WO2021190892A1 - Installation et procédé de réfrigération d'hydrogène - Google Patents

Installation et procédé de réfrigération d'hydrogène Download PDF

Info

Publication number
WO2021190892A1
WO2021190892A1 PCT/EP2021/055376 EP2021055376W WO2021190892A1 WO 2021190892 A1 WO2021190892 A1 WO 2021190892A1 EP 2021055376 W EP2021055376 W EP 2021055376W WO 2021190892 A1 WO2021190892 A1 WO 2021190892A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
cycle
cycle gas
heat exchanger
cooling device
Prior art date
Application number
PCT/EP2021/055376
Other languages
English (en)
Inventor
Patrick Le Bot
Marine ANDRICH
Nicolas KOFMAN
Original Assignee
L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to EP21708249.4A priority Critical patent/EP4127582A1/fr
Priority to AU2021240847A priority patent/AU2021240847A1/en
Priority to CA3171542A priority patent/CA3171542A1/fr
Priority to KR1020227032081A priority patent/KR20220157389A/ko
Priority to US17/914,294 priority patent/US20230119575A1/en
Publication of WO2021190892A1 publication Critical patent/WO2021190892A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0097Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • F25J1/025Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/02Separating impurities in general from the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to an installation and a method for the refrigeration of hydrogen.
  • the invention relates more particularly to an installation for refrigeration of hydrogen at cryogenic temperature, and in particular for the liquefaction of hydrogen, comprising a hydrogen circuit to be cooled comprising an upstream end intended to be connected to a source of hydrogen and a downstream end connected to a body for collecting the cooled hydrogen, the cooling installation comprising a first set of heat exchanger (s) and a second set of heat exchanger (s) arranged in series in heat exchange with the hydrogen circuit to be cooled, the cooling device comprising a first cooling device in thermal exchange with the first set of heat exchanger (s), the first cooling device comprising a refrigeration cycle refrigerator of a first cycle gas such as nitrogen, the cooling installation comprising a second cooling device in thermal exchange with the seco nd heat exchanger assembly (s), the second cooling device comprising a refrigeration cycle refrigerator of a second cycle gas having a molar lower than 3g / mol, in particular hydrogen, in which the refrigerator of the second cooling device comprises, arranged in series in a cycle circuit: a member for compressing the second cycle
  • Centrifugal compressors can handle the high cycle rates required for large capacity liquefiers. But the low molecular weight of the constituents to be compressed hinders the use of a limited number of compression wheels.
  • the refrigerant will therefore be chosen such that its molecular weight is: sufficiently low so as not to bring a solidification phase to the operating temperatures and sufficiently high to allow centrifugal compression in a limited number of compression stages.
  • a refrigerant consisting of a mixture of 75% helium and 25% neon, the molar mass of such a mixture being 8g / mol, and a compressor centrifugal comprising six compression stages, each comprising between three and five wheels.
  • the heavy component mixed with hydrogen must be removed to achieve a very low content (of the order of ppm for example).
  • this purification is carried out in the cold box (between 140 and 80K).
  • it should not freeze component and therefore remain above its solidification point while maximally purifying the hydrogen in its cooling cycle. This requires a large temperature difference between the boiling point and the solidification point of the compound, which restricts the choice of the compound.
  • An object of the present invention is to overcome all or part of the drawbacks of the prior art noted above.
  • the installation according to the invention is essentially characterized in that it comprises a system for mixing at least one additional component having a molar mass greater than 50 g / mol with the second cycle gas before it enters the at least one centrifugal compressor and a member for purifying the mixture at the outlet of the compression member configured to remove the at least one additional constituent until 'at a determined residual content, the purification member being located upstream of the first set of heat exchanger (s).
  • embodiments of the invention may include one or more of the following characteristics: the determined residual content is less than 100 ppm, and preferably less than 10 ppm or even less than one ppm, the centrifugal compressor comprises a number compressor wheels of between four and twelve, for example ten or eight wheels, the centrifugal compressor is of the multi-integrated type, the at least one additional constituent comprises at least one of: an alkane comprising at least four carbon atoms , a haloalkane comprising at most four carbon atoms, an unsaturated hydrocarbon comprising at least five carbon atoms, a halogenated unsaturated hydrocarbon comprising at most five carbon atoms, an ether with saturated or unsaturated radicals, comprising at least four carbon atoms, a haloether, with saturated radicals or not, comprising at most four carbon atoms, the refrigerator of the first cooling device com takes, arranged in series in a cycle circuit: a member for compressing the first cycle gas, a member for cooling the first
  • the invention also relates to a process for refrigerating hydrogen at cryogenic temperature, and in particular for its liquefaction, by means of a cooling installation comprising a hydrogen circuit to be cooled comprising an upstream end connected to a source of hydrogen and a downstream end connected to a member for collecting the cooled hydrogen, the cooling installation comprising a first set of heat exchanger (s) and a second set of heat exchanger (s) arranged in series in heat exchange with the hydrogen circuit to be cooled, the cooling device comprising a first cooling device in thermal exchange with the first set of heat exchanger (s), the first cooling device comprising a refrigeration cycle refrigerator of a first cycle gas such as nitrogen, the cooling installation comprising a second cooling device in thermal exchange with the dry ond heat exchanger assembly (s), the second cooling device comprising a refrigeration cycle refrigerator of a second cycle gas having a molar lower than 3g / mol, in particular hydrogen, in which the refrigerator of the second cooling device makes the second cycle gas undergo a thermodynamic cycle comprising compression, cooling, expansion
  • the determined residual content is less than 100pp, and preferably less than 10 ppm or even less than one ppm
  • the centrifugal compression uses a non-zero number of compression wheels less than or equal to twelve, preferably less than or equal to ten, for example less than or equal to eight
  • the centrifugal compression achieves a compression ratio of the mixture greater than five and preferably between 6 and 15, at the outlet of the centrifugal compression the pressure of the mixture is greater than 25 bar absolute and preferably between 25 and 90 bars
  • the purification of the gas mixture at the outlet of the compression of its additional component is carried out in a portion of the circuit in which the gas has a temperature between - 5 ° C and 40 ° C
  • the method comprises a step of reheating the second cycle gas before it is mixed with the at least one additional component in order to vaporize the latter.
  • the invention may also relate to any alternative device or method comprising any combination of the characteristics above or below within the scope of the claims.
  • FIG. 1 represents a schematic and partial view illustrating an example of the structure and operation of a refrigeration / hydrogen liquefaction installation according to the invention
  • FIG. 2 shows a schematic and partial view of a detail of the installation of [Fig. 1]
  • FIG. 3 represents a schematic and partial view of a possible embodiment of the compression member of [FIG. 2]
  • FIG. 4 shows a schematic and partial view of another possible embodiment of the compression member.
  • the installation 1 for refrigeration of hydrogen at cryogenic temperature in particular configured for the liquefaction of hydrogen, comprises a circuit 2 of hydrogen to be cooled (liquefied) comprising an upstream end intended to be connected to a source 3 of hydrogen and a downstream end 4 connected to a member for collecting the cooled hydrogen.
  • the hydrogen source 3 comprises a methane steam reforming (SMR) type unit and / or an electrolyzer.
  • SMR methane steam reforming
  • This source 3 provides for example hydrogen with a purity greater than 99.9%, the impurities contained can be for example CO, N2, CH4, 02, Ar, H20, He, NH3, depending on the production methods, a temperature included between 15 ° C and 50 ° C degrees and a pressure of around 25 bar.
  • the installation 1 comprises a first set of heat exchanger (s) 5 for pre-cooling the flow of hydrogen to be cooled.
  • a first cooling device 7 is in thermal exchange with the first set of heat exchanger (s) 5 to provide cold power intended to cool the flow of hydrogen to a first temperature, for example between 140 and 80K.
  • This first nitrogen cycle can thus cool the product to be liquefied to the vaporization temperature of liquid nitrogen at 1.5 bars, therefore around 80K.
  • the first cooling device 7 comprises a refrigeration cycle refrigerator of a first cycle gas such as nitrogen.
  • this refrigerator of the first cooling device 7 comprises, arranged in series in a cycle circuit: a member 14 for compressing (one or more compressors) of the first cycle gas, at least one member 5, 15 for cooling the first compressed cycle gas, a member 11 for expanding the cycle gas ( one or more turbines or expansion valve) and a member 6 for reheating the first expanded cycle gas (reheating before the return to the compression member 14 can therefore be provided by the first set of exchanger (s) 5 to counter-current of the hydrogen flow which is pre-cooled there).
  • the installation 1 comprises a second set of heat exchanger (s) 6 for cooling the pre-cooled hydrogen stream.
  • a second cooling device 8 is in thermal exchange with the second set of heat exchanger (s) 6 to provide cold power intended to further lower the temperature of the hydrogen flow to a second temperature, for example between 80 and 20K.
  • the hydrogen circuit 2 may include a cryogenic purification unit 13, such as a cryogenic adsorber (TSA or other) configured to purify the hydrogen. and rid it of impurities such as N2, CO for example which could freeze in the cold part of the hydrogen liquefaction exchanger.
  • a cryogenic purification unit 13 such as a cryogenic adsorber (TSA or other) configured to purify the hydrogen. and rid it of impurities such as N2, CO for example which could freeze in the cold part of the hydrogen liquefaction exchanger.
  • TSA cryogenic adsorber
  • the second cooling device 8 comprises a refrigeration cycle refrigerator of a second cycle gas having a molar lower than 3 g / mol, in particular hydrogen.
  • This refrigerator of the second cooling device 8 comprises, arranged in series in a cycle circuit: a member 9, 10 for compressing the second cycle gas, a member 5 for cooling the second cycle gas, an expansion member 11 (a or several turbines or expansion valves in series and / or parallel) of the second cycle gas and a member 6 for reheating the second expanded cycle gas. Reheating before returning towards the compression member 9, 10 can therefore be provided by the second set of exchanger (s) 6 against the current of the flow of hydrogen which is cooled there).
  • the member 9, 10 for compressing the second cycle gas comprises at least one centrifugal compressor and a system 120 for injecting and mixing an additional component having a molar mass greater than 50 g / mol with the second cycle gas before its entry into the at least one centrifugal compressor and a member 12 for purifying the mixture at the outlet of the compression member 9, 10 configured to remove the additional component up to a determined residual content.
  • the at least one additional constituent comprises, for example, at least one of: the at least one additional constituent comprises at least one of: an alkane comprising at least four carbon atoms, a haloalkane comprising at most four carbon atoms, an unsaturated hydrocarbon comprising at least five carbon atoms, a halogenated unsaturated hydrocarbon comprising at most five carbon atoms, an ether with saturated or unsaturated radicals, comprising at least four carbon atoms, a haloether, with saturated or unsaturated radicals, comprising at least plus four carbon atoms.
  • the purification member 12 is located upstream of the first set of heat exchanger (s) 5, that is to say in the relatively hot non-cryogenic part (that is to say operating at a temperature greater than -150 ° C and in particular greater than -50 ° C) of installation 1, for example, the purification unit 12 is configured to operate and treat the gas to be purified at a temperature greater than -10 ° C. , preferably greater than 0 ° C, or even greater than 5 ° C and in particular at room temperature.
  • the mixing system 120 which injects the additional component and the purification member 12 have been schematically illustrated within the same entity. physical. However, this is in no way limiting (at least two respective distinct entities could be provided).
  • the additional component supplied by an outlet of the purification member 12 is added to the pure hydrogen of the cycle having a pressure for example of the order of 6 bar.
  • the additional component can be added to the pure hydrogen of the cycle between two compression stages 9, 10 (and / or upstream of the first compression stage).
  • the purification member 12 may for example comprise an adsorption system with variation in pressure (PSA) and / or temperature (TSA) comprising at least two adsorbers, for example three adsorbers.
  • the adsorbent material used can be chosen, without this being limiting, from: the family of zeolites, activated carbon, activated aluminas or silica gels.
  • the purification cycle is preferably configured to achieve recovery yields of hydrogen and the additional component greater than 80%, preferably greater than 90%, more preferably greater than 95%, or more preferably greater than 99%. .
  • the purification unit 12 may optionally include a partial condensation device with, for example, a refrigeration unit (operating for example down to - 50 ° C or -40 ° C or -30 ° C approximately) and located upstream of the PSA or TSA type purifier which can operate for example at a higher temperature, in particular higher than 0 ° C, higher than 5 ° C or higher than 10 ° C).
  • a refrigeration unit operting for example down to - 50 ° C or -40 ° C or -30 ° C approximately
  • the purification unit 12 may optionally include a partial condensation device with, for example, a refrigeration unit (operating for example down to - 50 ° C or -40 ° C or -30 ° C approximately) and located upstream of the PSA or TSA type purifier which can operate for example at a higher temperature, in particular higher than 0 ° C, higher than 5 ° C or higher than 10 ° C).
  • the purification cycle can allow all of the additional component to be recovered without loss of hydrogen.
  • the determined residual content is preferably less than 100pp, and preferably less than 10 ppm or even less than one ppm.
  • the compressed and purified hydrogen may have a pressure for example greater than 25 bar absolute and preferably of the order of 50 to 60 bar (compression ratio for example greater than five and preferably greater than eight).
  • the centrifugal compressor 10 has a number of compression wheels less than or equal to twelve, preferably less than or equal to ten or even eight.
  • a number of compression wheels preferably allows the use of a multi-integrated centrifugal compressor (“geartype” compressor).
  • This configuration makes it possible to vary the speed of rotation of the compression wheels every two stages, which is very favorable for the compression of a light gas.
  • the [Fig. 3] shows a possible embodiment of the centrifugal compression member 10 with eight compression wheels.
  • a refrigeration system 17 (with optional condensation of the added heavy component) of the gas can be provided between each stage (or alternately at the outlet of each pair of wheels as illustrated).
  • this component when the additional component is mixed with the hydrogen at the inlet of the centrifugal compression member 10, this component, which may be in liquid form, is liable to vaporize at least in part by direct contact with the liquid. 'hydrogen.
  • the temperature of the mixture obtained (gas or two-phase) is colder than that of the hydrogen before mixing.
  • preheating the hydrogen upstream for example by heat exchange in a heat exchanger 18 which recovers the heat of compression. downstream of one of the compression wheels and / or heat supplied by another source 19 of external heat cf. [Fig. 4].
  • installation 1 thus allows both centrifugal compression making it possible to treat high cycle flow rates (suitable for a high capacity hydrogen liquefier) while requiring a limited number of compression wheels.
  • the installation makes it possible to provide a relatively high pressure in the cycle of the hydrogen refrigerator, while maintaining, or even reducing, the number of compression stages compared to the prior art.
  • the compressor or compressors 14 of the refrigeration cycle of the first cooling device 7 are also compressors of the centrifugal type, and even more preferably of the multi-integrated type.
  • all the compressors used in the refrigeration cycles are of the centrifugal type, and even more preferably of the multi-integrated type, and have less than 12, or even 10, or even 8 compression wheels.
  • the refrigerator circuit of the second cooling device 8 can be supplied with second cycle gas (hydrogen) from the member (storage or other) receiving the liquefied gas at the downstream end 4 of the circuit 2 of hydrogen to liquefy.
  • second cycle gas hydrogen
  • This can be achieved via at least one pipe which returns this gas to the compression inlet by passing through the sets of heat exchanger (s) 5, 6.
  • part of the compressed gas at the outlet of the compression member 9, 10 (before and / or after purification 12) can be diverted to the upstream part of the hydrogen circuit 2 to be liquefied (upstream of the first heat exchanger assembly 5. That is, the refrigerator circuit of the second cooling device 8 may be an open loop cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Installation et procédé de réfrigération d'hydrogène, comprenant un circuit (2) d'hydrogène à refroidir, comprenant: - un premier et un second ensemble d'échangeur(s) (5) de chaleur disposés en série en échange thermique avec le circuit (2) d'hydrogène à refroidir; - un premier dispositif (7) de refroidissement en échange thermique avec le premier ensemble d'échangeur(s) (5) de chaleur comprenant un réfrigérateur à cycle de réfrigération d'un premier gaz de cycle; - un second dispositif (8) de refroidissement en échange thermique avec le second ensemble d'échangeur(s) (6) de chaleur comprenant un réfrigérateur à cycle de réfrigération d'un second gaz de cycle ayant une masse molaire inférieure à 3g/mol, le réfrigérateur du second dispositif (8) de refroidissement comprenant disposés en série dans un circuit de cycle: au moins un compresseur centrifuge (9, 10), un organe (5) de refroidissement, un organe (11) de détente et un organe (6) de réchauffage du second gaz de cycle détendu; - un système (120) de mélange d'au moins un constituant additionnel ayant une masse molaire supérieure à 50g/mol avec le second gaz de cycle avant son entrée dans le au moins un compresseur centrifuge et un organe (12) d'épuration du mélange en sortie de l'au moins un compresseur (9, 10) configuré pour retirer le au moins un constituant additionnel jusqu'à une teneur résiduelle déterminée et situé en amont du premier ensemble d'échangeur(s) (5) de chaleur.

Description

Installation et procédé de réfrigération d'hydrogène
L'invention concerne une installation et un procédé de réfrigération d'hydrogène.
L'invention concerne plus particulièrement une installation de réfrigération d'hydrogène à température cryogénique, et notamment pour la liquéfaction d'hydrogène, comprenant un circuit d'hydrogène à refroidir comprenant une extrémité amont destinée à être reliée à une source d'hydrogène et une extrémité aval reliée à un organe de collecte de l'hydrogène refroidi, l'installation de refroidissement comprenant un premier ensemble d'échangeur (s) de chaleur et un second ensemble d'échangeur(s) de chaleur disposés en série en échange thermique avec le circuit d'hydrogène à refroidir, le dispositif de refroidissement comprenant un premier dispositif de refroidissement en échange thermique avec le premier ensemble d'échangeur(s) de chaleur, le premier dispositif de refroidissement comprenant un réfrigérateur à cycle de réfrigération d'un premier gaz de cycle un tel que azote, l'installation de refroidissement comprenant un second dispositif de refroidissement en échange thermique avec le second ensemble d'échangeur(s) de chaleur, le second dispositif de refroidissement comprenant un réfrigérateur à cycle de réfrigération d'un second gaz de cycle ayant une molaire inférieure à 3g/mol, notamment de l'hydrogène, dans lequel le réfrigérateur du second dispositif de refroidissement comprend, disposés en série dans un circuit de cycle : un organe de compression du second gaz de cycle, un organe de refroidissement du second gaz de cycle, un organe de détente du second gaz de cycle et un organe de réchauffage du second gaz de cycle détendu, l'organe de compression du second gaz de cycle comprenant au moins un compresseur centrifuge.
Le développement du carburant hydrogène pour la mobilité va nécessiter de grandes capacités de liquéfaction d'hydrogène en vue d'une logistique sous forme liquide du produit. Les procédés de liquéfactions d'hydrogène connus mettent généralement en œuvre plusieurs cycles de réfrigération en série. Pour atteindre les températures très froides requises pour la liquéfaction d'hydrogène, un composé ou un mélange de composés à bas point d'ébullition est utilisé dans le cycle final de réfrigération. Typiquement, ces composés sont H2, He, Ne. Pour porter le fluide de réfrigération à la pression haute de cycle, des moyens de compression sont nécessaires.Afin de garder conserver une bonne efficacité de liquéfaction de l'hydrogène, par exemple inférieure à 10 kW.h/kg, le rendement isotherme du compresseur de réfrigérant doit rester élevé, de l'ordre de 70% ou plus. De tels rendements ne peuvent pas être atteints par des compresseurs à vis. Seules les technologies de compresseurs à pistons ou de compression centrifuge peuvent répondre à ce besoin.
La technologie de compression à piston étant volumétrique, il est impossible de traiter des gros débits volumiques. L'utilisation de tels compresseurs pour des liquéfacteurs hydrogène de grande capacité (supérieur par exemple à 30tonnes par jour) requiert l'utilisation de plusieurs compresseurs de ce type.
Les compresseurs centrifuges, eux, peuvent traiter les gros débits de cycle requis pour les liquéfacteurs de grande capacité. Mais le faible poids moléculaire des constituants à comprimer est un frein à l'utilisation d'un nombre limité de roues de compression. Le réfrigérant sera donc choisi de telle sorte que son poids moléculaire soit: suffisamment faible pour de pas amener de phase de solidification aux températures de fonctionnement et suffisamment élevé pour permettre une compression centrifuge en un nombre limité d'étages de compression .
Selon certaines études, il est préconisé un réfrigérant constitué d'un mélange de 75% d'hélium et 25% de néon, la masse molaire d'un tel mélange étant de 8g/mol, et un compresseur centrifuge comprenant six étages de compression, chacun comprenant entre trois et cinq roues.
Le document US3992167 décrit un procédé de réfrigération/liquéfaction d'hydrogène qui utilise un cycle de réfrigération et un pré-refroidissement par de l'azote. Ce document décrit l'utilisation d'un composant lourd (propane) mélangé à l'hydrogène avant son compression centrifuge. Selon ce document indique l'ajout de ce constituant est limité car la re- vaporistation de celui-ci dans la partie chaude de la ligne d'échange du cycle de liquéfaction crée des écarts de températures (et donc des irréversibilités et pertes d'efficacité) . Cette solution ne permet donc pas d'atteindre des pressions de compression plus élevées en augmentant la fraction de propane injecté). Ce dispositif ne permet d'atteindre des pressions élevées (25 bar ou plus) sauf à prévoir un nombre de roues de compression trop important pour être industriellement et économiquement viable.
Le composant lourd mélangé à l'hydrogène doit être retiré pour atteindre une teneur très faible (de l'ordre du ppm par exemple). Selon cette solution, cette purification est réalisée dans la boîte froide (entre 140 et 80K). Cependant, il convient de ne pas geler composant et donc rester au-dessus de son point de solidification tout en purifiant au maximum l'hydrogène dans son cycle de refroidissement. Ceci nécessite grande différence de température entre le point d'ébullition et le point solidification du composé ce qui restreint le choix du composé. Ces contraintes rendent cette solution peu appropriée en terme d'efficacité pour atteindre des pressions de cycle élevées.
Un but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur relevés ci-dessus.
A cette fin, l'installation selon l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci- dessus, est essentiellement caractérisée en ce qu'elle comprend un système de mélange d'au moins un constituant additionnel ayant une masse molaire supérieure à 50g/mol avec le second gaz de cycle avant son entrée dans le au moins un compresseur centrifuge et un organe d'épuration du mélange en sortie de l'organe de compression configuré pour retirer le au moins un constituant additionnel jusqu'à une teneur résiduelle déterminée, l'organe d'épuration étant situé en amont du premier ensemble d'échangeur (s) de chaleur.
Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes : la teneur résiduelle déterminée est inférieure à lOOppm, et de préférence inférieure à 10 ppm voire inférieure à un ppm, le compresseur centrifuge comprend un nombre de roues de compresseur compris entre quatre et douze, par exemple dix ou huit roues, le compresseur centrifuge est du type multi-intégré, le au moins un constituant additionnel comprend au moins l'un parmi : un alcane comprenant au moins quatre atomes de carbones, un halogénoalcane comprenant au plus quatre atomes de carbone, un hydrocarbure insaturé comprenant au moins cinq atomes de carbones, un hydrocarbure insaturé halogéné comprenant au plus cinq atomes de carbone, un éther à radicaux saturés ou non, comprenant au moins quatre atomes de carbones, un halogénoether, à radicaux saturés ou non, comprenant au plus quatre atomes de carbone, le réfrigérateur du premier dispositif de refroidissement comprend, disposés en série dans un circuit de cycle : un organe de compression du premier gaz de cycle, un organe de refroidissement du premier gaz de cycle, un organe de détente du gaz de cycle et un organe de réchauffage du premier gaz de cycle détendu, l'organe de compression du premier gaz de cycle comprend au moins un compresseur centrifuge, l'installation comprend une boîte froide isolée thermiquement abritant les composants à température froide de l'installation et notamment le premier ensemble d'échangeur(s) de chaleur et un second ensemble d'échangeur(s) de chaleur disposés, et en ce que le système de mélange d'un constituant additionnel et l'organe d'épuration sont situé en dehors de la boîte froide, le circuit d'hydrogène à refroidir comprend un organe de purification cryogénique configuré pour purifier l'hydrogène tel qu'un adsorbeur cryogénique.
L'invention concerne également un procédé de réfrigération d'hydrogène à température cryogénique, et notamment pour sa liquéfaction, au moyen d'une installation de refroidissement comprenant un circuit d'hydrogène à refroidir comprenant une extrémité amont reliée à une source d'hydrogène et une extrémité aval reliée à un organe de collecte de l'hydrogène refroidi, l'installation de refroidissement comprenant un premier ensemble d'échangeur (s) de chaleur et un second ensemble d'échangeur(s) de chaleur disposés en série en échange thermique avec le circuit d'hydrogène à refroidir, le dispositif de refroidissement comprenant un premier dispositif de refroidissement en échange thermique avec le premier ensemble d'échangeur(s) de chaleur, le premier dispositif de refroidissement comprenant un réfrigérateur à cycle de réfrigération d'un premier gaz de cycle un tel que azote, l'installation de refroidissement comprenant un second dispositif de refroidissement en échange thermique avec le second ensemble d'échangeur(s) de chaleur, le second dispositif de refroidissement comprenant un réfrigérateur à cycle de réfrigération d'un second gaz de cycle ayant une molaire inférieure à 3g/mol, notamment de l'hydrogène, dans lequel le réfrigérateur du second dispositif de refroidissement fait subit au second gaz de cycle un cycle thermodynamique comprenant une compression, un refroidissement, une détente et un réchauffage, dans lequel la compression est réalisée par au moins un compresseur centrifuge, et dans lequel, le second gaz de cycle est mélangé avec au moins un constituant additionnel ayant une masse molaire supérieure à 50g/mol avant compression centrifuge et le mélange de gaz en sortie de la compression centrifuge est épuré du constituant additionnel jusqu'à une teneur résiduelle déterminée .
Selon d'autres particularités : la teneur résiduelle déterminée est inférieure à lOOpp, et de préférence inférieur à 10 ppm voire inférieure à un ppm, la compression centrifuge utilise un nombre de roues de compression non nul inférieur ou égal à douze, de préférence inférieur ou égal à dix, par exemple inférieur ou égal à huit, la compression centrifuge réalise un taux de compression du mélange supérieur à cinq et de préférence compris entre 6 et 15, en sortie de la compression centrifuge la pression du mélange est comprise supérieure à 25 bar absolu et de préférence comprise entre 25 et 90 bars, l'épuration du mélange de gaz en sortie de la compression de son constituant additionnel est réalisée dans une portion du circuit dans laquelle le gaz a une température comprise entre - 5°C et 40°C, le procédé comprend une étape de réchauffage du second gaz de cycle avant son mélange avec le au moins un constituant additionnel en vue de vaporiser ce dernier.
L'invention peut concerner également tout dispositif ou procédé alternatif comprenant toute combinaison des caractéristiques ci- dessus ou ci-dessous dans le cadre des revendications.
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :
[Fig. 1] représente une vue schématique et partielle illustrant un exemple de structure et de fonctionnement d'une installation de réfrigération/liquéfaction d'hydrogène selon l'invention,
[Fig. 2] représente une vue schématique et partielle d'un détail de l'installation de la [Fig. 1], [Fig. 3] représente une vue schématique et partielle d'un exemple de réalisation possible de l'organe de compression de la [Fig. 2],
[Fig. 4] représente une vue schématique et partielle d'un autre exemple de réalisation possible de l'organe de compression.
L'installation 1 de réfrigération d'hydrogène à température cryogénique, notamment configurée pour la liquéfaction d'hydrogène, comprend un circuit 2 d'hydrogène à refroidir (liquéfier) comprenant une extrémité amont destinée à être reliée à une source 3 d'hydrogène et une extrémité aval 4 reliée à un organe de collecte de l'hydrogène refroidi.
Par exemple, la source 3 d'hydrogène comprend une unité de type à vaporeformage de méthane (SMR) et/ou un électrolyseur.
Cette source 3 fournit par exemple de l'hydrogène avec une pureté supérieure à 99.9%, les impuretés contenues pouvant être par exemple CO, N2, CH4, 02, Ar, H20, He, NH3, selon les modes de production, une température comprise entre 15°C et 50°C degrés et une pression de l'ordre de 25 bar.
L'installation 1 comprend un premier ensemble d'échangeur(s) 5 de chaleur de pré-refroidissement du flux d'hydrogène à refroidir. Un premier dispositif 7 de refroidissement est en échange thermique avec le premier ensemble d'échangeur(s) 5 de chaleur pour apporter une puissance froide destinée à refroidir le flux d'hydrogène à une première température, par exemple comprise entre 140 et 80K.
Ce premier cycle d'azote peut ainsi refroidir le produit à liquéfier jusqu'à la température de vaporisation d'azote liquide à 1.5 bars, donc autour de 80K.
Le premier dispositif 7 de refroidissement comprend un réfrigérateur à cycle de réfrigération d'un premier gaz de cycle un tel que de l'azote. Comme schématisé, ce réfrigérateur du premier dispositif 7 de refroidissement comprend, disposés en série dans un circuit de cycle : un organe 14 de compression (un ou plusieurs compresseurs) du premier gaz de cycle, au moins un organe 5, 15 de refroidissement du premier gaz de cycle compressé, un organe 11 de détente du gaz de cycle (une ou plusieurs turbines ou vanne de détente) et un organe 6 de réchauffage du premier gaz de cycle détendu (le réchauffage avant le retour vers l'organe 14 de compression peut donc être assuré par le premier ensemble d'échangeur(s) 5 à contre-courant du flux d'hydrogène qui y est pré-refroidi).
L'installation 1 comprend un deuxième ensemble d'échangeur(s) 6 de chaleur de refroidissement du flux d'hydrogène pré-refroidi. Un second dispositif 8 de refroidissement est en échange thermique avec le second ensemble d'échangeur(s) 6 de chaleur pour apporter une puissance froide destinée à abaisser encore la température du flux d'hydrogène à une seconde température, par exemple comprise entre 80 et 20K.
Comme illustré, entre le premier 5 et le deuxième 6 ensemble d'échangeur (s) le circuit 2 d'hydrogène peut comporter un organe 13 de purification cryogénique, tel qu'un adsorbeur cryogénique (TSA ou autre) configuré pour purifier l'hydrogène et le débarrasser d'impuretés telles que N2, CO par exemple qui pourraient geler dans la partie froide de l'échangeur de liquéfaction d'hydrogène.
Le second dispositif 8 de refroidissement comprend un réfrigérateur à cycle de réfrigération d'un second gaz de cycle ayant une molaire inférieure à 3g/mol, notamment de l'hydrogène.
Ce réfrigérateur du second dispositif 8 de refroidissement comprend, disposés en série dans un circuit de cycle : un organe 9, 10 de compression du second gaz de cycle, un organe 5 de refroidissement du second gaz de cycle, un organe 11 de détente (une ou plusieurs turbines ou vannes de détente en série et/ou parallèle) du second gaz de cycle et un organe 6 de réchauffage du second gaz de cycle détendu. Le réchauffage avant le retour vers l'organe 9, 10 de compression peut donc être assuré par le second ensemble d'échangeur (s) 6 à contre-courant du flux d'hydrogène qui y est refroidi).
L'organe 9, 10 de compression du second gaz de cycle comprend au moins un compresseur centrifuge et un système 120 d'injection et de mélange d'un constituant additionnel ayant une masse molaire supérieure à 50g/mol avec le second gaz de cycle avant son entrée dans le au moins un compresseur centrifuge et un organe 12 d'épuration du mélange en sortie de l'organe 9, 10 de compression configuré pour retirer le constituant additionnel jusqu'à une teneur résiduelle déterminée.
Le au moins un constituant additionnel comprend par exemple au moins l'un parmi : le au moins un constituant additionnel comprend au moins l'un parmi : un alcane comprenant au moins quatre atomes de carbones, un halogénoalcane comprenant au plus quatre atomes de carbone, un hydrocarbure insaturé comprenant au moins cinq atomes de carbones, un hydrocarbure insaturé halogéné comprenant au plus cinq atomes de carbone, un éther à radicaux saturés ou non, comprenant au moins quatre atomes de carbones, un halogénoéther, à radicaux saturés ou non, comprenant au plus quatre atomes de carbone.
L'organe 12 d'épuration est situé en amont du premier ensemble d'échangeur (s) 5 de chaleur, c'est-à-dire dans la partie relativement chaude non cryogénique (c'est-à-dire fonctionnant à une température supérieure à -150°C et notamment supérieures à -50°C) de l'installation 1.Par exemple, l'organe 12 d'épuration est configuré pour fonctionner et traiter le gaz à épuré à une température supérieure à -10°C, préférablement supérieure à 0°C, voire supérieure à 5°C et notamment à la température ambiante.
Par souci de simplification, le système 120 de mélange qui injecte le constituant additionnel et l'organe 12 d'épuration ont été illustrés schématiquement au sein d'une même entité physique. Ceci n'est cependant nullement limitatif (au moins deux entités distinctes respectives pourraient être prévues).Par exemple, à l'entrée de l'organe 10 de compression, le constituant additionnel fourni par une sortie de l'organe 12 d'épuration est ajouté à l'hydrogène pur du cycle ayant une pression par exemple de l'ordre de 6 bar.
Comme illustré, le constituant additionnel peut être ajouté à l'hydrogène pur du cycle entre deux étages 9, 10 de compression (et/ou en amont du premier étage de compression).
L'organe 12 d'épuration peut comprendre par exemple un système d'adsorption à variation de pression (PSA) et/ou de température (TSA) comprenant au moins deux adsorbeurs, par exemple trois adsorbeurs . Le matériau adsorbant employé peut être choisi, sans que cela soit limitant, parmi : la famille des zéolithes, charbons activés, alumines activées ou gels de silice. Le cycle de purification est configuré de préférence pour obtenir des rendements de récupération de l'hydrogène et du composant additionnel supérieurs à 80%, de préférence supérieurs à 90%, de préférence encore supérieurs à 95%, ou plus avantageusement encore supérieurs à 99%.
A noter que l'organe 12 d'épuration peut éventuellement comprendre un dispositif de condensation partielle avec, par exemple, un groupe frigorifique (opérant par exemple jusqu'à - 50°C ou -40°C ou -30°C environ) et situé en amont de l'épurateur de type PSA ou TSA qui lui peut fonctionner par exemple à une température supérieure, notamment supérieure à 0°C, supérieure à 5°C ou supérieure à 10°C).
Le cycle de purification peut permettre de récupérer la totalité du composant additionnel, sans perte d'hydrogène. La teneur résiduelle déterminée est de préférence inférieure à lOOpp, et de préférence inférieur à 10 ppm ou même inférieure à un ppm. En sortie de l'organe 12 d'épuration, l'hydrogène comprimé et purifié peut avoir une pression par exemple supérieure à 25bar absolu et de préférence de l'ordre de 50 à 60bar (taux de compression par exemple supérieur à cinq et de préférence supérieur à huit).
De préférence, le compresseur 10 centrifuge possède un nombre de roues de compression inférieur ou égal à douze, préférentiellement inférieur ou égal à dix voire huit. En effet, un tel nombre de roues de compression permet préférablement l'utilisation d'un compresseur centrifuge multi-intégré (« geartype » compressor). Cette configuration permet de faire varier la vitesse de rotation des roues de compression tous les deux étages, ce qui est très favorable pour la compression d'un gaz léger. La [Fig. 3] représente un exemple de réalisation possible de l'organe 10 de compression centrifuge à huit roues de compression. Un système 17 de réfrigération (avec condensation optionnelle du composant lourd ajouté) du gaz peut être prévu entre chaque étage (ou de façon alternée en sortie de chaque paire de roues comme illustré).
A noter que lors du mélange du constituant additionnel avec l'hydrogène à l'entrée de l'organe 10 de compression centrifuge, ce constituant, qui peut être sous forme liquide, est susceptible de se vaporiser au moins en partie par contact direct avec l'hydrogène. La température du mélange obtenu (gaz ou diphasique) est plus froide que celle de l'hydrogène avant mélange. Pour une vaporisation partielle plus poussée ou totale de ce constituant plus lourd dans l'hydrogène, il est possible d'envisager un préchauffer l'hydrogène en amont, par exemple par échange thermique dans un échangeur 18 de chaleur qui récupère de la chaleur de compression en aval d'une des roues de compression et/ou de la chaleur fournie par une autre source 19 de chaleur extérieure cf. [Fig. 4]. 1/ installation 1 permet ainsi à la fois une compression centrifuge permettant de traiter des débits de cycle importants (adapté à un liquéfacteur d'hydrogène de grande capacité) tout en nécessitant un nombre limité de roues de compression. Ainsi, l'installation permet de prévoir une pression relativement haute dans le cycle du réfrigérateur hydrogène, tout en conservant, voire diminuant, le nombre d'étages de compression par rapport à l'art antérieur.
De préférence, le ou les compresseurs 14 du cycle de réfrigération du premier dispositif 7 de refroidissement sont également des compresseurs de type centrifuge, et encore plus préférentiellement de type multi-intégrés.
De préférence, tous les compresseurs utilisés dans les cycles de réfrigération sont de type centrifuges, et encore plus préférentiellement de type multi-intégrés, et ont moins de 12, voire 10, voire 8 roues de compression.
Comme le circuit du réfrigérateur du deuxième dispositif 8 de de refroidissement peut être alimenté en second gaz de cycle (hydrogène) provenant de l'organe (stockage ou autre) recevant le gaz liquéfié à l'extrémité aval 4 du circuit 2 d'hydrogène à liquéfier. Ceci peut être réalisé via au moins une conduite qui renvoie ce gaz vers l'entrée de la compression en transitant par les ensembles d'échangeur(s) 5, 6 de chaleur. De plus comme illustré, une partie du gaz comprimé en sortie de l'organe 9, 10 de compression (avant et/ou après épuration 12) peut être dérivé vers la partie amont du circuit 2 d'hydrogène à liquéfier (en amont du premier ensemble 5 d'échangeur(s) de chaleur. C'est-à- dire que le circuit du réfrigérateur du deuxième dispositif 8 de de refroidissement peut être un cycle en boucle ouverte.

Claims

REVENDICATIONS
1. Installation de réfrigération d'hydrogène à température cryogénique, et notamment pour la liquéfaction d'hydrogène, comprenant un circuit (2) d'hydrogène à refroidir comprenant une extrémité amont destinée à être reliée à une source (3) d'hydrogène et une extrémité aval (4) reliée à un organe de collecte de l'hydrogène refroidi, l'installation (1) de refroidissement comprenant un premier ensemble d'échangeur(s) (5) de chaleur et un second ensemble d'échangeur(s) (6) de chaleur disposés en série en échange thermique avec le circuit (2) d'hydrogène à refroidir, le dispositif (1) de refroidissement comprenant un premier dispositif (7) de refroidissement en échange thermique avec le premier ensemble d'échangeur (s) (5) de chaleur, le premier dispositif (7) de refroidissement comprenant un réfrigérateur à cycle de réfrigération d'un premier gaz de cycle un tel que l'azote, l'installation (1) de refroidissement comprenant un second dispositif (8) de refroidissement en échange thermique avec le second ensemble d'échangeur (s) (6) de chaleur, le second dispositif (8) de refroidissement comprenant un réfrigérateur à cycle de réfrigération d'un second gaz de cycle ayant une molaire inférieure à 3g/mol, notamment de l'hydrogène, dans lequel le réfrigérateur du second dispositif (8) de refroidissement comprend, disposés en série dans un circuit de cycle : un organe (9, 10) de compression du second gaz de cycle, un organe (5) de refroidissement du second gaz de cycle, un organe (11) de détente du second gaz de cycle et un organe (6) de réchauffage du second gaz de cycle détendu, l'organe (9, 10) de compression du second gaz de cycle comprenant au moins un compresseur centrifuge, l'installation comprenant un système (120) de mélange d'au moins un constituant additionnel ayant une masse molaire supérieure à 50g/mol avec le second gaz de cycle avant son entrée dans le au moins un compresseur centrifuge et un organe (12) d'épuration du mélange en sortie de l'organe (9, 10) de compression configuré pour retirer le au moins un constituant additionnel jusqu'à une teneur résiduelle déterminée, l'organe (12) d'épuration étant situé en amont du premier ensemble d'échangeur(s) (5) de chaleur et configuré pour retirer le au moins constituant additionnel jusqu'à une teneur résiduelle inférieur à lOOppm en amont du premier ensemble d'échangeur(s) (5) de chaleur .
2. Installation selon la revendication 1, caractérisée en ce que la teneur résiduelle déterminée est inférieure à 10 ppm voire inférieure à un ppm.
3. Installation selon la revendication 1 ou 2, caractérisée en ce que l'organe (12) d'épuration est non-cryogénique et configuré pour traiter le gaz à épurer à une température supérieure à -50°C, préférablement supérieure à -10°C ou supérieure à 0°C, voire supérieure à 5°C, et comprend un système d'adsorption à variation de pression (PSA) et/ou de température (TSA) comprenant plusieurs adsorbeurs, par exemple deux ou trois adsorbeurs .
4. Installation selon la revendication 3, caractérisée en ce que le système d'adsorption à variation de pression (PSA) et/ou de température (TSA) comporte plusieurs adsorbeurs comprenant au moins un matériau adsorbant choisi parmi : la famille des zéolithes, les charbons activés, les alumines activées ou les gels de silice.
5. Installation selon l'une quelconque des revendication 1 à 4, caractérisée en ce que le compresseur (10) centrifuge comprend un nombre de roues de compresseur compris entre quatre et douze, par exemple dix ou huit roues.
6. Installation selon la revendication 5, caractérisée en ce que le compresseur (10) centrifuge est du type multi-intégré.
7. Installation selon l'une quelconque des revendications 1 à
6, caractérisée en ce que le au moins un constituant additionnel comprend au moins l'un parmi : un alcane comprenant au moins quatre atomes de carbones, un halogénoalcane comprenant au plus quatre atomes de carbone, un hydrocarbure insaturé comprenant au moins cinq atomes de carbones, un hydrocarbure insaturé halogéné comprenant au plus cinq atomes de carbone, un éther à radicaux saturés ou non, comprenant au moins quatre atomes de carbones, un halogénoether, à radicaux saturés ou non, comprenant au plus quatre atomes de carbone.
8. Installation selon l'une quelconque des revendications 1 à
7, caractérisée en ce que le réfrigérateur du premier dispositif (7) de refroidissement comprend, disposés en série dans un circuit de cycle : un organe (14) de compression du premier gaz de cycle, un organe (5, 15) de refroidissement du premier gaz de cycle, un organe (11) de détente du gaz de cycle et un organe (6) de réchauffage du premier gaz de cycle détendu.
9. Installation selon la revendications 8, caractérisée en ce que l'organe (14) de compression du premier gaz de cycle comprend au moins un compresseur centrifuge.
10. Installation selon l'une quelconque des revendications 1 à
9, caractérisée en ce qu'elle comprend une boîte (16) froide isolée thermiquement abritant les composants à température froide de l'installation (1) et notamment le premier ensemble d'échangeur (s) (5) de chaleur et un second ensemble d'échangeur (s) (6) de chaleur disposés, et en ce que le système
(120) de mélange d'un constituant additionnel et l'organe (12) d'épuration sont situé en dehors de la boîte (16) froide.
11. Installation selon l'une quelconque des revendications 1 à
10, caractérisée en ce que le circuit (2) d'hydrogène à refroidir comprend un organe de purification cryogénique (13) configuré pour purifier l'hydrogène tel qu'un adsorbeur cryogénique.
12. Procédé de réfrigération d'hydrogène à température cryogénique, et notamment pour sa liquéfaction, au moyen d'une installation (1) de refroidissement comprenant un circuit (2) d'hydrogène à refroidir comprenant une extrémité amont reliée à une source (3) d'hydrogène et une extrémité aval (4) reliée à un organe de collecte de l'hydrogène refroidi, l'installation (1) de refroidissement comprenant un premier ensemble d'échangeur(s) (5) de chaleur et un second ensemble d'échangeur(s) (6) de chaleur disposés en série en échange thermique avec le circuit (2) d'hydrogène à refroidir, le dispositif (1) de refroidissement comprenant un premier dispositif (7) de refroidissement en échange thermique avec le premier ensemble d'échangeur (s) (5) de chaleur, le premier dispositif (7) de refroidissement comprenant un réfrigérateur à cycle de réfrigération d'un premier gaz de cycle un tel que azote, l'installation (1) de refroidissement comprenant un second dispositif (8) de refroidissement en échange thermique avec le second ensemble d'échangeur (s) (6) de chaleur, le second dispositif (8) de refroidissement comprenant un réfrigérateur à cycle de réfrigération d'un second gaz de cycle ayant une molaire inférieure à 3g/mol, notamment de l'hydrogène, dans lequel le réfrigérateur du second dispositif (8) de refroidissement fait subit au second gaz de cycle un cycle thermodynamique comprenant une compression, un refroidissement, une détente et un réchauffage, dans lequel la compression est réalisée par au moins un compresseur centrifuge, et dans lequel, le second gaz de cycle est mélangé avec au moins un constituant additionnel ayant une masse molaire supérieure à 50g/mol avant compression centrifuge et le mélange de gaz en sortie de la compression centrifuge est épuré du constituant additionnel jusqu'à une teneur résiduelle déterminée inférieur à lOOppm en amont du premier ensemble d'échangeur (s) (5) de chaleur.
13. Procédé selon la revendication 12, caractérisé en ce que la teneur résiduelle déterminée est inférieure à 10 ppm voire inférieure à un ppm.
14. Procédé selon la revendication 12ou 13, caractérisé en ce que la compression centrifuge utilise un nombre de roues de compression non nul inférieur ou égal à douze, de préférence inférieur ou égal à dix, par exemple inférieur ou égal à huit.
15. Procédé selon l'une quelconque des revendications 12 à 14, caractérisé en ce que la compression centrifuge réalise un taux de compression du mélange supérieur à cinq et de préférence compris entre 6 et 15.
16. Procédé selon l'une quelconque des revendications 12 à 15, caractérisé en ce que, en sortie de la compression centrifuge la pression du mélange est comprise supérieure à 25 bar absolu et de préférence comprise entre 25 et 90 bars.
17. Procédé selon l'une quelconque des revendications 12 à 16, caractérisé en ce que, l'épuration du mélange de gaz en sortie de la compression de son constituant additionnel est réalisée dans une portion du circuit dans laquelle le gaz a une température comprise entre -5°C et 40°C.
18. Procédé selon l'une quelconque des revendications 12 à 17, caractérisé en ce qu'il comprend une étape de réchauffage du second gaz de cycle avant son mélange avec le au moins un constituant additionnel en vue de vaporiser ce dernier.
PCT/EP2021/055376 2020-03-23 2021-03-03 Installation et procédé de réfrigération d'hydrogène WO2021190892A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21708249.4A EP4127582A1 (fr) 2020-03-23 2021-03-03 Installation et procédé de réfrigération d'hydrogène
AU2021240847A AU2021240847A1 (en) 2020-03-23 2021-03-03 Facility and method for hydrogen refrigeration
CA3171542A CA3171542A1 (fr) 2020-03-23 2021-03-03 Installation et procede de refrigeration d'hydrogene
KR1020227032081A KR20220157389A (ko) 2020-03-23 2021-03-03 수소 냉동을 위한 시설 및 방법
US17/914,294 US20230119575A1 (en) 2020-03-23 2021-03-03 Facility and method for hydrogen refrigeration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2002797A FR3108390B1 (fr) 2020-03-23 2020-03-23 Installation et procédé de réfrigération d’hydrogène
FRFR2002797 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021190892A1 true WO2021190892A1 (fr) 2021-09-30

Family

ID=70978171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/055376 WO2021190892A1 (fr) 2020-03-23 2021-03-03 Installation et procédé de réfrigération d'hydrogène

Country Status (7)

Country Link
US (1) US20230119575A1 (fr)
EP (1) EP4127582A1 (fr)
KR (1) KR20220157389A (fr)
AU (1) AU2021240847A1 (fr)
CA (1) CA3171542A1 (fr)
FR (1) FR3108390B1 (fr)
WO (1) WO2021190892A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2617861A (en) * 2022-04-23 2023-10-25 Frederick Skinner Geoffrey Process for producing liquefied hydrogen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023081439A1 (fr) * 2021-11-08 2023-05-11 Chart Energy & Chemicals, Inc. Liquéfaction d'hydrogène avec une source de réfrigération d'hydrogène stocké

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3401111A (en) * 1966-07-05 1968-09-10 Fluor Corp Hydrogen compression by centrifugal compressors
US3992167A (en) 1975-04-02 1976-11-16 Union Carbide Corporation Low temperature refrigeration process for helium or hydrogen mixtures using mixed refrigerant
JPH0275882A (ja) * 1988-09-08 1990-03-15 Kobe Steel Ltd 低分子気体の圧縮方法
US5579655A (en) * 1994-07-29 1996-12-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the liquefaction of hydrogen
US20160222970A1 (en) * 2009-03-24 2016-08-04 Concepts Nrec, Llc High-Flow-Capacity Centrifugal Hydrogen Gas Compression Systems, Methods and Components Therefor
US20180347897A1 (en) * 2015-10-27 2018-12-06 Linde Aktiengesellschaft Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3401111A (en) * 1966-07-05 1968-09-10 Fluor Corp Hydrogen compression by centrifugal compressors
US3992167A (en) 1975-04-02 1976-11-16 Union Carbide Corporation Low temperature refrigeration process for helium or hydrogen mixtures using mixed refrigerant
JPH0275882A (ja) * 1988-09-08 1990-03-15 Kobe Steel Ltd 低分子気体の圧縮方法
US5579655A (en) * 1994-07-29 1996-12-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the liquefaction of hydrogen
US20160222970A1 (en) * 2009-03-24 2016-08-04 Concepts Nrec, Llc High-Flow-Capacity Centrifugal Hydrogen Gas Compression Systems, Methods and Components Therefor
US20180347897A1 (en) * 2015-10-27 2018-12-06 Linde Aktiengesellschaft Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2617861A (en) * 2022-04-23 2023-10-25 Frederick Skinner Geoffrey Process for producing liquefied hydrogen

Also Published As

Publication number Publication date
FR3108390B1 (fr) 2022-11-25
KR20220157389A (ko) 2022-11-29
EP4127582A1 (fr) 2023-02-08
US20230119575A1 (en) 2023-04-20
FR3108390A1 (fr) 2021-09-24
AU2021240847A1 (en) 2022-09-15
CA3171542A1 (fr) 2021-09-30

Similar Documents

Publication Publication Date Title
AU2016344553B2 (en) Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
EP0687353B1 (fr) Procede et appareil de liquefaction d'un gaz naturel
JP4980051B2 (ja) ガス液化用一体型多重ループ冷却方法
TW448282B (en) Single mixed refrigerant gas liquefaction process
US6082133A (en) Apparatus and method for purifying natural gas via cryogenic separation
WO2021190892A1 (fr) Installation et procédé de réfrigération d'hydrogène
EP0731900B1 (fr) Procede et installation de liquefaction du gaz naturel
CA2154985A1 (fr) Procede et installation de liquefaction d'hydrogene
WO2017072018A1 (fr) Nouveau procédé en cascade destiné à refroidir et à liquéfier de l'hydrogène à grande échelle
US6463744B1 (en) Method and device for producing cold
CA2790182C (fr) Procede d'optimisation d'extraction de composants condensables d'un fluide
FR3035195B1 (fr) Installation et procede de production d'helium liquide
WO2022175204A1 (fr) Procédé et appareil de liquéfaction d'hydrogène
US20230366620A1 (en) System and Method for Cooling Fluids Containing Hydrogen or Helium
FR2714720A1 (fr) Procédé et appareil de liquéfaction d'un gaz naturel.
JPS5982924A (ja) ガスの増産方法
EP4330611A1 (fr) Dispositif et procédé de refroidissement d'un flux d'un fluide cible comportant majoritairement du dihydrogène et utilisation associée
FR3033397A1 (fr) Procede de compression et de refroidissement d’un melange gazeux
Al Rabadi et al. A generic concept for Helium purification and liquefaction plant
FR3063540A1 (fr) Procede de liquefaction de gaz naturel a l'aide d'un circuit de refrigeration ne comportant qu'une seule turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21708249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3171542

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021240847

Country of ref document: AU

Date of ref document: 20210303

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021708249

Country of ref document: EP

Effective date: 20221024