WO2021192345A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2021192345A1
WO2021192345A1 PCT/JP2020/031053 JP2020031053W WO2021192345A1 WO 2021192345 A1 WO2021192345 A1 WO 2021192345A1 JP 2020031053 W JP2020031053 W JP 2020031053W WO 2021192345 A1 WO2021192345 A1 WO 2021192345A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching chamber
temperature
chamber
switching
flapper
Prior art date
Application number
PCT/JP2020/031053
Other languages
French (fr)
Japanese (ja)
Inventor
良二 河井
慎一郎 岡留
晴樹 額賀
智史 小沼
拳司 伊藤
真也 岩渕
浩俊 渡邊
弘晃 安藤
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Publication of WO2021192345A1 publication Critical patent/WO2021192345A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/069Cooling space dividing partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to a refrigerator.
  • Patent Document 1 describes a refrigerator in which a thermistor for controlling the temperature is provided in a plurality of switching storage chambers in which the temperature of the storage chamber can be switched.
  • the temperature difference between the inside and outside of the refrigerator changes greatly depending on whether the temperature is set to the freezing temperature or the refrigerating temperature.
  • the temperature difference becomes very large, the amount of heat entering from the outside of the refrigerator increases, and it is necessary to send more cold air.
  • the temperature difference is small, so that it is only necessary to send a smaller amount of air, and it is only necessary to send cold air in a short time, so that the amount of cold air supplied is reduced.
  • the cold air supply state changes greatly depending on the setting state of the switching room.
  • the place where the temperature tends to rise and the place where the temperature tends to fall change. Therefore, in a refrigerator provided with a single temperature sensor in each switching storage chamber like the refrigerator described in Patent Document 1, it is not possible to appropriately detect that the temperature in the storage chamber changes depending on the set state. Further, when either the freezing temperature zone or the refrigerating temperature zone is prioritized, the storage chamber tends to be cooled or the temperature tends to rise. If it is detected by only one temperature sensor, the state of the storage chamber cannot be sufficiently detected, and there is a problem that the storage chamber becomes too cold.
  • the present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a refrigerator in which the switching chamber can be controlled at an appropriate temperature.
  • the refrigerator of the present invention is provided with a switching chamber that can be switched between a refrigerating temperature zone and a freezing temperature zone, and the switching chamber is provided with a plurality of temperature sensors.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG. It is a front view which shows the flow of the cold air inside the back of the refrigerator which concerns on this embodiment. It is a front view which shows the flow of the cold air in the refrigerator which concerns on this embodiment. It is an enlarged view of the main part of the VV cross section shown in FIG. It is the schematic of the air passage structure of cooling air. It is a block diagram which shows the refrigerating cycle of the refrigerator which concerns on this embodiment. It is an exploded perspective view which shows the heat insulation partition wall provided on the back side of a switching chamber. It is a perspective view which shows the internal structure of a damper duct.
  • FIG. 11 is a cross-sectional view taken along the line XII-XII of FIG.
  • FIG. 11 is a cross-sectional view taken along the line XIII-XIII of FIG.
  • It is a flowchart which shows the cooling operation control of the refrigerator which concerns on 1st Embodiment.
  • FIG. 23 is a cross-sectional view taken along the line XXIV-XXIV of FIG.
  • FIG. 2 is a cross-sectional view taken along the line XXV-XXV of FIG. 23.
  • the present embodiment is not limited to the following contents, and can be arbitrarily modified and implemented without impairing the gist of the present invention. Further, in the following, the directions shown in FIGS. 1 and 2 will be described as a reference.
  • FIG. 1 is a front view showing a refrigerator according to the first embodiment.
  • a 6-door refrigerator 1 will be described as an example, but the description is not limited to the 6-door refrigerator 1.
  • the refrigerator 1 includes a heat insulating box 10 including a refrigerating chamber 2, an ice making chamber 3, a freezing chamber 4, a first switching chamber 5 (switching chamber), and a second switching chamber 6 (switching chamber).
  • the first switching chamber 5 can switch the temperature zone from the refrigerating temperature zone (for example, 1 ° C. to 6 ° C.) to the freezing temperature zone (for example, about ⁇ 20 ° C. to ⁇ 18 ° C.).
  • the second switching chamber 6 can switch the temperature zone from the refrigerating temperature zone to the freezing temperature zone.
  • the refrigerating chamber 2 is set to a refrigerating temperature zone (for example, 6 ° C.), and the ice making chamber 3 and the freezing chamber 4 are set to a freezing temperature zone (for example, about ⁇ 20 ° C.).
  • the refrigerating chamber doors 2a and 2b for opening and closing the refrigerating chamber 2 the ice making chamber door 3a for opening and closing the ice making chamber 3, and the freezing chamber door 4a for opening and closing the freezing chamber 4 are provided in front of the heat insulating box 10.
  • a first switching chamber door 5a for opening and closing the first switching chamber 5 and a second switching chamber door 6a for opening and closing the second switching chamber 6 are provided.
  • the refrigerating room doors 2a and 2b are configured so that they can be opened by double doors.
  • the ice making chamber door 3a, the freezing chamber door 4a, the first switching chamber door 5a, and the second switching chamber door 6a are configured to be retractable toward the front.
  • the refrigerating room doors 2a and 2b, the ice making room door 3a, the freezing room door 4a, the first switching room door 5a and the second switching room door 6a are heat insulating doors. Further, on the outer surface of the refrigerator compartment door 2a, an operation unit 26 for operating the temperature setting inside the refrigerator is provided.
  • the refrigerating room 2, the freezing room 4, and the ice making room 3 are separated by a heat insulating partition wall 28. Further, the freezing chamber 4 and the ice making chamber 3 and the first switching chamber 5 are separated by a heat insulating partition wall 29, and the first switching chamber 5 and the second switching chamber 6 are separated by a heat insulating partition wall 30.
  • Door hinges (not shown) for fixing the heat insulating box 10 and the doors 2a and 2b are provided on the front side of the heat insulating box 10 on the outside of the top cabinet and the front edge of the heat insulating partition wall 28.
  • the upper door hinge is covered with the door hinge cover 16.
  • either the refrigerating temperature (maintained at about 4 ° C on average) or the freezing temperature (maintained at about -18 ° C on average). Can be selected.
  • the "FF" mode in which both the first switching chamber 5 and the second switching chamber 6 are set to the freezing temperature, and the first switching chamber 5 and the second switching chamber 6 are set to the refrigerating temperature and the freezing temperature, respectively.
  • "RF" mode, "FR” mode in which the first switching chamber 5 and the second switching chamber 6 are set to the freezing temperature and the refrigerating temperature, respectively, and the first switching chamber 5 and the second switching chamber 6 are both set to the refrigerating temperature. You can select from the "RR" modes that are displayed.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • the refrigerator 1 is made of a steel plate outer box 10a and a synthetic resin (A in this embodiment).
  • a heat insulating box body 10 formed by filling a foamed heat insulating material 93 (polyurethane foam in the present embodiment) with an inner box 10b of (BS resin) separates the outside and the inside of the refrigerator.
  • a plurality of vacuum heat insulating materials having a lower thermal conductivity (higher heat insulating performance) than the foam heat insulating material are mounted on the heat insulating box 10 between the outer box 10a and the inner box 10b.
  • the heat insulation performance is improved by suppressing the decrease in product.
  • the vacuum heat insulating material 25a is mounted on the back surface of the heat insulating box 10
  • the vacuum heat insulating material 25b is mounted on the lower surface (bottom surface)
  • the vacuum heat insulating material is mounted on the left side surface
  • the vacuum heat insulating material is mounted on the right side surface.
  • the heat insulation performance of the refrigerator 1 is improved by suppressing the invasion of heat from the outside of the refrigerator, which has a higher temperature.
  • the heat insulating performance of the refrigerator 1 is enhanced by mounting the vacuum heat insulating material 25e on the first switching chamber door 5a and the vacuum heat insulating material 25f on the second switching chamber door 6a.
  • the refrigerating room doors 2a and 2b are provided with a plurality of door pockets 33a, 33b and 33c inside the refrigerator. Further, the inside of the refrigerator compartment 2 is divided into a plurality of storage spaces by shelves 34a, 34b, 34c, 34d.
  • the ice making chamber door 3a, the freezing chamber door 4a, the first switching chamber door 5a, and the second switching chamber door 6a are respectively drawn out integrally with the ice making chamber container 3b, the freezing chamber container 4b, the first switching chamber container 5b, and the second switching chamber.
  • a chamber container 6b is provided.
  • the back of the refrigerating chamber 2 is provided with a first evaporator chamber 8a on which the first evaporator 14a is mounted. Further, a second evaporator chamber 8b (cooler chamber) in which a second evaporator 14b (cooler) is mounted is provided substantially behind the first switching chamber 5 and the second switching chamber 6. Further, the first switching chamber 5 and the second switching chamber 6, the second evaporator chamber 8b, and the second fan discharge air passage 12 described later are separated by a heat insulating partition wall 27.
  • the heat insulating partition wall 27 is separate from the heat insulating box body 10, the heat insulating partition wall 29, and the heat insulating partition wall 30, and the heat insulating box body 10, the heat insulating partition, and the heat insulating partition wall 27 are separated from the heat insulating box body 10, the heat insulating partition wall 29, and the heat insulating partition wall 30. It is fixed so as to be in contact with the wall 29 and the heat insulating partition wall 30, and is removable.
  • the heat insulating partition wall 27 As a separate body and making it removable, the second evaporator 14b housed in the second evaporator chamber 8b, the second fan (blower) 9b described later, and the first switching Room 1 Flapper 411 (1st switching room 1st damper), 1st switching room 2nd flapper 412 (1st switching room 2nd damper), 2nd switching room 1st flapper 421 (2nd switching room 1st damper) ,
  • the heat insulating partition wall 27 can be removed for easy maintenance. ..
  • polystyrene foam (Styrofoam), which is a foam heat insulating material, is mounted as the main heat insulating member without mounting the vacuum heat insulating material.
  • Styrofoam which is a foam heat insulating material
  • the heat insulating performance is improved by mounting 25 g and 25 hours of vacuum heat insulating materials together with polystyrene foam which is a foam heat insulating material inside the heat insulating partition walls 29 and 30, respectively. Since the vacuum heat insulating materials 25g and 25h have lower thermal conductivity (higher heat insulating performance) than the foam heat insulating material, the main heat insulating member of the heat insulating partition walls 29 and 30 is the vacuum heat insulating material.
  • polyurethane foam or polyethylene foam may be used as the foam heat insulating material used inside the heat insulating partition walls 27, 28, 29, 30, polyurethane foam or polyethylene foam may be used.
  • a refrigerating chamber temperature sensor 41 On the back side of the refrigerator chamber 2, the freezer compartment 4, the first switching chamber 5, and the second switching chamber 6, a refrigerating chamber temperature sensor 41 (see FIG. 4), a freezing chamber temperature sensor 42 (see FIG. 4), respectively.
  • First switching chamber first temperature sensor (other temperature sensor) 43a see FIG. 11
  • first switching chamber second temperature sensor one temperature sensor
  • second switching chamber first temperature sensor A 44a see FIG. 14
  • second temperature sensor 44b see FIG. 14 of the second switching chamber are provided.
  • a first evaporator temperature sensor 40a is provided above the first evaporator 14a.
  • a second evaporator temperature sensor 40b is provided above the second evaporator 14b.
  • the refrigerating chamber 2, the freezing chamber 4, the first switching chamber 5, the second switching chamber 6, the first evaporator chamber 8a, the first evaporator 14a, the second evaporator chamber 8b, and the second evaporation The temperature of the vessel 14b is detected. Further, an outside air temperature sensor 37 and an outside air humidity sensor 38 are provided inside the door hinge cover 16 on the ceiling of the refrigerator 1 to detect the temperature and humidity of the outside air (outside air). In addition, by providing a door sensor (not shown), the open / closed states of the doors 2a, 2b, 3a, 4a, 5a, and 6a are detected, respectively.
  • FIG. 3 is a front view showing the flow of cold air inside the back surface of the refrigerator. Note that FIG. 3 is a front view of the state in which the door, the container, and the heat insulating partition wall 27 described later are removed.
  • a first fan 9a is provided above the first evaporator 14a.
  • the cooling air sent out by the first fan 9a is blown to the refrigerating chamber 2 through the refrigerating chamber air passage 110 and the refrigerating chamber discharge port 110a to cool the inside of the refrigerating chamber 2.
  • the first fan 9a is constituted of, for example, a turbo fan (rearward fans) is a centrifugal fan, and can control the rotational speed to a high speed (1600Min -1) and low speed (1000min -1).
  • the air blown to the refrigerating chamber 2 returns to the first evaporator chamber 8a from the refrigerating chamber return port 110b (see FIG. 2) and the refrigerating chamber return port 110c, and exchanges heat with the first evaporator 14a again.
  • the refrigerating chamber discharge port 110a of the refrigerating chamber 2 is provided in the upper part of the refrigerating chamber 2. In the present embodiment, air is discharged above the uppermost shelf 34a and the second shelf 34b. Further, the refrigerating chamber return port 110c is provided at the back of a space formed between the shelves 34c and the shelves 34d of the refrigerating chamber 2. The refrigerating chamber return port 110b (see FIG. 2) is provided substantially on the back surface of the space formed between the shelf 34d of the refrigerating chamber 2 and the heat insulating partition wall 28.
  • An ice making chamber discharge port 120a is provided on the back surface of the ice making chamber 3.
  • the ice making chamber discharge port 120a is provided in the upper part of the ice making chamber 3.
  • a freezing chamber discharge port 120b is provided on the back surface of the freezing chamber 4.
  • the freezing chamber discharge port 120b is provided in the upper part of the freezing chamber 4.
  • the ice making chamber discharge port 120a and the freezing chamber discharge port 120b communicate with the freezing chamber air passage 130.
  • the cold air sent out from the second fan 9b passes through the freezing chamber air passage 130 as shown by the broken line arrow, branches, and is discharged from the ice making chamber discharge port 120a and the freezing chamber discharge port 120b as shown by the solid line arrow. Will be done.
  • the refrigerator 1 of the present embodiment has a first switching chamber first flapper 411, a first switching chamber second flapper 412, and a second switching chamber first as means for shutting off air to the first switching chamber 5 and the second switching chamber 6. It is provided with a flapper 421 and a second flapper 422 in the second switching chamber.
  • the first switching chamber first flapper 411 and the first switching chamber second flapper 412 are mounted on the partition at the back of the first switching chamber 5.
  • the second switching chamber first flapper 421 and the second switching chamber second flapper 422 are mounted on the back of the second switching chamber 6.
  • the opening areas of the first switching chamber first flapper 411 and the second switching chamber first flapper 421 are formed to be larger than the opening areas of the first switching chamber second flapper 412 and the second switching chamber second flapper 422. ing.
  • the second evaporator 14b is provided in the second evaporator chamber 8b substantially behind the first switching chamber 5, the second switching chamber 6, and the heat insulating partition wall 30.
  • a second fan 9b is provided above the second evaporator 14b.
  • the second fan 9b is a turbo fan (rearward fan) which is a centrifugal fan, and the rotation speed can be controlled to a high speed (1800 min -1 ) and a low speed (1200 min -1).
  • the air that has cooled the ice making chamber 3 and the freezing chamber 4 returns from the freezing chamber return port 120c to the second evaporator chamber 8b (below the second evaporator 14b) via the freezing chamber return air passage 120d, and is second again. Heat exchanges with the evaporator 14b.
  • the first switching chamber return port 111c is formed in the lower part of the back surface of the first switching chamber 5.
  • the cold air after cooling the first switching chamber 5 is discharged from the return port 111c of the first switching chamber and enters the second evaporator chamber 8b (below the second evaporator 14b) via the freezing chamber return air passage 120d. It returns and exchanges heat with the second evaporator 14b again.
  • FIG. 4 is a front view showing the flow of cold air in the refrigerator. Note that FIG. 4 is a front view of the state in which the door and the container of FIG. 1 are removed.
  • the heat insulating partition wall 27 is provided with first switching chamber first discharge ports 111a and 111a for discharging cold air into the first switching chamber 5.
  • the first discharge port 111a of the first switching chamber is formed elongated in the width direction (left and right sections), and is located on the left side of the center in the width direction (opposite side of the return port 111c of the first switching chamber in the left and right direction). .. Further, the first discharge port 111a of the first switching chamber is located above the center in the height direction inside the refrigerator.
  • the heat insulating partition wall 27 is formed with a first switching chamber second discharge port 111b for discharging cold air into the first switching chamber 5.
  • the first switching chamber second discharge port 111b is formed on the left side surface of the heat insulating partition wall 27.
  • the cold air discharged from the second discharge port 111b of the first switching chamber is discharged toward the inner wall surface (left side surface) of the inner box 10b.
  • the heat insulating partition wall 27 is formed with a first switching chamber communication passage 111d that communicates the first switching chamber second discharge port 111b and the first switching chamber second flapper 412.
  • the heat insulating partition wall 27 is provided with second switching chamber first discharge ports 112a and 112a for discharging cold air into the second switching chamber 6.
  • the first discharge port 112a of the second switching chamber is formed elongated in the width direction (left and right sections), and is located on the left side of the center in the width direction (opposite side of the return port 112c of the second switching chamber in the left and right direction). .. Further, the first discharge port 112a of the second switching chamber is located above the center in the height direction inside the refrigerator.
  • the heat insulating partition wall 27 is formed with a second switching chamber second discharge port 112b for discharging cold air into the second switching chamber 6.
  • the second discharge port 112b of the second switching chamber is formed on the left side surface of the heat insulating partition wall 27.
  • the cold air discharged from the second discharge port 112b of the second switching chamber is discharged toward the inner wall surface (left side surface) of the inner box 10b.
  • the heat insulating partition wall 27 is formed with a second switching chamber communication passage 112d that communicates the second switching chamber second discharge port 112b and the second switching chamber second flapper 422.
  • FIG. 5 is an enlarged view of a main part of the VV cross section of FIG.
  • the second switching chamber 6 is provided with a second switching chamber return port 112c at the upper part of the back surface.
  • the air flowing in from the second switching chamber return port 112c flows through the second switching chamber return air passage 112e extending downward from the second switching chamber return port 112c, and is formed to be lower in height than the second switching chamber return port 112c. It reaches the second evaporator chamber inflow port 112f, and flows into the second evaporator chamber 8b from below.
  • the second fan 9b By providing an air passage (second switching chamber return air passage 112e) extending downward from the second switching chamber return port 112c to the second evaporator chamber inflow port 112f in this way, the second fan 9b can be provided.
  • the low temperature air in the second evaporator chamber 8b is less likely to flow back into the second switching chamber 6.
  • the refrigerator 1 is less likely to be overcooled when the second switching chamber 6 is set to the refrigerating temperature. Since it is sufficient that there is an air passage extending downward from the return port 112c of the second switching chamber to the inlet 112f of the second evaporator chamber, the air flowing in from the return port 112c of the second switching chamber moves upward. It can also be configured to flow through an air passage that extends downward after flowing toward it.
  • FIG. 6 is a schematic view of the air passage structure of the cooling air.
  • the freezer chamber flapper 431 when the freezer chamber flapper 431 is controlled to be in an open state, the air that has become cold due to heat exchange with the second evaporator 14b is driven by driving the second fan 9b. It is sent to the ice making chamber 3 and the freezing chamber 4 through the two fan discharge air passage 12, the freezing chamber air passage 130, the ice making chamber discharge port 120a and the freezing chamber discharging port 120b, and the water in the ice tray of the ice making chamber 3 and the ice making chamber. The ice in the container 3b, the food stored in the freezer container 4b in the freezer 4b, and the like are cooled.
  • the air that has cooled the ice making chamber 3 and the freezing chamber 4 returns to the second evaporator chamber 8b (see FIG. 2) from the freezing chamber return port 120c via the freezing chamber return air passage 120d, and again with the second evaporator 14b. Heat exchange.
  • the air boosted by the second fan 9b is the second fan discharge air passage 12, the first switching chamber air passage 140, and the first switching chamber.
  • first switching chamber container 5b provided in the first switching chamber 5 via the first flapper 411 and the first switching chamber first discharge ports 111a and 111a provided in the discharge port forming member 111 (see FIG. 4).
  • the direct cooling is a method of directly supplying cold air to the stored food to cool it.
  • the air boosted by the second fan 9b is the second fan discharge air passage 12, the first switching chamber air passage 140, and the first switching chamber.
  • the air that has cooled the first switching chamber 5 flows through the return port 111c of the first switching chamber and the return air passage 120d of the freezing chamber, returns to the second evaporator chamber 8b, and exchanges heat with the second evaporator 14b again.
  • the indirect cooling is a method of supplying and cooling the stored food so that the cold air does not come into direct contact with the stored food in order to prevent the food from drying.
  • the air boosted by the second fan 9b is the second fan discharge air passage 12, the second switching chamber air passage 150, and the second switching chamber.
  • the second switching chamber container 6b provided in the second switching chamber 6 via the first flapper 421 and the second switching chamber first discharge ports 112a and 112a provided in the discharge port forming member 112 (see FIG. 4).
  • the air that has cooled the second switching chamber 6 flows through the second switching chamber return port 112c and the second switching chamber communication passage 112d, returns to the second evaporator chamber 8b, and exchanges heat with the second evaporator 14b again.
  • the air boosted by the second fan 9b is the second fan discharge air passage 12, the second switching chamber air passage 150, and the second switching chamber.
  • the air that has cooled the second switching chamber 6 flows through the second switching chamber return port 112c and the second switching chamber communication passage 112d, returns to the second evaporator chamber 8b, and exchanges heat with the second evaporator 14b again.
  • an evaporator chamber (second evaporator chamber 8b in this embodiment) in which a low-temperature evaporator is housed, and an air passage through which air that has become cold due to heat exchange with the evaporator flows (second in this embodiment).
  • Fan discharge air passage 12 freezing chamber air passage 130, first switching chamber air passage 140, second switching chamber air passage 150), storage chamber maintained at freezing temperature (in this embodiment, ice making chamber 3, freezing chamber 4, The first switching chamber 5 when the freezing temperature is set, the second switching chamber 6 when the freezing temperature is set, and the return air passage from the storage chamber maintained at the freezing temperature (in the present embodiment, the freezing chamber).
  • the return air passage 120d and the second switching chamber communication passage 112d) when the refrigerating temperature is set are the spaces where the refrigerating temperature is reached, they are hereinafter referred to as refrigerating temperature spaces.
  • the first switching chamber air passage 140 and the second switching chamber air passage 150 are composed of the damper duct member 350 described later.
  • FIG. 7 is a configuration diagram showing a refrigerating cycle of the refrigerator according to the present embodiment.
  • the refrigerator 1 of the present embodiment includes a compressor 24, an external radiator 50a as a heat radiating means for radiating refrigerant, and a wall surface radiating pipe 50b (a region between the outer box 10a and the inner box 10b). (Placed on the inner surface of the outer box 10a), the front surface of the heat insulating partition walls 28, 29, 30 (see FIG. 2) and the dew condensation prevention pipe that suppresses dew condensation near the front edge of the heat insulating box 10 (see FIG. 2).
  • the refrigerator 1 includes a dryer 51 for removing water during the refrigeration cycle, gas-liquid separators 54a and 54b for suppressing the inflow of liquid refrigerant into the compressor 24, a refrigerant control valve 52 for controlling the refrigerant flow path, and a reverse.
  • a stop valve 56 and a refrigerant merging portion 55 for connecting the refrigerant flow are provided. These are connected by a refrigerant pipe to form a refrigeration cycle.
  • the refrigerant is isobutane, a flammable refrigerant.
  • the refrigerant control valve 52 includes outlets 52a and 52b. Further, the refrigerant control valve 52 opens the outlet 52a and closes the outlet 52b "state 1", closes the outlet 52a and opens the outlet 52b "state 2", and the outlet 52a and the outlet. It is a valve that can be switched to four states: "state 3" in which all 52b are closed, and "state 4" in which both the outlet 52a and the outlet 52b are open.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 24 flows in the order of the outside radiator 50a, the wall surface heat radiating pipe 50b, the dew condensation prevention pipe 50c, and the dryer 51, and reaches the refrigerant control valve 52.
  • the outlet 52a of the refrigerant control valve 52 is connected to the first capillary tube 53a via a refrigerant pipe.
  • the outlet 52b of the refrigerant control valve 52 is connected to the second capillary tube 53b via a refrigerant pipe.
  • the refrigerant control valve 52 When the refrigerating chamber 2 is cooled by the first evaporator 14a, the refrigerant control valve 52 is controlled to the "state 1" in which the refrigerant flows to the outlet 52a side.
  • the refrigerant flowing out from the outflow port 52a is depressurized by the first capillary tube 53a to become a low temperature and low pressure, enters the first evaporator 14a and exchanges heat with the air inside the refrigerator, and then enters the gas-liquid separator 54a and the first capillary tube 53a. It flows through the heat exchange section 57a and the refrigerant confluence section 55 that exchange heat with the refrigerant of the above, and returns to the compressor 24.
  • the refrigerant control valve 52 When the ice making chamber 3, the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 are cooled by the second evaporator 14b, the refrigerant control valve 52 is set to the "state 2" in which the refrigerant flows to the outlet 52b side. Control.
  • the refrigerant flowing out from the outflow port 52b is depressurized by the second capillary tube 53b to become a low temperature and low pressure, enters the second evaporator 14b and exchanges heat with the air inside the refrigerator, and then enters the gas-liquid separator 54b and the second capillary tube 53b.
  • the heat exchange section 57b, the check valve 56, and the refrigerant confluence section 55 which exchange heat with the refrigerant of the above, flow in this order, and return to the compressor 24.
  • the check valve 56 is arranged so as to block the flow from the refrigerant merging portion 55 toward the second evaporator 14b side.
  • FIG. 8 is an exploded perspective view showing a heat insulating partition wall provided on the back side of the switching chamber. Note that FIG. 8 also shows a member including the second evaporator 14b, which is a cooler. As shown in FIG. 8, the heat insulating partition duct plate 500 includes a heat insulating partition wall 27 and a damper duct member 350.
  • the heat insulating partition wall 27 includes a front panel 210, a rear panel 220, and a foamed heat insulating material 230. Further, the heat insulating partition wall 27 is arranged so as to straddle the first switching chamber 5 (see FIG. 2) and the second switching chamber 6 (see FIG. 2).
  • the foamed heat insulating material 230 is made of polystyrene foam (styrofoam) and is arranged between the front panel 210 and the rear panel 220.
  • the front panel 210 is made of synthetic resin and has a substantially rectangular plate portion 211 when viewed from the front. Further, the front panel 210 is formed with a rectangular opening 212 having a large opening area formed at the upper portion. Further, in the front panel 210, an opening 213 having an opening area smaller than that of the opening 212 is formed in the vicinity of the opening 212 toward the inner wall surface of the inner box 10b (see FIG. 4). The opening 213 is formed on the side surface of the projecting portion 211a formed so as to project from the plate portion 211.
  • a rectangular opening 214 having a large opening area is formed in the lower part of the plate portion 211.
  • an opening 215 having an opening area smaller than that of the opening 214 is formed in the vicinity of the opening 214 toward the inner wall surface of the inner box 10b (see FIG. 4).
  • the opening 215 is formed on the side surface of the projecting portion 211b formed so as to project from the plate portion 211.
  • a groove portion 216 to which the heat insulating partition wall 30 is fitted and attached is formed above the lower opening 214.
  • the groove portion 216 is formed as a whole from one end to the other end of the plate portion 211 in the left-right direction.
  • the heat insulating partition wall 27 is arranged on the back surface of the switching chamber so as to straddle the first switching chamber 5 and the second switching chamber 6.
  • a first switching chamber return port 111c is formed above the groove portion 216. Further, in the plate portion 211, a second switching chamber return port 112c is formed below the groove portion 216.
  • a discharge port forming member 111 (see FIG. 4) is attached to the front surface of the plate portion 211 so as to cover the opening 212. Further, a discharge forming member 112 (see FIG. 4) is attached to the front surface of the plate portion 211 so as to cover the opening 214.
  • the rear panel 220 is made of synthetic resin and has a substantially rectangular plate portion 221 when viewed from the front. Further, the rear panel 220 is formed with an opening 222 at a position facing the opening 212 of the front panel 210. Further, the rear panel 220 is formed with an opening 223 at a position facing the opening 214 of the front panel 210. Further, the rear panel 220 is formed with a return communication passage 224 communicating with the return port 111c of the first switching chamber. Further, the rear panel 220 is formed with a return communication passage 225 communicating with the return port 112c of the second switching chamber.
  • the rear panel 220 is formed with a freezing chamber return flow path 120d extending in the vertical direction at the left end when viewed from the front side.
  • the freezing chamber return passage 120d communicates with the return communication passage 224.
  • a freezing chamber return port 120c communicating with the freezing chamber return flow path 120d is formed in the upper part of the rear panel 220.
  • the damper duct member 350 takes in the cold air generated by the second evaporator 14b by the second fan 9b (see FIG. 3), discharges the cold air from the openings 212 and 213 to the first switching chamber 5, and also from the openings 214 and 215. It is configured to discharge cold air to the second switching chamber 6. Further, the damper duct member 350 is configured to introduce cold air into the ice making chamber 3 and the freezing chamber 4 from above. Further, the damper duct member 350 is configured by combining a front case 310 arranged on the front side and a rear case 320 arranged on the rear side (back side).
  • the damper duct member 350 is formed with a rectangular opening 312a (outlet) at a position corresponding to the opening 212 and a rectangular opening 312b (outlet) at a position corresponding to the opening 213 in the upper part of the front surface. ..
  • the opening area of the opening 312a is formed to be larger than the opening area of the opening 312b.
  • the damper duct member 350 is formed with a rectangular opening 312a (outlet) at a position corresponding to the opening 214 and a rectangular opening 312b (outlet) at a position corresponding to the opening 215 at the lower part of the front surface. ..
  • the opening area of the opening 312a is formed to be larger than the opening area of the opening 312b.
  • the front panel 210 is provided with a surface heater H10 on the side corresponding to the first switching chamber 5.
  • the rear panel 220 is provided with a surface heater H11 on the inner wall of the freezing chamber return air passage 120d. This makes it possible to prevent frost from adhering to the return flow path 41b.
  • the damper duct member 350 is provided with a surface heater H12 on an inner wall facing the second fan 9b. As a result, it is possible to prevent frost and water from accumulating on the damper duct member 350, and further prevent frost from growing on the second fan 9b.
  • FIG. 9 is a perspective view showing the internal structure of the damper duct. As shown in FIG. 9, the second fan 9b and the damper members 410, 420, 430 are mounted in the front case 310 of the damper duct member 350.
  • the damper member 410 corresponds to the first switching chamber 5 (see FIG. 3). Further, the damper member 410 is a twin damper provided with a first switching chamber first flapper 411 and a first switching chamber second flapper 412. Further, the damper member 410 is provided with the first switching chamber first flapper 411 and the first switching chamber first flapper 411 by one drive unit 413 provided between the first switching chamber first flapper 411 and the first switching chamber second flapper 412. The room second flapper 412 is opened and closed. The first switching chamber first flapper 411 is formed larger than the first switching chamber second flapper 412. Further, the first flapper 411 of the first switching chamber corresponds to a size that can open and close the opening 212 (see FIG. 8). Further, the second flapper 412 of the first switching chamber corresponds to a size that can open and close the opening 213 (see FIG. 8).
  • the damper member 420 corresponds to the second switching chamber 6 (see FIG. 3), and is the same as the damper member 410. Further, the damper member 420 is a twin damper provided with a second switching chamber first flapper 421 and a second switching chamber second flapper 422. Further, the damper member 420 includes a drive unit 413 that drives the second switching chamber first flapper 421 and the second switching chamber second flapper 422. The first flapper 421 of the second switching chamber corresponds to a size that can open and close the opening 214 (see FIG. 8). The second flapper 422 of the second switching chamber corresponds to a size that can open and close the opening 215 (see FIG. 8).
  • the damper member 430 corresponds to the ice making chamber 3 (see FIG. 3) and the freezing chamber 4 (see FIG. 3). Further, the damper member 430 is a single damper provided with a freezing chamber flapper 431 (see FIG. 3). Further, the damper member 430 includes a damper frame 432 that supports the freezing chamber flapper 431 (see FIG. 3) and a drive unit 433 that drives the freezing chamber flapper 431.
  • the damper member 410 is arranged on the side of the second fan 9b.
  • the damper member 420 is arranged below the damper member 410.
  • the damper member 430 is arranged above the second fan 9b.
  • FIG. 10 is a perspective view showing a damper member.
  • the drive unit 413 includes a square box-shaped box (housing) 413a, and an electric motor (not shown) and a gear member (not shown) are combined and housed inside the box 413a.
  • the box 413a is provided with a flapper support portion 413b extending toward the first flapper 411 of the first switching chamber and a flapper support portion 413c extending toward the second flapper 412 of the first switching chamber.
  • the first flapper 411 of the first switching chamber is rotatably supported by the flapper support portion 413b.
  • the first switching chamber second flapper 412 is rotatably supported by the flapper support portion 413c.
  • the drive unit 413 is configured with a drive mechanism in the box 413a so that the first switching chamber first flapper 411 and the first switching chamber second flapper 412 can be opened and closed independently. That is, the drive unit 413 closes both the first switching chamber first flapper 411 and the first switching chamber second flapper 412, and closes both the first switching chamber first flapper 411 and the first switching chamber second flapper 412. It is configured to be openable. Further, the drive unit 413 opens the first switching chamber first flapper 411 and closes the first switching chamber second flapper 412, and closes the first switching chamber first flapper 411 and closes the first switching chamber second flapper 412. It is configured to be openable.
  • the flapper support portion 413b is formed with a screw fixing portion 413d for screwing the damper member 410 to the front case 310 (see FIG. 9).
  • the flapper support portion 413c is formed with a screw fixing portion 413e for screwing the damper member 410 to the front case 310 (see FIG. 9).
  • the box 413a is formed with a screw fixing portion 413f for screwing the damper member 410 to the front case 310 (see FIG. 9).
  • the first flapper 411 of the first switching chamber includes a synthetic resin base material 411a (see FIG. 9) and a silicone rubber sealing material 411b coated on the surface of the base material 411a. .. Further, the base material 411a is formed with claws 411c protruding from a plurality of places. In the first switching chamber, the first flapper 411, the sealing material 411b is held by the base material 411a by inserting the claw 411c into the hole formed in the sealing material 411b.
  • the first switching chamber second flapper 412 is configured to include a synthetic resin base material 412a (see FIG. 9) and a silicone rubber sealing material 412b coated on the surface of the base material 412a. .. Further, the base material 412a is formed with claws 412c protruding from a plurality of places. In the first switching chamber second flapper 412, the sealing material 412b is held by the base material 412a by inserting the claw 412c into the hole formed in the sealing material 412b.
  • the drive unit 413 has a surface 413 g facing the first flapper 411 side of the first switching chamber and an upper surface 413h facing the second flapper 412 side of the first switching chamber.
  • the upper surface 413g and the lower surface 413h are rectangular planes, respectively.
  • the first flapper 411 of the first switching chamber has a vertically long shape in which the vertical direction is longer than the horizontal direction.
  • the first switching chamber second flapper 412 has a horizontally long shape in which the left-right direction is longer than the up-down direction.
  • the flapper support portions 413b and 413c are located closer to the front of the box 413a.
  • the first flapper 411 of the first switching chamber is configured to rotate rearward along the surface 413g of the box 413a.
  • the second flapper 412 of the first switching chamber is configured to rotate rearward along the surface 413h of the box 413a.
  • FIG. 11 is a schematic view showing the arrangement of the temperature sensors in the first switching chamber according to the first embodiment.
  • FIG. 11 is a view of the first switching chamber 5 viewed from the front with the first switching chamber door 5a and the first switching chamber container 5b removed.
  • the first switching chamber 5 is provided with a first switching chamber first temperature sensor 43a (another temperature sensor) and a first switching chamber second temperature sensor 43b (one temperature sensor). There is.
  • the first temperature sensor 43a of the first switching chamber is provided on the heat insulating partition wall 27 arranged on the back surface of the refrigerator. Further, the first temperature sensor 43a of the first switching chamber is located at the upper part of the back surface of the first switching chamber 5.
  • the first switching chamber second temperature sensor 43b is provided inside the discharge port forming member 111 provided on the heat insulating partition wall 27. Further, the first switching chamber second temperature sensor 43b is located below the first switching chamber first temperature sensor 43a.
  • the refrigerator 1 of the present embodiment has a heating means from below the first switching chamber 5 on the bottom surface of the first switching chamber 5, that is, the upper surface of the heat insulating partition wall 30.
  • the first heater 301 of the first switching chamber is provided.
  • the refrigerator 1 has a first switching chamber second heater 302 (surface heater H10) serving as a heating means from the rear of the first switching chamber 5 on the back surface of the first switching chamber 5, that is, on the front surface of the heat insulating partition wall 27. It has.
  • the refrigerator 1 has a first switching chamber third heater 303 that serves as a heating means from the left side of the first switching chamber 5 on the left side and the right side of the first switching chamber 5, that is, the left side and the right side of the inner box 10b.
  • the first switching chamber fourth heater 304 is provided as a heating means from the right side of the first switching chamber 5.
  • the first heater 301 in the first switching chamber, the second heater 302 in the first switching chamber, the third heater 303 in the first switching chamber, and the fourth heater 304 in the first switching chamber are electric heaters connected in parallel to each other by wiring (not shown). Yes, all are energized at the same time.
  • heaters that serve as heating means for the first switching chamber 5 (first switching chamber first heater 301, first switching chamber second heater 302, first switching chamber third heater 303, first switching chamber fourth heater 304). ) Is generically referred to as the first switching chamber heater 300 (switching chamber heater).
  • the first switching chamber heater 300 is an aluminum foil heater in which a heating wire (silicon cord heater, for example) (not shown) and an aluminum foil are fixed on one side of a double-sided adhesive tape, and the other side of the double-sided adhesive tape can be attached to the heating surface. be.
  • the first heater 301 of the first switching chamber is arranged so as to cover the majority region of the upper surface of the vacuum heat insulating material 25h (see FIG. 2) in the heat insulating partition wall 30. As a result, even if the heat insulating performance of the heat insulating partition wall 30 deteriorates due to the deterioration of the heat insulating performance of the vacuum heat insulating material 25h, the upper surface of the heat insulating partition wall 30 can be satisfactorily heated.
  • the capacities of the first switching chamber first heater 301, the first switching chamber second heater 302, the first switching chamber third heater 303, and the first switching chamber fourth heater 304 are 11.3 W, 8.6 W, and 3. It is 1W and 3.1W, and the heat generation densities (calorific value per unit area) are 44.3W / m 2 , 79.8W / m 2 , 263.8W / m 2 , and 263.8W / m 2 , respectively. Since the temperature tends to rise when the heat generation density is high, the heat generation density of the heating means (first switching chamber first heater 301) mounted on the heat insulating partition wall 30 provided with the vacuum heat insulating material 25h is 100 W / m 2. By suppressing the temperature to 44.3 W / m 2 below, it is difficult to accelerate the deterioration of the vacuum heat insulating material 25h due to the temperature rise (details will be described later).
  • the heat generation density of the heating means (first switching chamber second heater 302) mounted on the heat insulating partition wall 27 not provided with the vacuum heat insulating material is provided with the vacuum heat insulating material 25h.
  • the capacity of the first switching chamber heater 300 (total capacity of the first switching chamber first heater 301, the first switching chamber second heater 302, the first switching chamber third heater 303, and the first switching chamber fourth heater 304). Is set to 26.1 W of 20 W or more.
  • the first switching chamber 5 and the second switching chamber 6 are set to the "RF" mode in which the refrigerating temperature and the freezing temperature are set, respectively, and the three surfaces of the first switching chamber 5 are set to the first switching chamber 5.
  • the first switching chamber 5 can be satisfactorily heated even when the storage chamber is adjacent to the lower freezing temperature space and the temperature tends to drop, and the storage chamber becomes too cold to maintain the desired temperature.
  • the refrigerator is less likely to have problems such as dew condensation and frost formation on the wall surface of the storage room.
  • the capacity (11.3 W) of the heating means (first switching chamber first heater 301) for heating the first switching chamber 5 from below is heated from the back (rear) or the left and right side surfaces of the first switching chamber 5. More than any capacity (8.6W, 3.1W, 3.1W) of the heating means (first switching chamber second heater 302, first switching chamber second heater 303, first switching chamber second heater 304). It's getting bigger. Since the air that has been heated and the temperature has risen rises in the storage chamber, it is efficient to increase the capacity (11.3 W) of the heating means (first switching chamber first heater 301) from below in this way. The inside of the first switching chamber 5 can be heated, and the energy saving performance is improved.
  • the surface of the heat insulating partition wall 30 and the heat insulating partition wall 27 is covered with a resin member (polypropylene in this embodiment) having a thickness of 1.5 mm (not shown).
  • the first heater 301 of the first switching chamber and the second heater 302 of the first switching chamber are attached to the inside (inner surface) of the resin member of the heat insulating partition wall 30 and the heat insulating partition wall 27, respectively. Therefore, although the first switching chamber first heater 301 is not directly attached to the vacuum heat insulating material 25h in the heat insulating partition wall 30, there is a sufficient gap between the two, or a heat insulating member (specifically, 10 mm). Since the above-mentioned voids or the heat insulating member having a thickness of 10 mm or more are not interposed, the heat-insulating members are in substantially contact with each other.
  • first switching chamber third heater 303 and the first switching chamber fourth heater 304 are both attached to the inner surface (outer surface of the refrigerator) of the inner box 10b (ABS resin).
  • the position where the first switching chamber heater 300 for heating the first switching chamber 5 is arranged involves dismantling work by removing the first switching chamber door 5a and the first switching chamber container 5b. It will be the inner wall of the storage room that the user can touch without having to. Therefore, as described above, a resin member (the surface resin member of the heat insulating partition wall 27 and the heat insulating partition wall 30 or the inner box 10b) is arranged between the first switching chamber heater 300 and the first switching chamber 5.
  • FIG. 12 is a cross-sectional view taken along the line XII-XII of FIG.
  • FIG. 13 is a cross-sectional view taken along the line XIII-XIII of FIG.
  • ice is formed in the opening 312a, the ice is sandwiched by the first flapper 411 of the first switching chamber, the first flapper 411 of the first switching chamber is not completely closed, and leaked cold air LA is generated. Indicates the state of being.
  • an opening 312a is formed in the heat insulating partition wall 27, and the first switching chamber first flapper 411 is rotatably provided at the edge of the opening 312a so as to abut and separate from each other.
  • the heat insulating partition wall 27 is provided with an opening 212 and a discharge port forming member 111 so as to cover the front surface side of the opening 212.
  • the discharge port forming member 111 is formed so as to bulge forward with respect to the front surface of the heat insulating partition wall 27.
  • the first discharge ports 111a, 111a of the first switching chamber are formed on the front surface side of the discharge port forming member 111.
  • the first discharge ports 111a and 111a of the first switching chamber are formed so as to be vertically separated from each other. As described above, in the present embodiment, the air passage R connecting the second evaporator chamber 8b to the first discharge ports 111a and 111a of the first switching chamber is formed.
  • the first switching chamber first discharge port 111a formed in the upper stage of the discharge port forming member 111 is located in the vicinity of the heat insulating partition wall 29 (almost the upper end portion in the refrigerator), and is inside the first switching chamber container 5b in the upper stage. Cold air is supplied to the container. Further, the first discharge port 111a of the first switching chamber formed in the lower stage of the discharge port forming member 111 is formed at a position where cold air is supplied to the inside of the first switching chamber container 5b in the lower stage.
  • first switching chamber second temperature sensor 43b is attached to the inner wall surface 111e of the discharge port forming member 111.
  • the first switching chamber second temperature sensor 43b is located at a height between the upper first switching chamber first discharge port 111a and the lower first switching chamber first discharge port 111a. Further, the first switching chamber second temperature sensor 43b is located in front of the first switching chamber first flapper 411.
  • the heat insulating partition wall 27 is provided with a first switching chamber damper heater 305 (damper heater) for heating the first switching chamber first flapper 411.
  • the first switching chamber damper heater 305 is provided when the first switching chamber first flapper 411 sandwiches ice or when ice is generated around the first switching chamber first flapper 411. , Has the function of melting ice.
  • the first temperature sensor 43a of the first switching chamber is fixed to the mounting base 27b formed on the surface 27a (front surface) of the heat insulating partition wall 27.
  • the mounting base 27b is configured so that the first temperature sensor 43a of the first switching chamber projects at a position L away from the surface 27a of the heat insulating partition wall 27.
  • the distance L is set to, for example, 10 mm or more. With such a positional relationship, it is possible to reduce the influence of the updraft when the first switching chamber second heater 302 is energized.
  • FIG. 14 is a perspective view showing the arrangement of the temperature sensors in the second switching chamber. Note that FIG. 14 is a view of the second switching chamber 6 viewed from the front with the second switching chamber door 6a and the second switching chamber container 6b removed. As shown in FIG. 14, the second switching chamber 6 is provided with a second switching chamber first temperature sensor 44a (another temperature sensor) and a second switching chamber second temperature sensor 44b (one temperature sensor). There is.
  • the second switching chamber first temperature sensor 44a is provided on the heat insulating partition wall 27 arranged on the back surface of the refrigerator. Further, the second switching chamber first temperature sensor 44a is located at the upper part of the back surface of the second switching chamber 6. Further, the second switching chamber first temperature sensor 44a is located in the vicinity of the second switching chamber return port 112c.
  • the vicinity of the second switching chamber return port 112c means that the vicinity of the second switching chamber return port 112c is provided at a position shorter than the distance between the second switching chamber first temperature sensor 44a and the second switching chamber return port 112c.
  • the second temperature sensor 44b of the second switching chamber is provided inside the discharge port forming member 112 provided on the heat insulating partition wall 27. Further, the second switching chamber second temperature sensor 44b is located below the second switching chamber first temperature sensor 43a. Further, the second temperature sensor 44b of the second switching chamber and the second temperature sensor 44a of the second switching chamber are separated from each other in the left-right (width direction).
  • the refrigerator 1 of the present embodiment has an inner box 10b forming the back surface of the second switching chamber 6 and a second switching chamber first heater 401 which is a heating means from the rear of the second switching chamber 6. It has. Further, the lower surface 30b of the heat insulating partition wall 30 is provided with a second switching chamber second heater 402 as a heating means from above the second switching chamber 6.
  • the first heater 401 of the second switching chamber and the second heater 402 of the second switching chamber are connected in parallel to each other by wiring (not shown) and are energized at the same time.
  • the heaters (second switching chamber first heater 401, second switching chamber second heater 402) that serve as heating means for the second switching chamber 6 are collectively referred to as the second switching chamber heater 400.
  • the second switching chamber heater 400 is an aluminum foil heater in which a heating wire (silicon cord heater, for example) (not shown) and an aluminum foil are fixed on one side of a double-sided adhesive tape, and the other side of the double-sided adhesive tape can be attached to the heating surface. be.
  • a heating wire silicon cord heater, for example
  • Effective heating area of the second switching chamber first heater 401 and the second switching chamber second heater 402 are each 40710mm 2, 255200mm 2, heat density and heating capacity, respectively 4.0 W, 98 It is .3 W / m 2 , 10.9 W, and 42.7 W / m 2 .
  • the first heater 401 of the second switching chamber is attached to the inner surface (outer surface of the refrigerator) of the inner box 10b (ABS resin).
  • the second heater 402 of the second switching chamber is attached to the inside (inner surface) of the resin member of the heat insulating partition wall 30.
  • a control device (control unit) 31 (see FIG. 2) equipped with a CPU, a memory such as a ROM or RAM, an interface circuit, etc., which is a part of the control device, is arranged above the refrigerator 1.
  • the control device 31 includes an outside air temperature sensor 37, an outside air humidity sensor 38, a refrigerating room temperature sensor 41 (see FIG. 4), a freezing room temperature sensor 42 (see FIG. 4), a first switching chamber first temperature sensor 43a, and a first.
  • the compressor 24, the first fan 9a, and the second fan 9b which will be described later, are turned on / off based on the output value of each sensor, the setting of the operation unit 26, the program recorded in advance in the ROM, and the like.
  • the second switching chamber heater 400, the energization control of the defrosting heater 21 described later, and the flow path switching control of the refrigerant control valve 52 are performed.
  • the first evaporator 14a is controlled to either a state in which the compressor 24 is driven and the refrigerant control valve 52 is controlled to the “state 2” in which the refrigerant control valve 52 flows to the outlet 52b, or a state in which the compressor 24 is stopped.
  • the refrigerant is not allowed to flow in the first evaporator 14a, and the first fan 9a is driven to defrost by the heating action of the return air from the refrigerating chamber 2.
  • the defrosted water generated during the defrosting of the first evaporator 14a is provided in the machine room 39 from the trough 23a (see FIG. 2) provided in the lower part of the first evaporator chamber 8a via the first drain pipe (not shown). It is discharged to a first evaporation plate (not shown) and evaporates due to heat radiation from the compressor 24 and ventilation by a machine room fan (not shown) installed in the machine room 39.
  • the defrosting of the first evaporator 14a is performed by driving the first fan 9a without using a heater, so that the refrigerator has high energy saving performance. Further, since a part of the water content of the frost is reduced to the refrigerating chamber 2 by defrosting, the refrigerating chamber 2 can be kept at a higher humidity.
  • the second evaporator 14b is defrosted by energizing the defrost heater 21 (see FIG. 2), which is a heating means provided in the lower part of the second evaporator 14b, with the compressor 24 stopped. do.
  • the defrost heater 21 for example, an electric heater of 50 W to 200 W may be adopted, and in this embodiment, it is a radiant heater of 150 W.
  • the defrosted water generated during the defrosting of the second evaporator 14b is transferred from the lower gutter 23b (see FIG. 2) of the second evaporator chamber 8b to the upper part of the compressor 24 via the second drain pipe 23c (see FIG. 2). It is discharged to the second evaporating dish 32 (see FIG. 2) provided in the above, and evaporates due to the action of heat dissipation from the compressor 24, ventilation by a machine room fan (not shown), or the like.
  • FIG. 15 is a flowchart showing the cooling operation control of the refrigerator according to the first embodiment.
  • the refrigerator 1 of the present embodiment starts the cooling operation (start) when the power is turned on.
  • the control of the pull-down operation from when the power is turned on until the storage chamber in the refrigerator reaches a predetermined temperature level is omitted, and from the stage where the first evaporator operation is started when the stable operation state is reached (step S101).
  • the stable operation state is a state in which the doors 2a, 2b, 3a, 4a, 5a, 6a (see FIG. 1) of the refrigerator 1 are not opened and closed, and a stable and periodic cooling operation is performed. Yes (eg, specified in JISC9801-3: 2015).
  • the refrigerant control valve 52 In the first evaporator operation, the refrigerant control valve 52 is controlled to "state 1", the compressor 24 is in the driving state, the first fan 9a is in the driving state, and the refrigerator is refrigerated with the low-temperature refrigerant supplied to the first evaporator 14a. This is an operation for cooling the chamber 2.
  • the refrigerant control valve 52 In the refrigerator 1 of the present embodiment, the refrigerant control valve 52 is controlled to the "state 1" state by step S101, the compressor 24 is in the driving state, the first fan 9a is in the driving state, and the refrigerating chamber 2 is cooled (the first). (1) Evaporator operation) is performed.
  • the first evaporator operation started in step S101 is continued until the first evaporator operation end condition (step S102) is satisfied.
  • the control device 31 is used when the refrigerating chamber temperature detected by the refrigerating chamber temperature sensor 41 is equal to or lower than the first evaporator operation end temperature (2 ° C. in the refrigerator 1 of the present embodiment), or from the start of the first evaporator operation.
  • the elapsed time reaches a predetermined time (50 minutes in the refrigerator of the present embodiment) (S102, Yes)
  • the process proceeds to step S103.
  • the control device 31 continues the process of step S102.
  • step S102 the control device 31 subsequently executes the refrigerant recovery operation (step S103).
  • the refrigerant recovery operation the driving state of the compressor 24 is continued, the refrigerant control valve 52 is set to "state 3 (fully closed)", and the refrigerant in the first evaporator 14a is radiated by the radiating means (external radiator 50a, wall surface). This is an operation of collecting to the side of the heat radiating pipe 50b and the dew condensation prevention pipe 50c), and continues for 2 minutes in the refrigerator 1 of the present embodiment.
  • step S104 the control device 31 subsequently reads the setting of the switching chamber (step S104), and performs the second evaporator operation according to the settings of the first switching chamber 5 and the second switching chamber 6.
  • step S105 The second evaporator operation is a state in which the refrigerant control valve 52 is in the "state 2", the compressor 24 is in the driving state, the second fan 9b is in the driving state, and the inside of the refrigerator is cooled by the refrigerant flowing in the second evaporator 14b. Is.
  • step S106 the control device 31 executes temperature control of the freezing chamber 3 and the ice making chamber 4.
  • the freezing room flapper 431 is opened, and the freezing room 3 and the ice making room 4 are cooled. Further, when the temperature detected by the freezing room temperature sensor 42 becomes lower than the freezing room damper closing temperature, the freezing room flapper 431 is closed, and the cooling of the freezing room 3 and the ice making room 4 is completed, so that the temperature is controlled. It is said.
  • step S107 the control device 31 executes temperature control of the first switching chamber 5 based on the temperature detected by the first switching chamber first temperature sensor 43a and the first switching chamber second temperature sensor 43b. The detailed operation will be described later.
  • step S108 the control device 31 executes temperature control of the second switching chamber 6 based on the temperature detected by the second switching chamber first temperature sensor 44a and the second switching chamber second temperature sensor 44b.
  • step S109 the control device 31 determines whether or not the second evaporator operation end condition is satisfied.
  • the conditions for ending the operation of the second evaporator include the first flapper 411 in the first switching chamber, the second flapper 412 in the first switching chamber, the first flapper 421 in the second switching chamber, and the second flapper 422 in the second switching chamber. This is a case where all the freezing chamber flappers 431 are closed (step S109, Yes). Further, when the second evaporator operation end condition is not satisfied (step S109, No), the control device 31 returns to step S106.
  • step S110 When the second evaporator operation end condition is satisfied (step S109, Yes), the control device 31 subsequently executes the refrigerant recovery operation (step S110).
  • the refrigerant recovery operation in step S110 is an operation in which the compressor 24 is maintained in the driving state, the refrigerant control valve 52 is set to "state 3 (fully closed)", and the refrigerant in the second evaporator 14b is recovered to the heat dissipation means side. Yes, the refrigerator 1 of the present embodiment continues for 3 minutes.
  • step S111 the control device 31 determines whether or not the first evaporator operation start condition is satisfied. For example, it is established when the temperature of the refrigerating chamber 2 detected by the refrigerating chamber temperature sensor 41 becomes equal to or higher than the first evaporator operation start temperature, and the process returns to step S101 to start the first evaporator operation.
  • the first evaporator operation start temperature in the refrigerator 1 of the present embodiment is 6 ° C. If step S111 is not established (step S111, No), the compressor 24 is stopped (OFF) (step S112).
  • step S113 the control device 31 determines whether or not the first evaporator operation start condition is satisfied.
  • the conditions under which step S113 is satisfied are the same as the conditions under which step S111 is established.
  • step S113, Yes the process returns to step S101 and the first evaporator operation is started. If the first evaporator operation start condition is not satisfied (step S113, No), the process proceeds to step S114.
  • step S114 the control device 31 determines whether or not the second evaporator operation start condition is satisfied.
  • the freezing chamber temperature sensor 42, the first switching chamber first temperature sensor 43a, the first switching chamber second temperature sensor 43b, and the second switching chamber first temperature sensor 44a when at least one of the temperatures detected by the second temperature sensor 44b in the second switching chamber becomes equal to or higher than the second evaporator operation start temperature.
  • the first temperature of the first switching chamber 5 is set.
  • the first switching chamber is set.
  • the temperature of the first switching chamber 5 detected by the first temperature sensor 43a or the second temperature sensor 43b of the first switching chamber is -12 ° C. or higher and the first switching chamber 5 is set to the refrigerating temperature
  • the first switching chamber is set.
  • the temperature of the first switching chamber 5 detected by the first temperature sensor 43a or the second temperature sensor 43b of the first switching chamber is 9 ° C.
  • Step S114 is established when the temperature of the second switching chamber 6 detected by the second switching chamber first temperature sensor 44a or the second switching chamber second temperature sensor 44b satisfies at least one of 9 ° C. or higher. ..
  • step S114 Yes
  • step S104 the control device 31 proceeds to step S104
  • step S114, No the control device 31 proceeds to step S113. Return to judgment.
  • FIG. 16 is a flowchart showing the temperature control of the first switching chamber according to the first embodiment.
  • FIG. 17 is an explanatory diagram showing an example of operating conditions of various members according to the first embodiment.
  • the control device 31 determines whether or not the opening condition of the first switching chamber first flapper 411 is satisfied.
  • the opening condition of the first switching chamber first flapper 411 is that when the first switching chamber 5 is set to the freezing temperature zone, the detection temperature of the first switching chamber first temperature sensor 43a is -16 ° C. or higher, or the first This is established when the detection temperature of the first switching chamber second temperature sensor 43b is -16 ° C or higher (see FIG. 17). Further, the opening condition of the first switching chamber first flapper 411 is that when the first switching chamber 5 is set to the refrigerating temperature zone, the detection temperature of the first switching chamber first temperature sensor 43a is 9 ° C. or higher, or This is established when the detection temperature of the first switching chamber second temperature sensor 43b is 9 ° C. or higher (see FIG. 17).
  • step S201 When the opening condition of the first switching chamber first flapper 411 is satisfied (step S201, Yes), the control device 31 proceeds to the process of step S202 and opens the first switching chamber first flapper 411. Further, when the opening condition of the first switching chamber first flapper 411 is not satisfied (steps S201 and No), the control device 31 proceeds to the process of step S203.
  • step S203 the control device 31 determines whether or not the opening condition of the first switching chamber second flapper 412 is satisfied.
  • the opening condition of the first switching chamber second flapper 412 is that when the first switching chamber 5 is set to the freezing temperature zone, the detection temperature of the first switching chamber first temperature sensor 43a is -16 ° C. or higher, or the first This is established when the detection temperature of the first switching chamber second temperature sensor 43b is -16 ° C or higher (see FIG. 17). Further, the opening condition of the first switching chamber second flapper 412 is when the first switching chamber 5 is set to the refrigerating temperature zone and the detection temperature of the first switching chamber first temperature sensor 43a is 6 ° C. or higher. It holds (see FIG. 17).
  • step S203 When the opening condition of the first switching chamber second flapper 412 is satisfied (step S203, Yes), the control device 31 proceeds to the process of step S204 and opens the first switching chamber second flapper 412. Further, when the opening condition of the first switching chamber second flapper 412 is not satisfied (step S203, No), the control device 31 proceeds to the process of step S205.
  • step S205 the control device 31 determines whether or not the closing condition of the first switching chamber first flapper 411 is satisfied.
  • the closing condition of the first switching chamber first flapper 411 is that when the first switching chamber 5 is set to the freezing temperature zone, the detection temperature of the first switching chamber first temperature sensor 43a is ⁇ 20 ° C. or lower, or the first It is established when the detection temperature of the first switching chamber second temperature sensor 43b is ⁇ 20 ° C. or lower (see FIG. 17). Further, the closing condition of the first switching chamber first flapper 411 is when the first switching chamber 5 is set to the refrigerating temperature zone and the detection temperature of the first switching chamber first temperature sensor 43a is 4 ° C. or less. It holds (see FIG. 17).
  • step S205 When the closing condition of the first switching chamber first flapper 411 is satisfied (step S205, Yes), the control device 31 proceeds to the process of step S206 and closes the first switching chamber first flapper 411. Further, when the closing condition of the first switching chamber first flapper 411 is not satisfied (steps S205 and No), the control device 31 proceeds to the process of step S207.
  • step S207 the control device 31 determines whether or not the closing condition of the first switching chamber second flapper 412 is satisfied.
  • the closing condition of the first switching chamber second flapper 412 is that when the first switching chamber 5 is set to the freezing temperature zone, the detection temperature of the first switching chamber first temperature sensor 43a is ⁇ 20 ° C. or lower, or the first It is established when the detection temperature of the first switching chamber second temperature sensor 43b is ⁇ 20 ° C. or lower (see FIG. 17).
  • the closing condition of the first switching chamber second flapper 412 is when the first switching chamber 5 is set to the refrigerating temperature zone and the detection temperature of the first switching chamber first temperature sensor 43a is 2 ° C. or less. It holds (see FIG. 17).
  • step S207, Yes When the closing condition of the first switching chamber second flapper 412 is satisfied (step S207, Yes), the control device 31 proceeds to the process of step S208 and closes the first switching chamber second flapper 412. Further, when the closing condition of the first switching chamber second flapper 412 is not satisfied (step S207, No), the control device 31 proceeds to the process of step S209.
  • step S209 the control device 31 determines whether or not the ON condition (energization condition) of the first switching chamber heater 300 is satisfied. This determination is made only when the first switching chamber 5 is set to the refrigerating temperature zone.
  • the ON condition of the first switching chamber heater 300 is satisfied when the detection temperature of the first switching chamber first temperature sensor 43a is 0 ° C. or lower. Further, the ON condition of the first switching chamber heater 300 is satisfied when the detected temperature of the first switching chamber second temperature sensor 43b is -1 ° C. or less 5 minutes after closing the first switching chamber first flapper 411. ..
  • step S209, Yes When the ON condition of the first switching chamber heater 300 is satisfied (step S209, Yes), the control device 31 proceeds to the process of step S210 and turns on the first switching chamber heater 300. Further, when the ON condition of the first switching chamber heater 300 is not satisfied (step S209, No), the control device 31 proceeds to the process of step S211.
  • step S211 the control device 31 determines whether or not the OFF condition (condition for stopping energization) of the first switching chamber heater 300 is satisfied. This determination is made only when the first switching chamber 5 is set to the refrigerating temperature zone. The OFF condition of the first switching chamber heater 300 is satisfied when the detection temperature of the first switching chamber first temperature sensor 43a is 5 ° C. or higher.
  • step S211 and Yes When the OFF condition of the first switching chamber heater 300 is satisfied (steps S211 and Yes), the control device 31 proceeds to the process of step S212 and turns off the first switching chamber heater 300. Further, when the OFF condition of the first switching chamber heater 300 is not satisfied (steps S211 and No), the control device 31 proceeds to the process of step S213.
  • step S213 the control device 31 determines whether or not the high-speed condition of the compressor 24 is satisfied. This determination is made only when the first switching chamber 5 is set to the freezing temperature zone. The condition for increasing the speed of the compressor 24 is satisfied when the detection temperature of the first temperature sensor 43a in the first switching chamber is ⁇ 6 ° C. or higher.
  • step S213, Yes When the high-speed condition of the compressor 24 is satisfied (step S213, Yes), the control device 31 proceeds to the process of step S214 and operates the compressor 24 at high speed. Further, when the high speed condition of the compressor 24 is not satisfied (step S213, No), the control device 31 proceeds to the process of step S215.
  • step S215 the control device 31 determines whether or not the high-speed condition for the second fan 9b is satisfied. This determination is made only when the first switching chamber 5 is set to the freezing temperature zone. The condition for increasing the speed of the second fan 9b is satisfied when the detection temperature of the first temperature sensor 43a in the first switching chamber is ⁇ 6 ° C. or higher.
  • step S215 When the high-speed condition for the second fan 9b is satisfied (step S215, Yes), the control device 31 proceeds to the process of step S216 and operates the second fan 9b at high speed. Further, when the speed-up condition for the second fan 9b is not satisfied (step S215, No), the control device 31 proceeds to the process of step S217.
  • step S217 the control device 31 determines whether or not the damper heating control execution conditions are satisfied. This determination is made only when the first switching chamber 5 is set to the refrigerating temperature zone.
  • the damper heating control is a control for heating the damper heater 305 (see FIG. 12) in the first switching chamber, and is established when the temperature is -3 ° C or lower 5 minutes after the first flapper 411 in the first switching chamber is closed.
  • the control device 31 proceeds to the process of step S218 when the damper heating control execution condition is satisfied (step S217, Yes), and returns when the damper heating control execution condition is not satisfied (step S217, No).
  • step S2108 the control device 31 turns off (stops) the second fan 9b, turns off (stops) the compressor 24, closes the first switching chamber first flapper 411, and turns off the first switching chamber first. While closing the second flapper 412, the first switching chamber damper heater 305 is turned on. In step S218, the second fan 9b must be turned off and the first switching chamber damper heater 305 must be turned on, but the compressor 24 is turned off, the first switching chamber first flapper 411 is closed, and the first switching chamber second. Closing the flapper is not mandatory.
  • step S219 the control device 31 determines whether or not a predetermined time has elapsed since the process of step S218 was started.
  • the predetermined time is appropriately set by a preliminary test, and is set to, for example, 20 seconds.
  • the control device 31 repeats the process of step S219 when the predetermined time has not elapsed (step S219, No), and returns when the predetermined time has elapsed (step S219, Yes).
  • FIG. 18 is a time chart showing the temperature control of the first switching chamber when the first switching chamber is in the freezing setting (freezing temperature zone setting) and the second switching chamber is in the freezing setting (freezing temperature zone setting).
  • the temperature Ts inside the container of the first switching chamber is also shown for reference together with the detection temperature Ta of the first temperature sensor 43a of the first switching chamber (actually detected by the temperature sensor). Not).
  • the temperature T1 on the vertical axis is a determination temperature for speeding up the compressor 24 and speeding up the second fan 9b.
  • the temperature T2 is the opening determination temperature of the first switching chamber first flapper 411 and the first switching chamber second flapper 412.
  • the temperature T3 is the closing determination temperature of the first switching chamber first flapper 411 and the first switching chamber second flapper 412.
  • the reference numeral E1 indicates the operation of the first evaporator 14a
  • the reference numeral E2 indicates the operation of the second evaporator 14b. Further, when switching from the second evaporator operation E2 to the first evaporator operation E1, and when switching from the first evaporator operation E1 to the second evaporator operation E2, the refrigerant recovery operation R is performed, respectively.
  • “a” shown in the time chart indicates the state of the compressor 24 (ON (low speed, high speed), OFF).
  • B is the state of the refrigerant control valve 52, and is in state 1 (outlet 52a side, first evaporator 14a side), state 2 (outlet 52b side, second evaporator 14b side), and state 3 (all). Closed) is shown.
  • C indicates the state of the second fan 9b (ON (low speed, high speed), OFF).
  • “D” indicates the state (open, closed) of the first flapper 411 of the first switching chamber.
  • E indicates the state (open, closed) of the second flapper 412 in the first switching chamber.
  • F indicates the state (ON, OFF) of the first switching chamber damper heater 305.
  • G indicates the state (ON, OFF) of the first switching chamber heater 300.
  • the detection temperature Ta of the first switching chamber first temperature sensor is the opening temperature T2 of the first switching chamber first flapper 411 and the first switching chamber second flapper 412. It is located between the closing temperature T3 of the first switching chamber first flapper 411 and the first switching chamber second flapper 412.
  • the compressor 24 is in low speed operation
  • the refrigerant control valve 52 is in state 2
  • the second fan 9b is in low speed operation
  • the first switching chamber first flapper 411 is open
  • the first switching chamber second flapper 412 is in operation. It is open.
  • the first switching chamber damper heater 305 is OFF, and the first switching chamber heater 300 is OFF.
  • the detection temperature Ta gradually decreases, and the detection temperature Ta rises due to the load generated before the time t2.
  • the load is when the door 5a of the refrigerator 1 is opened and closed.
  • the detection temperature Ta rises, and the detection temperature Ta rises to the determination temperature T1 (for example, ⁇ 6 ° C.) at time t2, the compressor 24 can be switched from low speed operation to high speed low speed.
  • the second fan 9b is switched from low speed operation to high speed operation.
  • the cold air generated by the second evaporator 14b is supplied to the first switching chamber 5, and the detection temperature Ta of the first switching chamber 5 drops again.
  • the compressor 24 is switched from high-speed operation to low-speed operation.
  • the second fan 9b is switched from high speed operation to low speed operation.
  • the refrigerant control valve 52 is switched from the state 2 to the state 3 (fully closed).
  • the supply of the refrigerant to the second evaporator 14b is stopped, so that cold air is not generated, and the amount of cold air supplied to the first switching chamber 5 is stopped.
  • the refrigerant recovery operation R is performed during a predetermined time from the time t3 to the time t4, and when the refrigerant recovery operation R is completed, the refrigerant control valve 52 is switched from the state 3 to the state 1.
  • the refrigerant control valve 52 is switched from the state 1 to the state 3, and the refrigerant recovery operation is executed for a predetermined time (time t5 to t6).
  • FIG. 19 is a time chart showing the temperature control of the first switching chamber when the first switching chamber is in the refrigerating setting (refrigerating temperature zone setting) and the second switching chamber is in the freezing setting (freezing temperature zone setting).
  • the detection temperature Ta of the first switching chamber first temperature sensor 43a, the detection temperature Tb of the first switching chamber second temperature sensor 43b, and the temperature Tc of the first switching chamber damper are also shown for reference. It is shown in the figure (not actually detected by the temperature sensor).
  • the temperature T10 on the vertical axis is the open determination temperature of the first flapper 411 of the first switching chamber.
  • the temperature T11 is the opening determination temperature of the first switching chamber second flapper 412.
  • the temperature T12 is the OFF determination temperature of the first switching chamber heater 300.
  • the temperature T13 is the closing determination temperature of the first flapper 411 of the first switching chamber.
  • the temperature T14 is the closing determination temperature of the first switching chamber second flapper 412.
  • the temperature T15 is the ON determination temperature of the first switching chamber heater 300.
  • the temperature T16 is a determination temperature at which the first switching chamber damper heater 305 is implemented (turned on).
  • the compressor 24 indicated by “a” is operated at low speed
  • the refrigerant control valve 52 indicated by “b” is in state 1
  • the second fan 9b indicated by “c” is OFF.
  • the first switching chamber first flapper 411 indicated by “d” is closed
  • the first switching chamber second flapper 412 indicated by “e” is closed
  • the first switching chamber damper heater 305 indicated by “f” is OFF
  • "g” indicates.
  • the first evaporator operation E1 is performed in the state where the first switching chamber heater 300 shown is OFF.
  • the refrigerant control valve 52 is switched from state 1 to state 3, and the refrigerant recovery operation R is performed for a predetermined time (t10 to t11). Then, at time t11, since the detection temperature Ta exceeds the determination temperature T10, the first flapper 411 of the first switching chamber is switched from closed to open, and the detection temperature Tb exceeds the determination temperature T11. The first switching chamber second flapper 412 is switched from closed to open. Further, the refrigerant control valve 52 is switched from the state 3 to the state 2, the second fan 9b is switched from the stopped state to the low speed operation, and the second evaporator operation E2 is performed. As a result, cold air is introduced into the first switching chamber 5 from the first switching chamber first flapper 411 and the first switching chamber second flapper 412, and the detection temperatures Ta and Tb are lowered.
  • the first switching chamber first flapper 411 is switched from open to closed. At this time, when the first flapper 411 of the first switching chamber is closed, the decrease in the detection temperature Tb is stopped. Then, even at time t13, 5 minutes after the first switching chamber first flapper 411 is closed, if the detection temperature Tb is equal to or lower than the determination temperature T16, the first switching chamber second flapper 412 is opened to closed. Can be switched. Further, at time t13, the compressor 24 is turned off (stopped) from the low-speed operation, and the second fan 9b is turned off (stopped) from the low-speed operation. Further, at time t13, the first switching chamber damper heater 305 is turned on (energized) and the first switching chamber heater 300 is turned on (energized). As a result, the detection temperatures Ta and Tb rise.
  • the first switching chamber heater 300 is turned off (stopped). Further, at time t15 after a predetermined time (for example, 20 minutes) has elapsed from time t13, the compressor 24 is switched from OFF to low speed operation, and the second fan 9b is switched from OFF to low speed operation. Further, at time t15, the first switching chamber damper heater 305 is turned off.
  • the refrigerator 1 of the first embodiment includes a first switching chamber 5 and a second switching chamber 6 that can switch between a refrigerating temperature zone and a freezing temperature zone.
  • the first switching chamber 5 includes a first switching chamber first temperature sensor 43a and a first switching chamber second temperature sensor 43b (see FIG. 11).
  • the second switching chamber 6 includes a second switching chamber first temperature sensor 44a and a second switching chamber second temperature sensor 44b (see FIG. 14). According to this, it is possible to detect a typical temperature at both the refrigerating setting and the refrigerating setting when the cold air supply state is different, so that the temperature inside the refrigerator can be appropriately controlled.
  • the second evaporator chamber 8b accommodating the second evaporator 14b, the first switching chamber first discharge port 111a for blowing cold air into the first switching chamber 5, and the second evaporator chamber It includes an air passage R connecting 8b and the first discharge port 111a of the first switching chamber, and a first flapper 411 of the first switching chamber arranged in the vicinity of the first discharge port 111a of the first switching chamber.
  • the first switching chamber second temperature sensor 43b is provided between the first switching chamber first flapper 411 and the first switching chamber first discharge port 111a. According to this, it is possible to detect the leakage of cold air in the air passage R, which causes excessive cooling when the refrigeration is set.
  • the first switching chamber second temperature sensor 43b is located below the first switching chamber first temperature sensor 43a. According to this, it is possible to more reliably detect the temperature in the lower region where the temperature tends to be low when refrigeration is set.
  • the first embodiment includes a control device 31 connected to the first switching chamber first temperature sensor 43a and the first switching chamber second temperature sensor 43b.
  • the first temperature sensor 43a of the first switching chamber detects the temperature rise of the first switching chamber 5 in the freezing temperature zone and notifies the control device 31.
  • the first switching chamber second temperature sensor 43b detects the temperature drop of the first switching chamber 5 in the refrigerating temperature zone and notifies the control device 31. According to this, it is possible to detect an excessive temperature rise that is important in the cold air supply state when the freezing is set, and to detect an excessive temperature drop that is important in the cold air supply state when the refrigerating setting is made.
  • the control device 31 detects a temperature rise by the first switching chamber first temperature sensor 43a (detection temperature Ta). , The supply of cold air to the first switching chamber 5 is increased (Yes in step S213 in FIG. 16, Yes in step S215, time t2 in FIG. 18). According to this, it is possible to suppress an excessive temperature rise of the first switching chamber 5.
  • the control device 31 detects a temperature drop in the first switching chamber second temperature sensor 43b, the first switching chamber The supply of cold air to No. 5 is stopped (step S218 in FIG. 16, time t13 in FIG. 19). According to this, when the first switching chamber 5 is set to the refrigerating temperature zone, it is possible to suppress an excessive temperature drop of the first switching chamber 5.
  • the second fan 9b that sends the cold air generated by the second evaporator 14b to the second evaporator chamber 8b and the first switching that is arranged in the vicinity of the first switching chamber first flapper 411. It is equipped with a chamber damper heater 305.
  • the control device 31 detects that the first switching chamber second temperature sensor 43b has dropped below a predetermined temperature when the first switching chamber 5 is set to the refrigerating temperature zone, the control device 31 stops the second fan 9b. And, the first switching chamber damper heater 305 is energized (Yes, S218 in S217 of FIG. 16).
  • the temperature below the predetermined temperature here is the case where the temperature is -3 ° C or lower 5 minutes after closing the first flapper 411 of the first switching chamber. According to this, it is possible to suppress an excessive temperature drop when the first switching chamber 5 is set to the refrigerating temperature zone.
  • the first embodiment includes a first switching chamber heater 300 that heats the first switching chamber 5.
  • the control device 31 energizes the first switching chamber heater 300 in response to the decrease in temperature detected by the first switching chamber second temperature sensor 43b. According to this, by raising the temperature in the first switching chamber 5, it is possible to prevent the first switching chamber 5 from becoming too cold.
  • FIG. 20 is a flowchart showing the temperature control of the first switching chamber according to the second embodiment.
  • FIG. 21 is an explanatory diagram showing an example of operating conditions of various members according to the second embodiment.
  • step S218 in FIG. 16 is changed to step S318 in FIG.
  • Other configurations are the same as those in FIG. 16, and different parts will be described below.
  • step S317 when the damper heating control execution condition is satisfied (step S317, Yes), the control device 31 proceeds to step S318 to turn off (stop) the compressor 24 and close the freezer damper.
  • the first switching chamber first flapper 411 is opened, the first switching chamber second flapper 412 is opened, the second switching chamber damper is closed, and the defrost heater 21 is turned on.
  • closing the second switching chamber damper means closing both the second switching chamber first flapper 421 and the second switching chamber second flapper 422.
  • step S3108 the compressor 24 may not be turned off, but the refrigerant control valve 52 may be switched to state 1 so that the refrigerant does not flow to the second evaporator 14b.
  • it is essential to close the freezing setting switching room (freezing room flapper 431, freezing setting switching room damper), but it is not essential to close the freezing setting switching room damper (the second switching room 6 is set to refrigerate). In that case, it is not necessary to close the second switching chamber damper).
  • FIG. 22 is a time chart showing the temperature control of the first switching chamber when the first switching chamber is set to refrigerate and the second switching chamber is set to freeze.
  • “a” indicates the state (ON, OFF) of the compressor 24.
  • “B” is the state of the refrigerant control valve 52, and is in state 1 (outlet 52a side, first evaporator 14a side), state 2 (outlet 52b side, second evaporator 14b side), and state 3 (all). Closed) is shown.
  • C indicates the state (ON, OFF) of the second fan 9b.
  • “D” indicates the state (open, closed) of the first flapper 411 of the first switching chamber.
  • E indicates the state (open, closed) of the second flapper 412 in the first switching chamber.
  • F indicates the state (open, closed) of the second switching chamber first flapper 421 and the second switching chamber second flapper 422 (collectively, the second switching chamber damper).
  • G indicates the state (open, closed) of the freezer flapper 431.
  • H indicates the state (ON, OFF) of the defrost heater 21.
  • I indicates the state (ON, OFF) of the first switching chamber heater 300.
  • the detection temperature Ta is between the determination temperature T10 and the determination temperature T13. Further, before the time t21, the detection temperature Tb is between the determination temperature T11 and the determination temperature T14.
  • the compressor 24 indicated by “a” is ON
  • the refrigerant control valve 52 indicated by “b” is ON
  • the second fan 9b indicated by “c” is ON
  • the second fan 9b indicated by “d” is ON.
  • One switching chamber first flapper 411 is closed
  • the first switching chamber second flapper 412 indicated by “e” is closed
  • the second switching chamber first flapper 421 and the second switching chamber second flapper 422 indicated by “f” are open.
  • the freezing chamber flapper 431 indicated by “g” is open
  • the defrost heater 21 indicated by “h” is OFF
  • the first switching chamber heater 300 indicated by "i” is OFF.
  • the first switching chamber first flapper 411 is switched from closed to open.
  • the detection temperature Tb exceeds the determination temperature T11
  • the first switching chamber second flapper 412 is switched from closed to open.
  • cold air is introduced into the first switching chamber 5 from the first switching chamber first flapper 411 and the first switching chamber second flapper 412, and the detection temperatures Ta and Tb are lowered.
  • the first switching chamber first flapper 411 is switched from open to closed.
  • the first switching chamber first flapper 411 and the first switching chamber No. 1 Both of the two flappers 412 are switched from closed to open.
  • the first switching chamber second flapper 412 is in the open state at time t23, that state is maintained.
  • the second switching chamber damper (second switching chamber first flapper 421 and second switching chamber second flapper 422) is switched from open to closed, and the freezing chamber flapper 431 is switched from open to closed.
  • the compressor 24 and the second fan 9b are switched off, the refrigerant control valve 52 is switched from the state 2 to the state 3, and the defrost heater 21 is turned on (energized). Further, at time t23, since the detection temperature Tb is equal to or lower than the determination temperature T15, the first switching chamber heater 300 is turned on (energized). As a result, the detection temperatures Ta and Tb rise.
  • the compressor 24 is switched from OFF to ON, and the refrigerant control valve 52 is switched from state 3 to state 2.
  • the first switching chamber first flapper 411 and the first switching chamber second flapper 412 are switched from open to closed, and the second switching chamber damper (second switching chamber first flapper 421 and second switching chamber) is switched.
  • the second flapper 422) is switched from closed to open, and the freezing chamber flapper 431 is switched from closed to open.
  • the defrost heater 21 and the first switching chamber heater 300 are switched from ON to OFF.
  • the first switching chamber second flapper 412 opens and the detection temperature Ta drops.
  • the refrigerator of the second embodiment opens and closes the second fan 9b that sends the cold air generated by the second evaporator 14b to the first switching chamber 5 and the first discharge port 111a of the first switching chamber.
  • the first switching chamber first flapper 411, the first switching chamber second flapper 412, and the defrost heater 21 for heating the second evaporator 14b and / or the second evaporator chamber 8b are provided.
  • the control device 31 continues to drive the second fan 9b in response to an increase in temperature detected by the first switching chamber second temperature sensor 43b.
  • step S318 in FIG. 20, time t23 in FIG. 22 the supply of the refrigerant to the second evaporator 14b is stopped, and the defrosting heater 21 is energized (step S318 in FIG. 20, time t23 in FIG. 22).
  • the refrigerant control valve 52 may be changed from the state 3 to the state 1 to stop the refrigerant to the second evaporator 14b or reduce the supply of the refrigerant. Further, when the defrost heater 21 is energized, the output of the defrost heater 21 may be reduced while continuing the energization of the defrost heater 21.
  • FIG. 23 is a perspective view showing the arrangement of the temperature sensors in the first switching chamber according to the third embodiment.
  • FIG. 24 is a cross-sectional view taken along the line XXIV-XXIV of FIG.
  • FIG. 25 is a cross-sectional view taken along the line XXV-XXV of FIG. 23.
  • the first switching chamber 5 has the first switching chamber first temperature sensor 43a, the first switching chamber second temperature sensor 43c, and an induction plate for guiding cold air. 45 and is configured.
  • the first temperature sensor 43a in the first switching chamber is in the same position as in the first embodiment.
  • the first switching chamber second temperature sensor 43c is located below the first switching chamber first temperature sensor 43a in the vertical direction. According to this, it is possible to effectively suppress the temperature from dropping too much when the refrigeration is set. The reason will be explained below.
  • the temperature difference between the inside and outside of the refrigerator changes greatly depending on whether the temperature is set to the freezing temperature or the refrigerating temperature.
  • the freezing temperature is set, the amount of heat entering from the outside of the refrigerator increases, so more cold air is sent, and when the temperature is set to the refrigerating temperature, the amount of heat entering from the outside of the refrigerator decreases, so the amount of wind is smaller. It is only necessary to send cold air in a short time, and the amount of cold air supplied is reduced. At this time, especially in the refrigerating setting where the amount of cold air is reduced, the influence of the air blown by the fan (second fan 9b) is reduced, so that natural convection occurs in the storage chamber (first switching chamber 5), and the high temperature air is upward.
  • the low temperature which is low, gathers downward. Therefore, by arranging the first switching chamber second temperature sensor 43c that detects the temperature drop at the time of refrigerating setting below the first switching chamber first temperature sensor 43a in the vertical direction, the first switching chamber 5 is refrigerated. Since it is possible to more accurately detect the overcooled state when the value is set to, it is possible to prevent the temperature from dropping too much when refrigeration is set.
  • the first switching chamber second temperature sensor 43c is located in the vicinity of the first switching chamber return port 111c. Since the return port 111c of the first switching chamber communicates with the second evaporator chamber 8b in which the evaporator (second evaporator 14b) that generates low-temperature cold air is housed and is always in an open state, the second evaporator chamber Due to the influence of the cold air of 8b, the temperature in the vicinity of the return port 111c of the first switching chamber may become low. In response to this problem, by arranging the first switching chamber second temperature sensor 43c in the vicinity of the first switching chamber return port 111c, the switching chamber (first switching chamber 5) is set to refrigerate and is too cold. Since it becomes possible to detect the state in a more accurate manner, it is possible to prevent the temperature from dropping too much when refrigeration is set.
  • the guide plate 45 is an elongated plate, and is provided below the heat insulating partition wall 27 so as to descend from the first switching chamber first discharge port 111a (left side in the drawing) toward the first switching chamber return port 111c. It is arranged at an angle.
  • the first switching chamber second temperature sensor 43c is located above the lower end of the guide plate 45.
  • the discharge port forming member 111 is formed with a first switching chamber third outlet 111f in addition to the first switching chamber first discharge port 111a of the first embodiment. Therefore, in the third embodiment, cold air is blown out to the first switching chamber 5 from the two first switching chamber first discharge ports 111a and the newly provided first switching chamber third outlet 111f. ..
  • the first switching chamber third outlet 111f is formed on the lower surface of the discharge port forming member 111, and cold air is discharged downward (the surface of the heat insulating partition wall 27 is directed downward). It has become like.
  • the cold air discharged from the third outlet 111f of the first switching chamber hits the guide plate 45 (see FIG. 23) and flows downward along the upper surface of the guide plate 45 toward the lower side of the first switching chamber 5.
  • the first switching chamber second temperature sensor 43c is located above the end portion of the guide plate 45, it is possible to detect the temperature of the cold air flowing down along the guide plate 45. can. As a result, as shown in FIG. 24, even if cold air leaks from the first flapper 411 of the first switching chamber, the cold air flows downward. Therefore, the cold air leaks due to the temperature detection by the second temperature sensor 43c of the first switching chamber. Can be detected immediately, and subsequent control to suppress leakage can be performed quickly.
  • the present embodiment has been described above with reference to the drawings, the present embodiment is not limited to the above contents and includes various modifications.
  • Refrigerator 5 First switching room (switching room) 6 Second switching room (switching room) 8b Second evaporator room (cooler room) 9b Second fan (blower) 10 Insulated box 14b Second evaporator (cooler) 21 Defrost heater (heater) 24 Compressor 27 Insulation partition wall 31
  • Control device (control unit) 43a First switching chamber first temperature sensor (other temperature sensor) 43b, 43c 1st switching chamber 2nd temperature sensor (1 temperature sensor) 45
  • Induction plate 111a First switching chamber First discharge port (outlet) 111f 1st switching chamber 3rd discharge port (outlet) 300 First switching room heater (switching room heater) 305 First switching room damper heater (damper heater) 410,420 Damper member (switching chamber damper) 411 1st switching room 1st flapper 412 1st switching room 2nd flapper 421 2nd switching room 1st flapper 422 2nd switching room 2nd flapper R Air passage

Abstract

A refrigerator equipped with a first switchable chamber (5) that is able to switch between a refrigeration temperature zone and a freezing temperature zone. The first switchable chamber (5) is provided with a first switchable chamber first temperature sensor (43a) and a first switchable chamber second temperature sensor (43b) in an insulating partition wall (27). The first switchable chamber second temperature sensor (43b) is provided between a first switchable chamber first flapper and a first switchable chamber first discharge opening (111a). In addition, the first switchable chamber second temperature sensor (43b) is located below the first switchable chamber first temperature sensor (43a).

Description

冷蔵庫refrigerator
 本発明は、冷蔵庫に関する。 The present invention relates to a refrigerator.
 特許文献1には、貯蔵室の温度をそれぞれ切替可能とする複数の切替貯蔵室に、温度を制御するためのサーミスタが設けられた冷蔵庫が記載されている。 Patent Document 1 describes a refrigerator in which a thermistor for controlling the temperature is provided in a plurality of switching storage chambers in which the temperature of the storage chamber can be switched.
特開2016-223752号公報Japanese Unexamined Patent Publication No. 2016-223752
 ところで、切替室の場合、冷凍温度に設定された場合と冷蔵温度に設定された場合とで、庫内と庫外の温度差が大きく変化する。切替室が冷凍温度帯の場合、温度差が非常に大きくなり、庫外から入る熱量が増え、より多くの冷気を送ることが必要になる。一方、切替室が冷蔵温度帯の場合、温度差が小さいので、より少ない風の量を送るだけでよく、また、短時間で冷気を送るだけでよく、供給する冷気量が減る。 By the way, in the case of the switching room, the temperature difference between the inside and outside of the refrigerator changes greatly depending on whether the temperature is set to the freezing temperature or the refrigerating temperature. When the switching chamber is in the freezing temperature range, the temperature difference becomes very large, the amount of heat entering from the outside of the refrigerator increases, and it is necessary to send more cold air. On the other hand, when the switching chamber is in the refrigerating temperature range, the temperature difference is small, so that it is only necessary to send a smaller amount of air, and it is only necessary to send cold air in a short time, so that the amount of cold air supplied is reduced.
 このように、冷気の供給状態が切替室の設定状態によって大きく変化する。冷気の供給状態に応じて、温度が上がり易い場所と、下がり易い場所が変化する。このため、特許文献1に記載の冷蔵庫のように、それぞれの切替貯蔵室に単一の温度センサを備えた冷蔵庫では、貯蔵室内の温度が、設定状態によって変わるのを適切に検知できなくなる。また、冷凍温度帯に合わせるか、冷蔵温度帯に合わせるか、どちらかを優先した場合、貯蔵室が冷え易くなったり、温度が上がり易くなったりする。一つの温度センサのみで検知すると、貯蔵室内の状態を十分に検知できず、貯蔵室内が冷え過ぎるという課題がある。 In this way, the cold air supply state changes greatly depending on the setting state of the switching room. Depending on the supply state of cold air, the place where the temperature tends to rise and the place where the temperature tends to fall change. Therefore, in a refrigerator provided with a single temperature sensor in each switching storage chamber like the refrigerator described in Patent Document 1, it is not possible to appropriately detect that the temperature in the storage chamber changes depending on the set state. Further, when either the freezing temperature zone or the refrigerating temperature zone is prioritized, the storage chamber tends to be cooled or the temperature tends to rise. If it is detected by only one temperature sensor, the state of the storage chamber cannot be sufficiently detected, and there is a problem that the storage chamber becomes too cold.
 本発明は、前記した従来の課題を解決するものであり、切替室内を適切な温度で制御可能な冷蔵庫を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a refrigerator in which the switching chamber can be controlled at an appropriate temperature.
 本発明の冷蔵庫は、冷蔵温度帯と冷凍温度帯とに切替可能な切替室を備え、前記切替室は、複数の温度センサを備える。 The refrigerator of the present invention is provided with a switching chamber that can be switched between a refrigerating temperature zone and a freezing temperature zone, and the switching chamber is provided with a plurality of temperature sensors.
 本発明によれば、切替室内を適切な温度で制御可能な冷蔵庫を提供できる。 According to the present invention, it is possible to provide a refrigerator in which the switching chamber can be controlled at an appropriate temperature.
本実施形態に係る冷蔵庫を示す正面図である。It is a front view which shows the refrigerator which concerns on this embodiment. 図1のII-II線断面図である。FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 本実施形態に係る冷蔵庫の庫内背面内部の冷気の流れを示す正面図である。It is a front view which shows the flow of the cold air inside the back of the refrigerator which concerns on this embodiment. 本実施形態に係る冷蔵庫の庫内の冷気の流れを示す正面図である。It is a front view which shows the flow of the cold air in the refrigerator which concerns on this embodiment. 図4に示すV-V断面の要部拡大図である。It is an enlarged view of the main part of the VV cross section shown in FIG. 冷却空気の風路構造の概略図である。It is the schematic of the air passage structure of cooling air. 本実施形態に係る冷蔵庫の冷凍サイクルを示す構成図である。It is a block diagram which shows the refrigerating cycle of the refrigerator which concerns on this embodiment. 切替室の背面側に設けられる断熱仕切壁を示す分解斜視図である。It is an exploded perspective view which shows the heat insulation partition wall provided on the back side of a switching chamber. ダンパダクトの内部構造を示す斜視図である。It is a perspective view which shows the internal structure of a damper duct. ダンパ部材を示す斜視図である。It is a perspective view which shows the damper member. 第1実施形態に係る第一切替室の温度センサの配置を示す概略図である。It is the schematic which shows the arrangement of the temperature sensor of the 1st switching chamber which concerns on 1st Embodiment. 図11のXII-XII線断面図である。FIG. 11 is a cross-sectional view taken along the line XII-XII of FIG. 図11のXIII-XIII線断面図である。FIG. 11 is a cross-sectional view taken along the line XIII-XIII of FIG. 第二切替室の温度センサの配置を示す概略図である。It is the schematic which shows the arrangement of the temperature sensor of the 2nd switching chamber. 第1実施形態に係る冷蔵庫の冷却運転制御を示すフローチャートである。It is a flowchart which shows the cooling operation control of the refrigerator which concerns on 1st Embodiment. 第1実施形態に係る第一切替室の温度制御を示すフローチャートである。It is a flowchart which shows the temperature control of the 1st switching chamber which concerns on 1st Embodiment. 第1実施形態に係る各種部材の動作条件の一例を示す説明図である。It is explanatory drawing which shows an example of the operation condition of various members which concerns on 1st Embodiment. 第一切替室が冷凍設定、第二切替室が冷凍設定の場合の第一切替室の温度制御を示すタイムチャートである。It is a time chart which shows the temperature control of the 1st switching chamber when the 1st switching chamber is a freezing setting, and the 2nd switching chamber is a freezing setting. 第一切替室が冷蔵設定、第二切替室が冷凍設定の場合の第一切替室の温度制御を示すタイムチャートである。It is a time chart which shows the temperature control of the 1st switching chamber when the 1st switching chamber is a refrigerating setting, and the 2nd switching chamber is a freezing setting. 第2実施形態に係る第一切替室の温度制御を示すフローチャートである。It is a flowchart which shows the temperature control of the 1st switching chamber which concerns on 2nd Embodiment. 第2実施形態に係る各種部材の動作条件の一例を示す説明図である。It is explanatory drawing which shows an example of the operation condition of various members which concerns on 2nd Embodiment. 第一切替室が冷蔵設定、第二切替室が冷凍設定の場合の第一切替室の温度制御を示すタイムチャートである。It is a time chart which shows the temperature control of the 1st switching chamber when the 1st switching chamber is a refrigerating setting, and the 2nd switching chamber is a freezing setting. 第3実施形態に係る第一切替室の温度センサの配置を示す斜視図である。It is a perspective view which shows the arrangement of the temperature sensor of the 1st switching chamber which concerns on 3rd Embodiment. 図23のXXIV-XXIV線断面図である。FIG. 23 is a cross-sectional view taken along the line XXIV-XXIV of FIG. 図23のXXV-XXV線断面図である。FIG. 2 is a cross-sectional view taken along the line XXV-XXV of FIG. 23.
 以下、本発明を実施するための形態(本実施形態)を説明する。ただし、本実施形態は、以下の内容に何ら制限されず、本発明の要旨を損なわない範囲内で任意に変更して実施可能である。また、以下では、図1および図2に示す方向を基準として説明する。 Hereinafter, a mode for carrying out the present invention (the present embodiment) will be described. However, the present embodiment is not limited to the following contents, and can be arbitrarily modified and implemented without impairing the gist of the present invention. Further, in the following, the directions shown in FIGS. 1 and 2 will be described as a reference.
(第1実施形態)
 図1は、第1実施形態に係る冷蔵庫を示す正面図である。なお、以下では、6ドアの冷蔵庫1を例に挙げて説明するが、6ドアに限定されるものではない。
 図1に示すように、冷蔵庫1は、冷蔵室2、製氷室3、冷凍室4、第一切替室5(切替室)および第二切替室6(切替室)を備えた断熱箱体10を有している。第一切替室5は、冷蔵温度帯(例えば、1℃~6℃)から冷凍温度帯(例えば、約-20℃~-18℃)まで温度帯を切り替えることができるようになっている。第二切替室6も同様に、冷蔵温度帯から冷凍温度帯まで温度帯を切り替えることができるようになっている。冷蔵室2は、冷蔵温度帯(例えば、6℃)に設定され、製氷室3および冷凍室4は、冷凍温度帯(例えば、約-20℃)に設定される。
(First Embodiment)
FIG. 1 is a front view showing a refrigerator according to the first embodiment. In the following, a 6-door refrigerator 1 will be described as an example, but the description is not limited to the 6-door refrigerator 1.
As shown in FIG. 1, the refrigerator 1 includes a heat insulating box 10 including a refrigerating chamber 2, an ice making chamber 3, a freezing chamber 4, a first switching chamber 5 (switching chamber), and a second switching chamber 6 (switching chamber). Have. The first switching chamber 5 can switch the temperature zone from the refrigerating temperature zone (for example, 1 ° C. to 6 ° C.) to the freezing temperature zone (for example, about −20 ° C. to −18 ° C.). Similarly, the second switching chamber 6 can switch the temperature zone from the refrigerating temperature zone to the freezing temperature zone. The refrigerating chamber 2 is set to a refrigerating temperature zone (for example, 6 ° C.), and the ice making chamber 3 and the freezing chamber 4 are set to a freezing temperature zone (for example, about −20 ° C.).
 また、冷蔵庫1は、断熱箱体10の正面に、冷蔵室2を開閉する冷蔵室扉2a,2bと、製氷室3を開閉する製氷室扉3aと、冷凍室4を開閉する冷凍室扉4aと、第一切替室5を開閉する第一切替室扉5aと、第二切替室6を開閉する第二切替室扉6aと、を備えている。冷蔵室扉2a,2bは観音開き可能に構成されている。製氷室扉3a、冷凍室扉4a、第一切替室扉5a、および第二切替室扉6aは、手前方向に引き出し可能に構成されている。冷蔵室扉2a,2b、製氷室扉3a、冷凍室扉4a、第一切替室扉5aおよび第二切替室扉6aは、断熱扉である。また、冷蔵室扉2aの庫外側表面には、庫内の温度設定の操作を行う操作部26を設けている。 Further, in the refrigerator 1, the refrigerating chamber doors 2a and 2b for opening and closing the refrigerating chamber 2, the ice making chamber door 3a for opening and closing the ice making chamber 3, and the freezing chamber door 4a for opening and closing the freezing chamber 4 are provided in front of the heat insulating box 10. A first switching chamber door 5a for opening and closing the first switching chamber 5 and a second switching chamber door 6a for opening and closing the second switching chamber 6 are provided. The refrigerating room doors 2a and 2b are configured so that they can be opened by double doors. The ice making chamber door 3a, the freezing chamber door 4a, the first switching chamber door 5a, and the second switching chamber door 6a are configured to be retractable toward the front. The refrigerating room doors 2a and 2b, the ice making room door 3a, the freezing room door 4a, the first switching room door 5a and the second switching room door 6a are heat insulating doors. Further, on the outer surface of the refrigerator compartment door 2a, an operation unit 26 for operating the temperature setting inside the refrigerator is provided.
 冷蔵室2と、冷凍室4および製氷室3とは断熱仕切壁28によって隔てられている。また、冷凍室4および製氷室3と、第一切替室5とは断熱仕切壁29によって隔てられ、第一切替室5と第二切替室6とは断熱仕切壁30によって隔てられている。 The refrigerating room 2, the freezing room 4, and the ice making room 3 are separated by a heat insulating partition wall 28. Further, the freezing chamber 4 and the ice making chamber 3 and the first switching chamber 5 are separated by a heat insulating partition wall 29, and the first switching chamber 5 and the second switching chamber 6 are separated by a heat insulating partition wall 30.
 断熱箱体10の天面庫外側の手前側と、断熱仕切壁28の前縁には、断熱箱体10と扉2a、2bを固定するための扉ヒンジ(図示せず)を備えている。上部の扉ヒンジは、扉ヒンジカバー16で覆われている。 Door hinges (not shown) for fixing the heat insulating box 10 and the doors 2a and 2b are provided on the front side of the heat insulating box 10 on the outside of the top cabinet and the front edge of the heat insulating partition wall 28. The upper door hinge is covered with the door hinge cover 16.
 本実施形態の冷蔵庫1の第一切替室5および第二切替室6では、冷蔵温度(平均的に4℃程度に維持)と、冷凍温度(平均的に-18℃程度に維持)の何れかを選択することができる。具体的には、第一切替室5と第二切替室6がともに冷凍温度に設定される「FF」モード、第一切替室5と第二切替室6がそれぞれ冷蔵温度と冷凍温度に設定される「RF」モード、第一切替室5と第二切替室6がそれぞれ冷凍温度と冷蔵温度に設定される「FR」モード、第一切替室5と第二切替室6がともに冷蔵温度に設定される「RR」モードの中から選択することができる。 In the first switching chamber 5 and the second switching chamber 6 of the refrigerator 1 of the present embodiment, either the refrigerating temperature (maintained at about 4 ° C on average) or the freezing temperature (maintained at about -18 ° C on average). Can be selected. Specifically, the "FF" mode in which both the first switching chamber 5 and the second switching chamber 6 are set to the freezing temperature, and the first switching chamber 5 and the second switching chamber 6 are set to the refrigerating temperature and the freezing temperature, respectively. "RF" mode, "FR" mode in which the first switching chamber 5 and the second switching chamber 6 are set to the freezing temperature and the refrigerating temperature, respectively, and the first switching chamber 5 and the second switching chamber 6 are both set to the refrigerating temperature. You can select from the "RR" modes that are displayed.
 図2は、図1のII-II線断面図である。
 図2に示すように、冷蔵庫1は、鋼板製の外箱10aと合成樹脂製(本実施形態ではA
BS樹脂)の内箱10bとの間に発泡断熱材93(本実施形態ではポリウレタンフォーム)を充填して形成される断熱箱体10により、庫外と庫内が隔てられて構成されている。断熱箱体10には発泡断熱材に加えて、発泡断熱材より熱伝導率が低い(断熱性能が高い)真空断熱材を外箱10aと内箱10bとの間に複数実装することで、内容積の低下を抑えて断熱性能を高めている。本実施形態の冷蔵庫1は、断熱箱体10の背面に真空断熱材25a、下面(底面)に真空断熱材25b、左側面に真空断熱材、右側面に真空断熱材を実装して、貯蔵室より温度が高い庫外からの熱の侵入を抑えて冷蔵庫1の断熱性能を高めている。同様に、本実施形態の冷蔵庫1は、第一切替室扉5aに真空断熱材25e、第二切替室扉6aに真空断熱材25fを実装することで、冷蔵庫1の断熱性能を高めている。
FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
As shown in FIG. 2, the refrigerator 1 is made of a steel plate outer box 10a and a synthetic resin (A in this embodiment).
A heat insulating box body 10 formed by filling a foamed heat insulating material 93 (polyurethane foam in the present embodiment) with an inner box 10b of (BS resin) separates the outside and the inside of the refrigerator. In addition to the foam heat insulating material, a plurality of vacuum heat insulating materials having a lower thermal conductivity (higher heat insulating performance) than the foam heat insulating material are mounted on the heat insulating box 10 between the outer box 10a and the inner box 10b. The heat insulation performance is improved by suppressing the decrease in product. In the refrigerator 1 of the present embodiment, the vacuum heat insulating material 25a is mounted on the back surface of the heat insulating box 10, the vacuum heat insulating material 25b is mounted on the lower surface (bottom surface), the vacuum heat insulating material is mounted on the left side surface, and the vacuum heat insulating material is mounted on the right side surface. The heat insulation performance of the refrigerator 1 is improved by suppressing the invasion of heat from the outside of the refrigerator, which has a higher temperature. Similarly, in the refrigerator 1 of the present embodiment, the heat insulating performance of the refrigerator 1 is enhanced by mounting the vacuum heat insulating material 25e on the first switching chamber door 5a and the vacuum heat insulating material 25f on the second switching chamber door 6a.
 冷蔵室扉2a,2bは、庫内側に複数の扉ポケット33a,33b,33cを備えている。また、冷蔵室2内は、棚34a,34b,34c,34dによって複数の貯蔵スペースに区画されている。製氷室扉3a、冷凍室扉4a、第一切替室扉5aおよび第二切替室扉6aは、それぞれ一体に引き出される製氷室容器3b、冷凍室容器4b、第一切替室容器5b、第二切替室容器6bを備えている。 The refrigerating room doors 2a and 2b are provided with a plurality of door pockets 33a, 33b and 33c inside the refrigerator. Further, the inside of the refrigerator compartment 2 is divided into a plurality of storage spaces by shelves 34a, 34b, 34c, 34d. The ice making chamber door 3a, the freezing chamber door 4a, the first switching chamber door 5a, and the second switching chamber door 6a are respectively drawn out integrally with the ice making chamber container 3b, the freezing chamber container 4b, the first switching chamber container 5b, and the second switching chamber. A chamber container 6b is provided.
 冷蔵室2の背部には、第一蒸発器14aが実装された第一蒸発器室8aを備えている。また、第一切替室5および第二切替室6の略背部には、第二蒸発器14b(冷却器)が実装された第二蒸発器室8b(冷却器室)を備えている。また、第一切替室5および第二切替室6と、第二蒸発器室8b、後述する第二ファン吐出風路12との間は、断熱仕切壁27によって隔てられている。 The back of the refrigerating chamber 2 is provided with a first evaporator chamber 8a on which the first evaporator 14a is mounted. Further, a second evaporator chamber 8b (cooler chamber) in which a second evaporator 14b (cooler) is mounted is provided substantially behind the first switching chamber 5 and the second switching chamber 6. Further, the first switching chamber 5 and the second switching chamber 6, the second evaporator chamber 8b, and the second fan discharge air passage 12 described later are separated by a heat insulating partition wall 27.
 なお、断熱仕切壁27は、断熱箱体10、断熱仕切壁29および断熱仕切壁30とは別体であり、図示しないシール部材(一例として軟質ウレタンフォーム)を介して断熱箱体10、断熱仕切壁29および断熱仕切壁30と接触するように固定し、着脱可能としている。このように、断熱仕切壁27を別体で形成し着脱可能とすることで、第二蒸発器室8bに収納される第二蒸発器14bや後述する第二ファン(送風機)9b、第一切替室第一フラッパ411(第一切替室第一ダンパ)、第一切替室第二フラッパ412(第一切替室第二ダンパ)、第二切替室第一フラッパ421(第二切替室第一ダンパ)、第二切替室第二フラッパ422(第二切替室第二ダンパ)といった断熱仕切壁27により覆われる部品に不具合が生じた場合に、断熱仕切壁27を外して容易にメンテナンスが行えるようになる。 The heat insulating partition wall 27 is separate from the heat insulating box body 10, the heat insulating partition wall 29, and the heat insulating partition wall 30, and the heat insulating box body 10, the heat insulating partition, and the heat insulating partition wall 27 are separated from the heat insulating box body 10, the heat insulating partition wall 29, and the heat insulating partition wall 30. It is fixed so as to be in contact with the wall 29 and the heat insulating partition wall 30, and is removable. In this way, by forming the heat insulating partition wall 27 as a separate body and making it removable, the second evaporator 14b housed in the second evaporator chamber 8b, the second fan (blower) 9b described later, and the first switching Room 1 Flapper 411 (1st switching room 1st damper), 1st switching room 2nd flapper 412 (1st switching room 2nd damper), 2nd switching room 1st flapper 421 (2nd switching room 1st damper) , When a defect occurs in a part covered by the heat insulating partition wall 27 such as the second switching chamber second flapper 422 (second switching room second damper), the heat insulating partition wall 27 can be removed for easy maintenance. ..
 また、断熱仕切壁27,28の内部には、真空断熱材は実装せずに主たる断熱部材として発泡断熱材であるポリスチレンフォーム(発泡スチロール)を実装している。一方、断熱仕切壁29,30の内部には発泡断熱材であるポリスチレンフォームとともに、それぞれ真空断熱材25g,25hを実装することで断熱性能を高めている。真空断熱材25g,25hは、発泡断熱材より熱伝導率が低い(断熱性能が高い)ので、断熱仕切壁29,30の主たる断熱部材は真空断熱材となる。なお、断熱仕切壁27,28,29,30の内部に用いる発泡断熱材としては、ポリウレタンフォーム、ポリエチレンフォームを用いても良い。 Further, inside the heat insulating partition walls 27 and 28, polystyrene foam (Styrofoam), which is a foam heat insulating material, is mounted as the main heat insulating member without mounting the vacuum heat insulating material. On the other hand, the heat insulating performance is improved by mounting 25 g and 25 hours of vacuum heat insulating materials together with polystyrene foam which is a foam heat insulating material inside the heat insulating partition walls 29 and 30, respectively. Since the vacuum heat insulating materials 25g and 25h have lower thermal conductivity (higher heat insulating performance) than the foam heat insulating material, the main heat insulating member of the heat insulating partition walls 29 and 30 is the vacuum heat insulating material. As the foam heat insulating material used inside the heat insulating partition walls 27, 28, 29, 30, polyurethane foam or polyethylene foam may be used.
 冷蔵室2、冷凍室4、第一切替室5、第二切替室6の庫内背面側には、それぞれ冷蔵室温度センサ41(図4参照)、冷凍室温度センサ42(図4参照)、第一切替室第一温度センサ(他の温度センサ)43a(図11参照)、第一切替室第二温度センサ(一の温度センサ)43b(図11参照)、第二切替室第一温度センサ44a(図14参照)、第二切替室第二温度センサ44b(図14参照)が設けられている。第一蒸発器14aの上部には第一蒸発器温度センサ40aが設けられている。第二蒸発器14bの上部には第二蒸発器温度センサ40bが設けられている。これらのセンサにより、冷蔵室2、冷凍室4、第一切替室5、第二切替室6、第一蒸発器室8a、第一蒸発器14a、第二蒸発器室8b、および、第二蒸発器14bの温度を検知している。また、冷蔵庫1の天井部の扉ヒンジカバー16の内部には、外気温度センサ37と外気湿度センサ38が設けられ、外気(庫外空気)の温度と湿度を検知している。その他にも、扉センサ(図示せず)を設けることで、扉2a,2b,3a,4a,5a,6aの開閉状態をそれぞれ検知している。 On the back side of the refrigerator chamber 2, the freezer compartment 4, the first switching chamber 5, and the second switching chamber 6, a refrigerating chamber temperature sensor 41 (see FIG. 4), a freezing chamber temperature sensor 42 (see FIG. 4), respectively. First switching chamber first temperature sensor (other temperature sensor) 43a (see FIG. 11), first switching chamber second temperature sensor (one temperature sensor) 43b (see FIG. 11), second switching chamber first temperature sensor A 44a (see FIG. 14) and a second temperature sensor 44b (see FIG. 14) of the second switching chamber are provided. A first evaporator temperature sensor 40a is provided above the first evaporator 14a. A second evaporator temperature sensor 40b is provided above the second evaporator 14b. With these sensors, the refrigerating chamber 2, the freezing chamber 4, the first switching chamber 5, the second switching chamber 6, the first evaporator chamber 8a, the first evaporator 14a, the second evaporator chamber 8b, and the second evaporation The temperature of the vessel 14b is detected. Further, an outside air temperature sensor 37 and an outside air humidity sensor 38 are provided inside the door hinge cover 16 on the ceiling of the refrigerator 1 to detect the temperature and humidity of the outside air (outside air). In addition, by providing a door sensor (not shown), the open / closed states of the doors 2a, 2b, 3a, 4a, 5a, and 6a are detected, respectively.
 次に、図3ないし図6および適宜図2を参照しながら庫内の風路構成について説明する。図3は、庫内背面内部の冷気の流れを示す正面図である。なお、図3は、図1の扉、容器、後述する断熱仕切壁27を外した状態の正面図である。 Next, the air passage configuration in the refrigerator will be described with reference to FIGS. 3 to 6 and FIG. 2 as appropriate. FIG. 3 is a front view showing the flow of cold air inside the back surface of the refrigerator. Note that FIG. 3 is a front view of the state in which the door, the container, and the heat insulating partition wall 27 described later are removed.
 図3に示すように、第一蒸発器14aの上方には第一ファン9aが設けられている。第一ファン9aによって送り出される冷却空気は、冷蔵室風路110、冷蔵室吐出口110aを介して冷蔵室2に送風され、冷蔵室2内を冷却する。ここで、第一ファン9aは、例えば、遠心ファンであるターボファン(後向きファン)によって構成され、回転速度を高速(1600min-1)と低速(1000min-1)に制御可能となっている。冷蔵室2に送風された空気は、冷蔵室戻り口110b(図2参照)および冷蔵室戻り口110cから第一蒸発器室8aへと戻り、再び第一蒸発器14aと熱交換する。 As shown in FIG. 3, a first fan 9a is provided above the first evaporator 14a. The cooling air sent out by the first fan 9a is blown to the refrigerating chamber 2 through the refrigerating chamber air passage 110 and the refrigerating chamber discharge port 110a to cool the inside of the refrigerating chamber 2. Here, the first fan 9a is constituted of, for example, a turbo fan (rearward fans) is a centrifugal fan, and can control the rotational speed to a high speed (1600Min -1) and low speed (1000min -1). The air blown to the refrigerating chamber 2 returns to the first evaporator chamber 8a from the refrigerating chamber return port 110b (see FIG. 2) and the refrigerating chamber return port 110c, and exchanges heat with the first evaporator 14a again.
 冷蔵室2の冷蔵室吐出口110aは、冷蔵室2の上部に設けられている。本実施形態では最上段の棚34aと二段目の棚34bの上方に空気が吐出するようになっている。また、冷蔵室戻り口110cは、冷蔵室2の棚34cと棚34dの間に形成される空間の背部に設けられている。冷蔵室戻り口110b(図2参照)は、冷蔵室2の棚34dと断熱仕切壁28の間に形成される空間の略背面に設けられている。 The refrigerating chamber discharge port 110a of the refrigerating chamber 2 is provided in the upper part of the refrigerating chamber 2. In the present embodiment, air is discharged above the uppermost shelf 34a and the second shelf 34b. Further, the refrigerating chamber return port 110c is provided at the back of a space formed between the shelves 34c and the shelves 34d of the refrigerating chamber 2. The refrigerating chamber return port 110b (see FIG. 2) is provided substantially on the back surface of the space formed between the shelf 34d of the refrigerating chamber 2 and the heat insulating partition wall 28.
 製氷室3の背面には、製氷室吐出口120aが設けられている。この製氷室吐出口120aは、製氷室3の上部に設けられている。冷凍室4の背面には、冷凍室吐出口120bが設けられている。この冷凍室吐出口120bは、冷凍室4の上部に設けられている。製氷室吐出口120aおよび冷凍室吐出口120bは、冷凍室風路130と連通している。第二ファン9bから送り出された冷気は、破線矢印で示すように、冷凍室風路130を通り、分岐して、実線矢印で示すように、製氷室吐出口120aと冷凍室吐出口120bから吐出される。 An ice making chamber discharge port 120a is provided on the back surface of the ice making chamber 3. The ice making chamber discharge port 120a is provided in the upper part of the ice making chamber 3. A freezing chamber discharge port 120b is provided on the back surface of the freezing chamber 4. The freezing chamber discharge port 120b is provided in the upper part of the freezing chamber 4. The ice making chamber discharge port 120a and the freezing chamber discharge port 120b communicate with the freezing chamber air passage 130. The cold air sent out from the second fan 9b passes through the freezing chamber air passage 130 as shown by the broken line arrow, branches, and is discharged from the ice making chamber discharge port 120a and the freezing chamber discharge port 120b as shown by the solid line arrow. Will be done.
 本実施形態の冷蔵庫1は、第一切替室5および第二切替室6への送風遮断手段として、第一切替室第一フラッパ411、第一切替室第二フラッパ412、第二切替室第一フラッパ421、第二切替室第二フラッパ422を備えている。第一切替室第一フラッパ411および第一切替室第二フラッパ412は、第一切替室5の背部の仕切に実装されている。第二切替室第一フラッパ421および第二切替室第二フラッパ422は、第二切替室6の背部に実装されている。ここで、第一切替室第一フラッパ411および第二切替室第一フラッパ421の開口面積は、第一切替室第二フラッパ412および第二切替室第二フラッパ422の開口面積よりも大きく形成されている。 The refrigerator 1 of the present embodiment has a first switching chamber first flapper 411, a first switching chamber second flapper 412, and a second switching chamber first as means for shutting off air to the first switching chamber 5 and the second switching chamber 6. It is provided with a flapper 421 and a second flapper 422 in the second switching chamber. The first switching chamber first flapper 411 and the first switching chamber second flapper 412 are mounted on the partition at the back of the first switching chamber 5. The second switching chamber first flapper 421 and the second switching chamber second flapper 422 are mounted on the back of the second switching chamber 6. Here, the opening areas of the first switching chamber first flapper 411 and the second switching chamber first flapper 421 are formed to be larger than the opening areas of the first switching chamber second flapper 412 and the second switching chamber second flapper 422. ing.
 第二蒸発器14bは、第一切替室5、第二切替室6および断熱仕切壁30の略背部の第二蒸発器室8b内に設けられている。第二蒸発器14bの上方には第二ファン9bが設けられている。第二ファン9bは、遠心ファンであるターボファン(後向きファン)であり、回転速度は高速(1800min-1)と低速(1200min-1)に制御可能となっている。製氷室3および冷凍室4を冷却した空気は、冷凍室戻り口120cから冷凍室戻り風路120dを介して、第二蒸発器室8b(第二蒸発器14bの下方)に戻り、再び第二蒸発器14bと熱交換する。 The second evaporator 14b is provided in the second evaporator chamber 8b substantially behind the first switching chamber 5, the second switching chamber 6, and the heat insulating partition wall 30. A second fan 9b is provided above the second evaporator 14b. The second fan 9b is a turbo fan (rearward fan) which is a centrifugal fan, and the rotation speed can be controlled to a high speed (1800 min -1 ) and a low speed (1200 min -1). The air that has cooled the ice making chamber 3 and the freezing chamber 4 returns from the freezing chamber return port 120c to the second evaporator chamber 8b (below the second evaporator 14b) via the freezing chamber return air passage 120d, and is second again. Heat exchanges with the evaporator 14b.
 第一切替室5の背面下部には、第一切替室戻り口111cが形成されている。第一切替室5を冷却した後の冷気は、第一切替室戻り口111cから排出され、冷凍室戻り風路120dを介して、第二蒸発器室8b(第二蒸発器14bの下方)に戻り、再び第二蒸発器14bと熱交換する。 The first switching chamber return port 111c is formed in the lower part of the back surface of the first switching chamber 5. The cold air after cooling the first switching chamber 5 is discharged from the return port 111c of the first switching chamber and enters the second evaporator chamber 8b (below the second evaporator 14b) via the freezing chamber return air passage 120d. It returns and exchanges heat with the second evaporator 14b again.
 図4は、庫内の冷気の流れを示す正面図である。なお、図4は、図1の扉および容器を外した状態の正面図である。
 図4に示すように、断熱仕切壁27には、第一切替室5内に冷気を吐出させる第一切替室第一吐出口111a,111aが設けられている。第一切替室第一吐出口111aは、幅方向(左右方区)に細長く形成され、幅方向中央よりも左側(第一切替室戻り口111cとは左右方向の反対側)に位置している。また、第一切替室第一吐出口111aは、庫内高さ方向の中央よりも上側に位置している。
FIG. 4 is a front view showing the flow of cold air in the refrigerator. Note that FIG. 4 is a front view of the state in which the door and the container of FIG. 1 are removed.
As shown in FIG. 4, the heat insulating partition wall 27 is provided with first switching chamber first discharge ports 111a and 111a for discharging cold air into the first switching chamber 5. The first discharge port 111a of the first switching chamber is formed elongated in the width direction (left and right sections), and is located on the left side of the center in the width direction (opposite side of the return port 111c of the first switching chamber in the left and right direction). .. Further, the first discharge port 111a of the first switching chamber is located above the center in the height direction inside the refrigerator.
 また、断熱仕切壁27には、第一切替室5内に冷気を吐出させる第一切替室第二吐出口111bが形成されている。この第一切替室第二吐出口111bは、断熱仕切壁27の左側の側面に形成されている。これにより、第一切替室第二吐出口111bから吐出された冷気は、内箱10bの内壁面(左側面)に向けて吐出される。また、断熱仕切壁27には、第一切替室第二吐出口111bと第一切替室第二フラッパ412とを連通させる第一切替室連通路111dが形成されている。 Further, the heat insulating partition wall 27 is formed with a first switching chamber second discharge port 111b for discharging cold air into the first switching chamber 5. The first switching chamber second discharge port 111b is formed on the left side surface of the heat insulating partition wall 27. As a result, the cold air discharged from the second discharge port 111b of the first switching chamber is discharged toward the inner wall surface (left side surface) of the inner box 10b. Further, the heat insulating partition wall 27 is formed with a first switching chamber communication passage 111d that communicates the first switching chamber second discharge port 111b and the first switching chamber second flapper 412.
 また、断熱仕切壁27には、第二切替室6内に冷気を吐出させる第二切替室第一吐出口112a,112aが設けられている。第二切替室第一吐出口112aは、幅方向(左右方区)に細長く形成され、幅方向中央よりも左側(第二切替室戻り口112cとは左右方向の反対側)に位置している。また、第二切替室第一吐出口112aは、庫内高さ方向の中央よりも上側に位置している。 Further, the heat insulating partition wall 27 is provided with second switching chamber first discharge ports 112a and 112a for discharging cold air into the second switching chamber 6. The first discharge port 112a of the second switching chamber is formed elongated in the width direction (left and right sections), and is located on the left side of the center in the width direction (opposite side of the return port 112c of the second switching chamber in the left and right direction). .. Further, the first discharge port 112a of the second switching chamber is located above the center in the height direction inside the refrigerator.
 また、断熱仕切壁27には、第二切替室6内に冷気を吐出させる第二切替室第二吐出口112bが形成されている。この第二切替室第二吐出口112bは、断熱仕切壁27の左側の側面に形成されている。これにより、第二切替室第二吐出口112bから吐出された冷気は、内箱10bの内壁面(左側面)に向けて吐出される。また、断熱仕切壁27には、第二切替室第二吐出口112bと第二切替室第二フラッパ422とを連通させる第二切替室連通路112dが形成されている。 Further, the heat insulating partition wall 27 is formed with a second switching chamber second discharge port 112b for discharging cold air into the second switching chamber 6. The second discharge port 112b of the second switching chamber is formed on the left side surface of the heat insulating partition wall 27. As a result, the cold air discharged from the second discharge port 112b of the second switching chamber is discharged toward the inner wall surface (left side surface) of the inner box 10b. Further, the heat insulating partition wall 27 is formed with a second switching chamber communication passage 112d that communicates the second switching chamber second discharge port 112b and the second switching chamber second flapper 422.
 図5は、図4のV-V断面の要部拡大図である。
 図5に示すように、第二切替室6は、背面上部に第二切替室戻り口112cを備えている。第二切替室戻り口112cから流入した空気は、第二切替室戻り口112cから下方に延伸する第二切替室戻り風路112eを流れ、第二切替室戻り口112cより高さ位置が低く形成された第二蒸発器室流入口112fに至り、第二蒸発器室8bに対して下方から流れ込む。
FIG. 5 is an enlarged view of a main part of the VV cross section of FIG.
As shown in FIG. 5, the second switching chamber 6 is provided with a second switching chamber return port 112c at the upper part of the back surface. The air flowing in from the second switching chamber return port 112c flows through the second switching chamber return air passage 112e extending downward from the second switching chamber return port 112c, and is formed to be lower in height than the second switching chamber return port 112c. It reaches the second evaporator chamber inflow port 112f, and flows into the second evaporator chamber 8b from below.
 このように第二切替室戻り口112cから第二蒸発器室流入口112fに至る間に、下方に延伸する風路(第二切替室戻り風路112e)を備えることで、第二ファン9bが停止した際に、第二蒸発器室8b内の低温空気が第二切替室6内に逆流し難くなる。これにより、特に第二切替室6が冷蔵温度に設定された際に、第二切替室6が冷え過ぎるといった事態が生じにくい冷蔵庫1とすることができる。なお、第二切替室戻り口112cから第二蒸発器室流入口112fに至る間に、下方に延伸する風路があれば良いので、第二切替室戻り口112cから流入した空気が、上方に向けて流れた後に、下方に延伸する風路を流れるように構成することもできる。 By providing an air passage (second switching chamber return air passage 112e) extending downward from the second switching chamber return port 112c to the second evaporator chamber inflow port 112f in this way, the second fan 9b can be provided. When stopped, the low temperature air in the second evaporator chamber 8b is less likely to flow back into the second switching chamber 6. As a result, the refrigerator 1 is less likely to be overcooled when the second switching chamber 6 is set to the refrigerating temperature. Since it is sufficient that there is an air passage extending downward from the return port 112c of the second switching chamber to the inlet 112f of the second evaporator chamber, the air flowing in from the return port 112c of the second switching chamber moves upward. It can also be configured to flow through an air passage that extends downward after flowing toward it.
 図6は、冷却空気の風路構造の概略図である。
 図6に示すように、冷凍室フラッパ431が開放状態に制御されている場合は、第二蒸発器14bと熱交換して低温になった空気は、第二ファン9bを駆動することにより、第二ファン吐出風路12、冷凍室風路130、製氷室吐出口120aおよび冷凍室吐出口120bを介して製氷室3および冷凍室4に送られ、製氷室3の製氷皿内の水、製氷室容器3b内の氷、冷凍室4内の冷凍室容器4bに収納された食品等を冷却する。製氷室3および冷凍室4を冷却した空気は、冷凍室戻り口120cから冷凍室戻り風路120dを介して、第二蒸発器室8b(図2参照)に戻り、再び第二蒸発器14bと熱交換する。
FIG. 6 is a schematic view of the air passage structure of the cooling air.
As shown in FIG. 6, when the freezer chamber flapper 431 is controlled to be in an open state, the air that has become cold due to heat exchange with the second evaporator 14b is driven by driving the second fan 9b. It is sent to the ice making chamber 3 and the freezing chamber 4 through the two fan discharge air passage 12, the freezing chamber air passage 130, the ice making chamber discharge port 120a and the freezing chamber discharging port 120b, and the water in the ice tray of the ice making chamber 3 and the ice making chamber. The ice in the container 3b, the food stored in the freezer container 4b in the freezer 4b, and the like are cooled. The air that has cooled the ice making chamber 3 and the freezing chamber 4 returns to the second evaporator chamber 8b (see FIG. 2) from the freezing chamber return port 120c via the freezing chamber return air passage 120d, and again with the second evaporator 14b. Heat exchange.
 第一切替室第一フラッパ411が開放状態に制御されている場合は、第二ファン9bによって昇圧された空気は、第二ファン吐出風路12、第一切替室風路140、第一切替室第一フラッパ411、吐出口形成部材111(図4参照)に備えられた第一切替室第一吐出口111a,111aを介して、第一切替室5に設けた第一切替室容器5b内に直接送られて、第一切替室容器5b内の食品を直接冷却する。第一切替室5を冷却した空気は、第一切替室戻り口111c、冷凍室戻り風路120dを流れて、第二蒸発器室8bに戻り、再び第二蒸発器14bと熱交換する。なお、直接冷却とは、収納された食品に冷気を直接に供給して冷却する方式である。 When the first flapper 411 of the first switching chamber is controlled to be in the open state, the air boosted by the second fan 9b is the second fan discharge air passage 12, the first switching chamber air passage 140, and the first switching chamber. In the first switching chamber container 5b provided in the first switching chamber 5 via the first flapper 411 and the first switching chamber first discharge ports 111a and 111a provided in the discharge port forming member 111 (see FIG. 4). Directly sent to cool the food in the first switching chamber container 5b directly. The air that has cooled the first switching chamber 5 flows through the return port 111c of the first switching chamber and the return air passage 120d of the freezing chamber, returns to the second evaporator chamber 8b, and exchanges heat with the second evaporator 14b again. The direct cooling is a method of directly supplying cold air to the stored food to cool it.
 第一切替室第二フラッパ412が開放状態に制御されている場合は、第二ファン9bによって昇圧された空気は、第二ファン吐出風路12、第一切替室風路140、第一切替室第二フラッパ412、吐出口形成部材111(図4参照)に備えられた第一切替室第二吐出口111bから、第一切替室5の側壁に向けて吐出し、第一切替室容器5b内の食品を間接的に冷却する。第一切替室5を冷却した空気は、第一切替室戻り口111c、冷凍室戻り風路120dを流れて、第二蒸発器室8bに戻り、再び第二蒸発器14bと熱交換する。なお、間接冷却とは、食品の乾燥を抑えるために、収納された食品に冷気が直接に当たらないように供給して冷却する方式である。 When the first switching chamber second flapper 412 is controlled to be open, the air boosted by the second fan 9b is the second fan discharge air passage 12, the first switching chamber air passage 140, and the first switching chamber. Discharge from the second discharge port 111b of the first switching chamber provided in the second flapper 412 and the discharge port forming member 111 (see FIG. 4) toward the side wall of the first switching chamber 5, and inside the first switching chamber container 5b. Indirectly cool the food. The air that has cooled the first switching chamber 5 flows through the return port 111c of the first switching chamber and the return air passage 120d of the freezing chamber, returns to the second evaporator chamber 8b, and exchanges heat with the second evaporator 14b again. The indirect cooling is a method of supplying and cooling the stored food so that the cold air does not come into direct contact with the stored food in order to prevent the food from drying.
 第二切替室第一フラッパ421が開放状態に制御されている場合は、第二ファン9bによって昇圧された空気は、第二ファン吐出風路12、第二切替室風路150、第二切替室第一フラッパ421、吐出口形成部材112(図4参照)に備えられた第二切替室第一吐出口112a,112aを介して、第二切替室6に設けた第二切替室容器6b内に直接送られて、第二切替室容器6b内の食品を冷却する。第二切替室6を冷却した空気は、第二切替室戻り口112c、第二切替室連通路112dを流れて、第二蒸発器室8bに戻り、再び第二蒸発器14bと熱交換する。 When the first flapper 421 of the second switching chamber is controlled to be in the open state, the air boosted by the second fan 9b is the second fan discharge air passage 12, the second switching chamber air passage 150, and the second switching chamber. In the second switching chamber container 6b provided in the second switching chamber 6 via the first flapper 421 and the second switching chamber first discharge ports 112a and 112a provided in the discharge port forming member 112 (see FIG. 4). Directly sent to cool the food in the second switching chamber container 6b. The air that has cooled the second switching chamber 6 flows through the second switching chamber return port 112c and the second switching chamber communication passage 112d, returns to the second evaporator chamber 8b, and exchanges heat with the second evaporator 14b again.
 第二切替室第二フラッパ422が開放状態に制御されている場合は、第二ファン9bによって昇圧された空気は、第二ファン吐出風路12、第二切替室風路150、第二切替室第二フラッパ422、吐出口形成部材112(図4参照)に備えられた第二切替室第二吐出口112bから、第二切替室6の側壁に向けて吐出し、第二切替室容器6b内の食品を間接的に冷却する。第二切替室6を冷却した空気は、第二切替室戻り口112c、第二切替室連通路112dを流れて、第二蒸発器室8bに戻り、再び第二蒸発器14bと熱交換する。 When the second flapper 422 of the second switching chamber is controlled to be in the open state, the air boosted by the second fan 9b is the second fan discharge air passage 12, the second switching chamber air passage 150, and the second switching chamber. Discharge from the second discharge port 112b of the second switching chamber provided in the second flapper 422 and the discharge port forming member 112 (see FIG. 4) toward the side wall of the second switching chamber 6 and inside the second switching chamber container 6b. Indirectly cool the food. The air that has cooled the second switching chamber 6 flows through the second switching chamber return port 112c and the second switching chamber communication passage 112d, returns to the second evaporator chamber 8b, and exchanges heat with the second evaporator 14b again.
 なお、低温の蒸発器が収納される蒸発器室(本実施形態では第二蒸発器室8b)、蒸発器と熱交換して低温になった空気が流れる風路(本実施形態では、第二ファン吐出風路12、冷凍室風路130、第一切替室風路140、第二切替室風路150)、冷凍温度に維持される貯蔵室(本実施形態では製氷室3、冷凍室4、冷凍温度に設定された場合の第一切替室5、冷凍温度に設定された場合の第二切替室6)、冷凍温度に維持される貯蔵室からの戻り風路(本実施形態では、冷凍室戻り風路120d、冷凍温度に設定された場合の第二切替室連通路112d)は、冷凍温度になる空間であるため、以下では冷凍温度空間と呼ぶ。また、本実施形態では、第一切替室風路140と第二切替室風路150は、後記するダンパダクト部材350によって構成されている。 It should be noted that an evaporator chamber (second evaporator chamber 8b in this embodiment) in which a low-temperature evaporator is housed, and an air passage through which air that has become cold due to heat exchange with the evaporator flows (second in this embodiment). Fan discharge air passage 12, freezing chamber air passage 130, first switching chamber air passage 140, second switching chamber air passage 150), storage chamber maintained at freezing temperature (in this embodiment, ice making chamber 3, freezing chamber 4, The first switching chamber 5 when the freezing temperature is set, the second switching chamber 6 when the freezing temperature is set, and the return air passage from the storage chamber maintained at the freezing temperature (in the present embodiment, the freezing chamber). Since the return air passage 120d and the second switching chamber communication passage 112d) when the refrigerating temperature is set are the spaces where the refrigerating temperature is reached, they are hereinafter referred to as refrigerating temperature spaces. Further, in the present embodiment, the first switching chamber air passage 140 and the second switching chamber air passage 150 are composed of the damper duct member 350 described later.
 図7は、本実施形態に係る冷蔵庫の冷凍サイクルを示す構成図である。
 図7に示すように、本実施形態の冷蔵庫1は、圧縮機24、冷媒の放熱を行う放熱手段としての庫外放熱器50a、壁面放熱配管50b(外箱10aと内箱10bの間の領域の外箱10aの内面に配置)、断熱仕切壁28,29,30(図2参照)の前面部および断熱箱体10(図2参照)の前縁部近傍への結露を抑制する結露防止配管50c(断熱仕切壁28,29,30の内面に配置)、冷媒を減圧する減圧手段である第一キャピラリチューブ53aと第二キャピラリチューブ53b、冷媒と庫内の空気を熱交換することで庫内の熱を吸熱する第一蒸発器14aと第二蒸発器14bを備えている。また、冷蔵庫1は、冷凍サイクル中の水分を除去するドライヤ51と、液冷媒の圧縮機24への流入を抑制する気液分離器54a、54b、冷媒流路を制御する冷媒制御弁52、逆止弁56、冷媒流を接続する冷媒合流部55を備えている。これらを冷媒配管で接続して冷凍サイクルを構成している。冷媒は可燃性冷媒のイソブタンである。
FIG. 7 is a configuration diagram showing a refrigerating cycle of the refrigerator according to the present embodiment.
As shown in FIG. 7, the refrigerator 1 of the present embodiment includes a compressor 24, an external radiator 50a as a heat radiating means for radiating refrigerant, and a wall surface radiating pipe 50b (a region between the outer box 10a and the inner box 10b). (Placed on the inner surface of the outer box 10a), the front surface of the heat insulating partition walls 28, 29, 30 (see FIG. 2) and the dew condensation prevention pipe that suppresses dew condensation near the front edge of the heat insulating box 10 (see FIG. 2). 50c (located on the inner surface of the heat insulating partition walls 28, 29, 30), the first capillary tube 53a and the second capillary tube 53b, which are decompression means for depressurizing the refrigerant, and the inside of the refrigerator by exchanging heat between the refrigerant and the air inside the refrigerator. It is provided with a first evaporator 14a and a second evaporator 14b that absorb the heat of the above. Further, the refrigerator 1 includes a dryer 51 for removing water during the refrigeration cycle, gas- liquid separators 54a and 54b for suppressing the inflow of liquid refrigerant into the compressor 24, a refrigerant control valve 52 for controlling the refrigerant flow path, and a reverse. A stop valve 56 and a refrigerant merging portion 55 for connecting the refrigerant flow are provided. These are connected by a refrigerant pipe to form a refrigeration cycle. The refrigerant is isobutane, a flammable refrigerant.
 冷媒制御弁52は、流出口52a,52bを備えている。また、冷媒制御弁52は、流出口52aを開放し、流出口52bを閉鎖した「状態1」、流出口52aを閉鎖し、流出口52bを開放した「状態2」、流出口52aと流出口52bの何れも閉鎖した「状態3」、流出口52aと流出口52bの何れも開放した「状態4」の4つの状態に切換え可能な弁である。 The refrigerant control valve 52 includes outlets 52a and 52b. Further, the refrigerant control valve 52 opens the outlet 52a and closes the outlet 52b "state 1", closes the outlet 52a and opens the outlet 52b "state 2", and the outlet 52a and the outlet. It is a valve that can be switched to four states: "state 3" in which all 52b are closed, and "state 4" in which both the outlet 52a and the outlet 52b are open.
 次に本実施形態の冷蔵庫1の冷媒の流れについて説明する。圧縮機24から吐出した高温高圧冷媒は、庫外放熱器50a、壁面放熱配管50b、結露防止配管50c、ドライヤ51の順に流れ、冷媒制御弁52に至る。冷媒制御弁52の流出口52aは、冷媒配管を介して第一キャピラリチューブ53aと接続されている。冷媒制御弁52の流出口52bは、冷媒配管を介して第二キャピラリチューブ53bと接続されている。 Next, the flow of the refrigerant in the refrigerator 1 of the present embodiment will be described. The high-temperature and high-pressure refrigerant discharged from the compressor 24 flows in the order of the outside radiator 50a, the wall surface heat radiating pipe 50b, the dew condensation prevention pipe 50c, and the dryer 51, and reaches the refrigerant control valve 52. The outlet 52a of the refrigerant control valve 52 is connected to the first capillary tube 53a via a refrigerant pipe. The outlet 52b of the refrigerant control valve 52 is connected to the second capillary tube 53b via a refrigerant pipe.
 第一蒸発器14aにより冷蔵室2を冷却する場合は、冷媒制御弁52を、流出口52a側に冷媒が流れる「状態1」に制御する。流出口52aから流出した冷媒は、第一キャピラリチューブ53aにより減圧されて低温低圧となり、第一蒸発器14aに入り庫内空気と熱交換した後に、気液分離機54a、第一キャピラリチューブ53a内の冷媒と熱交換する熱交換部57a、冷媒合流部55を流れ、圧縮機24に戻る。 When the refrigerating chamber 2 is cooled by the first evaporator 14a, the refrigerant control valve 52 is controlled to the "state 1" in which the refrigerant flows to the outlet 52a side. The refrigerant flowing out from the outflow port 52a is depressurized by the first capillary tube 53a to become a low temperature and low pressure, enters the first evaporator 14a and exchanges heat with the air inside the refrigerator, and then enters the gas-liquid separator 54a and the first capillary tube 53a. It flows through the heat exchange section 57a and the refrigerant confluence section 55 that exchange heat with the refrigerant of the above, and returns to the compressor 24.
 第二蒸発器14bにより製氷室3、冷凍室4、第一切替室5、第二切替室6を冷却する場合は、冷媒制御弁52を、流出口52b側に冷媒が流れる「状態2」に制御する。流出口52bから流出した冷媒は、第二キャピラリチューブ53bにより減圧されて低温低圧となり、第二蒸発器14bに入り庫内空気と熱交換した後に、気液分離機54b、第二キャピラリチューブ53b内の冷媒と熱交換する熱交換部57b、逆止弁56、冷媒合流部55の順に流れ、圧縮機24に戻る。逆止弁56は冷媒合流部55から第二蒸発器14b側に向かう流れを阻止するように配設している。 When the ice making chamber 3, the freezing chamber 4, the first switching chamber 5, and the second switching chamber 6 are cooled by the second evaporator 14b, the refrigerant control valve 52 is set to the "state 2" in which the refrigerant flows to the outlet 52b side. Control. The refrigerant flowing out from the outflow port 52b is depressurized by the second capillary tube 53b to become a low temperature and low pressure, enters the second evaporator 14b and exchanges heat with the air inside the refrigerator, and then enters the gas-liquid separator 54b and the second capillary tube 53b. The heat exchange section 57b, the check valve 56, and the refrigerant confluence section 55, which exchange heat with the refrigerant of the above, flow in this order, and return to the compressor 24. The check valve 56 is arranged so as to block the flow from the refrigerant merging portion 55 toward the second evaporator 14b side.
 図8は、切替室背面側に設けられる断熱仕切壁を示す分解斜視図である。なお、図8では、冷却器である第二蒸発器14bを含む部材も併せて図示している。
 図8に示すように、断熱仕切ダクトプレート500は、断熱仕切壁27と、ダンパダクト部材350と、を備えて構成されている。
FIG. 8 is an exploded perspective view showing a heat insulating partition wall provided on the back side of the switching chamber. Note that FIG. 8 also shows a member including the second evaporator 14b, which is a cooler.
As shown in FIG. 8, the heat insulating partition duct plate 500 includes a heat insulating partition wall 27 and a damper duct member 350.
 断熱仕切壁27は、前パネル210、後パネル220、発泡断熱材230を備えて構成されている。また、断熱仕切壁27は、第一切替室5(図2参照)と第二切替室6(図2参照)に跨るように配置される。なお、発泡断熱材230は、ポリスチレンフォーム(発泡スチロール)によって構成されたものであり、前パネル210と後パネル220との間に配設されている。 The heat insulating partition wall 27 includes a front panel 210, a rear panel 220, and a foamed heat insulating material 230. Further, the heat insulating partition wall 27 is arranged so as to straddle the first switching chamber 5 (see FIG. 2) and the second switching chamber 6 (see FIG. 2). The foamed heat insulating material 230 is made of polystyrene foam (styrofoam) and is arranged between the front panel 210 and the rear panel 220.
 前パネル210は、合成樹脂製であって、正面視において略矩形状の板部211を有している。また、前パネル210には、上部に開口面積が大きく形成された矩形状の開口212が形成されている。また、前パネル210には、開口212の近傍に、内箱10b(図4参照)の内壁面に向けて開口212よりも開口面積の小さい開口213が形成されている。この開口213は、板部211に突出して形成された突出部211aの側面に形成されている。 The front panel 210 is made of synthetic resin and has a substantially rectangular plate portion 211 when viewed from the front. Further, the front panel 210 is formed with a rectangular opening 212 having a large opening area formed at the upper portion. Further, in the front panel 210, an opening 213 having an opening area smaller than that of the opening 212 is formed in the vicinity of the opening 212 toward the inner wall surface of the inner box 10b (see FIG. 4). The opening 213 is formed on the side surface of the projecting portion 211a formed so as to project from the plate portion 211.
 また、前パネル210は、板部211の下部に開口面積が大きく形成された矩形状の開口214が形成されている。また、前パネル210には、開口214の近傍に、内箱10b(図4参照)の内壁面に向けて開口214よりも開口面積の小さい開口215が形成されている。この開口215は、板部211に突出して形成された突出部211bの側面に形成されている。 Further, in the front panel 210, a rectangular opening 214 having a large opening area is formed in the lower part of the plate portion 211. Further, in the front panel 210, an opening 215 having an opening area smaller than that of the opening 214 is formed in the vicinity of the opening 214 toward the inner wall surface of the inner box 10b (see FIG. 4). The opening 215 is formed on the side surface of the projecting portion 211b formed so as to project from the plate portion 211.
 また、板部211には、下部の開口214の上方に、断熱仕切壁30が嵌合して取り付けられる溝部216が形成されている。この溝部216は、板部211の左右方向の一端から他端にかけて全体に形成されている。このように、断熱仕切壁27は、第一切替室5と第二切替室6とに跨るように切替室の背面に配置されている。 Further, in the plate portion 211, a groove portion 216 to which the heat insulating partition wall 30 is fitted and attached is formed above the lower opening 214. The groove portion 216 is formed as a whole from one end to the other end of the plate portion 211 in the left-right direction. In this way, the heat insulating partition wall 27 is arranged on the back surface of the switching chamber so as to straddle the first switching chamber 5 and the second switching chamber 6.
 また、板部211には、溝部216の上方に、第一切替室戻り口111cが形成されている。また、板部211には、溝部216の下方に、第二切替室戻り口112cが形成されている。 Further, in the plate portion 211, a first switching chamber return port 111c is formed above the groove portion 216. Further, in the plate portion 211, a second switching chamber return port 112c is formed below the groove portion 216.
 また、板部211の前面には、開口212を覆うように吐出口形成部材111(図4参照)が取り付けられている。また、板部211の前面には、開口214を覆うように吐出形成部材112(図4参照)が取り付けられている。 Further, a discharge port forming member 111 (see FIG. 4) is attached to the front surface of the plate portion 211 so as to cover the opening 212. Further, a discharge forming member 112 (see FIG. 4) is attached to the front surface of the plate portion 211 so as to cover the opening 214.
 後パネル220は、合成樹脂製であって、正面視において略矩形状の板部221を有している。また、後パネル220には、前パネル210の開口212と対向する位置に開口222が形成されている。また、後パネル220には、前パネル210の開口214に対向する位置に開口223が形成されている。また、後パネル220には、第一切替室戻り口111cと連通する戻り連通路224が形成されている。また、後パネル220には、第2切替室戻り口112cと連通する戻り連通路225が形成されている。 The rear panel 220 is made of synthetic resin and has a substantially rectangular plate portion 221 when viewed from the front. Further, the rear panel 220 is formed with an opening 222 at a position facing the opening 212 of the front panel 210. Further, the rear panel 220 is formed with an opening 223 at a position facing the opening 214 of the front panel 210. Further, the rear panel 220 is formed with a return communication passage 224 communicating with the return port 111c of the first switching chamber. Further, the rear panel 220 is formed with a return communication passage 225 communicating with the return port 112c of the second switching chamber.
 また、後パネル220には、前側から見て左端に、上下方向に延びる冷凍室戻り流路120dが形成されている。この冷凍室戻り流路120dは、戻り連通路224と連通している。また、後パネル220の上部には、冷凍室戻り流路120dと連通する冷凍室戻り口120cが形成されている。 Further, the rear panel 220 is formed with a freezing chamber return flow path 120d extending in the vertical direction at the left end when viewed from the front side. The freezing chamber return passage 120d communicates with the return communication passage 224. Further, a freezing chamber return port 120c communicating with the freezing chamber return flow path 120d is formed in the upper part of the rear panel 220.
 ダンパダクト部材350は、第二蒸発器14bによって生成された冷気を第二ファン9b(図3参照)によって取り込み、開口212,213から第一切替室5に冷気を吐出させ、また開口214,215から第二切替室6に冷気を吐出させるように構成されている。また、ダンパダクト部材350は、上部から製氷室3および冷凍室4に冷気を導入するように構成されている。また、ダンパダクト部材350は、前面側に配置される前ケース310と、後面側(背面側)に配置される後ケース320と、が組み合わせて構成されている。 The damper duct member 350 takes in the cold air generated by the second evaporator 14b by the second fan 9b (see FIG. 3), discharges the cold air from the openings 212 and 213 to the first switching chamber 5, and also from the openings 214 and 215. It is configured to discharge cold air to the second switching chamber 6. Further, the damper duct member 350 is configured to introduce cold air into the ice making chamber 3 and the freezing chamber 4 from above. Further, the damper duct member 350 is configured by combining a front case 310 arranged on the front side and a rear case 320 arranged on the rear side (back side).
 また、ダンパダクト部材350は、前面上部の、開口212に対応する位置に矩形の開口312a(吹出口)と、開口213に対応する位置に矩形の開口312b(吹出口)と、が形成されている。開口312aの開口面積は、開口312bの開口面積よりも大きく形成されている。 Further, the damper duct member 350 is formed with a rectangular opening 312a (outlet) at a position corresponding to the opening 212 and a rectangular opening 312b (outlet) at a position corresponding to the opening 213 in the upper part of the front surface. .. The opening area of the opening 312a is formed to be larger than the opening area of the opening 312b.
 また、ダンパダクト部材350は、前面下部の、開口214に対応する位置に矩形の開口312a(吹出口)と、開口215に対応する位置に矩形の開口312b(吹出口)と、が形成されている。開口312aの開口面積は、開口312bの開口面積よりも大きく形成されている。 Further, the damper duct member 350 is formed with a rectangular opening 312a (outlet) at a position corresponding to the opening 214 and a rectangular opening 312b (outlet) at a position corresponding to the opening 215 at the lower part of the front surface. .. The opening area of the opening 312a is formed to be larger than the opening area of the opening 312b.
 また、前パネル210には、第一切替室5に対応する側に面ヒータH10が設けられている。また、後パネル220には、冷凍室戻り風路120dの内壁に面ヒータH11が設けられている。これにより、戻り流路41b内に霜が付着するのを防止することができる。また、ダンパダクト部材350には、第二ファン9bに対向する内壁に、面ヒータH12が設けられている。これにより、ダンパダクト部材350に霜や水が溜るのを防止でき、さらに第二ファン9bに霜が成長するのを防止できる。 Further, the front panel 210 is provided with a surface heater H10 on the side corresponding to the first switching chamber 5. Further, the rear panel 220 is provided with a surface heater H11 on the inner wall of the freezing chamber return air passage 120d. This makes it possible to prevent frost from adhering to the return flow path 41b. Further, the damper duct member 350 is provided with a surface heater H12 on an inner wall facing the second fan 9b. As a result, it is possible to prevent frost and water from accumulating on the damper duct member 350, and further prevent frost from growing on the second fan 9b.
 図9は、ダンパダクトの内部構造を示す斜視図である。
 図9に示すように、ダンパダクト部材350の前ケース310内には、第二ファン9b、ダンパ部材410,420,430が取り付けられている。
FIG. 9 is a perspective view showing the internal structure of the damper duct.
As shown in FIG. 9, the second fan 9b and the damper members 410, 420, 430 are mounted in the front case 310 of the damper duct member 350.
 ダンパ部材410は、第一切替室5(図3参照)に対応するものである。また、ダンパ部材410は、第一切替室第一フラッパ411および第一切替室第二フラッパ412を備えたツインダンパである。また、ダンパ部材410は、第一切替室第一フラッパ411と第一切替室第二フラッパ412との間に設けられた一つの駆動部413によって、第一切替室第一フラッパ411および第一切替室第二フラッパ412を開閉するようになっている。第一切替室第一フラッパ411は、第一切替室第二フラッパ412よりも大きく形成されている。また、第一切替室第一フラッパ411は、開口212(図8参照)を開閉できる大きさに対応している。また、第一切替室第二フラッパ412は、開口213(図8参照)を開閉できる大きさに対応している。 The damper member 410 corresponds to the first switching chamber 5 (see FIG. 3). Further, the damper member 410 is a twin damper provided with a first switching chamber first flapper 411 and a first switching chamber second flapper 412. Further, the damper member 410 is provided with the first switching chamber first flapper 411 and the first switching chamber first flapper 411 by one drive unit 413 provided between the first switching chamber first flapper 411 and the first switching chamber second flapper 412. The room second flapper 412 is opened and closed. The first switching chamber first flapper 411 is formed larger than the first switching chamber second flapper 412. Further, the first flapper 411 of the first switching chamber corresponds to a size that can open and close the opening 212 (see FIG. 8). Further, the second flapper 412 of the first switching chamber corresponds to a size that can open and close the opening 213 (see FIG. 8).
 ダンパ部材420は、第二切替室6(図3参照)に対応するものであり、ダンパ部材410と同様のものである。また、ダンパ部材420は、第二切替室第一フラッパ421および第二切替室第二フラッパ422を備えたツインダンパである。また、ダンパ部材420は、第二切替室第一フラッパ421および第二切替室第二フラッパ422を駆動する駆動部413を備えている。第二切替室第一フラッパ421は、開口214(図8参照)を開閉できる大きさに対応している。第二切替室第二フラッパ422は、開口215(図8参照)を開閉できる大きさに対応している。 The damper member 420 corresponds to the second switching chamber 6 (see FIG. 3), and is the same as the damper member 410. Further, the damper member 420 is a twin damper provided with a second switching chamber first flapper 421 and a second switching chamber second flapper 422. Further, the damper member 420 includes a drive unit 413 that drives the second switching chamber first flapper 421 and the second switching chamber second flapper 422. The first flapper 421 of the second switching chamber corresponds to a size that can open and close the opening 214 (see FIG. 8). The second flapper 422 of the second switching chamber corresponds to a size that can open and close the opening 215 (see FIG. 8).
 ダンパ部材430は、製氷室3(図3参照)および冷凍室4(図3参照)に対応するものである。また、ダンパ部材430は、冷凍室フラッパ431(図3参照)を備えたシングルダンパである。また、ダンパ部材430は、冷凍室フラッパ431(図3参照)を支持するダンパフレーム432と、冷凍室フラッパ431を駆動する駆動部433を備えている。 The damper member 430 corresponds to the ice making chamber 3 (see FIG. 3) and the freezing chamber 4 (see FIG. 3). Further, the damper member 430 is a single damper provided with a freezing chamber flapper 431 (see FIG. 3). Further, the damper member 430 includes a damper frame 432 that supports the freezing chamber flapper 431 (see FIG. 3) and a drive unit 433 that drives the freezing chamber flapper 431.
 ダンパ部材410は、第二ファン9bの側方に配置されている。ダンパ部材420は、ダンパ部材410の下方に配置されている。ダンパ部材430は、第二ファン9bの上方に配置されている。 The damper member 410 is arranged on the side of the second fan 9b. The damper member 420 is arranged below the damper member 410. The damper member 430 is arranged above the second fan 9b.
 図10は、ダンパ部材を示す斜視図である。なお、図10は、前側(庫内側)から見た斜視図である。
 図10に示すように、駆動部413は、四角箱型のボックス(筐体)413aを備え、ボックス413aの内部に、電動機(図示省略)やギア部材(図示省略)が組み合わされて収納されている。また、ボックス413aには、第一切替室第一フラッパ411に向けて延びるフラッパ支持部413bと、第一切替室第二フラッパ412に向けて延びるフラッパ支持部413cと、を備えている。フラッパ支持部413bには、第一切替室第一フラッパ411が回動自在に支持されている。フラッパ支持部413cには、第一切替室第二フラッパ412が回動自在に支持されている。
FIG. 10 is a perspective view showing a damper member. Note that FIG. 10 is a perspective view seen from the front side (inside the refrigerator).
As shown in FIG. 10, the drive unit 413 includes a square box-shaped box (housing) 413a, and an electric motor (not shown) and a gear member (not shown) are combined and housed inside the box 413a. There is. Further, the box 413a is provided with a flapper support portion 413b extending toward the first flapper 411 of the first switching chamber and a flapper support portion 413c extending toward the second flapper 412 of the first switching chamber. The first flapper 411 of the first switching chamber is rotatably supported by the flapper support portion 413b. The first switching chamber second flapper 412 is rotatably supported by the flapper support portion 413c.
 また、駆動部413は、第一切替室第一フラッパ411と第一切替室第二フラッパ412とを独立して開閉動作できるようにボックス413a内の駆動機構が構成されている。つまり、駆動部413は、第一切替室第一フラッパ411および第一切替室第二フラッパ412の双方を閉じ、また第一切替室第一フラッパ411および第一切替室第二フラッパ412の双方を開くことができるように構成されている。また、駆動部413は、第一切替室第一フラッパ411を開きかつ第一切替室第二フラッパ412を閉じ、また第一切替室第一フラッパ411を閉じかつ第一切替室第二フラッパ412を開くことができるように構成されている。 Further, the drive unit 413 is configured with a drive mechanism in the box 413a so that the first switching chamber first flapper 411 and the first switching chamber second flapper 412 can be opened and closed independently. That is, the drive unit 413 closes both the first switching chamber first flapper 411 and the first switching chamber second flapper 412, and closes both the first switching chamber first flapper 411 and the first switching chamber second flapper 412. It is configured to be openable. Further, the drive unit 413 opens the first switching chamber first flapper 411 and closes the first switching chamber second flapper 412, and closes the first switching chamber first flapper 411 and closes the first switching chamber second flapper 412. It is configured to be openable.
 フラッパ支持部413bには、ダンパ部材410を前ケース310(図9参照)にねじ固定するためのねじ固定部413dが形成されている。フラッパ支持部413cには、ダンパ部材410を前ケース310(図9参照)にねじ固定するためのねじ固定部413eが形成されている。ボックス413aには、ダンパ部材410を前ケース310(図9参照)にねじ固定するためのねじ固定部413fが形成されている。 The flapper support portion 413b is formed with a screw fixing portion 413d for screwing the damper member 410 to the front case 310 (see FIG. 9). The flapper support portion 413c is formed with a screw fixing portion 413e for screwing the damper member 410 to the front case 310 (see FIG. 9). The box 413a is formed with a screw fixing portion 413f for screwing the damper member 410 to the front case 310 (see FIG. 9).
 第一切替室第一フラッパ411は、合成樹脂製のベース材411a(図9参照)と、このベース材411aの表面に被覆されるシリコーンゴム製のシール材411bと、を備えて構成されている。また、ベース材411aには、爪411cが複数個所に突出して形成されている。第一切替室第一フラッパ411は、爪411cがシール材411bに形成された孔に挿入されることで、シール材411bがベース材411aに保持されている。 The first flapper 411 of the first switching chamber includes a synthetic resin base material 411a (see FIG. 9) and a silicone rubber sealing material 411b coated on the surface of the base material 411a. .. Further, the base material 411a is formed with claws 411c protruding from a plurality of places. In the first switching chamber, the first flapper 411, the sealing material 411b is held by the base material 411a by inserting the claw 411c into the hole formed in the sealing material 411b.
 第一切替室第二フラッパ412は、合成樹脂製のベース材412a(図9参照)と、このベース材412aの表面に被覆されるシリコーンゴム製のシール材412bと、を備えて構成されている。また、ベース材412aには、爪412cが複数個所に突出して形成されている。第一切替室第二フラッパ412は、爪412cがシール材412bに形成された孔に挿入されることで、シール材412bがベース材412aに保持されている。 The first switching chamber second flapper 412 is configured to include a synthetic resin base material 412a (see FIG. 9) and a silicone rubber sealing material 412b coated on the surface of the base material 412a. .. Further, the base material 412a is formed with claws 412c protruding from a plurality of places. In the first switching chamber second flapper 412, the sealing material 412b is held by the base material 412a by inserting the claw 412c into the hole formed in the sealing material 412b.
 駆動部413は、第一切替室第一フラッパ411側に向く面413gと、第一切替室第二フラッパ412側に向く上側の面413hと、を有している。上側の面413gおよび下側の面413hは、それぞれ矩形状の平面である。また、第一切替室第一フラッパ411は、上下方向が左右方向よりも長い縦長形状である。第一切替室第二フラッパ412は、左右方向が上下方向よりも長い横長形状である。 The drive unit 413 has a surface 413 g facing the first flapper 411 side of the first switching chamber and an upper surface 413h facing the second flapper 412 side of the first switching chamber. The upper surface 413g and the lower surface 413h are rectangular planes, respectively. Further, the first flapper 411 of the first switching chamber has a vertically long shape in which the vertical direction is longer than the horizontal direction. The first switching chamber second flapper 412 has a horizontally long shape in which the left-right direction is longer than the up-down direction.
 また、フラッパ支持部413b,413cは、ボックス413aの前寄りに位置している。第一切替室第一フラッパ411は、ボックス413aの面413gに沿って後方に向けて回動動作するように構成されている。第一切替室第二フラッパ412は、ボックス413aの面413hに沿って後方に向けて回動動作するように構成されている。 The flapper support portions 413b and 413c are located closer to the front of the box 413a. The first flapper 411 of the first switching chamber is configured to rotate rearward along the surface 413g of the box 413a. The second flapper 412 of the first switching chamber is configured to rotate rearward along the surface 413h of the box 413a.
 図11は、第1実施形態に係る第一切替室の温度センサの配置を示す概略図である。なお、図11は、第一切替室扉5aと第一切替室容器5bを外した状態で第一切替室5を前方から見た図である。
 図11に示すように、第一切替室5には、第一切替室第一温度センサ43a(他の温度センサ)と第一切替室第二温度センサ43b(一の温度センサ)が設けられている。
FIG. 11 is a schematic view showing the arrangement of the temperature sensors in the first switching chamber according to the first embodiment. Note that FIG. 11 is a view of the first switching chamber 5 viewed from the front with the first switching chamber door 5a and the first switching chamber container 5b removed.
As shown in FIG. 11, the first switching chamber 5 is provided with a first switching chamber first temperature sensor 43a (another temperature sensor) and a first switching chamber second temperature sensor 43b (one temperature sensor). There is.
 第一切替室第一温度センサ43aは、庫内の背面に配置される断熱仕切壁27に設けられている。また、第一切替室第一温度センサ43aは、第一切替室5の背面上部に位置している。 The first temperature sensor 43a of the first switching chamber is provided on the heat insulating partition wall 27 arranged on the back surface of the refrigerator. Further, the first temperature sensor 43a of the first switching chamber is located at the upper part of the back surface of the first switching chamber 5.
 第一切替室第二温度センサ43bは、断熱仕切壁27に設けられた吐出口形成部材111の内側に設けられている。また、第一切替室第二温度センサ43bは、第一切替室第一温度センサ43aよりも下方に位置している。 The first switching chamber second temperature sensor 43b is provided inside the discharge port forming member 111 provided on the heat insulating partition wall 27. Further, the first switching chamber second temperature sensor 43b is located below the first switching chamber first temperature sensor 43a.
 断熱仕切壁29および断熱仕切壁30の内部には、真空断熱材25gおよび真空断熱材25h(図2参照)が実装されている。また、図11において破線で示すように、本実施形態の冷蔵庫1は、第一切替室5の底面、すなわち、断熱仕切壁30の上面には、第一切替室5の下方からの加熱手段となる第一切替室第一ヒータ301を備えている。また、冷蔵庫1は、第一切替室5の背面、すなわち、断熱仕切壁27の前面に、第一切替室5の後方からの加熱手段となる第一切替室第二ヒータ302(面ヒータH10)を備えている。さらに、冷蔵庫1は、第一切替室5の左面と右面、すなわち、内箱10bの左面と右面に、第一切替室5の左側方からの加熱手段となる第一切替室第三ヒータ303と、第一切替室5の右側方からの加熱手段となる第一切替室第四ヒータ304を備えている。第一切替室第一ヒータ301、第一切替室第二ヒータ302、第一切替室第三ヒータ303および第一切替室第四ヒータ304は、図示しない配線により互いに並列に接続された電気ヒータであり、全てが同時に通電される。以下では、第一切替室5の加熱手段となるヒータ(第一切替室第一ヒータ301、第一切替室第二ヒータ302、第一切替室第三ヒータ303、第一切替室第四ヒータ304)の総称を、第一切替室ヒータ300(切替室ヒータ)とする。 Inside the heat insulating partition wall 29 and the heat insulating partition wall 30, a vacuum heat insulating material 25 g and a vacuum heat insulating material 25h (see FIG. 2) are mounted. Further, as shown by a broken line in FIG. 11, the refrigerator 1 of the present embodiment has a heating means from below the first switching chamber 5 on the bottom surface of the first switching chamber 5, that is, the upper surface of the heat insulating partition wall 30. The first heater 301 of the first switching chamber is provided. Further, the refrigerator 1 has a first switching chamber second heater 302 (surface heater H10) serving as a heating means from the rear of the first switching chamber 5 on the back surface of the first switching chamber 5, that is, on the front surface of the heat insulating partition wall 27. It has. Further, the refrigerator 1 has a first switching chamber third heater 303 that serves as a heating means from the left side of the first switching chamber 5 on the left side and the right side of the first switching chamber 5, that is, the left side and the right side of the inner box 10b. The first switching chamber fourth heater 304 is provided as a heating means from the right side of the first switching chamber 5. The first heater 301 in the first switching chamber, the second heater 302 in the first switching chamber, the third heater 303 in the first switching chamber, and the fourth heater 304 in the first switching chamber are electric heaters connected in parallel to each other by wiring (not shown). Yes, all are energized at the same time. In the following, heaters that serve as heating means for the first switching chamber 5 (first switching chamber first heater 301, first switching chamber second heater 302, first switching chamber third heater 303, first switching chamber fourth heater 304). ) Is generically referred to as the first switching chamber heater 300 (switching chamber heater).
 第一切替室ヒータ300は、図示しない発熱線(一例としてシリコンコードヒータ)とアルミニウム箔を両面粘着テープの一面で固定し、両面粘着テープの他面を加熱面に貼付可能としたアルミ箔ヒータである。第一切替室第一ヒータ301は、断熱仕切壁30内の真空断熱材25h(図2参照)の上面の過半領域を覆うように配設されている。これにより、真空断熱材25hの断熱性能が劣化することで断熱仕切壁30の断熱性能が低下しても、断熱仕切壁30の上面を良好に加熱できるようにしている。 The first switching chamber heater 300 is an aluminum foil heater in which a heating wire (silicon cord heater, for example) (not shown) and an aluminum foil are fixed on one side of a double-sided adhesive tape, and the other side of the double-sided adhesive tape can be attached to the heating surface. be. The first heater 301 of the first switching chamber is arranged so as to cover the majority region of the upper surface of the vacuum heat insulating material 25h (see FIG. 2) in the heat insulating partition wall 30. As a result, even if the heat insulating performance of the heat insulating partition wall 30 deteriorates due to the deterioration of the heat insulating performance of the vacuum heat insulating material 25h, the upper surface of the heat insulating partition wall 30 can be satisfactorily heated.
 第一切替室第一ヒータ301、第一切替室第二ヒータ302、第一切替室第三ヒータ303、第一切替室第四ヒータ304の容量は、それぞれ11.3W、8.6W、3.1W、3.1Wであり、発熱密度(単位面積当たりの発熱量)はそれぞれ44.3W/m、79.8W/m、263.8W/m、263.8W/mである。発熱密度が高いと温度が上昇しやすくなるので、特に真空断熱材25hを備えた断熱仕切壁30に実装された加熱手段(第一切替室第一ヒータ301)の発熱密度は、100W/m以下の44.3W/mに抑えることで温度が上昇することによる真空断熱材25hの劣化が加速され難くしている(詳細は後述)。 The capacities of the first switching chamber first heater 301, the first switching chamber second heater 302, the first switching chamber third heater 303, and the first switching chamber fourth heater 304 are 11.3 W, 8.6 W, and 3. It is 1W and 3.1W, and the heat generation densities (calorific value per unit area) are 44.3W / m 2 , 79.8W / m 2 , 263.8W / m 2 , and 263.8W / m 2 , respectively. Since the temperature tends to rise when the heat generation density is high, the heat generation density of the heating means (first switching chamber first heater 301) mounted on the heat insulating partition wall 30 provided with the vacuum heat insulating material 25h is 100 W / m 2. By suppressing the temperature to 44.3 W / m 2 below, it is difficult to accelerate the deterioration of the vacuum heat insulating material 25h due to the temperature rise (details will be described later).
 また、本実施形態の冷蔵庫1のように、真空断熱材を備えていない断熱仕切壁27に実装された加熱手段(第一切替室第二ヒータ302)の発熱密度を、真空断熱材25hを備えた断熱仕切壁30に実装された加熱手段(第一切替室第一ヒータ302)より小さくすることで、真空断熱材25hを備えた断熱仕切壁30の劣化が加速されて、第一切替室5が冷え過ぎるといった事態が生じ難い冷蔵庫としている。 Further, as in the refrigerator 1 of the present embodiment, the heat generation density of the heating means (first switching chamber second heater 302) mounted on the heat insulating partition wall 27 not provided with the vacuum heat insulating material is provided with the vacuum heat insulating material 25h. By making it smaller than the heating means (first switching chamber first heater 302) mounted on the heat insulating partition wall 30, the deterioration of the heat insulating partition wall 30 provided with the vacuum heat insulating material 25h is accelerated, and the first switching chamber 5 It is a refrigerator that is unlikely to get too cold.
 また、第一切替室ヒータ300の容量(第一切替室第一ヒータ301、第一切替室第二ヒータ302、第一切替室第三ヒータ303、第一切替室第四ヒータ304の総容量)を20W以上の26.1Wとしている。これにより、特に第一切替室5と第二切替室6がそれぞれ冷蔵温度と冷凍温度に設定される「RF」モードに設定されて、第一切替室5の3つの面が第一切替室5より低温の冷凍温度空間と隣接する状態になり、温度が下がりやすい貯蔵室となった場合でも第一切替室5を良好に加熱することができ、貯蔵室内が冷えすぎて所望の温度に維持できなくなる、あるいは、貯蔵室内の壁面に結露や着霜が生じるといった不具合が生じ難い冷蔵庫となる。 Further, the capacity of the first switching chamber heater 300 (total capacity of the first switching chamber first heater 301, the first switching chamber second heater 302, the first switching chamber third heater 303, and the first switching chamber fourth heater 304). Is set to 26.1 W of 20 W or more. As a result, in particular, the first switching chamber 5 and the second switching chamber 6 are set to the "RF" mode in which the refrigerating temperature and the freezing temperature are set, respectively, and the three surfaces of the first switching chamber 5 are set to the first switching chamber 5. The first switching chamber 5 can be satisfactorily heated even when the storage chamber is adjacent to the lower freezing temperature space and the temperature tends to drop, and the storage chamber becomes too cold to maintain the desired temperature. The refrigerator is less likely to have problems such as dew condensation and frost formation on the wall surface of the storage room.
 さらに,第一切替室5を下方から加熱する加熱手段(第一切替室第一ヒータ301)の容量(11.3W)を,第一切替室5を背面(後方)、または、左右側面から加熱する加熱手段(第一切替室第二ヒータ302、第一切替室第二ヒータ303、第一切替室第二ヒータ304)の何れの容量(8.6W,3.1W,3.1W)よりも大きくしている。加熱されて温度が上昇した空気は,貯蔵室内を上昇するので,このように下方からの加熱手段(第一切替室第一ヒータ301)の容量(11.3W)を大きくすることで効率的に第一切替室5内を加熱することができ,省エネルギー性能が高くなる。 Further, the capacity (11.3 W) of the heating means (first switching chamber first heater 301) for heating the first switching chamber 5 from below is heated from the back (rear) or the left and right side surfaces of the first switching chamber 5. More than any capacity (8.6W, 3.1W, 3.1W) of the heating means (first switching chamber second heater 302, first switching chamber second heater 303, first switching chamber second heater 304). It's getting bigger. Since the air that has been heated and the temperature has risen rises in the storage chamber, it is efficient to increase the capacity (11.3 W) of the heating means (first switching chamber first heater 301) from below in this way. The inside of the first switching chamber 5 can be heated, and the energy saving performance is improved.
 なお、断熱仕切壁30および断熱仕切壁27は、表面が図示しない厚さ1.5mmの樹脂部材(本実施例ではポリプロピレン)により覆われている。第一切替室第一ヒータ301および第一切替室第二ヒータ302は、それぞれ断熱仕切壁30および断熱仕切壁27の樹脂部材の内側(内表面)に貼付されている。従って、断熱仕切壁30内の真空断熱材25hには、第一切替室第一ヒータ301を直接貼付していないが、両者の間には十分な空隙、または、断熱部材(具体的には10mm以上の空隙、または、10mm以上の厚さの断熱部材)が介在していないので、熱的に略接触した状態となる。 The surface of the heat insulating partition wall 30 and the heat insulating partition wall 27 is covered with a resin member (polypropylene in this embodiment) having a thickness of 1.5 mm (not shown). The first heater 301 of the first switching chamber and the second heater 302 of the first switching chamber are attached to the inside (inner surface) of the resin member of the heat insulating partition wall 30 and the heat insulating partition wall 27, respectively. Therefore, although the first switching chamber first heater 301 is not directly attached to the vacuum heat insulating material 25h in the heat insulating partition wall 30, there is a sufficient gap between the two, or a heat insulating member (specifically, 10 mm). Since the above-mentioned voids or the heat insulating member having a thickness of 10 mm or more are not interposed, the heat-insulating members are in substantially contact with each other.
 また、第一切替室第三ヒータ303および第一切替室第四ヒータ304は、何れも内箱10b(ABS樹脂)の内表面(庫外側表面)に貼付されている。図11に示すように、第一切替室5を加熱する第一切替室ヒータ300が配設される位置は、第一切替室扉5aと第一切替室容器5bを外すことで解体作業を伴わずにユーザーが触れることが可能な、貯蔵室の内壁面となる。そこで、上記のように第一切替室ヒータ300と第一切替室5の間に樹脂部材(断熱仕切壁27および断熱仕切壁30の表面樹脂部材または内箱10b)を介在させるように配設することで、ユーザーが清掃等のために第一切替室扉5aと容器5bを外して庫内壁面(断熱仕切壁27、断熱仕切壁30、内箱10bの表面)に触れても、ヒータが破損するといった事態が生じない信頼性の高い冷蔵庫としている。 Further, the first switching chamber third heater 303 and the first switching chamber fourth heater 304 are both attached to the inner surface (outer surface of the refrigerator) of the inner box 10b (ABS resin). As shown in FIG. 11, the position where the first switching chamber heater 300 for heating the first switching chamber 5 is arranged involves dismantling work by removing the first switching chamber door 5a and the first switching chamber container 5b. It will be the inner wall of the storage room that the user can touch without having to. Therefore, as described above, a resin member (the surface resin member of the heat insulating partition wall 27 and the heat insulating partition wall 30 or the inner box 10b) is arranged between the first switching chamber heater 300 and the first switching chamber 5. As a result, even if the user removes the first switching chamber door 5a and the container 5b for cleaning and touches the inner wall surface of the refrigerator (insulation partition wall 27, insulation partition wall 30, surface of inner box 10b), the heater is damaged. It is a highly reliable refrigerator that does not cause such a situation.
 図12は、図11のXII-XII線断面図である。図13は、図11のXIII-XIII線断面図である。なお、図12では、開口312aに氷が形成され、氷を第一切替室第一フラッパ411が挟み込んで、第一切替室第一フラッパ411が完全に閉状態にならず、漏れ冷気LAが生じている状態を示す。 FIG. 12 is a cross-sectional view taken along the line XII-XII of FIG. FIG. 13 is a cross-sectional view taken along the line XIII-XIII of FIG. In FIG. 12, ice is formed in the opening 312a, the ice is sandwiched by the first flapper 411 of the first switching chamber, the first flapper 411 of the first switching chamber is not completely closed, and leaked cold air LA is generated. Indicates the state of being.
 図12に示すように、断熱仕切壁27には、開口312aが形成され、この開口312aの縁部に第一切替室第一フラッパ411が当接および離間するように回動自在に設けられている。また、断熱仕切壁27には、開口212が形成されるとともに、開口212の前面側を覆うように吐出口形成部材111が設けられている。この吐出口形成部材111は、断熱仕切壁27の前面に対して前方に膨らむように形成されている。そして、吐出口形成部材111の前面側には、第一切替室第一吐出口111a,111aが形成されている。これら第一切替室第一吐出口111a,111aは、上下に離間して形成されている。このように、本実施形態では、第二蒸発器室8bから第一切替室第一吐出口111a,111aまでを繋ぐ風路Rが形成されている。 As shown in FIG. 12, an opening 312a is formed in the heat insulating partition wall 27, and the first switching chamber first flapper 411 is rotatably provided at the edge of the opening 312a so as to abut and separate from each other. There is. Further, the heat insulating partition wall 27 is provided with an opening 212 and a discharge port forming member 111 so as to cover the front surface side of the opening 212. The discharge port forming member 111 is formed so as to bulge forward with respect to the front surface of the heat insulating partition wall 27. The first discharge ports 111a, 111a of the first switching chamber are formed on the front surface side of the discharge port forming member 111. The first discharge ports 111a and 111a of the first switching chamber are formed so as to be vertically separated from each other. As described above, in the present embodiment, the air passage R connecting the second evaporator chamber 8b to the first discharge ports 111a and 111a of the first switching chamber is formed.
 吐出口形成部材111の上段に形成された第一切替室第一吐出口111aは、断熱仕切壁29の近傍(庫内のほぼ上端部)に位置し、上段の第一切替室容器5bの内部に冷気が供給されるようになっている。また、吐出口形成部材111の下段に形成された第一切替室第一吐出口111aは、下段の第一切替室容器5bの内部に冷気が供給される位置に形成されている。 The first switching chamber first discharge port 111a formed in the upper stage of the discharge port forming member 111 is located in the vicinity of the heat insulating partition wall 29 (almost the upper end portion in the refrigerator), and is inside the first switching chamber container 5b in the upper stage. Cold air is supplied to the container. Further, the first discharge port 111a of the first switching chamber formed in the lower stage of the discharge port forming member 111 is formed at a position where cold air is supplied to the inside of the first switching chamber container 5b in the lower stage.
 また、吐出口形成部材111の内壁面111eには、第一切替室第二温度センサ43bが取り付けられている。この第一切替室第二温度センサ43bは、上側の第一切替室第一吐出口111aと下側の第一切替室第一吐出口111aとの間の高さに位置している。また、第一切替室第二温度センサ43bは、第一切替室第一フラッパ411の前方に位置している。このように、第一切替室第二温度センサ43bを第一切替室第一フラッパ411の近傍に配置することで、図中矢印で示すように、仮に第一切替室第一フラッパ411から冷気が漏れたときに、直ちに冷気漏れを検知することができる。 Further, the first switching chamber second temperature sensor 43b is attached to the inner wall surface 111e of the discharge port forming member 111. The first switching chamber second temperature sensor 43b is located at a height between the upper first switching chamber first discharge port 111a and the lower first switching chamber first discharge port 111a. Further, the first switching chamber second temperature sensor 43b is located in front of the first switching chamber first flapper 411. By arranging the first switching chamber second temperature sensor 43b in the vicinity of the first switching chamber first flapper 411 in this way, as shown by the arrow in the figure, cold air is tentatively released from the first switching chamber first flapper 411. When a leak occurs, a cold air leak can be detected immediately.
 また、断熱仕切壁27には、第一切替室第一フラッパ411を加熱する第一切替室ダンパヒータ305(ダンパヒータ)が設けられている。この第一切替室ダンパヒータ305は、図12に示すように、第一切替室第一フラッパ411が氷を挟み込んだときに、または第一切替室第一フラッパ411の周囲に氷が発生したときに、氷を溶かす機能を有している。 Further, the heat insulating partition wall 27 is provided with a first switching chamber damper heater 305 (damper heater) for heating the first switching chamber first flapper 411. As shown in FIG. 12, the first switching chamber damper heater 305 is provided when the first switching chamber first flapper 411 sandwiches ice or when ice is generated around the first switching chamber first flapper 411. , Has the function of melting ice.
 図13に示すように、第一切替室第一温度センサ43aは、断熱仕切壁27の表面27a(前面)に形成された取付台27bに固定されている。この取付台27bは、第一切替室第一温度センサ43aが断熱仕切壁27の表面27aから距離L離れた位置となるように突出して構成されている。なお、距離Lは、例えば、10mm以上に設定される。このような位置関係にすることで、第一切替室第二ヒータ302の通電時の上昇気流の影響を受けにくくできる。 As shown in FIG. 13, the first temperature sensor 43a of the first switching chamber is fixed to the mounting base 27b formed on the surface 27a (front surface) of the heat insulating partition wall 27. The mounting base 27b is configured so that the first temperature sensor 43a of the first switching chamber projects at a position L away from the surface 27a of the heat insulating partition wall 27. The distance L is set to, for example, 10 mm or more. With such a positional relationship, it is possible to reduce the influence of the updraft when the first switching chamber second heater 302 is energized.
 図14は、第二切替室の温度センサの配置を示す斜視図である。なお、図14は、第二切替室扉6aと第二切替室容器6bを外した状態で第二切替室6を前方から見た図である。
 図14に示すように、第二切替室6には、第二切替室第一温度センサ44a(他の温度センサ)と第二切替室第二温度センサ44b(一の温度センサ)が設けられている。
FIG. 14 is a perspective view showing the arrangement of the temperature sensors in the second switching chamber. Note that FIG. 14 is a view of the second switching chamber 6 viewed from the front with the second switching chamber door 6a and the second switching chamber container 6b removed.
As shown in FIG. 14, the second switching chamber 6 is provided with a second switching chamber first temperature sensor 44a (another temperature sensor) and a second switching chamber second temperature sensor 44b (one temperature sensor). There is.
 第二切替室第一温度センサ44aは、庫内の背面に配置される断熱仕切壁27に設けられている。また、第二切替室第一温度センサ44aは、第二切替室6の背面上部に位置している。また、第二切替室第一温度センサ44aは、第二切替室戻り口112cの近傍に位置している。なお、第二切替室戻り口112cの近傍とは、第二切替室第一温度センサ44aと第二切替室戻り口112cとの間の距離よりも短い位置に設けられていることを意味する。 The second switching chamber first temperature sensor 44a is provided on the heat insulating partition wall 27 arranged on the back surface of the refrigerator. Further, the second switching chamber first temperature sensor 44a is located at the upper part of the back surface of the second switching chamber 6. Further, the second switching chamber first temperature sensor 44a is located in the vicinity of the second switching chamber return port 112c. The vicinity of the second switching chamber return port 112c means that the vicinity of the second switching chamber return port 112c is provided at a position shorter than the distance between the second switching chamber first temperature sensor 44a and the second switching chamber return port 112c.
 第二切替室第二温度センサ44bは、断熱仕切壁27に設けられた吐出口形成部材112の内側に設けられている。また、第二切替室第二温度センサ44bは、第二切替室第一温度センサ43aよりも下方に位置している。また、第二切替室第二温度センサ44bと第二切替室第二温度センサ44aとは、左右(幅方向)に離間している。 The second temperature sensor 44b of the second switching chamber is provided inside the discharge port forming member 112 provided on the heat insulating partition wall 27. Further, the second switching chamber second temperature sensor 44b is located below the second switching chamber first temperature sensor 43a. Further, the second temperature sensor 44b of the second switching chamber and the second temperature sensor 44a of the second switching chamber are separated from each other in the left-right (width direction).
 本実施形態の冷蔵庫1は、破線で示すように、第二切替室6の背面を形成する内箱10bに、第二切替室6の後方からの加熱手段となる第二切替室第一ヒータ401を備えている。また、断熱仕切壁30の下面30bには、第二切替室6の上方からの加熱手段となる第二切替室第二ヒータ402を備えている。第二切替室第一ヒータ401、第二切替室第二ヒータ402は、図示しない配線により互いに並列に接続され、同時に通電される。以下では、第二切替室6の加熱手段となるヒータ(第二切替室第一ヒータ401、第二切替室第二ヒータ402)の総称を、第二切替室ヒータ400とする。 As shown by the broken line, the refrigerator 1 of the present embodiment has an inner box 10b forming the back surface of the second switching chamber 6 and a second switching chamber first heater 401 which is a heating means from the rear of the second switching chamber 6. It has. Further, the lower surface 30b of the heat insulating partition wall 30 is provided with a second switching chamber second heater 402 as a heating means from above the second switching chamber 6. The first heater 401 of the second switching chamber and the second heater 402 of the second switching chamber are connected in parallel to each other by wiring (not shown) and are energized at the same time. Hereinafter, the heaters (second switching chamber first heater 401, second switching chamber second heater 402) that serve as heating means for the second switching chamber 6 are collectively referred to as the second switching chamber heater 400.
 第二切替室ヒータ400は、図示しない発熱線(一例としてシリコンコードヒータ)とアルミニウム箔を両面粘着テープの一面で固定し、両面粘着テープの他面を加熱面に貼付可能としたアルミ箔ヒータである。 The second switching chamber heater 400 is an aluminum foil heater in which a heating wire (silicon cord heater, for example) (not shown) and an aluminum foil are fixed on one side of a double-sided adhesive tape, and the other side of the double-sided adhesive tape can be attached to the heating surface. be.
 第二切替室第一ヒータ401と第二切替室第二ヒータ402の有効加熱面積(アルミニウム箔面積)は、それぞれ40710mm、255200mmであり、ヒータ容量と発熱密度は、それぞれ4.0W、98.3W/m、10.9W、42.7W/mである。第二切替室第一ヒータ401は、内箱10b(ABS樹脂)の内表面(庫外側表面)に貼付されている。第二切替室第二ヒータ402は、断熱仕切壁30の樹脂部材内側(内表面)に貼付されている。 Effective heating area of the second switching chamber first heater 401 and the second switching chamber second heater 402 (aluminum foil area) are each 40710mm 2, 255200mm 2, heat density and heating capacity, respectively 4.0 W, 98 It is .3 W / m 2 , 10.9 W, and 42.7 W / m 2 . The first heater 401 of the second switching chamber is attached to the inner surface (outer surface of the refrigerator) of the inner box 10b (ABS resin). The second heater 402 of the second switching chamber is attached to the inside (inner surface) of the resin member of the heat insulating partition wall 30.
 冷蔵庫1の上部には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御装置(制御部)31(図2参照)が配置されている。この制御装置31は、外気温度センサ37、外気湿度センサ38、冷蔵室温度センサ41(図4参照)、冷凍室温度センサ42(図4参照)、第一切替室第一温度センサ43a、第一切替室第二温度センサ43b、第二切替室第一温度センサ44a、第二切替室第二温度センサ44b、第一蒸発器温度センサ40a、第二蒸発器温度センサ40b等と電気配線(図示せず)で接続されている。また、制御装置31では、各センサの出力値や操作部26の設定、ROMに予め記録されたプログラム等を基に、後述する圧縮機24や第一ファン9a、第二ファン9bのON/OFFや回転速度制御、第一切替室第一フラッパ411、第一切替室第二フラッパ412、第二切替室第一フラッパ421、第二切替室第二フラッパ422の開閉制御、第一切替室ヒータ300、第二切替室ヒータ400、後述する除霜ヒータ21の通電制御、冷媒制御弁52の流路切替制御を行っている。 A control device (control unit) 31 (see FIG. 2) equipped with a CPU, a memory such as a ROM or RAM, an interface circuit, etc., which is a part of the control device, is arranged above the refrigerator 1. The control device 31 includes an outside air temperature sensor 37, an outside air humidity sensor 38, a refrigerating room temperature sensor 41 (see FIG. 4), a freezing room temperature sensor 42 (see FIG. 4), a first switching chamber first temperature sensor 43a, and a first. Switching chamber second temperature sensor 43b, second switching chamber first temperature sensor 44a, second switching chamber second temperature sensor 44b, first evaporator temperature sensor 40a, second evaporator temperature sensor 40b, etc. and electrical wiring (shown) It is connected by). Further, in the control device 31, the compressor 24, the first fan 9a, and the second fan 9b, which will be described later, are turned on / off based on the output value of each sensor, the setting of the operation unit 26, the program recorded in advance in the ROM, and the like. And rotation speed control, opening / closing control of the first switching chamber first flapper 411, the first switching chamber second flapper 412, the second switching chamber first flapper 421, the second switching chamber second flapper 422, and the first switching chamber heater 300. , The second switching chamber heater 400, the energization control of the defrosting heater 21 described later, and the flow path switching control of the refrigerant control valve 52 are performed.
 続いて、本実施形態の冷蔵庫1の第一蒸発器14aおよび第二蒸発器14bの除霜運転について図2および図7を参照して説明する。第一蒸発器14aについては、圧縮機24が駆動状態で冷媒制御弁52を流出口52bに流れる「状態2」に制御した状態、または、圧縮機24が停止状態の何れかの状態に制御することで第一蒸発器14aに冷媒を流さない状態とし、第一ファン9aを駆動して冷蔵室2からの戻り空気による加熱作用で除霜する。第一蒸発器14aの除霜時に発生した除霜水は、第一蒸発器室8aの下部に設けた樋23a(図2参照)から、図示しない第一排水管を介して機械室39に設けた図示しない第一蒸発皿に排出され、圧縮機24からの放熱や、機械室39に設置された図示しない機械室ファンによる通風等の作用により蒸発する。このように第一蒸発器14aの除霜は、ヒータを用いず、第一ファン9aの駆動によって行うため省エネルギー性能が高い冷蔵庫となる。また、霜の水分の一部は除霜によって冷蔵室2に還元されるため、冷蔵室2をより高湿に保つことができる。 Subsequently, the defrosting operation of the first evaporator 14a and the second evaporator 14b of the refrigerator 1 of the present embodiment will be described with reference to FIGS. 2 and 7. The first evaporator 14a is controlled to either a state in which the compressor 24 is driven and the refrigerant control valve 52 is controlled to the “state 2” in which the refrigerant control valve 52 flows to the outlet 52b, or a state in which the compressor 24 is stopped. As a result, the refrigerant is not allowed to flow in the first evaporator 14a, and the first fan 9a is driven to defrost by the heating action of the return air from the refrigerating chamber 2. The defrosted water generated during the defrosting of the first evaporator 14a is provided in the machine room 39 from the trough 23a (see FIG. 2) provided in the lower part of the first evaporator chamber 8a via the first drain pipe (not shown). It is discharged to a first evaporation plate (not shown) and evaporates due to heat radiation from the compressor 24 and ventilation by a machine room fan (not shown) installed in the machine room 39. As described above, the defrosting of the first evaporator 14a is performed by driving the first fan 9a without using a heater, so that the refrigerator has high energy saving performance. Further, since a part of the water content of the frost is reduced to the refrigerating chamber 2 by defrosting, the refrigerating chamber 2 can be kept at a higher humidity.
 一方、第二蒸発器14bについては、圧縮機24が停止した状態で、第二蒸発器14bの下部に備えられた加熱手段である除霜ヒータ21(図2参照)に通電することで除霜する。除霜ヒータ21(ヒータ)は、例えば50W~200Wの電気ヒータを採用すれば良く、本実施例では150Wのラジアントヒータとしている。第二蒸発器14bの除霜時に発生した除霜水は第二蒸発器室8bの下部の樋23b(図2参照)から第二排水管23c(図2参照)を介して圧縮機24の上部に設けた第二蒸発皿32(図2参照)に排出され、圧縮機24からの放熱や、図示しない機械室ファンによる通風等の作用により蒸発する。 On the other hand, the second evaporator 14b is defrosted by energizing the defrost heater 21 (see FIG. 2), which is a heating means provided in the lower part of the second evaporator 14b, with the compressor 24 stopped. do. As the defrost heater 21 (heater), for example, an electric heater of 50 W to 200 W may be adopted, and in this embodiment, it is a radiant heater of 150 W. The defrosted water generated during the defrosting of the second evaporator 14b is transferred from the lower gutter 23b (see FIG. 2) of the second evaporator chamber 8b to the upper part of the compressor 24 via the second drain pipe 23c (see FIG. 2). It is discharged to the second evaporating dish 32 (see FIG. 2) provided in the above, and evaporates due to the action of heat dissipation from the compressor 24, ventilation by a machine room fan (not shown), or the like.
 図15は、第1実施形態に係る冷蔵庫の冷却運転制御を示すフローチャートである。
 図15に示すように、本実施形態の冷蔵庫1は、電源の投入により冷却運転が開始される(スタート)。電源投入から庫内の貯蔵室が所定の温度レベルに到達するまでのプルダウン運転の制御については省略し、安定運転状態に達した状態において第一蒸発器運転が開始される段階(ステップS101)から説明する。なお、安定運転状態とは、冷蔵庫1の扉2a,2b,3a,4a,5a,6a(図1参照)の開閉が行われない状態で、安定して周期的な冷却運転が行われる状態である(例えばJISC9801-3:2015に規定)。第一蒸発器運転とは、冷媒制御弁52を「状態1」に制御し、圧縮機24を駆動状態、第一ファン9aを駆動状態として、第一蒸発器14aに供給される低温冷媒で冷蔵室2を冷却する運転である。本実施形態の冷蔵庫1では、ステップS101により、冷媒制御弁52は「状態1」の状態に制御され、圧縮機24が駆動状態、第一ファン9aが駆動状態となり、冷蔵室2の冷却(第一蒸発器運転)が行われる。
FIG. 15 is a flowchart showing the cooling operation control of the refrigerator according to the first embodiment.
As shown in FIG. 15, the refrigerator 1 of the present embodiment starts the cooling operation (start) when the power is turned on. The control of the pull-down operation from when the power is turned on until the storage chamber in the refrigerator reaches a predetermined temperature level is omitted, and from the stage where the first evaporator operation is started when the stable operation state is reached (step S101). explain. The stable operation state is a state in which the doors 2a, 2b, 3a, 4a, 5a, 6a (see FIG. 1) of the refrigerator 1 are not opened and closed, and a stable and periodic cooling operation is performed. Yes (eg, specified in JISC9801-3: 2015). In the first evaporator operation, the refrigerant control valve 52 is controlled to "state 1", the compressor 24 is in the driving state, the first fan 9a is in the driving state, and the refrigerator is refrigerated with the low-temperature refrigerant supplied to the first evaporator 14a. This is an operation for cooling the chamber 2. In the refrigerator 1 of the present embodiment, the refrigerant control valve 52 is controlled to the "state 1" state by step S101, the compressor 24 is in the driving state, the first fan 9a is in the driving state, and the refrigerating chamber 2 is cooled (the first). (1) Evaporator operation) is performed.
 ステップS101によって開始された第一蒸発器運転は、第一蒸発器運転終了条件(ステップS102)が成立するまで継続される。制御装置31は、冷蔵室温度センサ41が検知する冷蔵室温度が、第一蒸発器運転終了温度(本実施形態の冷蔵庫1では2℃)以下の場合、または、第一蒸発器運転開始からの経過時間が所定時間(本実施形態の冷蔵庫では50分)に到達した場合(S102、Yes)にステップS103に進む。また、制御装置31は、第一蒸発器運転終了条件が成立しない場合(S102、No)、ステップS102の処理を継続する。 The first evaporator operation started in step S101 is continued until the first evaporator operation end condition (step S102) is satisfied. The control device 31 is used when the refrigerating chamber temperature detected by the refrigerating chamber temperature sensor 41 is equal to or lower than the first evaporator operation end temperature (2 ° C. in the refrigerator 1 of the present embodiment), or from the start of the first evaporator operation. When the elapsed time reaches a predetermined time (50 minutes in the refrigerator of the present embodiment) (S102, Yes), the process proceeds to step S103. Further, when the first evaporator operation end condition is not satisfied (S102, No), the control device 31 continues the process of step S102.
 ステップS102が成立した場合(ステップS102がYes)、制御装置31は、続いて冷媒回収運転を実行する(ステップS103)。冷媒回収運転とは、圧縮機24の駆動状態を継続し、冷媒制御弁52を「状態3(全閉)」として、第一蒸発器14a内の冷媒を放熱手段(庫外放熱器50a、壁面放熱配管50b、結露防止配管50c)側に回収する運転であり、本実施形態の冷蔵庫1では2分間継続する。 When step S102 is established (step S102 is Yes), the control device 31 subsequently executes the refrigerant recovery operation (step S103). In the refrigerant recovery operation, the driving state of the compressor 24 is continued, the refrigerant control valve 52 is set to "state 3 (fully closed)", and the refrigerant in the first evaporator 14a is radiated by the radiating means (external radiator 50a, wall surface). This is an operation of collecting to the side of the heat radiating pipe 50b and the dew condensation prevention pipe 50c), and continues for 2 minutes in the refrigerator 1 of the present embodiment.
 ステップS103の冷媒回収運転が終了すると、制御装置31は、続いて切替室の設定を読み込み(ステップS104)、第一切替室5、第二切替室6の設定に応じた第二蒸発器運転を開始する(ステップS105)。第二蒸発器運転とは、冷媒制御弁52が「状態2」、圧縮機24が駆動状態、第二ファン9bが駆動状態で、第二蒸発器14bに流れる冷媒で庫内が冷却される状態である。 When the refrigerant recovery operation in step S103 is completed, the control device 31 subsequently reads the setting of the switching chamber (step S104), and performs the second evaporator operation according to the settings of the first switching chamber 5 and the second switching chamber 6. Start (step S105). The second evaporator operation is a state in which the refrigerant control valve 52 is in the "state 2", the compressor 24 is in the driving state, the second fan 9b is in the driving state, and the inside of the refrigerator is cooled by the refrigerant flowing in the second evaporator 14b. Is.
 ステップS106において、制御装置31は、冷凍室3、製氷室4の温度制御を実行する。例えば、冷凍室温度センサ42が検知する温度が、冷凍室ダンパ開温度より高い場合に冷凍室フラッパ431が開放され、冷凍室3、製氷室4が冷却される。また、冷凍室温度センサ42が検知する温度が冷凍室ダンパ閉温度より低くなった場合に冷凍室フラッパ431が閉鎖され、冷凍室3、製氷室4の冷却が終了することで、温度制御が行われる。 In step S106, the control device 31 executes temperature control of the freezing chamber 3 and the ice making chamber 4. For example, when the temperature detected by the freezing room temperature sensor 42 is higher than the freezing room damper opening temperature, the freezing room flapper 431 is opened, and the freezing room 3 and the ice making room 4 are cooled. Further, when the temperature detected by the freezing room temperature sensor 42 becomes lower than the freezing room damper closing temperature, the freezing room flapper 431 is closed, and the cooling of the freezing room 3 and the ice making room 4 is completed, so that the temperature is controlled. It is said.
 ステップS107において、制御装置31は、第一切替室第一温度センサ43aと、第一切替室第二温度センサ43bが検知する温度に基づいて、第一切替室5の温度制御を実行する。なお、詳細な動作については後述する。 In step S107, the control device 31 executes temperature control of the first switching chamber 5 based on the temperature detected by the first switching chamber first temperature sensor 43a and the first switching chamber second temperature sensor 43b. The detailed operation will be described later.
 ステップS108において、制御装置31は、第二切替室第一温度センサ44aと、第二切替室第二温度センサ44bが検知する温度に基づいて、第二切替室6の温度制御を実行する。 In step S108, the control device 31 executes temperature control of the second switching chamber 6 based on the temperature detected by the second switching chamber first temperature sensor 44a and the second switching chamber second temperature sensor 44b.
 ステップS109において、制御装置31は、第二蒸発器運転終了条件が成立しているか否かを判定する。なお、第二蒸発器運転が終了する条件とは、第一切替室第一フラッパ411、第一切替室第二フラッパ412、第二切替室第一フラッパ421、第二切替室第二フラッパ422、冷凍室フラッパ431が全て閉鎖状態となった場合である(ステップS109、Yes)。また、制御装置31は、第二蒸発器運転終了条件が成立しない場合(ステップS109、No)は、ステップS106に戻る。 In step S109, the control device 31 determines whether or not the second evaporator operation end condition is satisfied. The conditions for ending the operation of the second evaporator include the first flapper 411 in the first switching chamber, the second flapper 412 in the first switching chamber, the first flapper 421 in the second switching chamber, and the second flapper 422 in the second switching chamber. This is a case where all the freezing chamber flappers 431 are closed (step S109, Yes). Further, when the second evaporator operation end condition is not satisfied (step S109, No), the control device 31 returns to step S106.
 第二蒸発器運転終了条件が成立した場合(ステップS109、Yes)、制御装置31は、続いて冷媒回収運転を実行する(ステップS110)。ステップS110における冷媒回収運転は、圧縮機24を駆動状態に維持し、冷媒制御弁52を「状態3(全閉)」として、第二蒸発器14b内の冷媒を放熱手段側に回収する運転であり、本実施形態の冷蔵庫1では3分間継続する。 When the second evaporator operation end condition is satisfied (step S109, Yes), the control device 31 subsequently executes the refrigerant recovery operation (step S110). The refrigerant recovery operation in step S110 is an operation in which the compressor 24 is maintained in the driving state, the refrigerant control valve 52 is set to "state 3 (fully closed)", and the refrigerant in the second evaporator 14b is recovered to the heat dissipation means side. Yes, the refrigerator 1 of the present embodiment continues for 3 minutes.
 続いてステップS111において、制御装置31は、第一蒸発器運転開始条件が成立しているか否かを判定する。例えば、冷蔵室温度センサ41が検知する冷蔵室2の温度が第一蒸発器運転開始温度以上となった場合に成立し、ステップS101に戻り第一蒸発器運転が開始される。本実施形態の冷蔵庫1における第一蒸発器運転開始温度は6℃である。ステップS111が成立しない場合(ステップS111、No)、圧縮機24が停止(OFF)される(ステップS112)。 Subsequently, in step S111, the control device 31 determines whether or not the first evaporator operation start condition is satisfied. For example, it is established when the temperature of the refrigerating chamber 2 detected by the refrigerating chamber temperature sensor 41 becomes equal to or higher than the first evaporator operation start temperature, and the process returns to step S101 to start the first evaporator operation. The first evaporator operation start temperature in the refrigerator 1 of the present embodiment is 6 ° C. If step S111 is not established (step S111, No), the compressor 24 is stopped (OFF) (step S112).
 次にステップS113において、制御装置31は、第一蒸発器運転開始条件が成立しているか否かを判定する。ステップS113が成立する条件は、ステップS111が成立する条件と同様である。第一蒸発器運転開始条件が成立した場合(ステップS113、Yes)、ステップS101に戻り第一蒸発器運転が開始される。また、第一蒸発器運転開始条件が成立しない場合(ステップS113、No)、ステップS114の処理に進む。 Next, in step S113, the control device 31 determines whether or not the first evaporator operation start condition is satisfied. The conditions under which step S113 is satisfied are the same as the conditions under which step S111 is established. When the first evaporator operation start condition is satisfied (step S113, Yes), the process returns to step S101 and the first evaporator operation is started. If the first evaporator operation start condition is not satisfied (step S113, No), the process proceeds to step S114.
 ステップS114において、制御装置31は、第二蒸発器運転開始条件が成立しているか否かを判定する。第二蒸発器運転開始条件が成立する場合とは、冷凍室温度センサ42、第一切替室第一温度センサ43a、第一切替室第二温度センサ43b、および、第二切替室第一温度センサ44a、第二切替室第二温度センサ44bが検知する温度の少なくとも一つが第二蒸発器運転開始温度以上となった場合である。 In step S114, the control device 31 determines whether or not the second evaporator operation start condition is satisfied. When the second evaporator operation start condition is satisfied, the freezing chamber temperature sensor 42, the first switching chamber first temperature sensor 43a, the first switching chamber second temperature sensor 43b, and the second switching chamber first temperature sensor 44a, when at least one of the temperatures detected by the second temperature sensor 44b in the second switching chamber becomes equal to or higher than the second evaporator operation start temperature.
 本実施形態の冷蔵庫1では、冷凍室温度センサ42が検知する冷凍室4の温度が-12℃以上、第一切替室5が冷凍温度に設定されている場合は、第一切替室第一温度センサ43a、または、第一切替室第二温度センサ43bが検知する第一切替室5の温度が-12℃以上、第一切替室5が冷蔵温度に設定されている場合は、第一切替室第一温度センサ43a、または、第一切替室第二温度センサ43bが検知する第一切替室5の温度が9℃以上、第二切替室6が冷凍温度に設定されている場合は、第二切替室第一温度センサ44a、または、第二切替室第二温度センサ44bが検知する第一切替室5の温度が-12℃以上、第二切替室6が冷蔵温度に設定されている場合は、第二切替室第一温度センサ44a、または、第二切替室第二温度センサ44bが検知する第二切替室6の温度が9℃以上の少なくとも一つを満足した場合にステップS114が成立する。 In the refrigerator 1 of the present embodiment, when the temperature of the freezing chamber 4 detected by the freezing chamber temperature sensor 42 is set to −12 ° C. or higher and the first switching chamber 5 is set to the refrigerating temperature, the first temperature of the first switching chamber 5 is set. When the temperature of the first switching chamber 5 detected by the sensor 43a or the second temperature sensor 43b of the first switching chamber is -12 ° C. or higher and the first switching chamber 5 is set to the refrigerating temperature, the first switching chamber is set. When the temperature of the first switching chamber 5 detected by the first temperature sensor 43a or the second temperature sensor 43b of the first switching chamber is 9 ° C. or higher and the second switching chamber 6 is set to the refrigerating temperature, the second When the temperature of the first switching chamber 5 detected by the switching chamber first temperature sensor 44a or the second switching chamber second temperature sensor 44b is -12 ° C. or higher and the second switching chamber 6 is set to the refrigerating temperature. Step S114 is established when the temperature of the second switching chamber 6 detected by the second switching chamber first temperature sensor 44a or the second switching chamber second temperature sensor 44b satisfies at least one of 9 ° C. or higher. ..
 制御装置31は、第二蒸発器運転開始条件が成立した場合(ステップS114、Yes)、ステップS104に移行し、第二蒸発器運転開始条件が成立しない場合(ステップS114、No)、ステップS113の判定に戻る。 When the second evaporator operation start condition is satisfied (step S114, Yes), the control device 31 proceeds to step S104, and when the second evaporator operation start condition is not satisfied (step S114, No), the control device 31 proceeds to step S113. Return to judgment.
 図16は、第1実施形態に係る第一切替室の温度制御を示すフローチャートである。図17は、第1実施形態に係る各種部材の動作条件の一例を示す説明図である。なお、以下の図面では、第一切替室第一フラッパ、第一切替室第二フラッパ、第二切替室第一フラッパ、第二切替室第二フラッパを、第一切替室第一ダンパ、第一切替室第二ダンパ、第二切替室第一ダンパ、第二切替室第二ダンパとしている。
 図16に示すように、ステップS201において、制御装置31は、第一切替室第一フラッパ411の開条件が成立しているか否かを判定する。第一切替室第一フラッパ411の開条件は、第一切替室5が冷凍温度帯に設定されている場合、第一切替室第一温度センサ43aの検知温度が-16℃以上、または、第一切替室第二温度センサ43bの検知温度が-16℃以上の場合に成立する(図17参照)。また、第一切替室第一フラッパ411の開条件は、第一切替室5が冷蔵温度帯に設定されている場合、第一切替室第一温度センサ43aの検知温度が9℃以上、または、第一切替室第二温度センサ43bの検知温度が9℃以上の場合に成立する(図17参照)。
FIG. 16 is a flowchart showing the temperature control of the first switching chamber according to the first embodiment. FIG. 17 is an explanatory diagram showing an example of operating conditions of various members according to the first embodiment. In the following drawings, the first switching chamber first flapper, the first switching chamber second flapper, the second switching chamber first flapper, the second switching chamber second flapper, the first switching chamber first damper, the first It is the second damper of the switching room, the first damper of the second switching room, and the second damper of the second switching room.
As shown in FIG. 16, in step S201, the control device 31 determines whether or not the opening condition of the first switching chamber first flapper 411 is satisfied. The opening condition of the first switching chamber first flapper 411 is that when the first switching chamber 5 is set to the freezing temperature zone, the detection temperature of the first switching chamber first temperature sensor 43a is -16 ° C. or higher, or the first This is established when the detection temperature of the first switching chamber second temperature sensor 43b is -16 ° C or higher (see FIG. 17). Further, the opening condition of the first switching chamber first flapper 411 is that when the first switching chamber 5 is set to the refrigerating temperature zone, the detection temperature of the first switching chamber first temperature sensor 43a is 9 ° C. or higher, or This is established when the detection temperature of the first switching chamber second temperature sensor 43b is 9 ° C. or higher (see FIG. 17).
 制御装置31は、第一切替室第一フラッパ411の開条件が成立した場合(ステップS201、Yes)、ステップS202の処理に進み、第一切替室第一フラッパ411を開にする。また、制御装置31は、第一切替室第一フラッパ411の開条件が成立しない場合(ステップS201、No)、ステップS203の処理に進む。 When the opening condition of the first switching chamber first flapper 411 is satisfied (step S201, Yes), the control device 31 proceeds to the process of step S202 and opens the first switching chamber first flapper 411. Further, when the opening condition of the first switching chamber first flapper 411 is not satisfied (steps S201 and No), the control device 31 proceeds to the process of step S203.
 ステップS203において、制御装置31は、第一切替室第二フラッパ412の開条件が成立しているか否かを判定する。第一切替室第二フラッパ412の開条件は、第一切替室5が冷凍温度帯に設定されている場合、第一切替室第一温度センサ43aの検知温度が-16℃以上、または、第一切替室第二温度センサ43bの検知温度が-16℃以上の場合に成立する(図17参照)。また、第一切替室第二フラッパ412の開条件は、第一切替室5が冷蔵温度帯に設定されている場合、第一切替室第一温度センサ43aの検知温度が6℃以上の場合に成立する(図17参照)。 In step S203, the control device 31 determines whether or not the opening condition of the first switching chamber second flapper 412 is satisfied. The opening condition of the first switching chamber second flapper 412 is that when the first switching chamber 5 is set to the freezing temperature zone, the detection temperature of the first switching chamber first temperature sensor 43a is -16 ° C. or higher, or the first This is established when the detection temperature of the first switching chamber second temperature sensor 43b is -16 ° C or higher (see FIG. 17). Further, the opening condition of the first switching chamber second flapper 412 is when the first switching chamber 5 is set to the refrigerating temperature zone and the detection temperature of the first switching chamber first temperature sensor 43a is 6 ° C. or higher. It holds (see FIG. 17).
 制御装置31は、第一切替室第二フラッパ412の開条件が成立した場合(ステップS203、Yes)、ステップS204の処理に進み、第一切替室第二フラッパ412を開にする。また、制御装置31は、第一切替室第二フラッパ412の開条件が成立しない場合(ステップS203、No)、ステップS205の処理に進む。 When the opening condition of the first switching chamber second flapper 412 is satisfied (step S203, Yes), the control device 31 proceeds to the process of step S204 and opens the first switching chamber second flapper 412. Further, when the opening condition of the first switching chamber second flapper 412 is not satisfied (step S203, No), the control device 31 proceeds to the process of step S205.
 ステップS205において、制御装置31は、第一切替室第一フラッパ411の閉条件が成立しているか否かを判定する。第一切替室第一フラッパ411の閉条件は、第一切替室5が冷凍温度帯に設定されている場合、第一切替室第一温度センサ43aの検知温度が-20℃以下、または、第一切替室第二温度センサ43bの検知温度が-20℃以下の場合に成立する(図17参照)。また、第一切替室第一フラッパ411の閉条件は、第一切替室5が冷蔵温度帯に設定されている場合、第一切替室第一温度センサ43aの検知温度が4℃以下の場合に成立する(図17参照)。 In step S205, the control device 31 determines whether or not the closing condition of the first switching chamber first flapper 411 is satisfied. The closing condition of the first switching chamber first flapper 411 is that when the first switching chamber 5 is set to the freezing temperature zone, the detection temperature of the first switching chamber first temperature sensor 43a is −20 ° C. or lower, or the first It is established when the detection temperature of the first switching chamber second temperature sensor 43b is −20 ° C. or lower (see FIG. 17). Further, the closing condition of the first switching chamber first flapper 411 is when the first switching chamber 5 is set to the refrigerating temperature zone and the detection temperature of the first switching chamber first temperature sensor 43a is 4 ° C. or less. It holds (see FIG. 17).
 制御装置31は、第一切替室第一フラッパ411の閉条件が成立した場合(ステップS205、Yes)、ステップS206の処理に進み、第一切替室第一フラッパ411を閉にする。また、制御装置31は、第一切替室第一フラッパ411の閉条件が成立しない場合(ステップS205、No)、ステップS207の処理に進む。 When the closing condition of the first switching chamber first flapper 411 is satisfied (step S205, Yes), the control device 31 proceeds to the process of step S206 and closes the first switching chamber first flapper 411. Further, when the closing condition of the first switching chamber first flapper 411 is not satisfied (steps S205 and No), the control device 31 proceeds to the process of step S207.
 ステップS207において、制御装置31は、第一切替室第二フラッパ412の閉条件が成立しているか否かを判定する。第一切替室第二フラッパ412の閉条件は、第一切替室5が冷凍温度帯に設定されている場合、第一切替室第一温度センサ43aの検知温度が-20℃以下、または、第一切替室第二温度センサ43bの検知温度が-20℃以下の場合に成立する(図17参照)。また、第一切替室第二フラッパ412の閉条件は、第一切替室5が冷蔵温度帯に設定されている場合、第一切替室第一温度センサ43aの検知温度が2℃以下の場合に成立する(図17参照)。 In step S207, the control device 31 determines whether or not the closing condition of the first switching chamber second flapper 412 is satisfied. The closing condition of the first switching chamber second flapper 412 is that when the first switching chamber 5 is set to the freezing temperature zone, the detection temperature of the first switching chamber first temperature sensor 43a is −20 ° C. or lower, or the first It is established when the detection temperature of the first switching chamber second temperature sensor 43b is −20 ° C. or lower (see FIG. 17). Further, the closing condition of the first switching chamber second flapper 412 is when the first switching chamber 5 is set to the refrigerating temperature zone and the detection temperature of the first switching chamber first temperature sensor 43a is 2 ° C. or less. It holds (see FIG. 17).
 制御装置31は、第一切替室第二フラッパ412の閉条件が成立した場合(ステップS207、Yes)、ステップS208の処理に進み、第一切替室第二フラッパ412を閉にする。また、制御装置31は、第一切替室第二フラッパ412の閉条件が成立しない場合(ステップS207、No)、ステップS209の処理に進む。 When the closing condition of the first switching chamber second flapper 412 is satisfied (step S207, Yes), the control device 31 proceeds to the process of step S208 and closes the first switching chamber second flapper 412. Further, when the closing condition of the first switching chamber second flapper 412 is not satisfied (step S207, No), the control device 31 proceeds to the process of step S209.
 ステップS209において、制御装置31は、第一切替室ヒータ300のON条件(通電する条件)が成立しているか否かを判定する。この判定は、第一切替室5が冷蔵温度帯に設定されている場合のみである。第一切替室ヒータ300のON条件は、第一切替室第一温度センサ43aの検知温度が0℃以下の場合に成立する。また、第一切替室ヒータ300のON条件は、第一切替室第二温度センサ43bの検知温度が、第一切替室第一フラッパ411を閉じて5分後に-1℃以下の場合に成立する。 In step S209, the control device 31 determines whether or not the ON condition (energization condition) of the first switching chamber heater 300 is satisfied. This determination is made only when the first switching chamber 5 is set to the refrigerating temperature zone. The ON condition of the first switching chamber heater 300 is satisfied when the detection temperature of the first switching chamber first temperature sensor 43a is 0 ° C. or lower. Further, the ON condition of the first switching chamber heater 300 is satisfied when the detected temperature of the first switching chamber second temperature sensor 43b is -1 ° C. or less 5 minutes after closing the first switching chamber first flapper 411. ..
 制御装置31は、第一切替室ヒータ300のON条件が成立した場合(ステップS209、Yes)、ステップS210の処理に進み、第一切替室ヒータ300をONにする。また、制御装置31は、第一切替室ヒータ300のON条件が成立しない場合(ステップS209、No)、ステップS211の処理に進む。 When the ON condition of the first switching chamber heater 300 is satisfied (step S209, Yes), the control device 31 proceeds to the process of step S210 and turns on the first switching chamber heater 300. Further, when the ON condition of the first switching chamber heater 300 is not satisfied (step S209, No), the control device 31 proceeds to the process of step S211.
 ステップS211において、制御装置31は、第一切替室ヒータ300のOFF条件(通電停止する条件)が成立しているか否かを判定する。この判定は、第一切替室5が冷蔵温度帯に設定されている場合のみである。第一切替室ヒータ300のOFF条件は、第一切替室第一温度センサ43aの検知温度が5℃以上の場合に成立する。 In step S211 the control device 31 determines whether or not the OFF condition (condition for stopping energization) of the first switching chamber heater 300 is satisfied. This determination is made only when the first switching chamber 5 is set to the refrigerating temperature zone. The OFF condition of the first switching chamber heater 300 is satisfied when the detection temperature of the first switching chamber first temperature sensor 43a is 5 ° C. or higher.
 制御装置31は、第一切替室ヒータ300のOFF条件が成立した場合(ステップS211、Yes)、ステップS212の処理に進み、第一切替室ヒータ300をOFFにする。また、制御装置31は、第一切替室ヒータ300のOFF条件が成立しない場合(ステップS211、No)、ステップS213の処理に進む。 When the OFF condition of the first switching chamber heater 300 is satisfied (steps S211 and Yes), the control device 31 proceeds to the process of step S212 and turns off the first switching chamber heater 300. Further, when the OFF condition of the first switching chamber heater 300 is not satisfied (steps S211 and No), the control device 31 proceeds to the process of step S213.
 ステップS213において、制御装置31は、圧縮機24の高速化条件が成立しているか否かを判定する。この判定は、第一切替室5が冷凍温度帯に設定されている場合のみである。圧縮機24の高速化条件は、第一切替室第一温度センサ43aの検知温度が-6℃以上の場合に成立する。 In step S213, the control device 31 determines whether or not the high-speed condition of the compressor 24 is satisfied. This determination is made only when the first switching chamber 5 is set to the freezing temperature zone. The condition for increasing the speed of the compressor 24 is satisfied when the detection temperature of the first temperature sensor 43a in the first switching chamber is −6 ° C. or higher.
 制御装置31は、圧縮機24の高速化条件が成立した場合(ステップS213、Yes)、ステップS214の処理に進み、圧縮機24を高速運転する。また、制御装置31は、圧縮機24の高速化条件が成立しない場合(ステップS213、No)、ステップS215の処理に進む。 When the high-speed condition of the compressor 24 is satisfied (step S213, Yes), the control device 31 proceeds to the process of step S214 and operates the compressor 24 at high speed. Further, when the high speed condition of the compressor 24 is not satisfied (step S213, No), the control device 31 proceeds to the process of step S215.
 ステップS215において、制御装置31は、第二ファン9bの高速化条件が成立しているか否かを判定する。この判定は、第一切替室5が冷凍温度帯に設定されている場合のみである。第二ファン9bの高速化条件は、第一切替室第一温度センサ43aの検知温度が-6℃以上の場合に成立する。 In step S215, the control device 31 determines whether or not the high-speed condition for the second fan 9b is satisfied. This determination is made only when the first switching chamber 5 is set to the freezing temperature zone. The condition for increasing the speed of the second fan 9b is satisfied when the detection temperature of the first temperature sensor 43a in the first switching chamber is −6 ° C. or higher.
 制御装置31は、第二ファン9bの高速化条件が成立した場合(ステップS215、Yes)、ステップS216の処理に進み、第二ファン9bを高速運転する。また、制御装置31は、第二ファン9bの高速化条件が成立しない場合(ステップS215、No)、ステップS217の処理に進む。 When the high-speed condition for the second fan 9b is satisfied (step S215, Yes), the control device 31 proceeds to the process of step S216 and operates the second fan 9b at high speed. Further, when the speed-up condition for the second fan 9b is not satisfied (step S215, No), the control device 31 proceeds to the process of step S217.
 ステップS217において、制御装置31は、ダンパ加熱制御実施条件が成立しているか否かを判定する。この判定は、第一切替室5が冷蔵温度帯に設定されている場合のみである。ダンパ加熱制御は、第一切替室ダンパヒータ305(図12参照)の加熱を行う制御であり、第一切替室第一フラッパ411が閉じてから5分後に-3℃以下の場合に成立する。 In step S217, the control device 31 determines whether or not the damper heating control execution conditions are satisfied. This determination is made only when the first switching chamber 5 is set to the refrigerating temperature zone. The damper heating control is a control for heating the damper heater 305 (see FIG. 12) in the first switching chamber, and is established when the temperature is -3 ° C or lower 5 minutes after the first flapper 411 in the first switching chamber is closed.
 制御装置31は、ダンパ加熱制御実施条件が成立した場合(ステップS217、Yes)、ステップS218の処理に進み、ダンパ加熱制御実施条件が成立しない場合(ステップS217、No)、リターンする。 The control device 31 proceeds to the process of step S218 when the damper heating control execution condition is satisfied (step S217, Yes), and returns when the damper heating control execution condition is not satisfied (step S217, No).
 ステップS218において、制御装置31は、第二ファン9bをOFF(停止)、かつ、圧縮機24をOFF(停止)、かつ、第一切替室第一フラッパ411を閉、かつ、第一切替室第二フラッパ412を閉にしつつ、第一切替室ダンパヒータ305をONにする。なお、ステップS218では、第二ファン9bのOFFと第一切替室ダンパヒータ305のONは必須であるが、圧縮機24のOFF、第一切替室第一フラッパ411の閉、第一切替室第二フラッパの閉は、必須ではない。 In step S218, the control device 31 turns off (stops) the second fan 9b, turns off (stops) the compressor 24, closes the first switching chamber first flapper 411, and turns off the first switching chamber first. While closing the second flapper 412, the first switching chamber damper heater 305 is turned on. In step S218, the second fan 9b must be turned off and the first switching chamber damper heater 305 must be turned on, but the compressor 24 is turned off, the first switching chamber first flapper 411 is closed, and the first switching chamber second. Closing the flapper is not mandatory.
 ステップS219において、制御装置31は、ステップS218の処理を開始してから、所定時間が経過したか否かを判定する。なお、所定時間は、事前の試験によって適宜設定されるものであり、例えば20秒間に設定される。制御装置31は、所定時間が経過していない場合(ステップS219、No)、ステップS219の処理を繰り返し、所定時間が経過した場合(ステップS219、Yes)、リターンする。 In step S219, the control device 31 determines whether or not a predetermined time has elapsed since the process of step S218 was started. The predetermined time is appropriately set by a preliminary test, and is set to, for example, 20 seconds. The control device 31 repeats the process of step S219 when the predetermined time has not elapsed (step S219, No), and returns when the predetermined time has elapsed (step S219, Yes).
 図18は、第一切替室が冷凍設定(冷凍温度帯の設定)、第二切替室が冷凍設定(冷凍温度帯の設定)の場合の第一切替室の温度制御を示すタイムチャートである。なお、図18では、第一切替室第一温度センサ43aの検知温度Taとともに、参考のため、第一切替室容器内の温度Tsも併せて図示している(実際に温度センサで検知しているわけではない)。また、上段の温度変化のグラフにおいて、縦軸の温度T1は、圧縮機24の高速化および第二ファン9bの高速化の判定温度である。温度T2は、第一切替室第一フラッパ411および第一切替室第二フラッパ412の開判定温度である。温度T3は、第一切替室第一フラッパ411および第一切替室第二フラッパ412の閉判定温度である。また、上段の温度変化のグラフにおいて、符号E1は第一蒸発器14aの運転を示し、符号E2は第二蒸発器14bの運転を示している。また、第二蒸発器運転E2から第一蒸発器運転E1に切り替わる場合、第一蒸発器運転E1から第二蒸発器運転E2に切り替わる場合、それぞれ冷媒回収運転Rが行われる。 FIG. 18 is a time chart showing the temperature control of the first switching chamber when the first switching chamber is in the freezing setting (freezing temperature zone setting) and the second switching chamber is in the freezing setting (freezing temperature zone setting). In FIG. 18, the temperature Ts inside the container of the first switching chamber is also shown for reference together with the detection temperature Ta of the first temperature sensor 43a of the first switching chamber (actually detected by the temperature sensor). Not). Further, in the upper graph of the temperature change, the temperature T1 on the vertical axis is a determination temperature for speeding up the compressor 24 and speeding up the second fan 9b. The temperature T2 is the opening determination temperature of the first switching chamber first flapper 411 and the first switching chamber second flapper 412. The temperature T3 is the closing determination temperature of the first switching chamber first flapper 411 and the first switching chamber second flapper 412. Further, in the upper graph of the temperature change, the reference numeral E1 indicates the operation of the first evaporator 14a, and the reference numeral E2 indicates the operation of the second evaporator 14b. Further, when switching from the second evaporator operation E2 to the first evaporator operation E1, and when switching from the first evaporator operation E1 to the second evaporator operation E2, the refrigerant recovery operation R is performed, respectively.
 また、タイムチャートに示す「a」は、圧縮機24の状態(ON(低速、高速)、OFF)を示している。「b」は、冷媒制御弁52の状態であり、状態1(流出口52a側、第一蒸発器14a側)、状態2(流出口52b側、第二蒸発器14b側)、状態3(全閉)を示している。「c」は、第二ファン9bの状態(ON(低速、高速)、OFF)を示している。「d」は、第一切替室第一フラッパ411の状態(開、閉)を示している。「e」は、第一切替室第二フラッパ412の状態(開、閉)を示している。「f」は、第一切替室ダンパヒータ305の状態(ON、OFF)を示している。「g」は、第一切替室ヒータ300の状態(ON、OFF)を示している。 Further, "a" shown in the time chart indicates the state of the compressor 24 (ON (low speed, high speed), OFF). “B” is the state of the refrigerant control valve 52, and is in state 1 (outlet 52a side, first evaporator 14a side), state 2 (outlet 52b side, second evaporator 14b side), and state 3 (all). Closed) is shown. “C” indicates the state of the second fan 9b (ON (low speed, high speed), OFF). “D” indicates the state (open, closed) of the first flapper 411 of the first switching chamber. “E” indicates the state (open, closed) of the second flapper 412 in the first switching chamber. “F” indicates the state (ON, OFF) of the first switching chamber damper heater 305. “G” indicates the state (ON, OFF) of the first switching chamber heater 300.
 図18に示すように、時刻t1においては、第一切替室第一温度センサの検知温度Taは、第一切替室第一フラッパ411および第一切替室第二フラッパ412の開温度T2と、第一切替室第一フラッパ411および第一切替室第二フラッパ412の閉温度T3との間に位置している。この時刻t1の状態では、圧縮機24は低速運転、冷媒制御弁52は状態2、第二ファン9bは低速運転、第一切替室第一フラッパ411は開、第一切替室第二フラッパ412は開となっている。また、第一切替室ダンパヒータ305はOFF、第一切替室ヒータ300はOFFとなっている。そして、検知温度Taが徐々に低下し、時刻t2の手前において、負荷が発生することで検知温度Taが上昇する。なお、負荷は、冷蔵庫1の扉5aが開閉された場合などである。そして、負荷が発生して、検知温度Taが上昇し、時刻t2において、検知温度Taが判定温度T1(例えば、-6℃)まで上昇すると、圧縮機24を低速運転から高速低速に切り替えられる。また、時刻t2において、第二ファン9bが低速運転から高速運転に切り替えられる。これによって、第二蒸発器14bによって生成された冷気が第一切替室5に供給され、第一切替室5の検知温度Taが再び低下する。 As shown in FIG. 18, at time t1, the detection temperature Ta of the first switching chamber first temperature sensor is the opening temperature T2 of the first switching chamber first flapper 411 and the first switching chamber second flapper 412. It is located between the closing temperature T3 of the first switching chamber first flapper 411 and the first switching chamber second flapper 412. At this time t1, the compressor 24 is in low speed operation, the refrigerant control valve 52 is in state 2, the second fan 9b is in low speed operation, the first switching chamber first flapper 411 is open, and the first switching chamber second flapper 412 is in operation. It is open. Further, the first switching chamber damper heater 305 is OFF, and the first switching chamber heater 300 is OFF. Then, the detection temperature Ta gradually decreases, and the detection temperature Ta rises due to the load generated before the time t2. The load is when the door 5a of the refrigerator 1 is opened and closed. Then, when a load is generated, the detection temperature Ta rises, and the detection temperature Ta rises to the determination temperature T1 (for example, −6 ° C.) at time t2, the compressor 24 can be switched from low speed operation to high speed low speed. Further, at time t2, the second fan 9b is switched from low speed operation to high speed operation. As a result, the cold air generated by the second evaporator 14b is supplied to the first switching chamber 5, and the detection temperature Ta of the first switching chamber 5 drops again.
 そして、時刻t3において、検知温度Taが判定温度T3(例えば、-20℃)まで低下すると、圧縮機24が高速運転から低速運転に切り替えられる。同様に、第二ファン9bが高速運転から低速運転に切り替えられる。また、冷媒制御弁52が状態2から状態3(全閉)に切り替えられる。これにより、第二蒸発器14bへの冷媒の供給が停止するので、冷気が生成されなくなり、第一切替室5への冷気の供給量が停止する。また、時刻t3から時刻t4までの所定時間の間、冷媒回収運転Rが行われ、冷媒回収運転Rが終了したら、冷媒制御弁52が状態3から状態1に切り替えられる。 Then, at time t3, when the detection temperature Ta drops to the determination temperature T3 (for example, −20 ° C.), the compressor 24 is switched from high-speed operation to low-speed operation. Similarly, the second fan 9b is switched from high speed operation to low speed operation. Further, the refrigerant control valve 52 is switched from the state 2 to the state 3 (fully closed). As a result, the supply of the refrigerant to the second evaporator 14b is stopped, so that cold air is not generated, and the amount of cold air supplied to the first switching chamber 5 is stopped. Further, the refrigerant recovery operation R is performed during a predetermined time from the time t3 to the time t4, and when the refrigerant recovery operation R is completed, the refrigerant control valve 52 is switched from the state 3 to the state 1.
 なお、第一蒸発器運転E1の範囲では、検知温度Taが判定温度T2以上になった場合でも、a~gのいずれの制御も実行しない。そして、第一蒸発器運転E1を所定時間実行した後の時刻t5において、冷媒制御弁52を状態1から状態3に切り替え、冷媒回収運転を所定時間(時刻t5~t6)実行する。 In the range of the first evaporator operation E1, even if the detection temperature Ta becomes the determination temperature T2 or higher, none of the controls a to g is executed. Then, at the time t5 after the first evaporator operation E1 is executed for a predetermined time, the refrigerant control valve 52 is switched from the state 1 to the state 3, and the refrigerant recovery operation is executed for a predetermined time (time t5 to t6).
 図19は、第一切替室が冷蔵設定(冷蔵温度帯設定)、第二切替室が冷凍設定(冷凍温度帯設定)の場合の第一切替室の温度制御を示すタイムチャートである。なお、図19では、第一切替室第一温度センサ43aの検知温度Ta、第一切替室第二温度センサ43bの検知温度Tbとともに、参考のため、第一切替室ダンパの温度Tcも併せて図示している(実際に温度センサで検知しているわけではない)。 FIG. 19 is a time chart showing the temperature control of the first switching chamber when the first switching chamber is in the refrigerating setting (refrigerating temperature zone setting) and the second switching chamber is in the freezing setting (freezing temperature zone setting). In FIG. 19, the detection temperature Ta of the first switching chamber first temperature sensor 43a, the detection temperature Tb of the first switching chamber second temperature sensor 43b, and the temperature Tc of the first switching chamber damper are also shown for reference. It is shown in the figure (not actually detected by the temperature sensor).
 また、図19に示す上段の温度変化のグラフにおいて、縦軸の温度T10は、第一切替室第一フラッパ411の開判定温度である。温度T11は、第一切替室第二フラッパ412の開判定温度である。温度T12は、第一切替室ヒータ300のOFF判定温度である。温度T13は、第一切替室第一フラッパ411の閉判定温度である。温度T14は、第一切替室第二フラッパ412の閉判定温度である。温度T15は、第一切替室ヒータ300のON判定温度である。温度T16は、第一切替室ダンパヒータ305を実施(ON状態に)する判定温度である。 Further, in the upper graph of the temperature change shown in FIG. 19, the temperature T10 on the vertical axis is the open determination temperature of the first flapper 411 of the first switching chamber. The temperature T11 is the opening determination temperature of the first switching chamber second flapper 412. The temperature T12 is the OFF determination temperature of the first switching chamber heater 300. The temperature T13 is the closing determination temperature of the first flapper 411 of the first switching chamber. The temperature T14 is the closing determination temperature of the first switching chamber second flapper 412. The temperature T15 is the ON determination temperature of the first switching chamber heater 300. The temperature T16 is a determination temperature at which the first switching chamber damper heater 305 is implemented (turned on).
 図19に示すように、時刻t10の前では、「a」で示す圧縮機24が低速運転、「b」で示す冷媒制御弁52が状態1、「c」で示す第二ファン9bがOFF、「d」で示す第一切替室第一フラッパ411が閉、「e」で示す第一切替室第二フラッパ412が閉、「f」で示す第一切替室ダンパヒータ305がOFF、「g」で示す第一切替室ヒータ300がOFFの状態で、第一蒸発器運転E1が行われている。 As shown in FIG. 19, before the time t10, the compressor 24 indicated by “a” is operated at low speed, the refrigerant control valve 52 indicated by “b” is in state 1, and the second fan 9b indicated by “c” is OFF. The first switching chamber first flapper 411 indicated by "d" is closed, the first switching chamber second flapper 412 indicated by "e" is closed, the first switching chamber damper heater 305 indicated by "f" is OFF, and "g" indicates. The first evaporator operation E1 is performed in the state where the first switching chamber heater 300 shown is OFF.
 時刻t10において、第一蒸発器運転E1が終了し、冷媒制御弁52が状態1から状態3に切り替えられ、所定時間(t10~t11)の間、冷媒回収運転Rが行われる。そして、時刻t11において、検知温度Taが判定温度T10を超えていることから、第一切替室第一フラッパ411が閉から開に切り替えられ、検知温度Tbが判定温度T11を超えていることから、第一切替室第二フラッパ412が閉から開に切り替えられる。また、冷媒制御弁52が状態3から状態2に切り替えられ、第二ファン9bが停止状態から低速運転に切り替えられて、第二蒸発器運転E2が行われる。これにより、第一切替室第一フラッパ411および第一切替室第二フラッパ412から第一切替室5に冷気が導入され、検知温度Ta,Tbが低下する。 At time t10, the first evaporator operation E1 ends, the refrigerant control valve 52 is switched from state 1 to state 3, and the refrigerant recovery operation R is performed for a predetermined time (t10 to t11). Then, at time t11, since the detection temperature Ta exceeds the determination temperature T10, the first flapper 411 of the first switching chamber is switched from closed to open, and the detection temperature Tb exceeds the determination temperature T11. The first switching chamber second flapper 412 is switched from closed to open. Further, the refrigerant control valve 52 is switched from the state 3 to the state 2, the second fan 9b is switched from the stopped state to the low speed operation, and the second evaporator operation E2 is performed. As a result, cold air is introduced into the first switching chamber 5 from the first switching chamber first flapper 411 and the first switching chamber second flapper 412, and the detection temperatures Ta and Tb are lowered.
 そして、時刻t12において、検知温度Taが判定温度T13に低下すると、第一切替室第一フラッパ411が開から閉に切り替えられる。このとき、第一切替室第一フラッパ411が閉じることで、検知温度Tbの低下が停止する。そして、第一切替室第一フラッパ411が閉じてから5分後の時刻t13においても、検知温度Tbが判定温度T16以下である場合には、第一切替室第二フラッパ412が開から閉に切り替えられる。また、時刻t13において、圧縮機24を低速運転からOFF(停止)し、第二ファン9bを低速運転からOFF(停止)する。さらに、時刻t13において、第一切替室ダンパヒータ305がON(通電)され、第一切替室ヒータ300がON(通電)される。これにより、検知温度Ta,Tbが上昇する。 Then, at time t12, when the detection temperature Ta drops to the determination temperature T13, the first switching chamber first flapper 411 is switched from open to closed. At this time, when the first flapper 411 of the first switching chamber is closed, the decrease in the detection temperature Tb is stopped. Then, even at time t13, 5 minutes after the first switching chamber first flapper 411 is closed, if the detection temperature Tb is equal to or lower than the determination temperature T16, the first switching chamber second flapper 412 is opened to closed. Can be switched. Further, at time t13, the compressor 24 is turned off (stopped) from the low-speed operation, and the second fan 9b is turned off (stopped) from the low-speed operation. Further, at time t13, the first switching chamber damper heater 305 is turned on (energized) and the first switching chamber heater 300 is turned on (energized). As a result, the detection temperatures Ta and Tb rise.
 そして、検知温度Taが判定温度T12まで上昇したら、第一切替室ヒータ300をOFF(停止)する。また、時刻t13から所定時間(例えば、20分間)経過後の時刻t15において、圧縮機24をOFFから低速運転に切り替え、第二ファン9bをOFFから低速運転に切り替える。また、時刻t15において、第一切替室ダンパヒータ305をOFFする。 Then, when the detection temperature Ta rises to the determination temperature T12, the first switching chamber heater 300 is turned off (stopped). Further, at time t15 after a predetermined time (for example, 20 minutes) has elapsed from time t13, the compressor 24 is switched from OFF to low speed operation, and the second fan 9b is switched from OFF to low speed operation. Further, at time t15, the first switching chamber damper heater 305 is turned off.
 そして、時刻t16において、検知温度Taが判定温度T11まで上昇したら、第一切替室第二フラッパ412を開にする。これにより、検知温度Ta,Tbが低下する。 Then, at time t16, when the detection temperature Ta rises to the determination temperature T11, the first switching chamber second flapper 412 is opened. As a result, the detection temperatures Ta and Tb decrease.
 そして、時刻t17において、検知温度Taが判定温度T14まで低下したら、第一切替室第二フラッパ412を閉にする。 Then, at time t17, when the detection temperature Ta drops to the determination temperature T14, the first switching chamber second flapper 412 is closed.
 以上説明したように、第1実施形態の冷蔵庫1は、冷蔵温度帯と冷凍温度帯とに切替可能な第一切替室5および第二切替室6を備える。第一切替室5は、第一切替室第一温度センサ43aと第一切替室第二温度センサ43bとを備える(図11参照)。第二切替室6は、第二切替室第一温度センサ44aと第二切替室第二温度センサ44bとを備える(図14参照)。これによれば、冷気供給状態が異なる冷蔵設定時と冷凍設定時のいずれにおいても、代表的な温度を検知することができるので、庫内温度を適切に管理することが可能になる。 As described above, the refrigerator 1 of the first embodiment includes a first switching chamber 5 and a second switching chamber 6 that can switch between a refrigerating temperature zone and a freezing temperature zone. The first switching chamber 5 includes a first switching chamber first temperature sensor 43a and a first switching chamber second temperature sensor 43b (see FIG. 11). The second switching chamber 6 includes a second switching chamber first temperature sensor 44a and a second switching chamber second temperature sensor 44b (see FIG. 14). According to this, it is possible to detect a typical temperature at both the refrigerating setting and the refrigerating setting when the cold air supply state is different, so that the temperature inside the refrigerator can be appropriately controlled.
 また、第1実施形態は、第二蒸発器14bを収容する第二蒸発器室8bと、第一切替室5に冷気を吹出す第一切替室第一吐出口111aと、第二蒸発器室8bと第一切替室第一吐出口111aとを繋ぐ風路Rと、第一切替室第一吐出口111aの近傍に配置された第一切替室第一フラッパ411と、を備える。第一切替室第二温度センサ43bは、第一切替室第一フラッパ411と第一切替室第一吐出口111aとの間に設けられている。これによれば、冷蔵設定時の過度な冷却の要因となる風路Rにおける冷気の漏出を検知することができる。 Further, in the first embodiment, the second evaporator chamber 8b accommodating the second evaporator 14b, the first switching chamber first discharge port 111a for blowing cold air into the first switching chamber 5, and the second evaporator chamber It includes an air passage R connecting 8b and the first discharge port 111a of the first switching chamber, and a first flapper 411 of the first switching chamber arranged in the vicinity of the first discharge port 111a of the first switching chamber. The first switching chamber second temperature sensor 43b is provided between the first switching chamber first flapper 411 and the first switching chamber first discharge port 111a. According to this, it is possible to detect the leakage of cold air in the air passage R, which causes excessive cooling when the refrigeration is set.
 また、第1実施形態は、第一切替室第二温度センサ43bは、第一切替室第一温度センサ43aよりも下方に位置している。これによれば、冷蔵設定時に低温になり易い下方の領域の温度をより確実に検知することができる。 Further, in the first embodiment, the first switching chamber second temperature sensor 43b is located below the first switching chamber first temperature sensor 43a. According to this, it is possible to more reliably detect the temperature in the lower region where the temperature tends to be low when refrigeration is set.
 また、第1実施形態は、第一切替室第一温度センサ43aおよび第一切替室第二温度センサ43bと接続される制御装置31を備える。第一切替室第一温度センサ43aは、冷凍温度帯の第一切替室5の温度上昇を検知して制御装置31に通知する。第一切替室第二温度センサ43bは、冷蔵温度帯の第一切替室5の温度低下を検知して制御装置31に通知する。これによれば、冷凍設定時の冷気供給状態において重要となる過度な温度上昇を検知するとともに、冷蔵設定時の冷気供給状態において重要となる過度な温度低下を検知することができる。 Further, the first embodiment includes a control device 31 connected to the first switching chamber first temperature sensor 43a and the first switching chamber second temperature sensor 43b. The first temperature sensor 43a of the first switching chamber detects the temperature rise of the first switching chamber 5 in the freezing temperature zone and notifies the control device 31. The first switching chamber second temperature sensor 43b detects the temperature drop of the first switching chamber 5 in the refrigerating temperature zone and notifies the control device 31. According to this, it is possible to detect an excessive temperature rise that is important in the cold air supply state when the freezing is set, and to detect an excessive temperature drop that is important in the cold air supply state when the refrigerating setting is made.
 また、第1実施形態は、第一切替室5が冷凍温度帯に設定されている間、制御装置31は、第一切替室第一温度センサ43a(検知温度Ta)が温度上昇を検知した場合、第一切替室5への冷気の供給を増加させる(図16のステップS213でYes、ステップS215でYes、図18の時刻t2)。これによれば、第一切替室5の過度な温度上昇を抑えることができる。 Further, in the first embodiment, while the first switching chamber 5 is set to the freezing temperature zone, the control device 31 detects a temperature rise by the first switching chamber first temperature sensor 43a (detection temperature Ta). , The supply of cold air to the first switching chamber 5 is increased (Yes in step S213 in FIG. 16, Yes in step S215, time t2 in FIG. 18). According to this, it is possible to suppress an excessive temperature rise of the first switching chamber 5.
 また、第1実施形態は、第一切替室5が冷蔵温度帯に設定されている間、制御装置31は、第一切替室第二温度センサ43bが温度低下を検知した場合、第一切替室5への冷気の供給を停止する(図16のステップS218、図19の時刻t13)。これによれば、第一切替室5が冷蔵温度帯に設定されている場合、第一切替室5の過度な温度低下を抑えることができる。 Further, in the first embodiment, when the first switching chamber 5 is set to the refrigerating temperature zone, the control device 31 detects a temperature drop in the first switching chamber second temperature sensor 43b, the first switching chamber The supply of cold air to No. 5 is stopped (step S218 in FIG. 16, time t13 in FIG. 19). According to this, when the first switching chamber 5 is set to the refrigerating temperature zone, it is possible to suppress an excessive temperature drop of the first switching chamber 5.
 また、第1実施形態は、第二蒸発器14bで生成された冷気を第二蒸発器室8bに送る第二ファン9bと、第一切替室第一フラッパ411の近傍に配置された第一切替室ダンパヒータ305と、を備える。制御装置31は、第一切替室5が冷蔵温度帯に設定されている際、第一切替室第二温度センサ43bが所定温度以下に低下したことを検知した場合、第二ファン9bを停止し、かつ、第一切替室ダンパヒータ305を通電する(図16のS217でYes、S218)。なお、ここでの所定温度以下とは、第一切替室第一フラッパ411を閉じて5分後に-3℃以下の場合である。これによれば、第一切替室5が冷蔵温度帯に設定された場合の過度な温度低下を抑えることができる。 Further, in the first embodiment, the second fan 9b that sends the cold air generated by the second evaporator 14b to the second evaporator chamber 8b and the first switching that is arranged in the vicinity of the first switching chamber first flapper 411. It is equipped with a chamber damper heater 305. When the control device 31 detects that the first switching chamber second temperature sensor 43b has dropped below a predetermined temperature when the first switching chamber 5 is set to the refrigerating temperature zone, the control device 31 stops the second fan 9b. And, the first switching chamber damper heater 305 is energized (Yes, S218 in S217 of FIG. 16). The temperature below the predetermined temperature here is the case where the temperature is -3 ° C or lower 5 minutes after closing the first flapper 411 of the first switching chamber. According to this, it is possible to suppress an excessive temperature drop when the first switching chamber 5 is set to the refrigerating temperature zone.
 また、第1実施形態は、第一切替室5を加熱する第一切替室ヒータ300を備える。制御装置31は、第一切替室第二温度センサ43bが検知する温度の低下に応じて、第一切替室ヒータ300を通電する。これによれば、第一切替室5内の温度を上げることで、第一切替室5が冷え過ぎるのを抑制できる。 Further, the first embodiment includes a first switching chamber heater 300 that heats the first switching chamber 5. The control device 31 energizes the first switching chamber heater 300 in response to the decrease in temperature detected by the first switching chamber second temperature sensor 43b. According to this, by raising the temperature in the first switching chamber 5, it is possible to prevent the first switching chamber 5 from becoming too cold.
(第2実施形態)
 図20は、第2実施形態に係る第一切替室の温度制御を示すフローチャートである。図21は、第2実施形態に係る各種部材の動作条件の一例を示す説明図である。なお、図20に示すフローチャートと図16に示すフローチャートとの異なる点は、図16のステップS218を図20のステップS318に変更したものである。その他の構成については、図16と同様であり、以下では、異なる部分について説明する。
(Second Embodiment)
FIG. 20 is a flowchart showing the temperature control of the first switching chamber according to the second embodiment. FIG. 21 is an explanatory diagram showing an example of operating conditions of various members according to the second embodiment. The difference between the flowchart shown in FIG. 20 and the flowchart shown in FIG. 16 is that step S218 in FIG. 16 is changed to step S318 in FIG. Other configurations are the same as those in FIG. 16, and different parts will be described below.
 図20に示すように、制御装置31は、ダンパ加熱制御実施条件が成立した場合(ステップS317、Yes)、ステップS318に進み、圧縮機24をOFF(停止)、かつ、冷凍室ダンパを閉、かつ、第一切替室第一フラッパ411を開、かつ、第一切替室第二フラッパ412を開、かつ、第二切替室ダンパを閉、除霜ヒータ21をONにする。なお、第二切替室ダンパを閉にするとは、第二切替室第一フラッパ421と第二切替室第二フラッパ422の双方を閉にすることである。 As shown in FIG. 20, when the damper heating control execution condition is satisfied (step S317, Yes), the control device 31 proceeds to step S318 to turn off (stop) the compressor 24 and close the freezer damper. The first switching chamber first flapper 411 is opened, the first switching chamber second flapper 412 is opened, the second switching chamber damper is closed, and the defrost heater 21 is turned on. Note that closing the second switching chamber damper means closing both the second switching chamber first flapper 421 and the second switching chamber second flapper 422.
 なお、ステップS318では、圧縮機24をOFFにせず、冷媒制御弁52を状態1に切り替えて、第二蒸発器14bに冷媒が流れないようにしてもよい。また、冷凍設定の切替室(冷凍室フラッパ431、冷凍設定の切替室ダンパ)は閉じることが必須だが、冷凍設定の切替室ダンパを閉じることは必須ではない(第二切替室6が冷蔵設定の場合は、第二切替室ダンパを閉じなくてもよい)。 In step S318, the compressor 24 may not be turned off, but the refrigerant control valve 52 may be switched to state 1 so that the refrigerant does not flow to the second evaporator 14b. In addition, it is essential to close the freezing setting switching room (freezing room flapper 431, freezing setting switching room damper), but it is not essential to close the freezing setting switching room damper (the second switching room 6 is set to refrigerate). In that case, it is not necessary to close the second switching chamber damper).
 図22は、第一切替室が冷蔵設定、第二切替室が冷凍設定の場合の第一切替室の温度制御を示すタイムチャートである。なお、図22において、「a」は、圧縮機24の状態(ON、OFF)を示している。「b」は、冷媒制御弁52の状態であり、状態1(流出口52a側、第一蒸発器14a側)、状態2(流出口52b側、第二蒸発器14b側)、状態3(全閉)を示している。「c」は、第二ファン9bの状態(ON、OFF)を示している。「d」は、第一切替室第一フラッパ411の状態(開、閉)を示している。「e」は、第一切替室第二フラッパ412の状態(開、閉)を示している。「f」は、第二切替室第一フラッパ421および第二切替室第二フラッパ422(まとめて第二切替室ダンパ)の状態(開、閉)を示している。「g」は、冷凍室フラッパ431の状態(開、閉)を示している。「h」は、除霜ヒータ21の状態(ON、OFF)を示している。「i」は、第一切替室ヒータ300の状態(ON、OFF)を示している。 FIG. 22 is a time chart showing the temperature control of the first switching chamber when the first switching chamber is set to refrigerate and the second switching chamber is set to freeze. In FIG. 22, “a” indicates the state (ON, OFF) of the compressor 24. “B” is the state of the refrigerant control valve 52, and is in state 1 (outlet 52a side, first evaporator 14a side), state 2 (outlet 52b side, second evaporator 14b side), and state 3 (all). Closed) is shown. “C” indicates the state (ON, OFF) of the second fan 9b. “D” indicates the state (open, closed) of the first flapper 411 of the first switching chamber. “E” indicates the state (open, closed) of the second flapper 412 in the first switching chamber. “F” indicates the state (open, closed) of the second switching chamber first flapper 421 and the second switching chamber second flapper 422 (collectively, the second switching chamber damper). “G” indicates the state (open, closed) of the freezer flapper 431. “H” indicates the state (ON, OFF) of the defrost heater 21. “I” indicates the state (ON, OFF) of the first switching chamber heater 300.
 図22に示すように、時刻t21の前では、検知温度Taが判定温度T10と判定温度T13との間にある。また、時刻t21の前では、検知温度Tbが判定温度T11と判定温度T14との間にある。また、時刻t21の前では、「a」で示す圧縮機24がON、「b」で示す冷媒制御弁52が状態2、「c」で示す第二ファン9bがON、「d」で示す第一切替室第一フラッパ411が閉、「e」で示す第一切替室第二フラッパ412が閉、「f」で示す第二切替室第一フラッパ421および第二切替室第二フラッパ422が開、「g」で示す冷凍室フラッパ431が開、「h」で示す除霜ヒータ21がOFF、「i」で示す第一切替室ヒータ300がOFFである。 As shown in FIG. 22, before the time t21, the detection temperature Ta is between the determination temperature T10 and the determination temperature T13. Further, before the time t21, the detection temperature Tb is between the determination temperature T11 and the determination temperature T14. Before the time t21, the compressor 24 indicated by "a" is ON, the refrigerant control valve 52 indicated by "b" is ON, the second fan 9b indicated by "c" is ON, and the second fan 9b indicated by "d" is ON. One switching chamber first flapper 411 is closed, the first switching chamber second flapper 412 indicated by "e" is closed, the second switching chamber first flapper 421 and the second switching chamber second flapper 422 indicated by "f" are open. , The freezing chamber flapper 431 indicated by "g" is open, the defrost heater 21 indicated by "h" is OFF, and the first switching chamber heater 300 indicated by "i" is OFF.
 時刻t21において、検知温度Taが判定温度T10を超えると、第一切替室第一フラッパ411が閉から開に切り替えられる。また、検知温度Tbが判定温度T11を超えると、第一切替室第二フラッパ412が閉から開に切り替えられる。これにより、第一切替室第一フラッパ411および第一切替室第二フラッパ412から第一切替室5に冷気が導入され、検知温度Ta,Tbが低下する。 At time t21, when the detection temperature Ta exceeds the determination temperature T10, the first switching chamber first flapper 411 is switched from closed to open. When the detection temperature Tb exceeds the determination temperature T11, the first switching chamber second flapper 412 is switched from closed to open. As a result, cold air is introduced into the first switching chamber 5 from the first switching chamber first flapper 411 and the first switching chamber second flapper 412, and the detection temperatures Ta and Tb are lowered.
 そして、時刻t22において、検知温度Taが判定温度T13に低下すると、第一切替室第一フラッパ411が開から閉に切り替えられる。 Then, at time t22, when the detection temperature Ta drops to the determination temperature T13, the first switching chamber first flapper 411 is switched from open to closed.
 そして、第一切替室第一フラッパ411が閉じてから5分後の時刻t23において、検知温度Tbが判定温度T16以下である場合には、第一切替室第一フラッパ411および第一切替室第二フラッパ412の双方が閉から開に切り替えられる。ここでは第一切替室第二フラッパ412は時刻t23において開放状態となっているので、その状態が維持される。また、時刻t23において、第二切替室ダンパ(第二切替室第一フラッパ421および第二切替室第二フラッパ422)が開から閉に切り替えられ、冷凍室フラッパ431が開から閉に切り替えられる。また、時刻t23において、圧縮機24および第二ファン9bがOFFに切り替えられ、冷媒制御弁52が状態2から状態3に切り替えられ、除霜ヒータ21がON(通電)される。さらに、時刻t23において、検知温度Tbが判定温度T15以下であるため、第一切替室ヒータ300がON(通電)される。これにより、検知温度Ta,Tbが上昇する。 Then, when the detection temperature Tb is equal to or lower than the determination temperature T16 at the time t23 5 minutes after the first switching chamber first flapper 411 is closed, the first switching chamber first flapper 411 and the first switching chamber No. 1 Both of the two flappers 412 are switched from closed to open. Here, since the first switching chamber second flapper 412 is in the open state at time t23, that state is maintained. Further, at time t23, the second switching chamber damper (second switching chamber first flapper 421 and second switching chamber second flapper 422) is switched from open to closed, and the freezing chamber flapper 431 is switched from open to closed. Further, at time t23, the compressor 24 and the second fan 9b are switched off, the refrigerant control valve 52 is switched from the state 2 to the state 3, and the defrost heater 21 is turned on (energized). Further, at time t23, since the detection temperature Tb is equal to or lower than the determination temperature T15, the first switching chamber heater 300 is turned on (energized). As a result, the detection temperatures Ta and Tb rise.
 そして、時刻t23から所定時間(例えば、20分間)経過後の時刻t24において、圧縮機24をOFFからONに切り替え、冷媒制御弁52が状態3から状態2に切り替えられる。また、時刻t24において、第一切替室第一フラッパ411および第一切替室第二フラッパ412が開から閉に切り替えられ、第二切替室ダンパ(第二切替室第一フラッパ421および第二切替室第二フラッパ422)が閉から開に切り替えられ、冷凍室フラッパ431が閉から開に切り替えられる。また、時刻t24において、除霜ヒータ21および第一切替室ヒータ300がONからOFFに切り替えられる。 Then, at time t24 after a predetermined time (for example, 20 minutes) has elapsed from time t23, the compressor 24 is switched from OFF to ON, and the refrigerant control valve 52 is switched from state 3 to state 2. Further, at time t24, the first switching chamber first flapper 411 and the first switching chamber second flapper 412 are switched from open to closed, and the second switching chamber damper (second switching chamber first flapper 421 and second switching chamber) is switched. The second flapper 422) is switched from closed to open, and the freezing chamber flapper 431 is switched from closed to open. Further, at time t24, the defrost heater 21 and the first switching chamber heater 300 are switched from ON to OFF.
 そして、時刻t25において、検知温度Taが判定温度T11を超えると、第一切替室第二フラッパ412が開き、検知温度Taが低下する。 Then, at time t25, when the detection temperature Ta exceeds the determination temperature T11, the first switching chamber second flapper 412 opens and the detection temperature Ta drops.
 そして、時刻t26において、検知温度Taが判定温度T14まで低下すると、第一切替室第二フラッパ412が閉じる。 Then, at time t26, when the detection temperature Ta drops to the determination temperature T14, the first switching chamber second flapper 412 closes.
 以上説明したように、第2実施形態の冷蔵庫は、第二蒸発器14bで生成された冷気を第一切替室5に送る第二ファン9bと、第一切替室第一吐出口111aを開閉する第一切替室第一フラッパ411および第一切替室第二フラッパ412と、第二蒸発器14bおよび/または第二蒸発器室8bを加熱する除霜ヒータ21と、を備える。制御装置31は、第一切替室5が冷蔵温度帯に設定されている際、第一切替室第二温度センサ43bが検知する温度の増加に応じて、第二ファン9bの駆動を継続し、かつ、第二蒸発器14bへの冷媒供給を停止し、かつ、除霜ヒータ21の通電を開始する(図20のステップS318、図22の時刻t23)。これによれば、風路Rの開閉機構部品である第一切替室第一フラッパ411に挟み込んだ霜や氷粒を溶かすことで、冷気漏出状態を解消し、冷蔵温度帯の第一切替室5が冷え過ぎるのを抑制することができる。 As described above, the refrigerator of the second embodiment opens and closes the second fan 9b that sends the cold air generated by the second evaporator 14b to the first switching chamber 5 and the first discharge port 111a of the first switching chamber. The first switching chamber first flapper 411, the first switching chamber second flapper 412, and the defrost heater 21 for heating the second evaporator 14b and / or the second evaporator chamber 8b are provided. When the first switching chamber 5 is set to the refrigerating temperature zone, the control device 31 continues to drive the second fan 9b in response to an increase in temperature detected by the first switching chamber second temperature sensor 43b. Then, the supply of the refrigerant to the second evaporator 14b is stopped, and the defrosting heater 21 is energized (step S318 in FIG. 20, time t23 in FIG. 22). According to this, by melting the frost and ice particles sandwiched between the first flapper 411 of the first switching chamber, which is a component of the opening / closing mechanism of the air passage R, the cold air leakage state is eliminated, and the first switching chamber 5 in the refrigerating temperature zone 5 Can be prevented from getting too cold.
 なお、第二ファン9bがOFFの場合には、第二ファン9bの駆動を開始する。また、冷媒制御弁52を状態3から状態1にして、第二蒸発器14bへの冷媒を停止させたり、冷媒の供給を減少させたりするようにしてもよい。また、除霜ヒータ21が通電している場合には、除霜ヒータ21の通電を継続しつつ、除霜ヒータ21の出力を減少させるようにしてもよい。 If the second fan 9b is OFF, the driving of the second fan 9b is started. Further, the refrigerant control valve 52 may be changed from the state 3 to the state 1 to stop the refrigerant to the second evaporator 14b or reduce the supply of the refrigerant. Further, when the defrost heater 21 is energized, the output of the defrost heater 21 may be reduced while continuing the energization of the defrost heater 21.
(第3実施形態)
 図23は、第3実施形態に係る第一切替室の温度センサの配置を示す斜視図である。図24は、図23のXXIV-XXIV線断面図である。図25は、図23のXXV-XXV線断面図である。
(Third Embodiment)
FIG. 23 is a perspective view showing the arrangement of the temperature sensors in the first switching chamber according to the third embodiment. FIG. 24 is a cross-sectional view taken along the line XXIV-XXIV of FIG. FIG. 25 is a cross-sectional view taken along the line XXV-XXV of FIG. 23.
 図23に示すように、第3実施形態の冷蔵庫は、第一切替室5に、第一切替室第一温度センサ43aと、第一切替室第二温度センサ43cと、冷気を誘導する誘導板45と、を備えて構成されている。なお、第一切替室第一温度センサ43aは、第1実施形態と同様の位置である。 As shown in FIG. 23, in the refrigerator of the third embodiment, the first switching chamber 5 has the first switching chamber first temperature sensor 43a, the first switching chamber second temperature sensor 43c, and an induction plate for guiding cold air. 45 and is configured. The first temperature sensor 43a in the first switching chamber is in the same position as in the first embodiment.
 第一切替室第二温度センサ43cは、第一切替室第一温度センサ43aの鉛直方向の下方に位置している。これによれば、冷蔵設定時に温度が下がりすぎることを効果的に抑制できる。理由を以下で説明する。 The first switching chamber second temperature sensor 43c is located below the first switching chamber first temperature sensor 43a in the vertical direction. According to this, it is possible to effectively suppress the temperature from dropping too much when the refrigeration is set. The reason will be explained below.
 切替室の場合、冷凍温度に設定された場合と冷蔵温度に設定された場合とで、庫内と庫外の温度差が大きく変化する。冷凍温度に設定された場合は庫外から入る熱量が増えるために、より多くの冷気が送られ、冷蔵温度に設定された場合は、庫外から入る熱量が少なくなるため、より少ない風の量を送るだけでよく、また、短時間で冷気を送るだけでよく、供給する冷気量が減る。このとき、特に冷気量が減る冷蔵設定においては、ファン(第二ファン9b)による送風の影響が減るため、貯蔵室(第一切替室5)内において自然対流が生じ、温度が高い空気は上方に向かい、温度が低い低温は下方に集まる。したがって、冷蔵設定時の温度低下を検知する第一切替室第二温度センサ43cを、第一切替室第一温度センサ43aの鉛直方向の下方に配置することで、第一切替室5を冷蔵設定にした場合の冷え過ぎた状態をより正確に検知できるので、冷蔵設定時に温度が下がりすぎることを抑制できる。 In the case of the switching room, the temperature difference between the inside and outside of the refrigerator changes greatly depending on whether the temperature is set to the freezing temperature or the refrigerating temperature. When the freezing temperature is set, the amount of heat entering from the outside of the refrigerator increases, so more cold air is sent, and when the temperature is set to the refrigerating temperature, the amount of heat entering from the outside of the refrigerator decreases, so the amount of wind is smaller. It is only necessary to send cold air in a short time, and the amount of cold air supplied is reduced. At this time, especially in the refrigerating setting where the amount of cold air is reduced, the influence of the air blown by the fan (second fan 9b) is reduced, so that natural convection occurs in the storage chamber (first switching chamber 5), and the high temperature air is upward. The low temperature, which is low, gathers downward. Therefore, by arranging the first switching chamber second temperature sensor 43c that detects the temperature drop at the time of refrigerating setting below the first switching chamber first temperature sensor 43a in the vertical direction, the first switching chamber 5 is refrigerated. Since it is possible to more accurately detect the overcooled state when the value is set to, it is possible to prevent the temperature from dropping too much when refrigeration is set.
 また、第一切替室第二温度センサ43cは、第一切替室戻り口111cの近傍に位置している。第一切替室戻り口111cは、低温の冷気を生成する蒸発器(第二蒸発器14b)が収納された第二蒸発器室8bと連通し、常に開放状態にあるため、第二蒸発器室8bの冷気の影響によって第一切替室戻り口111cの近傍が低温になる場合がある。この問題に対して、第一切替室第二温度センサ43cを、第一切替室戻り口111cの近傍に配置することで、切替室(第一切替室5)を冷蔵設定にした場合の冷え過ぎた状態をより正確に検知できるようになるため、冷蔵設定時に温度が下がりすぎることを抑制できる。 Further, the first switching chamber second temperature sensor 43c is located in the vicinity of the first switching chamber return port 111c. Since the return port 111c of the first switching chamber communicates with the second evaporator chamber 8b in which the evaporator (second evaporator 14b) that generates low-temperature cold air is housed and is always in an open state, the second evaporator chamber Due to the influence of the cold air of 8b, the temperature in the vicinity of the return port 111c of the first switching chamber may become low. In response to this problem, by arranging the first switching chamber second temperature sensor 43c in the vicinity of the first switching chamber return port 111c, the switching chamber (first switching chamber 5) is set to refrigerate and is too cold. Since it becomes possible to detect the state in a more accurate manner, it is possible to prevent the temperature from dropping too much when refrigeration is set.
 誘導板45は、細長い板状のものであり、断熱仕切壁27の下部に設けられ、第一切替室第一吐出口111a(図示左側)から第一切替室戻り口111cに向けて下るように傾斜して配置されている。この誘導板45の下端に位置する上部に、第一切替室第二温度センサ43cが位置している。 The guide plate 45 is an elongated plate, and is provided below the heat insulating partition wall 27 so as to descend from the first switching chamber first discharge port 111a (left side in the drawing) toward the first switching chamber return port 111c. It is arranged at an angle. The first switching chamber second temperature sensor 43c is located above the lower end of the guide plate 45.
 また、吐出口形成部材111には、第1実施形態の第一切替室第一吐出口111aとは別に、第一切替室第三吹出口111fが形成されている。よって、第3実施形態では、2つの第一切替室第一吐出口111aと新たに設けられた第一切替室第三吹出口111fから冷気が第一切替室5に吹き出すように構成されている。 Further, the discharge port forming member 111 is formed with a first switching chamber third outlet 111f in addition to the first switching chamber first discharge port 111a of the first embodiment. Therefore, in the third embodiment, cold air is blown out to the first switching chamber 5 from the two first switching chamber first discharge ports 111a and the newly provided first switching chamber third outlet 111f. ..
 図24に示すように、第一切替室第三吹出口111fは、吐出口形成部材111の下面に形成され、冷気が下方に向けて(断熱仕切壁27の表面を下方に向けて)吐出するようになっている。第一切替室第三吹出口111fから吐出された冷気は、誘導板45(図23参照)に当たり、誘導板45の上面に沿って第一切替室5の下方に向けて流れる。 As shown in FIG. 24, the first switching chamber third outlet 111f is formed on the lower surface of the discharge port forming member 111, and cold air is discharged downward (the surface of the heat insulating partition wall 27 is directed downward). It has become like. The cold air discharged from the third outlet 111f of the first switching chamber hits the guide plate 45 (see FIG. 23) and flows downward along the upper surface of the guide plate 45 toward the lower side of the first switching chamber 5.
 図25に示すように、第一切替室第二温度センサ43cは、誘導板45の端部の上部に位置しているので、誘導板45に沿って流れ落ちてきた冷気の温度を検知することができる。これによって、図24のように、第一切替室第一フラッパ411から冷気が漏れた場合でも、冷気が下方に向けて流れるので、第一切替室第二温度センサ43cによる温度検知によって、冷気漏れを直ちに検知することができ、その後の漏れを抑える制御を迅速に行うことが可能になる。 As shown in FIG. 25, since the first switching chamber second temperature sensor 43c is located above the end portion of the guide plate 45, it is possible to detect the temperature of the cold air flowing down along the guide plate 45. can. As a result, as shown in FIG. 24, even if cold air leaks from the first flapper 411 of the first switching chamber, the cold air flows downward. Therefore, the cold air leaks due to the temperature detection by the second temperature sensor 43c of the first switching chamber. Can be detected immediately, and subsequent control to suppress leakage can be performed quickly.
 以上、本実施形態について図面を参照しながら説明したが、本実施形態は前記の内容に何ら限定されるものではなく、様々な変形例が含まれる。前記した実施形態では、2つの温度センサである第一切替室第一温度センサ43aと第一切替室第二温度センサ43b(43c)を例に挙げて説明したが、3つ以上の温度センサを用いて、冷蔵温度帯と冷凍温度帯で適切に温度管理するようにしてもよい。 Although the present embodiment has been described above with reference to the drawings, the present embodiment is not limited to the above contents and includes various modifications. In the above-described embodiment, the first switching chamber first temperature sensor 43a and the first switching chamber second temperature sensor 43b (43c), which are two temperature sensors, have been described as examples, but three or more temperature sensors may be used. It may be used to appropriately control the temperature in the refrigerating temperature zone and the freezing temperature zone.
 1   冷蔵庫
 5   第一切替室(切替室)
 6   第二切替室(切替室)
 8b  第二蒸発器室(冷却器室)
 9b  第二ファン(送風機)
 10  断熱箱体
 14b 第二蒸発器(冷却器)
 21  除霜ヒータ(ヒータ)
 24  圧縮機
 27  断熱仕切壁
 31  制御装置(制御部)
 43a 第一切替室第一温度センサ(他の温度センサ)
 43b,43c 第一切替室第二温度センサ(一の温度センサ)
 45  誘導板
 111a 第一切替室第一吐出口(吹出口)
 111f 第一切替室第三吐出口(吹出口)
 300 第一切替室ヒータ(切替室ヒータ)
 305 第一切替室ダンパヒータ(ダンパヒータ)
 410,420 ダンパ部材(切替室ダンパ)
 411 第一切替室第一フラッパ
 412 第一切替室第二フラッパ
 421 第二切替室第一フラッパ
 422 第二切替室第二フラッパ
 R   風路
1 Refrigerator 5 First switching room (switching room)
6 Second switching room (switching room)
8b Second evaporator room (cooler room)
9b Second fan (blower)
10 Insulated box 14b Second evaporator (cooler)
21 Defrost heater (heater)
24 Compressor 27 Insulation partition wall 31 Control device (control unit)
43a First switching chamber first temperature sensor (other temperature sensor)
43b, 43c 1st switching chamber 2nd temperature sensor (1 temperature sensor)
45 Induction plate 111a First switching chamber First discharge port (outlet)
111f 1st switching chamber 3rd discharge port (outlet)
300 First switching room heater (switching room heater)
305 First switching room damper heater (damper heater)
410,420 Damper member (switching chamber damper)
411 1st switching room 1st flapper 412 1st switching room 2nd flapper 421 2nd switching room 1st flapper 422 2nd switching room 2nd flapper R Air passage

Claims (10)

  1.  冷蔵温度帯と冷凍温度帯とに切替可能な切替室を備え、
     前記切替室は、複数の温度センサを備えることを特徴とする冷蔵庫。
    Equipped with a switching room that can be switched between the refrigerated temperature zone and the freezing temperature zone
    The switching chamber is a refrigerator provided with a plurality of temperature sensors.
  2.  冷却器を収容する冷却器室と、
     前記切替室に冷気を吹出す吹出口と、
     前記冷却器室と前記吹出口とを繋ぐ風路と、
     前記吹出口の近傍に配置された切替室ダンパと、を備え、
     前記温度センサの一つは、前記切替室ダンパと前記吹出口との間に設けられていることを特徴とする請求項1に記載の冷蔵庫。
    A cooler room that houses the cooler and
    An outlet that blows cold air into the switching chamber and
    An air passage connecting the cooler chamber and the air outlet,
    A switching chamber damper arranged in the vicinity of the air outlet is provided.
    The refrigerator according to claim 1, wherein one of the temperature sensors is provided between the switching chamber damper and the air outlet.
  3.  前記温度センサである一の温度センサは、他の温度センサよりも下方に位置していることを特徴とする請求項2に記載の冷蔵庫。 The refrigerator according to claim 2, wherein one temperature sensor, which is the temperature sensor, is located below the other temperature sensors.
  4.  前記他の温度センサおよび前記一の温度センサと接続される少なくとも一つの制御部を備え、
     前記他の温度センサは、冷凍温度帯の前記切替室の温度上昇を検知して前記制御部に通知し、
     前記一の温度センサは、冷蔵温度帯の前記切替室の温度低下を検知して前記制御部に通知することを特徴とする請求項3に記載の冷蔵庫。
    It comprises at least one control unit connected to the other temperature sensor and the one temperature sensor.
    The other temperature sensor detects a temperature rise in the switching chamber in the freezing temperature zone and notifies the control unit.
    The refrigerator according to claim 3, wherein the one temperature sensor detects a temperature drop in the switching chamber in the refrigerating temperature zone and notifies the control unit.
  5.  前記切替室が冷凍温度帯に設定されている間、前記制御部は、前記他の温度センサが温度上昇を検知した場合、前記切替室への冷気の供給を増加させることを特徴とする請求項4に記載の冷蔵庫。 A claim that the control unit increases the supply of cold air to the switching chamber when the other temperature sensor detects a temperature rise while the switching chamber is set to the freezing temperature zone. The refrigerator according to 4.
  6.  前記切替室が冷蔵温度帯に設定されている間、前記制御部は、前記一の温度センサが温度低下を検知した場合、前記切替室への冷気の供給を減少または停止することを特徴とする請求項4に記載の冷蔵庫。 While the switching chamber is set to the refrigerating temperature zone, the control unit reduces or stops the supply of cold air to the switching chamber when the one temperature sensor detects a temperature drop. The refrigerator according to claim 4.
  7.  前記冷却器で生成された冷気を前記切替室に送る送風機と、
     前記切替室ダンパの近傍に配置されたダンパヒータと、を備え、
     前記制御部は、前記一の温度センサが所定温度以下に低下したことを検知した場合、前記送風機を停止し、かつ、前記ダンパヒータを通電することを特徴とする請求項4に記載の冷蔵庫。
    A blower that sends the cold air generated by the cooler to the switching chamber, and
    A damper heater arranged in the vicinity of the switching chamber damper is provided.
    The refrigerator according to claim 4, wherein when the control unit detects that the temperature sensor has dropped to a predetermined temperature or lower, the control unit stops the blower and energizes the damper heater.
  8.  前記冷却器で生成された冷気を前記切替室に送る送風機と、
     前記吹出口を開閉する切替室ダンパと、
     前記冷却器および/または前記冷却器室を加熱するヒータと、を備え、
     前記制御部は、前記一の温度センサが検知する温度の増加に応じて、前記送風機を駆動開始または継続し、かつ、前記冷却器への冷媒供給を停止または減少させ、かつ、前記ヒータを通電開始または通電継続することを特徴とする請求項4に記載の冷蔵庫。
    A blower that sends the cold air generated by the cooler to the switching chamber, and
    A switching chamber damper that opens and closes the air outlet,
    The cooler and / or a heater for heating the cooler chamber is provided.
    The control unit starts or continues driving the blower, stops or reduces the supply of refrigerant to the cooler, and energizes the heater in response to an increase in temperature detected by the one temperature sensor. The refrigerator according to claim 4, wherein the refrigerator is started or energized continuously.
  9.  前記切替室を加熱する切替室ヒータを備え、
     前記制御部は、前記一の温度センサが検知する温度の低下に応じて、前記切替室ヒータの発熱量を増加させることを特徴とする請求項4から請求項8のいずれか1項に記載の冷蔵庫。
    A switching chamber heater for heating the switching chamber is provided.
    The control unit according to any one of claims 4 to 8, wherein the control unit increases the amount of heat generated by the switching chamber heater in response to a decrease in temperature detected by the one temperature sensor. refrigerator.
  10.  冷蔵温度帯と冷凍温度帯とに切替可能な切替室を備え、前記切替室は、複数の温度センサを備え、前記温度センサである一の温度センサは、他の温度センサよりも下方に位置していることを特徴とする冷蔵庫。 A switching chamber capable of switching between a refrigerating temperature zone and a freezing temperature zone is provided, the switching chamber is provided with a plurality of temperature sensors, and one temperature sensor, which is the temperature sensor, is located below the other temperature sensors. A refrigerator characterized by being.
PCT/JP2020/031053 2020-03-23 2020-08-18 Refrigerator WO2021192345A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020051213A JP7372186B2 (en) 2020-03-23 2020-03-23 refrigerator
JP2020-051213 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021192345A1 true WO2021192345A1 (en) 2021-09-30

Family

ID=77752873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031053 WO2021192345A1 (en) 2020-03-23 2020-08-18 Refrigerator

Country Status (3)

Country Link
JP (1) JP7372186B2 (en)
CN (1) CN113432367A (en)
WO (1) WO2021192345A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4273476A1 (en) * 2022-05-06 2023-11-08 Liebherr-Hausgeräte Lienz GmbH Refrigeration and/or freezer device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010260A (en) * 2005-07-01 2007-01-18 Sharp Corp Refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3332801B2 (en) * 1997-05-29 2002-10-07 株式会社東芝 refrigerator
JP2005172298A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd Control method of refrigerator
JP3805351B1 (en) * 2005-05-19 2006-08-02 シャープ株式会社 refrigerator
JP4916891B2 (en) * 2007-01-05 2012-04-18 シャープ株式会社 refrigerator
JP2016223752A (en) * 2015-06-04 2016-12-28 パナソニックIpマネジメント株式会社 refrigerator
JP6655747B1 (en) * 2019-06-13 2020-02-26 日立グローバルライフソリューションズ株式会社 refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010260A (en) * 2005-07-01 2007-01-18 Sharp Corp Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4273476A1 (en) * 2022-05-06 2023-11-08 Liebherr-Hausgeräte Lienz GmbH Refrigeration and/or freezer device

Also Published As

Publication number Publication date
JP2021148393A (en) 2021-09-27
CN113432367A (en) 2021-09-24
JP7372186B2 (en) 2023-10-31

Similar Documents

Publication Publication Date Title
JP6131116B2 (en) refrigerator
JP2019020075A (en) refrigerator
JP5315179B2 (en) refrigerator
JP5417382B2 (en) refrigerator
WO2021192345A1 (en) Refrigerator
KR101152070B1 (en) Refrigerator
JP2020101299A (en) refrigerator
CN111351292B (en) Refrigerator with a door
CN111473573B (en) Refrigerator with a door
JP6890502B2 (en) refrigerator
JP5341653B2 (en) refrigerator
JP5039761B2 (en) refrigerator
JP6847063B2 (en) refrigerator
JP5941838B2 (en) refrigerator
JP5103452B2 (en) refrigerator
JP5404549B2 (en) Freezer refrigerator
JP2011058693A (en) Refrigerator
JP2020101354A (en) refrigerator
JP2020139645A (en) refrigerator
JP2019138514A (en) refrigerator
JP6963044B2 (en) refrigerator
JP6883531B2 (en) refrigerator
JP2019132506A (en) refrigerator
JP2015014435A (en) Refrigerator
JP7254227B2 (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927875

Country of ref document: EP

Kind code of ref document: A1