WO2021192158A1 - 発光素子、表示デバイス - Google Patents

発光素子、表示デバイス Download PDF

Info

Publication number
WO2021192158A1
WO2021192158A1 PCT/JP2020/013727 JP2020013727W WO2021192158A1 WO 2021192158 A1 WO2021192158 A1 WO 2021192158A1 JP 2020013727 W JP2020013727 W JP 2020013727W WO 2021192158 A1 WO2021192158 A1 WO 2021192158A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
emitting element
transport layer
electron
Prior art date
Application number
PCT/JP2020/013727
Other languages
English (en)
French (fr)
Inventor
真伸 水崎
正和 柴崎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN202080098050.1A priority Critical patent/CN115244598B/zh
Priority to US17/911,954 priority patent/US20230134846A1/en
Priority to PCT/JP2020/013727 priority patent/WO2021192158A1/ja
Publication of WO2021192158A1 publication Critical patent/WO2021192158A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers

Definitions

  • the present invention relates to a light emitting element and a display device provided with the light emitting element.
  • Patent Document 1 realizes highly efficient light emission of a light emitting layer and suppression of deterioration of the light emitting layer by inserting an interlayer film between each organic layer in an organic light emitting device provided with a plurality of organic layers between electrodes. The method is disclosed.
  • the carriers injected from each electrode into each organic layer between the electrodes are said to be present due to the retention in the organic layer or the imbalance of the carrier balance in the light emitting layer.
  • the life of the light emitting device (light emitting element) is shortened.
  • the light emitting element of the present invention includes an anode and a cathode, and between the anode and the cathode, in order from the anode side, a first hole transport layer and a second positive.
  • a light emitting element including a pore transport layer, a light emitting layer, a first electron transport layer, and a second electron transport layer, wherein the second hole transport layer and the second hole at the HOMO level
  • the energy level difference from the light emitting layer on the transport layer side is 0.0 eV or more and 0.15 eV or less, and the first electron transport layer and the light emission on the first electron transport layer side at the LUMO level.
  • the energy level difference from the layer is 0.0 eV or more and 0.15 eV or less
  • the second electron transporting layer contains an electron transporting organic material and an electron receiving material, and the electron receiving material is used. It is a mixed layer containing more than 50% by mass.
  • the carrier balance in the light emitting layer is improved, and the deterioration of the organic layer due to the bias of the carriers in the light emitting layer is suppressed. Therefore, it is possible to provide a light emitting element having a long life and a display device provided with the light emitting element.
  • FIG. 2 is a schematic top view of the display device 2 according to the present embodiment.
  • FIG. 1 is a cross-sectional view taken along the line AA in FIG.
  • the display device 2 includes a light emitting region DA from which light emission is taken out and a frame area NA surrounding the light emitting region DA.
  • a terminal T for inputting a signal for driving each light emitting element of the display device 2 described in detail later is formed.
  • the display device 2 includes an array substrate 4 and a light emitting element layer 6 on the array substrate 4 at a position where it overlaps with the light emitting region DA in a plan view.
  • the display device 2 has a structure in which each layer of the light emitting element layer 6 is laminated on an array substrate 4 on which a TFT (Thin Film Transistor) (not shown) is formed.
  • TFT Thin Film Transistor
  • the light emitting element layer 6 includes a first hole transport layer 10, a second hole transport layer 12, a light emitting layer 14, a first electron transport layer 16, and a second electron transport layer 18 on the anode 8.
  • the cathode 20 and the cathode 20 are sequentially laminated from the lower layer.
  • the anode 8 of the light emitting element layer 6 formed on the upper layer of the array substrate 4 is electrically connected to the TFT of the array substrate 4.
  • the display device 2 is provided with a sealing layer (not shown) that seals the light emitting element layer 6.
  • the light emitting element layer 6 includes a light emitting element 6R, a light emitting element 6G, and a light emitting element 6B.
  • the light emitting element 6R, the light emitting element 6G, and the light emitting element 6B may be an organic EL element, that is, an OLED element, in which the light emitting layer 14 is provided with an organic fluorescent material or an organic phosphorescent material.
  • the light emitting element 6R, the light emitting element 6G, and the light emitting element 6B may be a QLED element in which the light emitting layer 14 is provided with a semiconductor nanoparticle material, that is, a quantum dot material.
  • the light emitting element 6R, the light emitting element 6G, and the light emitting element 6B are not limited to the OLED element or the QLED element, and various light emitting elements can be adopted.
  • the display device 2 has, for example, a plurality of sub-pixels, and each of the sub-pixels includes the above-mentioned light emitting element 6R, light emitting element 6G, and light emitting element 6B.
  • each of the anode 8, the second hole transport layer 12, and the light emitting layer 14 is separated by the edge cover 22.
  • the anode 8 is separated into an anode 8R for the light emitting element 6R, an anode 8G for the light emitting element 6G, and an anode 8B for the light emitting element 6B by the edge cover 22.
  • the second hole transport layer 12 has a second hole transport layer 12R for the light emitting element 6R, a second hole transport layer 12G for the light emitting element 6G, and a second hole transport layer 12G for the light emitting element 6B by the edge cover 22. It is separated into a hole transport layer 12B.
  • the light emitting layer 14 is separated into a light emitting layer 14R, a light emitting layer 14G, and a light emitting layer 14B by an edge cover 22.
  • the light emitting layer 14G is provided by laminating the first light emitting layer 14GH and the second light emitting layer 14GE from the anode 8 side.
  • the first light emitting layer 14GH is a hole transport type light emitting layer
  • the second light emitting layer 14GE is an electron transport type light emitting layer.
  • the first light emitting layer 14GH contains a hole transporting host material
  • the second light emitting layer 14GE contains an electron transporting host material.
  • the light emitting layer 14G contains at least two or more types of host materials.
  • the light emitting layer 14G since the light emitting layer 14G includes only one type of host material different from each other in the first light emitting layer 14GH and the second light emitting layer 14GE, the light emitting layer 14G has two types of host materials. Only include.
  • the first hole transport layer 10, the first electron transport layer 16, the second electron transport layer 18, and the cathode 20 are not separated by the edge cover 22, but are formed in common.
  • the edge cover 22 is formed at a position that covers the side surface of the anode 8 and the vicinity of the peripheral end portion of the upper surface.
  • the light emitting element 6B further includes a first interlayer organic layer 24 as an interlayer organic layer between the second hole transport layer 12B and the light emitting layer 14B.
  • the first interlayer organic layer 24 is an organic layer having electron transportability, like the first electron transport layer 16 and the second electron transport layer 18.
  • the first interlayer organic layer 24 is composed of an organic material having electron transportability, and the electron mobility in the first interlayer organic layer 24 is larger than the hole mobility in the first interlayer organic layer 24.
  • the electron mobility of the organic material is 100 times or more higher than the hole mobility of the organic material constituting the first interlayer organic layer 24.
  • the organic material constituting the first interlayer organic layer 24 is a pyrimidine derivative (B3PymPm) represented by the following formula.
  • the organic material constituting the first interlayer organic layer 24 may be a siror derivative (PyPySPyPy) or a bipyrimidine oxadiazole derivative represented by the following formulas, respectively.
  • the first interlayer organic layer 24 has a layer thickness d24.
  • the layer thickness d24 is, for example, 0.1 nm or more and 2.0 nm or less, and is preferably 0.3 nm or more and 1.5 nm or less for the reason described later.
  • the layer thickness of a certain layer may be an average value of the layer thickness of the layer, or the layer thickness of the layer at a position formed substantially horizontally with the array substrate 4. It may be the average value of.
  • the light emitting element 6R includes an anode 8R, a first hole transport layer 10, a second hole transport layer 12R, a light emitting layer 14R, a first electron transport layer 16, and a second electron transport layer 18. And the cathode 20.
  • the light emitting element 6G includes an anode 8G, a first hole transport layer 10, a second hole transport layer 12G, a light emitting layer 14G, a first electron transport layer 16, a second electron transport layer 18, and the like. It consists of a cathode 20.
  • the light emitting element 6B includes an anode 8B, a first hole transport layer 10, a second hole transport layer 12B, a first interlayer organic layer 24, a light emitting layer 14B, and a first electron transport layer 16. It is composed of a second electron transport layer 18 and a cathode 20.
  • the light emitting layer 14R, the light emitting layer 14G, and the light emitting layer 14B are a red light emitting layer that emits red light, a green light emitting layer that emits green light, and a blue light emitting layer that emits blue light, respectively. That is, the light emitting element 6R, the light emitting element 6G, and the light emitting element 6B are a red light emitting element that emits red light, a green light emitting element that emits green light, and a blue light emitting element that emits blue light, respectively.
  • the blue light is, for example, light having a emission center wavelength in a wavelength band of 400 nm or more and 500 nm or less.
  • the green light is, for example, light having a emission center wavelength in a wavelength band of more than 500 nm and 600 nm or less.
  • the red light is, for example, light having a emission center wavelength in a wavelength band of more than 600 nm and 780 nm or less.
  • the light emitting layer 14B is in contact with the first interlayer organic layer 24 on the anode 8 side and in contact with the first electron transport layer 16 on the cathode 20 side. That is, the single-layer light emitting layer 14R and the light emitting layer 14B are in contact with both the first interlayer organic layer 24 and the first electron transport layer 16.
  • the light emitting layer 14R is in contact with the second hole transport layer 12 on the anode 8 side and in contact with the first electron transport layer 16 on the cathode 20 side. That is, the single-layer light emitting layer 14R is in contact with both the second hole transport layer 12 and the first electron transport layer 16.
  • the first light emitting layer 14GH is in contact with the second hole transport layer 12 on the anode 8 side and in contact with the second light emitting layer 14GE on the cathode 20 side. Further, the second light emitting layer 14GE is in contact with the first light emitting layer 14GH on the anode 8 side and in contact with the first electron transport layer 16 on the cathode 20 side.
  • the anode 8 and the cathode 20 contain a conductive material and are electrically connected to the first hole transport layer 10 and the second electron transport layer 18, respectively.
  • the electrode close to the display surface of the display device 2 is a translucent electrode.
  • the anode 8 has a structure in which ITO (Indium Tin Oxide, indium tin oxide) is laminated on, for example, an Ag-Pd-Cu alloy.
  • ITO Indium Tin Oxide, indium tin oxide
  • the anode 8 having the above configuration is a reflective electrode that reflects the light emitted from the light emitting layer 14. Therefore, of the light emitted from the light emitting layer 14, the downward light is reflected by the anode 8.
  • the cathode 20 is made of, for example, a translucent Mg-Ag alloy. That is, the cathode 20 is a transmissive electrode that transmits light emitted from the light emitting layer 14. Therefore, of the light emitted from the light emitting layer 14, the upward light passes through the cathode 20. In this way, the display device 2 can emit the light emitted from the light emitting layer 14 upward.
  • both the light emitted upward from the light emitting layer 14 and the light emitted downward can be directed toward the cathode 20 (upward). That is, the display device 2 is configured as a top emission type display device.
  • the cathode 20 which is a translucent electrode partially reflects the light emitted from the light emitting layer 14.
  • a cavity of light emitted from the light emitting layer 14 is formed between the anode 8 which is a reflective electrode and the cathode 20 which is a translucent electrode.
  • the configuration of the anode 8 and the cathode 20 described above is an example, and may have a different configuration.
  • the light emitting layer 14 is a layer that emits light by recombination of holes transported from the anode 8 and electrons transported from the cathode 20.
  • the holes transported to the first light emitting layer 14GH and the electrons transported to the second light emitting layer 14GE are transported to the interface between the first light emitting layer 14GH and the second light emitting layer 14GE. , Recombination near the interface.
  • the first hole transport layer 10 and the second hole transport layer 12 are layers that transport holes from the anode 8 to the light emitting layer 14. Further, the second hole transport layer 12 has a function of inhibiting the transport of electrons from the cathode 20.
  • the first electron transport layer 16 and the second electron transport layer 18 are layers that transport electrons from the cathode 20 to the light emitting layer 14. Further, the first electron transport layer 16 has a function of inhibiting the transport of holes from the anode 8.
  • the second electron transporting layer 18 is a mixed layer containing an electron transporting organic material and an electron accepting material.
  • the electron-accepting material contained in the second electron-transporting layer 18 is such that the electrons transported by the electron-transporting organic material in the second electron-transporting layer 18 are transported to the first electron-transporting layer 16 while the electrons are transported to the first electron-transporting layer 16. It has a function to temporarily capture. Therefore, the electron-accepting material contained in the second electron-transporting layer 18 allows the electron-transporting material to be carried out more stably to the first electron-transporting layer 16 and to the light-emitting layer 14. Therefore, the injection of excessive electrons in the light emitting layer 14 can be prevented, and the excess electrons in the light emitting layer 14 can be prevented.
  • the electron-transporting organic material contained in the second electron-transporting layer 18 is an oxadiazole derivative (OXD-7) represented by the following formula.
  • the electron-transporting organic material contained in the second electron-transporting layer 18 may be a star bust OXD, an oxadiazole derivative (Bu-PBD), a triazole derivative, or a basokbroin, which are represented by the following formulas, respectively. good.
  • the electron accepting material contained in the second electron transport layer 18 is, for example, a lithium complex or a lithium compound.
  • the electron accepting material contained in the second electron transport layer 18 is a lithium quinolate complex (Liq) represented by the following formula.
  • the second electron transport layer 18 contains a lithium quinolat complex as an electron accepting material, electrons are more stably transported to the first electron transport layer 16 in the second electron transport layer 18.
  • the electron receiving material contained in the second electron transport layer 18 is trifluoromethanesulfonyl (Li-TFSI), lithium acetoacetate, lithium bis (trimethylsilyl) amide, lithium butoxide, or 1, It may be 1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium.
  • the first hole transport layer 10, the second hole transport layer 12, the light emitting layer 14, the first electron transport layer 16, and the second electron transport layer 18 may be formed by a conventionally known method, for example, thin-film deposition. It may be formed by vapor deposition using a mask. In particular, the second electron transport layer 18 may be formed by co-depositing an electron transporting organic material and an electron accepting material.
  • the display device 2 according to the present embodiment may include a hole injection layer (not shown) containing a hole injection material between the anode 8 and the first hole transport layer 10.
  • the display device 2 according to the present embodiment may include an electron injection layer (not shown) containing an electron injection material between the cathode 20 and the second electron transport layer 18.
  • FIG. 3 is an energy band diagram showing an example of a Fermi level or a band gap in each layer of the light emitting element 6B of the display device 2 according to the present embodiment.
  • the energy band diagram of the present specification shows the energy level of each layer based on the vacuum level. Further, in the energy band diagram of the present specification, the Fermi level or band gap of the member corresponding to the attached member number is shown. For the anode 8 and the cathode 20, the Fermi level is set to the first hole transport layer 10, the second hole transport layer 12, the first interlayer organic layer 24, the light emitting layer 14, the first electron transport layer 16, and the second electron. For the transport layer 18, the band gaps from the LUMO level to the HOMO level are shown.
  • the difference between the HOMO level and the LUMO level between the layers in the light emitting element layer 6 according to the present embodiment will be described with reference to FIG.
  • the value obtained by subtracting the value of the HOMO level of the second layer from the value of the HOMO level of the first layer is the energy of the HOMO level of the first layer and the HOMO level of the second layer.
  • the level difference is the value obtained by subtracting the value of the LUMO level of the first layer from the value of the LUMO level of the second layer.
  • the value obtained by subtracting the value of the LUMO level of the first layer from the value of the LUMO level of the second layer is referred to as the LUMO level of the first layer and the LUMO level of the second layer.
  • Energy level difference is referred to as the LUMO level of the first layer and the LUMO level of the second layer.
  • H1 shows the energy level difference between the HOMO level of the first hole transport layer 10 and the HOMO level of the second hole transport layer 12B in the light emitting element 6B.
  • H2 indicates the energy level difference between the HOMO level of the second hole transport layer 12B and the HOMO level of the first interlayer organic layer 24 in the light emitting device 6B.
  • H3 indicates the energy level difference between the HOMO level of the first interlayer organic layer 24 and the HOMO level of the light emitting layer 14B in the light emitting element 6B.
  • H4 indicates the energy level difference between the HOMO level of the light emitting layer 14B and the HOMO level of the first electron transport layer 16 in the light emitting element 6B.
  • H5 indicates the energy level difference between the HOMO level of the first electron transport layer 16 and the HOMO level of the second electron transport layer 18 in the light emitting device 6B.
  • E1 shows the energy level difference between the LUMO level of the second electron transport layer 18 and the LUMO level of the first electron transport layer 16 in the light emitting element 6B.
  • E2 indicates the energy level difference between the LUMO level of the first electron transport layer 16 and the LUMO level of the light emitting layer 14B in the light emitting element 6B.
  • E3 indicates the energy level difference between the LUMO level of the light emitting layer 14 and the LUMO level of the first interlayer organic layer 24 in the light emitting element 6B.
  • E4 indicates the energy level difference between the LUMO level of the first interlayer organic layer 24 and the LUMO level of the second hole transport layer 12B in the light emitting device 6B.
  • E5 indicates the energy level difference between the LUMO level of the second hole transport layer 12B and the LUMO level of the first hole transport layer 10 in the light emitting element 6B.
  • the energy level difference H1, the energy level difference E1, and the energy level difference E2 are 0.0 eV or more and 0.20 eV or less.
  • the energy level difference of the HOMO level between the first hole transport layer 10 and the second hole transport layer 12B is 0.0 eV or more and 0.20 eV or less.
  • the level difference is 0.0 eV or more and 0.20 eV or less.
  • the energy level difference H2 is 0.0 eV or more and 0.20 eV or less.
  • the energy level difference of the HOMO level between the second hole transport layer 12B and the first interlayer organic layer 24 is 0.0 eV or more and 0.20 eV or less.
  • the energy level difference H3 is 0.0 eV or more and 0.05 eV or less.
  • the energy level difference of the HOMO level between the first interlayer organic layer 24 and the light emitting layer 14B is 0.0 eV or more and 0.05 eV or less.
  • a hole injection barrier from the second hole transport layer 12B to the first interlayer organic layer 24 and a hole injection barrier from the first interlayer organic layer 24 to the light emitting layer 14B Becomes smaller. Therefore, in the light emitting element 6B, the efficiency of injecting holes into the light emitting layer 14B is improved, and the excess of electrons is prevented more efficiently.
  • the HOMO level value of the light emitting layer 14B is 0.25 eV or more larger than the HOMO level value of the first electron transport layer 16, and more preferably 0.45 eV or more.
  • the value of the LUMO level of the first interlayer organic layer 24 is larger than the value of the LUMO level of the light emitting layer 14B by 0.25 eV or more, more preferably 0.45 eV or more.
  • the holes injected into the light emitting layer 14B flow out to the first electron transport layer 16 side, and the electrons injected into the light emitting layer 14B flow out to the first interlayer organic layer 24. Outflow to the side is reduced more effectively. As a result, the electron concentration and the hole concentration in the light emitting layer 14B of the light emitting element 6B are improved, and the efficiency of carrier recombination is improved. Further, in the light emitting element 6B, damage to each organic layer due to the outflow of carriers injected into the light emitting layer 14B is reduced, which leads to an improvement in the life of the light emitting element 6B.
  • the energy level difference E4 is 0.0 eV or more and 0.05 eV or less.
  • the energy level difference of the LUMO level between the second hole transport layer 12B and the first interlayer organic layer 24 is 0.0 eV or more and 0.05 eV or less.
  • the LUMO level value of the first interlayer organic layer 24 is smaller than the LUMO level value of the second hole transport layer 12B, electrons flow from the light emitting layer 14B to the first interlayer organic layer 24. It is easy to occur. Along with this, the outflow of electrons from the light emitting layer 14B to the second hole transport layer 12B is likely to occur via the first interlayer organic layer 24.
  • the difference in LUMO level between the second hole transport layer 12B and the first interlayer organic layer 24 is sufficiently close.
  • the LUMO level value of the first interlayer organic layer 24 becomes larger than the LUMO level value of the light emitting layer 14B, and the light emitting layer 14B to the second positive through the first interlayer organic layer 24.
  • the outflow of electrons to the hole transport layer 12B is less likely to occur. Therefore, according to the above configuration, the deterioration of the second hole transport layer 12B due to the outflow of electrons from the light emitting layer 14B to the second hole transport layer 12B is reduced, and the life of the light emitting element 6B is improved.
  • the energy level difference H1, the energy level difference E1, and the energy level difference E2 are 0.0 eV or more and 0.20 eV or less.
  • the light emitting device 6B includes a first interlayer organic layer 24 having electron transportability between the second hole transport layer 12B and the light emitting layer 14B.
  • the first interlayer organic layer 24 can reduce the outflow of electrons from the light emitting layer 14B to the second hole transport layer 12B.
  • the electron mobility of the organic material is 100 times or more larger than the hole mobility of the organic material constituting the first interlayer organic layer 24, the above-mentioned electron outflow can be reduced more efficiently.
  • the light emitting element 6B according to the present embodiment can eliminate the excess of electrons in the light emitting layer 14 while maintaining the transport efficiency of each carrier to the light emitting layer 14. Therefore, the light emitting element 6B according to the present embodiment improves the life more efficiently.
  • the blue light emitting element tends to have a shorter life than the green light emitting element and the red light emitting element. be.
  • the display device 2 according to the present embodiment includes the light emitting element 6B which is a blue light emitting element having an improved life, the life of the light emitting element 6B is longer than the life of the light emitting element 6G and the light emitting element 6R. Become. Therefore, the display device 2 according to the present embodiment can improve the life as a whole.
  • the light emitting elements according to the following Examples 1 and 2 having the same configuration as each light emitting element of the display device 2 according to the present embodiment were produced, and their physical properties were measured.
  • the light emitting element according to this embodiment has the same structure as the light emitting element 6B of the display device 2 according to this embodiment.
  • ITO was first formed to form an anode 8.
  • the first hole transport layer 10 (HOMO: ⁇ 5.50 eV, LUMO: -2.42 eV) containing an aromatic amine compound is placed on the anode 8 as the hole transport material. It was formed by film formation by the low temperature CVD method.
  • a second hole transport layer 12B (HOMO: ⁇ 5.60 eV, LUMO: ⁇ 2.52 eV) containing a carbazole-based compound as an electron block material is applied to the electron block. It was formed by film formation of the material by the low temperature CVD method.
  • the first interlayer organic layer 24 was formed on the upper layer of the second hole transport layer 12B by vapor deposition of the above-mentioned pyrimidine derivative (B3PymPm) (HOMO: ⁇ 5.77 eV, LUMO: ⁇ 2.52 eV).
  • the layer thickness d24 of the first interlayer organic layer 24 was set to 1.0 nm.
  • the light emitting layer 14B contains an anthracene-adamantane compound (HOMO: -5.74 eV, LUMO: -2.88 eV) as a host material and an anthracene-naphthalene compound (HOMO: -5.85 eV) which is a fluorescent dopant. , LUMO: -2.90 eV).
  • HOMO anthracene-adamantane compound
  • LUMO -2.88 eV
  • a first electron transport layer 16 (HOMO: -6.00 eV, LUMO: -2.95 eV) containing a triazole-based compound was deposited on the light emitting layer 14B as a hole block material. Formed by
  • the second electron transport layer 18 was formed on the upper layer of the first electron transport layer 16.
  • the second electron transport layer 18 is formed by co-depositing an electron transporting organic material and a lithium quinolate complex (HOMO: -5.78 eV, LUMO: -3.46 eV) at a mass ratio of 1: 1. bottom.
  • An oxadiazole derivative (OXD-7) (HOMO: -6.34 eV, LUMO: -2.92 eV) was used as the electron-transporting organic material of the second electron-transporting layer 18.
  • lithium fluoride was further deposited on the upper layer of the second electron transport layer 18 to form an electron injection layer.
  • an alloy of Mg—Ag was deposited on the upper layer of the electron injection layer to form a cathode 20.
  • a capping layer made of a compound containing an aromatic amine group is further formed on the upper layer of the cathode 20 by vapor deposition, and then the light emitting element is sealed with a sealing material containing an inorganic-organic composite material. went.
  • the difference between the LUMO level value of the light emitting layer 14B and the HOMO level value of the light emitting layer 14B was 2.95 eV.
  • the light emitting element according to this embodiment has the same structure as the light emitting element 6B of the display device 2 according to this embodiment.
  • ITO was first formed to form an anode 8.
  • the first hole transport layer 10 (HOMO: ⁇ 5.49 eV, LUMO: -2.41 eV) containing an aromatic amine compound is placed on the anode 8 as the hole transport material. It was formed by film formation by the low temperature CVD method.
  • a second hole transport layer 12B (HOMO: -5.62 eV, LUMO: -2.53 eV) containing a carbazole-based compound as an electron block material is applied to the electron block. It was formed by film formation of the material by the low temperature CVD method.
  • the first interlayer organic layer 24 was formed on the upper layer of the second hole transport layer 12B by vapor deposition of the above-mentioned pyrimidine derivative (B3PymPm) (HOMO: -5.78 eV, LUMO: -2.49 eV).
  • the layer thickness d24 of the first interlayer organic layer 24 was set to 1.0 nm.
  • the light emitting layer 14B contains an anthracene-phenyl compound (HOMO: -5.74 eV, LUMO: -2.82 eV) as a host material and a rubrene compound (HOMO: -5.80 eV, LUMO) which is a fluorescent dopant. : -2.86 eV) and formed by co-evaporation.
  • HOMO anthracene-phenyl compound
  • LUMO -2.82 eV
  • a first electron transport layer 16 (HOMO: -6.07 eV, LUMO: -2.87 eV) containing a triazole-based compound was deposited on the light emitting layer 14B as a hole block material. Formed by
  • the second electron transport layer 18 having the same configuration as the second electron transport layer 18 according to the first embodiment is formed by the same method as the method shown in the first embodiment. Formed.
  • ytterbium (Yb) was further deposited on the upper layer of the second electron transport layer 18 to form an electron injection layer.
  • the formation of the cathode 20 and the capping layer on the upper layer of the electron injection layer and the sealing of the light emitting element with the sealing material were carried out by the same method as in the previous embodiment.
  • the difference between the LUMO level value of the light emitting layer 14B and the HOMO level value of the light emitting layer 14B was 2.94 eV.
  • the electron mobility of the first interlayer organic layer 24 of the light emitting device according to each of the first and second embodiments is 2 ⁇ 10 ⁇ 2 cm 2 / Vs, and the hole mobility is 7 ⁇ 10 ⁇ . It was 6 cm 2 / Vs.
  • the carrier mobility of the first interlayer organic layer 24 was measured by impedance spectroscopy.
  • Example 1 For the light emitting elements according to each of Example 1 and Example 2, the light emitting elements according to Comparative Example 1 and Comparative Example 2 were produced, and their physical properties were measured.
  • the light emitting element according to Comparative Example 1 has the same configuration as the light emitting element according to Example 1 except that the first interlayer organic layer 24 is not formed.
  • the light emitting element according to Comparative Example 2 has the same configuration as that of the light emitting element according to Example 2, except that the first interlayer organic layer 24 is not formed.
  • the values of the HOMO level and the LUMO level of each layer of each light emitting element were measured, and the HOMO level difference and the LUMO level difference between the layers were measured.
  • a photoelectron yield spectroscopy (PYS) apparatus AC-3, manufactured by RIKEN KEIKI was used to determine the HOMO level value of each layer of each light emitting device.
  • the value of the LUMO level was determined by measuring the band gap of each layer of each light emitting element by measuring the ultraviolet spectrum.
  • the columns “H1” to “H5" and “E1” to “E5" indicate the energy values of the energy level differences H1 to H5 and the energy level differences E1 to E5, respectively. It is shown as a unit.
  • the negative value in the column of "H3” means that the value of the HOMO level of the first interlayer organic layer 24 is smaller than the value of the HOMO level of the light emitting layer 14B. show.
  • the numerical value in the column of "E4" is negative because the value of the LUMO level of the second hole transport layer 12B is higher than the value of the LUMO level of the first interlayer organic layer 24. Also shows that it is small.
  • the column of "H2" indicates the level difference between the second hole transport layer 12B and the light emitting layer 14B at the HOMO level.
  • the column “E3” indicates the level difference between the second hole transport layer 12B and the light emitting layer 14B at the LUMO level.
  • “H3” and "E4" are not described for each comparative example in Table 1.
  • the column of "voltage” indicates the magnitude of the voltage required to generate a current having a current density of 10 mA / cm 2 between the electrodes of each light emitting element, in units of V.
  • the “EQE” column indicates the percentage of the external quantum efficiency of each light emitting device under the application of the above voltage.
  • the “Life” column the period until the brightness of each light emitting element reaches 90% of the initial brightness under the environment of 25 degrees Celsius and the application of the above voltage, in units of time (h). show.
  • the physical properties of the light emitting element when the layer thickness d24 of the first interlayer organic layer 24 was changed were measured.
  • the layer thickness d24 is from 0.3 nm to 2.0 nm
  • the layer thickness d24 is 0.1 nm to 2.0 nm. Up to, each was changed and the measurement was performed.
  • the physical characteristics when the layer thickness d24 is 0 nm, that is, when the first interlayer organic layer 24 is not formed are shown in Comparative Example 1, respectively. And it was measured as Comparative Example 2.
  • the physical characteristics of the light emitting element according to Example 1 when the layer thickness d24 is changed and the physical properties of the light emitting element according to Comparative Example 1 are shown in Table 2 below. Further, the physical characteristics of the light emitting element according to Example 2 when the layer thickness d24 is changed and the physical properties of the light emitting element according to Comparative Example 2 are shown in Table 3 below.
  • the column of "d24” indicates the value of the layer thickness d24 of the first interlayer organic layer 24 in each light emitting element, in nm.
  • the column of 0 nm shows the physical characteristics of the light emitting element according to Comparative Example 1.
  • the column of 0 nm shows the physical characteristics of the light emitting element according to Comparative Example 2.
  • the column of "voltage” indicates the magnitude of the voltage required to generate a current having a current density of 10 mA / cm 2 between the electrodes of each light emitting element, in units of V.
  • the “EQE” column indicates the percentage of the external quantum efficiency of each light emitting device under the application of the above voltage.
  • the "chromaticity” column indicates the chromaticity of the light emitted by each light emitting element using the chromaticity coordinates of CIE. In the “Life” column, the period until the brightness of each light emitting element reaches 90% of the initial brightness under the environment of 25 degrees Celsius and the application of the above voltage, in units of time (h). show.
  • the life of the light emitting device according to the first embodiment provided with the first interlayer organic layer 24 is the life of the light emitting element according to the comparative example 1 not provided with the first interlayer organic layer 24. It is better than the life.
  • the life of the light emitting device according to the second embodiment provided with the first interlayer organic layer 24 is related to the comparative example 2 not provided with the first interlayer organic layer 24. It is better than the life of the light emitting element.
  • the external quantum efficiencies of the light emitting devices according to Examples 1 and 2 are the external quantum efficiencies of the light emitting devices according to Comparative Examples 1 and 2, respectively. There is no significant decrease compared to efficiency.
  • the light emitting elements according to the first and second embodiments have improved lifespan while maintaining the external quantum efficiency as compared with the light emitting elements according to the first and second embodiments.
  • the layer thickness d24 of the first interlayer organic layer 24 of the light emitting device according to each embodiment is 0.3 nm or more and 1.5 nm or less. Is preferable.
  • FIG. 6 is a cross-sectional view of the display device 26 according to the present embodiment at a position corresponding to FIG.
  • the display device 26 according to the present embodiment has a second interlayer organic layer 28 instead of the first interlayer organic layer 24 as compared with the display device 2 according to the previous embodiment. It is provided between the electron transport layer 18 and the cathode 20.
  • the display device 26 according to the present embodiment has a configuration different from that of the display device 2 according to the previous embodiment in that the display device 26 according to the present embodiment includes the second interlayer organic layer 28 as the interlayer organic layer.
  • the display device 26 has a hole injection layer 30 between the anode 8 and the first hole transport layer 10, a second interlayer organic layer 28 and a cathode 20.
  • An electron injection layer 32 is provided between the two.
  • the second electron transporting layer 18 contains an electron accepting material and an electron transporting organic material, and contains the lithium quinolate complex (Liq) described in the previous embodiment as the electron receiving material. I'm out.
  • the electron-transporting organic material contained in the second electron-transporting layer 18 may be the same material as the electron-transporting organic material contained in the second electron-transporting layer 18 in the previous embodiment. ..
  • the display device 26 according to the present embodiment has the same configuration as the display device 2 according to the previous embodiment.
  • the second interlayer organic layer 28 is commonly formed in the light emitting element 6B, the light emitting element 6G, and the light emitting element 6R.
  • the second interlayer organic layer 28 is made of an organic compound having an amino group or a hydroxyl group.
  • the second interlayer organic layer 28 is made of an isocyanurate compound having an amino group or a hydroxyl group.
  • the second interlayer organic layer 28 is composed of the compound represented by the following chemical formula (1) or chemical formula (2).
  • the second interlayer organic layer 28 has a layer thickness d28.
  • the hole injection layer 30 has a function of assisting hole injection from the anode 8 to the first hole transport layer 10.
  • the HOMO level value of the hole injection layer 30 has a value between the HOMO level value of the anode 8 and the HOMO level value of the first hole transport layer 10. Therefore, the hole injection layer 30 improves the efficiency of transporting holes from the anode 8 to the light emitting layer 14.
  • the electron injection layer 32 has a function of assisting electron injection from the cathode 20 to the second electron transport layer 18.
  • the LUMO level value of the electron injection layer 32 has a value between the LUMO level value of the cathode 20 and the LUMO level value of the second electron transport layer 18. Therefore, the electron injection layer 32 improves the efficiency of transporting electrons from the cathode 20 to the light emitting layer 14.
  • the layer thickness d28 sufficiently thin, electron injection from the cathode 20 to the second electron transport layer 18 via the electron injection layer 32 is performed by tunneling electrons through the second interlayer organic layer 28. Realize.
  • the light emitting device layer 6 has a hole injection layer 30 as a hole injection layer, a first hole transport layer 10 as a hole transport layer, and a second hole transport layer as an electron block layer. 12 is provided. Further, in the present embodiment, the light emitting device layer 6 includes an electron injection layer 32 as an electron injection layer, a second electron transport layer 18 as an electron transport layer, and a first electron transport layer 16 as a hole block layer. Be prepared.
  • the light emitting device layer 6 does not necessarily have to include the hole injection layer 30, the second hole transport layer 12, the first electron transport layer 16, and the electron injection layer 32. ..
  • the light emitting element layer 6 has a first hole transport layer 10 as a hole transport layer, a light emitting layer 14, and an electron transport layer in this order between the anode 8 and the cathode 20 from the anode 8 side.
  • the second electron transport layer 18 as an interlayer organic layer and the second interlayer organic layer 28 as an interlayer organic layer may be provided.
  • the N atom of the heterocycle of the lithium quinolate complex has an unpaired electron
  • electron transfer occurs between the N atom and the Li atom at a high temperature
  • the lithium quinolate complex Ionization progresses.
  • the effect of stabilizing the electron transport from the second electron transport layer 18 to the first electron transport layer 16 side by the lithium quinolate complex is reduced, and the electron excess in the light emitting layer 14 is increased. As a result, the life of the entire light emitting element may be shortened.
  • the second interlayer organic layer 28 adjacent to the second electron transport layer 18 is composed of an organic compound having an amino group or a hydroxyl group. Therefore, a hydrogen bond is formed between the amino group or the hydroxyl group of the second interlayer organic layer 28 and the N atom of the lithium quinolato complex of the second electron transport layer 18.
  • the second interlayer organic layer 28 is composed of a compound having an amino group represented by the above chemical formula (1).
  • a hydrogen bond is formed between the amino group of the second interlayer organic layer 28 and the N atom of the lithium quinolato complex of the second electron transport layer 18.
  • the N atoms having unpaired electrons in the lithium quinolate complex of the second electron transport layer 18 are reduced, and the stability of the lithium quinolate complex is improved. Therefore, the ionization of the lithium quinolate complex of the second electron transport layer 18 is less likely to proceed even at a high temperature. Therefore, in the present embodiment, the effect of stabilizing the electron transport from the second electron transport layer 18 to the first electron transport layer 16 side by the lithium quinolate complex of the second electron transport layer 18 is effective even at a high temperature. It is maintained and the life of the entire light emitting element is improved.
  • the ionization of the lithium quinolate complex of the second electron transport layer 18 described above can be suppressed more efficiently.
  • the second interlayer organic layer 28 has the compound represented by the above-mentioned chemical formula (1) or chemical formula (2), the ionization of the lithium quinolate complex of the second electron transport layer 18 can be suppressed more efficiently. Can be done.
  • the compounds represented by the above-mentioned chemical formula (1) or chemical formula (2) are less likely to cause defects such as decomposition even when used as a vapor deposition material. Therefore, since the second interlayer organic layer 28 has the compound represented by the above-mentioned chemical formula (1) or chemical formula (2), the second interlayer organic layer 28 in which deterioration is suppressed can be formed by a vapor deposition method.
  • the deterioration of the second electron transport layer 18 can be more efficiently suppressed by the second interlayer organic layer 28. can. This is particularly remarkable when each light emitting element is placed at a high temperature.
  • the display device 2 according to the present embodiment can be provided with the above-mentioned light emitting elements to improve the life as a whole.
  • the light emitting element according to the present embodiment forms the second interlayer organic layer 28 instead of the first interlayer organic layer 24, and further forms the hole injection layer 30. Except for the points, it had the same structure and was manufactured by the same method.
  • an aromatic compound (HOMO: ⁇ 7.83 eV, LUMO: ⁇ 5.60 eV), which is a hole injection material, is injected onto the anode 8. It was formed by film formation of the material by the low temperature CVD method.
  • the second interlayer organic layer 28 was formed by depositing the organic compound represented by the above chemical formula (1) on the upper layer of the second electron transport layer 18.
  • the light emitting element according to the present embodiment has the same structure as the light emitting element according to the third embodiment except for the material of the second interlayer organic layer 28, and is manufactured by the same method.
  • the second interlayer organic layer 28 of the light emitting device according to this embodiment was formed by depositing the organic compound represented by the above chemical formula (2) on the upper layer of the second electron transport layer 18.
  • the light emitting element according to this embodiment has the same structure as the light emitting element 6G according to this embodiment. Further, the light emitting element according to the present embodiment has the same structure and is manufactured by the same method except that the light emitting element according to the third embodiment and the light emitting layer 14G are provided instead of the light emitting layer 14B.
  • the light emitting layer 14G of the light emitting element was formed by forming the first light emitting layer 14GH and the second light emitting layer 14GE in order on the upper layer of the second hole transport layer 12G.
  • the light emitting layer 14G contains a lubrene compound (HOMO: -5.60 eV, LUMO: -2.34 eV) which is a hole transporting material and Alq3 (tris (8-quinolinolato) aluminum) which is an electron transporting material (HOMO: It was formed by co-evaporation of three materials (-5.96 eV, LUMO: -2.84 eV) and an iridium complex (HOMO: -5.60 eV, LUMO: -2.90 eV) which is a phosphorescent dopant.
  • HOMO lubrene compound
  • LUMO -2.34 eV
  • Alq3 tris (8-quinolinolato aluminum
  • the light emitting element according to this embodiment has the same structure as the light emitting element 6R according to this embodiment. Further, the light emitting element according to the present embodiment has the same structure and is manufactured by the same method except that the light emitting element according to the third embodiment and the light emitting layer 14R are provided instead of the light emitting layer 14B.
  • the light emitting layer 14R of the light emitting device is a phosphorescent dopant and a host material (HOMO: -5.72 eV, LUMO: -2.64 eV) on the upper layer of the second hole transport layer 12R. It was formed by co-depositing an iridium complex (HOMO: -4.85 eV, LUMO: -2.90 eV).
  • the light emitting elements according to each of Examples 3 to 6 were produced, and the physical properties were measured.
  • the light emitting elements according to each of Comparative Examples 3 to 6 are the same as those of the light emitting elements according to each of Examples 3 to 6 except that the second interlayer organic layer 28 is not formed. It has the configuration of.
  • the “EQE” column indicates the percentage of the external quantum efficiency of each light emitting device under the application of the above voltage.
  • the "chromaticity” column indicates the chromaticity of the light emitted by each light emitting element using the chromaticity coordinates of CIE.
  • the "normal temperature life” column the period until the brightness of each light emitting element reaches 90% of the initial brightness under the environment of 25 degrees Celsius and the application of the above voltage, in units of time (h). Shown in.
  • the “high temperature life” column the period until the brightness of each light emitting element reaches 90% of the initial brightness under the environment of 70 degrees Celsius and the application of the above voltage, in units of time (h). Shown in.
  • the lifetimes of the light emitting elements according to Examples 3 to 6 in the normal temperature environment and the high temperature environment of the light emitting elements according to Comparative Examples 3 to 6, respectively, are different. , It is improved compared to the life in each environment. Further, the improvement in the life of the light emitting element according to each of Examples 3 to 6 is more remarkable in a high temperature environment.
  • the external quantum efficiencies of the light emitting devices according to Examples 3 to 6 are significantly reduced when the layer thickness d28 of the second interlayer organic layer 28 is 3 nm or less. Not done. This is because the second layer organic layer 28 is sufficiently thin, so that the electron tunnel of the second layer organic layer 28 is efficiently generated in the electron injection from the electron injection layer 32 to the second electron transport layer 18. Is considered to be.
  • the layer thickness d28 of the second interlayer organic layer 28 of the light emitting device according to each embodiment is 0.1 nm or more and 3 nm or less. preferable.
  • the display device 26 includes the light emitting element 6R, the light emitting element 6G, and the light emitting element 6B according to the present embodiment, the display device 26 having higher luminous efficiency and improved life can be obtained.
  • the light emitting element 6R includes a single light emitting layer 14R
  • the present invention is not limited to this.
  • the light emitting element 6R may include a light emitting layer 14R in which a hole transporting type red light emitting layer and an electron transporting type red light emitting layer are laminated, similarly to the light emitting layer 14G of the light emitting element 6G.
  • 2,26 Light emitting device 6 Light emitting element layer 6R, 6G, 6B Light emitting element 8 Anode 10 First hole transport layer 12 Second hole transport layer 14 Light emitting layer 14GH, 14RH First light emitting layer 14GE, 14RE Second light emitting layer 16 1st electron transport layer 18 2nd electron transport layer 20 Anode 24 1st interlayer organic layer 28 2nd interlayer organic layer 30 Hole injection layer 32 Electron injection layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

発光素子(6B)は、第2正孔輸送層(12B)と、青色光を発する青色発光層(14B)との間に、電子輸送性の層間有機層(24)を備え、HOMO準位における、第1正孔輸送層(10)と、前記第2正孔輸送層とのエネルギー準位差が、0.0eV以上、0.20eV以下であり、LUMO準位における、第1電子輸送層(16)と、第2電子輸送層(18)とのエネルギー準位差、および、前記第1電子輸送層と、前記青色発光層とのエネルギー準位差が、0.0eV以上、0.20eV以下である。あるいは、発光素子は、電子輸送層と、陰極との間に層間有機層を備え、前記電子輸送層は、リチウムキノラート錯体と電子輸送性の有機化合物とからなり、前記層間有機層は、アミノ基またはヒドロキシル基を有する有機化合物からなる。

Description

発光素子、表示デバイス
 本発明は、発光素子、および当該発光素子を備えた表示デバイスに関する。
 特許文献1は、電極間に複数の有機層を備えた有機発光装置において、各有機層間への層間膜の挿入により、発光層の高効率の発光と、発光層の劣化の抑制とを実現する方法について開示している。
日本国再公表特許「国際公開番号2012/039213」
 特許文献1に記載の発光装置(発光素子)においても、各電極から、電極間の各有機層に注入されたキャリアの、当該有機層における滞留、あるいは、発光層におけるキャリアバランスの偏りにより、当該発光装置(発光素子)の寿命の短縮が生じる。
 上記課題を解決するために、本発明の発光素子は、陽極と、陰極とを備え、前記陽極と前記陰極との間に、前記陽極側から順に、第1正孔輸送層と、第2正孔輸送層と、発光層と、第1電子輸送層と、第2電子輸送層とを備えた発光素子であって、HOMO準位における、前記第2正孔輸送層と、前記第2正孔輸送層側の前記発光層とのエネルギー準位差が、0.0eV以上、0.15eV以下であり、LUMO準位における、前記第1電子輸送層と、前記第1電子輸送層側の前記発光層とのエネルギー準位差が、0.0eV以上、0.15eV以下であり、前記第2電子輸送層は、電子輸送性の有機材料と、電子受容材料とを含み、前記電子受容材料を、50質量パーセントより多く含む混合層である。
 上記構成により、発光素子において、発光層におけるキャリアバランスが改善し、発光層におけるキャリアの偏りに伴う有機層の劣化が抑制される。このため、長寿命化した発光素子、ならびに、当該発光素子を備えた表示デバイスを提供できる。
本発明の実施形態1に係る表示デバイスの概略断面図である。 本発明の実施形態1に係る表示デバイスの概略上面図である。 本発明の実施形態1に係る表示デバイスの発光素子における各層のフェルミ準位、またはLUMO準位とHOMO準位との例を示すエネルギー図である。 本発明の実施例1に係る発光素子における各層のフェルミ準位、またはLUMO準位とHOMO準位との例を示すエネルギー図である。 本発明の実施例2に係る発光素子における各層のフェルミ準位、またはLUMO準位とHOMO準位との例を示すエネルギー図である。 本発明の実施形態2に係る表示デバイスの概略断面図である。
 〔実施形態1〕
 図2は、本実施形態に係る表示デバイス2の概略上面図である。図1は、図2における、A-A線矢視断面図である。
 図2に示すように、本実施形態に係る表示デバイス2は、発光が取り出される発光領域DAと、当該発光領域DAの周囲を囲う額縁領域NAとを備える。額縁領域NAにおいては、後に詳述する表示デバイス2の各発光素子を駆動するための信号が入力される端子Tが形成されている。
 平面視において発光領域DAと重畳する位置において、図1に示すように、本実施形態に係る表示デバイス2は、アレイ基板4と、当該アレイ基板4上の発光素子層6とを備える。特に、表示デバイス2は、図示しないTFT(Thin Film Transistor:薄膜トランジスタ)が形成されたアレイ基板4上に、発光素子層6の各層が積層された構造を備える。なお、本明細書においては、表示デバイス2の発光素子層6からアレイ基板4への方向を「下方向」、表示デバイス2の発光素子層6から表示デバイス2の表示面への方向を「上方向」として記載する。
 発光素子層6は、陽極8上に、第1正孔輸送層10と、第2正孔輸送層12と、発光層14と、第1電子輸送層16と、第2電子輸送層18と、陰極20とを、下層から順次積層して備える。アレイ基板4の上層に形成された発光素子層6の陽極8は、アレイ基板4のTFTと電気的に接続されている。なお、表示デバイス2においては、発光素子層6を封止する、図示しない封止層が設けられている。
 本実施形態において、発光素子層6は、発光素子6Rと、発光素子6Gと、発光素子6Bとを備える。発光素子6Rと、発光素子6Gと、発光素子6Bとは、発光層14に、有機蛍光材料または有機りん光材料を備えた、有機EL素子、すなわち、OLED素子であってもよい。また、この他に、発光素子6Rと、発光素子6Gと、発光素子6Bとは、発光層14に、半導体ナノ粒子材料、すなわち、量子ドット材料を備えた、QLED素子であってもよい。しかしながら、本実施形態において、発光素子6Rと、発光素子6Gと、発光素子6Bとは、OLED素子またはQLED素子には限られず、種々の発光素子を採用できる。表示デバイス2は、例えば、複数のサブ画素を有し、当該サブ画素のそれぞれに、上述した発光素子6R、発光素子6G、および発光素子6Bを一つずつ備える。
 ここで、陽極8、第2正孔輸送層12、および発光層14のそれぞれは、エッジカバー22によって分離されている。特に、本実施形態においては、陽極8は、エッジカバー22によって、発光素子6R用の陽極8R、発光素子6G用の陽極8G、および発光素子6B用の陽極8Bに分離されている。また、第2正孔輸送層12は、エッジカバー22によって、発光素子6R用の第2正孔輸送層12R、発光素子6G用の第2正孔輸送層12G、および発光素子6B用の第2正孔輸送層12Bに分離されている。さらに、発光層14は、エッジカバー22によって、発光層14R、発光層14G、および発光層14Bに分離されている。
 さらに、発光層14Gは、陽極8側から、第1発光層14GHと、第2発光層14GEとを積層して備える。第1発光層14GHは、正孔輸送性タイプの発光層であり、第2発光層14GEは、電子輸送性タイプの発光層である。換言すれば、第1発光層14GHは、正孔輸送性のホスト材料を含み、第2発光層14GEは、電子輸送性のホスト材料を含む。
 このため、本実施形態において、発光層14Gは、少なくとも、ホスト材料を2種類以上含む。特に、本実施形態において、発光層14Gは、第1発光層14GHと、第2発光層14GEとに、1種類ずつのみ、互いに異なるホスト材料を備えるため、発光層14Gは、ホスト材料を2種類のみ含む。
 なお、第1正孔輸送層10と、第1電子輸送層16と、第2電子輸送層18と、陰極20とは、エッジカバー22によって分離されず、共通して形成されている。
 エッジカバー22は、図1に示すように、陽極8の側面と上面の周囲端部付近とを覆う位置に形成されている。
 本実施形態において、発光素子6Bは、さらに、第2正孔輸送層12Bと発光層14Bとの間に、層間有機層として、第1層間有機層24を備える。第1層間有機層24は、第1電子輸送層16および第2電子輸送層18と同様に、電子輸送性を有する有機層である。換言すれば、第1層間有機層24は、電子輸送性を有する有機材料から構成され、第1層間有機層24における電子移動度は、第1層間有機層24におけるホール移動度よりも大きい。
 特に、第1層間有機層24を構成する有機材料のホール移動度と比較して、当該有機材料の電子移動度は100倍以上大きい。
 具体的には、第1層間有機層24を構成する有機材料は、下記式に示す、ピリミジン誘導体(B3PymPm)である。
Figure JPOXMLDOC01-appb-C000003
 他にも、第1層間有機層24を構成する有機材料は、下記式にそれぞれ示す、シロール誘導体(PyPySPyPy)、あるいは、ビピリミジンオキサジアゾール誘導体であってもよい。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 本実施形態において、第1層間有機層24は、層厚d24を有する。本実施形態において、層厚d24は、例えば、0.1nm以上、2.0nm以下であり、後述する理由から、0.3nm以上、1.5nm以下であることが好ましい。
 ここで、本明細書において、ある層の層厚とは、当該層の層厚の平均値であってもよく、あるいは、アレイ基板4と略水平に形成された位置における、当該層の層厚の平均値であってもよい。
 本実施形態において、発光素子6Rは、陽極8R、第1正孔輸送層10と、第2正孔輸送層12Rと、発光層14Rと、第1電子輸送層16と、第2電子輸送層18と、陰極20とからなる。また、発光素子6Gは、陽極8Gと、第1正孔輸送層10と、第2正孔輸送層12Gと、発光層14Gと、第1電子輸送層16と、第2電子輸送層18と、陰極20とからなる。さらに、発光素子6Bは、陽極8Bと、第1正孔輸送層10と、第2正孔輸送層12Bと、第1層間有機層24と、発光層14Bと、第1電子輸送層16と、第2電子輸送層18と、陰極20とからなる。
 本実施形態において、発光層14R、発光層14G、および、発光層14Bは、それぞれ、赤色光を発する赤色発光層、緑色光を発する緑色発光層、および、青色光を発する青色発光層である。すなわち、発光素子6R、発光素子6G、および、発光素子6Bは、それぞれ、赤色光を発する赤色発光素子、緑色光を発する緑色発光素子、および、青色光を発する青色発光素子である。
 ここで、青色光とは、例えば、400nm以上500nm以下の波長帯域に発光中心波長を有する光である。また、緑色光とは、例えば、500nm超600nm以下の波長帯域に発光中心波長を有する光のことである。また、赤色光とは、例えば、600nm超780nm以下の波長帯域に発光中心波長を有する光のことである。
 本実施形態において、発光層14Bは、陽極8側において第1層間有機層24と接し、陰極20側において第1電子輸送層16と接する。すなわち、単層の発光層14Rおよび発光層14Bは、第1層間有機層24と第1電子輸送層16との双方と接する。
 発光層14Rは、陽極8側において第2正孔輸送層12と接し、陰極20側において第1電子輸送層16と接する。すなわち、単層の発光層14Rは、第2正孔輸送層12と第1電子輸送層16との双方と接する。
 一方、第1発光層14GHは、陽極8側において第2正孔輸送層12と接し、陰極20側において第2発光層14GEと接する。また、第2発光層14GEは、陽極8側において第1発光層14GHと接し、陰極20側において第1電子輸送層16と接する。
 陽極8および陰極20は導電性材料を含み、それぞれ、第1正孔輸送層10および第2電子輸送層18と電気的に接続されている。陽極8と陰極20とのうち、表示デバイス2の表示面に近い電極は半透明電極である。
 陽極8は、例えばAg‐Pd‐Cu合金上にITO(Indium Tin Oxide,インジウムスズ酸化物)が積層された構成を有する。上記構成を有する陽極8は、発光層14から発せられた光を反射する反射性電極である。したがって、発光層14から発せられた光のうち、下方向に向かう光が、陽極8によって反射される。
 これに対して、陰極20は、例えば半透明のMg‐Ag合金によって構成されている。つまり、陰極20は、発光層14から発せられた光を透過する透過性電極である。したがって、発光層14から発せられた光のうち、上方向に向かう光が、陰極20を透過する。このように、表示デバイス2は、発光層14から発せられた光を上方向に出射できる。
 以上のとおり、表示デバイス2においては、発光層14から上方向に発せられた光、および下方向に発せられた光の両方を、陰極20(上方向)へと向かわせることができる。すなわち、表示デバイス2は、トップエミッション型の表示デバイスとして構成されている。
 また、本実施形態において、半透明電極である陰極20は、発光層14から発せられた光を、一部反射する。加えて、反射電極である陽極8と、半透明電極である陰極20との間において、発光層14から発せられた光のキャビティが形成される。陽極8と陰極20との間においてキャビティを形成することにより、発光層14から発せられた光の色度を改善することができる。
 なお、上述した陽極8と陰極20との構成は一例であり、別の構成を有していてもよい。
 発光層14は、陽極8から輸送された正孔と、陰極20から輸送された電子との再結合が発生することにより、光を発する層である。なお、発光素子6Gにおいて、第1発光層14GHに輸送された正孔と、第2発光層14GEに輸送された電子とは、第1発光層14GHと第2発光層14GEとの界面まで輸送され、当該界面付近において再結合する。
 第1正孔輸送層10および第2正孔輸送層12は、陽極8からの正孔を発光層14へと輸送する層である。また、第2正孔輸送層12は、陰極20からの電子の輸送を阻害する機能を有する。第1電子輸送層16および第2電子輸送層18は、陰極20からの電子を発光層14へと輸送する層である。また、第1電子輸送層16は、陽極8からの正孔の輸送を阻害する機能を有する。
 本実施形態において、第2電子輸送層18は、電子輸送性の有機材料と、電子受容材料とを含む混合層である。第2電子輸送層18が含む電子受容材料は、第2電子輸送層18において、電子輸送性の有機材料により輸送される電子を、当該電子が第1電子輸送層16まで輸送される間に、一時的に捕捉する機能を有する。このため、第2電子輸送層18が含む電子受容材料により、第1電子輸送層16への電子の輸送、ひいては、発光層14への電子の輸送が、より安定的に行われる。したがって、発光層14における、過剰な電子の注入が防止され、発光層14における電子過多を防止できる。
 本実施形態において、例えば、第2電子輸送層18が含む電子輸送性の有機材料は、下記式に示す、オキサジアゾール誘導体(OXD-7)である。
Figure JPOXMLDOC01-appb-C000006
 他にも、第2電子輸送層18が含む電子輸送性の有機材料は、下記式にそれぞれ示す、スターバストOXD、オキサジアゾール誘導体(Bu-PBD)、トリアゾール誘導体、あるいは、バソクブロインであってもよい。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 本実施形態において、第2電子輸送層18が含む電子受容材料は、例えば、リチウム錯体、または、リチウム化合物である。具体的に、例えば、第2電子輸送層18が含む電子受容材料は、下記式に示す、リチウムキノラート錯体(Liq)である。
Figure JPOXMLDOC01-appb-C000011
 第2電子輸送層18が、電子受容材料として、リチウムキノラート錯体を含むことにより、第2電子輸送層18における、第1電子輸送層16への電子の輸送が、より安定的に行われる。
 他にも、第2電子輸送層18が含む電子受容材料は、下記式にそれぞれ示す、トリフルオロメタンスルホニル(Li-TFSI)、アセト酢酸リチウム、リチウムビス(トリメチルシリル)アミド、リチウムブトキシド、あるいは、1,1,2,2,3,3-ヘキサフルオロプロパン-1,3-ジスルホンイミドリチウムであってもよい。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 第1正孔輸送層10、第2正孔輸送層12、発光層14、第1電子輸送層16、および第2電子輸送層18は、従来公知の手法によって形成されてもよく、例えば、蒸着マスクを使用した蒸着によって形成してもよい。特に、第2電子輸送層18は、電子輸送性の有機材料と電子受容材料との共蒸着によって形成してもよい。
 なお、本実施形態に係る表示デバイス2は、陽極8と第1正孔輸送層10との間に、正孔注入材料を含む、図示しない正孔注入層を備えていてもよい。同様に、本実施形態に係る表示デバイス2は、陰極20と第2電子輸送層18との間に、電子注入材料を含む、図示しない電子注入層を備えていてもよい。
 次に、本実施形態に係る表示デバイス2の発光素子6Bの各層におけるエネルギーバンドについて、図3を参照して説明する。図3は、本実施形態に係る表示デバイス2の発光素子6Bの各層におけるフェルミ準位、またはバンドギャップの例を示すエネルギーバンド図である。
 なお、本明細書のエネルギーバンド図においては、各層の、真空準位を基準としたエネルギー準位を示している。また、本明細書のエネルギーバンド図においては、付した部材番号と対応する部材のフェルミ準位、またはバンドギャップを示す。陽極8および陰極20についてはフェルミ準位を、第1正孔輸送層10、第2正孔輸送層12、第1層間有機層24、発光層14、第1電子輸送層16、および第2電子輸送層18については、LUMO準位からHOMO準位までのバンドギャップをそれぞれ示す。
 ここで、本実施形態に係る発光素子層6における、各層間のHOMO準位およびLUMO準位の差について、図3を参照して説明する。本明細書においては、第1層のHOMO準位の値から、第2層のHOMO準位の値を引いた値を、第1層のHOMO準位と第2層のHOMO準位とのエネルギー準位差とする。一方、本明細書においては、第2層のLUMO準位の値から、第1層のLUMO準位の値を引いた値を、第1層のLUMO準位と第2層のLUMO準位とのエネルギー準位差とする。
 図3において、H1は、発光素子6Bにおける、第1正孔輸送層10のHOMO準位と第2正孔輸送層12BのHOMO準位とのエネルギー準位差を示す。H2は、発光素子6Bにおける、第2正孔輸送層12BのHOMO準位と第1層間有機層24のHOMO準位とのエネルギー準位差を示す。H3は、発光素子6Bにおける、第1層間有機層24のHOMO準位と発光層14BのHOMO準位とのエネルギー準位差を示す。H4は、発光素子6Bにおける、発光層14BのHOMO準位と第1電子輸送層16のHOMO準位とのエネルギー準位差を示す。H5は、発光素子6Bにおける、第1電子輸送層16のHOMO準位と第2電子輸送層18のHOMO準位とのエネルギー準位差を示す。
 また、図3において、E1は、発光素子6Bにおける、第2電子輸送層18のLUMO準位と第1電子輸送層16のLUMO準位とのエネルギー準位差を示す。E2は、発光素子6Bにおける、第1電子輸送層16のLUMO準位と発光層14BのLUMO準位とのエネルギー準位差を示す。E3は、発光素子6Bにおける、発光層14のLUMO準位と第1層間有機層24のLUMO準位とのエネルギー準位差を示す。E4は、発光素子6Bにおける、第1層間有機層24のLUMO準位と第2正孔輸送層12BのLUMO準位とのエネルギー準位差を示す。E5は、発光素子6Bにおける、第2正孔輸送層12BのLUMO準位と第1正孔輸送層10のLUMO準位とのエネルギー準位差を示す。
 本実施形態に係る発光素子6Bにおいて、エネルギー準位差H1と、エネルギー準位差E1と、エネルギー準位差E2とが、0.0eV以上、0.20eV以下である。換言すれば、発光素子6Bにおいて、第1正孔輸送層10と、第2正孔輸送層12Bとの、HOMO準位のエネルギー準位差が、0.0eV以上、0.20eV以下である。加えて、第1電子輸送層16と、第2電子輸送層18との、LUMO準位のエネルギー準位差、および、第1電子輸送層16と、発光層14Bとの、LUMO準位のエネルギー準位差が、0.0eV以上、0.20eV以下である。
 上記構成により、発光素子6Bにおいて、第1正孔輸送層10から第2正孔輸送層12Bへの正孔の注入障壁、第2電子輸送層18から第1電子輸送層16への電子の注入障壁、および、第1電子輸送層16から発光層14Bへの電子の注入障壁が小さくなる。このために、発光素子6Bにおいて、発光層14Bへの各キャリアの注入効率が向上する。
 また、本実施形態に係る発光素子6Bにおいて、エネルギー準位差H2が、0.0eV以上、0.20eV以下である。換言すれば、発光素子6Bにおいて、第2正孔輸送層12Bと、第1層間有機層24との、HOMO準位のエネルギー準位差が、0.0eV以上、0.20eV以下である。
 同様に、本実施形態に係る発光素子6Bにおいて、エネルギー準位差H3が、0.0eV以上、0.05eV以下である。換言すれば、発光素子6Bにおいて、第1層間有機層24と、発光層14Bとの、HOMO準位のエネルギー準位差が、0.0eV以上、0.05eV以下である。
 上記構成により、発光素子6Bにおいて、第2正孔輸送層12Bから第1層間有機層24への正孔の注入障壁、および、第1層間有機層24から発光層14Bへの正孔の注入障壁が小さくなる。このために、発光素子6Bにおいて、発光層14Bへの正孔の注入効率が向上し、電子過多がより効率的に防止される。
 さらに、発光層14BのHOMO準位の値は、第1電子輸送層16のHOMO準位の値よりも、0.25eV以上大きく、より好ましくは、0.45eV以上大きい。さらに、第1層間有機層24のLUMO準位の値は、発光層14BのLUMO準位の値よりも、0.25eV以上大きく、より好ましくは、0.45eV以上大きい。
 これらの構成により、発光素子6Bにおいて、発光層14Bに注入された正孔の、第1電子輸送層16側への流出、および、発光層14Bに注入された電子の、第1層間有機層24側への流出が、より効果的に低減する。これにより、発光素子6Bの発光層14Bにおける、電子濃度および正孔濃度が向上し、キャリアの再結合の効率が向上する。さらに、発光素子6Bにおいて、発光層14Bに注入されたキャリアの流出に伴う、各有機層へのダメージが低減するため、発光素子6Bの寿命の改善につながる。
 本実施形態に係る発光素子6Bにおいて、エネルギー準位差E4が、0.0eV以上、0.05eV以下である。換言すれば、発光素子6Bにおいて、第2正孔輸送層12Bと、第1層間有機層24との、LUMO準位のエネルギー準位差が、0.0eV以上、0.05eV以下である。
 第2正孔輸送層12BのLUMO準位の値と比較して、第1層間有機層24のLUMO準位の値が小さい場合、発光層14Bから第1層間有機層24への電子の流出が生じやすくなる。これに伴い、発光層14Bから第2正孔輸送層12Bへの電子の流出が、第1層間有機層24を介して生じやすくなる。
 上記構成により、第2正孔輸送層12Bと、第1層間有機層24との、LUMO準位の差が十分に近接する。これにより、発光層14BのLUMO準位の値と比較して、第1層間有機層24のLUMO準位の値が大きくなり、第1層間有機層24を介した、発光層14Bから第2正孔輸送層12Bへの電子の流出が生じにくくなる。したがって、上記構成により、発光層14Bから第2正孔輸送層12Bへ電子が流出することに伴う、第2正孔輸送層12Bの劣化が低減し、発光素子6Bの寿命が改善する。
 上述したように、本実施形態に係る発光素子6Bにおいて、エネルギー準位差H1と、エネルギー準位差E1と、エネルギー準位差E2とが、0.0eV以上、0.20eV以下である。上記構成により、発光素子6B、発光素子6G、および、発光素子6Rのそれぞれにおいて、発光層14への各キャリアの注入効率が向上する。
 加えて、本実施形態に係る発光素子6Bは、第2正孔輸送層12Bと発光層14Bとの間に、電子輸送性を有する第1層間有機層24を備える。上記構成により、発光素子6Bにおいて、第1層間有機層24は、発光層14Bから第2正孔輸送層12Bへの電子の流出を低減できる。特に、第1層間有機層24を構成する有機材料のホール移動度と比較して、当該有機材料の電子移動度が100倍以上大きいことにより、上述した電子の流出をより効率的に低減できる。
 発光層14から、第2正孔輸送層12側の各層への電子の流出が防止されることにより、発光層14よりも第2正孔輸送層12側の各層においても、発光に寄与しない電荷の再結合が生じにくくなる。これにより、発光層14、および、発光層14よりも第2正孔輸送層12側の各層に対するダメージが防止され、発光素子6Bの寿命が改善する。
 したがって、本実施形態に係る発光素子6Bは、発光層14への各キャリアの輸送効率を維持しつつ、発光層14における電子過多を解消できる。ゆえに、本実施形態に係る発光素子6Bは、より効率的に寿命を改善する。
 一般に、本実施形態に係る表示デバイス2が備える各発光素子のように、有機層を有する発光素子において、青色発光素子は、緑色発光素子および赤色発光素子と比較して、寿命が短くなる傾向にある。本実施形態に係る表示デバイス2は、上述したように、寿命が改善した青色発光素子である発光素子6Bを備えるため、発光素子6Bの寿命が、発光素子6Gおよび発光素子6Rの寿命に対し長くなる。したがって、本実施形態に係る表示デバイス2は、全体として寿命を改善することができる。
 本実施形態に係る表示デバイス2の各発光素子と同一の構成を有する、以下の実施例1および2のそれぞれに係る発光素子を作製し、物性を測定した。
 〔実施例1〕
 本実施例に係る発光素子は、本実施形態に係る表示デバイス2の発光素子6Bと同一の構造を備える。
 本実施例に係る発光素子の製造において、はじめに、ITOを形成し、陽極8とした。
 次いで、当該陽極8上に、正孔輸送材料として、芳香族アミン系化合物を含む第1正孔輸送層10(HOMO:-5.50eV、LUMO:-2.42eV)を、当該正孔輸送材料の低温CVD法による成膜により形成した。
 次いで、第1正孔輸送層10の上層に、電子ブロック材料として、カルバゾール系化合物を含む第2正孔輸送層12B(HOMO:-5.60eV、LUMO:-2.52eV)を、当該電子ブロック材料の低温CVD法による成膜により形成した。
 次いで、第2正孔輸送層12Bの上層に、上述したピリミジン誘導体(B3PymPm)(HOMO:-5.77eV、LUMO:-2.52eV)の蒸着により、第1層間有機層24を形成した。本実施例において、第1層間有機層24の層厚d24は1.0nmとした。
 次いで、第1層間有機層24の上層に、発光層14Bを形成した。発光層14Bは、ホスト材料であるアントラセン―アダマンタン系化合物(HOMO:-5.74eV、LUMO:-2.88eV)と、蛍光発光性のドーパントであるアントラセン―ナフタレン系化合物(HOMO:-5.85eV、LUMO:-2.90eV)との共蒸着により形成した。
 次いで、発光層14Bの上層に、正孔ブロック材料として、トリアゾール系化合物を含む第1電子輸送層16(HOMO:-6.00eV、LUMO:-2.95eV)を、当該正孔ブロック材料の蒸着により形成した。
 次いで、第1電子輸送層16の上層に、第2電子輸送層18を形成した。第2電子輸送層18は、電子輸送性の有機材料とリチウムキノラート錯体(HOMO:-5.78eV、LUMO:-3.46eV)とを、1:1の質量比において共蒸着することにより形成した。第2電子輸送層18の電子輸送性の有機材料には、オキサジアゾール誘導体(OXD-7)(HOMO:-6.34eV、LUMO:-2.92eV)を使用した。
 本実施例においては、さらに、第2電子輸送層18の上層に、フッ化リチウムを蒸着し、電子注入層とした。
 次いで、電子注入層の上層に、Mg-Agの合金を蒸着し、陰極20を形成した。
 本実施例においては、さらに、陰極20の上層に、芳香族アミン基を含む化合物からなるキャッピングレイヤを蒸着により形成し、次いで、無機-有機複合材料を含む封止材による発光素子の封止を行った。
 本実施例において、CIEの色度座標における、(x,y)=(0.140,0.050)の光を発する発光素子が得られた。なお、本実施例において、発光層14BのLUMO準位の値と、発光層14BのHOMO準位の値との差は、2.95eVであった。
 〔実施例2〕
 本実施例に係る発光素子は、本実施形態に係る表示デバイス2の発光素子6Bと同一の構造を備える。
 本実施例に係る発光素子の製造において、はじめに、ITOを形成し、陽極8とした。
 次いで、当該陽極8上に、正孔輸送材料として、芳香族アミン系化合物を含む第1正孔輸送層10(HOMO:-5.49eV、LUMO:-2.41eV)を、当該正孔輸送材料の低温CVD法による成膜により形成した。
 次いで、第1正孔輸送層10の上層に、電子ブロック材料として、カルバゾール系化合物を含む第2正孔輸送層12B(HOMO:-5.62eV、LUMO:-2.53eV)を、当該電子ブロック材料の低温CVD法による成膜により形成した。
 次いで、第2正孔輸送層12Bの上層に、上述したピリミジン誘導体(B3PymPm)(HOMO:-5.78eV、LUMO:-2.49eV)の蒸着により、第1層間有機層24を形成した。本実施例において、第1層間有機層24の層厚d24は1.0nmとした。
 次いで、第1層間有機層24の上層に、発光層14Bを形成した。発光層14Bは、ホスト材料であるアントラセンーフェニル系化合物(HOMO:-5.74eV、LUMO:-2.82eV)と、蛍光発光性のドーパントであるルブレン系化合物(HOMO:-5.80eV、LUMO:-2.86eV)との共蒸着により形成した。
 次いで、発光層14Bの上層に、正孔ブロック材料として、トリアゾール系化合物を含む第1電子輸送層16(HOMO:-6.07eV、LUMO:-2.87eV)を、当該正孔ブロック材料の蒸着により形成した。
 次いで、第1電子輸送層16の上層に、実施例1に係る第2電子輸送層18と同一の構成を有する第2電子輸送層18を、実施例1にて示した手法と同一の手法により形成した。
 本実施例においては、さらに、第2電子輸送層18の上層に、イッテルビウム(Yb)を蒸着し、電子注入層とした。
 電子注入層の上層の、陰極20およびキャッピングレイヤの形成と、封止材による発光素子の封止とは、前実施例と同一の方法により実行した。
 本実施例において、CIEの色度座標における、(x,y)=(0.136,0.048)の光を発する発光素子が得られた。なお、本実施例において、発光層14BのLUMO準位の値と、発光層14BのHOMO準位の値との差は、2.94eVであった。
 なお、実施例1と実施例2とのそれぞれに係る発光素子の第1層間有機層24の電子移動度は、2×10-2cm/Vsであり、ホール移動度は、7×10-6cm/Vsであった。第1層間有機層24のキャリア移動度は、インピーダンス分光法により測定した。
 実施例1、および、実施例2のそれぞれに係る発光素子に対し、比較例1、および、比較例2のそれぞれに係る発光素子を作製し、物性を測定した。
 比較例1に係る発光素子は、実施例1に係る発光素子と比較して、第1層間有機層24が形成されていない点のみを除き、同一の構成を備える。比較例2に係る発光素子は、実施例2に係る発光素子と比較して、第1層間有機層24が形成されていない点のみを除き、同一の構成を備える。
 次いで、上記各実施例および各比較例に係る発光素子の物性を測定し、当該物性を比較した。
 はじめに、各発光素子の各層のHOMO準位およびLUMO準位の値を測定し、各層間のHOMO準位差およびLUMO準位差を測定した。具体的には、光電子収量分光(PYS)装置(AC-3、理研計機社製)を使用して、各発光素子の各層のHOMO準位の値を確定させた。さらに、紫外線スペクトル測定により、各発光素子の各層のバンドギャップを測定することにより、LUMO準位の値を確定させた。
 上記測定の結果に基づく、各実施例および各比較例のそれぞれに係る発光素子の、各層のエネルギー図を、図4および図5に示す。図4、および図5のそれぞれは、実施例1、および実施例2のそれぞれに係る発光素子の、各層のエネルギー図を示す。
 次いで、摂氏25度の環境温度下において、各発光素子の電極間に、電流密度が10mA/cmの電流が発生する電圧を印加し、外部量子効率、および寿命の測定を行った。
 測定された、各実施例および各比較例に係る発光素子の物性を、下記表1に記載した。
Figure JPOXMLDOC01-appb-T000017
 表1において、「実施例1」、「実施例2」の欄は、それぞれの実施例に係る発光素子の物性を示している。
 表1において、「H1」~「H5」、および「E1」~「E5」の欄は、それぞれ、エネルギー準位差H1~H5、およびエネルギー準位差E1~E5のエネルギーの値を、eVを単位として示している。なお、各実施例において、「H3」の欄の数値が負号であることは、第1層間有機層24のHOMO準位の値が、発光層14BのHOMO準位の値よりも小さいことを示す。また、実施例2において、「E4」の欄の数値が負号であることは、第2正孔輸送層12BのLUMO準位の値が、第1層間有機層24のLUMO準位の値よりも小さいことを示す。
 なお、表1における各比較例について、「H2」の欄は、HOMO準位における、第2正孔輸送層12Bと発光層14Bとの準位差を示す。同様に、表1における各比較例について、「E3」の欄は、LUMO準位における、第2正孔輸送層12Bと発光層14Bとの準位差を示す。また、表1における各比較例については、「H3」および「E4」の記載を行っていない。
 表1において、「電圧」の欄は、各発光素子の電極間に、電流密度が10mA/cmの電流を発生させるために必要な電圧の大きさを、Vを単位として示す。「EQE」の欄は、上記電圧の印加下における、各発光素子の外部量子効率の百分率を示す。「寿命」の欄は、摂氏25度の環境下、かつ、上記電圧の印加下において、各発光素子の輝度が、初期輝度の90パーセントに到達するまでの期間を、時間(h)を単位に示す。
 次いで、実施例1および実施例2のそれぞれに係る発光素子において、第1層間有機層24の層厚d24を変更した場合における、当該発光素子の物性について測定した。実施例1に係る発光素子に対しては、層厚d24を、0.3nmから2.0nmまで、実施例2に係る発光素子に対しては、層厚d24を、0.1nmから2.0nmまで、それぞれ変更して測定を行った。さらに、実施例1および実施例2のそれぞれに係る発光素子に対して、層厚d24を0nmした場合、すなわち、第1層間有機層24を形成しなかった場合の物性を、それぞれ、比較例1および比較例2として測定した。
 実施例1に係る発光素子の、層厚d24を変更した場合における物性と、比較例1に係る発光素子の物性とを、以下の表2に記載した。また、実施例2に係る発光素子の、層厚d24を変更した場合における物性と、比較例2に係る発光素子の物性とを、以下の表3に記載した。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表2および表3において、「d24」の欄は、各発光素子における第1層間有機層24の層厚d24の値を、単位をnmとして示す。ここで、表2の「d24」の欄において、0nmの列は、比較例1に係る発光素子の物性について示す。また、表3の「d24」の欄において、0nmの列は、比較例2に係る発光素子の物性について示す。
 表2および表3において、「電圧」の欄は、各発光素子の電極間に、電流密度が10mA/cmの電流を発生させるために必要な電圧の大きさを、Vを単位として示す。「EQE」の欄は、上記電圧の印加下における、各発光素子の外部量子効率の百分率を示す。「色度」の欄は、各発光素子が発する光の色度を、CIEの色度座標を用いて示す。「寿命」の欄は、摂氏25度の環境下、かつ、上記電圧の印加下において、各発光素子の輝度が、初期輝度の90パーセントに到達するまでの期間を、時間(h)を単位に示す。
 表1、および、表2に示すように、第1層間有機層24を備えた実施例1に係る発光素子の寿命は、第1層間有機層24を備えていない比較例1に係る発光素子の寿命よりも改善している。同様に、表1、および、表3に示すように、第1層間有機層24を備えた実施例2に係る発光素子の寿命は、第1層間有機層24を備えていない比較例2に係る発光素子の寿命よりも改善している。また、表1、表2、および、表3に示すように、実施例1および実施例2にそれぞれ係る発光素子の外部量子効率は、比較例1および比較例2にそれぞれ係る発光素子の外部量子効率と比較して、大きく低下していない。
 したがって、実施例1および実施例2にそれぞれ係る発光素子は、比較例1および比較例2にそれぞれ係る発光素子と比較して、外部量子効率を維持しつつ、寿命が改善している。
 さらに、表2および表3に示すように、各実施例に係る発光素子における、第1層間有機層24の層厚d24が大きいほど、当該発光素子の寿命は長くなる傾向にある。これは、第1層間有機層24が厚い程、発光層14Bから第2正孔輸送層12Bへの電子の流出が低減し、第2正孔輸送層12Bの劣化が抑制されたためであると考えられる。
 一方、各実施例に係る発光素子における、第1層間有機層24の層厚d24が小さいほど、当該発光素子の外部量子効率は向上する傾向にある。これは、第1層間有機層24が薄い程、第2正孔輸送層12Bから発光層14Bへの正孔輸送の効率が向上し、発光層14Bにおけるキャリアの再結合の効率が向上したためであると考えられる。
 以上より、外部量子効率を維持しつつ、寿命を大きく改善する観点から、各実施例に係る発光素子の第1層間有機層24の層厚d24は、0.3nm以上、1.5nm以下であることが好ましい。
 〔実施形態2〕
 図6は、本実施形態に係る表示デバイス26の、図1と対応する位置における断面図である。
 本実施形態に係る表示デバイス26は、図6に示すように、前実施形態に係る表示デバイス2と比較して、第1層間有機層24に代えて、第2層間有機層28を、第2電子輸送層18と、陰極20との間に備える。換言すれば、本実施形態に係る表示デバイス26は、層間有機層として、第2層間有機層28を備えている点において、前実施形態に係る表示デバイス2と構成が異なる。
 また、本実施形態に係る表示デバイス26は、図6に示すように、陽極8と第1正孔輸送層10との間に、正孔注入層30を、第2層間有機層28と陰極20との間に、電子注入層32を、それぞれ備える。さらに、本実施形態において、第2電子輸送層18は、電子受容材料と電子輸送性の有機材料とを含み、電子受容材料として、前実施形態において説明した、リチウムキノラート錯体(Liq)を含んでいる。ただし、本実施形態において、第2電子輸送層18が含む電子輸送性の有機材料は、前実施形態における第2電子輸送層18が含む電子輸送性の有機材料と同一の材料であってもよい。
 上記点を除いて、本実施形態に係る表示デバイス26は、前実施形態に係る表示デバイス2と同一の構成を備えている。
 本実施形態において、第2層間有機層28は、発光素子6B、発光素子6G、および、発光素子6Rに、共通して形成されている。第2層間有機層28は、アミノ基、または、ヒドロキシル基を有する有機化合物からなる。特に、第2層間有機層28は、アミノ基、または、ヒドロキシル基を有するイソシアヌレート化合物からなる。具体的に、第2層間有機層28は、下記化学式(1)、または、化学式(2)に示す化合物からなる。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 なお、第2層間有機層28は、図6に示すように、層厚d28を有する。
 正孔注入層30は、陽極8から第1正孔輸送層10への正孔注入を補助する機能を有する。例えば、正孔注入層30のHOMO準位の値は、陽極8のHOMO準位の値と、第1正孔輸送層10のHOMO準位の値との間の値を有する。このため、正孔注入層30により、陽極8から発光層14への正孔の輸送効率が向上する。
 電子注入層32は、陰極20から第2電子輸送層18への電子注入を補助する機能を有する。例えば、電子注入層32のLUMO準位の値は、陰極20のLUMO準位の値と、第2電子輸送層18のLUMO準位の値との間の値を有する。このため、電子注入層32により、陰極20から発光層14への電子の輸送効率が向上する。なお、層厚d28を十分に薄く形成することにより、陰極20から第2電子輸送層18への、電子注入層32を介した電子注入は、第2層間有機層28を電子がトンネルすることにより実現する。
 本実施形態において、発光素子層6は、正孔注入層として、正孔注入層30を、正孔輸送層として、第1正孔輸送層10を、電子ブロック層として、第2正孔輸送層12を備える。また、本実施形態において、発光素子層6は、電子注入層として、電子注入層32を、電子輸送層として、第2電子輸送層18を、正孔ブロック層として、第1電子輸送層16を備える。
 ただし、本実施形態において、発光素子層6は、正孔注入層30と、第2正孔輸送層12と、第1電子輸送層16と、電子注入層32とを、必ずしも備えていなくともよい。本実施形態において、発光素子層6は、陽極8と陰極20との間に、陽極8側から順に、正孔輸送層としての第1正孔輸送層10と、発光層14と、電子輸送層としての第2電子輸送層18と、層間有機層としての第2層間有機層28とを備えていればよい。
 ここで、第2電子輸送層18が含むリチウムキノラート錯体は、高温下において、電子のやり取りが分子内において生じる場合がある。リチウムキノラート錯体の分子内における電子の授受は、以下の化学反応式に沿って生じる。
Figure JPOXMLDOC01-appb-C000022
 具体的には、リチウムキノラート錯体の複素環のN原子が不対電子を有するために、高温下においては、当該N原子と、Li原子との間において、電子授受が生じ、リチウムキノラート錯体のイオン化が進行する。リチウムキノラート錯体がイオン化した場合、当該リチウムキノラート錯体による、第2電子輸送層18から第1電子輸送層16側への電子輸送の安定化の効果が低減し、発光層14における電子過多が生じ、発光素子全体の寿命が短縮する場合がある。
 本実施形態において、上述したように、第2電子輸送層18と隣接する第2層間有機層28は、アミノ基、または、ヒドロキシル基を有する有機化合物からなる。このため、第2層間有機層28が有するアミノ基またはヒドロキシル基と、第2電子輸送層18が有するリチウムキノラート錯体のN原子との間において、水素結合が生じる。
 具体的に、第2層間有機層28が、上記化学式(1)に示す、アミノ基を備えた化合物からなるとする。この場合、下記化学式の点線に示すように、第2層間有機層28が有するアミノ基と、第2電子輸送層18が有するリチウムキノラート錯体のN原子との間において、水素結合が生じる。
Figure JPOXMLDOC01-appb-C000023
 これにより、第2電子輸送層18のリチウムキノラート錯体の、不対電子を有するN原子が低減し、リチウムキノラート錯体の安定性が向上する。このため、高温下においても、第2電子輸送層18のリチウムキノラート錯体のイオン化が進行しにくくなる。したがって、本実施形態においては、第2電子輸送層18のリチウムキノラート錯体による、第2電子輸送層18から第1電子輸送層16側への電子輸送の安定化の効果が、高温下においても維持され、発光素子全体の寿命が改善する。
 第2層間有機層28が、イソシアヌレート化合物を含むことにより、上述した、第2電子輸送層18のリチウムキノラート錯体のイオン化を、より効率よく抑制することができる。さらに、第2層間有機層28が、上述した化学式(1)または化学式(2)に示す化合物を有することにより、第2電子輸送層18のリチウムキノラート錯体のイオン化を、より効率よく抑制することができる。
 さらに、上述した化学式(1)または化学式(2)に示す化合物は、蒸着材料として使用した場合においても、分解等の不良が発生しにくい。したがって、第2層間有機層28が、上述した化学式(1)または化学式(2)に示す化合物を有することにより、劣化を抑制した第2層間有機層28を、蒸着法により形成することができる。
 本実施形態に係る発光素子6B、発光素子6G、および、発光素子6Rは、上述したように、第2層間有機層28により、第2電子輸送層18の劣化をより効率的に抑制することができる。このことは、特に、各発光素子が高温下に置かれた場合において顕著である。本実施形態に係る表示デバイス2は、上述した各発光素子を備えることにより、全体として寿命を改善することができる。
 本実施形態に係る表示デバイス26の各発光素子と同一の構成を有する、以下の実施例3から6のそれぞれに係る発光素子を作製し、物性を測定した。
 〔実施例3〕
 本実施例に係る発光素子は、実施例1に係る発光素子と比較して、第1層間有機層24に代え、第2層間有機層28を形成し、さらに、正孔注入層30を形成した点を除き、同一の構造を備え、同一の手法により製造された。
 実施例1に係る発光素子の正孔注入層30は、陽極8上に、正孔注入材料である芳香族化合物(HOMO:-7.83eV、LUMO:-5.60eV)を、当該正孔注入材料の低温CVD法による成膜により形成した。また、第2層間有機層28は、第2電子輸送層18の上層に、上記化学式(1)に示す有機化合物を蒸着することにより形成した。
 〔実施例4〕
 本実施例に係る発光素子は、実施例3に係る発光素子と、第2層間有機層28の材料を除き、同一の構造を備え、同一の手法により製造された。本実施例に係る発光素子の第2層間有機層28は、第2電子輸送層18の上層に、上記化学式(2)に示す有機化合物を蒸着することにより形成した。
 〔実施例5〕
 本実施例に係る発光素子は、本実施形態に係る発光素子6Gと同一の構造を備える。また、本実施例に係る発光素子は、実施例3に係る発光素子と、発光層14Bに代え、発光層14Gを備える点を除き、同一の構造を備え、同一の手法により製造された。
 本実施例に係る発光素子の発光層14Gは、第2正孔輸送層12Gの上層に、第1発光層14GHと第2発光層14GEとを順に形成することにより形成した。発光層14Gは、ホール輸送性材料であるルブレン系化合物(HOMO:-5.60eV、LUMO:-2.34eV)と、電子輸送性材料であるAlq3(トリス(8-キノリノラト)アルミニウム)(HOMO:-5.96eV、LUMO:-2.84eV)と、燐光発光性のドーパントであるイリジウム錯体(HOMO:-5.60eV、LUMO:-2.90eV)との3材料の共蒸着により形成した。
 〔実施例6〕
 本実施例に係る発光素子は、本実施形態に係る発光素子6Rと同一の構造を備える。また、本実施例に係る発光素子は、実施例3に係る発光素子と、発光層14Bに代え、発光層14Rを備える点を除き、同一の構造を備え、同一の手法により製造された。
 本実施例に係る発光素子の発光層14Rは、第2正孔輸送層12Rの上層に、ホスト材料(HOMO:-5.72eV、LUMO:-2.64eV)と、燐光発光性のドーパントであるイリジウム錯体(HOMO:-4.85eV、LUMO:-2.90eV)とを共蒸着することにより形成した。
 また、実施例3から実施例6のそれぞれに係る発光素子に対し、比較例3から比較例6のそれぞれに係る発光素子を作製し、物性を測定した。比較例3から比較例6のそれぞれに係る発光素子は、実施例3から実施例6のそれぞれに係る発光素子と比較して、第2層間有機層28が形成されていない点のみを除き、同一の構成を備える。
 次いで、上記各実施例および各比較例に係る発光素子の物性を測定し、当該物性を比較した。ここでは、実施例3から実施例6のそれぞれに係る発光素子において、第2層間有機層28の層厚d28を変更した場合における、当該発光素子の物性について測定した。各実施例のそれぞれに係る発光素子に対しては、層厚d28を、0.1nmから4nmまで変更して測定を行った。さらに、実施例3から実施例6のそれぞれに係る発光素子に対して、層厚d28を0nmした場合、すなわち、第2層間有機層28を形成しなかった場合の物性を、それぞれ、比較例3から比較例6として測定した。
 実施例3から実施例6のそれぞれに係る発光素子の、層厚d28を変更した場合における物性を、以下の表4から表7にそれぞれ記載した。なお、表4から表7のそれぞれにおいては、比較例3から比較例6のそれぞれに係る発光素子の物性についても記載した。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 表4および表7において、「EQE」の欄は、上記電圧の印加下における、各発光素子の外部量子効率の百分率を示す。「色度」の欄は、各発光素子が発する光の色度を、CIEの色度座標を用いて示す。「常温寿命」の欄は、摂氏25度の環境下、かつ、上記電圧の印加下において、各発光素子の輝度が、初期輝度の90パーセントに到達するまでの期間を、時間(h)を単位に示す。「高温寿命」の欄は、摂氏70度の環境下、かつ、上記電圧の印加下において、各発光素子の輝度が、初期輝度の90パーセントに到達するまでの期間を、時間(h)を単位に示す。
 表4から表7にそれぞれ示すように、実施例3から実施例6にそれぞれ係る発光素子の、常温環境、および高温環境のそれぞれにおける寿命は、比較例3から比較例6にそれぞれ係る発光素子の、各環境における寿命と比較して向上している。また、実施例3から実施例6にそれぞれ係る発光素子の寿命の改善は、高温環境においてより顕著である。
 さらに、表4から表7にそれぞれ示すように、各実施例に係る発光素子における、第2層間有機層28の層厚d28が大きいほど、当該発光素子の寿命は長くなる傾向にある。これは、第2層間有機層28が厚い程、第2電子輸送層18のリチウムキノラート錯体のイオン化の進行がより効率よく抑制され、第2電子輸送層18の劣化が抑制されたためであると考えられる。
 一方、表4から表7にそれぞれ示すように、実施例3から実施例6にそれぞれ係る発光素子の外部量子効率は、第2層間有機層28の層厚d28が3nm以下である場合、大きく低下していない。これは、第2層間有機層28が十分に薄いために、電子注入層32から第2電子輸送層18への電子注入において、第2層間有機層28の電子のトンネルが効率よく生じているためであると考えられる。
 以上より、外部量子効率を維持しつつ、寿命を大きく改善する観点から、各実施例に係る発光素子の第2層間有機層28の層厚d28は、0.1nm以上、3nm以下であることが好ましい。
 本実施形態に係る発光素子6R、発光素子6G、および発光素子6Bを、表示デバイス26が備えることにより、より高い発光効率を有し、寿命が改善された表示デバイス26が得られる。
 なお、上述した各実施形態においては、発光素子6Rが、単一の発光層14Rを備えている構成を説明したが、これに限られない。例えば、発光素子6Rは、発光素子6Gの発光層14Gと同じく、正孔輸送性タイプの赤色発光層と、電子輸送性タイプの赤色発光層とを積層した発光層14Rを備えていてもよい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
2、26      発光デバイス
6         発光素子層
6R、6G、6B  発光素子
8         陽極
10        第1正孔輸送層
12        第2正孔輸送層
14        発光層
14GH、14RH 第1発光層
14GE、14RE 第2発光層
16        第1電子輸送層
18        第2電子輸送層
20        陰極
24        第1層間有機層
28        第2層間有機層
30        正孔注入層
32        電子注入層

Claims (16)

  1.  陽極と、陰極とを備え、前記陽極と前記陰極との間に、前記陽極側から順に、第1正孔輸送層と、第2正孔輸送層と、電子輸送性の層間有機層と、青色光を発する青色発光層と、第1電子輸送層と、第2電子輸送層とを備えた発光素子であって、
     HOMO準位における、前記第1正孔輸送層と、前記第2正孔輸送層とのエネルギー準位差が、0.0eV以上、0.20eV以下であり、
     LUMO準位における、前記第1電子輸送層と、前記第2電子輸送層とのエネルギー準位差、および、前記第1電子輸送層と、前記青色発光層とのエネルギー準位差が、0.0eV以上、0.20eV以下である発光素子。
  2.  前記層間有機層を構成する有機材料は、電子移動度が、ホール移動度と比較して、100倍以上大きい請求項1に記載の発光素子。
  3.  前記層間有機層のLUMO準位の値が、前記青色発光層のLUMO準位の値よりも0.25eV以上大きい請求項1または2に記載の発光素子。
  4.  前記層間有機層のLUMO準位の値が、前記青色発光層のLUMO準位の値よりも0.45eV以上大きい請求項3に記載の発光素子。
  5.  LUMO準位における、前記第2正孔輸送層と、前記層間有機層とのエネルギー準位差が、0.0eV以上、0.05eV以下である請求項1から4の何れか1項に記載の発光素子。
  6.  HOMO準位における、前記第2正孔輸送層と、前記層間有機層とのエネルギー準位差が、0.0eV以上、0.20eV以下である請求項1から5の何れか1項に記載の発光素子。
  7.  HOMO準位における、前記層間有機層と、前記青色発光層とのエネルギー準位差が、0.0eV以上、0.05eV以下である請求項1から6の何れか1項に記載の発光素子。
  8.  前記層間有機層の層厚が、0.3nm以上、1.5nm以下である請求項1から7の何れか1項に記載の発光素子。
  9.  前記青色発光層のHOMO準位の値が、前記第1電子輸送層のHOMO準位の値よりも0.25eV以上大きい請求項1から8の何れか1項に記載の発光素子。
  10.  前記青色発光層のHOMO準位の値が、前記第1電子輸送層のHOMO準位の値よりも0.45eV以上大きい請求項9に記載の発光素子。
  11.  陽極と、陰極とを備え、前記陽極と前記陰極との間に、前記陽極側から順に、正孔輸送層と、発光層と、電子輸送層と、層間有機層とを備えた発光素子であって、
     前記電子輸送層は、リチウムキノラート錯体と電子輸送性の有機化合物とからなり、
     前記層間有機層は、アミノ基またはヒドロキシル基を有する有機化合物からなる発光素子。
  12.  前記層間有機層は、アミノ基またはヒドロキシル基を有するイソシアヌレート化合物からなる請求項11に記載の発光素子。
  13.  前記層間有機層は、以下の化学式(1)からなる、
    Figure JPOXMLDOC01-appb-C000001
     請求項12に記載の発光素子。
  14.  前記層間有機層は、以下の化学式(2)からなる、
    Figure JPOXMLDOC01-appb-C000002
     請求項12に記載の発光素子。
  15.  前記陽極と前記正孔輸送層との間に、正孔注入層を備え、
     前記正孔輸送層と前記発光層との間に、電子ブロック層を備え、
     前記発光層と前記電子輸送層との間に、正孔ブロック層を備え、
     前記層間有機層と前記陰極との間に、電子注入層を備えた請求項11から14の何れか1項に記載の発光素子。
  16.  請求項1から15の何れか1項に記載の発光素子を、少なくとも一つ以上備えた表示デバイス。

     
PCT/JP2020/013727 2020-03-26 2020-03-26 発光素子、表示デバイス WO2021192158A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080098050.1A CN115244598B (zh) 2020-03-26 2020-03-26 发光元件、显示装置
US17/911,954 US20230134846A1 (en) 2020-03-26 2020-03-26 Light emitting element and display device
PCT/JP2020/013727 WO2021192158A1 (ja) 2020-03-26 2020-03-26 発光素子、表示デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/013727 WO2021192158A1 (ja) 2020-03-26 2020-03-26 発光素子、表示デバイス

Publications (1)

Publication Number Publication Date
WO2021192158A1 true WO2021192158A1 (ja) 2021-09-30

Family

ID=77891007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013727 WO2021192158A1 (ja) 2020-03-26 2020-03-26 発光素子、表示デバイス

Country Status (3)

Country Link
US (1) US20230134846A1 (ja)
CN (1) CN115244598B (ja)
WO (1) WO2021192158A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114267803A (zh) * 2021-12-15 2022-04-01 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
EP4376582A1 (en) * 2022-11-25 2024-05-29 Novaled GmbH Organic electroluminescent device and display device comprising the organic electroluminescent device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266160A (ja) * 2006-03-28 2007-10-11 Canon Inc 有機発光素子アレイ
JP2013048265A (ja) * 2005-03-31 2013-03-07 Trustees Of Princeton Univ 三重項状態への直接注入を利用するoled
JP2015174886A (ja) * 2014-03-13 2015-10-05 Jsr株式会社 粘着フィルム、粘着フィルムの製造方法並びに粘着フィルムを用いた有機エレクトロルミネッセンス素子の製造方法
KR20160054820A (ko) * 2014-11-07 2016-05-17 선문대학교 산학협력단 삼중항 여기자 소광 억제 및 전하 균형을 통해 개선된 효율을 가지는 청색 인광 유기발광 다이오드
JP2017513224A (ja) * 2014-04-04 2017-05-25 エルジー・ケム・リミテッド 有機発光素子
JP2018206981A (ja) * 2017-06-06 2018-12-27 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
JP2019160417A (ja) * 2018-03-07 2019-09-19 株式会社ジャパンディスプレイ 表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027761A (ja) * 2008-07-17 2010-02-04 Toray Ind Inc 発光素子
JP2014058452A (ja) * 2012-09-14 2014-04-03 Shikoku Chem Corp 新規なイソシアヌレート化合物
JPWO2015152148A1 (ja) * 2014-03-31 2017-04-13 住友化学株式会社 有機エレクトロルミネッセンス素子
KR102302850B1 (ko) * 2014-10-22 2021-09-23 삼성디스플레이 주식회사 발광 소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048265A (ja) * 2005-03-31 2013-03-07 Trustees Of Princeton Univ 三重項状態への直接注入を利用するoled
JP2007266160A (ja) * 2006-03-28 2007-10-11 Canon Inc 有機発光素子アレイ
JP2015174886A (ja) * 2014-03-13 2015-10-05 Jsr株式会社 粘着フィルム、粘着フィルムの製造方法並びに粘着フィルムを用いた有機エレクトロルミネッセンス素子の製造方法
JP2017513224A (ja) * 2014-04-04 2017-05-25 エルジー・ケム・リミテッド 有機発光素子
KR20160054820A (ko) * 2014-11-07 2016-05-17 선문대학교 산학협력단 삼중항 여기자 소광 억제 및 전하 균형을 통해 개선된 효율을 가지는 청색 인광 유기발광 다이오드
JP2018206981A (ja) * 2017-06-06 2018-12-27 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
JP2019160417A (ja) * 2018-03-07 2019-09-19 株式会社ジャパンディスプレイ 表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114267803A (zh) * 2021-12-15 2022-04-01 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
CN114267803B (zh) * 2021-12-15 2023-07-28 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
EP4376582A1 (en) * 2022-11-25 2024-05-29 Novaled GmbH Organic electroluminescent device and display device comprising the organic electroluminescent device
WO2024110641A1 (en) * 2022-11-25 2024-05-30 Novaled Gmbh Organic electroluminescent device and display device comprising the organic electroluminescent device

Also Published As

Publication number Publication date
US20230134846A1 (en) 2023-05-04
CN115244598A (zh) 2022-10-25
CN115244598B (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
KR101950836B1 (ko) 유기 발광 소자 및 그의 제조 방법
CN108023023B (zh) 有机发光装置及使用该有机发光装置的有机发光显示装置
US8633475B2 (en) Organic electroluminescence device and a method for producing the device
KR102354236B1 (ko) 상이한 리튬 화합물들 및 금속 원소를 포함하는 전자 수송층 스택을 포함하는 유기 발광 다이오드
KR101429537B1 (ko) 유기발광소자
US20090009072A1 (en) Organic Light Emitting Device With a Plurality of Organic Electroluminescent Units Stacked Upon Each Other
EP3235019B1 (en) Organic light-emitting diode comprising electron transport layers with different matrix compounds
EP2690662A2 (en) Organic Light-Emitting Device and Organic Light-Emitting Display Apparatus Including the Same
EP2715825A1 (en) Oled having multi-component emissivie layer
JP2006210845A (ja) 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
WO2012124642A1 (ja) 有機エレクトロルミネッセンス素子
US20170301876A1 (en) Organic Light-Emitting Diode Including an Electronic Transport Layer Comprising a Three Component Blend of a Matrix Compound and Two Lithium Compounds
US10892432B2 (en) Organic EL display device, manufacturing method thereof, and light-emission method thereof
JP2012146764A (ja) 表示装置
KR20160066234A (ko) 유기 발광 표시 장치 및 이의 제조 방법
US20200106040A1 (en) Color stable organic light emitting diode stack
WO2021192158A1 (ja) 発光素子、表示デバイス
JP2012049088A (ja) 有機エレクトロルミネッセンス素子、及び有機エレクトロルミネッセンス素子の製造方法
JP2012022953A (ja) 有機エレクトロルミネッセンス素子
WO2020194411A1 (ja) 発光素子、発光デバイス
WO2021095145A1 (ja) 発光素子、発光デバイス
WO2021192159A1 (ja) 発光素子、表示デバイス
US20210036065A1 (en) Color stable multicolor OLED device structures
TWI569492B (zh) 有機發光元件
WO2023012877A1 (ja) 表示装置、および表示装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP