WO2021192164A1 - 荷電粒子線システム - Google Patents

荷電粒子線システム Download PDF

Info

Publication number
WO2021192164A1
WO2021192164A1 PCT/JP2020/013743 JP2020013743W WO2021192164A1 WO 2021192164 A1 WO2021192164 A1 WO 2021192164A1 JP 2020013743 W JP2020013743 W JP 2020013743W WO 2021192164 A1 WO2021192164 A1 WO 2021192164A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
particle beam
evaluation value
axis
astigmatism
Prior art date
Application number
PCT/JP2020/013743
Other languages
English (en)
French (fr)
Inventor
央和 玉置
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2022510276A priority Critical patent/JP7292496B2/ja
Priority to KR1020227025744A priority patent/KR20220120647A/ko
Priority to US17/795,278 priority patent/US20230093287A1/en
Priority to PCT/JP2020/013743 priority patent/WO2021192164A1/ja
Publication of WO2021192164A1 publication Critical patent/WO2021192164A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1532Astigmatism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1534Aberrations

Definitions

  • This disclosure relates to a charged particle beam system.
  • Japanese Patent Application Laid-Open No. 2003-016983 (Patent Document 1) is available. Then, Japanese Patent Application Laid-Open No. 2003-016983 states, "By performing image processing on a small number of two-dimensional particle images acquired while changing the focus in two types of scanning directions, the direction / size of astigmatism and the focus offset can be determined. By detecting and converting this into two types of astigmatism correction amount and focus correction amount at once and performing correction, high-speed and high-precision automatic astigmatism / focus adjustment is realized. In addition, astigmatism difference Achieve more accurate automatic astigmatism / focus adjustment by correcting errors. Furthermore, we will realize a device that realizes high-precision inspection / measurement over a long period of time by using this automatic astigmatism / focus adjustment. " It is stated (see summary).
  • the focus and astigmatism can be automatically adjusted in the charged particle beam apparatus.
  • the technique of Patent Document 1 requires acquiring two-dimensional particle images and performing image processing on them.
  • a technique capable of adjusting focus and astigmatism at a higher speed is desired.
  • the charged particle beam system of one aspect of the present disclosure includes a charged particle beam device that irradiates a sample with a charged particle beam from a charged particle source via a charged particle optical system, and a control system that controls the charged particle beam device.
  • the control system scans the charged particle beam on the sample so as to form a scan locus, determines an evaluation value of signal intensity associated with different scanning directions in the scan locus, and evaluates the said. Based on the relationship between the value and the different scanning directions, information on at least one of the focus shift and the aberration included in the charged particle optical system is generated.
  • At least one of focus and astigmatism can be adjusted at a higher speed.
  • the basic configuration of the scanning electron microscope system is schematically shown.
  • the basic configuration of the scanning transmission electron microscope system is schematically shown.
  • An example of computer hardware configuration is shown.
  • a configuration example of the astigmatism correction device is shown.
  • An example of a change in the cross-sectional shape of the electron beam with respect to a change in the direction and magnitude of astigmatism possessed by the electron optical system is shown.
  • the shape of the electron beam by the electron optical system having no astigmatism and the images of the samples at different height positions by the electron beam are schematically shown.
  • the shape of the electron beam by the electron optical system having a predetermined astigmatism and the images of the samples at different height positions by the electron beam are schematically shown.
  • the differential image of each image by the electron optics system which does not have astigmatism is shown.
  • a differential image of each image by the electron optics system having astigmatism is shown.
  • the sharpness evaluation value of the image in the electron optics system which does not have astigmatism is shown.
  • the sharpness evaluation value of the image in the electron optical system having astigmatism is shown.
  • An example of the scanning locus of the electron beam (spot) on the sample is shown. The scanning directions of the electron beam at several different positions of the circular scanning locus shown in FIG. 12 are shown.
  • the time change of the signal intensity obtained in one cycle of circular scanning and the time change of the sharpness evaluation value (absolute value of the differential value of the signal intensity) in different combinations (states) of astigmatism and the Z position of the sample. show.
  • the change in signal intensity with respect to the spot position due to circular scanning and the change in sharpness evaluation value according to the change in signal intensity are shown.
  • the flowchart of the automatic focus adjustment by the control system is shown.
  • An example of the scanning locus of the electron beam (spot) on the sample is shown.
  • the changes in the spot diameter and the sharpness evaluation value in the orthogonal scanning direction (direction along the X-axis and direction along the Y-axis) when the amount of astigmatism is changed are shown.
  • An example of adjusting the astigmatism by combining the circular scanning and the change of the astigmatism of the optical system is shown.
  • the method scans a charged particle beam on a sample to form a one-dimensional scan locus to determine an assessment of signal strength associated with different scan directions in the scan locus. Based on the relationship between the evaluation value and the scanning direction, information for correcting at least one of the focus shift and astigmatism of the charged particle beam is generated. In this way, by referring to the relationship between the scanning direction and the evaluation value in the one-dimensional scanning locus, information for correcting the basic focus shift or astigmatism can be quickly generated.
  • FIG. 1 schematically shows the basic configuration of a scanning electron microscope (SEM) system.
  • the SEM system includes an SEM device 50 and a control system 42.
  • the SEM device 50 is an example of a charged particle beam device, and is an electron beam source 1, an extraction electrode 2, a condenser lens 11, a condenser diaphragm 12, an axis adjustment deflector 13, an astigmatism correction device 14, a scan deflector 15, and an objective. Includes lens 20.
  • FIG. 1 only one condenser lens is designated by reference numeral 11 as an example.
  • the astigmatism correction device 14 may be a device composed of a combination of coils, a spherical surface composed of a combination of a plurality of quadrupoles, or a device for correcting various aberrations. ..
  • each deflector can be used for a predetermined purpose by combining a plurality of deflectors arranged at different heights.
  • the electron beam source 1 is an example of a charged particle source and generates a primary electron beam.
  • the condenser lens 11 adjusts the convergence condition of the primary electron beam.
  • the condenser diaphragm 12 controls the spread angle of the primary electron beam.
  • the axis adjustment deflector 13 adjusts the position of the primary electron beam with respect to the objective lens 20.
  • the astigmatism correction device 14 adjusts the beam shape of the primary electron beam (probe) incident on the sample 21.
  • the scan deflector 15 rasterly scans the primary electron beam incident on the sample 21.
  • the objective lens 20 adjusts the focus position of the primary electron beam with respect to the sample 21.
  • the SEM device 50 further includes a sample stage 22, a reflector 16, and a detector 26.
  • the sample stage 22 determines the position of the sample 21 in the sample chamber.
  • the electrons generated from the sample 21 or the electrons generated by the collision of the electrons from the sample 21 toward the reflector 16 (these are also referred to as signal electrons) are detected by the detector 26.
  • the control system 42 controls the SEM device 50.
  • the control system 42 controls the acceleration voltage and extraction voltage of the primary electron beam, and the current of components such as a lens and a deflector.
  • the control system 42 can adjust the positional relationship of the sample 21 with respect to the irradiation position of the primary electron beam with respect to the sample 21 and the focus position of the primary electron beam.
  • the control system 42 controls the gain and offset of the detector 26 to generate an image of the detected signal electrons.
  • the control system 42 includes a control device 40 and a computer 41.
  • the computer 41 controls the components of the SEM device 50 via the control device 40.
  • the computer 41 includes a program, a storage device that stores data used by the program, and a processor that operates according to the program stored in the storage device.
  • the program includes a control program for the SEM device 50 and an image processing program.
  • the computer 41 further includes an interface for connecting to a network and a user interface.
  • the user interface includes a display device for displaying an image and an input device for the user to give an instruction to the computer 41.
  • the computer 41 controls the control device 40.
  • the control device 40 includes components such as an AD converter, a DA converter, a memory, and an arithmetic unit such as an FPGA or a microprocessor.
  • the extraction electrode 2 draws a primary electron beam from the electron beam source 1 at a predetermined extraction voltage.
  • the direction parallel to the optical axis is defined as the Z direction, and the plane orthogonal to the optical axis is defined as the XY plane.
  • the control system 42 adjusts the primary electron beam so that it converges on the sample 21 by adjusting the Z position of the sample stage 22 or adjusting the control parameters of the objective lens 20. This adjustment is a rough adjustment.
  • the control system 42 selects the field of view for the electron optics system adjustment using the XY movement mechanism of the sample stage 22. At this time, the selection of the visual field may be performed by directly operating the XY movement mechanism of the sample stage 22 by the user of the apparatus.
  • the control system 42 corrects the misalignment, the focus, and the astigmatism in the field of view for adjusting the electro-optical system. Specifically, the control system 42 corrects the adjustment parameters of the axis adjustment deflector 13, the astigmatism correction device 14, and the objective lens 20.
  • control system 42 uses the sample stage 22 to move the observation field of view to the field of view for photographing, and after finely adjusting the focus of the objective lens 20 by user operation so that a sharp image can be observed, or a focus adjustment function. Acquires an image at the appropriate focus position adjusted by.
  • FIG. 2 schematically shows the basic configuration of a system used as a scanning transmission electron microscope (STEM).
  • the STEM system includes a STEM device 51 and a control system 42.
  • the STEM device 51 includes an electron beam source 1, a lead-out electrode 2, a condenser lens 11, a condenser diaphragm 12, an axis adjustment deflector 13, an astigmatism correction device 14, a scan deflector 15, an objective lens 20, and a sample stage 22. ..
  • only one condenser lens is designated by reference numeral 11 as an example. These functions are the same as those of the SEM device 50.
  • the STEM device 51 includes an objective diaphragm 23, an axis adjustment deflector 24, a selected area diaphragm 25, an imaging system lens 30, and a detector 31 on the rear side of the sample 21.
  • an imaging system lens 30 forms an image of a transmitted electron beam transmitted through the sample 21.
  • the detector 31 detects the imaged electron beam.
  • the control system 42 generates an image of the detected signal electrons.
  • the control system 42 like the SEM system, includes a control device 40 and a computer 41.
  • the program executed by the computer 41 includes a control program of the STEM device 51 and an image processing program.
  • the extraction electrode 2 draws a primary electron beam from the electron beam source 1 at a predetermined extraction voltage.
  • the control system 42 irradiates the sample 21 on the sample stage 22 with a primary electron beam.
  • the control system 42 roughly adjusts the focus of the primary electron beam by adjusting the Z position of the sample stage 22 or adjusting the control parameters of the objective lens 20. After that, the control system 42 selects the field of view for adjusting the electron optics system by using the XY movement mechanism of the sample stage 22. The control system 42 corrects the deviation, focus, and astigmatism of the optical system in the field of view for adjusting the electro-optical system. Specifically, the adjustment parameters of the axis adjustment deflector 13, the astigmatism correction device 14, and the objective lens 20 are corrected.
  • control system 42 uses the sample stage 22 to move the observation field of view to the field of view for photographing, and after finely adjusting the focus of the objective lens 20 by user operation so that a sharp image can be observed, or a focus tracking function. After adjusting to a more appropriate focus position, the image is captured.
  • the control system 42 uses the condenser lens 11, the axis adjustment deflector 13, and the astigmatism correction device 14 to make the primary electron beam incident on the sample 21.
  • the control system 42 scans the primary electron beam with the scan deflector 15. When the primary electron beam enters the sample 21, most of the electrons pass through the sample 21.
  • the imaging system lens 30 causes a transmitted electron beam to be incident on the detector 31 at an appropriate angle, and a STEM image is obtained. The magnification of the STEM image is set by the current that controls the scan deflector 15.
  • FIG. 3 shows an example of the hardware configuration of the computer 41.
  • the computer 41 includes a processor 411, a memory (main storage device) 412, an auxiliary storage device 413, an output device 414, an input device 415, and a communication interface (I / F) 417.
  • the components are connected to each other by a bus.
  • the memory 412, the auxiliary storage device 413, or a combination thereof is a storage device and stores programs and data used by the processor 411.
  • the memory 412 is composed of, for example, a semiconductor memory, and is mainly used for holding a program or data being executed.
  • the processor 411 executes various processes according to the program stored in the memory 412. By operating the processor 411 according to the program, various functional units are realized.
  • the auxiliary storage device 413 is composed of a large-capacity storage device such as a hard disk drive or a solid state drive, and is used for holding programs and data for a long period of time.
  • the processor 411 can be composed of a single processing unit or a plurality of processing units, and can include a single or a plurality of arithmetic units, or a plurality of processing cores.
  • Processor 411 manipulates signals based on one or more central processing units, microprocessors, microprocessors, microcontrollers, digital signal processors, state machines, logic circuits, graphics processing units, chip-on systems, and / or control instructions. It can be implemented as any device.
  • the program and data stored in the auxiliary storage device 413 are loaded into the memory 412 at startup or when necessary, and the processor 411 executes the program to execute various processes of the computer 41.
  • the input device 415 is a hardware device for the user to input instructions, information, etc. to the computer 41.
  • the output device 414 is a hardware device that presents various images for input / output, and is, for example, a display device or a printing device.
  • the communication I / F 417 is an interface for connecting to a network.
  • the function of the computer 41 can be implemented in a computer system consisting of one or more computers including one or more processors and one or more storage devices including a non-transient storage medium. Multiple computers communicate over a network. For example, a plurality of functions of the computer 41 may be implemented in a plurality of computers.
  • FIG. 4 shows a configuration example of the astigmatism correction device 14.
  • the astigmatism correction device 14 includes an quadrupole coil.
  • the astigmatism correction device 14 includes coils (X-axis astigmatism correction coils) X11, X12, X21, X22 for correcting astigmatism of the X-axis pair (X1, X2), and a Y-axis pair (Y1, Y2).
  • (Y-axis astigmatism correction coil) Y11, Y12, Y21, Y22, and the like.
  • the X-axis astigmatism correction coil is arranged at a position rotated by 45 degrees around the center of the optical axis with respect to the arrangement position of the Y-axis astigmatism correction coil.
  • the X-axis astigmatism correction coils X11 and X12 face each other with the center of the optical axis in between.
  • the X-axis astigmatism correction coils X21 and X22 face each other with the center of the optical axis in between.
  • the Y-axis astigmatism correction coils Y11 and Y12 face each other with the center of the optical axis in between.
  • the Y-axis astigmatism correction coils Y21 and Y22 face each other with the center of the optical axis in between. It is preferable that the intersections of the X1 axis, the X2 axis, the Y1 axis, and the Y2 axis coincide with the center of the optical axis.
  • the astigmatism correction device 14 uses an octapole coil to deform the cross-sectional shape of the primary electron beam EB (hereinafter simply referred to as an electron beam). Since the direction of the magnetic field generated by the coil and the direction of the force exerted by the magnetic field on the primary electron beam are orthogonal to each other, the beam is directed in the Y-axis (Y1, Y2) direction by using the X-axis non-point aberration correction coil. By using the Y-axis non-point aberration correction coil, the beam can be deformed in the X-axis (X1, X2) direction. As an example, FIG.
  • FIG. 4 shows an electron beam EB deformed so as to be pulled from the center of the optical axis in both the positive and negative directions of the X1 axis.
  • a Y-axis astigmatism correction coil is used to correct the astigmatism of the electron beam EB deformed into such a shape.
  • the control system 42 causes a current to flow through the Y-axis astigmatism correction coils Y11 and Y12 to generate a magnetic flux flow in the direction of the optical axis along the Y1 axis, and at the same time, the Y-axis astigmatism correction coil Y21, A current in the opposite direction is passed through Y22, and a magnetic field in the opposite direction to the Y1 axis is generated in the Y2 axis.
  • a magnetic field is generated on the X1 axis in the direction orthogonal to the X1 axis, from Y11 to Y21, and from Y12 to Y21, so that the electron beam EB is compressed along the long axis direction (X1 axis) of the ellipse.
  • a magnetic field is generated in the direction orthogonal to the X2 axis, from Y12 to Y21, and from Y11 to Y22. It deforms in the direction of divergence along.
  • the electron beam EB that has passed through the correction magnetic field formed by the astigmatism correction coil is corrected into a circular shape.
  • the control system 42 uses an X-axis astigmatism correction coil. do. Specifically, the control system 42 passes a current through the X-axis astigmatism correction coils X11 and X12 to generate a magnetic flux flow in the direction toward the optical axis along the X1 axis or in the direction away from the optical axis.
  • control system 42 controls the astigmatism correction device 14 by designating the current (X parameter) of the X-axis astigmatism correction coil and the current (Y parameter) of the Y-axis astigmatism correction coil.
  • the astigmatism correction device 14 applies a current to each correction coil according to the designated X and Y parameters.
  • FIG. 5 is an example showing how the cross-sectional shape of the electron beam on a surface at the same height changes when the direction and magnitude of the astigmatism of the electron optical system changes.
  • Sections 121 to 125 show an example in which the direction of astigmatism is 0 ° and the magnitude of the astigmatism changes.
  • the cross section 123 has astigmatism 0, the cross section 122 has astigmatism 1, the cross section 121 has astigmatism 2, the cross section 124 has astigmatism -1, and the cross section 125 has astigmatism 2. It corresponds to a certain case.
  • Cross section 131 to cross section 135 show an example in which the direction of astigmatism is 45 ° and the magnitude of the astigmatism changes.
  • the cross section 133 has astigmatism 0
  • the cross section 132 has astigmatism 1
  • the cross section 131 has astigmatism 2
  • the cross section 134 has astigmatism -1
  • the cross section 135 has astigmatism 2. It corresponds to a certain case.
  • the unit of the amount of aberration and the scale of the absolute amount of aberration at this time can take various forms depending on the conditions and how to take the standard.
  • the cross section 124 is the size 1 in the 90 ° direction
  • the cross section 125 is the size 2 in the 90 ° direction
  • the cross section 134 is the size 135 ° direction.
  • the size 1 and the cross section 135 can be expressed as the aberration corresponding to the size 2 in the 135 ° direction.
  • first-order astigmatism since it has 180 ° rotational symmetry, the aberration in the 0 ° direction and the aberration in the 180 ° direction are substantially the same. Based on this, the angular region in which the long axis direction of the beam cross section changes in the range of 0 to 180 ° is treated as one cycle in the direction of aberration, and 0 to 360 ° or -180 to -180 ° is newly treated for this one cycle. It is also possible to assign an angle such as 180 ° to express that direction. It is also possible to decompose the amount of aberration having an arbitrary direction and magnitude into components in two orthogonal directions and use a complex number expression in which each is a real part and an imaginary part. The direction of such aberration is also expressed as phase.
  • FIG. 6 shows a portion where the electron beam is converged by an electron optical system having no astigmatism or an amount of astigmatism whose effect is negligible, and a height different depending on the electron beam.
  • Each image obtained when observing the sample at the position is schematically shown.
  • FIG. 6 103 shows a cross section of an electron beam having one convergence point with the Z axis as the optical axis on a plane including the Z axis and the X axis.
  • 101 and the plurality of circles shown above it indicate the cross-sectional shapes of the electron beam on a plurality of different surfaces on the Z axis, and the horizontal and vertical directions of the figure correspond to the X-axis and the Y-axis directions, respectively. do.
  • the X-axis, Y-axis, and Z-axis are perpendicular to each other.
  • the beam cross-sectional shape 101 at an arbitrary height position is a circle.
  • the cross-sectional shape of the beam at one height position is indicated by reference numeral 101 as an example.
  • FIG. 7 schematically shows the shape of the electron beam in a state where astigmatism is added to the electron optical system with respect to the electron beam shown in FIG. 6, and images of samples at different height positions by the electron beam.
  • Reference numeral 153 is a cross section of the electron beam on a plane including the Z-axis and the X-axis. The optical axis of the electron beam coincides with the Z axis, and the X axis, Y axis, and Z axis are perpendicular to each other.
  • the value of Z shown on the left of FIG. 7 indicates the position on the Z axis, for example, the unit is ⁇ m.
  • the position on the Z axis corresponding to each figure is shown to the left, for example, the unit is ⁇ m.
  • the position on the Z axis shown in FIG. 6 and the position on the Z axis shown in FIG. 7 are the same position.
  • the horizontal and vertical directions of the figure correspond to the X-axis and Y-axis directions, respectively.
  • the cross-sectional shape of the beam is circular and isotropic in the vicinity of the upper and lower sides of the focus position, whereas in the state where the optical system has astigmatism, the focus is formed. It can be seen that the cross-sectional shape of the beam becomes anisotropic near the top and bottom of the position, and the direction changes above and below the focus position.
  • FIG. 8 shows a differential image of each of the images 201, 203, and 205 by the electron optics system having no astigmatism.
  • the image 203 when the height position of the sample is at the focus position (Z 0), the differential image 203X along the X axis of the image 203, and the differential image 203Y along the Y axis of the image 203. It is composed of.
  • the differential image shows the change (sharpness) of the image intensity (luminance) along the corresponding axis, and the intensity (luminance) increases as the gradient of the intensity of the original image becomes steeper.
  • the differential image 203X at the focus position shows a higher maximum intensity than the other differential images 201X and 205X along the X axis.
  • the differential image 203Y at the focus position shows a higher maximum intensity than the other differential images 201Y and 205Y along the Y axis. This is because the diameter of the beam cross section along the X and Y axes at the focus position is smaller than the diameter of the beam cross section along the X and Y axes at other height positions, and the obtained image is the X axis and Y. Indicates sharpness in each direction of the axis.
  • FIG. 9 shows differential images of each of the images 251, 253, and 255 by the electron optics system having astigmatism.
  • the image obtained by the beam obtained by the electron optics system having astigmatism has anisotropy of sharpness depending on the height position of the sample with respect to the focus position.
  • FIG. 10 shows the sharpness evaluation value of the image in the electron optics system having no astigmatism.
  • the horizontal axis shows the height position of the sample (position on the Z axis), and the vertical axis shows the sharpness evaluation value (X sharpness evaluation value) on the X axis of the image.
  • Each point indicates an X sharpness evaluation value in images 201, 203 and 205, respectively.
  • the horizontal axis represents the height position of the sample (position on the Z axis), and the vertical axis represents the Y sharpness evaluation value of the image.
  • Each point indicates a Y sharpness evaluation value in images 201, 203 and 205, respectively.
  • Graph 303 shows a value obtained by subtracting the Y sharpness evaluation value from the X sharpness evaluation value of each image.
  • the sharpness in each direction in the electron optics system having no astigmatism is about the same, and the decrease in sharpness in each direction that occurs when the focus position is away from the height position of the sample is the focus.
  • the position hardly depends on the direction away from the height position of the sample, and largely depends only on the amount of the distance. Therefore, the value obtained by subtracting the Y sharpness evaluation value from the X sharpness evaluation value at each height is a value close to 0 at any height.
  • FIG. 11 shows the sharpness evaluation value of the image in the electron optics system having astigmatism.
  • the horizontal axis represents the height position of the sample (position on the Z axis), and the vertical axis represents the X sharpness evaluation value of the image.
  • Each point indicates an X sharpness evaluation value in images 251, 253 and 255, respectively.
  • the X sharpness evaluation value of the image 251 of the above is the lowest.
  • the horizontal axis indicates the height position of the sample (position on the Z axis), and the vertical axis indicates the Y sharpness evaluation value of the image.
  • Each point shows the Y sharpness evaluation value in images 251, 253 and 255, respectively.
  • the X sharpness evaluation value of the image 255 of is the lowest.
  • Graph 353 shows a value obtained by subtracting the Y sharpness evaluation value from the X sharpness evaluation value of each image.
  • the X sharpness evaluation value and the Y sharpness evaluation value change according to the cross-sectional shape of the electron beam. Specifically, the sharpness evaluation value is low in the direction in which the diameter of the cross-sectional shape is large, and the sharpness evaluation value is high in the direction in which the diameter is small. Below, based on this finding, a method of performing focus adjustment and astigmatism correction will be described.
  • the method described below moves the electron beam on the sample so as to form a one-dimensional scanning locus that includes different scanning directions.
  • the sharpness evaluation value is calculated from the obtained signal electron intensity (also called signal intensity) in relation to the scanning direction.
  • Information for focus adjustment and astigmatism correction is obtained from the relationship between the sharpness evaluation value and the scanning direction.
  • FIG. 12 shows an example of a scanning locus of an electron beam (spot) on a sample.
  • FIG. 12 shows the scanning locus of the electron beam on the sample 21 in the field of view by the white arrow. As shown in FIG. 12, the scanning locus is circular.
  • the control system 42 moves the electron beam one or more times so as to form the same circular locus.
  • FIG. 13 shows the scanning directions of the electron beam at several different positions of the circular scanning locus shown in FIG.
  • the points in the scanning locus 501 can be represented by an angle ⁇ from the X axis.
  • the angle ⁇ of the position P1 is 0 °
  • the angle ⁇ of the position P3 is 90 °
  • the angle ⁇ of the position P5 is 180 °
  • the angle ⁇ of the position P7 is 270 °.
  • the electron beam is moving in the positive direction along the Y axis at position P1, that is, in the upward direction in FIG.
  • This scanning direction is 90 ° when expressed in terms of an angle ⁇ .
  • the electron beam is moving in the negative direction along the X axis, that is, to the left in FIG.
  • the angle ⁇ in the scanning direction is 180 °.
  • the electron beam is moving in the negative direction along the Y axis, that is, in the downward direction in FIG.
  • the angle ⁇ in the scanning direction is 270 °.
  • the electron beam is moving in the positive direction along the X axis, that is, to the right in FIG.
  • the angle ⁇ in the scanning direction is 0 °.
  • FIG. 14 shows the movement of the electron beam (spot) on the sample and the different positions in the scanning locus in different combinations (states) of astigmatism and the position (also referred to as Z position) on the Z axis of the sample surface.
  • the beam cross-sectional shape is shown.
  • the direction of the astigmatism STG-X in the optical system is 0 °.
  • FIG. 14 shows three different quantities of astigmatism STG-X, (-1, 0, 1).
  • FIG. 14 shows three different Z positions, (-1, 0, 1).
  • the Z position (0) is the focus position when there is no astigmatism.
  • the Z position (1) is a position above the Z position (0) (a position close to the electron beam source 1).
  • the Z position (-1) is a position below the Z position (0).
  • the focus position on the X axis exists at a position lower than the Z position (0).
  • the beam cross section shows an ellipse with a major axis along the X axis at the Z position (1) (state 541), a circle at the Z position (0) (state 542), and along the Y axis at the Z (-1). Shows an ellipse with a major axis (state 543).
  • the focus position on the X axis exists at a position higher than the Z position (0).
  • the beam cross section shows an ellipse with a major axis along the Y axis at the Z position (1) (state 547), a circle at the Z position (0) (state 548), and along the X axis at the Z (-1). Shows an ellipse with a major axis (state 549).
  • the scanning locus of the electron beam on the sample is circular as shown in FIG. 13 (circular scanning). Specifically, the spot forms a circular scanning locus counterclockwise and sequentially passes through positions P1 to P8.
  • the angles ⁇ from positions P1 to P8 are 0 °, 45 °, 90 °, 135 °, 180 ° (-180 °), 225 ° (-135 °), 270 ° (-90 °), and 315 ° (-90 °), respectively. -45 °).
  • FIG. 15 shows the relationship between the position of the spot of the electron beam and the scanning direction by the circular scanning shown in FIG.
  • the vertical axis represents the angle ⁇ and the horizontal axis represents time.
  • the solid line 571 shows the time change of the spot position
  • the broken line 572 shows the time change of the spot in the scanning direction.
  • the angular velocity of the spot is constant.
  • the angle ⁇ of the position P1 is 0, and the angle in the scanning direction is 90 °.
  • the angle in the scanning direction is advanced by 90 ° with respect to the angle at each position.
  • FIG. 16 shows the time change of the spot position and the scanning direction and the time change of the sharpness evaluation value at a plurality of Z positions due to the circular scanning in the optical system in which the astigmatism is corrected.
  • the scanning direction changes with time
  • the time change of the sharpness evaluation value indicates a change with respect to the scanning direction.
  • the sharpness evaluation value at each position in the scanning locus can be based on, for example, the absolute value of the derivative of the signal strength, and can be calculated using the difference from the signal strength immediately before the scanning. In this example, it is assumed that the structure of the sample is isotropic as shown in FIG. 12 and is always detected on the scanning locus.
  • the time change of the spot position and the scanning direction is the same as in FIG.
  • the solid lines FP1, FP2, and FP3 show the time change of the sharpness evaluation value at different Z positions, respectively. Since the position of the spot and the scanning direction change with time, FIG. 15 shows the change of the sharpness evaluation value with respect to the position and the scanning direction in the scanning locus.
  • the sharpness evaluation value at any Z position is constant, and the sharpness evaluation value does not depend on the scanning direction of the spot. Since the astigmatism is corrected, as shown in FIG. 14, the cross-sectional shape of the electron beam is circular at any Z position (states 544, 545, 546). As described above, when the spot shape (the cross-sectional shape of the beam above the sample) is circular, the sharpness evaluation value does not show a large change with respect to the scanning direction of the spot.
  • the sharpness evaluation value depends on the relationship between the spot shape and the scanning direction of the spot. The smaller the spot diameter in the scanning direction, the higher the sharpness can be obtained.
  • the spot shape in the optical system in which astigmatism is corrected is circular. Therefore, the same sharpness evaluation value can be obtained in any scanning direction.
  • the sharpness evaluation value FP1 is the smallest and the sharpness evaluation value FP3 is the largest.
  • the spot diameter indicating the sharpness evaluation value FP3 is the smallest, and the spot diameter indicating the sharpness evaluation value FP1 is the largest.
  • the spot corresponding to the sharpness evaluation value FP3 is in the state where the sample is most focused.
  • FIG. 17 shows the time change of the spot position and the scanning direction and the time change of the sharpness evaluation value due to the circular scanning in the optical system in which the astigmatism of 0 ° is present.
  • the upper graph is similar to the graph of the spot shape and the time change in the scanning direction of the spot shown in FIGS. 15 and 16.
  • the graph in the middle shows the change in the sharpness evaluation value due to the elliptical spot having a major axis along the X axis.
  • the solid line 574 shows the change in the sharpness evaluation value due to the spot having a longer major axis and a shorter minor axis (astigmatism is larger.
  • the broken line 575 has a shorter major axis and a shorter minor axis.
  • the change in the sharpness evaluation value due to a longer spot small astigmatism; corresponding to 122 in FIG. 5 is shown.
  • the sharpness evaluation values 574 and 575 show the same change with respect to the change in the scanning direction of the spot. Specifically, the sharpness evaluation values 574 and 575 continuously change in the same period as the circular scan (scanning locus).
  • the sharpness evaluation values 574 and 575 show the maximum value when the angle ⁇ in the spot scanning direction is the direction perpendicular to the major axis (90 ° or ⁇ 90 °).
  • the sharpness evaluation values 574 and 575 show the minimum value when the angle ⁇ in the spot scanning direction is a direction parallel to the major axis (0 ° or 180 ° ( ⁇ 180 °)).
  • the sharpness evaluation value for one spot becomes higher as the spot diameter in the scanning direction of the spot is smaller.
  • the minor axis of a spot with a longer major axis (corresponding to 121 in FIG. 5) is shorter than the minor axis of a spot having a shorter major axis (corresponding to 122 in FIG. 5). Therefore, the sharpness evaluation value 574 of a spot having a longer major axis has a larger amplitude (a larger maximum value and a smaller minimum value) than the sharpness evaluation value 575 of a spot having a shorter major axis.
  • the lower graph shows the change in sharpness evaluation value due to the elliptical spot having a major axis along the Y axis.
  • the solid line 577 shows the change in the sharpness evaluation value due to the spot having a longer major axis and a shorter minor axis (astigmatism is larger, which corresponds to 125 in FIG. 5), and the broken line 578 has a shorter major axis and a shorter minor axis.
  • the change in the sharpness evaluation value due to a longer spot smaller astigmatism; corresponding to 124 in FIG. 5 is shown.
  • the sharpness evaluation values 577 and 578 show the same change with respect to the change in the scanning direction of the spot. Specifically, the sharpness evaluation values 577 and 578 change continuously in the same period as the circular scan (scanning locus).
  • the sharpness evaluation values 577 and 578 show the maximum value when the angle ⁇ in the spot scanning direction is the direction perpendicular to the major axis (0 ° or 180 ° ( ⁇ 180 °)).
  • the sharpness evaluation values 574 and 575 show the minimum value when the angle ⁇ in the spot scanning direction is a direction parallel to the major axis (90 ° or ⁇ 90 °).
  • the sharpness evaluation value by one spot becomes higher as the spot diameter in the scanning direction of the spot is smaller.
  • a sharpness rating of 577 for a spot with a longer major axis (corresponding to 125 in FIG. 5) has a larger amplitude (larger maximum) than a sharpness rating of 578 for a spot with a shorter major axis (corresponding to 124 in FIG. 5). And a smaller minimum value).
  • the sharpness evaluation value with respect to the scanning direction indicates the phase according to the direction of the long axis of the elliptical spot in the optical system in which astigmatism exists. Further, as described with reference to each of the middle graph and the lower graph, the larger the astigmatism, the longer the long axis of the elliptical spot and the shorter the short axis, the larger the amplitude of the sharpness evaluation value.
  • FIG. 18 shows the time change of the signal intensity obtained in one cycle of circular scanning and the sharpness evaluation value (absolute value of the differential value of the signal intensity) in different combinations (states) of astigmatism and the Z position of the sample. Indicates a change over time.
  • the upper graph shows the time change of the signal intensity
  • the lower graph shows the time change of the sharpness evaluation value.
  • FIG. 18 shows the result obtained by the simulation, and the structure of the sample is isotropic as shown in FIG. 12, and corresponds to the result when it is always detected on the scanning locus.
  • the sharpness evaluation value is almost constant in each of the states 611 to 615 in which astigmatism does not exist in the optical system. Further, the state 612 of the Z position (0), which is the focus state, shows the largest sharpness evaluation value. This state 612 is the optimum state for astigmatism correction and focus adjustment. In the states 611 to 615, the sharpness evaluation value becomes smaller as the Z position is separated from the optimum state 612.
  • the phase of the sharpness evaluation value in the states 608, 609, and 610 in which the Z position is positive is different from the phase of the sharpness evaluation value in the state 606 in which the Z position is negative, and the phases are opposite.
  • the state 608 at the Z position (1) shows the amplitude of the largest sharpness evaluation value.
  • the state of the Z position (-1) also shows a large amplitude of the sharpness evaluation value.
  • the Z position (1) is the focus position on the Y axis
  • the Z position (-1) is the focus position on the X axis.
  • the states 616 to 620 of STG-X of -1 local peaks of the sharpness evaluation value are gathered in one scanning cycle except for the state 617 of the Z position (0), and show a macroscopic periodic change.
  • the phase of the sharpness evaluation value in the states 618, 619, and 620 in which the Z position is positive is different from the phase of the sharpness evaluation value in the state 616 in which the Z position is negative, and the phases are opposite.
  • the state 619 at the Z position (2) or the state 616 at the Z position (-2) indicates the amplitude of the largest sharpness evaluation value.
  • the Z position (2) is the focus position on the X axis
  • the Z position (-2) is the focus position on the Y axis.
  • the sharpness evaluation values of the states 616 and 618 to 620 have a phase opposite to the sharpness evaluation value of the same Z position where STG-X is positive.
  • FIG. 19 shows a change in signal intensity with respect to a spot position due to circular scanning, and a change in sharpness evaluation value in response to a change in signal intensity.
  • the spot position is represented by an angle with the reference axis (X axis) as 0 °, and is associated with the spot scanning direction as described above. That is, FIG. 19 shows changes in the signal strength and the sharpness evaluation value with respect to the scanning direction.
  • the amplitude (AC component), sum or average value (DC component), and phase can be determined from the sharpness evaluation value by a preset calculation.
  • the amplitude of the AC component of the sharpness evaluation value indicates the magnitude of astigmatism.
  • the sum or average value (DC component) of the sharpness evaluation values indicates the amount of focus shift.
  • the phase of the AC component of the sharpness evaluation value indicates the direction of astigmatism (also referred to as the phase of astigmatism) of the optical system.
  • the control system 42 moves the electron beam on the sample in a circular shape to acquire the intensity of the signal electrons detected by the detector.
  • the control system 42 calculates the sharpness evaluation value of the signal strength at each point in the scanning locus. As a result, the control system 42 obtains a sharpness evaluation value associated with the scanning direction of the electron beam as shown in FIG.
  • the control system 42 determines each value of the amplitude of the AC component, the DC component, and the phase of the AC component in the sharpness evaluation value that changes according to the change in the scanning direction by a preset calculation method.
  • the scanning direction of the spot of the electron beam is known, and the control system 42 can determine the amplitude and the phase by extracting a component (AC component) having a periodicity corresponding to the scanning direction.
  • the DC component can be calculated from the measurement data before extracting the frequency component or from the extracted frequency component.
  • the control system 42 can set the focus position and the astigmatism correction amount to appropriate values by feeding back the obtained values to the focus position adjustment mechanism and the astigmatism correction mechanism.
  • the spot of the electron beam on the sample has a two-fold symmetric shape with first-order astigmatism, that is, an ellipse
  • the major / minor axis directions of the spot in one circular scan. Is scanned twice.
  • the sharpness evaluation value has a change with a period of 2 hertz while the scanning direction changes in the range of 0 ° to 360 °.
  • the spot of the electron beam on the sample has a shape symmetrical three times
  • the sharpness evaluation value changes with a period of 3 hertz with respect to the change in the scanning direction, and the shape of the spot of the electron beam has.
  • Components with different periodicity appear in the change of the sharpness evaluation value according to the symmetry of. Since the symmetry of the electron beam in the charged particle beam often has a symmetry of 6 times or less, the component of the period corresponding to the change in the scanning direction appearing in the sharpness evaluation value is also often 6 hertz. It becomes as follows.
  • a component having periodicity with respect to such a change in the scanning direction may include a plurality of frequency components at the same time, and the evaluation method is a method of Fourier transforming the sharpness evaluation value with respect to the scanning direction, or a method of Fourier transforming the sharpness evaluation value with respect to the scanning direction.
  • the evaluation method is a method of Fourier transforming the sharpness evaluation value with respect to the scanning direction, or a method of Fourier transforming the sharpness evaluation value with respect to the scanning direction.
  • FIG. 20 is a flowchart showing an example of automatic focus adjustment and astigmatism correction by the control system 42.
  • the control system 42 sets the focus (position) as an initial condition (S101).
  • the control system 42 scans the electron beam for one cycle on the sample (S102). For example, the scanning locus of the electron beam spot on the sample is circular as described above.
  • the control system 42 sequentially acquires the signal strength corresponding to each point in the scanning locus, and calculates the sharpness evaluation value at each point (S103).
  • the sharpness evaluation value can be calculated from, for example, the absolute value of the difference from the signal strength at the immediately preceding position.
  • the control system 42 associates the scanning direction of each position in the scanning locus with the sharpness evaluation value, and analyzes the relationship between them (S104).
  • the arctangent (reverse) with respect to the differential value of the current amount of the scan signal flowing through the scan coil in each direction used when scanning the electron beam, or the amount of change.
  • a method of applying the tangent function) or the like can be used.
  • the control system 42 calculates the evaluation value based on the amplitude and phase of the AC component and the average value (DC component) from the change in the sharpness evaluation value within one scanning cycle by a preset calculation method. Calculate (S105).
  • the evaluation value based on the amplitude indicates the evaluation result of the amount of astigmatism
  • the evaluation value based on the phase indicates the direction of the astigmatism of the optical system.
  • the evaluation value based on the average value indicates the evaluation result of the amount of focus shift.
  • the control system 42 determines whether the current focus position satisfies the preset end condition (S106). For example, when the range of the focus position for acquiring the sharpness evaluation value is preset and the current focus position is the boundary of the range, the current focus position satisfies the end condition. If the current focus position does not satisfy the end condition (S106: NO), the control system 42 changes the focus position by a predetermined amount (S107), and then returns to step S102.
  • the control system 42 determines the optimum focus condition that maximizes the focus evaluation value (S108). As described above, the evaluation based on the average value in the changing sharpness evaluation value corresponds to the focus evaluation value. The control system 42 determines the focus condition indicating the maximum focus evaluation value as the optimum focus condition in the focus evaluation value at each of the observed focus positions (focus conditions). The control system 42 sets the determined optimum focus condition in the focus adjustment mechanism (S109).
  • the control system 42 sets the astigmatism correction condition according to the relational expression set in advance from the change of the evaluation value based on the amplitude of the sharpness evaluation value already acquired and the evaluation value based on the phase with respect to the change of the focus position.
  • the relational expression used in this case is, for example, the magnitude of astigmatism from the difference between the focus conditions corresponding to the two conditions in which the amplitude of the sharpness evaluation value becomes maximum when the focus position is changed, and the sharpness.
  • the direction of astigmatism is obtained from the phase information of the evaluation value. This is the optimum astigmatism correction condition.
  • the control system 42 sets the determined optimum astigmatism correction condition in the astigmatism correction mechanism (S111).
  • control system 42 may perform only one of focus adjustment and astigmatism correction.
  • the control system 42 generates information for performing focus adjustment and astigmatism correction, and automatically performs focus adjustment and astigmatism correction according to the information.
  • the control system 42 may present information for performing focus adjustment and astigmatism correction to the user in the output device 414 to assist the user in focus adjustment and astigmatism correction. This point is the same in the focus adjustment method described below.
  • FIG. 21 shows a flowchart of automatic focus adjustment.
  • the control system 42 sets the focus (position) as an initial condition (S151).
  • the control system 42 scans the electron beam for one cycle on the sample (S152).
  • the scanning locus of the electron beam spot on the sample is circular as described above.
  • the control system 42 sequentially acquires the signal electron intensity corresponding to each point in the scanning locus, and calculates the sharpness evaluation value at each point (S153).
  • the sharpness evaluation value can be calculated from, for example, the absolute value of the difference from the signal strength at the immediately preceding position.
  • the control system 42 associates the scanning direction of each position in the scanning locus with the sharpness evaluation value, and analyzes the relationship between them (S154).
  • the control system 42 calculates a sharpness evaluation value corresponding to two predetermined orthogonal scanning directions (referred to as a vertical direction and a horizontal direction) (S155). Although the accuracy of the focus adjustment may decrease, the sharpness evaluation value in the scanning directions that are not orthogonal to each other may be used. Further, the control system 42 generates a focus evaluation value from those values (S156). The control system 42 generates a focus evaluation value based on, for example, the product or sum of the sharpness evaluation values in the two scanning directions. In this way, by generating the focus evaluation value from the sharpness evaluation values in different directions, it is possible to appropriately adjust the focus in various sample structures.
  • the control system 42 determines whether the current focus position satisfies the preset end condition (S157). For example, when the range of the focus position for acquiring the sharpness evaluation value is preset and the current focus position is the boundary of the range, the current focus position satisfies the end condition. If the current focus position does not satisfy the end condition (S157: NO), the control system 42 changes the focus position by a predetermined amount (S158), and then returns to step S102.
  • the control system 42 determines the optimum focus condition that maximizes the focus evaluation value (S159).
  • the control system 42 determines the focus condition indicating the maximum focus evaluation value as the optimum focus condition in the focus evaluation value at each of the observed focus positions (focus conditions).
  • the control system 42 sets the determined optimum focus condition in the focus adjustment mechanism (S160).
  • the control system 42 can correct the focus shift or astigmatism based on the relationship between the sharpness evaluation value and the scanning direction along a different axis.
  • the electron beam spot
  • the scanning locus of the electron beam is not limited to the above example, and focus adjustment and / or astigmatism correction can be performed by the signal intensities of various scanning loci.
  • FIG. 22 shows some other examples 511-522 of scanning trajectories of electron beams (spots) on a sample.
  • Each scan locus includes positions of the electron beam in different scan directions.
  • the scanning loci 511, 512, 514, and 516 are composed of curved lines, and the other scanning loci are composed of a plurality of straight lines.
  • the scanning locus may not be closed, and as shown in the scanning loci 517 to 522, the scanning locus may be closed. Further, even if the scanning locus is a free curve having no periodicity or symmetry, it is possible to evaluate the focus shift or astigmatism by using the above-mentioned method.
  • the control system 42 may also move the electron beam so as to form the scanning locus once or to form the same scanning locus multiple times. As the number of formations is smaller, the time for focus adjustment and astigmatism correction can be shortened, and the influence of the electron beam on the sample can be reduced.
  • the control system 42 may form the same scanning locus a plurality of times, and determine the sharpness evaluation value of the signal intensity associated with the scanning direction at the same position based on the signal intensity a plurality of times at the same position. Thereby, the influence of noise can be reduced.
  • the scanning loci 511 to 516 include different positions in the same scanning direction.
  • the control system 42 can calculate the sharpness evaluation value in one scanning direction from the signal strength at one or a plurality of positions selected from different positions. For example, the largest sharpness evaluation value can be selected at different positions.
  • the axis is not limited to a specific axis such as the X axis and the Y axis, and may have an arbitrary direction.
  • the scanning loci 511, 512, 514 or 515 indicate scanning directions that continuously change from 0 ° to 360 °, and the scanning trajectories 521 and 522 also include many scanning directions.
  • the scanning direction change of the scanning locus can have an angle range of 90 ° or more. By having this angle range, it is possible to obtain information on the sharpness in two orthogonal directions, so that at least the focus adjustment can be performed more appropriately.
  • the change in the scanning direction of the scanning locus can have an angle range of 180 ° or more. By having this angle range, it is possible to obtain information on the sharpness in substantially all directions, so that astigmatism can be corrected more appropriately in addition to the focus adjustment.
  • the scanning loci 511, 512, 514 or 515 is used. These include all scanning directions, which change continuously (always).
  • FIG. 23 shows an example of correcting the focus shift by combining the circular scanning and the change of the astigmatism of the optical system.
  • FIG. 23 shows an example of adding known astigmatism to an optical system in which astigmatism has been corrected while repeating circular scanning, for example.
  • FIG. 23 shows the time change of the spot position on the sample represented by the angle, the time change of the non-point aberration correction amount (STG-X), and the X-axis on the sample from the top graph to the bottom graph.
  • FIG. 23 assumes a state in which the sample is placed at a position above the Z position (0) in the examples described so far.
  • the scanning locus is circular and the angular velocity is constant.
  • Other scanning loci 511, 512, 514, 515 and the like can also be used.
  • the scanning locus of the spot is a circle.
  • the probe shape is an isotropic circle at any height as described above, so that the astigmatism correction amount (STG-X) is 0 (in FIG. 23).
  • the spot diameter (solid line) along the X-axis and the spot diameter (broken line) along the Y-axis on the sample in the vertical line 701 (corresponding to the vertical line 701) are equal values.
  • the astigmatism correction amount (STG-X) gradually increases in the positive direction, and the spot diameter along the Y axis on the sample becomes smaller accordingly, and the spot along the X axis on the sample. The diameter increases.
  • the probe repeatedly changes its scanning direction on the sample at a cycle earlier than the change in the astigmatism correction amount (STG-X) by circular scanning.
  • the sharpness evaluation value obtained from the signal obtained when the probe is scanned in the X-axis direction is obtained from the signal obtained when the probe is scanned in the Y-axis direction at the spot diameter along the X-axis on the sample.
  • the sharpness changes correspondingly to the spot diameter along the Y axis on the sample.
  • the spot diameter along the Y-axis on the above-mentioned sample becomes the minimum, and the sharpness evaluation value becomes the maximum when the probe is scanned in the Y-axis direction at a timing close to that.
  • the astigmatism correction amount (STG-X) corresponding to [1] and [2] has the same magnitude but only the code is different. It becomes a value.
  • the astigmatism correction amount (STG-X) corresponding to either or both of such [1] and [2] can be obtained, and the focus shift amount can be obtained by converting the astigmatism correction amount (STG-X) according to a predetermined relational expression.
  • the beam scanning direction when the maximum sharpness evaluation value shown in [1] or [2] is obtained that is, It can be judged by evaluating the phase of the change in the sharpness evaluation value.
  • the Z position is positive and the focus position is shifted downward with respect to the sample.
  • the phase of the sharpness evaluation value is opposite to the phase of FIG. 23.
  • the focus shift can be corrected by feeding back the information on the amount of focus shift obtained in this way to the Z position adjustment of the sample stage or the control parameter adjustment of the objective lens.
  • the focus position can be determined without adjusting the Z position of the sample stage or changing the control parameters of the objective lens. Therefore, the optimum condition of the focus position can be determined at a higher speed.
  • FIG. 24 shows an example of adjusting astigmatism by combining circular scanning and changes in astigmatism of the optical system.
  • FIG. 24 shows an example in which, for example, circular scanning is repeated to add a known astigmatism to an optical system in which astigmatism is not corrected and exists in a certain amount.
  • FIG. 24 shows the time change of the spot position on the sample represented by the angle and the time of the non-point aberration correction amount (X-direction non-point correction amount, STG-X) from the top graph to the bottom graph. Changes, temporal changes in the spot diameter (solid line) along the X-axis and spot diameter (broken line) along the Y-axis on the sample, the width of the probe with respect to the scanning direction, and the sharpness obtained for the signal obtained by scanning. The time change of the degree evaluation value is shown.
  • FIG. 24 assumes a state in which the sample is placed at a position above the Z position (0) in the examples described so far.
  • the scanning locus is circular and the angular velocity is constant.
  • Other scanning loci 511, 512, 514, 515 and the like can also be used.
  • the scanning locus of the spot is a circle.
  • the astigmatism correction amount (STG-X) is 0 (corresponding to the vertical line 702 in FIG. 24).
  • the spot diameter (solid line) along the X-axis and the spot diameter (broken line) along the Y-axis on the sample in the state) are different values.
  • the amplitude of the periodic change of the sharpness evaluation value according to the cycle of the circular scanning described above becomes the minimum under any condition.
  • the amplitude of the periodic change of the sharpness evaluation value is minimized under the condition shown in [3].
  • the astigmatism is corrected in the same procedure for the other direction, which is appropriate for the astigmatism component in any direction. Can be corrected.
  • the astigmatism correction amount in the above example may be performed by astigmatism correction in any direction obtained by synthesizing astigmatism correction components (STG-X, STG-Y) in different directions that are orthogonal to each other. ..
  • astigmatism correction components STG-X, STG-Y
  • STG-X, STG-Y astigmatism correction components
  • the phase component of vibration generated in the sharpness evaluation value of the signal obtained by performing circular scanning in the state where the astigmatism correction amount is 0 the state corresponding to the vertical line 702 in FIG. 24. It may be carried out using an astigmatism correction component that directly evaluates the direction of astigmatism and corrects the astigmatism in that direction.
  • circular scanning is performed while changing the amount of astigmatism correction in one direction, and the phase component of vibration generated in the sharpness evaluation value of the obtained signal is used to determine the astigmatism in each state.
  • the astigmatism component in the other direction orthogonal to the direction in which the astigmatism correction was performed is measured. Based on the result, it is possible to simultaneously correct the orthogonal aberration components in the two directions.
  • the spot diameter along the X axis on the sample becomes the minimum under any of the conditions.
  • the sharpness evaluation value becomes maximum when the probe is scanned in the X-axis direction at a timing close to that.
  • the conditions corresponding to this are shown in FIG. 24 by [1].
  • the spot diameter along the Y-axis on the sample becomes the minimum, and the sharpness evaluation value becomes the maximum when the probe is scanned in the Y-axis direction at a timing close to that.
  • the conditions corresponding to this are shown in FIG. 24 by [2].
  • the average of the astigmatism correction amount (STG-X) corresponding to [1] and [2] is obtained, and the amount of focus shift with respect to the sample can be measured by converting the astigmatism correction amount (STG-X) according to a predetermined relational expression.
  • the difference between the condition shown in [3] in FIG. 24 and the astigmatism correction amount (STG-X) between [1] or [2] is obtained and converted by a predetermined relational expression.
  • the amount of focus shift with respect to the sample can also be measured.
  • the optimum conditions for the focus position and astigmatism correction can be determined without adjusting the Z position of the sample stage or changing the control parameters of the objective lens.
  • the focus position or the sample position can be changed instead of the astigmatism correction amount.
  • the graph of the time change of the X astigmatism correction amount (STG-X) shown below the graph at the top of FIG. 24 is shown as a change in the focus position or a change in the sample position (change in the focus position). Similar results can be obtained for the other elements shown in the graph by viewing as (the sign of the direction is inverted).
  • the focus position or the sample position is changed in a state where circular scanning is repeated, and the sharpness evaluation value obtained from the signal intensity obtained at that time is an example already described.
  • a plurality of generally known means can be used.
  • a filter or transformation such as a differential filter, a Wavelet transformation, or a Fourier transform is applied to the obtained signal strength, and the obtained coefficient is calculated as it is or based on a predetermined formula from the obtained coefficient. It can be evaluated using the numerical values.
  • the calculation of evaluation values for adjusting astigmatism and / or focus can also be obtained using a filter with a given kernel.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations described.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • each of the above-mentioned configurations, functions, processing units, etc. may be realized by hardware, for example, by designing a part or all of them with an integrated circuit.
  • each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function.
  • Information such as programs, tables, and files that realize each function can be placed in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card or an SD card.
  • control lines and information lines indicate those that are considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it can be considered that almost all configurations are interconnected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Beam Exposure (AREA)

Abstract

荷電粒子線システムは、荷電粒子源からの荷電粒子線を、荷電粒子光学系を介して試料に照射する荷電粒子線装置と、荷電粒子線装置を制御する制御システムと、を含む。制御システムは、荷電粒子線を、走査軌跡を形成するように試料上で走査し、走査軌跡における異なる走査方向に関連付けられた信号強度の評価値を決定する。制御システムは、評価値と異なる走査方向との関係に基づき、荷電粒子光学系が備えるフォーカスずれ及び収差係数の少なくとも一方に関する情報を生成する。

Description

荷電粒子線システム
 本開示は、荷電粒子線システムに関する。
 本願の背景技術として、例えば特開2003-016983号公報(特許文献1)がある。では、特開2003-016983号公報には、「2種類のスキャン方向で焦点を変化させながら取得した少数の2次元の粒子画像を画像処理することによって非点隔差の方向・大きさと焦点オフセットを検出し、これを2種類の非点収差補正量と焦点補正量に一括して変換して補正を行なうことによって高速・高精度の自動非点・焦点調整を実現する。また、非点較差の誤差を補正してより高精度な自動非点・焦点調整を実現する。さらに、本自動非点収差・焦点調整を用いて高精度の検査・計測を長時間にわたって実現する装置を実現する。」ことが記載されている(要約参照)。
特開2003-016983号公報
 特許文献1の技術によれば、荷電粒子線装置において、フォーカスや非点収差を自動的に調整することができる。しかし、特許文献1の技術は、2次元の粒子画像を取得してそれらの画像処理を行うことが必要である。荷電粒子線装置を利用する分野においては、より高速にフォーカスや非点収差を調整することができる技術が望まれている。
 本開示の一態様の荷電粒子線システムは、荷電粒子源からの荷電粒子線を、荷電粒子光学系を介して試料に照射する荷電粒子線装置と、前記荷電粒子線装置を制御する制御システムと、を含み、前記制御システムは、前記荷電粒子線を、走査軌跡を形成するように試料上で走査し、前記走査軌跡における異なる走査方向に関連付けられた信号強度の評価値を決定し、前記評価値と前記異なる走査方向との関係に基づき、前記荷電粒子光学系が備えるフォーカスずれ及び収差の少なくとも一方に関する情報を生成する。
 本開示の一態様によれば、荷電粒子線装置において、フォーカス及び非点収差の少なくとも一方をより高速に調整できるようになる。
走査電子顕微鏡システムの基本構成を模式的に示す。 走査透過電子顕微鏡システムの基本構成を模式的に示す。 計算機のハードウェア構成例を示す。 非点収差補正装置の構成例を示す。 電子光学系が有する非点収差の方向及び大きさの変化に対する電子ビーム断面形状の変化例を示す。 非点収差を有していない電子光学系による電子ビームの形状、及び、当該電子ビームによる異なる高さ位置の試料の画像を、模式的に示している。 所定の非点収差を有している電子光学系による電子ビームの形状、及び、当該電子ビームによる異なる高さ位置の試料の画像を、模式的に示している。 非点収差を有してない電子光学系による画像それぞれの、微分画像を示す。 非点収差を有している電子光学系による画像それぞれの、微分画像を示す。 非点収差を有していない電子光学系における画像の鮮鋭度評価値を示す。 非点収差を有している電子光学系における画像の鮮鋭度評価値を示す。 試料上の電子ビーム(スポット)の走査軌跡の例を示す。 図12に示す円形の走査軌跡のいくつかの異なる位置における電子ビームの走査方向を示す。 非点収差と試料面のZ軸上の位置(Z位置とも呼ぶ)との異なる組み合わせ(状態)において、試料上の電子ビーム(スポット)の動きと、走査軌跡内の異なる位置におけるビーム断面形状とを示す。 図14に示す円形走査による、電子ビームのスポットの位置と走査方向との関係を示す。 非点収差が補正された光学系での円形走査による、スポット位置と走査方向の時間変化、及び、複数のZ位置での鮮鋭度評価値の時間変化を示す。 0°の非点収差の存在する光学系での円形走査による、スポット位置と走査方向の時間変化、及び、鮮鋭度評価値の時間変化を示す。 非点収差と試料のZ位置との異なる組み合わせ(状態)における、円形走査1周期で得られる信号強度の時間変化と、鮮鋭度評価値(信号強度の微分値の絶対値)の時間変化とを示す。 円形走査によるスポット位置に対する信号強度の変化、及び信号強度の変化に応じた鮮鋭度評価値の変化を示す。 制御システムによる、自動フォーカス調整及び非点収差補正の例を示すフローチャートである。 制御システムによる、自動フォーカス調整のフローチャートを示す。 試料上での電子ビーム(スポット)の走査軌跡の例を示す。 非点収差量を変化させた際の、直行する走査方向(X軸に沿った方向及びY軸に沿った方向)における、スポット径と鮮鋭度評価値の変化を示す。 円形走査と光学系が持つ非点収差の変化を組み合わせて非点収差を調整する例を示す。
 以下、添付図面を参照して実施例を説明する。実施例は本開示を実現するための一例に過ぎず、本開示の技術的範囲を限定するものではないことに注意すべきである。各図において共通の構成については同一の参照符号が付されている。以下において、荷電粒子ビームを試料に照射する荷電粒子線装置の例として、電子ビームを使用した試料の観察装置(電子顕微鏡)を示すが、イオンビームを使用する装置の他、計測装置や検査装置に対しても、本開示の特徴を適用することができる。
 以下においては、荷電粒子線のフォーカスずれ及び非点収差の少なくとも一方を補正するための情報を生成するための方法を説明する。当該方法は、荷電粒子線を、一次元走査軌跡を形成するように試料上で走査し、走査軌跡における異なる走査方向に関連付けられた信号強度の評価値を決定する。評価値と走査方向との関係に基づき、荷電粒子線のフォーカスずれ及び非点収差の少なくとも一方を補正するための情報を生成する。このように、一次元走査軌跡における走査方向と評価値との関係を参照することで、基フォーカスずれ又は非点収差を補正するための情報を迅速に生成できる。
 図1は、走査電子顕微鏡(SEM)システムの基本構成を模式的に示す。SEMシステムは、SEM装置50及び制御システム42を含む。SEM装置50は荷電粒子線装置の例であり、電子ビーム源1、引き出し電極2、コンデンサレンズ11、コンデンサ絞り12、軸調整偏向器13、非点収差補正装置14、スキャン偏向器15、及び対物レンズ20を含む。図1において、一つのコンデンサレンズのみが例として符号11で指示されている。
 非点収差補正装置14はコイルを組み合わせて構成されるもののほか、多極子によって構成されるもの、又は複数の多極子の組み合わせによって構成された球面、又は各種収差補正を行う装置であってもよい。また各偏向器は異なる高さに配置された複数の偏向器を組み合わせて所定の用途に使用することも可能である。
 電子ビーム源1は荷電粒子源の例であり、1次電子ビームを発生する。コンデンサレンズ11は、1次電子ビームの収束条件を調整する。コンデンサ絞り12は、1次電子ビームの拡がり角を制御する。軸調整偏向器13は、対物レンズ20に対する1次電子ビームの位置を調整する。非点収差補正装置14が、試料21に入射する1次電子ビーム(プローブ)のビーム形状を調整する。スキャン偏向器15は試料21に入射する1次電子ビームをラスタ走査する。対物レンズ20は、1次電子ビームの試料21に対するフォーカス位置を調整する
 SEM装置50は、さらに、試料ステージ22、反射板16及び検出器26を含む。試料ステージ22は、試料21の試料室内での位置を決める。試料21から発生した電子、または試料21から反射板16に向かった電子が衝突して生じた電子(これらを信号電子とも呼ぶ)は、検出器26によって検出される。
 制御システム42は、SEM装置50を制御する。例えば、制御システム42は、一次電子ビームの加速電圧や引出し電圧、並びに、レンズ及び偏向器等の構成要素の電流を制御する。また、制御システム42は、試料ステージ22を制御することで、試料21に対する1次電子ビームの照射位置、一次電子ビームのフォーカス位置に対する試料21の位置関係を調整することができる。制御システム42は、検出器26のゲインやオフセットを制御し、検出された信号電子による画像を生成する。
 制御システム42は、制御装置40及び計算機41を含む。計算機41は、制御装置40を介して、SEM装置50の構成要素を制御する。計算機41は、プログラム及びプログラムが使用するデータを格納する記憶装置並びに記憶装置に格納されているプログラムに従って動作するプロセッサを含む。プログラムは、SEM装置50の制御プログラム及び画像処理プログラムを含む。
 計算機41は、さらに、ネットワークに接続するためのインタフェース及びユーザインタフェースを含む。ユーザインタフェースは、画像を表示する表示装置及びユーザが計算機41に指示を行うための入力装置を含む。計算機41は、制御装置40を制御する。制御装置40は、AD変換器、DA変換器、メモリ、及びFPGAもしくはマイクロプロセッサ等の演算装置等の構成要素を含む。
 SEM像を得る工程を説明する。引き出し電極2は、電子ビーム源1から一次電子ビームを所定引出し電圧で引き出す。光軸と平行な方向をZ方向、光軸と直交する面をXY平面とする。制御システム42は、試料ステージ22のZ位置調整または対物レンズ20の制御パラメータ調整によって、一次電子ビームが試料21の上で収束するように合わせる。この調整は粗調整である。
 制御システム42は、フォーカス粗調整の後、試料ステージ22のXY移動機構を用いて電子光学系調整用の視野を選択する。この際、視野の選択は装置の使用者によって直接試料ステージ22のXY移動機構を操作することによって行われてもよい。制御システム42は、当該電子光学系調整用視野で、軸ずれ、フォーカス及び非点を補正する。具体的には、制御システム42は、軸調整偏向器13、非点収差補正装置14、及び対物レンズ20の調整パラメータを補正する。
 次に、制御システム42は、試料ステージ22を用いて、観察視野を撮影用視野に移動し、鮮鋭な画像が観察できる様に対物レンズ20のフォーカスをユーザ操作により微調整した後又はフォーカス調整機能によって調整された適切なフォーカス位置において、像を取得する。
 図2は、走査透過電子顕微鏡(STEM)として使用されるシステムの基本構成を模式的に示す。STEMシステムは、STEM装置51及び制御システム42を含む。STEM装置51は、電子ビーム源1、引き出し電極2、コンデンサレンズ11、コンデンサ絞り12、軸調整偏向器13、非点収差補正装置14、スキャン偏向器15、対物レンズ20、及び試料ステージ22を含む。図2において、一つのコンデンサレンズのみが例として符号11で指示されている。これらの機能はSEM装置50と同様である。
 STEM装置51は、試料21の後側に、対物絞り23、軸調整偏向器24、制限視野絞り25、結像系レンズ30、及び検出器31を含む。図2において、一つの結像系レンズのみが例として符号30で指示されているほか、結像系レンズについてはSTEMとしての機能を得る上で必ずしも必須ではない。結像系レンズ30は、試料21を透過した透過電子ビームを結像する。検出器31は、結像された電子ビームを検出する。
 制御システム42は、検出された信号電子による画像を生成する。制御システム42は、SEMシステムと同様に、制御装置40及び計算機41を含む。計算機41が実行するプログラムは、STEM装置51の制御プログラム及び画像処理プログラムを含む。
 STEM像を得る工程を説明する。引き出し電極2は、電子ビーム源1から一次電子ビームを所定引出し電圧で引き出す。制御システム42は、試料ステージ22上の試料21に、一次電子ビームを照射する。
 制御システム42は、試料ステージ22のZ位置調整または対物レンズ20の制御パラメータ調整によって、一次電子ビームのフォーカス粗調整を行う。その後、制御システム42は、試料ステージ22のXY移動機構を用いて電子光学系調整用の視野を選択する。制御システム42は、当該電子光学系調整用視野で、光学系のずれ、フォーカス及び非点収差を補正する。具体的には、軸調整偏向器13、非点収差補正装置14、及び対物レンズ20の調整パラメータを補正する。
 次に、制御システム42は、試料ステージ22を用いて、観察視野を撮影用視野に移動し、鮮鋭な画像が観察できる様に対物レンズ20のフォーカスをユーザ操作により微調整した後又はフォーカス追従機能により適切なフォーカス位置に調整した後において、画像を取り込む。
 制御システム42は、コンデンサレンズ11、軸調整偏向器13、非点収差補正装置14を用いて、一次電子ビームを試料21に対して入射させる。制御システム42は、スキャン偏向器15により一次電子ビームを走査する。一次電子ビームが試料21に入射すると、大部分の電子は試料21を透過する。結像系レンズ30は透過電子ビームを検出器31上に適切な角度で入射させ、STEM像が得られる。STEM像の倍率はスキャン偏向器15を制御する電流によって設定される。
 図3は、計算機41のハードウェア構成例を示す。計算機41は、プロセッサ411、メモリ(主記憶装置)412、補助記憶装置413、出力装置414、入力装置415、及び通信インタフェース(I/F)417を含む。上記構成要素は、バスによって互いに接続されている。メモリ412、補助記憶装置413又はこれらの組み合わせは記憶装置であり、プロセッサ411が使用するプログラム及びデータを格納している。
 メモリ412は、例えば半導体メモリから構成され、主に実行中のプログラムやデータを保持するために利用される。プロセッサ411は、メモリ412に格納されているプログラムに従って、様々な処理を実行する。プロセッサ411がプログラムに従って動作することで、様々な機能部が実現される。補助記憶装置413は、例えばハードディスクドライブやソリッドステートドライブなどの大容量の記憶装置から構成され、プログラムやデータを長期間保持するために利用される。
 プロセッサ411は、単一の処理ユニットまたは複数の処理ユニットで構成することができ、単一もしくは複数の演算ユニット、又は複数の処理コアを含むことができる。プロセッサ411は、1又は複数の中央処理装置、マイクロプロセッサ、マイクロ計算機、マイクロコントローラ、デジタル信号プロセッサ、ステートマシン、ロジック回路、グラフィック処理装置、チップオンシステム、及び/又は制御指示に基づき信号を操作する任意の装置として実装することができる。
 補助記憶装置413に格納されたプログラム及びデータが起動時又は必要時にメモリ412にロードされ、プログラムをプロセッサ411が実行することにより、計算機41の各種処理が実行される。
 入力装置415は、ユーザが計算機41に指示や情報などを入力するためのハードウェアデバイスである。出力装置414は、入出力用の各種画像を提示するハードウェアデバイスであり、例えば、表示デバイス又は印刷デバイスである。通信I/F417は、ネットワークとの接続のためのインタフェースである。
 計算機41の機能は、1以上のプロセッサ及び非一過性の記憶媒体を含む1以上の記憶装置を含む1以上の計算機からなる計算機システムに実装することができる。複数の計算機はネットワークを介して通信する。例えば、計算機41の複数の機能が複数の計算機に実装されてもよい。
 図4は、非点収差補正装置14の構成例を示す。図4の構成例において、非点収差補正装置14は、8極子コイルを含む。非点収差補正装置14は、X軸ペア(X1、X2)の非点収差を補正するコイル(X軸非点収差補正コイル)X11、X12、X21、X22と、Y軸ペア(Y1、Y2)の非点収差を補正するコイル(Y軸非点収差補正コイル)Y11、Y12、Y21、Y22と、を含む。
 X軸非点収差補正コイルは、Y軸非点収差補正コイルの配置位置に対し、光軸中心の回りに45度回転した位置に配置される。X軸非点収差補正コイルX11、X12は光軸中心を挟んで対向する。X軸非点収差補正コイルX21、X22は光軸中心を挟んで対向する。Y軸非点収差補正コイルY11、Y12は光軸中心を挟んで対向する。Y軸非点収差補正コイルY21、Y22は光軸中心を挟んで対向する。X1軸、X2軸、Y1軸、Y2軸の交点は光軸中心に一致することが好ましい。
 非点収差補正装置14は、8極子コイルを用い、一次電子ビームEB(以下単に電子ビームと呼ぶ)の断面形状を変形する。コイルが生成する磁場の方向と、前記磁場が一次電子ビームに対して与える力の方向は直行関係にあるため、X軸非点収差補正コイルを用いることによってビームをY軸(Y1、Y2)方向に対して変形させ、Y軸非点収差補正コイルを用いることによってビームをX軸(X1、X2)方向に対して変形させることが可能となる。例として、図4は光軸中心からX1軸の正負両方向に引っ張られるように変形された電子ビームEBを示している。このような形状に変形した電子ビームEBの非点収差補正にはY軸非点収差補正コイルが使用される。
 制御システム42は、Y軸非点収差補正コイルY11、Y12に電流を流し、Y1軸に沿って光軸の方向に向けた磁束の流れを生み出し、また同時に、Y軸非点収差補正コイルY21、Y22に逆向きの電流を流し、Y2軸においてY1軸とは逆向きの磁場を発生させる。その結果、X1軸上ではX1軸に直行する方向、Y11からY21、Y12からY21、に向かう方向に磁場が生じることにより電子ビームEBに対して楕円の長軸方向(X1軸)に沿って圧縮される方向に変形し、またX2軸上ではX2軸に直行する方向、Y12からY21、Y11からY22に向かう方向に磁場が生じることにより電子ビームEBに対して楕円の長軸方向(X2軸)に沿って発散される方向に変形する。結果的に、非点収差補正コイルが形成する補正磁場を通過した電子ビームEBは円形状に補正される。
 Y1軸又はY2軸に一致する長軸及びY2軸又はY1軸に一致する短軸を有する楕円形の断面を持つ電子ビームを補正する場合、制御システム42は、X軸非点収差補正コイルを使用する。具体的には、制御システム42は、X軸非点収差補正コイルX11、X12に電流を流し、X1軸に沿って光軸に向かう方向、もしくは光軸から離れる方向に向けた磁束の流れを生み出し、また同時に、X軸非点収差補正コイルX21、X22に逆向きの電流を流し、X2軸においてX1軸とは逆向きの磁場を発生させる。これによって電子ビームを円形の断面をもつように補正することが可能となる。
 例えば、制御システム42は、X軸非点収差補正コイルの電流(Xパラメータ)及びY軸非点収差補正コイルの電流(Yパラメータ)を指定して、非点収差補正装置14を制御する。非点収差補正装置14は、指定されたX、Yパラメータに従って、各補正コイルに電流を与える。
 また、上記の説明ではコイルを用いた非点収差補正の例を述べたが、コイルの代わりに電極を使用し、電場による作用を用いることによっても同様の調整を行うことが可能である。この場合、制御を行う電極の方向に対して電子ビームが変形するという点のみが磁場を用いた場合に対する差異となるが、それ以外の点については同様の制御を行うことによって同様の効果を得ることが可能である。また、上述の説明では8極子コイルを用いた非点収差補正の例を述べているが、そのほか12極子コイルなど異なる数の多極子コイルを用いることにより、異なる対称性を有した収差に対しても補正を行うことが可能である。
 図5は電子光学系が有する非点収差の方向及び大きさが変化した際に、同一の高さにある面における電子ビームの断面形状がどのように変化するかを示した例である。断面121から断面125は、非点収差の方向が0°であり、その大きさが変化した場合の例を示す。例として、断面123が非点収差量0、断面122が非点収差量1、断面121が非点収差量2、断面124が非点収差量-1、断面125が非点収差量-2である場合に対応している。
 断面131から断面135は非点収差の方向が45°であり、その大きさが変化した場合の例を示す。例として、断面133が非点収差量0、断面132が非点収差量1、断面131が非点収差量2、断面134が非点収差量-1、断面135が非点収差量-2である場合に対応している。
 このときの収差量の単位や収差の絶対量のスケールは条件や基準の取り方に応じて様々な形を取りうる。また別の収差の表現方法として、収差の大きさを正の数値で表現した場合、断面124を90°方向の大きさ1、断面125を90°方向の大きさ2、断面134を135°方向の大きさ1、断面135を135°方向の大きさ2、に対応する収差と表現することもできる。
 一次の非点収差の場合、180°の回転対称性を有しているため、0°方向の収差と180°方向の収差は実質的に同等となる。このことに基づき、ビーム断面の長軸方向が0~180°の範囲で変化する角度領域を収差の方向の1周期として扱い、この1周期に対して新たに0~360°、又は-180~180°などの角度を割り当ててその方向を表現することも可能である。また、任意の方向と大きさを持った収差量を、直交する二方向の成分に分解してそれぞれを実部、虚部とした複素数による表現を用いることも可能である。このような収差の方向は位相とも表現される。
 図6は、非点収差を有していない、又は非点収差がその影響が無視できる程度に小さい量となっている電子光学系によって電子ビームが収束する部分、及び、当該電子ビームによって異なる高さ位置の試料を観察した際に得られるそれぞれの画像を、模式的に示している。
 図6において、103はZ軸を光軸として1つの収束点を持った電子ビームの、Z軸とX軸を含む面上における断面を示したものである。更に101とその上側に示す複数の円は電子ビームの、Z軸上の異なる複数の面における断面形状を示したものであり、図形の横方向と縦方向はそれぞれX軸とY軸方向に対応する。ビームの収束する位置を基準(Z=0)とした時の各断面形状101に対応するZ軸上の位置をその左に示しており、例えば単位はμmである。フォーカス位置より上の位置は正の数字で示され、フォーカス位置より下の位置は負の数字で示されている。X軸、Y軸、Z軸は互いに垂直である。
 荷電粒子線装置の電子光学系は非点収差を有していないため、任意の高さ位置(Z軸での位置)におけるビーム断面形状101は、円である。図5においては、一つの高さ位置におけるビーム断面形状が例として符号101で指示されている。ビーム断面形状の径は、フォーカス位置(Z=0)において最も小さく、フォーカス位置から離れるにしたがって大きくなる。
 そのため、試料の高さ位置が電子ビーム103のフォーカス位置(Z=0)と一致する画像203が最も鮮鋭である。試料の高さ位置がフォーカス位置よりも上の位置(Z=10)である画像201及び試料の高さ位置がフォーカス位置よりも下の位置(Z=-10)である画像205は、共に、フォーカス位置における画像203よりもボケており、その精鋭度は低い。このとき電子光学系は非点収差を有していないため画像201及び205のボケは等方的である。
 図7は、図6で示した電子ビームに対して電子光学系に非点収差が加わった状態における電子ビームの形状、及び、当該電子ビームによる異なる高さ位置の試料の画像を、模式的に示している。153は前記電子ビームの、Z軸とX軸を含む面上における断面を示したものである。電子ビームの光軸はZ軸と一致しており、更にX軸、Y軸、Z軸は互いに垂直である。
 図7左に示すZの値はZ軸上の位置を示しており、例えば単位はμmである。各図形に対応するZ軸上の位置がその左に示されており、例えば単位はμmである。図6で示すZ軸上の位置と図7で示すZ軸上の位置は同じ位置である。図形の横方向と縦方向はそれぞれX軸とY軸方向に対応する。
 図7においてZ=0となる位置におけるビーム断面形状151Aは、円である。荷電粒子線装置の電子光学系は非点収差を有しているため、Z=0となる位置におけるビーム断面形状151Aの径は、非点収差を有していない電子光学系のZ=0となる位置におけるビーム断面形状の径よりも大きい。試料の高さ位置がZ=0となる位置と一致する画像253は、非点収差を有していない電子光学系によるZ=0となる位置での画像203と比較して、ややボケている。
 非点収差を有している電子光学系において、Z=0となる位置と異なる位置におけるビーム断面形状は、円と異なる。図7に示す非点収差は、一次の非点収差又は二回対称の非点収差であり、Z=0となる位置と異なる高さ位置でのビーム断面形状は、楕円形である。
 図7においては、Z=0となる位置よりも高い位置の一つのビーム断面形状が符号151Bで指示されており、長軸がX軸と一致し、短軸がY軸と一致している。またZ=0となる位置よりも低い位置の一つのビーム断面形状が符号151Cで指示されており、長軸がY軸と一致し、短軸がX軸と一致している。
 ビーム断面形状は、高さ位置Z=10においてY軸における最も小さい径を有している。高さ位置が、Z=10から離れるにしたがって、Y軸における径が増加する。高さ位置Z=10は、Y軸におけるフォーカス位置と見做すことができる。また、ビーム断面形状は、高さ位置Z=-10においてX軸における最も小さい径を有している。高さ位置が、Z=-10から離れるにしたがって、X軸における径が増加する。高さ位置Z=-10は、X軸におけるフォーカス位置と見做すことができる。
 このことより、非点収差を有さない電子光学系ではフォーカス位置の上下近傍においてビームの断面形状は円形で等方的なものとなるのに対し、光学系が非点収差を有する状態ではフォーカス位置の上下近傍においてビームの断面形状は異方的なものとなり、またその方向はフォーカス位置の上下で変化することが分かる。
 試料の高さ位置がZ=10であるときの画像251は、Z=0となる位置における画像253と比較して、X軸に沿ったボケは大きく、Y軸に沿ったボケは小さくなっている。そのため、X軸に沿った鮮鋭度(シャープネス)は低く、Y軸に沿った鮮鋭度は高い。鮮鋭度は、信号強度の変化の程度を示す。これは、高さ位置Z=10におけるビーム断面形状のX軸における径がZ=0となる位置における径より大きく、高さ位置Z=10におけるビーム断面形状のY軸における径がZ=0となる位置における径より小さいことに起因する。
 また、試料の高さ位置がZ=-10であるときの画像255は、Z=0となる位置における画像253と比較して、X軸に沿ったボケは小さく、Y軸に沿ったボケは大きくなっている。そのため、X軸に沿った鮮鋭度は高く、Y軸に沿った鮮鋭度は低い。これは、高さ位置Z=-10におけるビーム断面形状のY軸における径がZ=0となる位置における径より大きく、高さ位置Z=-10におけるビーム断面形状のX軸における径がZ=0となる位置における径より小さいことに起因する。
 図8は、非点収差を有してない電子光学系による画像201、203、205それぞれの、微分画像を示す。画像群211は、試料の高さ位置がZ=10であるときの画像201、画像201のX軸に沿った微分画像201X、及び、画像201のY軸に沿った微分画像201Yで構成されている。
 画像群213は、試料の高さ位置がフォーカス位置(Z=0)にあるときの画像203、画像203のX軸に沿った微分画像203X、及び、画像203のY軸に沿った微分画像203Yで構成されている。画像群215は、試料の高さ位置がZ=-10であるときの画像205、画像205のX軸に沿った微分画像205X、及び、画像205のY軸に沿った微分画像205Yで構成されている。
 微分画像は、対応する軸に沿った画像強度(輝度)の変化(鮮鋭度)を示し、その強度(輝度)は元画像の強度の勾配が急峻なほど高くなる。図8において、フォーカス位置における微分画像203Xは、X軸に沿った他の微分画像201X、205Xよりも高い最大強度を示している。また、フォーカス位置における微分画像203Yは、Y軸に沿った他の微分画像201Y、205Yよりも高い最大強度を示している。これは、フォーカス位置におけるビーム断面のX軸及びY軸に沿った径が、他の高さ位置におけるビーム断面のX軸及びY軸に沿った径より小さく、得られた画像がX軸およびY軸それぞれの方向にシャープであることを示す。
 図9は、非点収差を有している電子光学系による画像251、253、255それぞれの、微分画像を示す。画像群261は、試料の高さ位置がZ=10であるときの画像251、画像251のX軸に沿った微分画像251X、及び、画像251のY軸に沿った微分画像251Yで構成されている。
 画像群263は、試料の高さ位置がフォーカス位置(Z=0)にあるときの画像253、画像253のX軸に沿った微分画像253X、及び、画像253のY軸に沿った微分画像253Yで構成されている。画像群265は、試料の高さ位置がZ=-10であるときの画像255、画像255のX軸に沿った微分画像255X、及び、画像255のY軸に沿った微分画像255Yで構成されている。
 図9において、高さ位置Z=10におけるY軸に沿った微分画像251Yは、Y軸に沿った他の微分画像253Y、255Yよりも高い最大強度を示している。これは、高さ位置Z=10におけるビーム断面のY軸に沿った径が、他の高さ位置のビーム断面のY軸に沿った径より小さく、得られた画像がY軸方向に対してシャープであることを示す。
 また、高さ位置Z=-10におけるX軸に沿った微分画像255Xは、X軸に沿った他の微分画像251X、253Xよりも高い最大強度を示している。これは、高さ位置Z=-10におけるビーム断面のX軸に沿った径が、他の高さ位置のビーム断面のX軸に沿った径より小さく、得られた画像がX軸方向に対してシャープであることを示す。
 上述のように、非点収差を有する電子光学系によって得られるビームによって得られる画像は、フォーカス位置に対する試料の高さ位置に依存する鮮鋭度の異方性を有している。図7及び9に示す例において、フォーカス位置(Z=0)よりも高い位置における試料の画像は、Y軸に沿って高い鮮鋭度を示し、X軸に沿って低い鮮鋭度を示す。また、フォーカス位置(Z=0)よりも低い位置における試料の画像は、X軸に沿って高い鮮鋭度を示し、Y軸に沿って低い鮮鋭度を示す。
 図10は、非点収差を有していない電子光学系における画像の鮮鋭度評価値を示す。グラフ301は、横軸が試料の高さ位置(Z軸上の位置)、縦軸が画像のX軸における鮮鋭度評価値(X鮮鋭度評価値)を示す。各点はそれぞれ画像201、203及び205における、X鮮鋭度評価値を示す。フォーカス位置(Z=0)にある試料の画像203のX鮮鋭度評価値が最も高く、フォーカス位置の上下の位置(Z=-10、10)における試料の画像201、205のX鮮鋭度評価値は低い。
 グラフ302は、横軸が試料の高さ位置(Z軸上の位置)、縦軸が画像のY鮮鋭度評価値を示す。各点はそれぞれ画像201、203及び205における、Y鮮鋭度評価値を示す。フォーカス位置(Z=0)にある試料の画像203のY鮮鋭度評価値が最も高く、フォーカス位置の上下の位置(Z=-10、10)における試料の画像201、205のY鮮鋭度評価値は低い。
 グラフ303は、各画像のX鮮鋭度評価値からY鮮鋭度評価値を引いた値を示す。非点収差を有していない電子光学系における各方向に対する鮮鋭度はいずれも同程度であり、またフォーカス位置が試料の高さ位置から離れた場合に生じる各方向の鮮鋭度の低下は、フォーカス位置が試料の高さ位置から離れる方向には殆ど依存せず、その離れた量のみにおおむね依存する。そのため、それぞれの高さにおけるX鮮鋭度評価値からY鮮鋭度評価値を引いた値は、いずれの高さにおいても0に近い値となる。
 なお、光学系が持つ収差のうち、フォーカスずれ(デフォーカス)と1次の非点収差以外を考慮した場合、前述のフォーカス位置が試料の高さ位置から離れる場合の鮮鋭度の変化はフォーカス位置が離れる方向に対していくらかの依存性を示す。しかし、一般的な電子顕微鏡が適切に調整された状態においては3次の球面収差のみがそのような影響を与えうるものであり、その影響自体は観察像を構成する画素の大きさが3次の球面収差の量と同程度、もしくはそれ以下となるような高い倍率での観察以外ではほとんど無視することができる。また上述したような高い倍率での観察においても非点収差に基づくこれまでに述べたような振る舞いは同様に生じるため、多くの状況において本発明で述べる効果が大きく変化することはない。
 図11は、非点収差を有している電子光学系における画像の鮮鋭度評価値を示す。グラフ351は、横軸が試料の高さ位置(Z軸上の位置)、縦軸が画像のX鮮鋭度評価値を示す。各点はそれぞれ画像251、253及び255における、X鮮鋭度評価値を示す。Z=0となる位置よりも低い位置(Z=-10)にある試料の画像255のX鮮鋭度評価値が最も高く、Z=0となる位置よりも高い位置(Z=10)にある試料の画像251のX鮮鋭度評価値は最も低い。
 グラフ352は、横軸が試料の高さ位置(Z軸上の位置)、縦軸が画像のY鮮鋭度評価値を示す。各点はそれぞれ画像251、253及び255における、Y鮮鋭度評価値を示す。Z=0となる位置よりも高い位置(Z=10)にある試料の画像251のY鮮鋭度評価値が最も高く、Z=0となる位置よりも低い位置(Z=-10)にある試料の画像255のX鮮鋭度評価値は最も低い。
 グラフ353は、各画像のX鮮鋭度評価値からY鮮鋭度評価値を引いた値を示す。Z=0となる位置よりも低い位置(Z=-10)の試料の画像の値は、正であり、最も大きい。Z=0となる位置における試料の画像の値はX鮮鋭度評価値とY鮮鋭度評価値が近い値となることから、0に近い値となる。Z=0となる位置よりも高い位置(Z=10)の試料の画像の値は、負であり、最も小さい。
 上述のように、非点収差を有する電子光学系において、X鮮鋭度評価値は、試料の高さ位置がZ=-10からZ=10に近づくにつれて減少し、Y鮮鋭度評価値は、試料の高さ位置がZ=-10からZ=10に近づくにつれて増加する。試料がZ=0となる位置にある場合に画像におけるX鮮鋭度とY鮮鋭度が同程度の値となり、試料がZ=0となる位置よりも高い位置にある場合、画像におけるY鮮鋭度が高くX鮮鋭度が低い。反対に、試料がZ=0となる位置よりも低い位置にある場合、画像におけるX鮮鋭度が高くY鮮鋭度が低い。
 上述のように、電子ビーム断面形状に応じて、X鮮鋭度評価値及びY鮮鋭度評価値が変化する。具体的には、断面形状の径が大きい方向において鮮鋭度評価値が低く、径が小さい方向において鮮鋭度評価値が高い。以下において、この知見に基づき、フォーカス調整及び非点収差補正を行う方法を説明する。
 以下に説明する方法は、異なる走査方向を含む一次元の走査軌跡を形成するように、電子ビームを試料上で移動させる。得られた信号電子強度(信号強度とも呼ぶ)から走査方向に関連付けて鮮鋭度評価値を計算する。鮮鋭度評価値と走査方向との関係から、フォーカス調整及び非点補正のための情報を得る。
 図12は、試料上の電子ビーム(スポット)の走査軌跡の例を示す。図12は、視野内の試料21上において、白い矢印によって電子ビームの走査軌跡を示す。図12に示すように、走査軌跡は円形である。制御システム42は、1又は複数回、同一の円形状軌跡を形成するように、電子ビームを移動させる。
 図13は、図12に示す円形の走査軌跡のいくつかの異なる位置における電子ビームの走査方向を示す。走査軌跡501における点は、X軸からの角度θで表すことができる。例えば、位置P1の角度θは0°、位置P3の角度θは90°、位置P5の角度θは180°、位置P7の角度θは270°である。
 電子ビームは、位置P1においてY軸に沿って正の方向、つまり、図13における上方向に移動している。この走査方向は、角度θで表すと、90°である。電子ビームは、位置P3において、X軸に沿って負の方向、つまり、図13における左方向に移動している。その走査方向の角度θは180°である。電子ビームは、位置P5において、Y軸に沿って負の方向、つまり、図13における下方向に移動している。その走査方向の角度θは270°である。電子ビームは、位置P7において、X軸に沿って正の方向、つまり、図13における右方向に移動している。その走査方向の角度θは0°である。
 図14は、非点収差と試料面のZ軸上の位置(Z位置とも呼ぶ)との異なる組み合わせ(状態)において、試料上の電子ビーム(スポット)の動きと、走査軌跡内の異なる位置におけるビーム断面形状とを示す。図14の例において、光学系における非点収差STG-Xの方向は0°である。図14は、非点収差STG-Xの三つの異なる量、(-1、0、1)を示す。図14は、三つの異なるZ位置、(-1、0、1)を示す。Z位置(0)は、非点収差が存在しない場合のフォーカス位置である。Z位置(1)は、Z位置(0)より上の位置(電子ビーム源1に近い位置)である。Z位置(-1)は、Z位置(0)より下の位置である。
 非点収差STG-Xが正であるとき(状態541、542、543)、Z位置(0)より低い位置に、X軸におけるフォーカス位置が存在する。ビーム断面は、Z位置(1)においてX軸に沿った長径を有する楕円を示し(状態541)、Z位置(0)において円を示し(状態542)、Z(-1)においてY軸に沿った長径を有する楕円を示す(状態543)。
 非点収差STG-Xが負であるとき(状態547、548、549)Z位置(0)より高い位置に、X軸におけるフォーカス位置が存在する。ビーム断面は、Z位置(1)においてY軸に沿った長径を有する楕円を示し(状態547)、Z位置(0)において円を示し(状態548)、Z(-1)においてX軸に沿った長径を有する楕円を示す(状態549)。
 非点収差STG-Xが0であるとき(状態544、545、546)、光学系に非点収差は存在していない。ビーム断面の径は、Z位置(0)において最も小さく(状態545)、Z位置(0)から離れるにしたがって大きくなる(状態544、546)。Z位置(0)において、非点収差STG-Xが0であるとき、ビーム断面の径は最も小さい(状態545)。
 試料上での電子ビームの走査軌跡は、図13に示すように円形である(円形走査)。具体的には、スポットは、反時計回りに円の走査軌跡を形成し、位置P1からP8を順次通過する。位置P1からP8の角度θは、それぞれ、0°、45°、90°、135°、180°(-180°)、225°(-135°)、270°(-90°)、315°(-45°)である。
 図15は、図14に示す円形走査による、電子ビームのスポットの位置と走査方向との関係を示す。図15のグラフにおいて、縦軸は角度θを示し、横軸は時間を示す。実線571は、スポット位置の時間変化を示し、破線572はスポットの走査方向の時間変化を示す。図15の例において、スポットの角速度は一定である。例えば、位置P1の角度θは0であり、走査方向の角度は90°である。各位置の角度に対して、走査方向の角度は90°進んでいる。
 図16は、非点収差が補正された光学系での円形走査による、スポット位置と走査方向の時間変化、及び、複数のZ位置での鮮鋭度評価値の時間変化を示す。走査方向は時間変化と共に変化しており、鮮鋭度評価値の時間変化は、走査方向に対する変化を示す。走査軌跡における各位置での鮮鋭度評価値は、例えば、信号強度の微分の絶対値に基づくことができ、走査における直前の信号強度からの差を使用して計算することができる。本例において、試料の構造は、図12に示すように、等方的であり、走査軌跡上に常に検出されているものとする。
 スポット位置と走査方向の時間変化は、図15と同様である。実線FP1、FP2及びFP3は、それぞれ、異なるZ位置における鮮鋭度評価値の時間変化を示す。時間と共にスポットの位置及び走査方向が変化するため、図15は、鮮鋭度評価値の、走査軌跡における位置及び走査方向に対する変化を示す。
 いずれのZ位置における鮮鋭度評価値も一定であり、鮮鋭度評価値は、スポットの走査方向に依存していない。非点収差が補正されているため、図14に示すように、いずれのZ位置においても、電子ビームの断面形状は円形である(状態544、545、546)。このように、スポット形状(試料に上のビーム断面形状)が円形である場合、鮮鋭度評価値は、スポットの走査方向に対して大きな変化を示さない。
 鮮鋭度評価値は、スポット形状とスポットの走査方向との関係に依存する。走査方向におけるスポット径が小さいほど、高い鮮鋭度が得られる。非点収差が補正された光学系におけるスポット形状は、円形である。そのため、いずれの走査方向においても同様の鮮鋭度評価値が得られる。
 図16に示す例において、鮮鋭度評価値FP1が最も小さく、鮮鋭度評価値FP3が最も大きい。上述のように、同一の試料において、スポット径が小さいほど、高い鮮鋭度評価値が得られる。したがって、鮮鋭度評価値FP3を示すスポット径が最も小さく、鮮鋭度評価値FP1を示すスポット径は最も大きい。鮮鋭度評価値FP3に対応するスポットが、試料に最もフォーカスのあった状態にある。
 図17は、0°の非点収差の存在する光学系での円形走査による、スポット位置と走査方向の時間変化、及び、鮮鋭度評価値の時間変化を示す。上段のグラフは、図15及び16に示す、スポット形状とスポットの走査方向の時間変化のグラフと同様である。
 中段のグラフは、X軸に沿った長径を有する楕円形状のスポットによる鮮鋭度評価値の変化を示す。実線574は、長径がより長く短径がより短い(非点収差がより大きい。図5の121に相当)スポットによる鮮鋭度評価値の変化を示し、破線575は、長径がより短く短径がより長い(非点収差がより小さい。図5の122に相当)スポットによる鮮鋭度評価値の変化を示す。
 鮮鋭度評価値574及び575は、スポットの走査方向の変化に対して、同様の変化を示す。具体的には、鮮鋭度評価値574及び575は、円形走査(走査軌跡)と同様の周期で連続的に変化する。鮮鋭度評価値574及び575は、スポット走査方向の角度θが、長径と垂直な方向(90°又は-90°)であるとき最大値を示す。鮮鋭度評価値574及び575は、スポット走査方向の角度θが、長径と並行な方向(0°又は180°(-180°))であるとき最小値を示す。
 このように、一つのスポットによる鮮鋭度評価値は、スポットの走査方向におけるスポット径が小さいほど、高くなる。同一の走査方向における異なるスポットによる鮮鋭度評価値は、当該走査方向におけるスポット径が小さいほど高くなる。長径がより長いスポット(図5の121に相当)の短径は、長径がより短いスポット(図5の122に相当)の短径より短い。そのため、長径がより長いスポットの鮮鋭度評価値574は、長径がより短いスポットの鮮鋭度評価値575よりも、大きな振幅(より大きな最大値とより小さい最小値)を有している。
 下段のグラフは、Y軸に沿った長径を有する楕円形状のスポットによる鮮鋭度評価値の変化を示す。実線577は、長径がより長く短径がより短い(非点収差がより大きい。図5の125に相当)スポットによる鮮鋭度評価値の変化を示し、破線578は、長径がより短く短径がより長い(非点収差がより小さい。図5の124に相当)スポットによる鮮鋭度評価値の変化を示す。
 鮮鋭度評価値577及び578は、スポットの走査方向の変化に対して、同様の変化を示す。具体的には、鮮鋭度評価値577及び578は、円形走査(走査軌跡)と同様の周期で連続的に変化する。鮮鋭度評価値577及び578は、スポット走査方向の角度θが、長径と垂直な方向(0°又は180°(-180°))であるとき最大値を示す。鮮鋭度評価値574及び575は、スポット走査方向の角度θが、長径と並行な方向(90°又は-90°)であるとき最小値を示す。
 中段グラフの鮮鋭度評価値574及び575と同様に、一つのスポットによる鮮鋭度評価値は、スポットの走査方向におけるスポット径が小さいほど、高くなる。同一の走査方向における異なるスポットによる鮮鋭度評価値は、当該走査方向におけるスポット径が小さいほど高くなる。長径がより長いスポット(図5の125に相当)の鮮鋭度評価値577は、長径がより短いスポット(図5の124に相当)の鮮鋭度評価値578よりも、大きな振幅(より大きな最大値とより小さい最小値)を有している。
 中段のグラフと下段のグラフとの比較が示すように、走査方向に対する鮮鋭度評価値は、非点収差が存在する光学系における楕円スポットの長軸の方向に応じた位相を示す。また、中段のグラフ及び下段のグラフそれぞれを参照して説明したように、非点収差が大きく楕円スポットの長軸が長く短軸が短いほど、鮮鋭度評価値の振幅が大きくなる。
 図18は、非点収差と試料のZ位置との異なる組み合わせ(状態)における、円形走査1周期で得られる信号強度の時間変化と、鮮鋭度評価値(信号強度の微分値の絶対値)の時間変化とを示す。状態601から620それぞれにおいて、上段グラフが信号強度の時間変化を示し、下段グラフが鮮鋭度評価値の時間変化を示す。図18はシミュレーションで得られた結果を示しており、試料の構造は、図12に示すように等方的であり、走査軌跡上に常に検出されている場合の結果に相当する。
 光学系において非点収差が存在しない状態611から615それぞれにおいて、鮮鋭度評価値はほぼ一定である。また、フォーカス状態であるZ位置(0)の状態612が、最も大きな鮮鋭度評価値を示す。この状態612が、非点収差補正とフォーカス調整が最適な状態である。状態611から615において、最適状態612からZ位置が離れるにしたがって、鮮鋭度評価値が小さくなる。
 STG-Xが1の状態606から610は、Z位置(0)の状態607を除き、走査1周期の中で鮮鋭度評価値の局所ピークが集まり巨視的な周期的変化を示す。Z位置が正である状態608、609、610の鮮鋭度評価値の位相と、Z位置が負である状態606の鮮鋭度評価値の位相とは異なり、逆位相となっている。Z位置(1)の状態608が、最も大きな鮮鋭度評価値の振幅を示す。図示していないが、Z位置(-1)の状態も、同様に大きな鮮鋭度評価値の振幅を示す。Z位置(1)がY軸におけるフォーカス位置であり、Z位置(-1)がX軸におけるフォーカス位置である。
 STG-Xが2の状態601から605は、Z位置(0)の状態602を除き、走査1周期の中で鮮鋭度評価値の局所ピークが集まり巨視的な周期的変化を示す。Z位置が正である状態603、604、605の鮮鋭度評価値の位相と、Z位置が負である状態601の鮮鋭度評価値の位相とは異なり、逆位相となっている。Z位置(2)の状態604又はZ位置(-2)の状態601が、最も大きな鮮鋭度評価値の振幅を示す。Z位置(2)がY軸におけるフォーカス位置であり、Z位置(-2)がX軸におけるフォーカス位置である。
 STG-Xが-1の状態616から620は、Z位置(0)の状態617を除き、走査1周期の中で鮮鋭度評価値の局所ピークが集まり巨視的な周期的変化を示す。Z位置が正である状態618、619、620の鮮鋭度評価値の位相と、Z位置が負である状態616の鮮鋭度評価値の位相とは異なり、逆位相となっている。Z位置(2)の状態619又はZ位置(-2)の状態616が、最も大きな鮮鋭度評価値の振幅を示す。Z位置(2)がX軸におけるフォーカス位置であり、Z位置(-2)がY軸におけるフォーカス位置である。状態616、618~620の鮮鋭度評価値は、STG-Xが正の同一Z位置の鮮鋭度評価値と逆の位相を有している。
 図19を参照して、鮮鋭度評価値から、フォーカス調整及び非点補正のための情報を得る方法を説明する。図19は、円形走査によるスポット位置に対する信号強度の変化、及び信号強度の変化に応じた鮮鋭度評価値の変化を示す。スポット位置は、基準軸(X軸)を0°とする角度で表されており、上述のように、スポット走査方向と対応付けられる。つまり、図19は、走査方向に対する信号強度及び鮮鋭度評価値の変化を示す。
 図19に示すように、鮮鋭度評価値から、予め設定された演算により、振幅(交流成分)、総和又は平均値(直流成分)、及び位相を決定することができる。これまでの説明から理解されるように、鮮鋭度評価値の交流成分の振幅は、非点収差の大きさを示す。鮮鋭度評価値の総和又は平均値(直流成分)は、フォーカスずれ量を示す。鮮鋭度評価値の交流成分の位相は、光学系が持つ非点収差の方向(非点収差の位相とも表現する)を示す。
 制御システム42は、円形状に電子ビームを試料上で移動して、検出器により検出された信号電子の強度を取得する。制御システム42は、走査軌跡における各点での信号強度の鮮鋭度評価値を計算する。これにより、制御システム42は、図19に示すような、電子ビームの走査方向に関連付けられた鮮鋭度評価値を得る。
 制御システム42は、走査方向の変化に応じて変化する鮮鋭度評価値における交流成分の振幅、直流成分、交流成分の位相のそれぞれの値を、予め設定された演算方法により決定する。電子ビームのスポットの走査方向は既知であり、制御システム42は、その走査方向に対応する周期性を持つ成分(交流成分)を抽出することで、振幅と位相を決定できる。直流成分は、周波数の成分を抽出する前の測定データから、又は、抽出された周波数の成分から計算することができる。制御システム42は、得られた値をフォーカス位置調整機構及び非点補正機構にフィードバックすることで、フォーカス位置及び非点補正量を適切な値に設定できる。
 一例において、試料上の電子ビームのスポットが1次の非点収差を持った2回対称な形状、すなわち楕円状であった場合、1回の円形走査の中でスポットの長軸・短軸方向に2度走査される。結果として走査方向が0°~360°の範囲で変化する間に鮮鋭度評価値は2ヘルツの周期をもった変化を持つ。また同様に試料上の電子ビームのスポットが3回対称な形状を持った場合は、鮮鋭度評価値は走査方向の変化に対して3ヘルツの周期をもって変化するなど、電子ビームのスポットが持つ形状の対称性に応じて異なる周期性を持った成分が先鋭度評価値の変化の中に現れる。荷電粒子線における電子ビームの対称性は多くの場合6回以下の対称性を持つため、これに対応して鮮鋭度評価値に現れる走査方向の変化に対応した周期の成分も多くの場合6ヘルツ以下となる。
 このような走査方向の変化に対して周期性を持った成分は複数の周波数成分が同時に含まれることもあり、その評価方法としては先鋭度評価値を走査方向に対してフーリエ変換する方法、もしくは特定の周期成分を構成する2つの直行成分に対応した評価行列とのドット積を求める方法などを例として用いることが可能である。
 図20は、制御システム42による、自動フォーカス調整及び非点収差補正の例を示すフローチャートである。制御システム42は、フォーカス(位置)を初期条件に設定する(S101)。制御システム42は、試料上で、電子ビームを1周期走査する(S102)。例えば、電子ビームのスポットの試料上の走査軌跡は、上述のように円形である。
 制御システム42は、走査軌跡における点それぞれに対応する信号強度を逐次取得し、各点での鮮鋭度評価値を算出する(S103)。鮮鋭度評価値は、例えば、直前の位置の信号強度との差分の絶対値から計算できる。制御システム42は、走査軌跡における各位置の走査方向と鮮鋭度評価値とを関連付け、それらの関係を分析する(S104)。
 走査軌跡における各位置の走査方向を求める方法としては、電子ビームを走査する際に使用する各方向のスキャンコイルに流されるスキャン信号の電流量の微分値、又は変化量に対してアークタンジェント(逆正接関数)などを適用する手法などを用いることができる。
 制御システム42は、当該評価により、走査1周期内における鮮鋭度評価値の変化から、交流成分の振幅及び位相、並びに平均値(直流成分)それぞれに基づく評価値を、予め設定された計算方法により算出する(S105)。上述のように、振幅に基づく評価値は非点収差量の評価結果を示し、位相に基づく評価値は光学系がもつ非点収差の方向を示す。平均値に基づく評価値は、フォーカスずれ量の評価結果を示す。
 次に、制御システム42は、現在のフォーカス位置が予め設定されている終了条件を満たしているか判定する(S106)。例えば、鮮鋭度評価値を取得するフォーカス位置の範囲が予め設定されており、現在のフォーカス位置が、当該範囲の境界である場合に、現在フォーカス位置は終了条件を満たす。現在のフォーカス位置が終了条件を満たしていない場合(S106:NO)、制御システム42はフォーカス位置を所定量変化させた後(S107)、ステップS102に戻る。
 現在のフォーカス位置が終了条件を満たしている場合(S106:YES)、制御システム42はフォーカス評価値が最大となる最適フォーカス条件を決定する(S108)。上述のように、変化する鮮鋭度評価値における平均値に基づく評価が、フォーカス評価値に対応する。制御システム42は、観測を行ったフォーカス位置(フォーカス条件)それぞれにおけるフォーカス評価値において、最大のフォーカス評価値を示すフォーカス条件を、最適フォーカス条件と決定する。制御システム42は、決定した最適フォーカス条件をフォーカス調整機構に設定する(S109)。
 次に、制御システム42は、フォーカス位置変化に対するすでに取得済みの鮮鋭度評価値の振幅に基づく評価値及び位相に基づく評価値の変化から、予め設定されている関係式に従って、非点収差補正条件を決定する。この際に用いる関係式は、例としてフォーカス位置を変化させた際に鮮鋭度評価値の振幅が極大となる2つの条件に対応したフォーカス条件の差から非点収差の大きさを、また鮮鋭度評価値の位相の情報から非点収差の方向を求めるものなどが挙げられる。これが最適非点収差補正条件である。制御システム42は、決定した最適非点収差補正条件を、非点収差補正機構に設定する(S111)。
 上述のように、走査方向に応じて変化する鮮鋭度評価値の特性から、自動フォーカス調整及び非点収差補正を高速に行うことができる。システムの設計に応じて、制御システム42は、フォーカス調整及び非点収差補正の一方のみを実行してもよい。上記例において、制御システム42は、フォーカス調整及び非点収差補正を行うための情報を生成し、その情報に応じて自動でフォーカス調整及び非点収差補正を行う。これに代えて、制御システム42は、フォーカス調整及び非点収差補正を行うための情報を出力装置414においてユーザに提示し、ユーザによるフォーカス調整及び非点収差補正を補助してもよい。この点は、次に説明するフォーカス調整の方法において同様である。
 次に、自動非点収差補正を行うことなく自動フォーカス調整を行う例を説明する。必要な非点収差補正は既に実行されているものとする。本例は、上記方法と異なる方法でフォーカス調整を行う。図21は自動フォーカス調整のフローチャートを示す。
 制御システム42は、フォーカス(位置)を初期条件に設定する(S151)。制御システム42は、試料上で、電子ビームを1周期走査する(S152)。例えば、電子ビームのスポットの試料上の走査軌跡は、上述のように円形である。
 制御システム42は、走査軌跡における点それぞれに対応する信号電子強度を逐次取得し、各点での鮮鋭度評価値を算出する(S153)。鮮鋭度評価値は、例えば、直前の位置の信号強度との差分の絶対値から計算できる。制御システム42は、走査軌跡における各位置の走査方向と鮮鋭度評価値とを関連付け、それらの関係を分析する(S154)。
 制御システム42は、所定の直交する二つの走査方向(縦方向及び横方向と呼ぶ)に対応する鮮鋭度評価値を算出する(S155)。なお、フォーカス調整の精度は低下し得るが、直交してない走査方向における鮮鋭度評価値を使用してもよい。さらに、制御システム42は、それらの値からフォーカス評価値を生成する(S156)。制御システム42は、例えば、二つの走査方向における鮮鋭度評価値の積や和に基づき、フォーカス評価値を生成する。このように、異なる方向の鮮鋭度評価値からフォーカス評価値を生成することで、様々な試料構造において適切にフォーカス調整を行うことができる。
 次に、制御システム42は、現在のフォーカス位置が予め設定されている終了条件を満たしているか判定する(S157)。例えば、鮮鋭度評価値を取得するフォーカス位置の範囲が予め設定されており、現在のフォーカス位置が、当該範囲の境界である場合に、現在フォーカス位置は終了条件を満たす。現在のフォーカス位置が終了条件を満たしていない場合(S157:NO)、制御システム42はフォーカス位置を所定量変化させた後(S158)、ステップS102に戻る。
 現在のフォーカス位置が終了条件を満たしている場合(S157:YES)、制御システム42はフォーカス評価値が最大となる最適フォーカス条件を決定する(S159)。制御システム42は、観測を行ったフォーカス位置(フォーカス条件)それぞれにおけるフォーカス評価値において、最大のフォーカス評価値を示すフォーカス条件を、最適フォーカス条件と決定する。制御システム42は、決定した最適フォーカス条件をフォーカス調整機構に設定する(S160)。
 図20及び21を参照して説明したように、制御システム42は、鮮鋭度評価値と異なる軸に沿った走査方向との関係に基づき、フォーカスずれ又は非点収差を補正することができる。上記例は、電子ビーム(スポット)を円形の軌跡を形成するように試料上で移動する。電子ビームの走査軌跡は上記例に限定されず、様々な走査軌跡による信号強度によりフォーカス調整及び/又は非点収差補正を行うことができる。
 図22は、試料上での電子ビーム(スポット)の走査軌跡のいくつかの他の例511~522を示す。いずれの走査軌跡も、電子ビームの異なる走査方向の位置を含む。走査軌跡511、512、514、516は曲線で構成され、他の走査軌跡は複数の直線で構成されている。走査軌跡511~516に示すように、走査軌跡は閉じていなくてもよく、走査軌跡517~522のように、走査軌跡は閉じていていもよい。また走査軌跡は周期性や対称性を有していない自由曲線であっても上述の手法を用いてフォーカスずれ又は非点収差に関する評価を行うことが可能である。
 制御システム42は走査軌跡を一回形成する、又は同一の走査軌跡を複数回形成するように電子ビームも移動してよい。形成回数が少ないほど、フォーカス調整及び非点収差補正の時間を短縮でき、また、電子ビームの試料への影響も低減できる。制御システム42は、同一走査軌跡を複数回形成し、同一位置における複数回の信号強度に基づいて同一位置における走査方向に関連付けられた信号強度の鮮鋭度評価値を決定してもよい。これにより、ノイズの影響を低減することができる。
 走査軌跡511から516は、同一走査方向の異なる位置を含む。このような走査軌跡において、制御システム42は、一つの走査方向における鮮鋭度評価値を、異なる位置から選択した1又は複数の位置での信号強度から算出できる。例えば、異なる位置において最も大きな鮮鋭度評価値を選択できる。このように、異なる位置における同一軸方向(同一方向又は正反対の方向)の信号強度を取得することで、鮮鋭度評価値の算出への試料構造の影響を低減できる。なお、軸は、X軸やY軸のような特定の軸に限定されず、任意の方向を有し得る。
 走査軌跡は、より多くの異なる方向を含むことで、より正確なフォーカス調整及び非点収差補正が可能となる。図19に示す例において、走査軌跡511、512、514又は515は0°から360°まで連続的に変化する走査方向を示し、走査軌跡521及び522も、多くの走査方向を含む。例えば、走査軌跡の走査方向変化は、90°以上の角度範囲を有することができる。この角度範囲を有することで、直行する2方向に対する先鋭度に関する情報を得ることが可能となるため、少なくともフォーカス調整をより適切に行うことができる。また、走査軌跡の走査方向変化は、180°以上の角度範囲を有することができる。この角度範囲を有することで、実質的に全方向に対する先鋭度に関する情報を得ることが可能となるため、フォーカス調整に加え、非点収差の補正をより適切に行うことができる。
 例えば、図19を参照して説明したように、鮮鋭度評価値の交流成分及び直流成分に基づき、より正確なフォーカス調整及び非点収差補正を行うためには、走査軌跡511、512、514又は515が利用される。これらはすべての走査方向を含み、その走査方向は連続的(常に)に変化する。
 図23は、円形走査と光学系が持つ非点収差の変化を組み合わせてフォーカスずれを補正する例を示す。図23は、例えば、円形走査を繰り返しながら、非点収差が補正された光学系に既知の非点収差を加える例を示す。図23は、最上段のグラフから最下段のグラフに向かって、角度で表される試料上のスポット位置の時間変化、非点収差補正量(STG-X)の時間変化、試料上におけるX軸に沿ったスポット径(実線)及びY軸に沿ったスポット径(破線)の時間変化、走査方向に対するプローブの幅、走査によって得られた信号に対して求まる鮮鋭度評価値の時間変化、を示す。
 図23は、これまでに説明した例における、Z位置(0)よりも上の位置に試料が置かれた状態を想定している。走査軌跡は円形であり、角速度は一定である。なお、他の走査軌跡511、512、514、515等も利用できる。
 図23の例において、スポットの走査軌跡は円である。加えられる非点収差は周期的であり、1周期の変化(例えばSTG-X=-2から+2への短調増加)において、スポットは23回転(円形走査)している。23回転の円形走査において、非点収差補正量は変化し続けており、それに伴って試料上のプローブ形状も変化している。
 非点収差が補正された光学系では前述のようにプローブ形状はどの高さにおいても等方的な円形となるため、非点収差補正量(STG-X)が0の状態(図23中で縦線701に対応する状態)の試料上におけるX軸に沿ったスポット径(実線)及びY軸に沿ったスポット径(破線)は等しい値となる。そこから時間が経過すると非点収差補正量(STG-X)は徐々に正方向に大きくなり、それに合わせて試料上におけるY軸に沿ったスポット径は小さく、試料上におけるX軸に沿ったスポット径は大きくなる。
 さらに時間が経過すると、どこかの時点で試料上におけるY軸に沿ったスポット径は最小となったのち徐々に大きくなり、一方で試料上におけるX軸に沿ったスポット径は単調に増加し続ける。この間、プローブは円形走査によって非点収差補正量(STG-X)の変化よりも早い周期で繰り返し試料上においてその走査方向を変化させる。
 この時、プローブがX軸方向に走査された時に得られる信号から求まる鮮鋭度評価値は試料上におけるX軸に沿ったスポット径に、プローブがY軸方向に走査された時に得られる信号から求まる鮮鋭度は試料上におけるY軸に沿ったスポット径に、それぞれ対応して変化する。その結果、前述の試料上におけるY軸に沿ったスポット径が最小となり、それに近いタイミングでプローブがY軸方向に走査された時に鮮鋭度評価値は極大となる。
 これに対応する条件を図23中に[2]で示す。また反対に、非点収差補正量が異なる別の条件において試料上におけるX軸に沿ったスポット径は最小となり、それに近いタイミングでプローブがX軸方向に走査された時に鮮鋭度評価値は極大となる。これに対応する条件を図23中に[1]で示す。
 非点収差が十分に補正された条件において上記の内容が実施された場合、[1]と[2]に対応する非点収差補正量(STG-X)は同等の大きさで符号のみが異なる値となる。このような[1]と[2]のどちらか、又は両方に対応する非点収差補正量(STG-X)を求め、所定の関係式によって変換することでフォーカスずれ量を求めることができる。
 この際、フォーカスが試料に対して上下どちらの方向にずれているかについては、すでに述べた通り[1]もしくは[2]で示す鮮鋭度評価値の極大が得られた際のビーム走査方向、すなわち鮮鋭度評価値変化の位相を評価することで判断することができる。図23に示す例において、Z位置は正であり、フォーカス位置は試料に対して下側にずれている。試料のZ位置が負であり、フォーカス位置が試料に対して上側にずれている場合、鮮鋭度評価値の位相は、図23の位相と逆となる。
 このようにして得られたフォーカスずれ量の情報を試料ステージのZ位置調整または対物レンズの制御パラメータ調整へフィードバックすることによりフォーカスずれを補正することが可能となる。
 上記例は、図20及21に示す例と異なり、試料ステージのZ位置調整または対物レンズの制御パラメータを変更することなく、フォーカス位置を決定することができる。このため、より高速にフォーカス位置の最適条件を決定することができる。
 図24は、円形走査と光学系が持つ非点収差の変化を組み合わせて非点収差を調整する例を示す。図24は、例えば、円形走査を繰り返し、非点収差が補正されず一定量存在する光学系に対してさらに既知の非点収差を加える例を示す。
 図24は、最上段のグラフから最下段のグラフに向かって、角度で表される試料上のスポット位置の時間変化、非点収差補正量(X方向非点補正量、STG-X)の時間変化、試料上におけるX軸に沿ったスポット径(実線)及びY軸に沿ったスポット径(破線)の時間変化、並びに、走査方向に対するプローブの幅、走査によって得られた信号に対して求まる鮮鋭度評価値の時間変化、を示す。
 図24は、これまでに説明した例における、Z位置(0)よりも上の位置に試料が置かれた状態での状態 を想定している。走査軌跡は円形であり、角速度は一定である。なお、他の走査軌跡511、512、514、515等も利用できる。
 図24の例において、スポットの走査軌跡は円である。加えられる非点収差は周期的であり、1周期の変化(例えばSTG-X=-2から+2への短調増加)において、スポットは23回転(円形走査)している。23回転の円形走査において、非点収差補正量は変化し続けており、それに伴って試料上のプローブ形状も変化している。
 非点収差が補正されず一定量存在し、さらにフォーカス位置と試料位置がずれた光学系では、非点収差補正量(STG-X)が0の状態(図24中で縦線702に対応する状態)の試料上におけるX軸に沿ったスポット径(実線)とY軸に沿ったスポット径(破線)は異なる値となる。この状態で円形走査を行うと、走査方向に応じて異なるプローブ幅で試料を走査した信号が得られ、その鮮鋭度評価値は走査方向に依存して変化するため、円形走査の周期に応じて周期的な変化(振動)を示す。
 この状態からさらに非点収差補正量(STG-X)を変化させると、いずれかの条件において前述の円形走査の周期に応じた鮮鋭度評価値の周期的変化の振幅は極小となる。これは図24で[3]で示す条件に対応し、当初光学系に存在していた非点収差が非点収差補正量(STG-X)を変化させた方向に対して補正された条件となる。この時の非点収差補正量(STG-X)を所定の関係式で換算することによって、光学系に存在していた非点収差の大きさを測定することが可能となり、測定結果を非点補正機構へフィードバックすることで実際に非点収差が補正された状態に装置を調整することが可能となる。
 上記の例において、異なる方向の非点収差が光学系に存在している場合であっても同様に[3]で示す条件で鮮鋭度評価値の周期的変化の振幅は極小となる。この場合は1方向に対して非点収差を補正したのち、もう1方向に対しても同様の手順で非点収差を補正することによって、どのような方向の非点収差成分に対しても適切に補正を行うことが可能となる。
 また、上記の例における非点収差補正量は直行する異なる方向の非点収差補正成分(STG-X,STG-Y)を合成して得られる任意の方向の非点補正によって実施されてもよい。より好適な例としては非点収差補正量が0の状態(図24中で縦線702に対応する状態)において円形走査を実施して得られる信号の鮮鋭度評価値に生じる振動の位相成分から非点収差の方向を直接評価し、その方向の収差を補正する非点収差補正成分を用いて実施されてもよい。
 また別の好適な例としては、1方向に対する非点収差補正量を変化させながら円形走査を実施し、得られる信号の鮮鋭度評価値に生じる振動の位相成分からそれぞれの状態における非点収差の方向を評価し、大きさと方向が既知である加えた非点収差補正量の成分と比較を行うことで非点収差補正を行った方向と直行するもう1方向の非点収差成分を測定し、その結果に基づいて直行する2方向の収差成分を同時に補正することが可能である。
 また、本例においても図23で説明した例と同様に非点収差補正量(STG-X)を変化させた際、いずれかの条件において試料上におけるX軸に沿ったスポット径は最小となり、それに近いタイミングでプローブがX軸方向に走査された時に鮮鋭度評価値は極大となる。これに対応する条件を図24中に[1]で示す。またさらに異なる条件において試料上におけるY軸に沿ったスポット径は最小となり、それに近いタイミングでプローブがY軸方向に走査された時に鮮鋭度評価値は極大となる。
 これに対応する条件を図24中に[2]で示す。ここで[1]と[2]に対応する非点収差補正量(STG-X)の平均を求め、所定の関係式によって変換することで試料に対するフォーカスずれ量を測定することができる。または、先に述べた図24で[3]で示す条件と、[1]もしくは[2]の間の非点収差補正量(STG-X)の差を求め、所定の関係式によって変換することによっても試料に対するフォーカスずれ量を測定することができる。
 上記例は、図20及21に示す例と異なり、試料ステージのZ位置調整または対物レンズの制御パラメータを変更することなく、フォーカス位置及び非点収差補正の最適条件を決定することができる。
 また、図24を用いて説明した例において非点収差補正量の代わりにフォーカス位置、又は試料位置を変化させた形でも実施することが可能である。この場合、図24の最上段のグラフの下に示す、X非点収差補正量(STG-X)の時間変化のグラフを、それぞれフォーカス位置の変化、又は試料位置の変化(フォーカス位置の変化と方向の符号が反転する)として見ることで、その他のグラフで示す要素については同様の結果を得ることができる。
 この場合、非点収差を有した光学系において円形走査を繰り返した状態でフォーカス位置、又は試料位置を変化させ、その際に得られる信号強度から求まる鮮鋭度評価値に対して、すでに説明した例と同様の要素に着目して評価を行うことにより、光学系が持つ非点収差量の測定、もしくはフォーカスずれ量の測定を行うことが可能である。
 上記した実施例における鮮鋭度評価値の評価方法としては、一般的に知られる複数の手段を用いることができる。例として、上記得られた信号強度に対して微分フィルタ、Wabelet変換、Fourier変換などのフィルタや変換を適用し、得られた係数をそのまま、もしくは得られた係数から所定の式に基づいて算出される数値を用いて評価することができる。これら例のように、非点収差及び/又はフォーカスを調整するための評価値の計算は、所定のカーネルを用いたフィルタを使用して得ることもできる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成・機能・処理部等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には殆どすべての構成が相互に接続されていると考えてもよい。

Claims (15)

  1.  荷電粒子線システムであって、
     荷電粒子源からの荷電粒子線を、荷電粒子光学系を介して試料に照射する荷電粒子線装置と、
     前記荷電粒子線装置を制御する制御システムと、を含み、
     前記制御システムは、前記荷電粒子線を、走査軌跡を形成するように試料上で走査し、前記走査軌跡における異なる走査方向に関連付けられた信号強度の評価値を決定し、
     前記評価値と前記異なる走査方向との関係に基づき、前記荷電粒子光学系が備えるフォーカスずれ及び収差の少なくとも一方に関する情報を生成する、荷電粒子線システム。
  2.  請求項1に記載の荷電粒子線システムであって、
     前記制御システムは、前記情報に基づき、前記荷電粒子光学系が備えるフォーカスずれ及び収差の少なくとも一方を補正する、荷電粒子線システム。
  3.  請求項1に記載の荷電粒子線システムであって、
     前記走査軌跡は、走査方向が同一又は正反対となる異なる位置を含み、
     前記制御システムは、前記異なる位置における信号強度に基づいて前記信号強度の評価値を決定する、荷電粒子線システム。
  4.  請求項1に記載の荷電粒子線システムであって、
     前記制御システムは、
     複数回の前記走査軌跡を形成するように、前記荷電粒子線を移動させ、
     同一位置における複数回の信号強度に基づいて前記同一位置における走査方向に関連付けられた信号強度の評価値を決定する、荷電粒子線システム。
  5.  請求項1に記載の荷電粒子線システムであって、
     前記走査軌跡の走査方向が連続的に変化する、荷電粒子線システム。
  6.  請求項5に記載の荷電粒子線システムであって、
     前記走査軌跡の走査方向の変化は90°以上の角度範囲で行われる、荷電粒子線システム。
  7.  請求項1に記載の荷電粒子線システムであって、
     前記制御システムは、前記評価値と前記異なる走査方向との関係として、前記走査方向の変化に対する前記評価値の交流成分及び直流成分の少なくとも一つを用いる、荷電粒子線システム。
  8.  請求項7に記載の荷電粒子線システムであって、
     前記交流成分は6ヘルツ以下の周期性を有する、荷電粒子線システム。
  9.  請求項7に記載の荷電粒子線システムであって、
     前記制御システムは、前記交流成分の振幅、を用いる、荷電粒子線システム。
  10.  請求項7に記載の荷電粒子線システムであって、
     前記直流成分は、前記走査方向の変化に対する前記評価値の平均値又は総和に基づく、荷電粒子線システム。
  11.  請求項7に記載の荷電粒子線システムであって、
     前記制御システムは、前記交流成分の位相を用いる、荷電粒子線システム。
  12.  請求項7に記載の荷電粒子線システムであって、
     前記直流成分は、前記交流成分における前記評価値の平均値又は総和に基づく、荷電粒子線システム。
  13.  請求項1に記載の荷電粒子線システムであって、
     前記評価値は、前記信号強度の鮮鋭度を表す、又は前記信号強度に対して所定のカーネルを用いたフィルタを適用して得られる値である、荷電粒子線システム。
  14.  請求項1に記載の荷電粒子線システムであって、
     前記制御システムは、試料位置、フォーカス、又は前記荷電粒子光学系の収差量を変化させた複数の条件において前記評価値を決定する、荷電粒子線システム。
  15.  荷電粒子線装置を制御するための方法であって、
     荷電粒子線を、荷電粒子光学系を介して、走査軌跡を形成するように試料上で走査し、
     前記走査軌跡における異なる走査方向に関連付けられた信号強度の評価値を決定し、
     前記評価値と前記異なる走査方向との関係に基づき、前記荷電粒子光学系が備えるフォーカスずれ及び収差の少なくとも一方に関する情報を生成する、ことを含む方法。
PCT/JP2020/013743 2020-03-26 2020-03-26 荷電粒子線システム WO2021192164A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022510276A JP7292496B2 (ja) 2020-03-26 2020-03-26 荷電粒子線システム
KR1020227025744A KR20220120647A (ko) 2020-03-26 2020-03-26 하전 입자선 시스템
US17/795,278 US20230093287A1 (en) 2020-03-26 2020-03-26 Charged particle beam system
PCT/JP2020/013743 WO2021192164A1 (ja) 2020-03-26 2020-03-26 荷電粒子線システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/013743 WO2021192164A1 (ja) 2020-03-26 2020-03-26 荷電粒子線システム

Publications (1)

Publication Number Publication Date
WO2021192164A1 true WO2021192164A1 (ja) 2021-09-30

Family

ID=77891098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013743 WO2021192164A1 (ja) 2020-03-26 2020-03-26 荷電粒子線システム

Country Status (4)

Country Link
US (1) US20230093287A1 (ja)
JP (1) JP7292496B2 (ja)
KR (1) KR20220120647A (ja)
WO (1) WO2021192164A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612251A (ja) * 1984-06-15 1986-01-08 Hitachi Ltd 荷電粒子ビ−ム装置
JPH10284384A (ja) * 1997-04-09 1998-10-23 Fujitsu Ltd 荷電粒子ビーム露光方法及び装置
JP2008288024A (ja) * 2007-05-17 2008-11-27 Hitachi High-Technologies Corp 荷電粒子ビーム装置、その収差補正値算出装置、及びその収差補正プログラム
WO2010082489A1 (ja) * 2009-01-19 2010-07-22 株式会社日立ハイテクノロジーズ 収差補正器を備えた荷電粒子線装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492050A (en) * 1977-12-29 1979-07-20 Jeol Ltd Method and apparatus for astigmatic correction of scanning electronic microscope and others
JPS6070651A (ja) * 1983-09-28 1985-04-22 Hitachi Ltd 焦点合わせ方法およびその装置
JP3994691B2 (ja) 2001-07-04 2007-10-24 株式会社日立製作所 荷電粒子線装置および自動非点収差調整方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612251A (ja) * 1984-06-15 1986-01-08 Hitachi Ltd 荷電粒子ビ−ム装置
JPH10284384A (ja) * 1997-04-09 1998-10-23 Fujitsu Ltd 荷電粒子ビーム露光方法及び装置
JP2008288024A (ja) * 2007-05-17 2008-11-27 Hitachi High-Technologies Corp 荷電粒子ビーム装置、その収差補正値算出装置、及びその収差補正プログラム
WO2010082489A1 (ja) * 2009-01-19 2010-07-22 株式会社日立ハイテクノロジーズ 収差補正器を備えた荷電粒子線装置

Also Published As

Publication number Publication date
US20230093287A1 (en) 2023-03-23
JP7292496B2 (ja) 2023-06-16
KR20220120647A (ko) 2022-08-30
JPWO2021192164A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
US7714286B2 (en) Charged particle beam apparatus, aberration correction value calculation unit therefor, and aberration correction program therefor
US8168956B2 (en) Scanning transmission electron microscope and method of aberration correction therefor
JP4857101B2 (ja) プローブ評価方法
JP6283563B2 (ja) 収差計算装置、収差計算方法、画像処理装置、画像処理方法、および電子顕微鏡
US10037866B2 (en) Charged particle beam apparatus
WO2011152303A1 (ja) 自動収差補正法を備えた荷電粒子線装置
JP3402868B2 (ja) 荷電粒子光学鏡筒における非点収差の補正及び焦点合わせ方法
WO2015174268A1 (ja) 荷電粒子線装置
WO2021192164A1 (ja) 荷電粒子線システム
JP6770482B2 (ja) 荷電粒子線装置および走査像の歪み補正方法
WO2020235091A1 (ja) 荷電粒子線装置及び荷電粒子線装置の制御方法
WO2020217297A1 (ja) 荷電粒子線装置及び荷電粒子線装置の制御方法
JP6163063B2 (ja) 走査透過電子顕微鏡及びその収差測定方法
JP6777821B2 (ja) 収差補正装置及び荷電粒子線装置
JP7340033B2 (ja) 荷電粒子線システム及び荷電粒子線装置の制御システムにより実行される方法
JP7288997B2 (ja) 電子ビーム観察装置、電子ビーム観察システム、電子ビーム観察装置における画像補正方法及び画像補正のための補正係数算出方法
JPH10106469A (ja) 非点収差補正方法及び非点収差補正装置
CN109786195A (zh) 用于调节粒子束显微镜的方法
KR102628711B1 (ko) 하전 입자선 장치
JP7059402B2 (ja) 荷電粒子線装置及びその制御方法
KR20230165850A (ko) 하전 입자선 장치 및 그 제어 방법
JP2008282826A (ja) 荷電粒子線調整方法、及び荷電粒子線装置
JPH10247466A (ja) 非点収差補正方法及び非点収差補正装置
WO2019049260A1 (ja) 画像処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510276

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227025744

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927036

Country of ref document: EP

Kind code of ref document: A1