electronic component device
WO2022124406A1 (en) Molding resin composition and electronic component device
JP2023168050A (en) Resin composition and electronic component device
JP2024055627A (en) Molding resin composition and electronic component device
JP2023040897A (en) Thermosetting resin composition and electronic component device
JP2023012946A (en) Sealing resin composition and semiconductor device
JP2022011184A (en) Sealing resin composition and electronic component device
WO2020189309A1 (en) Resin composition for sealing, electronic component device, and production method for electronic component device
TW202037667A (en) Sealing resin composition, electronic component device and method of producing electronic component device
JP2023012945A (en) Sealing resin composition and semiconductor device
JPWO2020130098A1 (en) Encapsulation composition and semiconductor device
JP2019065225A (en) Curable resin composition, electronic part device and method for manufacturing electronic part device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536766

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845976

Country of ref document: EP

Kind code of ref document: A1